<i>Colloquium</i>: The Einstein-Podolsky-Rosen parad

Reviews of Modern Physics 81, 1727-1751 DOI: 10.1103/revmodphys.81.1727

Citation Report

#	Article	IF	CITATIONS
2	Asynchronous entanglement from coherently coupled nonlinear cavities. , 2009, , .		0
3	Visualizing electron delocalization, electron-proton correlations, and the Einstein-Podolsky-Rosen paradox during the photodissociation of a diatomic molecule using two ultrashort laser pulses. Physical Review A, 2010, 81, .	1.0	21
4	Spatial correlations in parametric down-conversion. Physics Reports, 2010, 495, 87-139.	10.3	273
5	Experimental EPR-steering using Bell-local states. Nature Physics, 2010, 6, 845-849.	6.5	344
6	Global effects of quantum states induced by locally invariant measurements. Europhysics Letters, 2010, 92, 20004.	0.7	38
7	Sub-Poissonian Number Differences in Four-Wave Mixing of Matter Waves. Physical Review Letters, 2010, 105, 190402.	2.9	67
8	Quantum Correlations in Optical Angle–Orbital Angular Momentum Variables. Science, 2010, 329, 662-665.	6.0	508
9	Continuous variable entanglement enhancement and manipulation by a subthreshold Type II optical parametric amplifier. Optics Letters, 2010, 35, 853.	1.7	20
10	Bell inequalities for continuous-variable measurements. Physical Review A, 2010, 81, .	1.0	22
11	Revealing Hidden Einstein-Podolsky-Rosen Nonlocality. Physical Review Letters, 2011, 106, 130402.	2.9	234
12	Demonstrating hybrid quantum effects with two entangled laser beams. , 2011, , .		0
13	Demonstration of the angular uncertainty principle for single photons. Journal of Optics (United) Tj ETQq1 1 0.78	4314 rgB 1.0	T /Overlock
14	Essential entanglement for atomic and molecular physics. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 192001.	0.6	155
15	Einstein-Podolsky-Rosen Correlations of Ultracold Atomic Gases. Physical Review Letters, 2011, 106, 120404.	2.9	35
16	Unified criteria for multipartite quantum nonlocality. Physical Review A, 2011, 84, .	1.0	100
17	Proposal for a Quantum Delayed-Choice Experiment. Physical Review Letters, 2011, 107, 230406.	2.9	139
18	Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems. Physical Review A, 2011, 83, .	1.0	48
19	Einstein-Podolsky-Rosen Entanglement Strategies in Two-Well Bose-Einstein Condensates. Physical Review Letters, 2011, 106, 120405.	2.9	73

TATION REDO

#	Article	IF	CITATIONS
20	THEORETICAL AND EXPERIMENTAL ASPECTS OF QUANTUM DISCORD AND RELATED MEASURES. International Journal of Quantum Information, 2011, 09, 1837-1873.	0.6	100
21	Atomic homodyne detection of continuous-variable entangled twin-atom states. Nature, 2011, 480, 219-223.	13.7	177
22	Quantum memory for entangled continuous-variable states. Nature Physics, 2011, 7, 13-16.	6.5	130
23	Twin-atom beams. Nature Physics, 2011, 7, 608-611.	6.5	155
24	Mean field effects on the scattered atoms in condensate collisions. European Physical Journal D, 2011, 65, 19-24.	0.6	8
25	Demonstrating various quantum effects with two entangled laser beams. European Physical Journal D, 2011, 63, 457-461.	0.6	5
26	Foundations of quantum mechanics?. Physica Scripta, 2011, 84, 018501.	1.2	4
27	Decoherence effects in Bose–Einstein condensate interferometry I. General theory. Annals of Physics, 2011, 326, 668-720.	1.0	6
28	Quantum interference and non-locality of independent photons from disparate sources. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 055501.	0.6	8
29	Nonlinear optical generation of time-delayed entanglement. Journal of Physics B: Atomic, Molecular and Optical Physics, 2011, 44, 095503.	0.6	0
30	Coherent feedback control of multipartite quantum entanglement for optical fields. Physical Review A, 2011, 84, .	1.0	32
31	Tomography of the quantum state of photons entangled in high dimensions. Physical Review A, 2011, 84, .	1.0	117
32	Quantum correlations by four-wave mixing in an atomic vapor in a nonamplifying regime: Quantum beam splitter for photons. Physical Review A, 2011, 84, .	1.0	59
33	Planar quantum squeezing and atom interferometry. Physical Review A, 2011, 84, .	1.0	56
34	Nonlocality of a single photon: Paths to an Einstein-Podolsky-Rosen-steering experiment. Physical Review A, 2011, 84, .	1.0	40
35	Bogoliubov dynamics of condensate collisions using the positive-Prepresentation. Physical Review A, 2011, 83, .	1.0	24
36	Planar quantum squeezing and atom interferometry. , 2011, , .		0
37	Finite-Bias Cooper Pair Splitting. Physical Review Letters, 2011, 107, 136801.	2.9	138

		CITATION R	EPORT	
#	Article		IF	CITATIONS
38	Entangling two distant oscillators with a quantum reservoir. Europhysics Letters, 2011,	95, 60008.	0.7	32
39	Entanglement in random pure states: spectral density and average von Neumann entro Physics A: Mathematical and Theoretical, 2011, 44, 445301.	py. Journal of	0.7	25
40	One-way EPR steering and genuine multipartite EPR steering. , 2012, , .			0
41	Quantifying the non-Gaussianity of the state of spatially correlated down-converted ph Express, 2012, 20, 3753.	otons. Optics	1.7	8
42	An all-fiber source of pulsed twin beams for quantum communication. Applied Physics L 101, .	.etters, 2012,	1.5	20
43	Two-Photon Cooperative Absorption in Colliding Cold Na Atoms. Physical Review Letter 253004.	s, 2012, 108,	2.9	7
44	Scheme for Implementing Controlled Quantum Teleportation in QDS-Cavity System. In Journal of Optomechatronics, 2012, 6, 131-145.	ernational	3.3	0
45	Reconstruction of Gaussian quantum mechanics from Liouville mechanics with an epist restriction. Physical Review A, 2012, 86, .	emic	1.0	91
46	Quantum correlations in position, momentum, and intermediate bases for a full optical Physical Review A, 2012, 85, .	field of view.	1.0	16
47	Experimental Realization of Three-Color Entanglement at Optical Fiber Communication Storage Wavelengths. Physical Review Letters, 2012, 109, 253604.	and Atomic	2.9	68
48	Phase-Conjugate-State Pairs in Entangled States. Journal of Atomic, Molecular, and Opt 2012, 2012, 1-12.	ical Physics,	0.5	0
49	High-dimensional spatial entanglement observed with an electron multiplying CCD carr	era. , 2012, , .		0
50	Bell inequalities with continuous angular variables. Physical Review A, 2012, 86, .		1.0	10
51	Cold and trapped metastable noble gases. Reviews of Modern Physics, 2012, 84, 175-2	10.	16.4	119
52	Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensa states. Physical Review A, 2012, 86, .	ite ground	1.0	67
53	Continuous variable quantum key distribution with modulated entangled states. Nature Communications, 2012, 3, 1083.	2	5.8	169
54	The simplest demonstrations of quantum nonlocality. New Journal of Physics, 2012, 14	, 113020.	1.2	15
55	Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einst condensates. Physical Review A, 2012, 86, .	ein	1.0	29

