Palladium- and Copper-Catalyzed Arylation of Carbonâ

Accounts of Chemical Research 42, 1074-1086 DOI: 10.1021/ar9000058

Citation Report

#	Article	IF	CITATIONS
3	Copper as a Powerful Catalyst in the Direct Alkynylation of Azoles. Angewandte Chemie - International Edition, 2009, 48, 9553-9556.	7.2	192
4	An Aromatic Glaserâ [~] 'Hay Reaction. Journal of the American Chemical Society, 2009, 131, 17052-17053.	6.6	170
5	Palladium-Catalyzed Aryl–Aryl Bond Formation Through Double C–H Activation. Topics in Current Chemistry, 2009, , 165-194.	4.0	120
6	Regioselective Ruthenium-Catalyzed Direct Benzylations of Arenes through Câ^'H Bond Cleavages. Organic Letters, 2009, 11, 4966-4969.	2.4	142
7	Palladium-catalysed ortho-arylation of carbamate-protected phenols. Organic and Biomolecular Chemistry, 2009, 7, 4853.	1.5	73
8	The mechanism of the modified Ullmann reaction. Dalton Transactions, 2010, 39, 10338.	1.6	331
9	Copper-Catalyzed Cyanation of Heterocycle Carbonâ [°] Hydrogen Bonds. Organic Letters, 2010, 12, 2517-2519.	2.4	138
10	Copper-Catalyzed Aerobic Oxidative Functionalization of an Arene Câ [°] 'H Bond: Evidence for an Aryl-Copper(III) Intermediate. Journal of the American Chemical Society, 2010, 132, 12068-12073.	6.6	425
11	Palladium-Catalyzed Ligand-Directed Câ^'H Functionalization Reactions. Chemical Reviews, 2010, 110, 1147-1169.	23.0	5,643
12	New Nonsymmetric Phenanthrolines as Very Effective Ligands in the Palladium-Catalyzed Carbonylation of Nitrobenzene. Organometallics, 2010, 29, 1465-1471.	1.1	45
13	Structural Diversity of Calcium Organocuprates(I): Synthesis of Mesityl Cuprates via Addition and Transmetalation Reactions of Mesityl Copper(I). Chemistry - an Asian Journal, 2010, 5, 272-277.	1.7	19
14	Direct Arylation of Heterocycles: The Performances of Ferroceneâ€Based Polyphosphane Ligands in Palladium atalyzed CH Bond Activation. ChemCatChem, 2010, 2, 296-305.	1.8	33
15	Oxidative Nickel–Air Catalysis in Cĩ£¿H Arylation: Direct Cross oupling of Azoles with Arylboronic Acids using Air as Sole Oxidant. ChemCatChem, 2010, 2, 1403-1406.	1.8	81
16	Enantioselective Rhodium-Catalyzed Addition of Arylboronic Acids to Alkenylheteroarenes. Journal of the American Chemical Society, 2010, 132, 14373-14375.	6.6	154
17			
	Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct Câ^'H Arylation of Unactivated Benzene. Journal of the American Chemical Society, 2010, 132, 16737-16740.	6.6	547
18	Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct Câ [^] H Arylation of Unactivated Benzene. Journal of the American Chemical Society, 2010, 132, 16737-16740. Umpolung Direct Arylation Reactions: Facile Process Requiring Only Catalytic Palladium and Substoichiometric Amount of Silver Salts. Journal of the American Chemical Society, 2010, 132, 14412-14414.	6.6 6.6	547 52
18 19	Organocatalysis in Cross-Coupling: DMEDA-Catalyzed Direct Câ [^] H Arylation of Unactivated Benzene.Journal of the American Chemical Society, 2010, 132, 16737-16740.Umpolung Direct Arylation Reactions: Facile Process Requiring Only Catalytic Palladium and Substoichiometric Amount of Silver Salts. Journal of the American Chemical Society, 2010, 132, 14412-14414.Pd(OAc) ₂ -Catalyzed Oxidative Câ [^] H/Câ [^] H Cross-Coupling of Electron-Deficient Polyfluoroarenes with Simple Arenes. Journal of the American Chemical Society, 2010, 132, 16377-16379.	6.6 6.6 6.6	547 52 274

#	Article	IF	Citations
21	Rhodium-Catalyzed Oxidative Câ^'H Arylation of 2-Arylpyridine Derivatives via Decarbonylation of Aromatic Aldehydes. Journal of the American Chemical Society, 2010, 132, 12212-12213.	6.6	142
22	Palladium atalyzed Arylation Reactions: A Mechanistic Perspective. Israel Journal of Chemistry, 2010, 50, 630-651.	1.0	73
23	"Greening Up―Cross-Coupling Chemistry. Topics in Catalysis, 2010, 53, 985-990.	1.3	70
24	Transitionâ€Metalâ€Catalyzed Direct C–H Alkenylation, Alkynylation, Benzylation, and Alkylation of (Hetero)arenes. European Journal of Organic Chemistry, 2010, 2010, 6495-6516.	1.2	175
25	Palladium atalyzed Oneâ€Pot Conversion of Aldehydes to Amides. Advanced Synthesis and Catalysis, 2010, 352, 288-292.	2.1	99
26	Direct Synthesis of Pyrazolo[5,1â€ <i>a</i>]isoindoles <i>via</i> Intramolecular Palladiumâ€Catalyzed CH Bond Activation. Advanced Synthesis and Catalysis, 2010, 352, 2041-2049.	2.1	34
27	Copper(I)â€Catalyzed Cascade Synthesis of 2â€Arylsulfanyl―arylcyanamides. Advanced Synthesis and Catalysis, 2010, 352, 2538-2548.	2.1	50
28	Synthesis of Propiolic Acids <i>via</i> Copper atalyzed Insertion of Carbon Dioxide into the CH Bond of Terminal Alkynes. Advanced Synthesis and Catalysis, 2010, 352, 2913-2917.	2.1	169
29	Use of Molecular Oxygen as a Reoxidant in the Synthesis of 2‣ubstituted Benzothiazoles <i>via</i> Palladium atalyzed CH Functionalization/Intramolecular CS Bond Formation. Advanced Synthesis and Catalysis, 2010, 352, 2643-2655.	2.1	109
30	Synthesis of Methyleneâ€Bridge Polyarenes through Palladiumâ€Catalyzed Activation of Benzylic Carbonâ€Hydrogen Bond. Advanced Synthesis and Catalysis, 2010, 352, 3267-3274.	2.1	54
33	Transitionâ€Metalâ€Catalyzed Synthesis of Hydroxylated Arenes. Chemistry - A European Journal, 2010, 16, 5274-5284.	1.7	176
34	Pd ^{II} â€Catalysed CH Functionalisation of Indoles and Pyrroles Assisted by the Removable <i>N</i> â€(2â€Pyridyl)sulfonyl Group: C2â€Alkenylation and Dehydrogenative Homocoupling. Chemistry - A European Journal, 2010, 16, 9676-9685.	1.7	177
35	Oxidative Coupling of Aromatic Substrates with Alkynes and Alkenes under Rhodium Catalysis. Chemistry - A European Journal, 2010, 16, 11212-11222.	1.7	1,696
36	Palladium―and Nickelâ€Catalyzed Direct Alkylation of Azoles with Unactivated Alkyl Bromides and Chlorides. Chemistry - A European Journal, 2010, 16, 12307-12311.	1.7	105
37	Regiospecific Synthesis of Nitroarenes by Palladiumâ€Catalyzed Nitrogenâ€Donorâ€Directed Aromatic CH Nitration. Chemistry - A European Journal, 2010, 16, 13590-13593.	1.7	103
51	Fourâ€Component Synthesis of Fully Substituted 1,2,4â€Triazoles. Angewandte Chemie - International Edition, 2010, 49, 325-328.	7.2	89
52	Room Temperature Cĩ£¿H Activation and Cross oupling of Aryl Ureas in Water. Angewandte Chemie - International Edition, 2010, 49, 781-784.	7.2	180
53	Direct Azole Amination: Cï£;H Functionalization as a New Approach to Biologically Important Heterocycles. Angewandte Chemie - International Edition, 2010, 49, 2282-2285.	7.2	269

#	Article	IF	CITATIONS
54	Nickel atalyzed Direct CH Arylation and Alkenylation of Heteroarenes with Organosilicon Reagents. Angewandte Chemie - International Edition, 2010, 49, 2202-2205.	7.2	259
55	The Nickel/Copperâ€Catalyzed Direct Alkylation of Heterocyclic CH Bonds. Angewandte Chemie - International Edition, 2010, 49, 3061-3064.	7.2	188
56	Enantioselective Palladium atalyzed Direct Alkylation and Olefination Reaction of Simple Arenes. Angewandte Chemie - International Edition, 2010, 49, 5826-5828.	7.2	59
57	Palladiumâ€Catalyzed Ringâ€Expansion Reaction of Indoles with Alkynes: From Indoles to Tetrahydroquinoline Derivatives Under Mild Reaction Conditions. Angewandte Chemie - International Edition, 2010, 49, 4036-4041.	7.2	79
59	Constructing Multiply Substituted Arenes Using Sequential Palladium(II) atalyzed CH Olefination. Angewandte Chemie - International Edition, 2010, 49, 6169-6173.	7.2	233
60	A Versatile Palladium/Triphosphane System for Direct Arylation of Heteroarenes with Chloroarenes at Low Catalyst Loading. Angewandte Chemie - International Edition, 2010, 49, 6650-6654.	7.2	124
61	Copper atalyzed Direct Carboxylation of CH Bonds with Carbon Dioxide. Angewandte Chemie - International Edition, 2010, 49, 8670-8673.	7.2	326
62	Cascade Palladium atalyzed Direct Intramolecular Arylation/Alkene Isomerization Sequences: Synthesis of Indoles and Benzofurans. Angewandte Chemie - International Edition, 2010, 49, 7958-7962.	7.2	56
63	A General Strategy Toward Aromatic 1,2â€Ambiphilic Synthons: Palladiumâ€Catalyzed <i>ortho</i> â€Halogenation of PyDipSiâ€Arenes. Angewandte Chemie - International Edition, 2010, 49, 8729-8732.	7.2	96
64	Copperâ€eatalyzed/mediated aromatic CH bond functionalization. Applied Organometallic Chemistry, 2010, 24, 269-284.	1.7	24
65	Interaction of 2-(2′,6′-dialkylphenylazo)-4-methylphenols with iridium. C–H activation and migration of alkyl group. Journal of Organometallic Chemistry, 2010, 695, 1111-1118.	0.8	11
66	Carbon–nitrogen bond activation of amines by rhodium(III) porphyrin complexes. Journal of Organometallic Chemistry, 2010, 695, 1370-1374.	0.8	13
67	Osmium assisted C–H activation and CN cleavage of N-(2′-hydroxyphenyl) benzaldimines. Synthesis, structure and electrochemical properties of some organoosmium complexes. Journal of Organometallic Chemistry, 2010, 695, 2068-2075.	0.8	2
68	Iridium assisted S–H and C–H activation of benzaldehyde thiosemicarbazones. Synthesis, structure and electrochemical properties of the resulting complexes. Inorganica Chimica Acta, 2010, 363, 2848-2856.	1.2	22
69	An easy synthetic approach to 1,2,3-triazole-fused heterocycles. Tetrahedron, 2010, 66, 8846-8853.	1.0	33
70	Models for the basis of enantioselection in palladium mediated C–H activation reactions. Tetrahedron: Asymmetry, 2010, 21, 2782-2787.	1.8	17
71	Regio- and stereoselective acylation of saturated carbocycles via Norrish–Yang photocyclization. Tetrahedron Letters, 2010, 51, 872-874.	0.7	29
72	A simple and convenient synthesis of substituted furans and pyrroles by CuCl2-catalyzed heterocyclodehydration of 3-yne-1,2-diols and N-Boc- or N-tosyl-1-amino-3-yn-2-ols. Tetrahedron Letters, 2010, 51, 3565-3567.	0.7	28

#	Article	IF	CITATIONS
73	Cul/l-proline-catalyzed selective one-step mono-acylation of styrenes and stilbenes. Tetrahedron Letters, 2010, 51, 5771-5774.	0.7	4
74	Transition-metal-catalyzed direct arylations via C–H bond cleavages. Pure and Applied Chemistry, 2010, 82, 1403-1413.	0.9	109
75	Ortho-Palladation of (Z)-2-Aryl-4-Arylidene-5(4H)-Oxazolones. Structure and Functionalization. Organometallics, 2010, 29, 1428-1435.	1.1	16
76	Palladium-Catalyzed Intramolecular Amidation of C(sp ²)â^'H Bonds: Synthesis of 4-Aryl-2-quinolinones. Journal of Organic Chemistry, 2010, 75, 3900-3903.	1.7	110
77	Palladium-Catalyzed Direct Arylations, Alkenylations, and Benzylations through Câ^'H Bond Cleavages with Sulfamates or Phosphates as Electrophiles. Organic Letters, 2010, 12, 724-726.	2.4	197
78	Auxiliary-Assisted Palladium-Catalyzed Arylation and Alkylation of sp ² and sp ³ Carbonâ~'Hydrogen Bonds. Journal of the American Chemical Society, 2010, 132, 3965-3972.	6.6	843
79	Palladium-Catalyzed Direct Benzylation of Azoles with Benzyl Carbonates. Organic Letters, 2010, 12, 1360-1363.	2.4	129
80	Highly Efficient and Versatile Pd-Catalyzed Direct Alkynylation of Both Azoles and Azolines. Organic Letters, 2010, 12, 1868-1871.	2.4	127
81	Synthesis of Stilbene and Distyrylbenzene Derivatives through Rhodium-Catalyzed <i>Ortho</i> -Olefination and Decarboxylation of Benzoic Acids. Organic Letters, 2010, 12, 5776-5779.	2.4	196
82	Pd-Catalyzed <i>Ortho</i> -Câ^'H Acylation/Cross Coupling of Aryl Ketone <i>O</i> -Methyl Oximes with Aldehydes Using <i>tert</i> -Butyl Hydroperoxide as Oxidant. Organic Letters, 2010, 12, 3926-3929.	2.4	202
83	Toward Safer Processes for Câ^'C Biaryl Bond Construction: Catalytic Direct Câ^'H Arylation and Tin-Free Radical Coupling in the Synthesis of Pyrazolophenanthridines. Journal of Organic Chemistry, 2010, 75, 434-441.	1.7	51
84	Investigation of the Mechanism of C(sp ³)â^'H Bond Cleavage in Pd(0)-Catalyzed Intramolecular Alkane Arylation Adjacent to Amides and Sulfonamides. Journal of the American Chemical Society, 2010, 132, 10692-10705.	6.6	255
85	Palladium-Catalyzed Benzylic Arylation of 2-Methyl Azaarenes. Organic Letters, 2010, 12, 5359-5361.	2.4	74
86	Copper-Catalyzed Intramolecular Câ^'H Oxidation/Acylation of Formyl- <i>N</i> -arylformamides Leading to Indoline-2,3-diones. Journal of the American Chemical Society, 2010, 132, 8900-8902.	6.6	198
87	Pd-Catalyzed Intermolecular <i>ortho</i> -Câ^'H Amidation of Anilides by <i>N</i> -Nosyloxycarbamate. Journal of the American Chemical Society, 2010, 132, 12862-12864.	6.6	317
88	Cu(II)-Mediated Methylthiolation of Aryl Câ^H Bonds with DMSO. Organic Letters, 2010, 12, 1644-1647.	2.4	244
89	On the Mechanism of Palladium-Catalyzed Aromatic Câ^'H Oxidation. Journal of the American Chemical Society, 2010, 132, 14530-14536.	6.6	189
90	Synthesis of Phenanthrone Derivatives from <i>sec-</i> Alkyl Aryl Ketones and Aryl Halides via a Palladium-Catalyzed Dual Câ [°] H Bond Activation and Enolate Cyclization. Journal of the American Chemical Society, 2010, 132, 8569-8571	6.6	208

#	Article	IF	CITATIONS
91	Nickel, Manganese, Cobalt, and Iron-Catalyzed Deprotonative Arene Dimerization. Organic Letters, 2010, 12, 1200-1203.	2.4	103
92	Palladium-Catalyzed Cyclocoupling of 2-Halobiaryls with Isocyanides via the Cleavage of Carbonâ^'Hydrogen Bonds. Journal of Organic Chemistry, 2010, 75, 4835-4840.	1.7	98
93	Room Temperature Direct Alkynylation of 1,3,4-Oxadiazoles with Alkynyl Bromides under Copper Catalysis. Journal of Organic Chemistry, 2010, 75, 1764-1766.	1.7	93
94	Cu and Ag catalyzed oxidative arylthiation of terminal acetylenes. Chemical Communications, 2010, 46, 6819.	2.2	13
95	Facile Câ^'N Bond Cleavage Promoted by Cuprous Oxide: Formation of Câ^'C-Coupled Biimidazole from Its Methylene-Bridged Congener. Organometallics, 2010, 29, 290-293.	1.1	40
96	Regioselective functionalization of iminophosphoranes through Pd-mediated C–H bond activation: C–C and C–X bond formation. Dalton Transactions, 2010, 39, 10422.	1.6	13
97	Palladium-Catalyzed Dehydrogenative Direct Arylations of 1,2,3-Triazoles. Organic Letters, 2010, 12, 2056-2059.	2.4	138
98	Copper(II)-Catalyzed Ortho-Acyloxylation of the 2-Arylpyridines sp ² Câ^'H Bonds with Anhydrides, Using O ₂ as Terminal Oxidant. Journal of Organic Chemistry, 2010, 75, 2415-2418.	1.7	106
99	Regioselective syntheses of fully-substituted 1,2,3-triazoles: the CuAAC/C–H bond functionalization nexus. Organic and Biomolecular Chemistry, 2010, 8, 4503.	1.5	237
100	Direct Arylations of 2 <i>H</i> -Indazoles On Water. Organic Letters, 2010, 12, 224-226.	2.4	154
101	PyDipSi: A General and Easily Modifiable/Traceless Si-Tethered Directing Group for Câ^'H Acyloxylation of Arenes. Journal of the American Chemical Society, 2010, 132, 8270-8272.	6.6	187
102	Carbon Dioxide as the C1 Source for Direct Câ^'H Functionalization of Aromatic Heterocycles. Organic Letters, 2010, 12, 3567-3569.	2.4	171
103	Iron-Catalyzed Heterocycle and Arene Deprotonative Alkylation. Organic Letters, 2010, 12, 4277-4279.	2.4	77
104	A General and Straightforward Method for the Synthesis of 2-Trifluoromethylbenzothiazoles. Organic Letters, 2010, 12, 2434-2436.	2.4	42
105	Cationic Palladium(II) Catalysis: Câ^'H Activation/Suzukiâ^'Miyaura Couplings at Room Temperature. Journal of the American Chemical Society, 2010, 132, 4978-4979.	6.6	267
106	Facile synthesis of 1,3,4-benzotriazepines and 1-arylamide-1H-indazoles via palladium-catalyzed cyclization of aryl isocyanates and aryl hydrazones under microwave irradiation. Organic and Biomolecular Chemistry, 2010, 8, 4827.	1.5	21
107	Studies in catalytic C–H amination involving nitrene C–H insertion. Dalton Transactions, 2010, 39, 10401.	1.6	108
108	Palladium-Catalyzed Alkoxylation of <i>N</i> -Methoxybenzamides via Direct sp ² Câ^'H Bond Activation. Journal of Organic Chemistry, 2010, 75, 476-479.	1.7	170

		CITATION REPORT		
#	Article		IF	CITATIONS
109	Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis. Chemical Reviews, 20)10, 110, 824-889.	23.0	599
110	Pd(II)-Catalyzed Synthesis of Carbolines by Iminoannulation of Internal Alkynes via Dire Cleavage Using Dioxygen as Oxidant. Organic Letters, 2010, 12, 1540-1543.	ct Câ^'H Bond	2.4	123
111	Cyclometalation Using d-Block Transition Metals: Fundamental Aspects and Recent Tre Reviews, 2010, 110, 576-623.	nds. Chemical	23.0	697
112	A Versatile Cuprous Synthon: [Cu(IPr)(OH)] (IPr = 1,3 bis(diisopropylphenyl)imidazol-2- Organometallics, 2010, 29, 3966-3972.	ylidene).	1.1	118
113	Arylation of unactivated arenes. Dalton Transactions, 2010, 39, 10352.		1.6	109
114	Metal-catalyzed direct alkylations of (hetero)arenes via C–H bond cleavages with una halides. Chemical Communications, 2010, 46, 4866.	ictivated alkyl	2.2	465
115	Copper-Catalyzed Diacetoxylation of Olefins using PhI(OAc) ₂ as Oxidant. 2010, 12, 1412-1415.	Organic Letters,	2.4	72
116	Palladium(II)-Catalyzed <i>Ortho</i> Arylation of 2-Phenoxypyridines with Potassium Aryltrifluoroborates via Câ^'H Functionalization. Organometallics, 2010, 29, 4058-4065		1.1	76
117	Palladium-Catalyzed Direct Oxidative Alkenylation of Azoles. Journal of Organic Chemis 5421-5424.	try, 2010, 75,	1.7	93
118	Nano-Fe2O3-catalyzed direct borylation of arenes. Chemical Communications, 2010, 4	6, 3170.	2.2	88
119	Generation of benzyne from benzoic acid using C–H activation. Chemical Communic 8671.	ations, 2010, 46,	2.2	76
120	Nickel-catalyzed sp2 C–H bonds arylation of N-aromatic heterocycles with Grignard retemperature. Chemical Communications, 2011, 47, 11140.	eagents at room	2.2	42
121	Chelation-assisted palladium-catalyzed high regioselective heck diarylation reaction of 9-allyl-9H-purine: synthesis of 9-(3,3-diaryl-allyl)-9H-purines. RSC Advances, 2011, 1, 96	1.	1.7	22
122	Ru-catalyzed aerobic oxidative coupling of arylboronic acids with arenes. Chemical Com 2011, 47, 1497-1499.	imunications,	2.2	46
123	Catalyst Control of Site Selectivity in the Pd ^{II/IV} -Catalyzed Direct Arylatior Naphthalene. ACS Catalysis, 2011, 1, 170-174.	ı of	5.5	143
124	Synthesis and characterization of a cyclic vinylpalladium(ii) complex: vinylpalladium spe possible intermediate in the catalytic direct olefination reaction of enamide. Chemical S 1822.	cies as the science, 2011, 2,	3.7	136
125	Hydroxyl-directed C–H carbonylation enabled by mono-N-protected amino acid ligand route to 1-isochromanones. Chemical Science, 2011, 2, 967.	ls: An expedient	3.7	187
126	Direct arylations of electron-deficient (hetero)arenes with aryl or alkenyl tosylates and i Chemical Communications, 2011, 47, 430-432.	mesylates.	2.2	139