щ		IF	CITATIONS
#	Optimal uncertainty relations for extremely coarse-grained measurements. Physical Review A. 2012, 85,	IF	CITATIONS
56	·	1.0	39
57	Generation of positively-momentum-correlated biphotons from spontaneous parametric down-conversion. Physical Review A, 2012, 86, .	1.0	10
58	Quantum theory with arrow of time: symmetry breaking and non-local spinor realization with non-commuting operators of energy and decay. Journal of Physics: Conference Series, 2012, 380, 012011.	0.3	1
59	Separated atomic ensembles: Multimode squeezed states and multipartite entangled states. Physical Review A, 2012, 86, .	1.0	7
60	Experimental analysis of decoherence in continuous-variable bipartite systems. Physical Review A, 2012, 86, .	1.0	43
61	Statistical mechanics of entanglement mediated by a thermal reservoir. Physical Review A, 2012, 85, .	1.0	12
62	Experimental observation of quantum correlations in modular variables. Physical Review A, 2012, 86, .	1.0	37
63	Observation of one-way Einstein–Podolsky–Rosen steering. Nature Photonics, 2012, 6, 596-599.	15.6	308
64	An all fiber source of pulsed twin beams in the telecom band. , 2012, , .		0
65	Resonant cascaded down-conversion. Physical Review A, 2012, 85, .	1.0	2
66	Delayed-choice quantum control of light-matter interaction. Europhysics Letters, 2012, 99, 24003.	0.7	10
67	Towards the evidence of a purely spatial Einstein-Podolsky-Rosen paradox in images: measurement scheme and first experimental results. European Physical Journal D, 2012, 66, 1.	0.6	14
68	Observation of entanglement witnesses for orbital angular momentum states. European Physical Journal D, 2012, 66, 1.	0.6	14
69	Imaging high-dimensional spatial entanglement with a camera. Nature Communications, 2012, 3, 984.	5.8	200
70	Generating Entangled Microwave Radiation Over Two Transmission Lines. Physical Review Letters, 2012, 109, 183901.	2.9	211
71	P-wave Cooper pair splitting. Beilstein Journal of Nanotechnology, 2012, 3, 493-500.	1.5	6
72	Cascaded entanglement enhancement. Physical Review A, 2012, 85, .	1.0	36
73	Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down-conversion. Physical Review A, 2012, 86, .	1.0	69

	CITATION	Report	
#	Article	IF	CITATIONS
74	Secure information capacity of photons entangled in many dimensions. Physical Review A, 2012, 85, .	1.0	58
75	Entanglement and nonlocality in multi-particle systems. Frontiers of Physics, 2012, 7, 72-85.	2.4	24
76	Loss-tolerant tests of Einstein-Podolsky-Rosen steering. Physical Review A, 2013, 88, .	1.0	31
77	High-Fidelity Teleportation of Continuous-Variable Quantum States Using Delocalized Single Photons. Physical Review Letters, 2013, 111, 050504.	2.9	52
78	Multimode theory of pulsed-twin-beam generation using a high-gain fiber-optical parametric amplifier. Physical Review A, 2013, 88, .	1.0	12
79	Monogamy inequalities for the Einstein-Podolsky-Rosen paradox and quantum steering. Physical Review A, 2013, 88, .	1.0	98
80	Genuine Multipartite Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2013, 111, 250403.	2.9	188
81	Strong Einstein-Podolsky-Rosen steering with unconditional entangled states. Physical Review A, 2013, 87, .	1.0	70
82	Spatiotemporal buildup of the Kondo screening cloud. Physical Review B, 2013, 88, .	1.1	31
83	Signifying quantum benchmarks for qubit teleportation and secure quantum communication using Einstein-Podolsky-Rosen steering inequalities. Physical Review A, 2013, 88, .	1.0	106
84	Atom lasers: Production, properties and prospects for precision inertial measurement. Physics Reports, 2013, 529, 265-296.	10.3	89
85	Optimal estimation of joint parameters in phase space. Physical Review A, 2013, 87, .	1.0	98
86	DETECTING EINSTEIN–PODOLSKY–ROSEN STEERING FOR CONTINUOUS VARIABLE WAVEFUNCTIONS. International Journal of Quantum Information, 2013, 11, 1350019.	0.6	5
87	Einstein-Podolsky-Rosen steering inequalities from entropic uncertainty relations. Physical Review A, 2013, 87, .	1.0	233
88	Generation of correlated photon pairs in micro/nano-fibers. Optics Letters, 2013, 38, 5063.	1.7	35
89	Towards an Einstein–Podolsky–Rosen paradox between two macroscopic atomic ensembles at room temperature. New Journal of Physics, 2013, 15, 063027	1.2	13
90	Generation of Orbital Angular Momentum Bell States and Their Verification via Accessible Nonlinear Witnesses. Physical Review Letters, 2013, 111, 030402.	2.9	22
91	Entangling two defects via a surrounding crystal. Physical Review A, 2013, 87, .	1.0	14

#	Article	IF	CITATIONS
92	Nonlocal Young tests with Einstein-Podolsky-Rosen-correlated particle pairs. Physical Review A, 2013, 88, .	1.0	11
93	Tradeoffs for number squeezing in collisions of Bose-Einstein condensates. Physical Review A, 2013, 88, .	1.0	13
94	Source of entangled atom pairs on demand using the Rydberg blockade. Physical Review A, 2013, 88, .	1.0	12
95	Two-photon–two-atom excitation by correlated light states. Physical Review A, 2013, 88, .	1.0	15
96	Violation of Continuous-Variable Einstein-Podolsky-Rosen Steering with Discrete Measurements. Physical Review Letters, 2013, 110, 130407.	2.9	75
97	Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics. Physical Review A, 2013, 88, .	1.0	79
98	Bernstein's paradox of entangled quantum states. Physics-Uspekhi, 2013, 56, 1126-1131.	0.8	4
99	Two-mode squeezed and entangled states of a hybrid system of an atomic ensemble and an optical field via an atom–cavity reservoir. Journal of Physics B: Atomic, Molecular and Optical Physics, 2013, 46, 185501.	0.6	1
100	Einstein–Podolsky–Rosen-Like Correlation on a Coherent-State Basis and Inseparability of Two-Mode Gaussian States. Journal of the Physical Society of Japan, 2013, 82, 014001.	0.7	4
101	Entanglement and Quantum non-locality: an experimental perspective. EPJ Web of Conferences, 2013, 58, 01014.	0.1	0
102	On relativistic entanglement and localization of particles and on their comparison with the nonrelativistic theory. International Journal of Modern Physics A, 2014, 29, 1450163.	0.5	5
103	Generic model for Cooper pair splitting. International Journal of Modern Physics B, 2014, 28, 1450137.	1.0	3
104	Asymmetric EPR entanglement in continuous variable systems. Journal of Physics B: Atomic, Molecular and Optical Physics, 2014, 47, 225502.	0.6	5
105	Bogoliubov theory for atom scattering into separate regions. New Journal of Physics, 2014, 16, 013041.	1.2	14
106	Collective multipartite Einstein–Podolsky–Rosen steering: more secure optical networks. Optics Letters, 2014, 39, 6703.	1.7	21
107	Generation of frequency degenerate twin photons in pulse pumped fiber optical parametric amplifiers: Influence of background noise. Optics Express, 2014, 22, 2553.	1.7	7
108	Quantum frequency down-conversion of bright amplitude-squeezed states. Optics Express, 2014, 22, 24192.	1.7	6
109	One-way Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2014, 112, .	2.9	227

	CITATION RE	PORT	
# 110	ARTICLE Stationary entanglement of photons and atoms in a high-finesse resonator. Physical Review A, 2014, 89,	IF 1.0	CITATIONS
111	Continuous discretization of infinite-dimensional Hilbert spaces. Physical Review A, 2014, 89, .	1.0	20
112	Einstein-Podolsky-Rosen Paradox in Twin Images. Physical Review Letters, 2014, 113, 160401.	2.9	74
113	Violations of entropic Bell inequalities with coarse-grained quadrature measurements for continuous-variable states. Physical Review A, 2014, 90, .	1.0	4
114	Anisotropy ins-wave Bose-Einstein condensate collisions and its relationship to superradiance. Physical Review A, 2014, 90, .	1.0	9
115	Quantum-collapse Bell inequalities. Physical Review A, 2014, 89, .	1.0	3
116	Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses. Physical Review A, 2014, 89, .	1.0	49
117	Criteria for genuine <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>N</mml:mi>-partite continuous-variable entanglement and Einstein-Podolsky-Rosen steering. Physical Review A, 2014, 90, .</mml:math 	1.0	67
118	Time-dependent Bell inequalities in a Wigner form. Moscow University Physics Bulletin (English) Tj ETQq0 0 0 rgE	3T /Overloo 0.1	ck 10 Tf 50 4
119	Exploring steering effects using Bell tests. Physical Review A, 2014, 89, .	1.0	2
120	Einstein-Podolsky-Rosen steering using quantum correlations in non-Gaussian entangled states. Physical Review A, 2014, 89, .	1.0	38
121	Measurement-based noiseless linear amplification for quantum communication. Nature Photonics, 2014, 8, 333-338.	15.6	95
122	Atomic Entropy Squeezing in Three-Level Systems. Journal of Russian Laser Research, 2014, 35, 110-118.	0.3	6
123	Bell nonlocality. Reviews of Modern Physics, 2014, 86, 419-478.	16.4	1,792
124	Einstein-Podolsky-Rosen paradox and quantum steering in a three-mode optomechanical system. Physical Review A, 2014, 89, .	1.0	67
125	Scalable quantum simulation of pulsed entanglement and Einstein-Podolsky-Rosen steering in optomechanics. Physical Review A, 2014, 90, .	1.0	58
126	Time-dependent Bell inequalities in a Wigner form. Physical Review A, 2014, 90, .	1.0	5
197	Role of thermal noise in trinartite quantum steering Physical Review & 2014 90	10	97

ARTICLE IF CITATIONS # Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality. Physical Review Letters, 128 2.9 209 2014, 113, 160402. Einstein–Podolsky–Rosen-type quantum entanglement between coupled cavities. Physica Scripta, 2014, 129 1.2 T160, 014016. 130 Quantum reservoirs with ion chains. Physical Review A, 2014, 90, . 1.0 12 Optimal measurements for tests of Einstein-Podolsky-Rosen steering with no detection loophole using two-qubit Werner states. Physical Review A, 2014, 90, . Two-Photon Spin States and Entanglement States. International Journal of Theoretical Physics, 2014, 132 0.5 2 53, 4012-4024. Formalism for the individual state of a quantum particle compatible with the bell inequalities, and a dissipative environment conjecture. Russian Journal of Mathematical Physics, 2014, 21, 219-225. 0.4 Quantum State Engineering of Light with Continuous-wave Optical Parametric Oscillators. Journal of 134 0.2 10 Visualized Experiments, 2014, , . Quantum information., 0,, 346-368. 136 Measurement-based noiseless linear amplification for quantum communication., 2014,,. 5 Precisely resolving two-photon energy-time entanglement by dual-channel Fabry-Pérot interferometry. 1.0 Physical Review A, 2015, 91, . Entanglement creation in electron-electron collisions at solid surfaces. Physical Review B, 2015, 92, . 138 12 1.1 Proposal for experimental test of the time-dependent Wigner inequalities for neutral pseudoscalar 1.6 meson systems. Physical Review D, 2015, 92,. Secure Continuous Variable Teleportation and Einstein-Podolsky-Rosen Steering. Physical Review 140 2.9 237 Letters, 2015, 115, 180502. Postquantum Steering. Physical Review Letters, 2015, 115, 190403. 141 Inequivalence of entanglement, steering, and Bell nonlocality for general measurements. Physical 142 1.0 165 Review A, 2015, 92, . Steering criteria via covariance matrices of local observables in arbitrary-dimensional quantum 143 systems. Physical Review A, 2015, 92, . Quantum frequency up-conversion of continuous variable entangled states. Applied Physics Letters, 144 1.55 2015, 107, 231109. Efficient Scheme for Perfect Collective Einstein-Podolsky-Rosen Steering. Scientific Reports, 2015, 5, 145 1.6 12346.

ARTICLE IF CITATIONS Experimental realization of spatially separated entanglement with continuous variables using laser 10 146 1.6 pulse trains. Scientific Reports, 2015, 5, 13029. QuantenverschrÄnkung verhilft zur sicheren Datenvernetzung. Physik in Unserer Zeit, 2015, 46, 113-114. 147 Complete temporal mode analysis in pulse-pumped fiber-optical parametric amplifier for continuous 148 1.7 28 variable entanglement generation. Optics Express, 2015, 23, 29369. Nonlinear Entanglement and its Application to Generating Cat States. Physical Review Letters, 2015, 114, 149 100403. Einstein–Podolsky–Rosen steering measure for two-mode continuous variable states. Journal of the 150 0.9 29 Optical Society of Ámerica B: Optical Physics, 2015, 32, A27. Atom-mirror entanglement via cavity dissipation. Physical Review A, 2015, 91, . 1.0 152 Resource Theory of Steering. Physical Review X, 2015, 5, . 2.8 125 Time-Reversal Violation. Annual Review of Nuclear and Particle Science, 2015, 65, 403-427. 3.5 Satisfying the Einstein–Podolsky–Rosen criterion with massive particles. Nature Communications, 2015, 6, 8984. 154 5.8 85 Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof. Scientific Reports, 1.6 2014, 4, 4291. Multipartite Einstein–Podolsky–Rosen steering and genuine tripartite entanglement with 156 6.5 249 opticalÂnetworks. Nature Physics, 2015, 11, 167-172. Quantification of Gaussian Quantum Steering. Physical Review Letters, 2015, 114, 060403. 264 Entanglement transfer from two-mode squeezed vacuum light to spatially separated mechanical oscillators via dissipative optomechanical coupling. Science China: Physics, Mechanics and 158 2.0 9 Astronomy, 2015, 58, 1-8. Classifying Directional Gaussian Entanglement, Einstein-Podolsky-Rosen Steering, and Discord. 159 Physical Review Letters, 2015, 114, 060402. Detection of quantum steering in multipartite continuous-variable Greenberger-Horne-Zeilinger–like 160 1.0 20 states. Physical Review A, 2015, 91, . <i>Colloquium</i>: Time-reversal violation with quantum-entangled<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML' 16.4 display="inline"><mml:mi>B</mml:mi></mml:math>mesons. Reviews of Modern Physics, 2015, 87, 165-182. Generation of tripartite quantum correlation among amplitude-squeezed beams by frequency 162 1.0 4 doubling in a singly resonant cavity. Physical Review A, 2015, 91, . Quantum steering of multimode Gaussian states by Gaussian measurements: monogamy relations and the Peres conjecture. Journal of Physics A: Mathematical and Theoretical, 2015, 48, 135301.

#	Article		CITATIONS
164	Entanglement and squeezing of continuous-wave stationary light. New Journal of Physics, 2015, 17, 043025.	1.2	26
165	Local Hidden Variable Models for Entangled Quantum States Using Finite Shared Randomness. Physical Review Letters, 2015, 114, 120401.	2.9	25
166	Experimental proof of nonlocal wavefunction collapse for a single particle using homodyne measurements. Nature Communications, 2015, 6, 6665.	5.8	78
167	Analog of the Clauser–Horne–Shimony–Holt inequality for steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A74.	0.9	76
168	80 years of steering and the Einstein–Podolsky–Rosen paradox: introduction. Journal of the Optical Society of America B: Optical Physics, 2015, 32, EPR1.	0.9	10
169	Einstein–Podolsky–Rosen quantum simulations in nonclassical phase-space. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A64.	0.9	0
170	Decoherence of Einstein–Podolsky–Rosen steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A82.	0.9	49
171	Asymmetric quantum network based on multipartite Einstein–Podolsky–Rosen steering. Journal of the Optical Society of America B: Optical Physics, 2015, 32, A20.	0.9	4
172	Investigation of properties of time-dependent bell inequalities in Wigner's form for nonstationary and open quantum systems. Physics of Atomic Nuclei, 2015, 78, 805-830.	0.1	2
173	Continuous-variable entanglement measurement using an unbalanced Mach–Zehnder interferometer. Optics Letters, 2015, 40, 1121.	1.7	2
174	Entanglement manifestation in spin resolved electron–electron scattering. Journal of Electron Spectroscopy and Related Phenomena, 2015, 205, 66-73.	0.8	7
175	Generation and Characterization of Continuous Variable Quantum Correlations Using a Fiber Optical Parametric Amplifier. , 2015, , .		0
176	Discrete Symmetries CP, T, CPT. EPJ Web of Conferences, 2016, 126, 02004.	0.1	0
177	Computing Coherence Vectors and Correlation Matrices with Application to Quantum Discord Quantification. Advances in Mathematical Physics, 2016, 2016, 1-7.	0.4	3
178	Pseudo-type-II tuning behavior and mode identification in whispering gallery optical parametric oscillators. Optics Express, 2016, 24, 15137.	1.7	6
179	Coincidence detection of spatially correlated photon pairs with a monolithic time-resolving detector array. Optics Express, 2016, 24, 28829.	1.7	29
180	30 years of squeezed light generation. Physica Scripta, 2016, 91, 053001.	1.2	268
181	Signifying the nonlocality of NOON states using Einstein-Podolsky-Rosen steering inequalities. Physical Review A, 2016, 94, .	1.0	13