#	Article	IF	CITATIONS
127	Annulation of Benzamides with [60]Fullerene through Palladium(II)-Catalyzed Câ^'H Bond Activation. Journal of Organic Chemistry, 2011, 76, 1599-1604.	1.7	44
128	Pd-Catalyzed C4-Olefination of Oxazoles via C–H Bond Activation: Divergent Synthesis of Functionalized Amino Alcohol and Amino Acid Derivatives. Organic Letters, 2011, 13, 5040-5043.	2.4	39
129	Cycloruthenated Complexes from Iminophosphoranes: Synthesis, Structure, and Reactivity with Internal Alkynes. Organometallics, 2011, 30, 642-648.	1.1	20
130	Synthesis of Catechols from Phenols via Pd-Catalyzed Silanol-Directed C–H Oxygenation. Journal of the American Chemical Society, 2011, 133, 17630-17633.	6.6	149
131	Synthesis of Angiotensin II Receptor Blockers by Means of a Catalytic System for C–H Activation. Journal of Organic Chemistry, 2011, 76, 10198-10206.	1.7	60
132	Rhodium-Catalyzed Regioselective Olefination Directed by a Carboxylic Group. Journal of Organic Chemistry, 2011, 76, 3024-3033.	1.7	219
133	Novel Cyclopalladated Imino-thiophenes: Synthesis and Reactivity Toward Alkynes and Carbon Monoxide. Inorganic Chemistry, 2011, 50, 8598-8607.	1.9	19
134	Direct arylation of unactivated aromatic C–H bonds catalyzed by a stable organic radical. Chemical Communications, 2011, 47, 11766.	2.2	90
135	Ir-catalyzed highly selective addition of pyridyl C–H bonds to aldehydes promoted by triethylsilane. Chemical Science, 2011, 2, 488-493.	3.7	141
136	Synthesis of Isochromene and Related Derivatives by Rhodium-Catalyzed Oxidative Coupling of Benzyl and Allyl Alcohols with Alkynes. Journal of Organic Chemistry, 2011, 76, 9548-9551.	1.7	92
137	Recent advances in the transition metal-catalyzed twofold oxidative C–H bond activation strategy for C–C and C–N bond formation. Chemical Society Reviews, 2011, 40, 5068.	18.7	2,200
138	Metal-Free Direct Arylations of Indoles and Pyrroles with Diaryliodonium Salts. Organic Letters, 2011, 13, 2358-2360.	2.4	158
139	Palladium-catalyzed C–H bond functionalization of C6-arylpurines. Chemical Communications, 2011, 47, 5608-5610.	2.2	57
140	Palladium-catalyzed cascade reactions of coumarins with alkynes: synthesis of highly substituted cyclopentadiene fused chromones. Chemical Communications, 2011, 47, 5422-5424.	2.2	30
141	C–H Bond Arylations and Benzylations on Oxazol(in)es with a Palladium Catalyst of a Secondary Phosphine Oxide. Organic Letters, 2011, 13, 3082-3085.	2.4	86
142	Palladium-Catalyzed Direct Ethynylation of C(sp ³)–H Bonds in Aliphatic Carboxylic Acid Derivatives. Journal of the American Chemical Society, 2011, 133, 12984-12986.	6.6	366
143	Ruthenium-Catalyzed Oxidative Vinylation of Heteroarene Carboxylic Acids with Alkenes via Regioselective Câ^'H Bond Cleavage. Organic Letters, 2011, 13, 706-708.	2.4	274
144	Copper-Catalyzed Aerobic Oxidative Intramolecular Alkene C–H Amination Leading toN-Heterocycles. Organic Letters, 2011, 13, 3694-3697.	2.4	77

#	Article	IF	CITATIONS
145	Direct C–H carboxylation with complexes of the coinage metals. Chemical Communications, 2011, 47, 3021-3024.	2.2	136
146	Direct Hiyama Cross-Coupling of Enaminones With Triethoxy(aryl)silanes and Dimethylphenylsilanol. Organic Letters, 2011, 13, 5413-5415.	2.4	65
147	Silanol: A Traceless Directing Group for Pd-Catalyzed <i>o</i> -Alkenylation of Phenols. Journal of the American Chemical Society, 2011, 133, 12406-12409.	6.6	255
148	Theoretical Analysis of the Mechanism of Palladium(II) Acetate-Catalyzed Oxidative Heck Coupling of Electron-Deficient Arenes with Alkenes: Effects of the Pyridine-Type Ancillary Ligand and Origins of themeta-Regioselectivity. Journal of the American Chemical Society, 2011, 133, 20218-20229.	6.6	154
149	Palladium-Catalyzed Oxidative <i>sp</i> ² Câ^'H Bond Acylation with Alcohols. Organic Letters, 2011, 13, 1614-1617.	2.4	160
150	Ruthenium-Catalyzed Meta Sulfonation of 2-Phenylpyridines. Journal of the American Chemical Society, 2011, 133, 19298-19301.	6.6	457
151	Regioselective Orthopalladation of (<i>Z</i>)-2-Aryl-4-Arylidene-5(4 <i>H</i>)-Oxazolones: Scope, Kinetico-Mechanistic, and Density Functional Theory Studies of the C–H Bond Activation. Inorganic Chemistry, 2011, 50, 8132-8143.	1.9	41
153	Photochemically Induced Radical Transformation of C(sp ³)–H Bonds to C(sp ³)–CN Bonds. Organic Letters, 2011, 13, 5928-5931.	2.4	157
154	Ligand-Accelerated Cross-Coupling of C(sp ²)–H Bonds with Arylboron Reagents. Journal of the American Chemical Society, 2011, 133, 18183-18193.	6.6	172
155	Ligand-Promoted C-3 Selective C–H Olefination of Pyridines with Pd Catalysts. Journal of the American Chemical Society, 2011, 133, 6964-6967.	6.6	311
156	Copper-Catalyzed Oxidative Amination of Benzoxazoles via Câ^'H and Câ^'N Bond Activation: A New Strategy for Using Tertiary Amines as Nitrogen Group Sources. Organic Letters, 2011, 13, 522-525.	2.4	254
157	Synthesis of 3-(aminomethylene)-2-oxoindolines by palladium-catalyzed annulation of 3-chloro-2-iodo-N-arylacrylamides with amides or amines. Chemical Communications, 2011, 47, 8151.	2.2	8
158	TPGS-750-M: A Second-Generation Amphiphile for Metal-Catalyzed Cross-Couplings in Water at Room Temperature. Journal of Organic Chemistry, 2011, 76, 4379-4391.	1.7	378
159	Copper-Catalyzed Direct Sulfoximination of Azoles and Polyfluoroarenes under Ambient Conditions. Organic Letters, 2011, 13, 359-361.	2.4	172
160	Palladium-Catalyzed Oxidative Alkynylation of Heterocycles with Terminal Alkynes under Air Conditions. Organic Letters, 2011, 13, 1474-1477.	2.4	133
161	New Reactivity of Oxaziridine: Pd(II)-Catalyzed Aromatic C–H Ethoxycarbonylation via C–C Bond Cleavage. Organic Letters, 2011, 13, 5244-5247.	2.4	71
162	Chlorination and ortho-acetoxylation of 2-arylbenzoxazoles. Organic and Biomolecular Chemistry, 2011, 9, 5288.	1.5	54
163	Palladium(II) Complexes of Readily Functionalized Bidentate 2-Pyridyl-1,2,3-triazole "Click―Ligands: A Synthetic, Structural, Spectroscopic, and Computational Study. Inorganic Chemistry, 2011, 50, 6334-6346.	1.9	111

ARTICLE IF CITATIONS Palladium-Catalyzed Direct <i>Ortho</i> Câ€"H Arylation of 2-Arylpyridine Derivatives with 1.7 64 164 Aryltrimethoxysilane. Journal of Organic Chemistry, 2011, 76, 8543-8548. Copper(ii)-catalyzed ortho-functionalization of 2-arylpyridines with acyl chlorides. Chemical 2.2 Communications, 2011, 47, 3978. Formation of organorhodium complexes via Câ€"H bond activation of 1,3-di(phenylazo)benzene. Dalton 166 1.6 10 Transactions, 2011, 40, 5423. Synthesis of Highly Substituted Acenes through Rhodium-Catalyzed Oxidative Coupling of Arylboron Reagents with Alkynes. Journal of Organic Chemistry, 2011, 76, 2867-2874. Morpholine catalyzed direct C3 alkenylation of indoles with \hat{I}_{\pm}, \hat{I}^2 -unsaturated aldehydes. Chemical 168 2.2 55 Communications, 2011, 47, 8097. Synthesis of isoindolinones via palladium-catalyzed C–H activation of N-methoxybenzamides. Chemical Communications, 2011, 47, 12789. 2.2 119 Ruthenium-Catalyzed <i>Ortho</i>-Alkenylation of Aromatic Ketones with Alkenes by Câ€"H Bond 170 2.4 247 Activation. Organic Letters, 2011, 13, 6144-6147. Direct Functionalization of (Un)protected Tetrahydroisoquinoline and Isochroman under Iron and 171 1.7 136 Copper Catalysis: Two Metals, Two Mechanisms. Journal of Organic Chemistry, 2011, 76, 8781-8793. Autocatalysis for Câ€"H Bond Activation by Ruthenium(II) Complexes in Catalytic Arylation of 172 345 6.6 Functional Arenes. Journal of the American Chemical Society, 2011, 133, 10161-10170. Ruthenium-Catalyzed Direct Câ€"H Bond Arylations of Heteroarenes. Organic Letters, 2011, 13, 3332-3335. 2.4 274 Base-Mediated Intermolecular sp² Câ[^]H Bond Arylation via Benzyne Intermediates. Journal 174 105 6.6 of the American Chemical Society, 2011, 133, 4243-4245. A General Method for Copper-Catalyzed Arene Cross-Dimerization. Journal of the American Chemical 6.6 146 Society, 2011, 133, 13577-13586. Amine directed Pd(ii)-catalyzed C–H bond functionalization under ambient conditions. Chemical 176 3.7 196 Science, 2011, 2, 312-315. Palladium-Catalyzed Direct and Regioselective Câ[^]H Bond Functionalization/Oxidative Acetoxylation of 1.7 Indoles. Journal of Organic Chemistry, 2011, 76, 80-84. Copper-Catalyzed Direct Benzylation or Allylation of 1,3-Azoles with <i>N</i>-Tosylhydrazones. 178 261 6.6 Journal of the American Chemical Society, 2011, 133, 3296-3299. Iron oxide mediated direct C–H arylation/alkylation at α-position of cyclic aliphatic ethers. Chemical 179 2.2 Communications, 2011, 47, 5852. Copper-Catalyzed Câ[^]P Bond Construction via Direct Coupling of Phenylboronic Acids with 180 2.4 184 H-Phosphonate Diesters. Organic Letters, 2011, 13, 2110-2113. New Ligands That Promote Cross-Coupling Reactions between Aryl Halides and Unactivated Arenes. 2.4 Organic Letters, 2011, 13, 3556-3559.

#	Article	IF	CITATIONS
182	Palladium-catalyzed C–H acetoxylation of 2-methoxyimino-2-aryl-acetates and acetamides. Organic and Biomolecular Chemistry, 2011, 9, 6895.	1.5	26
183	Copper-Mediated Intermolecular Direct Biaryl Coupling. Journal of the American Chemical Society, 2011, 133, 2160-2162.	6.6	237
184	Palladium(II)-Catalyzed Direct Intermolecular Alkenylation of Chromones. Organic Letters, 2011, 13, 4466-4469.	2.4	108
185	Palladium-Catalyzed Oxidative C–H Bond Coupling of Steered Acetanilides and Aldehydes: A Facile Access toortho-Acylacetanilides. Organic Letters, 2011, 13, 3258-3261.	2.4	177
186	Pd(II)-CatalyzedOrthoArylation of 6-Arylpurines with Aryl Iodides via Purine-Directed Câ^'H Activation: A New Strategy for Modification of 6-Arylpurine Derivatives. Organic Letters, 2011, 13, 2008-2011.	2.4	67
187	Rhodium-catalyzed Oxidative Coupling of Benzylamines with Alkynes through Dehydrogenation and Dehydrogenative Cyclization. Chemistry Letters, 2011, 40, 600-602.	0.7	72
188	Direct Sequential C3 and C1 Arylation Reaction of Imidazo[1,5- <i>a</i>]pyridine Catalyzed by a 1,10-Phenanthroline–Palladium Complex. Chemistry Letters, 2011, 40, 939-940.	0.7	47
189	Palladium-catalyzed Direct Monoarylation of Thiophene-, Benzothiophene-, and Indoleacetic Acids through Regioselective C–H Bond Cleavage. Chemistry Letters, 2011, 40, 1015-1017.	0.7	36
190	Palladium-catalyzed Direct C–H Bond Arylation of Simple Arenes with Aryltrimethylsilanes. Chemistry Letters, 2011, 40, 1050-1052.	0.7	59
191	Nickel-catalyzed Cycloaddition of Aromatic (<i>O</i> Benzyl)ketoximes with Alkynes to Produce Isoquinoline and Isoquinoline <i>N</i> Oxide Derivatives. Chemistry Letters, 2011, 40, 1140-1142.	0.7	37
192	Renaissance of Organic Synthesis Using Isocyanides. Chemistry Letters, 2011, 40, 330-340.	0.7	89
193	Rapid access to 4-substituted-pyrones and 2(5H)-furanones via a palladium-catalyzed C–OH bond activation. Tetrahedron, 2011, 67, 7258-7262.	1.0	14
194	Palladium-catalyzed direct C–H arylation of unactivated arenes with aryl Halides. Tetrahedron Letters, 2011, 52, 4916-4919.	0.7	19
195	Regioselective ortho-acetoxylation/methoxylation of N-(2-benzoylphenyl)benzamides via substrate directed C–H activation. Tetrahedron Letters, 2011, 52, 5926-5929.	0.7	29
196	Phosphine ligand triggered oxidative decarbonylative homocoupling of aromatic aldehydes: selectively generating biaryls and diarylketones. Chemical Communications, 2011, 47, 2161.	2.2	54
197	Pd(II)-Catalyzed Enantioselective C–H Activation of Cyclopropanes. Journal of the American Chemical Society, 2011, 133, 19598-19601.	6.6	370
198	Palladium(II)-Catalyzed Dehydrogenative Alkenylation of Cyclic Enaminones via the Fujiwara–Moritani Reaction. Organic Letters, 2011, 13, 5932-5935.	2.4	105
199	Cu(II) Catalyzed Imine C–H Functionalization Leading to Synthesis of 2,5-Substituted 1,3,4-Oxadiazoles. Organic Letters, 2011, 13, 5976-5979.	2.4	132

	CITATION I	CITATION REPORT	
#	Article	IF	CITATIONS
200	Palladium atalyzed Direct Benzylation of Xanthines. ChemCatChem, 2011, 3, 893-897.	1.8	26
201	Mechanistic Understanding of the Unexpected Meta Selectivity in Copper-Catalyzed Anilide C–H Bond Arylation. Journal of the American Chemical Society, 2011, 133, 7668-7671.	6.6	190
202	Synthesis of Biphenyl-2-carbonitrile Derivatives via a Palladium-Catalyzed sp2Câ [~] 'H Bond Activation Using Cyano as a Directing Group. Organic Letters, 2011, 13, 1286-1289.	2.4	90
203	Mechanistic and Computational Studies of Oxidatively-Induced Arylâ^'CF ₃ Bond-Formation at Pd: Rational Design of Room Temperature Aryl Trifluoromethylation. Journal of the American Chemical Society, 2011, 133, 7577-7584.	6.6	192
204	Ligand-Free Copper-Catalyzed Regioselective C-2 Arylation of Imidazo[2,1- <i>b</i>]thiazoles. Organic Letters, 2011, 13, 5224-5227.	2.4	46
205	Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chemical Society Reviews, 2011, 40, 1885.	18.7	1,508
206	Copper-Catalyzed Amidation of 2-Phenylpyridine with Oxygen as the Terminal Oxidant. Journal of Organic Chemistry, 2011, 76, 4158-4162.	1.7	187
207	Copper-Mediated Annulative Direct Coupling of <i>o</i> -Alkynylphenols with Oxadiazoles: A Dehydrogenative Cascade Construction of Biheteroaryls. Organic Letters, 2011, 13, 3076-3079.	2.4	42
208	Copper-Catalyzed Direct Amination of Electron-Deficient Arenes with Hydroxylamines. Organic Letters, 2011, 13, 2860-2863.	2.4	198
209	Pd-Catalyzed Intermolecular C–H Amination with Alkylamines. Journal of the American Chemical Society, 2011, 133, 7652-7655.	6.6	398
210	Modifiable Sulfur Tethers as Directing Groups for Aromatic Cī£¿H Acetoxylation Reactions. Advanced Synthesis and Catalysis, 2011, 353, 295-302.	2.1	67
211	The Pyridyldiisopropylsilyl Group: A Masked Functionality and Directing Group for Monoselective <i>ortho</i> â€Acyloxylation and <i>ortho</i> â€Halogenation Reactions of Arenes. Advanced Synthesis and Catalysis, 2011, 353, 1285-1305.	2.1	69
212	Mechanistic Switch <i>via</i> Subtle Ligand Modulation: Palladiumâ€Catalyzed Synthesis of α,βâ€Substitutec Styrenes <i>via</i> CH Bond Functionalization. Advanced Synthesis and Catalysis, 2011, 353, 1223-1228.	2.1	21
213	CC Bond Formation <i>via</i> CH Activation and CN Bond Formation <i>via</i> Oxidative Amination Catalyzed by Palladium―Polyoxometalate Nanomaterials Using Dioxygen as the Terminal Oxidant. Advanced Synthesis and Catalysis, 2011, 353, 2988-2998.	2.1	62
214	Userâ€Friendly [(Diglyme)NiBr ₂] atalyzed Direct Alkylations of Heteroarenes with Unactivated Alkyl Halides through CH Bond Cleavages. Advanced Synthesis and Catalysis, 2011, 353, 3325-3329.	2.1	72
215	An Efficient Copperâ€Catalyzed Crossâ€Coupling Reaction of Thiols with Aryl Iodides. European Journal of Organic Chemistry, 2011, 2011, 1776-1781.	1.2	52
216	Microwaveâ€Assisted Synthesis of Polysubstituted Benzimidazoles by Heterogeneous Pdâ€Catalyzed Oxidative C–H Activation of Tertiary Amines. European Journal of Organic Chemistry, 2011, 2011, 5791-5795.	1.2	35
233	Bystanding F ⁺ Oxidants Enable Selective Reductive Elimination from Highâ€Valent Metal Centers in Catalysis. Angewandte Chemie - International Edition, 2011, 50, 1478-1491.	7.2	366

#	Article	IF	CITATIONS
234	Direct Cross oupling of CH Bonds with Grignard Reagents through Cobalt Catalysis. Angewandte Chemie - International Edition, 2011, 50, 1109-1113.	7.2	165
235	Oneâ€Pot Formation of CC and CN Bonds through Palladiumâ€Catalyzed Dual CH Activation: Synthesis of Phenanthridinones. Angewandte Chemie - International Edition, 2011, 50, 1380-1383.	7.2	290
236	Palladium(II) atalyzed CH Bond Arylation of Electronâ€Deficient Arenes at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 1076-1079.	7.2	129
237	If Cĩ£¿H Bonds Could Talk: Selective Cĩ£¿H Bond Oxidation. Angewandte Chemie - International Edition, 2011, 50, 3362-3374.	7.2	1,189
238	Rhodiumâ€Catalyzed Direct Addition of Aryl CH Bonds to <i>N</i> â€Sulfonyl Aldimines. Angewandte Chemie - International Edition, 2011, 50, 2115-2119.	7.2	262
239	Stereospecific Copperâ€Catalyzed CH Allylation of Electronâ€Deficient Arenes with Allyl Phosphates. Angewandte Chemie - International Edition, 2011, 50, 2990-2994.	7.2	150
240	Combining Gold(I)/Gold(III) Catalysis and CH Functionalization: A Formal Intramolecular [3+2] Annulation towards Tricyclic Indolines and Mechanistic Studies. Angewandte Chemie - International Edition, 2011, 50, 4450-4454.	7.2	117
241	Palladium atalyzed Double CH Activation Directed by Sulfoxides in the Synthesis of Dibenzothiophenes. Angewandte Chemie - International Edition, 2011, 50, 5217-5220.	7.2	160
242	Ruthenium atalyzed Oxidative Annulation by Cleavage of CH/NH Bonds. Angewandte Chemie - International Edition, 2011, 50, 6379-6382.	7.2	440
243	Palladium atalyzed Tunable Functionalization of Allylic Imidates: Regioselective Aminodiacetoxylation and Aziridination. Angewandte Chemie - International Edition, 2011, 50, 8927-8930.	7.2	14
244	Copper atalyzed Aerobic Oxidative CH Functionalizations: Trends and Mechanistic Insights. Angewandte Chemie - International Edition, 2011, 50, 11062-11087.	7.2	1,212
245	Direct Arylation of 6â€Phenylpurine and 6â€Arylpurine Nucleosides by Ruthenium atalyzed CH Bond Activation. Angewandte Chemie - International Edition, 2011, 50, 11400-11404.	7.2	99
246	Synthesis of Phenanthridinones from <i>Nâ€</i> Methoxybenzamides and Arenes by Multiple Palladium atalyzed CH Activation Steps at Room Temperature. Angewandte Chemie - International Edition, 2011, 50, 9880-9883.	7.2	208
247	Amination of Benzoxazoles and 1,3,4â€Oxadiazoles Using 2,2,6,6â€∓etramethylpiperidineâ€ <i>N</i> â€oxoammonium Tetrafluoroborate as an Organic Oxidant. Angewandte Chemie - International Edition, 2011, 50, 11511-11515.	7.2	99
248	Implanting Nitrogen into Hydrocarbon Molecules through Cĩ£¿H and Cĩ£¿C Bond Cleavages: A Direct Approach to Tetrazoles. Angewandte Chemie - International Edition, 2011, 50, 11487-11491.	7.2	91
249	Cobaltâ€Catalyzed Direct Arylation of Unactivated Arenes with Aryl Halides. Chemistry - A European Journal, 2011, 17, 3588-3592.	1.7	91
250	Palladium atalyzed Direct Arylation of Heteroarenes with Aryl Mesylates. Chemistry - A European Journal, 2011, 17, 761-765.	1.7	88
251	Pdâ€Catalyzed Direct and Selective Cï£;H Functionalization: C3â€Acetoxylation of Indoles. Chemistry - A European Journal, 2011, 17, 2353-2357.	1.7	57