#	Article	IF	CITATIONS
182	Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone. Journal of Optics (United Kingdom), 2016, 18, 053501.	1.0	84
183	Critical fluctuations in an optical parametric oscillator: when light behaves like magnetism. Journal of the Optical Society of America B: Optical Physics, 2016, 33, 871.	0.9	5
184	Necessary and sufficient conditions for multipartite Bell violations with only one trusted device. Physical Review A, 2016, 94, .	1.0	8
185	Some applications of uncertainty relations in quantum information. International Journal of Quantum Information, 2016, 14, 1640022.	0.6	4
186	Crossed Andreev effects in two-dimensional quantum Hall systems. Physical Review B, 2016, 94, .	1.1	36
187	Tunable entanglement resource in elastic electron-exchange collisions out of chaotic spin systems. Physical Review A, 2016, 94, .	1.0	6
188	Certifying Einstein-Podolsky-Rosen steering via the local uncertainty principle. Physical Review A, 2016, 93, .	1.0	46
189	Sufficient criterion for guaranteeing that a two-qubit state is unsteerable. Physical Review A, 2016, 93,	1.0	98
190	Position-momentum-entangled photon pairs in nonlinear waveguides and transmission lines. Physical Review A, 2016, 93, .	1.0	0
191	Gaussian quantum steering and its asymmetry in curved spacetime. Physical Review D, 2016, 93, .	1.6	39
192	Universal Steering Criteria. Physical Review Letters, 2016, 116, 070403.	2.9	55
193	Displacement of Propagating Squeezed Microwave States. Physical Review Letters, 2016, 117, 020502.	2.9	48
194	Macroscopic quantum entanglement in modulated optomechanics. Physical Review A, 2016, 94, .	1.0	76
195	Quantum steering of Gaussian states via non-Gaussian measurements. Scientific Reports, 2016, 6, 29729.	1.6	24
196	Observation of strong continuous-variable Einstein-Podolsky-Rosen entanglement using shaped local oscillators. , 2016, , .		2
197	No-cloning of quantum steering. Npj Quantum Information, 2016, 2, .	2.8	48
198	Quantifying Einstein-Podolsky-Rosen steering and expanding the scope of steerability of the two qubit state. , 2016, , .		0
199	Entanglement rate for Gaussian continuous variable beams. New Journal of Physics, 2016, 18, 063022.	1.2	17

		CITATION REPORT		
# 200	ARTICLE Satisfying the Einstein-Podolsky-Rosen criterion with massive particles. Proceedings of SPIE, 2	016,,. (F 0.8	CITATIONS
201	Photonic EPR State from Quadratic Waveguide Array with Alternating Positive and Negative Couplings. Communications in Theoretical Physics, 2016, 65, 219-224.		L .1	1
202	Generation of continuous variable quantum entanglement using a fiber optical parametric am Optics Letters, 2016, 41, 653.	plifier. 1	L .7	17
203	Multipartite Gaussian steering: Monogamy constraints and quantum cryptography application Physical Review A, 2017, 95, .	ns. 1	L . O	119
204	Quantum entanglement for systems of identical bosons: I. General features. Physica Scripta, 2 023004.	2017, 92, 1	.2	27
205	Genuine multipartite nonlocality of permutationally invariant Gaussian states. Physical Review 95, .	A, 2017, 1	L . O	6
206	Simulation of high SNR photodetector with L-C coupling and transimpedance amplifier circuit verification. Review of Scientific Instruments, 2017, 88, 013107.	and its C).6	9
207	Dynamical Gaussian quantum steering in optomechanics. European Physical Journal D, 2017,	71, 1. 6).6	16
208	Generating EPR-entangled mechanical state via feeding finite-bandwidth squeezed light. Chine Physics B, 2017, 26, 060303.	^{2SE} ().7	1
209	Spin correlation tensor for measurement of quantum entanglement in electron–electron sc Journal of Physics B: Atomic, Molecular and Optical Physics, 2017, 50, 075502.	attering. G).6	1
210	Efficient linear criterion for witnessing Einstein-Podolsky-Rosen nonlocality under many-settin local measurements. Physical Review A, 2017, 95, .	g 1	1.0	6
211	Spin-entanglement between two freely propagating electrons: Experiment and theory. Physica B, 2017, 95, .	al Review 1	l .1	17
212	Spin-orbit-coupling-induced spin squeezing in three-component Bose gases. Physical Review A	v, 2017, 95, .	1.0	14
213	Conditional Hybrid Nonclassicality. Physical Review Letters, 2017, 119, 120403.	2	2.9	22
214	Characterizing nonlocal correlations via universal uncertainty relations. Physical Review A, 202	17, 96, 1	1.0	14
215	Quantum entanglement in strong-field ionization. Physical Review A, 2017, 96, .	1	L.O	8
216	Optimized detection of steering via linear criteria for arbitrary-dimensional states. Physical Re 2017, 95, .	view A, 1	1.0	7
217	Test of a hypothesis of realism in quantum theory using a Bayesian approach. Physical Review 95, .	A, 2017, 1	0	2

# 218	ARTICLE Quantifying Quantum-Mechanical Processes. Scientific Reports, 2017, 7, 13588.	IF 1.6	Citations
219	Conditional steering under the von Neumann scenario. Physical Review A, 2017, 96, .	1.0	0
220	Monogamy inequalities for certifiers of continuous-variable Einstein-Podolsky-Rosen entanglement without the assumption of Gaussianity. Physical Review A, 2017, 96, .	1.0	4
221	Interpreting the macroscopic pointer by analysing the elements of reality of a Schrödinger cat. Journal of Physics A: Mathematical and Theoretical, 2017, 50, 41LT01.	0.7	12
222	Pulsed Entanglement of Two Optomechanical Oscillators and Furry's Hypothesis. Physical Review Letters, 2017, 119, 023601.	2.9	38
223	Evolution of entanglement under an Ising-like Hamiltonian with particle losses. Physical Review A, 2017, 96, .	1.0	0
224	Tighter Einstein-Podolsky-Rosen steering inequality based on the sum-uncertainty relation. Physical Review A, 2017, 96, .	1.0	10
225	Investigating Einstein-Podolsky-Rosen steering of continuous-variable bipartite states by non-Gaussian pseudospin measurements. Physical Review A, 2017, 96, .	1.0	16
226	Entangling two oscillators with arbitrary asymmetric initial states. Physical Review A, 2017, 95, .	1.0	28
227	Optical Schrödinger cat states in one mode and two coupled modes subject to environments. Physical Review A, 2017, 96, .	1.0	5
228	Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States. Physical Review Letters, 2017, 118, 230501.	2.9	101
229	Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario. Physical Review A, 2017, 95, .	1.0	15
230	Correlation-based entanglement criteria for bipartite systems. Physical Review A, 2017, 95, .	1.0	2
231	Quantum perfect crossed Andreev reflection in top-gated quantum anomalous Hall insulator–superconductor junctions. Physical Review B, 2017, 95, .	1.1	37
232	Nonlinearities in reservoir engineering: Enhancing quantum correlations. Physical Review A, 2017, 96, .	1.0	5
233	Phase control of entanglement and quantum steering in a three-mode optomechanical system. New Journal of Physics, 2017, 19, 123039.	1.2	28
234	Realization of multidimensional einstein-podolsky-rosen paradox between single photon and atomic spin-wave excitation. , 2017, , .		0
235	One-way Einstein-Podolsky-Rosen steering via atomic coherence. Optics Express, 2017, 25, 11584.	1.7	20

		EPORT	
#	Article	IF	CITATIONS
236	Quantum steering in cascaded four-wave mixing processes. Optics Express, 2017, 25, 17457.	1.7	15
237	Generation of two-temporal-mode photon states by vector four-wave mixing. Optics Express, 2017, 25, 20877.	1.7	4
238	Einstein–Podolsky–Rosen paradox in a hybrid bipartite system. Optica, 2017, 4, 272.	4.8	26
239	Bell inequalities for falsifying mesoscopic local realism via amplification of quantum noise. Physical Review A, 2018, 97, .	1.0	9
240	Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates. Physical Review Letters, 2018, 120, 140406.	2.9	17
241	Quantum Steering Beyond Instrumental Causal Networks. Physical Review Letters, 2018, 120, 140408.	2.9	9
242	Testing for entanglement with periodic coarse graining. Physical Review A, 2018, 97, .	1.0	8
243	Coherent exchange correlation in quantum systems. Physics of the Solid State, 2018, 60, 1-9.	0.2	4
244	Gaussian quantum discord and EPR steering in optomechanical system. Optik, 2018, 158, 1186-1193.	1.4	16
245	One-sided measurement-device-independent quantum key distribution. Physical Review A, 2018, 97, .	1.0	12
246	Experimental High-Dimensional Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2018, 120, 030401.	2.9	41
247	Dissipation induced asymmetric steering of distant atomic ensembles. Optics Communications, 2018, 412, 166-171.	1.0	5
248	One-way Einstein–Podolsky–Rosen steering with the aid of the thermal noise in a correlated emission laser. Laser Physics Letters, 2018, 15, 065204.	0.6	10
249	Entanglement, nonlocality and multi-particle quantum correlations. AIP Conference Proceedings, 2018, , .	0.3	1
250	Quantum correlations across two octaves from combined up- and down-conversion. Physical Review A, 2018, 97, .	1.0	13
251	Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates. Science, 2018, 360, 409-413.	6.0	191
252	Spatially distributed multipartite entanglement enables EPR steering of atomic clouds. Science, 2018, 360, 413-416.	6.0	172
253	Quantum behaviour of open pumped and damped Bose–Hubbard trimers. Laser Physics, 2018, 28, 015501.	0.6	3

#	Article	IF	CITATIONS
254	Generation of Oneâ€Way Gaussian Steering by Gaussian Channel and Converting Oneâ€Way Gaussian Steering by Beamsplitters. Annalen Der Physik, 2018, 530, 1700328.	0.9	1
255	Einstein–Podolsky–Rosen-like separability indicators for two-mode Gaussian states. Journal of Physics A: Mathematical and Theoretical, 2018, 51, 065301.	0.7	3
256	Monogamy of Einsteinâ€Podolskyâ€Rosen Steering in the Background of an Asymptotically Flat Black Hole. Annalen Der Physik, 2018, 530, 1700261.	0.9	10
257	Long-Distance Continuous-Variable Quantum Key Distribution with Entangled States. Physical Review Applied, 2018, 10, .	1.5	38
258	Characterization of stimulated excitations in a driven Bose-Einstein condensate. Physical Review A, 2018, 98, .	1.0	14
259	Entanglement, EPR steering and Gaussian geometric discord in a double cavity optomechanical systems. European Physical Journal D, 2018, 72, 1.	0.6	17
260	Time-Domain Measurement of Continuous-Variable Entanglement Using Temporally Shaped Local Oscillator Pulses. , 2018, , .		0
261	Quantum metrology with nonclassical states of atomic ensembles. Reviews of Modern Physics, 2018, 90, .	16.4	852
262	Einstein-Podolsky-Rosen Steering Inequalities and Applications. Entropy, 2018, 20, 683.	1.1	8
263	Applications of EPR steering in quantum teleportation and NOON states. AIP Conference Proceedings, 2018, , .	0.3	1
264	Vortex-phase-dependent momentum and position entanglement generated from cold atoms. Physical Review A, 2018, 97, .	1.0	5
265	Einstein-Podolsky-Rosen steering, depth of steering, and planar spin squeezing in two-mode Bose-Einstein condensates. Physical Review A, 2018, 98, .	1.0	10
266	Creation of bipartite steering correlations by a fast damped auxiliary mode. Journal of Physics B: Atomic, Molecular and Optical Physics, 2018, 51, 185501.	0.6	1
267	Realization of the Einstein-Podolsky-Rosen Paradox Using Radial Position and Radial Momentum Variables. Physical Review Letters, 2019, 123, 060403.	2.9	30
268	Steerability detection of an arbitrary two-qubit state via machine learning. Physical Review A, 2019, 100, .	1.0	18
269	Utilizing competitions between optical parametric amplifications and dissipations to manipulate photon transport. Physical Review A, 2019, 100, .	1.0	4
270	Einstein-Podolsky-Rosen entanglement between separated atomic ensembles. Physical Review A, 2019, 100, .	1.0	4
271	Remote Hamiltonian interactions mediated by light. Physical Review A, 2019, 99, .	1.0	19

#	Article	IF	Citations
272	Fiber-coupled EPR-state generation using a single temporally multiplexed squeezed light source. Npj Quantum Information, 2019, 5, .	2.8	20
273	Engineering asymmetric steady-state Einstein-Podolsky-Rosen steering in macroscopic hybrid systems. Physical Review A, 2019, 100, .	1.0	7
274	Deterministic generation of a two-dimensional cluster state. Science, 2019, 366, 369-372.	6.0	230
275	Split spin-squeezed Bose–Einstein condensates. New Journal of Physics, 2019, 21, 093038.	1.2	36
276	Criteria to detect genuine multipartite entanglement using spin measurements. Physical Review A, 2019, 100, .	1.0	7
277	Quantum witness of a damped qubit with generalized measurements. Journal of Physics Communications, 2019, 3, 065003.	0.5	4
278	Quantifying the Mesoscopic Nature of Einstein-Podolsky-Rosen Nonlocality. Physical Review Letters, 2019, 123, 120402.	2.9	11
279	Multipartite Einstein-Podolsky-Rosen steering sharing with separable states. Physical Review A, 2019, 99, .	1.0	19
280	Entangled Photon Resonance Energy Transfer in Arbitrary Media. Journal of Physical Chemistry Letters, 2019, 10, 3181-3188.	2.1	6
281	Pauli-based fermionic teleportation with free massive particles by electron-exchange collisions. New Journal of Physics, 2019, 21, 033025.	1.2	0
282	Leggett-Garg Inequality and Quantumness Under the Influence of Random Telegraph Noise. International Journal of Theoretical Physics, 2019, 58, 2893-2909.	0.5	4
283	The Einstein–Podolsky–Rosen Steering and Its Certification. Entropy, 2019, 21, 422.	1.1	8
284	Zero supermode-based multipartite entanglement in χ(2) nonlinear waveguide arrays. Physical Review A, 2019, 99, .	1.0	8
285	Total quantum state in the Einstein–Podolsky–Rosen–Bohm experiment with identical particles. European Journal of Physics, 2019, 40, 035404.	0.3	0
286	Directional steering as a sufficient and necessary condition for Gaussian entanglement swapping: Application to distant optomechanical oscillators. Physical Review A, 2019, 99, .	1.0	6
287	Quantum fidelity measures for mixed states. Reports on Progress in Physics, 2019, 82, 076001.	8.1	85
288	Metrological Nonlinear Squeezing Parameter. Physical Review Letters, 2019, 122, 090503.	2.9	54
289	Indirect Entanglement Transfer and Steering Between Two Atomic Ensembles in a Multi-Mode Hybrid Optomechanical System, International Journal of Theoretical Physics, 2019, 58, 1882-1891	0.5	1