#	Article	IF	CITATIONS
252	Direct Arylation of Benzothiazoles and Benzoxazoles with Aryl Boronic Acids. Chemistry - A European Journal, 2011, 17, 1105-1108.	1.7	129
253	2â€Pyridyl Sulfoxide: A Versatile and Removable Directing Group for the Pd ^{II} â€Catalyzed Direct Cī£¿H Olefination of Arenes. Chemistry - A European Journal, 2011, 17, 3567-3570.	1.7	109
254	Bu ₄ NIâ€Catalyzed CO Bond Formation by Using a Crossâ€Dehydrogenative Coupling (CDC) Reaction. Chemistry - A European Journal, 2011, 17, 4085-4089.	1.7	264
255	On the Importance of an Acid Additive in the Synthesis of Pyrido[1,2â€ <i>a</i>]benzimidazoles by Direct Copper atalyzed Amination. Chemistry - A European Journal, 2011, 17, 6315-6320.	1.7	130
256	Palladiumâ€Catalyzed <i>ortho</i> â€Acylation of Acetanilides with Aldehydes through Direct CH Bond Activation. Chemistry - A European Journal, 2011, 17, 10208-10212.	1.7	134
257	Palladium(II)â€Catalyzed Oneâ€Pot Syntheses of 9â€(Pyridinâ€2â€yl)â€9 <i>H</i> â€carbazoles through a Tandem Activation/Cĭ£¿X (X=C or N) Formation Process. Chemistry - A European Journal, 2011, 17, 13613-13620.	п <u>Сї</u> £;Н 1.7	49
258	Mechanism Selection for Regiocontrol in Baseâ€Assisted, Palladiumâ€Catalysed Direct CH Coupling with Halides: First Approach for Oxazole―and Thiazoleâ€4â€Carboxylates. Chemistry - A European Journal, 2011, 17, 14450-14463.	1.7	57
259	Rutheniumâ€Catalyzed Isoquinolone Synthesis through CH Activation Using an Oxidizing Directing Group. Chemistry - A European Journal, 2011, 17, 12573-12577.	1.7	291
260	Rhodiumâ€Catalyzed Annulation of <i>N</i> â€Benzoylsulfonamide with Isocyanide through CH Activation. Chemistry - A European Journal, 2011, 17, 12591-12595.	1.7	142
261	Ruthenium mediated C–H activation of benzaldehyde thiosemicarbazones: Synthesis, structure and, spectral and electrochemical properties of the resulting complexes. Inorganica Chimica Acta, 2011, 372, 183-190.	1.2	26
262	Nickel-catalyzed direct C–H arylation of unactivated arenes with aryl halides. Journal of Molecular Catalysis A, 2011, 340, 48-52.	4.8	20
263	Photoinduced carbamoylation of ethereal C–H bonds using pentafluorophenyl isocyanate. Tetrahedron Letters, 2011, 52, 2885-2888.	0.7	35
264	Palladium catalyzed alkylation of indole via aliphatic C–H bond activation of tertiary amine. Tetrahedron Letters, 2011, 52, 3579-3583.	0.7	31
265	Recent Applications of Zirconium Compounds as Catalysts or Reagents in Organic Synthesis. Current Organic Chemistry, 2011, 15, 3800-3823.	0.9	30
266	Preparation of Polyaminopyridines Using a Cul/l-Proline-Catalyzed C-N Polycoupling Reaction. Materials, 2012, 5, 2176-2189.	1.3	9
267	Heterocycle Formation via Palladium-Catalyzed C-H Functionalization. Synthesis, 2012, 44, 1778-1791.	1.2	154
268	Introduction: Alkane C–H Activation by Single-Site Metal Catalysis. Catalysis By Metal Complexes, 2012, , 1-15.	0.6	16
269	Heterocycle Synthesis Based on Palladium-Catalyzed C-H Bond Functionalization Methods. Current Organic Synthesis, 2012, 9, 96-113.	0.7	13

#	Article	IF	CITATIONS
270	Palladium-Catalyzed Direct <i>ortho</i> -Acylation through an Oxidative Coupling of Acetanilides with Toluene Derivatives. Journal of Organic Chemistry, 2012, 77, 11339-11344.	1.7	121
271	Copper(I) Alkyne and Alkynide Complexes. Organometallics, 2012, 31, 7661-7693.	1.1	104
272	Palladium Catalyzed Coupling of Tosylhydrazones with Aryl and Heteroaryl Halides in the Absence of External Ligands: Synthesis of Substituted Olefins. Journal of Organic Chemistry, 2012, 77, 11027-11033.	1.7	43
273	C-H Arylation of 3-Substituted Thiophene with Regioselective Deprotonation by TMPMgCl·LiCl and Transition Metal Catalyzed Cross Coupling. Heterocycles, 2012, 86, 255.	0.4	9
274	Copper-Promoted Sulfenylation of sp ² C–H Bonds. Journal of the American Chemical Society, 2012, 134, 18237-18240.	6.6	535
275	Direct Intermolecular Aniline <i>Ortho-</i> Arylation via Benzyne Intermediates. Organic Letters, 2012, 14, 5964-5967.	2.4	36
276	Mild Rh(III)-Catalyzed C–H Activation and Annulation with Alkyne MIDA Boronates: Short, Efficient Synthesis of Heterocyclic Boronic Acid Derivatives. Journal of the American Chemical Society, 2012, 134, 19592-19595.	6.6	364
277	Pdâ€Catalyzed CH Oxygenation with TFA/TFAA: Expedient Access to Oxygenâ€Containing Heterocycles and Lateâ€Stage Drug Modification. Angewandte Chemie - International Edition, 2012, 51, 13070-13074.	7.2	253
278	Ruthenium(II)-Catalyzed Synthesis of Hydroxylated Arenes with Ester as an Effective Directing Group. Organic Letters, 2012, 14, 2874-2877.	2.4	135
279	Organocatalytic C–H activation reactions. Beilstein Journal of Organic Chemistry, 2012, 8, 1374-1384.	1.3	137
280	Fe-catalysed oxidative C–H functionalization/C–S bond formation. Chemical Communications, 2012, 48, 76-78.	2.2	208
281	Synthesis of N-alkyl and N-aryl isoquinolones and derivatives via Pd-catalysed C–H activation and cyclization reactions. Organic and Biomolecular Chemistry, 2012, 10, 9429.	1.5	58
282	Intramolecular σ-Bond Metathesis Between Carbon–Carbon and Silicon–Silicon Bonds. Organic Letters, 2012, 14, 3230-3232.	2.4	51
283	A Domino Palladium-Catalyzed C–C and C–O Bonds Formation via Dual O–H Bond Activation: Synthesis of 6,6-Dialkyl-6 <i>H</i> -benzo[<i>c</i>]chromenes. Organic Letters, 2012, 14, 628-631.	2.4	89
284	New method for C–H arylation/alkylation at α-position of cyclic aliphatic ethers by iron-oxide mediated reaction. Organic and Biomolecular Chemistry, 2012, 10, 1587.	1.5	46
286	Palladium atalyzed CH Bond Acetoxylation: An Approach to <i>ortho</i> ‧ubstituted Hydroxy[2.2]paracyclophane Derivatives. Advanced Synthesis and Catalysis, 2012, 354, 3237-3249.	2.1	42
293	Asymmetric Cross oupling of Aryl Triflates to the Benzylic Position of Benzylamines. Angewandte Chemie - International Edition, 2012, 51, 11510-11513.	7.2	74
294	Modular Synthesis of Phenanthridine Derivatives by Oxidative Cyclization of 2â€lsocyanobiphenyls with Organoboron Reagents. Angewandte Chemie - International Edition, 2012, 51, 11363-11366.	7.2	279

#	Article	IF	CITATIONS
295	Directed Functionalization of Cï£;H Bonds: Now also <i>meta</i> Selective. Angewandte Chemie - International Edition, 2012, 51, 11677-11679.	7.2	35
296	Direct Exchange of a Ketone Methyl or Aryl Group to Another Aryl Group through CC Bond Activation Assisted by Rhodium Chelation. Angewandte Chemie - International Edition, 2012, 51, 12334-12338.	7.2	114
297	Rhodium(III)â€Catalyzed Oxidative CH Coupling of <i>N</i> â€Methoxybenzamides with Aryl Boronic Acids: Oneâ€Pot Synthesis of Phenanthridinones. Angewandte Chemie - International Edition, 2012, 51, 12343-12347.	7.2	168
298	Efficient Synthesis and First Regioselective Câ€3 Direct Arylation of Imidazo[1,2â€ <i>b</i>]pyrazoles. Chemistry - A European Journal, 2012, 18, 14943-14947.	1.7	33
299	Freeâ€Amineâ€Directed Alkenylation of C(sp ²)H and Cycloamination by Palladium Catalysis. Chemistry - A European Journal, 2012, 18, 15816-15821.	1.7	98
300	Synthesis of a [2.2]paracyclophane based planar chiral palladacycle by a highly selective kinetic resolution/C–H activation reaction. Chemical Communications, 2012, 48, 1991-1993.	2.2	45
301	Scope of direct arylation of fluorinated aromatics with aryl sulfonates. Organic and Biomolecular Chemistry, 2012, 10, 2289.	1.5	48
302	Iridium(iii) complexes with polypyridine ligands coordinated as N-heterocyclic carbenes. Synthesis, structure and photophysical properties. Dalton Transactions, 2012, 41, 14126.	1.6	12
303	Pyridine-Assisted Chlorinations and Oxidations by Palladium(IV). Organometallics, 2012, 31, 3527-3538.	1.1	24
304	Mechanistic understanding of Rh-catalyzed N-sulfonylaldimine insertion into aryl C–H bonds. Chemical Science, 2012, 3, 1634.	3.7	126
305	A Concise Access to (Polyfluoroaryl)allenes by Cu-Catalyzed Direct Coupling with Propargyl Phosphates. Organic Letters, 2012, 14, 2586-2589.	2.4	39
306	1,2,3-Triazole: Unique Ligand in Promoting Iron-Catalyzed Propargyl Alcohol Dehydration. Organic Letters, 2012, 14, 2358-2361.	2.4	88
307	Olefinic C–H Bond Addition to Aryl Aldehyde and Its N-Sulfonylimine via Rh Catalysis. Organic Letters, 2012, 14, 4498-4501.	2.4	106
308	<i>N</i> -Directing Group Assisted Rhodium-Catalyzed Aryl C–H Addition to Aryl Aldehydes. Organic Letters, 2012, 14, 636-639.	2.4	138
000	Catalytic Hydroarylation of Ethylene Using TpRu(L)(NCMe)Ph (L =) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 192 Td	(2,6,7-Tric	oxa-1-phospha
309	2012, 31, 6851-6860.	1.1	43
310	Challenges in C–C bond formation through direct transformations of sp2 C–H bonds. Tetrahedron, 2012, 68, 5130-5136.	1.0	82
311	A General Method for Palladium-Catalyzed Direct Carbonylation of Indole with Alcohol and Phenol. Organic Letters, 2012, 14, 4130-4133.	2.4	69
312	Copper-Catalyzed Direct C–H Oxidative Trifluoromethylation of Heteroarenes. Journal of the American Chemical Society, 2012, 134, 1298-1304.	6.6	314

ARTICLE IF CITATIONS # Role of Explicit Solvents in Palladium(II)-Catalyzed Alkoxylation of Arenes: An Interesting Paradigm for Preferred Outer-Sphere Reductive Elimination over Inner-Sphere Pathway. Organometallics, 2012, 313 1.1 42 31, 6466-6481. The Regioselective Switch for Amino-NHC Mediated C–H Activation of Benzimidazole via Ni–Al 314 2.4 94 Synergistic Catalysis. Organic Letters, 2012, 14, 2046-2049. Ruthenium(II)-Catalyzed Regio- and Stereoselective Hydroarylation of Alkynes via Directed Câ€"H 315 2.4 137 Functionalization. Organic Letters, 2012, 14, 2058-2061. Use of dimethyl carbonate as a solvent greatly enhances the biaryl coupling of aryl iodides and organoboron reagents without adding any transition metal catalysts. Chemical Communications, 2012, 48, 2912. Pd/Cu-Catalyzed Câ€"H Arylation of 1,3,4-Thiadiazoles with (Hetero)aryl lodides, Bromides, and Triflates. 317 1.7 29 Journal of Organic Chemistry, 2012, 77, 8768-8774. Iron-Catalysed C-3 Functionalisation of Indolizines via C–H Bond Cleavage. Journal of Chemical Research, 2012, 36, 441-443. 0.6 Pd(OAc)₂-Catalyzed Alkoxylation of Arylnitriles via sp² Câ€"H Bond Activation 319 1.7 123 Using Cyano as the Directing Group. Journal of Organic Chemistry, 2012, 77, 8362-8366. Highly regioselective C–H bond functionalization: palladium-catalyzed arylation of substituted 320 1.7 47 imidazo[1,2-a]pyridine with aryl chlorides. RSC Advances, 2012, 2, 5972. Palladium-Catalyzed Ortho-Arylation of Benzamides via Direct $p² Ca\in H Bond Activation.$ 321 1.7 86 Journal of Organic Chemistry, 2012, 77, 3341-3347. Four Tandem Câ€"H Activations: A Sequential Câ€"C and Câ€"O Bond Making via a Pd-Catalyzed Cross 2.4 204 Dehydrogenative Coupling (CDC) Approach. Organic Letters, 2012, 14, 5294-5297. Copper-Catalyzed Alkylation of Benzoxazoles with Secondary Alkyl Halides. Organic Letters, 2012, 14, 323 2.4 80 1748-1751. 324 Alkane C-H Activation by Single-Site Metal Catalysis. Catalysis By Metal Complexes, 2012, , . 0.6 64 Palladium-Catalyzed Ortho-Alkoxylation of Anilides via Câ€"H Activation. Journal of Organic Chemistry, 325 1.7 131 2012, 77, 9504-9509. Ruthenium-Catalyzed Oxidative C–H Bond Olefination of <i>N</i>-Methoxybenzamides Using an 2.4 271 Oxidizing Directing Group. Organic Letters, 2012, 14, 736-739. Catalytic Regioselective Oxidative Coupling of Furan-2-Carbonyls with Simple Arenes. ACS Catalysis, 327 5.555 2012, 2, 1787-1791. Dibenzo[a,c]carbazoles from 2-(2-bromoaryl)-3-arylindoles via a palladium-catalyzed intramolecular Câ€"H functionalization/Câ€"C bond formation process. Organic and Biomolecular Chemistry, 2012, 10, 9142. Regioselective <i>Ortho</i>-Arylation and Alkenylation of <i>N</i>-Alkyl Benzamides with Boronic 329 Acids via Ruthenium-Catalyzed C–H Bond Activation: An Easy Route to Fluorenones Synthesis. Organic 2.4 100 Letters, 2012, 14, 5246-5249. I₂–CF₃SO₃H Synergistic Promoted sp³ C–H Bond 2.4 Diarylation of Aromatic Ketones. Organic Letters, 2012, 14, 5378-5381.

#	Article	IF	CITATIONS
331	Pd(II)-catalyzed ortho arylation of 2-arylbenzothiazoles with aryl iodides via benzothiazole-directed C–H activation. Journal of Organometallic Chemistry, 2012, 711, 62-67.	0.8	37
332	Cul Controlled C–C and C–N Bond Formation of Heteroaromatics through C(sp ³)–H Activation. Organic Letters, 2012, 14, 5546-5549.	2.4	115
333	Protodecarboxylation of benzoic acids under radical conditions. Chemical Communications, 2012, 48, 8270.	2.2	102
334	Metal-Free sp ³ C–H Bond Dual-(Het)arylation: I ₂ -Promoted Domino Process to Construct 2,2-Bisindolyl-1-arylethanones. Organic Letters, 2012, 14, 3392-3395.	2.4	110
335	Palladiumâ€Catalyzed and Hybrid Acidsâ€Assisted Synthesis of [60]Fulleroazepines in One Pot under Mild Conditions: Annulation of <i>N</i> ‣ulfonylâ€2â€aminobiaryls with [60]Fullerene through Sequential Câ€H Bond Activation, Câ€C and Câ€N Bond Formation. Advanced Synthesis and Catalysis, 2012, 354, 2473-2483.	2.1	37
336	Ironâ€Catalyzed <i>ortho</i> Monoarylation of Benzamide Derivatives. Asian Journal of Organic Chemistry, 2012, 1, 142-145.	1.3	48
337	Rutheniumâ€Catalyzed Carbonylation of <i>ortho</i> Cï£;H Bonds in Arylacetamides: Cï£;H Bond Activation Utilizing a Bidentateâ€Chelation System. ChemCatChem, 2012, 4, 1733-1736.	1.8	41
338	Palladiumâ€Catalyzed Crossâ€Coupling of Unactivated Alkenes with Acrylates: Application to the Synthesis of the C13–C21 Fragment of Palmerolideâ€A. Chemistry - A European Journal, 2012, 18, 13284-13287.	1.7	51
339	Rutheniumâ€Catalyzed Oxidative Coupling/Cyclization of Isoquinolones with Alkynes through CH/NH Activation: Mechanism Study and Synthesis of Dibenzo[<i>a</i> , <i>g</i>]quinolizinâ€8â€one Derivatives. Chemistry - A European Journal, 2012, 18, 12873-12879.	1.7	109
340	The Selective Synthesis of Metallanucleosides and Metallanucleotides: A New Tool for the Functionalization of Nucleic Acids. Chemistry - A European Journal, 2012, 18, 12603-12608.	1.7	25
341	Transitionâ€Metalâ€Free Atropoâ€Selective Synthesis of Biaryl Compounds Based on Arynes. Chemistry - A European Journal, 2012, 18, 14232-14236.	1.7	49
342	Copper-mediated oxidative direct C–C (hetero)aromatic cross-coupling. Chemical Communications, 2012, 48, 10704.	2.2	190
344	Peptidic macrocyclization via palladium-catalyzed chemoselective indole C-2 arylation. Chemical Communications, 2012, 48, 11644.	2.2	91
345	Pd-Catalyzed Oxidative <i>ortho</i> -C–H Borylation of Arenes. Journal of the American Chemical Society, 2012, 134, 134-137.	6.6	170
346	Efficient synthesis of anthranilic esters via Pd-catalyzed dehydrogenative/decarbonylative coupling of anilides and glyoxylates. Chemical Communications, 2012, 48, 9924.	2.2	30
347	The Aerobic Oxidation of a Pd(II) Dimethyl Complex Leads to Selective Ethane Elimination from a Pd(III) Intermediate. Journal of the American Chemical Society, 2012, 134, 2414-2422.	6.6	103
348	Recent advances in transition metal-catalyzed sp ³ C–H amination adjacent to double bonds and carbonyl groups. Chemical Society Reviews, 2012, 41, 931-942.	18.7	422
349	Dehydrative C–H Alkylation and Alkenylation of Phenols with Alcohols: Expedient Synthesis for Substituted Phenols and Benzofurans. Journal of the American Chemical Society, 2012, 134, 7325-7328. 	6.6	203

#	ARTICLE	IF	CITATIONS
350	2.24 Selected Diastereoselective Reactions: Câ \in "H Insertions. , 2012, , 738-782.		0
351	Heterocycle Synthesis via Direct C–H/N–H Coupling. Journal of the American Chemical Society, 2012, 134, 7-10.	6.6	434
352	Palladium-Catalyzed Direct <i>ortho</i> -Alkynylation of Aromatic Carboxylic Acid Derivatives. Organic Letters, 2012, 14, 354-357.	2.4	154
353	Mechanistic Rationalization of Unusual Kinetics in Pd-Catalyzed C–H Olefination. Journal of the American Chemical Society, 2012, 134, 4600-4606.	6.6	169
354	Rhodium catalyzed synthesis of isoindolinones via C–H activation of N-benzoylsulfonamides. Tetrahedron, 2012, 68, 9192-9199.	1.0	51
355	Asymmetric synthesis of ring-fused tetrahydroquinolines using organocatalytic enantioselective conjugate addition and cross-dehydrogenative coupling. Tetrahedron: Asymmetry, 2012, 23, 1251-1255.	1.8	14
357	Ligand-Enabled Methylene C(sp ³)–H Bond Activation with a Pd(II) Catalyst. Journal of the American Chemical Society, 2012, 134, 18570-18572.	6.6	230
358	Substitution of the Nitro Group with Grignard Reagents: Facile Arylation and Alkenylation of PyridineN-Oxides. Organic Letters, 2012, 14, 5618-5620.	2.4	20
359	Palladium and Copper Cocatalyzed Tandem N–H/C–H Bond Functionalization: Synthesis of CF ₃ -Containing Indolo- and Pyrrolo[2,1- <i>a</i>]isoquinolines. Journal of Organic Chemistry, 2012, 77, 2850-2856.	1.7	53
360	Regioselective CH Bond Activation on Stabilized Nitrogen Ylides Promoted by Pd(II) Complexes: Scope and Limitations. Organometallics, 2012, 31, 394-404.	1.1	13
361	Connecting Binuclear Pd(III) and Mononuclear Pd(IV) Chemistry by Pd–Pd Bond Cleavage. Journal of the American Chemical Society, 2012, 134, 12002-12009.	6.6	148
362	Copper-catalyzed cyanation of arenes using benzyl nitrile as a cyanide anion surrogate. Chemical Communications, 2012, 48, 9933.	2.2	115
363	Experimental Study of the Reaction of a Ni(PEt ₃) ₂ Synthon with Polyfluorinated Pyridines: Concerted, Phosphine-Assisted, or Radical C–F Bond Activation Mechanisms?. Organometallics, 2012, 31, 1361-1373.	1.1	50
364	Fast Pd- and Pd/Cu-Catalyzed Direct C–H Arylation of Cyclic Nitrones. Application to the Synthesis of Enantiopure Quaternary α-Amino Esters. Journal of Organic Chemistry, 2012, 77, 7901-7912.	1.7	32
365	Copper-Assisted Palladium(II)-Catalyzed Direct Arylation of Cyclic Enaminones with Arylboronic Acids. Journal of Organic Chemistry, 2012, 77, 9496-9503.	1.7	38
366	Pd-Catalyzed Arylation/Oxidation of Benzylic C–H Bond. Organic Letters, 2012, 14, 1238-1241.	2.4	87
367	Synthesis of Indolo [1,2- <i>a</i>]Quinoxalines via a Pd-Catalyzed Regioselective C–H Olefination/Cyclization Sequence. Organic Letters, 2012, 14, 740-743.	2.4	71
368	Transition metal-catalyzed C–H activation as a route to structurally diverse di(arylthiophenyl)-diketopyrrolopyrroles. Journal of Materials Chemistry, 2012, 22, 21392.	6.7	42