#	Article	IF	CITATIONS
290	Manipulation and enhancement of asymmetric steering via interference effects induced by closed-loop coupling. Physical Review A, 2019, 99, .	1.0	34
291	Evolution of entanglement in electron–electron collisions. Journal of Electron Spectroscopy and Related Phenomena, 2019, 232, 83-88.	0.8	1
292	Quantum Correlations and Quantum Non-Locality: A Review and a Few New Ideas. Applied Sciences (Switzerland), 2019, 9, 5406.	1.3	19
293	Mesoscopic two-mode entangled and steerable states of 40Â000 atoms in a Bose-Einstein-condensate interferometer. Physical Review A, 2019, 100, .	1.0	11
294	One-way steering of the optical fields with respect to the low-Q cavity via the thermal noise. Laser Physics Letters, 2019, 17, 125201.	0.6	2
295	Criteria to detect macroscopic quantum coherence, macroscopic quantum entanglement, and an Einstein-Podolsky-Rosen paradox for macroscopic superposition states. Physical Review A, 2019, 100, .	1.0	6
296	One-way steering of the optical fields with respect to the low-Q cavity via the thermal noise. Laser Physics Letters, 2019, 16, 125205.	0.6	2
297	Intrinsic Relations of Bipartite Quantum Resources in Tripartite Systems. Annalen Der Physik, 2019, 531, 1800358.	0.9	7
298	Entanglement and Gaussian interferometric power dynamics in an optomechanical system with radiation pressure. Chinese Journal of Physics, 2019, 58, 1-7.	2.0	9
299	Entanglement certification from theory to experiment. Nature Reviews Physics, 2019, 1, 72-87.	11.9	186
300	Decoherence of quantum systems sequentially interacting with a common environment. Physical Review A, 2019, 99, .	1.0	4
301	Entanglement and entropy in electron–electron scattering. Journal of Electron Spectroscopy and Related Phenomena, 2020, 241, 146810.	0.8	4
302	Scaling of Einstein–Podolsky–Rosen steering in spin chains. Physica Scripta, 2020, 95, 035105.	1.2	4
303	Decoherence of a two-qubit system interacting with initially correlated random telegraph noises. Quantum Information Processing, 2020, 19, 1.	1.0	6
304	Experimental demonstration of Einstein-Podolsky-Rosen entanglement in rotating coordinate space. Science Bulletin, 2020, 65, 280-285.	4.3	5
305	Crossed Andreev reflection in a quantum dot coupled to a topological superconducting single-stranded DNA. Current Applied Physics, 2020, 20, 1299-1305.	1.1	0
306	Relating spin squeezing to multipartite entanglement criteria for particles and modes. Physical Review A, 2020, 102, .	1.0	12
307	Thematic reflections on 18 expert commentaries. Futures & Foresight Science, 2020, 2, e57.	0.7	0

#	Article	IF	CITATIONS
308	Versatile Photonic Entanglement Synthesizer in the Spatial Domain. Physical Review Applied, 2020, 14, .	1.5	10
309	Decoherence of a two-level system in a coherent superposition of two dephasing environments. Quantum Information Processing, 2020, 19, 1.	1.0	4
310	Hierarchy of genuine multipartite quantum correlations. Quantum Information Processing, 2020, 19, 1.	1.0	5
311	Quantum SU(1,1) interferometers: Basic principles and applications. APL Photonics, 2020, 5, 080902.	3.0	65
312	Relaxation process of a two-level system in a coherent superposition of two environments. Quantum Information Processing, 2020, 19, 1.	1.0	6
313	Einstein-Podolsky-Rosen steering in spontaneous parametric down-conversion cascaded with a sum-frequency generation. Physical Review A, 2020, 102, .	1.0	9
314	Epistemic and Ontic Quantum States. Graduate Texts in Physics, 2020, , 491-514.	0.1	0
315	Monogamy relations within quadripartite Einstein-Podolsky-Rosen steering based on cascaded four-wave mixing processes. Physical Review A, 2020, 101, .	1.0	13
316	Number-phase entanglement and Einstein-Podolsky-Rosen steering. Physical Review A, 2020, 101, .	1.0	10
317	Unified approach to witness non-entanglement-breaking quantum channels. Physical Review A, 2020, 101, .	1.0	2
318	Covariance matrix entanglement criterion for an arbitrary set of operators. New Journal of Physics, 2020, 22, 073055.	1.2	7
319	Entanglement beating in a cavity optomechanical system under two-field driving. Physical Review A, 2020, 101, .	1.0	21
320	Tunable nonlocal valley-entangled Cooper pair splitter realized in bilayer-graphene van der Waals spin valves. Physical Review B, 2020, 101, .	1.1	12
321	Quantum steering. Reviews of Modern Physics, 2020, 92, .	16.4	315
322	Persistent spin squeezing of a dissipative one-axis twisting model embedded in a general thermal environment. Physical Review A, 2020, 101, .	1.0	7
323	Tests for Einstein-Podolsky-Rosen steering in two-mode systems of identical massive bosons. Physical Review A, 2020, 101, .	1.0	5
324	Temporal nonlocality of a two-level system interacting with a dephasing environment. Quantum Information Processing, 2020, 19, 1.	1.0	4
325	Laser-based double photoemission spectroscopy at surfaces. Progress in Surface Science, 2020, 95, 100572.	3.8	11

#	Article	IF	CITATIONS
326	Remote Generation of Wigner Negativity through Einstein-Podolsky-Rosen Steering. Physical Review Letters, 2020, 124, 150501.	2.9	22
327	Quantum teleportation, entanglement, and Bell nonlocality in correlated noisy channels. Laser Physics, 2020, 30, 055201.	0.6	8
328	Connecting quantum steering with extractable work in a two-mode Gaussian state. European Physical Journal D, 2020, 74, 1.	0.6	5
329	Two-qubit correlation in two independent environments with indefiniteness. Physics Letters, Section A: General, Atomic and Solid State Physics, 2021, 385, 126936.	0.9	12
330	Enhanced entanglement and asymmetric EPR steering between magnons. Science China: Physics, Mechanics and Astronomy, 2021, 64, 1.	2.0	38
331	Continuous variable tripartite entanglement and steering using a third-order nonlinear optical interaction. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 371.	0.9	8
332	Generation of non-classical states of light and their application in deterministic quantum teleportation. Fundamental Research, 2021, 1, 43-49.	1.6	43
333	Advances in multipartite and high-dimensional Einstein-Podolsky-Rosen steering. Fundamental Research, 2021, 1, 99-101.	1.6	9
334	Einstein-Podolsky-Rosen entanglement and asymmetric steering between distant macroscopic mechanical and magnonic systems. Physical Review Research, 2021, 3, .	1.3	40
335	A common parametrization for finite mode Gaussian states, their symmetries, and associated contractions with some applications. Journal of Mathematical Physics, 2021, 62, 022102.	0.5	4
336	Steering nonclassicality of Gaussian states. Physical Review A, 2021, 103, .	1.0	7
337	The different behaviors of thermal noise in collective quantum steering and genuinely tripartite steering induced by atomic coherence. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 065401.	0.6	1
338	Is high-dimensional photonic entanglement robust to noise?. AVS Quantum Science, 2021, 3, .	1.8	31
339	Sudden death and revival of Gaussian Einstein–Podolsky–Rosen steering in noisy channels. Npj Quantum Information, 2021, 7, .	2.8	31
340	The CGLMP Bell inequalities. European Physical Journal: Special Topics, 2021, 230, 903-914.	1.2	2
341	Detecting Many-Body Bell Nonlocality by Solving Ising Models. Physical Review Letters, 2021, 126, 140504.	2.9	9
342	Metrological complementarity reveals the Einstein-Podolsky-Rosen paradox. Nature Communications, 2021, 12, 2410.	5.8	32
343	Steering paradox for Einstein–Podolsky–Rosen argument and its extended inequality. Photonics Research, 2021, 9, 992.	3.4	2

	C	itation Report	
#	Article	IF	CITATIONS
344	Genuine High-Dimensional Quantum Steering. Physical Review Letters, 2021, 126, 200404.	2.9	39
345	Entanglement detection in quantum many-body systems using entropic uncertainty relations. Physic Review A, 2021, 103, .	al 1.0	15
346	Quantum nondemolition measurement based generation of entangled states in two Bose–Einsteir condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2021, 54, 105502.	۱ 0.6	8
347	Exposure of subtle multipartite quantum nonlocality. Npj Quantum Information, 2021, 7, .	2.8	2
348	Quantum mechanics–free subsystem with mechanical oscillators. Science, 2021, 372, 625-629.	6.0	92
349	Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode states. Physical Review A, 2021, 1	03, 1.0	5
350	Superposition of two-mode squeezed states for quantum information processing and quantum sensing. Physical Review A, 2021, 103, .	1.0	16
351	Mode structure of a broadband high gain parametric amplifier. Physical Review Research, 2021, 3, .	1.3	0
352	Deterministic generation of genuine tri-partite hybrid atom–photon entanglement through dissipation. Journal of the Optical Society of America B: Optical Physics, 2021, 38, 2090.	0.9	0
353	Non-classicality created by quantum channels with indefinite causal order. Physics Letters, Section A General, Atomic and Solid State Physics, 2021, 402, 127381.	. 0.9	2
354	Boosting energy-time entanglement using coherent time-delayed feedback. Physical Review A, 2021,	, 103, . 1.0	4
355	Objective Quantum Fields, Retrocausality and Ontology. Entropy, 2021, 23, 749.	1.1	5
356	Einstein–Podolsky–Rosen paradox with position–momentum entangled macroscopic twin bea Quantum Science and Technology, 2021, 6, 045016.	ams. 2.6	9
357	Chiral-dissipation-assisted generation of entanglement and asymmetric Gaussian steering in a driven cascaded quantum network. Physical Review A, 2021, 104, .	1.0	1
358	Entanglement of a pair of quantum emitters via continuous fluorescence measurements: a tutorial. Advances in Optics and Photonics, 2021, 13, 517.	12.1	2
359	Asymmetric quantum steering in cascaded nonlinear process. Results in Physics, 2021, 28, 104636.	2.0	4
360	Quantum maximum mean discrepancy GAN. Neurocomputing, 2021, 454, 88-100.	3.5	7
361	Collective multipartite Einstein-Podolsky-Rosen steering via cascaded four-wave mixing of rubidium atoms. Physical Review A, 2021, 104, .	1.0	9