#	Article	IF	CITATIONS
370	Palladium-catalyzed selective oxidative olefination and arylation of 2-pyridones. Chemical Science, 2012, 3, 3231.	3.7	108
371	Thioethers as Directing Group for the Palladium atalyzed Direct Arylation of Arenes. Advanced Synthesis and Catalysis, 2012, 354, 3205-3210.	2.1	63
372	Copper(II)-Catalyzed Aerobic Oxidative Synthesis of Substituted 1,2,3- and 1,2,4-Triazoles from Bisarylhydrazones via C–H Functionalization/C–C/N–N/C–N Bonds Formation. Journal of Organic Chemistry, 2012, 77, 5063-5073.	1.7	105
373	Silver-Mediated Oxidative C–H/C–H Functionalization: A Strategy To Construct Polysubstituted Furans. Journal of the American Chemical Society, 2012, 134, 5766-5769.	6.6	297
374	A General Pd atalyzed Decarboxylative Crossâ€Coupling Reaction between Aryl Carboxylic Acids: Synthesis of Biaryl Compounds. Angewandte Chemie - International Edition, 2012, 51, 5945-5949.	7.2	130
375	Copper-Catalyzed Aerobic Oxidative Intramolecular C–H Amination Leading to Imidazobenzimidazole Derivatives. Organic Letters, 2012, 14, 452-455.	2.4	98
376	Double-Fold C–H Oxygenation of Arenes Using PyrDipSi: a General and Efficient Traceless/Modifiable Silicon-Tethered Directing Group. Journal of the American Chemical Society, 2012, 134, 5528-5531.	6.6	121
377	Controlling Site Selectivity in Palladium-Catalyzed C–H Bond Functionalization. Accounts of Chemical Research, 2012, 45, 936-946.	7.6	1,257
378	Regio―and Stereocontrolled Introduction of Secondary Alkyl Groups to Electronâ€Deficient Arenes through Copperâ€Catalyzed Allylic Alkylation. Angewandte Chemie - International Edition, 2012, 51, 4122-4127.	7.2	120
379	Direct Arylation of Imidazo[1,2- <i>a</i>]pyridine at C-3 with Aryl Iodides, Bromides, and Triflates via Copper(I)-Catalyzed C–H Bond Functionalization. Organic Letters, 2012, 14, 1688-1691.	2.4	155
380	Mechanisms of Nucleophilic Organocopper(I) Reactions. Chemical Reviews, 2012, 112, 2339-2372.	23.0	358
381	Cu-Catalyzed Oxidative C(sp ²)–H Cycloetherification of <i>o</i> -Arylphenols for the Preparation of Dibenzofurans. Organic Letters, 2012, 14, 1078-1081.	2.4	122
382	Amideâ€Directed Tandem CC/CN Bond Formation through CH Activation. Chemistry - an Asian Journal, 2012, 7, 1502-1514.	1.7	252
383	Copper(II)-Mediated Dehydrogenative Cross-Coupling of Heteroarenes. Organic Letters, 2012, 14, 3854-3857.	2.4	98
384	Pd-Catalyzed C-3 functionalization of indolizines via C–H bond cleavage. Organic and Biomolecular Chemistry, 2012, 10, 7108.	1.5	37
385	Palladium-Catalyzed C(sp ³)–H Arylation of Diarylmethanes at Room Temperature: Synthesis of Triarylmethanes via Deprotonative-Cross-Coupling Processes. Journal of the American Chemical Society, 2012, 134, 13765-13772.	6.6	192
386	<i>N</i> -Tosylcarboxamide as a Transformable Directing Group for Pd-Catalyzed C–H <i>Ortho</i> -Arylation. Organic Letters, 2012, 14, 1827-1829.	2.4	68
387	Facile Construction of [6,6]â€; [6,7]â€; [6,8]â€; and [6,9]Ringâ€Fused Triazole Frameworks by Copperâ€Catalyze Tandem, Oneâ€Pot, Click and Intramolecular Arylation Reactions: Elaboration to Fused Pentacyclic Derivatives. European Journal of Organic Chemistry, 2012, 2012, 2013-2022.	ed, 1.2	38

	CITATION RE	PORT	
#	Article	IF	CITATIONS
388	Palladium-Catalyzed Dehydrogenative β′-Functionalization of β-Keto Esters with Indoles at Room Temperature. Journal of the American Chemical Society, 2012, 134, 5750-5753.	6.6	135
389	A general procedure for the synthesis of alkyl- and arylethynyl-1,2,3-triazole-fused dihydroisoquinolines. Organic and Biomolecular Chemistry, 2012, 10, 1186-1195.	1.5	30
390	Key Mechanistic Features of Enantioselective C–H Bond Activation Reactions Catalyzed by [(Chiral) Tj ETQq0 0 2012, 134, 1690-1698.	0 rgBT /C 6.6	Overlock 10 T 159
391	Ironâ€Catalyzed Nitrogenâ€Directed Coupling of Arene and Aryl Bromides Mediated by Metallic Magnesium. Advanced Synthesis and Catalysis, 2012, 354, 593-596.	2.1	51
392	Functionalizations of Aryl CH Bonds in 2â€Arylpyridines <i>via</i> Sequential Borylation and Copper Catalysis. Advanced Synthesis and Catalysis, 2012, 354, 2211-2217.	2.1	41
393	Copperâ€Catalyzed Aerobic Oxidative Synthesis of 5â€Substituted Imidazo/Benzimidazoquinazolinones through Intramolecular CH Amination. Advanced Synthesis and Catalysis, 2012, 354, 1773-1779.	2.1	26
394	Palladium atalyzed CH Oxidation of Isoquinoline <i>N</i> â€Oxides: Selective Alkylation with Dialkyl Sulfoxides and Halogenation with Dihalo sulfoxides. Advanced Synthesis and Catalysis, 2012, 354, 1890-1896.	2.1	88
395	Palladiumâ€Catalyzed Selective Cï£;H Benzylation towards Functionalized Azoles with a Quaternary Carbon Center. Advanced Synthesis and Catalysis, 2012, 354, 1692-1700.	2.1	18
407	On the Interpretation of Deuterium Kinetic Isotope Effects in CH Bond Functionalizations by Transitionâ€Metal Complexes. Angewandte Chemie - International Edition, 2012, 51, 3066-3072.	7.2	1,673
408	Palladium atalyzed Amidation by Chemoselective C(sp ³)H Activation: Concise Route to Oxindoles Using a Carbamoyl Chloride Precursor. Angewandte Chemie - International Edition, 2012, 51, 2763-2766.	7.2	88
409	Rhodium/Copperâ€Catalyzed Annulation of Benzimides with Internal Alkynes: Indenone Synthesis through Sequential CH and CN Cleavage. Angewandte Chemie - International Edition, 2012, 51, 3948-3952.	7.2	306
410	Nonnatural Amino Acid Synthesis by Using Carbon–Hydrogen Bond Functionalization Methodology. Angewandte Chemie - International Edition, 2012, 51, 5188-5191.	7.2	347
411	Copperâ€Mediated and Copperâ€Catalyzed Crossâ€Coupling of Indoles and 1,3â€Azoles: Double CH Activatio Angewandte Chemie - International Edition, 2012, 51, 6993-6997.	ⁿ 7.2	223
412	Synthesis of Fluorene Derivatives through Rhodiumâ€Catalyzed Dehydrogenative Cyclization. Angewandte Chemie - International Edition, 2012, 51, 5359-5362.	7.2	146
413	Microwaveâ€Assisted Deacylation of Unactivated Amides Using Ammoniumâ€Saltâ€Accelerated Transamidation. Angewandte Chemie - International Edition, 2012, 51, 8564-8567.	7.2	61
414	Catalytic Arylation of a Cĩ£¿H Bond in Pyridine and Related Sixâ€Membered Nâ€Heteroarenes Using Organozinc Reagents. Chemistry - an Asian Journal, 2012, 7, 1357-1365.	1.7	79
415	Sulfoximines: A Reusable Directing Group for Chemo―and Regioselective <i>ortho</i> CH Oxidation of Arenes. Chemistry - A European Journal, 2012, 18, 5541-5545.	1.7	135
416	Phosphineâ€Mediated Domino Benzannulation Strategy for the Construction of Highly Functionalized Multiaryl Skeletons. Chemistry - A European Journal, 2012, 18, 7362-7366.	1.7	78

#	Article	IF	CITATIONS
417	CH Activation: A Complementary Tool in the Total Synthesis of Complex Natural Products. Chemistry - A European Journal, 2012, 18, 9452-9474.	1.7	492
418	BrÃ,nsted Acid Enhanced Rhodiumâ€Catalyzed Conjugate Addition of Aryl CH Bonds to α,βâ€Unsaturated Ketones under Mild Conditions. Chemistry - A European Journal, 2012, 18, 9511-9515.	1.7	95
419	Pdâ€Catalyzed Modifiable Silanolâ€Directed Aromatic CH Oxygenation. Chemistry - A European Journal, 2012, 18, 9789-9792.	1.7	50
420	Regioselective Intramolecular Arylthiolations by Ligand Free Cu and Pd Catalyzed Reaction. ACS Catalysis, 2012, 2, 544-551.	5.5	71
421	Copper-catalyzed decarboxylative alkenylation of sp3 C–H bonds with cinnamic acids via a radical process. Chemical Science, 2012, 3, 2853.	3.7	206
422	Activation of remote meta-C–H bonds assisted by an end-on template. Nature, 2012, 486, 518-522.	13.7	794
423	Copper-catalyzed direct cross coupling of 1,3,4-oxadiazoles with trans-β-halostyrenes: synthesis of 2-E-vinyl 1,3,4-oxadiazoles. Tetrahedron, 2012, 68, 300-305.	1.0	20
424	Synthesis of 6H-isoindolo[2,1-a]indol-6-ones through a sequential copper-catalyzed C-N coupling and palladium-catalyzed C–H activation reaction. Tetrahedron, 2012, 68, 3112-3116.	1.0	24
425	Regioselective copper(I)-catalyzed C–H hydroxylation/C–S coupling: expedient construction of 2-(styrylthio)phenols. Tetrahedron, 2012, 68, 5046-5052.	1.0	27
426	Selective copper-promoted cross-coupling reaction of anilines and alkylboranes. Tetrahedron Letters, 2012, 53, 769-772.	0.7	22
427	Generation of metalated thiophenes with Grignard reagent and catalytic secondary amine for the cross coupling reaction with aryl halides. Tetrahedron Letters, 2012, 53, 1173-1176.	0.7	14
428	Unexpectedly ligand-free copper-catalyzed C–S cross-coupling of benzothiazole with aryl iodides in aqueous solution. Tetrahedron Letters, 2012, 53, 2914-2917.	0.7	32
429	Copperâ€Catalyzed Oneâ€Pot Synthesis of Imidazo/Benzoimidazoquinazolinones by Sequential Ullmannâ€Type Coupling and Intramolecular CH Amidation. Chemistry - A European Journal, 2012, 18, 1180-1186.	1.7	72
430	Rutheniumâ€Catalyzed Regioselective Cyclization of Aromatic Ketones with Alkynes: An Efficient Route to Indenols and Benzofulvenes. European Journal of Organic Chemistry, 2012, 2012, 417-423.	1.2	95
431	Direct Arylation under Catalysis of an Oximeâ€Derived Palladacycle: Search for a Phosphaneâ€Free Method. European Journal of Organic Chemistry, 2012, 2012, 669-672.	1.2	12
432	Palladiumâ€Catalyzed Direct and Siteâ€Selective Desulfitative Arylation of Indoles with Sodium Sulfinates. Advanced Synthesis and Catalysis, 2012, 354, 335-340.	2.1	106
433	Transitionâ€Metalâ€Free Direct Arylation of Anilines. Angewandte Chemie - International Edition, 2012, 51, 1006-1009.	7.2	66
434	Nickel―and Cobaltâ€Catalyzed Direct Alkylation of Azoles with <i>N</i> â€Tosylhydrazones Bearing Unactivated Alkyl Groups. Angewandte Chemie - International Edition, 2012, 51, 775-779.	7.2	217

#	Article	IF	CITATIONS
435	Copper-catalyzed direct oxidative annulation of N-iminopyridinium ylides with terminal alkynes using O ₂ as oxidant. Chemical Communications, 2013, 49, 4250-4252.	2.2	87
437	Purinyl N1-Directed Aromatic C–H Oxidation in 6-Arylpurines and 6-Arylpurine Nucleosides. Journal of Organic Chemistry, 2013, 78, 7423-7435.	1.7	45
438	Palladium-catalyzed C–H bond functionalization/oxidative acyloxylation of 2-aryl-benzo[d]thiazoles. Journal of Organometallic Chemistry, 2013, 739, 33-39.	0.8	28
439	Superhydrophobic perfluorinated metal–organic frameworks. Chemical Communications, 2013, 49, 6846.	2.2	181
440	Merging organocatalysis with transition metal catalysis and using O2 as the oxidant for enantioselective C–H functionalization of aldehydes. Chemical Communications, 2013, 49, 7555.	2.2	50
441	General and efficient copper-catalyzed aerobic oxidative synthesis of N-fused heterocycles using amino acids as the nitrogen source. RSC Advances, 2013, 3, 15636.	1.7	29
442	Ruthenium-Catalyzed <i>ortho</i> -Alkenylation of Phenylphosphine Oxides through Regio- and Stereoselective Alkyne Insertion into C–H Bonds. Journal of Organic Chemistry, 2013, 78, 8098-8104.	1.7	80
443	Rhodium(III) atalyzed Coupling of Arenes with 7â€Oxa/Azabenzonorbornadienes by CH Activation. Angewandte Chemie - International Edition, 2013, 52, 8995-9000.	7.2	140
444	2-Bromo perylene diimide: synthesis using C–H activation and use in the synthesis of bis(perylene) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf
445	1,2,3-Triazoles as versatile directing group for selective sp2 and sp3 C–H activation: cyclization vs substitution. Chemical Science, 2013, 4, 3712.	3.7	214
446	Benzofuran synthesis via copper-mediated oxidative annulation of phenols and unactivated internal alkynes. Chemical Science, 2013, 4, 3706.	3.7	142
447	Direct Ortho Arylation of 9-(Pyridin-2-yl)-9 <i>H</i> -carbazoles Bearing a Removable Directing Group via Palladium(II)-Catalyzed C–H Bond Activation. Organometallics, 2013, 32, 272-282.	1.1	55
448	Pd(ii)-catalyzed alkoxylation of unactivated C(sp3)–H and C(sp2)–H bonds using a removable directing group: efficient synthesis of alkyl ethers. Chemical Science, 2013, 4, 4187.	3.7	280
449	Copper(I) Iodideâ€Catalysed Aerobic Oxidative Synthesis of Imidazo[1,2â€ <i>a</i>]pyridines from 2â€Aminopyridines and Methyl Ketones. Advanced Synthesis and Catalysis, 2013, 355, 2217-2221.	2.1	111
450	Pd(ii)-catalyzed alkylation of unactivated C(sp3)–H bonds: efficient synthesis of optically active unnatural α-amino acids. Chemical Science, 2013, 4, 3906.	3.7	202
451	Ruthenium-Catalyzed Regioselective C–H Alkenylation Directed by a Free Amino Group. Organic Letters, 2013, 15, 3990-3993.	2.4	88
452	Employing a robustness screen: rapid assessment of rhodium(III)-catalysed C–H activation reactions. Tetrahedron, 2013, 69, 7817-7825.	1.0	64
453	Palladium-catalyzed para-selective arylation of phenols with aryl iodides in water. Chemical Communications, 2013, 49, 7653.	2.2	59

#	Article	IF	CITATIONS
454	Synthesis of Trisubstituted Alkenes via Direct Oxidative Arene–Alkene Coupling. Journal of Organic Chemistry, 2013, 78, 8044-8053.	1.7	21
455	Precise Supramolecular Control of Selectivity in the Rh-Catalyzed Hydroformylation of Terminal and Internal Alkenes. Journal of the American Chemical Society, 2013, 135, 10817-10828.	6.6	82
456	The Literature of Heterocyclic Chemistry, Part XI, 2008–2009. Advances in Heterocyclic Chemistry, 2013, , 195-290.	0.9	10
457	Ironâ€Catalyzed Direct C–H Arylation of Heterocycles and Quinones with Arylboronic Acids. European Journal of Organic Chemistry, 2013, 2013, 5251-5256.	1.2	86
458	Mechanistic Study of Palladium-Catalyzed Chemoselective C(sp3)–H Activation of Carbamoyl Chloride. Organometallics, 2013, 32, 4165-4173.	1.1	23
459	Green Oxidative Homocoupling of 1-Methylimidazole. Journal of Chemical Education, 2013, 90, 1368-1372.	1.1	7
460	Arene–Metal π-Complexation as a Traceless Reactivity Enhancer for C–H Arylation. Journal of the American Chemical Society, 2013, 135, 13258-13261.	6.6	78
461	Aerobic Multicomponent Tandem Synthesis of 3â€Sulfenylimidazo[1,2â€ <i>a</i>]pyridines from Ketones, 2â€Aminopyridines, and Disulfides. European Journal of Organic Chemistry, 2013, 2013, 6015-6020.	1.2	90
462	Mild Copperâ€Mediated Direct Oxidative Crossâ€Coupling of 1,3,4â€Oxadiazoles with Polyfluoroarenes by Using Dioxygen as Oxidant. Chemistry - A European Journal, 2013, 19, 3302-3305.	1.7	39
463	Metal-Free Oxidative C(sp ³)–H Bond Thiolation of Ethers with Disulfides. Organic Letters, 2013, 15, 4654-4657.	2.4	150
464	Access to Alternative Regioisomers for Palladiumâ€Catalysed Direct Arylations of (Benzo)thiophenes. ChemCatChem, 2013, 5, 3495-3496.	1.8	25
465	Synthesis of Dibenzopyranones through Palladiumâ€Catalyzed Directed C–H Activation/Carbonylation of 2â€Arylphenols. Angewandte Chemie - International Edition, 2013, 52, 10598-10601.	7.2	152
466	Palladiumâ€Catalyzed Hydrobenzylation of <i>ortho</i> â€Tolyl Alkynyl Ethers by Benzylic CH Activation: Remarkable Alkynoxyâ€Directing Effect. Angewandte Chemie - International Edition, 2013, 52, 10611-10615.	7.2	47
467	Copper atalyzed Aerobic Oxidative CH and CC Functionalization of 1â€{2â€(Arylamino)aryl]ethanones Leading to Acridone Derivatives. Chemistry - A European Journal, 2013, 19, 4271-4277.	1.7	52
468	Atropodiastereoselective CH Olefination of Biphenyl <i>p</i> â€Tolyl Sulfoxides with Acrylates. Advanced Synthesis and Catalysis, 2013, 355, 2139-2144.	2.1	140
469	Palladium-Catalyzed Direct <i>ortho</i> Alkoxylation of Aromatic Azo Compounds with Alcohols. Journal of Organic Chemistry, 2013, 78, 10002-10007.	1.7	88
471	Palladium-catalyzed direct C-3 oxidative alkenylation of phosphachromones. Chemical Communications, 2013, 49, 10501.	2.2	30
472	Asymmetrical/Symmetrical Dâ^'Ĩ€â€"A/Dâ^'Ĩ€â€"D Thiazole-Containing Aromatic Heterocyclic Fluorescent Compounds Having the Same Triphenylamino Chromophores. Journal of Organic Chemistry, 2013, 78, 8669-8679.	1.7	53