ARTICLE IF CITATIONS # Einsteinâ€"Podolskyâ€"Rosen steering testing via quantum measurement. Laser Physics Letters, 2021, 18, 362 0.6 1 105202. One-way Einstein–Podolsky–Rosen steering of macroscopic magnons with squeezed light. Optics Communications, 2021, 497, 127138. 1.0 9 Polychromatic Kerr nonlinearity within electromagnetically induced transparency window. Results 364 2.0 3 in Physics, 2021, 30, 104858. Quantum steering over an entangled network that is generated via Dipolar interaction. Physica A: 1.2 Statistical Mechanics and Its Applications, 2021, 584, 126380. Averaged fidelity-based steering criteria. Physical Review A, 2021, 103, . 366 1.0 4 Detecting EPR steering via two classes of local measurements. Quantum Information Processing, 2020, 1.0 19, 1. Deterministic Distribution of Multipartite Entanglement and Steering in a Quantum Network by 369 2.9 31 Separable States. Physical Review Letters, 2020, 125, 260506. Genuine photon-magnon-phonon Einstein-Podolsky-Rosen steerable nonlocality in a 1.3 34 continuously-monitored cavity magnomechanical system. Physical Review Research, 2019, 1, . 371 Entropic uncertainty relations from quantum designs. Physical Review Research, 2020, 2, . 1.3 12 Versatile multipartite Einstein-Podolsky-Rosen steering via a quantum frequency comb. Physical 1.3 Review Research, 2020, 2, . Retrocausal model of reality for quantum fields. Physical Review Research, 2020, 2, . 373 12 1.3 Bipartite Gaussian quantum steering, entanglement, and discord and their interconnection via a parametric down-converter. Applied Optics, 2020, 59, 2701. 374 Quantum steering of a two-mode Gaussian state using a quantum beat laser. Applied Optics, 2019, 58, 375 0.9 9 7014. Dynamical quantum steering in a pulsed hybrid opto-electro-mechanical system. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 168. 376 Tunable asymmetric Einstein–Podolsky–Rosen steering of microwave photons in superconducting 377 0.9 4 circuits. Journal of the Optical Society of America B: Optical Physics, 2020, 37, 337. Experimental violation of Mermin steering inequality by three-photon entangled states with 378 nontrivial GHZ-fidelity. Optics Express, 2019, 27, 13559. Pulse-resolved measurement of continuous-variable Einstein-Podolsky-Rosen entanglement with 379 1.7 6 shaped local oscillators. Optics Express, 2019, 27, 17610. Influence of pump coherence on the generation of position-momentum entanglement in optical parametric down-conversion. Optics Express, 2019, 27, 20745.

#	Article	IF	CITATIONS
381	Pulsed entanglement measured by parametric amplifier assisted homodyne detection. Optics Express, 2019, 27, 30552.	1.7	13
382	Tripartite Einstein-Podolsky-Rosen steering with linear and nonlinear beamsplitters in four-wave mixing of Rubidium atoms. Optics Express, 2019, 27, 33070.	1.7	16
383	Generation and characterization of position-momentum entangled photon pairs in a hot atomic gas cell. Optics Express, 2019, 27, 34611.	1.7	9
384	Genuine tripartite Einstein-Podolsky-Rosen steering in the cascaded nonlinear processes of third-harmonic generation. Optics Express, 2020, 28, 2722.	1.7	18
385	Characterization of space-momentum entangled photons with a time resolving CMOS SPAD array. Optics Express, 2020, 28, 31553.	1.7	15
386	Temporal quantum noise reduction acquired by an electron-multiplying charge-coupled-device camera. Optics Express, 2020, 28, 37538.	1.7	3
387	Generation of Gaussian-modulated entangled states for continuous variable quantum communication. Optics Letters, 2019, 44, 3613.	1.7	4
388	Thermal counting statistics in an atomic two-mode squeezed vacuum state. SciPost Physics, 2019, 7, .	1.5	6
389	Planar quantum squeezing and atom interferometry. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 160304.	0.2	1
390	Quantum Correlations: Theory. Quantum Science and Technology, 2021, , 57-115.	1.5	0
391	Quantum Correlations: Experiments. Quantum Science and Technology, 2021, , 117-150.	1.5	0
393	Hierarchy of Nonlinear Entanglement Dynamics for Continuous Variables. Physical Review Letters, 2021, 127, 150502.	2.9	9
394	Chaotic Einstein–Podolsky–Rosen pairs, measurements and time reversal. European Physical Journal D, 2021, 75, 1.	0.6	1
396	The secure information capacity of photons entangled in high dimensions. , 2012, , .		1
399	Agreement of Relation Theory and EPR Effect by individual state of quantum particle. Computer Research and Modeling, 2015, 7, 3-34.	0.2	1
400	Arrays of optomechanical systems. , 2015, , 296-317.		0
401	Single-photon optomechanics. , 2015, , 212-249.		0
402	Imaging quantum correlations with a single-photon detector array. , 2016, , .		0

#	Article	IF	CITATIONS
403	A Semi-Harmonic Frequency Pattern Organizes Local and Non-Local States by Quantum Entanglement in both EPR-Studies and Life Systems. Journal of Modern Physics, 2018, 09, 898-924.	0.3	8
405	Pulsed entanglement measured by parametric amplifier assisted homodyne detection. , 2019, , .		0
406	Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in a Bose-Einstein condensate. , 2019, , .		0
407	Distribution of Gaussian Einstein-Podolsky-Rosen steering by separable states. , 2019, , .		0
408	Spatial entanglement and Einstein-Podolsky-Rosen steering in a Bose-Einstein condensate. , 2019, , .		0
409	Experimental demonstration of two-color Einstein–Podolsky–Rosen entanglement in a hot vapor cell. OSA Continuum, 2019, 2, 2260.	1.8	1
410	Quantum Features of Light. Lecture Notes in Physics, 2020, , 293-342.	0.3	1
411	Schwinger effect of quantum steering for Gaussian states in an electric field. Europhysics Letters, 2021, 135, 60004.	0.7	0
412	Phase manipulated two-mode entangled state from a phase-sensitive amplifier. Optics Express, 2021, 29, 38971-38978.	1.7	1
413	Hierarchy of magnon mode entanglement in antiferromagnets. Physical Review B, 2020, 102, .	1.1	6
414	Asymmetric Einstein–Podolsky–Rosen steering manipulating among multipartite entangled states. Journal of the Optical Society of America B: Optical Physics, 2019, 36, 2920.	0.9	2
415	Distillation of Gaussian Einstein-Podolsky-Rosen steering. , 2020, , .		0
416	Characterization and Control of Spatial Quantum Correlations in Entangled Light Generated via Four-wave Mixing. , 2020, , .		0
417	Cyclic Einstein-Podolsky-Rosen steering. Physical Review Research, 2021, 3, .	1.3	4
418	Threshold in Quantum Correlated Interference for a Particle Interacting with Two Scatterers. Annalen Der Physik, 0, , 2100322.	0.9	1
419	Certifying position-momentum entanglement at telecommunication wavelengths. Physica Scripta, 2022, 97, 015101.	1.2	6
420	Quantum steering with Gaussian states: A tutorial. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 430, 127954.	0.9	4
422	Simulating macroscopic quantum correlations in linear networks. Physics Letters, Section A: General, Atomic and Solid State Physics, 2022, 429, 127911.	0.9	5