#	Article	IF	Citations
473	Palladiumâ€Catalyzed Oxidative Annulation <i>via</i> CH/NH Functionalization: Access to Substituted Pyrroles. Advanced Synthesis and Catalysis, 2013, 355, 2550-2557.	2.1	49
474	A Cascade Coupling Strategy for Oneâ€Pot Total Synthesis of β arboline and Isoquinolineâ€Containing Natural Products and Derivatives. Chemistry - A European Journal, 2013, 19, 10132-10137.	1.7	83
475	Selectivity in CH Functionalizations. , 2013, , 79-104.		8
477	Free-Amine Directed Arylation of Biaryl-2-amines with Aryl Iodides by Palladium Catalysis. Organic Letters, 2013, 15, 4544-4547.	2.4	52
478	Ru(II)-catalyzed ring expansion of alkynylcyclopropanes in the presence of sulfonamides. Chinese Journal of Catalysis, 2013, 34, 1816-1819.	6.9	3
479	A ligand free copper(II) catalyst is as effective as a ligand assisted Pd(II) catalyst towards intramolecular C–S bond formation via C–H functionalization. Tetrahedron, 2013, 69, 9096-9104.	1.0	34
480	Platinum on Carbonâ€Catalyzed H–D Exchange Reaction of Aromatic Nuclei due to Isopropyl Alcoholâ€Mediated Self―Activation of Platinum Metal in Deuterium Oxide. Advanced Synthesis and Catalysis, 2013, 355, 1529-1534.	2.1	52
483	An Approach to Benzophosphole Oxides through Silver―or Manganeseâ€Mediated Dehydrogenative Annulation Involving CC and CP Bond Formation. Angewandte Chemie - International Edition, 2013, 52, 12975-12979.	7.2	194
484	Palladium-Catalyzed <i>sp</i> ² and <i>sp</i> ³ C–H Bond Activation and Addition to Isatin toward 3-Hydroxy-2-oxindoles. Organic Letters, 2013, 15, 5270-5273.	2.4	70
485	Palladium-Catalyzed Annulation of <i>o</i> -lodobiphenyls with <i>o</i> -Bromobenzyl Alcohols: Synthesis of Functionalized Triphenylenes via C–C and C–H Bond Cleavages. Organic Letters, 2013, 15, 5326-5329.	2.4	59
486	Thioether-Promoted Direct Olefination of Polyfluoroarenes Catalyzed by Palladium. Organic Letters, 2013, 15, 5266-5269.	2.4	38
487	Investigation on the mechanism of water-assisted palladium-catalyzed benzylic C–H amination by N-fluorobenzenesulfonimide. Organic and Biomolecular Chemistry, 2013, 11, 7923.	1.5	14
488	[3]Dendralene Synthesis: Rhodium(III) atalyzed Alkenyl CH Activation and Coupling Reaction with Allenyl Carbinol Carbonate. Angewandte Chemie - International Edition, 2013, 52, 12430-12434.	7.2	168
489	Rhodium(III)-Amine Dual Catalysis for the Oxidative Coupling of Aldehydes by Directed C–H Activation: Synthesis of Phthalides. Organic Letters, 2013, 15, 5166-5169.	2.4	93
490	Traceless Directing Strategy: Efficient Synthesis of N-Alkyl Indoles via Redox-Neutral C–H Activation. Organic Letters, 2013, 15, 5294-5297.	2.4	200
491	Tandem Isomerization and C–H Activation: Regioselective Hydroheteroarylation of Allylarenes. Organic Letters, 2013, 15, 5358-5361.	2.4	159
493	Reigoselective Arylation of Thiazole Derivatives at 5-Position via Pd Catalysis under Ligand-Free Conditions. Organic Letters, 2013, 15, 5774-5777.	2.4	43
494	Direct Bis-Arylation of Cyclobutanecarboxamide via Double C–H Activation: An Auxiliary-Aided Diastereoselective Pd-Catalyzed Access to Trisubstituted Cyclobutane Scaffolds Having Three Contiguous Stereocenters and an All-cis Stereochemistry. Journal of Organic Chemistry, 2013, 78,	1.7	57

#	Article	IF	CITATIONS
495	Phenyl Hydrazine as Initiator for Direct Arene C–H Arylation via Base Promoted Homolytic Aromatic Substitution. Organic Letters, 2013, 15, 6102-6105.	2.4	109
496	Cross-Coupling of Remote <i>meta</i> -C–H Bonds Directed by a U-Shaped Template. Journal of the American Chemical Society, 2013, 135, 18056-18059.	6.6	248
497	Copper-Catalyzed Etherification of Arene C–H Bonds. Organic Letters, 2013, 15, 5842-5845.	2.4	187
498	An Efficient Palladium atalyzed CH Alkoxylation of Unactivated Methylene and Methyl Groups with Cyclic Hypervalent Iodine (I ³⁺) Oxidants. Angewandte Chemie - International Edition, 2013, 52, 13606-13610.	7.2	110
499	Copper(I)â€Catalyzed Intramolecular Direct Câ€Arylation of Azoles with Aryl Bromides. Chinese Journal of Chemistry, 2013, 31, 1007-1010.	2.6	13
500	Copper-Mediated Dehydrogenative Biaryl Coupling of Naphthylamines and 1,3-Azoles. Journal of Organic Chemistry, 2013, 78, 11045-11052.	1.7	114
501	Indole Synthesis by Rhodium(III)â€Catalyzed Hydrazineâ€Directed CH Activation: Redoxâ€Neutral and Traceless by NN Bond Cleavage. Angewandte Chemie - International Edition, 2013, 52, 12426-12429.	7.2	341
503	Palladiumâ€Catalyzed Direct Functionalization of 2â€Aminobutanoic Acid Derivatives: Application of a Convenient and Versatile Auxiliary. Angewandte Chemie, 2013, 125, 12374-12377.	1.6	48
504	Pyridineâ€Ðirected Palladiumâ€Catalyzed Phosphonation of C(sp ²)H Bonds. Angewandte Chemie - International Edition, 2013, 52, 9801-9804.	7.2	173
505	Metalation Dictates Remote Regioselectivity: Rutheniumâ€Catalyzed Functionalization of <i>meta</i> C _{Ar} H Bonds. Angewandte Chemie - International Edition, 2013, 52, 11458-11460.	7.2	83
506	Catalytic Functionalization of C(sp ²)H and C(sp ³)H Bonds by Using Bidentate Directing Groups. Angewandte Chemie - International Edition, 2013, 52, 11726-11743.	7.2	1,886
507	Palladium(ii)-catalyzed cross-coupling of simple alkenes with acrylates: a direct approach to 1,3-dienes through C–H activation. Chemical Science, 2013, 4, 4520.	3.7	67
508	Scope and Limitations of Auxiliary-Assisted, Palladium-Catalyzed Arylation and Alkylation of sp ² and sp ³ C–H Bonds. Journal of Organic Chemistry, 2013, 78, 9689-9714.	1.7	228
509	Pd-Catalyzed Oxidative CH/CH Direct Coupling of Heterocyclic <i>N</i> Oxides. Organic Letters, 2013, 15, 4682-4685.	2.4	60
510	Palladium atalyzed selective decarboxylative coupling reaction versus direct C―H arylation for arylation of heteroaromatics. Applied Organometallic Chemistry, 2013, 27, 595-600.	1.7	3
511	Iron-catalyzed alkenylation of cyclic ethers via decarboxylative sp3(C)–sp2(C) coupling. Tetrahedron Letters, 2013, 54, 6507-6510	0.7	61
512	Phosphine-Catalyzed Domino Benzannulation: An Efficient Method to Construct Biaryl Skeletons. Organic Letters, 2013, 15, 5064-5067.	2.4	76
513	CuCl2-catalyzed regioselective dehydrogenative C–H activation: Synthesis of coumarin, quinolone, and naphthalene based pyrrolone derivatives. Tetrahedron Letters, 2013, 54, 5979-5983.	0.7	3

#	ARTICLE	IF	CITATIONS
514	Direct Access to Highly Substituted 1â€Naphthols through Palladiumâ€Catalyzed Oxidative Annulation of Benzoylacetates and Internal Alkynes. Chemistry - A European Journal, 2013, 19, 13322-13327.	1.7	52
515	Linear correlation between the C–H activation barrier and the C–Cu/C–H bond dissociation energy gap in Cu-promoted C–H activation of heteroarenes. Chemical Communications, 2013, 49, 10847.	2.2	14
516	Palladium atalyzed Direct Functionalization of 2â€Aminobutanoic Acid Derivatives: Application of a Convenient and Versatile Auxiliary. Angewandte Chemie - International Edition, 2013, 52, 12152-12155.	7.2	165
517	Palladium atalyzed CH <i>ortho</i> Arylation of Benzoic Acids with Diaryliodonium Salts in Water. ChemCatChem, 2013, 5, 2839-2842.	1.8	58
518	Palladium Catalyzed Oxidative Coupling of α-Enolic Dithioesters: A New Entry to 3,4,5-Trisubstituted 1,2-Dithioles via a Double Activation Strategy. Organic Letters, 2013, 15, 5386-5389.	2.4	34
519	Methoxy-Directed Aryl-to-Aryl 1,3-Rhodium Migration. Journal of the American Chemical Society, 2013, 135, 17270-17273.	6.6	51
520	Structure and electronic properties of Pd(III) complexes. Coordination Chemistry Reviews, 2013, 257, 299-314.	9.5	99
521	Ruthenium-Mediated C–H Functionalization of Pyridine: The Role of Vinylidene and Pyridylidene Ligands. Journal of the American Chemical Society, 2013, 135, 2222-2234.	6.6	79
522	Regioselective C–H Bond Cleavage/Alkyne Insertion under Ruthenium Catalysis. Journal of Organic Chemistry, 2013, 78, 638-646.	1.7	75
523	Toluene derivatives as simple coupling precursors for cascade palladium-catalyzed oxidative C–H bond acylation of acetanilides. Chemical Communications, 2013, 49, 689-691.	2.2	137
524	Palladium-Catalyzed C–H Activation/Cross-Coupling of Pyridine <i>N</i> -Oxides with Nonactivated Secondary Alkyl Bromides. Journal of the American Chemical Society, 2013, 135, 616-619.	6.6	242
525	Reactivity of Thiophenes, Oligothiophenes and Benzothiophenes. Advances in Heterocyclic Chemistry, 2013, 108, 1-161.	0.9	15
526	Developments in Direct CH Arylation of (Hetero)Arenes under Microwave Irradiation. Chemistry - A European Journal, 2013, 19, 1158-1168.	1.7	62
527	Pd(II)-Catalyzed Enantioselective C–H Activation/C–O Bond Formation: Synthesis of Chiral Benzofuranones. Journal of the American Chemical Society, 2013, 135, 1236-1239.	6.6	325
528	Mn-Catalyzed Aromatic C–H Alkenylation with Terminal Alkynes. Journal of the American Chemical Society, 2013, 135, 1264-1267.	6.6	299
529	Enantioselective Synthesis of Planar Chiral Ferrocenes via Palladium-Catalyzed Direct Coupling with Arylboronic Acids. Journal of the American Chemical Society, 2013, 135, 86-89.	6.6	249
530	Synthesis of fused triazolo[4,5-d]quinoline/chromene/thiochromene derivatives via palladium catalysis mediated by tetrabutylammonium iodide. RSC Advances, 2013, 3, 2710.	1.7	22
531	Copper-catalyzed C–N bond formation through C–H/N–H activation: a novel approach to the synthesis of multisubstituted ureas. Chemical Communications, 2013, 49, 819-821.	2.2	62

#	ARTICLE	IF	CITATIONS
532	Synthesis of fluorenones viaquaternary ammonium salt-promoted intramolecular dehydrogenative arylation of aldehydes. Chemical Science, 2013, 4, 829-833.	3.7	165
533	Additive effects on palladium-catalyzed deprotonative-cross-coupling processes (DCCP) of sp ³ C–H bonds in diarylmethanes. Chemical Science, 2013, 4, 849-857.	3.7	90
534	Ruthenium-catalyzed direct arylation of C–H bonds in aromatic amides containing a bidentate directing group: significant electronic effects on arylation. Chemical Science, 2013, 4, 664-670.	3.7	187
535	Palladium(0)-Catalyzed Alkynylation of C(sp ³)–H Bonds. Journal of the American Chemical Society, 2013, 135, 3387-3390.	6.6	191
536	Palladium-Catalyzed Highly Selective <i>ortho</i> -Halogenation (I, Br, Cl) of Arylnitriles via sp ² C–H Bond Activation Using Cyano as Directing Group. Journal of Organic Chemistry, 2013, 78, 2786-2791.	1.7	115
538	Direct ortho-Arylation of ortho-Substituted Benzoic Acids: Overriding Pd-Catalyzed Protodecarboxylation. Organic Letters, 2013, 15, 910-913.	2.4	89
539	Palladium atalyzed Oxidative Cross oupling between Heterocycles and Terminal Alkynes with Low Catalyst Loading. Angewandte Chemie - International Edition, 2013, 52, 3630-3633.	7.2	134
542	Etherâ€Directed <i>ortho</i> â€C–H Olefination with a Palladium(II)/Monoprotected Amino Acid Catalyst. Angewandte Chemie - International Edition, 2013, 52, 1245-1247.	7.2	145
543	Pd atalyzed C–H Olefination of (Hetero)Arenes by Using Saturated Ketones as an Olefin Source. Angewandte Chemie - International Edition, 2013, 52, 1299-1303.	7.2	106
544	Investigation and Comparison of the Mechanistic Steps in the [(Cp*MCl ₂) ₂] (Cp*=C ₅ Me ₅ ; M=Rh, Ir)â€Catalyzed Oxidative Annulation of Isoquinolones with Alkynes. Chemistry - A European Journal, 2013, 19, 358-364.	1.7	72
545	Copper atalyzed Oxidative Coupling of Alkenes with Aldehydes: Direct Access to α,βâ€Unsaturated Ketones. Angewandte Chemie - International Edition, 2013, 52, 2256-2259.	7.2	195
546	Synthesis of Primary and Secondary Alkylboronates through Site-Selective C(sp ³)–H Activation with Silica-Supported Monophosphine–Ir Catalysts. Journal of the American Chemical Society, 2013, 135, 2947-2950.	6.6	122
547	Rhodium- and Iridium-Catalyzed Dehydrogenative Cyclization through Double C–H Bond Cleavages To Produce Fluorene Derivatives. Journal of Organic Chemistry, 2013, 78, 1365-1370.	1.7	100
549	Palladium-Catalyzed C(sp ² and sp ³)–H Activation/C–O Bond Formation: Synthesis of Benzoxaphosphole 1- and 2-Oxides. Organic Letters, 2013, 15, 5210-5213.	2.4	57
550	Nickel-catalyzed intramolecular C–H arylation using aryl pivalates as electrophiles. Tetrahedron, 2013, 69, 5780-5790.	1.0	50
551	Copperâ€Catalyzed Direct Secondary and Tertiary CH Alkylation of Azoles through a Heteroarene–Amine–Aldehyde/Ketone Coupling Reaction. Angewandte Chemie - International Edition, 2013, 52, 2547-2550.	7.2	34
552	Cobalt(II)–Porphyrin atalyzed Aerobic Oxidation: Oxidative Coupling of Phenols. European Journal of Organic Chemistry, 2013, 2013, 1861-1866.	1.2	38
553	Mild Palladium atalyzed Oxidative Direct <i>orthoâ€</i> CH Acylation of Anilides under Aqueous Conditions. Advanced Synthesis and Catalysis, 2013, 355, 685-691.	2.1	73

#	Article	IF	CITATIONS
554	Iron-catalyzed Cross-Coupling of Electron-Deficient Heterocycles and Quinone with Organoboron Species via Innate C–H Functionalization: Application in Total Synthesis of Pyrazine Alkaloid Botryllazine A. Journal of Organic Chemistry, 2013, 78, 2639-2648.	1.7	100
555	Enhanced Reactivity in Dioxirane C–H Oxidations via Strain Release: A Computational and Experimental Study. Journal of Organic Chemistry, 2013, 78, 4037-4048.	1.7	74
556	Cu(II)-Promoted Palladium-Catalyzed C–H Ortho-Arylation of <i>N</i> , <i>N</i> -Dimethylbenzylamines. Journal of Organic Chemistry, 2013, 78, 3688-3696.	1.7	41
557	Studies on the preference of multiple coupling in the introduction of thiophene ring into poly-halogenated aromatic compounds with nickel NHC catalyst. Tetrahedron Letters, 2013, 54, 1976-1979.	0.7	14
558	Synthesis of phenanthridinones viapalladium-catalyzed C(sp ²)–H aminocarbonylation of unprotected o-arylanilines. Chemical Communications, 2013, 49, 173-175.	2.2	139
559	Copper in dendrimer synthesis and applications of copper–dendrimer systems in catalysis: a concise overview. Tetrahedron, 2013, 69, 3103-3133.	1.0	27
560	Re/Mg Bimetallic Tandem Catalysis for [4+2] Annulation of Benzamides and Alkynes via C-H/N-H Functionalization. Journal of the American Chemical Society, 2013, 135, 4628-4631.	6.6	94
561	Broadening the catalyst and reaction scope of regio- and chemoselective C–H oxygenation: a convenient and scalable approach to 2-acylphenols by intriguing Rh(ii) and Ru(ii) catalysis. Organic and Biomolecular Chemistry, 2013, 11, 2318.	1.5	62
562	Silver-Promoted, Palladium-Catalyzed Direct Arylation of Cyclopropanes: Facile Access to Spiro 3,3′-Cyclopropyl Oxindoles. Organic Letters, 2013, 15, 1350-1353.	2.4	84
563	Regioselective C2-arylation of imidazo[4,5-b]pyridines. Organic and Biomolecular Chemistry, 2013, 11, 2335.	1.5	22
564	Simple alcohols promoted direct C–H arylation of unactivated arenes with aryl halides. Chemical Communications, 2013, 49, 2983.	2.2	75
565	A Copper-Catalyzed Synthesis of 3-Aroylindoles via a sp ³ C–H Bond Activation Followed by C–C and C–O Bond Formation. Organic Letters, 2013, 15, 1802-1805.	2.4	107
566	Mild Rhodium(III) atalyzed Direct CH Allylation of Arenes with Allyl Carbonates. Angewandte Chemie - International Edition, 2013, 52, 5386-5389.	7.2	275
567	Copperâ€Catalyzed Selective Oxidative Acylation of Secondary Anilines with Ethyl Glyoxalate: Domino Synthesis of Indolineâ€2,3â€diones. Advanced Synthesis and Catalysis, 2013, 355, 1169-1176.	2.1	40
568	Metal-free oxidative tandem coupling of activated alkenes with carbonyl C(sp2)–H bonds and aryl C(sp2)–H bonds using TBHP. Chemical Science, 2013, 4, 2690.	3.7	254
569	Mild Rhodium(III)â€Catalyzed Cyclization of Amides with α,βâ€Unsaturated Aldehydes and Ketones to Azepinones: Application to the Synthesis of the Homoprotoberberine Framework. Angewandte Chemie - International Edition, 2013, 52, 5393-5397.	7.2	180
570	Pd(II)-Catalyzed <i>ortho</i> -Arylation of Aryl Phosphates and Aryl Hydrogen Phosphates with Diaryliodonium Triflates. Organic Letters, 2013, 15, 2186-2189.	2.4	79
571	Direct Trifluoromethylation of the Cï٤¿H Bond. Advanced Synthesis and Catalysis, 2013, 355, 617-626.	2.1	269

#	Article	IF	CITATIONS
572	NH ₂ As a Directing Group: From the Cyclopalladation of Amino Esters to the Preparation of Benzolactams by Palladium(II)-Catalyzed Carbonylation of N-Unprotected Arylethylamines. Organometallics, 2013, 32, 649-659.	1.1	59
573	Palladium atalyzed Oxidative Cycloaddition through CH/NH Activation: Access to Benzazepines. Angewandte Chemie - International Edition, 2013, 52, 1768-1772.	7.2	121
574	Ligand controlled orthogonal base-assisted direct C–H bond arylation in oxa(thia)zole-4-carboxylate series. New insights in nCMD mechanism. Tetrahedron, 2013, 69, 4375-4380.	1.0	26
575	Synthesis of highly substituted isocoumarins by rhodium-catalyzed annulation of readily available benzoic acids. Tetrahedron, 2013, 69, 4454-4458.	1.0	40
576	Direct CH Arylation of Heteroarenes Catalyzed by Palladium/ Nitrogenâ€Based Ligand Complexes. Asian Journal of Organic Chemistry, 2013, 2, 624-636.	1.3	88
577	Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate. Journal of Organic Chemistry, 2013, 78, 8927-8955.	1.7	472
578	Pd(II)-Catalyzed <i>ortho</i> - or <i>meta</i> -C–H Olefination of Phenol Derivatives. Journal of the American Chemical Society, 2013, 135, 7567-7571.	6.6	305
579	Synthesis of 2-Aminophenols and Heterocycles by Ru-Catalyzed C–H Mono- and Dihydroxylation. Organic Letters, 2013, 15, 2334-2337.	2.4	89
580	Directed Amination of Nonâ€Acidic Arene CH Bonds by a Copper–Silver Catalytic System. Angewandte Chemie - International Edition, 2013, 52, 6043-6046.	7.2	319
581	Aerobic Synthesis of Pyrroles and Dihydropyrroles from Imines: Palladium(II)â€Catalyzed Intramolecular CH Dehydrogenative Cyclization. Angewandte Chemie - International Edition, 2013, 52, 4892-4896.	7.2	89
582	Palladium-catalyzed ortho-acylation of 2-arylbenzoxazoles and 2-arylbenzothiazoles using arylmethyl alcohols as the acyl source. Tetrahedron, 2013, 69, 4908-4914.	1.0	16
583	Oxidative Addition of a Strained C–C Bond onto Electron-Rich Rhodium(I) at Room Temperature. Journal of the American Chemical Society, 2013, 135, 7142-7145.	6.6	110
584	Completely Regioselective Direct C–H Functionalization of Benzo[<i>b</i>]thiophenes Using a Simple Heterogeneous Catalyst. Journal of the American Chemical Society, 2013, 135, 7450-7453.	6.6	160
585	Palladium-Catalyzed Direct C–H Arylation of Cyclic Enaminones with Aryl Iodides. Journal of Organic Chemistry, 2013, 78, 6163-6169.	1.7	38
586	Pd(II)-Catalyzed Phosphorylation of Aryl C–H Bonds. Journal of the American Chemical Society, 2013, 135, 9322-9325.	6.6	280
587	Copper-Catalyzed, Directing Group-Assisted Fluorination of Arene and Heteroarene C–H Bonds. Journal of the American Chemical Society, 2013, 135, 9342-9345.	6.6	287
588	Cu-Catalyzed Mild C(sp ²)–H Functionalization Assisted by Carboxylic Acids en Route to Hydroxylated Arenes. Journal of the American Chemical Society, 2013, 135, 9350-9353.	6.6	166
590	Direct βâ€Activation of Saturated Aldehydes to Formal Michael Acceptors through Oxidative NHC Catalysis. Angewandte Chemie - International Edition, 2013, 52, 8588-8591.	7.2	142

#	Article	IF	CITATIONS
591	Rhodium(III)-catalyzed Oxidative Coupling through C–H Bond Cleavage Directed by Phosphinoxy Groups. Organic Letters, 2013, 15, 3258-3261.	2.4	139
592	CHAPTER 10. Double C–H Activation in Pdâ€Catalyzed Crossâ€Coupling Reactions of Nonâ€Preactivated Arenes. RSC Catalysis Series, 0, , 328-362.	0.1	2
593	CHAPTER 11. Dioxygenâ€Coupled Palladium and Copperâ€Catalyzed Csp2–H Functionalization: Reactions and Mechanisms. RSC Catalysis Series, 0, , 363-408.	0.1	5
594	Photochemically induced radical alkynylation of C(sp ³)–H bonds. Organic and Biomolecular Chemistry, 2013, 11, 164-169.	1.5	85
595	Palladium-Catalyzed C–H Arylation Using Phosphoramidate as a Directing Group at Room Temperature. Organic Letters, 2013, 15, 2692-2695.	2.4	76
596	Asymmetric Allylic Alkylation of Alkene through Direct C (sp ³)â€H Functionalization. ChemCatChem, 2013, 5, 1289-1290.	1.8	11
597	Ruthenium(II)/Nâ€Heterocyclic Carbene Catalyzed [3+2] Carbocyclization with Aromatic NH Ketimines and Internal Alkynes. Angewandte Chemie - International Edition, 2013, 52, 6681-6684.	7.2	134
598	Palladium-Catalyzed Chelation-Assisted Aromatic C–H Nitration: Regiospecific Synthesis of Nitroarenes Free from the Effect of the Orientation Rules. Journal of Organic Chemistry, 2013, 78, 5932-5948.	1.7	79
599	Rh ^{III} /Cu ^{II} -Cocatalyzed Synthesis of 1 <i>H</i> -Indazoles through C–H Amidation and N–N Bond Formation. Journal of the American Chemical Society, 2013, 135, 8802-8805.	6.6	304
600	Pd-Catalyzed C–H Lactonization for Expedient Synthesis of Biaryl Lactones and Total Synthesis of Cannabinol. Organic Letters, 2013, 15, 2574-2577.	2.4	154
601	Synthesis of 6-(Trifluoromethyl)phenanthridines via Palladium-Catalyzed Tandem Suzuki/C–H Arylation Reactions. Journal of Organic Chemistry, 2013, 78, 6025-6030.	1.7	57
602	Regioselective ortho-hydroxylation of 2-arylbenzothiazole viaÂsubstrateÂdirectedÂC–H activation. Tetrahedron, 2013, 69, 2175-2183.	1.0	53
603	Transition metal-catalyzed decarboxylative coupling reactions of alkynyl carboxylic acids. RSC Advances, 2013, 3, 14165.	1.7	180
604	Divergence between Organometallic and Single-Electron-Transfer Mechanisms in Copper(II)-Mediated Aerobic C–H Oxidation. Journal of the American Chemical Society, 2013, 135, 9797-9804.	6.6	396
605	Rhodium-Catalyzed C3-Selective Alkenylation of Substituted Thiophene-2-carboxylic Acids and Related Compounds. Journal of Organic Chemistry, 2013, 78, 7216-7222.	1.7	53
606	A silver-free system for the direct C–H auration of arenes and heteroarenes from gold chloride complexes. Catalysis Science and Technology, 2013, 3, 2892.	2.1	30
607	Substituentâ€Guided Switch between CH Activation and Decarboxylative Crossâ€Coupling during Palladium/Copperâ€Catalyzed Cascade Reactions of 2â€Aminobenzoates with 2â€Haloarylaldehydes. Chemistry - A European Journal, 2013, 19, 10487-10491.	1.7	23
608	Aryl Bromides and Aryl Chlorides for the Direct Arylation of Benzylic Amines Mediated by Ruthenium(II). European Journal of Organic Chemistry, 2013, 2013, 2878-2890.	1.2	24

#	Article	IF	CITATIONS
609	Direct Benzylic CH Activation for CO Bond Formation by Photoredox Catalysis. Angewandte Chemie - International Edition, 2013, 52, 5146-5149.	7.2	94
610	A straightforward access to guaiazulene derivatives using palladium-catalysed sp2 or sp3 C–H bond functionalisation. Chemical Communications, 2013, 49, 5598.	2.2	39
611	Palladium-catalyzed ortho-acylation of 2-aryl pyridine derivatives using arylmethyl amines as new acyl sources. Chemical Communications, 2013, 49, 6837.	2.2	67
612	Autocatalytic Intermolecular versus Intramolecular Deprotonation in CH Bond Activation of Functionalized Arenes by Ruthenium(II) or Palladium(II) Complexes. Chemistry - A European Journal, 2013, 19, 7595-7604.	1.7	85
613	Room Temperature Palladiumâ€Catalyzed Decarboxylative Acyl/Aroylation using [Fe(III)(EDTA)(η ² â€O ₂)] ^{3â^'} as Oxidant at Biological pH. Advanced Synthesis and Catalysis, 2013, 355, 673-678.	2.1	58
614	Novel Syntheses of Fluorenones via Nitrile-Directed Palladium-Catalyzed C–H and Dual C–H Bond Activation. Organic Letters, 2013, 15, 2742-2745.	2.4	87
616	Rhodiumâ€Catalyzed CH Olefination of Aryl Weinreb Amides. Advanced Synthesis and Catalysis, 2013, 355, 1724-1728.	2.1	44
617	Palladium-catalyzed C–H activation of anilides at room temperature: ortho-arylation and acetoxylation. RSC Advances, 2013, 3, 9649.	1.7	59
618	Palladium-catalyzed ortho-acylation of 2-arylbenzoxazoles. Tetrahedron, 2013, 69, 320-326.	1.0	30
620	Pd(II)-Catalyzed C(sp ²)–H Hydroxylation with R ₂ (O)P-Coordinating Group. Organic Letters, 2013, 15, 6186-6189.	2.4	81
621	Meta-Selective C–H Functionalization Using a Nitrile-Based Directing Group and Cleavable Si-Tether. Journal of the American Chemical Society, 2013, 135, 18778-18781.	6.6	222
622	Room-Temperature Synthesis of Trisubstituted Allenylsilanes via Regioselective C–H Functionalization. Journal of the American Chemical Society, 2013, 135, 18284-18287.	6.6	141
623	1,5-Rhodium Shift in Rearrangement of <i>N</i> -Arenesulfonylazetidin-3-ols into Benzosultams. Journal of the American Chemical Society, 2013, 135, 19103-19106.	6.6	82
624	Copper-Catalyzed Oxidative Ring Closure and Carboarylation of 2-Ethynylanilides. Organic Letters, 2013, 15, 5654-5657.	2.4	57
625	Dual C–H activations of electron-deficient heteroarenes: palladium-catalyzed oxidative cross coupling of thiazoles with azine N-oxides. Tetrahedron, 2013, 69, 4436-4444.	1.0	61
626	Ligand-free Palladium/Copper Co-catalyzed Direct Arylation of Polyfluoroarenes with Aryl Iodides. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 885-890.	0.3	3
627	Phosphine-Free Palladium-Catalyzed Direct C-3 Arylation of 2-Phenylimidazo[1,2-a]pyridine Using Silver(I) Carboxylate. Journal of Chemistry, 2013, 2013, 1-7.	0.9	2
629	Rhodiumâ€Catalyzed Oxidative C–H Activation/Cyclization for the Synthesis of Phosphaisocoumarins and Phosphorous 2â€Pyrones. Chemistry - A European Journal, 2013, 19, 16461-16468.	1.7	63

#	Article	IF	CITATIONS
632	Copper atalyzed Aerobic Oxidative CH Functionalization of Substituted Pyridines: Synthesis of Imidazopyridine Derivatives. Chemistry - A European Journal, 2013, 19, 16804-16808.	1.7	53
633	Synthesis and new application of green and recyclable cyclic poly(<scp>L</scp> -lactide)-clay hybrid. Journal of Polymer Science Part A, 2013, 51, 4167-4174.	2.5	13
639	Silver Ion Promoted, Pd ^{II} â€Catalyzed Arylation of Arenes with a Free Amine as Directing Group in Aqueous Medium. Chemistry - A European Journal, 2013, 19, 16825-16831.	1.7	41
645	Selective Synthesis of 5,6â€Dihydroindolo[1,2â€ <i>a</i>]quinoxalines and 6,7â€Dihydroindolo[2,3â€ <i>c</i>]quinolines by Orthogonal Copper and Palladium Catalysis. European Journal of Organic Chemistry, 2013, 2013, 5710-5715.	1.2	14
646	Iron-catalyzed decarboxylative alkenylation of cycloalkanes with arylvinyl carboxylic acids via a radical process. Beilstein Journal of Organic Chemistry, 2013, 9, 1718-1723.	1.3	45
647	Enantioselective synthesis of planar chiral ferrocenes via palladium-catalyzed annulation with diarylethynes. Beilstein Journal of Organic Chemistry, 2013, 9, 1891-1896.	1.3	79
648	Lewis acid-catalyzed redox-neutral amination of 2-(3-pyrroline-1-yl)benzaldehydes via intramolecular [1,5]-hydride shift/isomerization reaction. Beilstein Journal of Organic Chemistry, 2014, 10, 2892-2896.	1.3	9
650	Microwave-Assisted Pd-Catalyzed Desulfitative C—S Coupling of Arylsulfinate Metal Salts and Alkanethiols. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1873-1881.	0.8	0
653	Computational Mechanistic Study of Palladium(II)-Catalyzed Carboxyalkynylation of an Olefin Using an Iodine(III) Oxidant Reagent. Organometallics, 2014, 33, 7318-7324.	1.1	20
654	Electrochemical C-H phosphorylation of 2-phenylpyridine in the presence of palladium salts. Russian Chemical Bulletin, 2014, 63, 2641-2646.	0.4	21
655	Tuning Reactivity and Site Selectivity of Simple Arenes in C–H Activation: Ortho-Arylation of Anisoles via Arene–Metal π-Complexation. Journal of the American Chemical Society, 2014, 136, 18082-18086.	6.6	47
656	Iridium(III) atalyzed CH Amidation of Arylphosphoryls Leading to a <i>P</i> ‣tereogenic Center. Chemistry - A European Journal, 2014, 20, 12421-12425.	1.7	89
657	Oxidantâ€Free Dehydrogenative Coupling Reactions via Hydrogen Evolution. ChemSusChem, 2014, 7, 2788-2790.	3.6	33
658	Palladiumâ€Catalysed Dehydrogenative <i>sp</i> ³ CH Bonds Functionalisation into Alkenes: A Direct Access to <i>N</i> â€Alkenylbenzenesulfonamides. Advanced Synthesis and Catalysis, 2014, 356, 119-124.	2.1	29
659	Mild Rhodium(III)-Catalyzed C–H Allylation with 4-Vinyl-1,3-dioxolan-2-ones: Direct and Stereoselective Synthesis of (<i>E</i>)-Allylic Alcohols. Organic Letters, 2014, 16, 6412-6415.	2.4	84
662	Chemoselective oneâ€pot synthesis of terphenyl derivatives by sequential directed C―H functionalization–Suzuki coupling. Applied Organometallic Chemistry, 2014, 28, 673-677.	1.7	5
666	Sequential decarboxylative azide–alkyne cycloaddition and dehydrogenative coupling reactions: one-pot synthesis of polycyclic fused triazoles. Beilstein Journal of Organic Chemistry, 2014, 10, 3031-3037.	1.3	10
667	Reaction of Alkynes and Azides: Not Triazoles Through Copper–Acetylides but Oxazoles Through Copper–Nitrene Intermediates. Chemistry - A European Journal, 2014, 20, 3463-3474.	1.7	45

#	Article	IF	Citations
668	Ligand promoted Pd-catalyzed dehydrogenative alkenylation of hetereoarenes. Chemical Communications, 2014, 50, 3671-3673.	2.2	44
669	2,3-Diarylquinoxaline directed mono ortho-aroylation via cross-dehydrogenative coupling using aromatic aldehydes or alkylbenzenes as aroyl surrogate. Tetrahedron, 2014, 70, 2422-2430.	1.0	23
670	Conformation-induced remote meta-C–H activation of amines. Nature, 2014, 507, 215-220.	13.7	481
671	Efficient access to 3-substituted-Î ³ -hydroxylactams: the uncatalyzed addition of diorganozinc reagents to cyclic imides with heterocyclic substitution. Tetrahedron Letters, 2014, 55, 1843-1845.	0.7	7
672	Copperâ€Catalyzed Site‣elective Intramolecular Amidation of Unactivated C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2014, 53, 3706-3710.	7.2	196
673	Copper-Mediated Direct Arylation of Azole Compounds. Topics in Catalysis, 2014, 57, 878-889.	1.3	43
674	Transition Metalâ€Mediated Direct CH Arylation of Heteroarenes Involving Aryl Radicals. Advanced Synthesis and Catalysis, 2014, 356, 645-671.	2.1	121
675	Chiral Cpâ€Rhodium(III)â€Catalyzed Asymmetric Hydroarylations of 1,1â€Disubstituted Alkenes. Angewandte Chemie - International Edition, 2014, 53, 507-511.	7.2	246
676	Palladium-Catalyzed <i>Meta</i> -Selective C–H Bond Activation with a Nitrile-Containing Template: Computational Study on Mechanism and Origins of Selectivity. Journal of the American Chemical Society, 2014, 136, 344-355.	6.6	317
677	Metal–organic frameworks as solid catalysts for the synthesis of nitrogen-containing heterocycles. Chemical Society Reviews, 2014, 43, 5750-5765.	18.7	427
678	Regiocontroled Palladium atalysed Direct Arylation at Carbon C2 of Benzofurans using Benzenesulfonyl Chlorides as the Coupling Partners. ChemCatChem, 2014, 6, 1303-1309.	1.8	29
679	Direct Cī£;H Arylations of Unactivated Arenes Catalyzed by Amidoâ€Functionalized Imidazolium Salts. Advanced Synthesis and Catalysis, 2014, 356, 406-410.	2.1	34
680	The Crossâ€Dehydrogenative Coupling of CH Bonds: A Versatile Strategy for CC Bond Formations. Angewandte Chemie - International Edition, 2014, 53, 74-100.	7.2	1,669
681	Palladiumâ€Catalyzed [2+2+1] Oxidative Annulation of 4â€Hydroxycoumarins with Unactivated Internal Alkynes: Access to Spiro Cyclopentadieneâ€Chromanâ€2,4â€dione Complexes. Advanced Synthesis and Catalysis, 2014, 356, 319-324.	2.1	26
682	Palladium-catalyzed intramolecular Câ^'H bond functionalization of trifluoroacetimidoyl chloride derivatives: Synthesis of 6-trifluoromethyl-phenanthridines. Journal of Fluorine Chemistry, 2014, 163, 23-27.	0.9	25
683	Oxidative Trifluoromethylation and Trifluoromethylthiolation Reactions Using (Trifluoromethyl)trimethylsilane as a Nucleophilic CF ₃ Source. Accounts of Chemical Research, 2014, 47, 1513-1522.	7.6	646
684	Carboxylate-Assisted C(sp ³)–H Activation in Olefin Metathesis-Relevant Ruthenium Complexes. Journal of the American Chemical Society, 2014, 136, 6733-6743.	6.6	61
685	Palladium Nanoparticleâ€Catalyzed Direct Ethynylation of Aliphatic Carboxylic Acid Derivatives <i>via</i> C(<i>sp</i> ³)H Bond Functionalization. Advanced Synthesis and Catalysis, 2014, 356, 1631-1637.	2.1	55

#	Article	IF	CITATIONS
686	Synthesis of cis-3-arylated cycloalkylamines through palladium-catalyzed methylene sp3 carbon–hydrogen bond activation. Tetrahedron Letters, 2014, 55, 2838-2841.	0.7	26
687	Palladiumâ€Catalysed, Directed Cĩ£¿H Coupling with Organometallics. Advanced Synthesis and Catalysis, 2014, 356, 1395-1411.	2.1	123
688	<i>t</i> Bu ₃ Pâ€Coordinated 2â€Phenylanilineâ€Based Palladacycle Complexes as Precatalyst for Pdâ€Catalyzed Coupling Reactions of Aryl Halides with Polyfluoroarenes by a C–H Activation Strategy. European Journal of Organic Chemistry, 2014, 2014, 1327-1332.	1.2	24
689	Synthesis of Biaryls through Aromatic CH Bond Activation: A Review of Recent Developments. Advanced Synthesis and Catalysis, 2014, 356, 1661-1696.	2.1	170
690	Palladiumâ€Catalyzed Acyloxylation of 2â€Substituted 1,2,3â€Triazoles <i>via</i> Direct <i>sp</i> ^{<i>2</i>} Cï£;H Bond Activation. Advanced Synthesis and Catalysis, 2014, 356, 1549-1554.	2.1	42
691	Formal S _N â€Type Reactions in Rhodium(III)â€Catalyzed CH Bond Activation. Advanced Synthesis and Catalysis, 2014, 356, 1443-1460.	2.1	747
692	Palladium atalyzed CF Bond Formation <i>via</i> Directed CH Activation. Advanced Synthesis and Catalysis, 2014, 356, 1412-1418.	2.1	75
693	Copper(I) Iodide Catalyzed Aerobic Oxidative Cĩ£įN and Cĩ£įS bond formations through Cĩ£įH Activation: Synthesis of Functionalized Imidazo[1,2â€ <i>a</i>]pyridines. Asian Journal of Organic Chemistry, 2014, 3, 609-613.	1.3	64
694	Ruthenium―and Rhodium atalyzed Dehydrogenative <i>ortho</i> â€Alkenylation of Benzylamines <i>via</i> Free Amino Group Directed CH Bond Cleavage. Advanced Synthesis and Catalysis, 2014, 356, 1521-1526.	2.1	69
695	Palladium-Catalyzed Direct Arylation and Alkenylation of 3-(Indol-3-yl)propionic Acids through C–H Bond Cleavage. Heterocycles, 2014, 88, 275.	0.4	6
696	Palladium(II)-Catalyzed Enantioselective C(sp ³)–H Activation Using a Chiral Hydroxamic Acid Ligand. Journal of the American Chemical Society, 2014, 136, 8138-8142.	6.6	231
697	Copperâ€Catalyzed Aerobic Oxidative NS Bond Functionalization for CS Bond Formation: Regio―and Stereoselective Synthesis of Sulfones and Thioethers. Chemistry - A European Journal, 2014, 20, 7911-7915.	1.7	210
698	Pd(II)-Catalyzed <i>ortho</i> -C–H Oxidation of Arylacetic Acid Derivatives: Synthesis of Benzofuranones. Organic Letters, 2014, 16, 968-971.	2.4	78
699	Diâ€≺i>tertâ€butyl Peroxide Promoted Direct CH Arylation of Unactivated Arenes with Aryl Halides. ChemCatChem, 2014, 6, 733-735.	1.8	15
700	Non-innocent Additives in a Palladium(II)-Catalyzed C–H Bond Activation Reaction: Insights into Multimetallic Active Catalysts. Journal of the American Chemical Society, 2014, 136, 5535-5538.	6.6	119
701	Mild Rh(III)-Catalyzed Direct C–H Bond Arylation of (Hetero)Arenes with Arylsilanes in Aqueous Media. Organic Letters, 2014, 16, 2614-2617.	2.4	118
702	C–H Activation of Pyrazolyl Ligands by Ru(II). Inorganic Chemistry, 2014, 53, 6270-6279.	1.9	22
703	Ruthenium-Catalyzed Synthesis of Isoquinolones with 8-Aminoquinoline as a Bidentate Directing Group in C–H Functionalization. Journal of Organic Chemistry, 2014, 79, 3963-3972.	1.7	101