#	Article	IF	CITATIONS
423	Behavior of quantum discord, local quantum uncertainty, and local quantum Fisher information in two-spin-1/2 Heisenberg chain with DM and KSEA interactions. Quantum Information Processing, 2022, 21, 1.	1.0	16
424	Entanglement of Local Hidden States. Quantum - the Open Journal for Quantum Science, 0, 6, 651.	0.0	3
425	Witnessing quantum steering by means of the Fisher information. Physical Review A, 2022, 105, .	1.0	4
426	Distribution and quantification of remotely generated Wigner negativity. Npj Quantum Information, 2022, 8, .	2.8	7
427	Quantum entanglement and one-way steering in a cavity magnomechanical system via a squeezed vacuum field. Optics Express, 2022, 30, 10969.	1.7	22
428	Detecting the steerability bounds of generalized Werner states via a backpropagation neural network. Physical Review A, 2022, 105, .	1.0	3
429	Robust method for certifying genuine high-dimensional quantum steering with multimeasurement settings. Optica, 2022, 9, 473.	4.8	7
430	Conditions for experimental detection of one-way quantum steering in a three-mode optomechanical system. AEJ - Alexandria Engineering Journal, 2022, 61, 9297-9304.	3.4	2
431	Temporal steering of a two-level system interacting with a coherent superposition of two environments. Quantum Information Processing, 2022, 21, 1.	1.0	2
432	Distillation of Gaussian Einstein-Podolsky-Rosen steering with noiseless linear amplification. Npj Quantum Information, 2022, 8, .	2.8	13
433	Utilizing Adaptive Boosting to Detect Quantum Steerability. International Journal of Theoretical Physics, 2022, 61, .	0.5	1
434	Einstein-Podolsky-Rosen steering and monogamy relations in controllable dynamical Casimir arrays. Physical Review A, 2022, 105, .	1.0	0
435	Entanglement between mechanical modes of an optomechanical system according to Simon and Mancini. Materials Today: Proceedings, 2022, 66, 181-186.	0.9	1
436	Unidirectional Gaussian Oneâ€Way Steering. Annalen Der Physik, 2022, 534, .	0.9	4
437	Multipartite quantum steering of symmetric and asymmetric structures based on four-wave mixing processes. Journal of the Optical Society of America B: Optical Physics, 2022, 39, 1528.	0.9	0
438	Multiparty multicast schemes for remote state preparation of complex coefficient quantum states via partially entangled channels. International Journal of Theoretical Physics, 2022, 61, .	0.5	3
439	Quantum magnonics: When magnon spintronics meets quantum information science. Physics Reports, 2022, 965, 1-74.	10.3	195
440	Bipartite Leggett-Garg and macroscopic Bell-inequality violations using cat states: Distinguishing weak and deterministic macroscopic realism. Physical Review A, 2022, 105, .	1.0	5

#	Article	IF	CITATIONS
441	Experimental Demonstration of Remotely Creating Wigner Negativity via Quantum Steering. Physical Review Letters, 2022, 128, .	2.9	19
442	Robust violation of a multipartite Bell inequality from the perspective of a single-system game. Modern Physics Letters A, 2022, 37, .	0.5	2
443	Retrieving High-Dimensional Quantum Steering from a Noisy Environment with <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>N</mml:mi> Measurement Settings. Physical Review Letters, 2022, 128, .</mml:math 	2.9	12
444	Graphene as a source of entangled plasmons. Physical Review Research, 2022, 4, .	1.3	4
445	Quantum correlations of two qubits indefinitely interacting with dephasing environments. Quantum Information Processing, 2022, 21, .	1.0	0
446	Macroscopic delayed choice and retrocausality: Quantum eraser, Leggett-Garg, and dimension witness tests with cat states. Physical Review A, 2022, 105, .	1.0	2
447	Decoherence effects in quantum nondemolition measurement induced entanglement between Bose–Einstein condensates. Journal of Physics B: Atomic, Molecular and Optical Physics, 2022, 55, 195501.	0.6	4
448	Thermodynamic Definition of Time: Considerations on the EPR Paradox. Mathematics, 2022, 10, 2711.	1.1	Ο
449	Dynamics of Rényi-2 correlations in optomechanics. Physica Scripta, 2022, 97, 095102.	1.2	5
450	Remotely preparing optical SchrĶdinger cat states via homodyne detection in nondegenerate triple-photon spontaneous downconversion. Quantum Science and Technology, 2022, 7, 045021.	2.6	0
451	Two-colour high-purity Einstein-Podolsky-Rosen photonic state. Nature Communications, 2022, 13, .	5.8	3
452	Propagation-induced revival of entanglement in the angle-OAM bases. Science Advances, 2022, 8, .	4.7	3
453	Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides. Chinese Physics B, O, , .	0.7	0
454	Quantum Steering: Practical Challenges and Future Directions. PRX Quantum, 2022, 3, .	3.5	24
455	Direct coupling-induced pseudoparity nonconservation scattering: bipolar spin diode and unipolar spin entanglement pairing. New Journal of Physics, 2022, 24, 093024.	1.2	1
456	Classical and quantum orbital correlations in molecular electronic states. New Journal of Physics, 2022, 24, 102001.	1.2	2
457	Homodyne Detection of Non-Gaussian Quantum Steering. PRX Quantum, 2022, 3, .	3.5	2
458	Optimal Bright Multimode Quantum Squeezing via Multi-seeding Energy-level Cascaded Four-wave mixing. Optics Express, 0, , .	1.7	1

	Сітаті	on Report	
#	Article	IF	CITATIONS
459	Einstein-Podolsky-Rosen steering in symmetrical Gaussian states. Physical Review A, 2022, 106, .	1.0	0
460	Mesoscopic and macroscopic quantum correlations in photonic, atomic and optomechanical systems. Progress in Quantum Electronics, 2022, , 100396.	3.5	1
461	Manipulation and enhancement of asymmetric steering via down-converted nondegenerate photons. AAPPS Bulletin, 2022, 32, .	2.7	2
462	Characterizing and Tailoring Spatial Correlations in Multimode Parametric Down-Conversion. Physical Review Applied, 2022, 18, .	1.5	3
463	Continuous variable teleportation with indefinite causal order. Quantum Information Processing, 2022, 21, .	1.0	1
464	Detecting the genuine multipartite two-way steerability with linear steering inequalities. Quantum Information Processing, 2022, 21, .	1.0	2
465	Enhancement of mechanical entanglement and asymmetric steering with coherent feedback. Physical Review A, 2023, 107, .	1.0	4
466	Number-phase uncertainty relations and bipartite entanglement detection in spin ensembles. Quantum - the Open Journal for Quantum Science, 0, 7, 914.	0.0	3
467	Entanglement, Nonlocality, Quantum Teleportation of Two-mode Non-Gaussian States with Multiphoton Quantum Catalysis. International Journal of Theoretical Physics, 2023, 62, .	0.5	2
468	Quantum Fisher information of phase estimation in the presence of indefinite causal order. Physics Letters, Section A: General, Atomic and Solid State Physics, 2023, 468, 128749.	0.9	1
469	Quantum-enhanced interferometer using Kerr squeezing. Nanophotonics, 2023, 12, 2945-2952.	2.9	4
470	A comparative study between EPR steering and directional entanglement of a joint field-field system. Physica A: Statistical Mechanics and Its Applications, 2023, 619, 128735.	1.2	2
471	Deterministic manipulation of steering between distant quantum network nodes. Optics Express, 2023, 31, 8257.	1.7	2
472	Steering-enhanced quantum metrology using superpositions of noisy phase shifts. Physical Review Research, 2023, 5, .	1.3	3
473	Non-Gaussian entanglement criteria for atomic homodyne detection. Physical Review A, 2023, 107, .	1.0	0
474	Experimental Full-Domain Mapping of Quantum Correlation in Clauser-Horne-Shimony-Holt Scenarios. Physical Review Applied, 2023, 19, .	1.5	0
497	Perspective chapter: Squeezing and Entanglement of two-modes Quantum \$mathrm{X}\$ Waves. , 0, , .		0