#	Article	IF	CITATIONS
704	Palladium(II) atalyzed <i>ortho</i> H Arylation/Alkylation of <i>N</i> â€Benzoyl αâ€Amino Ester Derivatives. Chemistry - A European Journal, 2014, 20, 4548-4553.	1.7	61
705	Regioselective and Guided C–H Activation of 4-Nitropyrazoles. Journal of Organic Chemistry, 2014, 79, 2906-2915.	1.7	60
706	Cu(II)-Mediated C–H Amidation and Amination of Arenes: Exceptional Compatibility with Heterocycles. Journal of the American Chemical Society, 2014, 136, 3354-3357.	6.6	313
707	Nickelâ€Catalyzed Decarboxylative Acylation of Heteroarenes by sp ² CH Functionalization. Chemistry - A European Journal, 2014, 20, 7241-7244.	1.7	66
708	Pd(II)-Catalyzed Intermolecular Arylation of Unactivated C(sp ³)–H Bonds with Aryl Bromides Enabled by 8-Aminoquinoline Auxiliary. Organic Letters, 2014, 16, 2248-2251.	2.4	94
709	Iridium-Catalyzed C–H Amination with Anilines at Room Temperature: Compatibility of Iridacycles with External Oxidants. Journal of the American Chemical Society, 2014, 136, 5904-5907.	6.6	194
710	Palladium-Catalyzed Unactivated C(sp ³)–H Bond Activation and Intramolecular Amination of Carboxamides: A New Approach to β-Lactams. Organic Letters, 2014, 16, 480-483.	2.4	125
711	Samarium(III)-Catalyzed C(sp ³)–H Bond Activation: Synthesis of Indolizines <i>via</i> C–C and C–N Coupling between 2-Alkylazaarenes and Propargylic Alcohols. Organic Letters, 2014, 16, 580-583.	2.4	96
712	Benzenesulfonyl chlorides: new reagents for access to alternative regioisomers in palladium-catalysed direct arylations of thiophenes. Chemical Science, 2014, 5, 392-396.	3.7	98
713	[Ru(η ⁵ -C ₅ H ₅)(η ⁶ -C ₁₀ H ₈)]PF <su a catalyst precursor for the one-pot direct C–H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572.</su 	b>6 1.6	>as 14
713 714	 [Ru(η⁵-C₅H₅)(η⁶-C₁₀H₈)]PF<su a catalyst precursor for the one-pot direct Câ€"H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572.</su Origins of Selective C(sp²)â€"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoreticalâ€"Experimental Study. ACS Catalysis, 2014, 4, 649-656. 	b>6 1.6 5.5	as 14 51
713 714 715	 [Ru(η⁵-C₅H₅)(η⁶-C₁₀H₈)]PF<su a catalyst precursor for the one-pot direct Câ€"H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572.</su Origins of Selective C(sp²)â€"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoreticalâ€"Experimental Study. ACS Catalysis, 2014, 4, 649-656. Dioxygen activation by an organometallic Pd(<scp>ii</scp>) precursor: formation of a Pd(<scp>iv</scp>)â€"OH complex and its Câ€"O bond formation reactivity. Chemical Communications, 2014, 50, 3036-3039. 	b>6 1.6 5.5 2.2	as 14 51 62
713714715716	 [Ru(î-⁵-C₅H₅)(î-⁶-C₁₀H₈)]PF<su a catalyst precursor for the one-pot direct Câ€"H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572.</su Origins of Selective C(sp²)â€"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoreticalâ€"Experimental Study. ACS Catalysis, 2014, 4, 649-656. Dioxygen activation by an organometallic Pd(<scp>ii</scp>) precursor: formation of a Pd(<scp>iv</scp>)â€"OH complex and its Câ€"O bond formation reactivity. Chemical Communications, 2014, 50, 3036-3039. Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chemical Science, 2014, 5, 2135-2145. 	b>6 1.6 5.5 2.2 3.7	 as 14 51 62 185
 713 714 715 716 717 	[Ru(Î+ ⁵ -C< ₅ 10H ₅)(Î+ ⁶ -C< ₁₀ H ₈)]PF< <su< td="">a catalyst precursor for the one-pot direct Câ€"H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572.Origins of Selective C(sp²)â€"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoreticalâ€"Experimental Study. ACS Catalysis, 2014, 4, 649-656.Dioxygen activation by an organometallic Pd(<scp>ii</scp>) precursor: formation of a Pd(<scp>iv</scp>)â€"OH complex and its Câ€"O bond formation reactivity. Chemical Communications, 2014, 50, 3036-3039.Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chemical Science, 2014, 5, 2135-2145.Copper-catalyzed direct Câ€"H arylation of pyridine N-oxides with arylboronic esters: one-pot synthesis of 2-arylpyridines. Chemical Communications, 2014, 50, 4292-4295.</su<>	b>6 1.6 5.5 2.2 3.7 2.2	2 ^{as} 14 51 62 185 87
 713 714 715 716 717 718 	[Ru(Î+ ⁵ -C ₅ H ₅)(Î+ ⁶ -C ₁₀ H ₈)]PF <su a catalyst precursor for the one-pot direct Câ€"H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572. Origins of Selective C(sp²)â€"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined Theoreticalâ€"Experimental Study. ACS Catalysis, 2014, 4, 649-656. Dioxygen activation by an organometallic Pd(<scp>ii</scp>) precursor: formation of a Pd(<scp>iv</scp>)â€"OH complex and its Câ€"O bond formation reactivity. Chemical Communications, 2014, 50, 3036-3039. Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chemical Science, 2014, 5, 2135-2145. Copper-catalyzed direct Câ€"H arylation of pyridine N-oxides with arylboronic esters: one-pot synthesis of 2-arylpyridines. Chemical Communications, 2014, 50, 4292-4295. Hydrogen-Bond-Assisted Controlled Câ€"H Functionalization via Adaptive Recognition of a Purine Directing Group. Journal of the American Chemical Society, 2014, 136, 1132-1140.</su 	b>6 1.6 5.5 2.2 3.7 2.2 6.6	2 ^{as} 14 51 62 185 87 146
 713 714 715 716 717 718 719 	[Ru(Î+sup>5-C ₅ 106-C ₁₀ H ₈ 1010H ₈ 100 100 1	b>6 1.6 5.5 2.2 3.7 2.2 6.6 6.6	243 14 51 62 185 87 146 212
 713 714 715 716 717 718 719 720 	[Ru(i-csup>5-C ₅)fi ⁶ -C ₁₀ H ₈)]PF <su a catalyst precursor for the one-pot direct CâC"H alkenylation of nitrogen heterocycles. Dalton Transactions, 2014, 43, 4565-4572. Origins of Selective C(sp²)âE"H Activation Using Transition Metal Complexes with N,N-Bidentate Directing Groups: A Combined TheoreticalâE"Experimental Study. ACS Catalysis, 2014, 4, 649-656. Dioxygen activation by an organometallic Pd(<scp>ii</scp>) precursor: formation of a Pd(<scp>ii</scp>)âE"OH complex and its CâE"O bond formation reactivity. Chemical Communications, 2014, 50, 3036-3039. Supramolecular control of selectivity in transition-metal catalysis through substrate preorganization. Chemical Science, 2014, 5, 2135-2145. Copper-catalyzed direct CâE"H arylation of pyridine N-oxides with arylboronic esters: one-pot synthesis of 2-arylpyridines. Chemical Communications, 2014, 50, 4292-4295. Hydrogen-Bond-Assisted Controlled CâE"H Functionalization via Adaptive Recognition of a Purine Directing Group. Journal of the American Chemical Society, 2014, 136, 1132-1140. Ligand-enabled cross-coupling of C(sp3)âE"H bonds with arylboron reagents via Pd(II)/Pd(0) catalysis. Nature Chemistry, 2014, 6, 146-150. Nickel-Catalyzed Direct Arylation of C(sp³)âE"H Bonds in Aliphatic Amides via Bidentate-Chelation Assistance. Journal of the American Chemical Society, 2014, 136, 898-901.</su 	b>6 1.6 5.5 2.2 3.7 2.2 6.6 6.6 6.6	 >as₁₄ 51 62 185 87 146 212 371
#	Article	IF	CITATIONS
-----	--	------	-----------
722	Copper-catalyzed multicomponent reactions of 2-iodoanilines, benzylamines, and elemental sulfur toward 2-arylbenzothiazoles. Tetrahedron Letters, 2014, 55, 945-949.	0.7	29
723	Palladiumâ€Catalysed Direct Desulfitative Arylation of Pyrroles using Benzenesulfonyl Chlorides as Alternative Coupling Partners. Advanced Synthesis and Catalysis, 2014, 356, 3831-3841.	2.1	59
724	Overcoming the limitations of directed C–H functionalizations of heterocycles. Nature, 2014, 515, 389-393.	13.7	279
725	Rhodium(III)-Catalyzed Olefinic C–H Alkynylation of Acrylamides Using Tosyl-Imide as Directing Group. Organic Letters, 2014, 16, 5956-5959.	2.4	97
726	A General and Practical Palladium atalyzed Direct αâ€Arylation of Amides with Aryl Halides. Advanced Synthesis and Catalysis, 2014, 356, 165-178.	2.1	59
728	A Direct CH Arylation of Unactivated Arenes Promoted by Mixed Potassium Alkoxides. Asian Journal of Organic Chemistry, 2014, 3, 1262-1265.	1.3	10
729	Tuning Cu ^{II} Coordination Polymers Derived from a Bis(pyrazolecarboxylate) Ligand by Solvothermal C–H Bond Activation: Synthesis, Structures, Catalysis, and Magnetic Properties. European Journal of Inorganic Chemistry, 2014, 2014, 5874-5884.	1.0	9
730	Palladium-Catalyzed Aromatic C–H Bond Nitration Using Removable Directing Groups: Regiospecific Synthesis of Substituted <i>o</i> -Nitrophenols from Related Phenols. Journal of Organic Chemistry, 2014, 79, 11508-11516.	1.7	56
731	Pd(ii)-catalysed o-aroylation of directing arenes using terminal aryl alkenes and alkynes. RSC Advances, 2014, 4, 54532-54538.	1.7	31
732	An efficient synthesis of (NH)-phenanthridinones via ligand-free copper-catalyzed annulation. Organic Chemistry Frontiers, 2014, 1, 253-257.	2.3	38
733	Palladium-catalyzed oxidative C–H bond acylation of N-nitrosoanilines with toluene derivatives: a traceless approach to synthesize N-alkyl-2-aminobenzophenones. Chemical Communications, 2014, 50, 15352-15354.	2.2	66
734	Pd-catalyzed dehydrogenative cross-coupling of pyridine-N-oxides with uracils. RSC Advances, 2014, 4, 13764.	1.7	28
735	Sulfonamideâ€Promoted Palladium(II)â€Catalyzed Alkylation of Unactivated Methylene C(sp ³)H Bonds with Alkyl Iodides. Angewandte Chemie - International Edition, 2014, 53, 11950-11954.	7.2	131
736	Controlled Regiodivergent C–H Bond Activation of Imidazo[1,5-a]pyridine via Synergistic Cooperation between Aluminum and Nickel. Organic Letters, 2014, 16, 4826-4829.	2.4	48
737	Copperâ€Promoted Siteâ€Selective Acyloxylation of Unactivated C(sp ³)H Bonds. Chemistry - an Asian Journal, 2014, 9, 2736-2739.	1.7	45
738	Palladium-catalyzed ortho-acylation of 2-benzyl-1,2,3-triazoles with aldehydes. Organic and Biomolecular Chemistry, 2014, 12, 7474-7477.	1.5	16
739	Rhodium(I) atalyzed Cycloisomerization of Benzylalleneâ€Alkynes through CH Activation. Angewandte Chemie - International Edition, 2014, 53, 7608-7612.	7.2	32
740	Ammonolysis of anilides promoted by ethylene glycol and phosphoric acid. RSC Advances, 2014, 4, 46840-46843.	1.7	8

	CITATION	Report	
#	Article	IF	CITATIONS
741	Ruthenium-catalyzed ortho-arylation of acetanilides with aromatic boronic acids: an easy route to prepare phenanthridines and carbazoles. Chemical Communications, 2014, 50, 2442-2444.	2.2	96
742	Palladium-catalyzed desulfitative C–P coupling of arylsulfinate metal salts and H-phosphonates. RSC Advances, 2014, 4, 19214-19217.	1.7	19
743	Catalytic Copper-Mediated Ring Opening and Functionalization of Benzoxazoles. ACS Catalysis, 2014, 4, 4215-4222.	5.5	16
744	Ni(II)-Catalyzed Oxidative Coupling between C(sp ²)–H in Benzamides and C(sp ³)–H in Toluene Derivatives. Journal of the American Chemical Society, 2014, 136, 15509-15512.	6.6	227
745	7.12 Directed Aryl Câ€"H Oxidations with Main Group Metals. , 2014, , 302-312.		1
746	Nickel(II)-Catalyzed Direct Arylation of C–H Bonds in Aromatic Amides Containing an 8-Aminoquinoline Moiety as a Directing Group. Journal of Organic Chemistry, 2014, 79, 11922-11932.	1.7	125
747	C–H Functionalization of sp ³ Centers with Aluminum: A Computational and Mechanistic Study of the Baddeley Reaction of Decalin. Journal of the American Chemical Society, 2014, 136, 13745-13753.	6.6	5
748	Palladium-Catalyzed Aryl C–H Olefination with Unactivated, Aliphatic Alkenes. Journal of the American Chemical Society, 2014, 136, 13602-13605.	6.6	214
749	Ruthenium-catalyzed double-fold C–H tertiary alkoxycarbonylation of arenes using di-tert-butyl dicarbonate. Chemical Communications, 2014, 50, 14129-14132.	2.2	29
750	Metal-free oxidative direct C(sp ³)–H bond functionalization of ethers with α,α-diaryl allylic alcohols. Chemical Communications, 2014, 50, 9718.	2.2	110
751	Copper(II)-catalyzed direct thiolation of C–H bonds in aromatic amides with aryl and aliphatic thiols. Tetrahedron, 2014, 70, 8730-8736.	1.0	51
752	Oxalyl Amide Assisted Palladium-Catalyzed Arylation of C(sp ²)–H Bond at the δ Position. Organic Letters, 2014, 16, 5682-5685.	2.4	55
753	Alkoxy base-mediated transition-metal-free cross-coupling reactions of benzene with aryl halides. RSC Advances, 2014, 4, 44943-44947.	1.7	13
754	tert-Butyl peroxybenzoate (TBPB)-mediated 2-isocyanobiaryl insertion with 1,4-dioxane: efficient synthesis of 6-alkyl phenanthridines via C(sp3)–H/C(sp2)–H bond functionalization. Chemical Communications, 2014, 50, 6439.	2.2	122
755	The benzoyl peroxide-promoted functionalization of simple alkanes with 2-aryl phenyl isonitrile. Chemical Communications, 2014, 50, 9179.	2.2	90
756	Cu(II)-Mediated C–S/N–S Bond Formation via C–H Activation: Access to Benzoisothiazolones Using Elemental Sulfur. Organic Letters, 2014, 16, 5644-5647.	2.4	169
757	Palladium-catalyzed P(O)R ₂ directed C–H arylation to synthesize electron-rich polyaromatic monophosphorus ligands. Chemical Communications, 2014, 50, 2193-2195.	2.2	54
758	Metal-free syntheses of oxindole derivatives via a benzoylation/substitution/desulfonylation/cyclization cascade. RSC Advances, 2014, 4, 43525-43528.	1.7	25

#	Article	IF	CITATIONS
759	An organic cation as a silver(<scp>i</scp>) analogue for the arylation of sp ² and sp ³ C–H bonds with iodoarenes. Chemical Science, 2014, 5, 3509-3514.	3.7	100
760	Rapid Synthesis of 3,3′ Bis-Arylated BINOL Derivatives Using a C–H Borylation <i>in Situ</i> Suzuki–Miyaura Coupling Sequence. Organic Letters, 2014, 16, 4332-4335.	2.4	26
761	Copper-Mediated Hydroxylation of Arenes and Heteroarenes Directed by a Removable Bidentate Auxiliary. Organic Letters, 2014, 16, 3904-3907.	2.4	120
762	Facile Synthetic Method for Diverse Polyfunctionalized Imidazoles by Means of Pd-Catalyzed C–H Bond Arylation of <i>N</i> -Methyl-4,5-dibromoimidazole. Journal of Organic Chemistry, 2014, 79, 7185-7192.	1.7	40
763	Iodine(III)-Mediated C–H Alkoxylation of Aniline Derivatives with Alcohols under Metal-Free Conditions. Journal of Organic Chemistry, 2014, 79, 8768-8773.	1.7	19
764	Palladium-catalyzed C2-acylation of indoles with aryl and alkyl aldehydes. Tetrahedron, 2014, 70, 7490-7495.	1.0	34
765	Rhodium(III)-Catalyzed Regioselective C–H Alkenylation of Phenylphosphine Sulfides. Journal of Organic Chemistry, 2014, 79, 7649-7655.	1.7	62
766	Palladium atalyzed Direct Thiolation of Aryl CH Bonds with Disulfides. Chemistry - A European Journal, 2014, 20, 2459-2462.	1.7	153
767	Regiospecific Synthesis of Substituted 2â€Nitrobenzaldehydes from Benzaldehydes through Palladiumâ€Catalyzed Chelationâ€Assisted C–H Nitration. European Journal of Organic Chemistry, 2014, 2014, 5827-5835.	1.2	22
768	Palladium-Catalyzed Remote C(<i>sp</i> ³)–H Arylation of 3-Pinanamine. Organic Letters, 2014, 16, 4288-4291.	2.4	71
769	Cu(II)-Mediated Ortho C–H Alkynylation of (Hetero)Arenes with Terminal Alkynes. Journal of the American Chemical Society, 2014, 136, 11590-11593.	6.6	220
770	Pd(II)-Catalyzed Intermolecular Direct C–H Bond Iodination: An Efficient Approach toward the Synthesis of Axially Chiral Compounds via Kinetic Resolution. ACS Catalysis, 2014, 4, 2741-2745.	5.5	205
771	Iodineâ€Promoted Sequential C(<i>sp</i> ³)H Functionalization Reactions: An Annulation Strategy for the Construction of 3â€Methylthioâ€4â€arylmaleimides. Advanced Synthesis and Catalysis, 2014, 356, 2924-2930.	2.1	77
772	Palladium-catalysed regioselective aroylation and acetoxylation of 3,5-diarylisoxazole via ortho C–H functionalisations. RSC Advances, 2014, 4, 8558.	1.7	32
773	βâ€Functionalization of Carboxylic Anhydrides with βâ€Alkyl Substituents through Carbene Organocatalysis. Angewandte Chemie - International Edition, 2014, 53, 13506-13509.	7.2	77
774	<i>Meta</i> -Selective Arene C–H Bond Olefination of Arylacetic Acid Using a Nitrile-Based Directing Group. Organic Letters, 2014, 16, 5760-5763.	2.4	180
775	Highly site-selective sequential alkenylation of oxalyl amide protected phenylpropylamine derivatives via a seven-membered palladacycle. Chemical Science, 2014, 5, 4962-4967.	3.7	66
776	Oxidative coupling of alkenes with amides using peroxides: selective amide C(sp3)–H versus C(sp2)–H functionalization. Chemical Communications, 2014, 50, 12867-12869.	2.2	60

ARTICLE IF CITATIONS Polymer―and Silicaâ€Supported Iron BPMENâ€Inspired Catalysts for Cï£;H Bond Functionalization 1.7 13 777 Reactions. Chemistry - an Asian Journal, 2014, 9, 3142-3152. Rhodiumâ€Catalyzed Annulative Coupling of 3â€Phenylthiophenes with Alkynes Involving Double Câ€H Bond Cleavages. Chemistry - A European Journal, 2014, 20, 385-389. 778 1.7 Unexpected Cyclization of Tritylamines Promoted by Copper Salt through CH and CN Bond 779 1.7 25 Cleavages to Produce Acridine Derivatives. Chemistry - A European Journal, 2014, 20, 12720-12724. Copper-Catalyzed C(sp²)â€"H Amidation with Azides as Amino Sources. Organic Letters, 2014, 2.4 16, 4702-470<u>5</u>. Propargylamine synthesis via direct oxidative CC coupling reaction between N,N-dimethylanilines and terminal alkynes under metal–organic framework catalysis. Journal of Molecular Catalysis A, 2014, 781 4.8 35 395.300-306. Recent advances in directed C–H functionalizations using monodentate nitrogen-based directing 2.3 519 groups. Organic Chemistry Frontiers, 2014, 1, 843. Versatile reactivity of Pd-catalysts: mechanistic features of the mono-N-protected amino acid ligand 783 and cesium-halide base in Pd-catalyzed Câ€"H bond functionalization. Chemical Society Reviews, 2014, 43, 18.7 148 5009-5031. Recent development of direct asymmetric functionalization of inert C–H bonds. RSC Advances, 2014, 4, 784 1.7 532 6173. Nickelâ€Catalyzed Siteâ€Selective Amidation of Unactivated C(sp³)ï£;H Bonds. Chemistry - A 785 1.7 134 European Journal, 2014, 20, 9530-9533. Rhodium(III)-Catalyzed <i>Ortho</i>Alkenylation through Câ€"H Bond Cleavage Directed by Sulfoxide 2.4 108 Groups. Organic Letters, 2014, 16, 1188-1191. Sulfoximine-Directed Ruthenium-Catalyzed <i>ortho</i>-Câ€"H Alkenylation of (Hetero)Arenes: 787 1.7 111 Synthesis of EP3 Receptor Antagonist Analogue. Journal of Organic Chemistry, 2014, 79, 6123-6134. Using Rh(III)-Catalyzed C–H Activation as a Tool for the Selective Functionalization of 788 2.4 Ketone-Containing Molecules. Organic Letters, 2014, 16, 1630-1633. Fe-Catalysed oxidative Câ€"H/Nâ€"H coupling between aldehydes and simple amides. Chemical 790 2.2 66 Communications, 2014, 50, 4736. Rh-Catalyzed Sequential Oxidative Câ€"H and Nâ€"N Bond Activation: Conversion of Azines into 791 2.4 Isoquinolines with Air at Room Temperature. Organic Letters, 2014, 16, 3532-3535. Selective Palladium atalyzed Direct Cï£;H Arylation of Unsubstituted <i>N</i>à€Protected Pyrazoles. 792 2.1 32 Advanced Synthesis and Catalysis, 2014, 356, 1555-1561. Photochemically induced radical alkenylation of $C(sp < sup > 3 < /sup >) \hat{a} \in H$ bonds. Chemical Science, 2014, 793 106 5,4339-4345. Bu4NI-catalyzed construction of CO bonds by oxidative coupling of alcohols with ethers. 794 0.7 14 Tetrahedron Letters, 2014, 55, 4785-4789. Pd(II)-Catalyzed <i>meta</i>-Câ€"H Olefination, Arylation, and Acetoxylation of Indolines Using a 6.6 U-Shaped Template. Journal of the American Chemical Society, 2014, 136, 10807-10813.

#	Article	IF	CITATIONS
796	Methyl Ketone Oxime Esters as Nucleophilic Coupling Partners in Pd-Catalyzed C–H Alkylation and Application in the Synthesis of Isoquinolines. Journal of Organic Chemistry, 2014, 79, 7041-7050.	1.7	47
797	Highly regioselective palladium-catalyzed direct cross-coupling of imidazo[1,2-a]pyridines with arylboronic acids. Catalysis Communications, 2014, 56, 65-67.	1.6	28
798	Copper catalyzed C–O bond formation via oxidative cross-coupling reaction of aldehydes and ethers. Organic and Biomolecular Chemistry, 2014, 12, 6549-6553.	1.5	44
799	Arene C–H functionalisation using a removable/modifiable or a traceless directing group strategy. Chemical Society Reviews, 2014, 43, 6906-6919.	18.7	582
800	Regioselective Introduction of Heteroatoms at the C-8 Position of Quinoline <i>N</i> -Oxides: Remote C–H Activation Using <i>N</i> -Oxide as a Stepping Stone. Journal of the American Chemical Society, 2014, 136, 10770-10776.	6.6	308
801	Some recent advances in transition-metal-catalyzed ortho SP2 C-H functionalization using Ru, Rh, and Pd. Science China Chemistry, 2014, 57, 930-944.	4.2	42
802	Synthesis of (Poly)fluorobiphenyls through Metal atalyzed CH Bond Activation/Arylation of (Poly)fluorobenzene Derivatives. ChemCatChem, 2014, 6, 1824-1859.	1.8	79
803	Iron-Catalyzed, Chelation-Induced Remote C–H Allylation of Quinolines via 8-Amido Assistance. Organic Letters, 2014, 16, 3716-3719.	2.4	128
804	Palladium-Nanoparticle-Catalyzed 1,7-Palladium Migration Involving C–H Activation, Followed by Intramolecular Amination: Regioselective Synthesis of N1-Arylbenzotriazoles and an Evaluation of Their Inhibitory Activity toward Indoleamine 2,3-Dioxygenase. Journal of Organic Chemistry, 2014, 79, 6366-6371.	1.7	43
805	Cleavage of unactivated amide bonds by ammonium salt-accelerated hydrazinolysis. Chemical Communications, 2014, 50, 12623-12625.	2.2	25
806	Experimental and computational studies on the mechanism of the Pd-catalyzed C(sp3)–H γ-arylation of amino acid derivatives assisted by the 2-pyridylsulfonyl group. Chemical Science, 2014, 5, 3873-3882.	3.7	38
807	A general and practical palladium-catalyzed monoarylation of β-methyl C(sp3)–H of alanine. Chemical Communications, 2014, 50, 13924-13927.	2.2	78
808	Removable bidentate directing group assisted-recyclable metal–organic frameworks-catalyzed direct oxidative amination of Sp 2 C–H bonds. Journal of Catalysis, 2014, 320, 9-15.	3.1	25
809	KOAc-promoted alkynylation of α-C–H bonds of ethers with alkynyl bromides under transition-metal-free conditions. Organic and Biomolecular Chemistry, 2014, 12, 2969-2978.	1.5	32
810	Copperâ€Mediated C6â€Selective Dehydrogenative Heteroarylation of 2â€Pyridones with 1,3â€Azoles. Angewandte Chemie - International Edition, 2014, 53, 10784-10788.	7.2	118
811	Copper-catalyzed highly efficient ester formation from carboxylic acids/esters and formates. Organic and Biomolecular Chemistry, 2014, 12, 2637-2640.	1.5	8
812	Direct Arylation of C(sp ³)–H Bonds in Aliphatic Amides with Diaryliodonium Salts in the Presence of a Nickel Catalyst. Journal of Organic Chemistry, 2014, 79, 11933-11939.	1.7	131
813	Easily Accessible Auxiliary for Palladiumâ€Catalyzed Intramolecular Amination of C(sp ²)H and C(sp ³)H Bonds at δ―and εâ€Positions. Angewandte Chemie - International Edition, 2014, ½ 9884-9888.	537.2	143

#	Article	IF	CITATIONS
814	Role of <i>N</i> -Acyl Amino Acid Ligands in Pd(II)-Catalyzed Remote C–H Activation of Tethered Arenes. Journal of the American Chemical Society, 2014, 136, 894-897.	6.6	263
815	7.23 Oxidation of Carbon–Metal Bonds. , 2014, , 719-743.		3
816	Beyond Classical Reactivity Patterns: Hydroformylation of Vinyl and Allyl Arenes to Valuable β- and γ-Aldehyde Intermediates Using Supramolecular Catalysis. Journal of the American Chemical Society, 2014, 136, 8418-8429.	6.6	61
817	Palladium atalyzed Direct αâ€Arylation of Benzyl Thioethers with Aryl Bromides. Advanced Synthesis and Catalysis, 2014, 356, 2517-2524.	2.1	22
818	Iron-catalyzed/mediated oxidative transformation of C–H bonds. Organic Chemistry Frontiers, 2014, 1, 194-214.	2.3	253
819	Copper-Catalyzed Carboxamide-Directed <i>Ortho</i> Amination of Anilines with Alkylamines at Room Temperature. Organic Letters, 2014, 16, 1764-1767.	2.4	187
820	Regioselective and regiospecific C(naphthyl)–H bond activation: Isolation, characterization, crystal structure and TDDFT study of isomeric cyclopalladates. Journal of Organometallic Chemistry, 2014, 761, 147-155.	0.8	8
821	Mechanistic Study of a Switch in the Regioselectivity of Hydroheteroarylation of Styrene Catalyzed by Bimetallic Ni–Al through CH Activation. Chemistry - A European Journal, 2014, 20, 8099-8105.	1.7	47
822	Asymmetric Synthesis of Isoindolones by Chiral Cyclopentadienylâ€Rhodium(III) atalyzed CH Functionalizations. Angewandte Chemie - International Edition, 2014, 53, 7896-7899.	7.2	270
823	sp ³ –sp ² vs sp ³ –sp ³ C–C Site Selectivity in Rh-Catalyzed Ring Opening of Benzocyclobutenol: A DFT Study. Journal of the American Chemical Society, 2014, 136, 169-178.	6.6	69
824	Metal-Free Oxidative <i>Ipso</i> -Carboacylation of Alkynes: Synthesis of 3-Acylspiro[4,5]trienones from <i>N</i> -Arylpropiolamides and Aldehydes. Journal of Organic Chemistry, 2014, 79, 4582-4589.	1.7	106
825	Copper atalyzed Regioselective <i>ortho</i> CH Cyanation of Vinylarenes. Angewandte Chemie - International Edition, 2014, 53, 8677-8681.	7.2	131
826	Iron-Catalyzed Cross-Dehydrogenative Coupling Esterification of Unactive C(sp ³)–H Bonds with Carboxylic Acids for the Synthesis of α-Acyloxy Ethers. Journal of Organic Chemistry, 2014, 79, 3847-3855.	1.7	107
827	Synthesis of Triarylmethanes by Palladium-Catalyzed C–H/C–O Coupling of Oxazoles and Diarylmethanol Derivatives. Journal of Organic Chemistry, 2014, 79, 5401-5411.	1.7	63
828	CC Coupling Through Intramolecular Dual CH Activation Directed by a Removable Carboxylate Group: A Method for the Synthesis of Fluorenones under Mild Reaction Conditions. Asian Journal of Organic Chemistry, 2014, 3, 695-699.	1.3	5
829	Overriding Ortho–Para Selectivity via a Traceless Directing Group Relay Strategy: The Meta-Selective Arylation of Phenols. Journal of the American Chemical Society, 2014, 136, 4109-4112.	6.6	319
830	Palladium-Catalyzed Alkenylation via sp ² C–H Bond Activation Using Phenolic Hydroxyl as the Directing Group. Journal of Organic Chemistry, 2014, 79, 3200-3205.	1.7	36
831	Hydroxyl Groupâ€Assisted Palladium atalyzed Lactonization of Homoallylic Alcohols. ChemCatChem, 2014, 6, 561-566.	1.8	11

#	Article	IF	CITATIONS
832	Copper-Catalyzed α-Methylenation of Benzylpyridines Using Dimethylacetamide as One-Carbon Source. Organic Letters, 2014, 16, 2050-2053.	2.4	76
833	Manganese-Mediated C3-Selective Direct Alkylation and Arylation of 2-Pyridones with Diethyl Malonates and Arylboronic Acids. Journal of Organic Chemistry, 2014, 79, 1377-1385.	1.7	71
834	Copper-Catalyzed Domino Addition/Double Cyclization: An Approach to Polycyclic Benzimidazole Derivatives. Journal of Organic Chemistry, 2014, 79, 1749-1757.	1.7	59
835	Substitution Controlled Functionalization of <i>ortho</i> -Bromobenzylic Alcohols via Palladium Catalysis: Synthesis of Chromenes and Indenols. Journal of Organic Chemistry, 2014, 79, 2059-2074.	1.7	52
836	Ceric Ammonium Nitrate (CAN) Catalyzed Modification of Ketones <i>via</i> Two C–C Bond Cleavages with the Retention of the Oxo-Group. Organic Letters, 2014, 16, 3388-3391.	2.4	45
837	Pd(<scp>ii</scp>)-Catalyzed arylation of unactivated methylene C(sp ³)–H bonds with aryl halides using a removable auxiliary. Chemical Communications, 2014, 50, 8353-8355.	2.2	85
838	An easy arylation of 2-substituted 1,2,3-triazoles. Organic and Biomolecular Chemistry, 2014, 12, 3576.	1.5	25
839	Recent Advances in Catalytic Functionalization of <i>N</i> â€Oxide Compounds <i>via</i> CH Bond Activation. Advanced Synthesis and Catalysis, 2014, 356, 2375-2394.	2.1	124
840	Exploration of C–H and N–H-bond functionalization towards 1-(1,2-diarylindol-3-yl)tetrahydroisoquinolines. Beilstein Journal of Organic Chemistry, 2014, 10, 2186-2199.	1.3	6
841	Synthesis of Bioactive Heterocyclic Systems Promoted by Silica-Supported Catalysts. , 2014, , 14-61.		Ο
842	Development of Direct Aromatic Coupling Reactions by Transition-Metal Catalysis. Bulletin of the Chemical Society of Japan, 2014, 87, 751-764.	2.0	142
843	Rhodium-catalyzed Intramolecular Dehydrogenative Aryl–Aryl Coupling Using Air as Terminal Oxidant. Chemistry Letters, 2014, 43, 1782-1784.	0.7	18
847	A Combined IMâ€MS/DFT Study on [Pd(MPAA)]â€Catalyzed Enantioselective CH Activation: Relay of Chirality through a Rigid Framework. Chemistry - A European Journal, 2015, 21, 11180-11188.	1.7	94
848	Rhodium-Catalyzed C―H Activation. , 2015, , 108-125.		3
849	Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols. Scientific Reports, 2015, 5, 15250.	1.6	23
850	The Nickel(II)-Catalyzed Direct Benzylation, Allylation, Alkylation, and Methylation of C–H Bonds in Aromatic Amides Containing an 8-Aminoquinoline Moiety as the Directing Group. Bulletin of the Chemical Society of Japan, 2015, 88, 438-446.	2.0	78
851	Rhodium(III)-catalyzed Intramolecular Ar–H/Ar–H Coupling Directed by Carboxylic Group to Produce Dibenzofuran Carboxylic Acids. Chemistry Letters, 2015, 44, 1598-1600.	0.7	16
852	Synthesis of Thieno[3,2- <i>b</i>]benzofurans by Palladium-catalyzed Intramolecular C–H/C–H Coupling. Chemistry Letters, 2015, 44, 1125-1127.	0.7	43

#	Article	IF	CITATIONS
853	Rhodium-catalyzed Direct Coupling of Benzothioamides with Alkenes and Alkynes through Directed C–H Bond Cleavage. Chemistry Letters, 2015, 44, 1104-1106.	0.7	60
854	Alkynoxy-Directed C–H Functionalizations: Palladium(0)-Catalyzed Annulations of Alkynyl Aryl Ethers with Alkynes. Bulletin of the Chemical Society of Japan, 2015, 88, 1388-1403.	2.0	12
855	Direct Cyanation of Picolinamides Using K4[Fe(CN)6] as the Cyanide Source. Chemistry Letters, 2015, 44, 743-745.	0.7	23
856	Pd atalysed Direct Arylation of Heteroaromatics Using (Poly)halobenzenesulfonyl Chlorides as Coupling Partners: One Step Access to (Poly)halo‣ubstituted Bi(hetero)aryls. European Journal of Organic Chemistry, 2015, 2015, 4428-4436.	1.2	29
858	Palladiumâ€Catalyzed Direct CH Arylation of Isoxazoles at the 5â€Position. Angewandte Chemie - International Edition, 2015, 54, 9572-9576.	7.2	44
859	Ligandâ€Enabled Catalytic Cĩ£¿H Arylation of Aliphatic Amines by a Fourâ€Memberedâ€Ring Cyclopalladation Pathway. Angewandte Chemie - International Edition, 2015, 54, 15840-15844.	7.2	110
860	Relayed Regioselective Alkynylation/Olefination of Unsymmetrical Cyclic Diaryliodonium Species Catalyzed by Cu and Pd: Affording Fluorescent Cytotoxic Benzoxazoles. Chemistry - A European Journal, 2015, 21, 18915-18920.	1.7	23
861	Cp*Rh ^{III} â€Catalyzed Arylation of C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2015, 54, 10280-10283.	7.2	86
862	Mesoporous Fluorinated Metal–Organic Frameworks with Exceptional Adsorption of Fluorocarbons and CFCs. Angewandte Chemie - International Edition, 2015, 54, 13902-13906.	7.2	95
863	Readily Removable Directing Group Assisted Chemo―and Regioselective C(sp ³)H Activation by Palladium Catalysis. Angewandte Chemie - International Edition, 2015, 54, 13686-13690.	7.2	53
864	Cyclic (Amino)(aryl)carbenes (CAArCs) as Strong Ïfâ€Donating and Ï€â€Accepting Ligands for Transition Metals. Angewandte Chemie - International Edition, 2015, 54, 14915-14919.	7.2	126
865	Palladium Nanoparticles Supported on Sulfonic Acid Functionalized Silica as Trifunctional Heterogeneous Catalysts for Heck and Suzuki Reactions. ChemCatChem, 2015, 7, 2085-2094.	1.8	23
867	Palladiumâ€Assisted "Aromatic Metamorphosis―of Dibenzothiophenes into Triphenylenes. Angewandte Chemie, 2015, 127, 7268-7272.	1.6	32
868	Rh ^V â€Nitrenoid as a Key Intermediate in Rh ^{III} â€Catalyzed Heterocyclization by CH Activation: A Computational Perspective on the Cycloaddition of Benzamide and Diazo Compounds. Chemistry - A European Journal, 2015, 21, 9209-9218.	1.7	85
869	Highly Efficient Synthesis of Arylpyrrole Derivatives via Rh(III) atalyzed Direct CH Arylation with Aryl Boronic Acids. Chinese Journal of Chemistry, 2015, 33, 1015-1018.	2.6	10
871	Ligandâ€Enabled Catalytic CH Arylation of Aliphatic Amines by a Fourâ€Memberedâ€Ring Cyclopalladation Pathway. Angewandte Chemie, 2015, 127, 16066-16070.	1.6	28
872	Manganeseâ€Catalyzed Direct Nucleophilic C(sp ²)H Addition to Aldehydes and Nitriles. Angewandte Chemie - International Edition, 2015, 54, 13659-13663.	7.2	192
873	Mechanism of Nickel(II)â€Catalyzed Oxidative C(sp ²)â^'H/C(sp ³)â^'H Coupling of Benzamides and Toluene Derivatives. Chemistry - an Asian Journal, 2015, 10, 2479-2483.	1.7	31

#	Article	IF	Citations
874	Palladium atalyzed Arylation of Unactivated γâ€Methylene C(sp ³)H and Î′â€CH Bonds with Oxazoline arboxylate Auxiliary. Chemistry - A European Journal, 2015, 21, 17503-17507.	an 1.7	59
875	Reusable and Removable Directing Groups for C(sp ²)â^'H Bond Functionalization of Arenes. Asian Journal of Organic Chemistry, 2015, 4, 846-864.	1.3	113
876	Palladiumâ€Catalysed Direct Arylation using Freeâ€Amineâ€Substituted Polyfluoroanilines with Inhibition of Aminationâ€Type Reaction. Asian Journal of Organic Chemistry, 2015, 4, 1085-1095.	1.3	7
879	Palladium(II) atalyzed Acetoxime Directed <i>ortho</i> â€Arylation of Aromatic Alcohols. Chemistry - A European Journal, 2015, 21, 17474-17478.	1.7	18
880	Rh ^{III} â€Catalyzed Olefination of 2â€AryloxyÂpyridines Using 2â€Pyridyloxyl as the Removable Directing Group. European Journal of Organic Chemistry, 2015, 2015, 4782-4787.	1.2	14
881	Facile, Oneâ€Pot, and Gramâ€Scale Synthesis of 3,4,5â€Triiodoanisole through a C–H Iodination/ <i>ipso</i> â€Iododecarboxylation Strategy: Potential Application towards 3,4,5â€Trisubstituted Anisoles. European Journal of Organic Chemistry, 2015, 2015, 5501-5508.	1.2	16
882	Palladiumâ€Catalyzed Arylation of (Di)azinyl Aldoxime Ethers by Aryl Iodides: Stereoselective Synthesis of Unsymmetrical (<i>E</i>)â€{Di)azinylaryl Ketoxime Ethers. Chemistry - A European Journal, 2015, 21, 12586-12591.	1.7	14
883	Palladiumâ€Catalyzed Zincâ€Amideâ€Mediated CH Arylation of Fluoroarenes and Heteroarenes with Aryl Sulfides. Chemistry - A European Journal, 2015, 21, 14703-14707.	1.7	38
884	Stereospecific Pdâ€Catalyzed Intermolecular C(sp ³)–C(sp) Crossâ€Coupling of Diarylmethyl Carbonates and Terminal Alkynes Under Baseâ€Free Conditions. Chemistry - A European Journal, 2015, 21, 16823-16827.	1.7	21
885	Orchestrated Triple Cï£;H Activation Reactions Using Two Directing Groups: Rapid Assembly of Complex Pyrazoles. Angewandte Chemie, 2015, 127, 2531-2534.	1.6	23
889	Palladium atalyzed Heteroarylation and Concomitant <i>ortho</i> â€Alkylation of Aryl Iodides. Angewandte Chemie - International Edition, 2015, 54, 13397-13400.	7.2	71
890	Chelation-Assisted Catalytic C-C, C-Si, and C-Halogen Bond Formation by Substitution via the Cleavage of C(sp ²)-H and C(sp ³)-H Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2015, 73, 1099-1110.	0.0	5
891	C-H amination in the synthesis of N-heterocycles. Reports in Organic Chemistry, 0, , 1.	1.0	1
892	C–H bond halogenation catalyzed or mediated by copper: an overview. Beilstein Journal of Organic Chemistry, 2015, 11, 2132-2144.	1.3	56
893	Copper-catalyzed oxidative oxyalkylation of enol ethers with $\hat{I}\pm$ -amino carbonyl compounds and hydroperoxides. Chemical Communications, 2015, 51, 11325-11328.	2.2	27
894	Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Organic Chemistry Frontiers, 2015, 2, 1107-1295.	2.3	1,379
895	Multi-bond forming and iodo-selective base-promoted homolytic aromatic substitution. RSC Advances, 2015, 5, 29975-29986.	1.7	8
896	Benzyl bromides as aroyl surrogates in substrate directed Pd catalysed o-aroylation. RSC Advances, 2015, 5, 33334-33338.	1.7	14

#	Article	IF	CITATIONS
897	Pd(II)-Catalyzed C–H Functionalizations Directed by Distal Weakly Coordinating Functional Groups. Journal of the American Chemical Society, 2015, 137, 4391-4397.	6.6	143
898	New peptide architectures through C–H activation stapling between tryptophan–phenylalanine/tyrosine residues. Nature Communications, 2015, 6, 7160.	5.8	235
899	Copper(II)-Catalyzed Direct Sulfonylation of C(sp ²)–H Bonds with Sodium Sulfinates. Organic Letters, 2015, 17, 2784-2787.	2.4	113
900	Recent advances in the application of group-10 transition metal based catalysts in C–H activation and functionalization. Journal of Organometallic Chemistry, 2015, 793, 114-133.	0.8	48
901	Copper-Mediated Aryloxylation and Vinyloxylation of β-C(sp3)–H Bond of Propionamides with Organosilanes. Organic Letters, 2015, 17, 2768-2771.	2.4	37
902	Synthesis of Indolo[1,2- <i>a</i>][1,8]naphthyridines by Rhodium(III)-Catalyzed Dehydrogenative Coupling via Rollover Cyclometalation. Organic Letters, 2015, 17, 3130-3133.	2.4	80
903	Chelating Bis-N-heterocyclic Carbene–Palladium(II) Complexes for Oxidative Arene C–H Functionalization. Organometallics, 2015, 34, 2731-2736.	1.1	35
904	Copper-Catalyzed Aerobic Oxidations of Organic Molecules: Pathways for Two-Electron Oxidation with a Four-Electron Oxidant and a One-Electron Redox-Active Catalyst. Accounts of Chemical Research, 2015, 48, 1756-1766.	7.6	432
905	A one-pot domino C–H, C–C activation in coumarins: a fast track to 2,3-diaryl benzo[<i>b</i>]furans. Chemical Communications, 2015, 51, 11713-11716.	2.2	27
906	Ligand-controlled chemoselectivity in potassium tert-amylate-promoted direct C–H arylation of unactivated benzene with aryl halides. Tetrahedron, 2015, 71, 4974-4981.	1.0	15
907	Cpâ^—Co(III)-catalyzed direct functionalization of aromatic C–H bonds with α-diazomalonates. Tetrahedron Letters, 2015, 56, 4093-4095.	0.7	97
908	Base-free Knoevenagel condensation catalyzed by copper metal surfaces. Chemical Communications, 2015, 51, 10695-10698.	2.2	56
909	Rutheniumâ€Catalyzed <i>meta</i> â€Selective CH Bromination. Angewandte Chemie - International Edition, 2015, 54, 11677-11680.	7.2	220
910	Auxiliary-Directed Pd-Catalyzed γ-C(sp ³)–H Bond Activation of α-Aminobutanoic Acid Derivatives. Organic Letters, 2015, 17, 6094-6097.	2.4	50
911	Cyclometallated ruthenium(<scp>ii</scp>) complexes with ditopic thienyl–NHC ligands: syntheses and alkyne annulations. Organic Chemistry Frontiers, 2015, 2, 1598-1603.	2.3	37
912	Intramolecular cyclization of a diruthenium complex: insight into the mechanism of heteroatom-directed intramolecular C–H/olefin coupling reactions. Dalton Transactions, 2015, 44, 12507-12510.	1.6	5
913	Copper-catalyzed oxidative decarboxylative C–H arylation of benzoxazoles with 2-nitrobenzoic acids. Chemical Communications, 2015, 51, 15059-15062.	2.2	63
914	Copper catalysed C–N bond formation via a sequential acylation and deacylation process: a novel strategy for the synthesis of benzanilides. RSC Advances, 2015, 5, 9920-9924.	1.7	15

#	Article	IF	CITATIONS
915	Rhodium-Catalyzed Borylation of Aryl 2-Pyridyl Ethers through Cleavage of the Carbon–Oxygen Bond: Borylative Removal of the Directing Group. Journal of the American Chemical Society, 2015, 137, 1593-1600.	6.6	143
916	Nano CuO Catalyzed Cross Dehydrogenative Coupling (CDC) of Aldehydes to Anhydrides. European Journal of Organic Chemistry, 2015, 2015, 1309-1313.	1.2	29
917	Pd-Catalyzed Intramolecular C–N Bond Cleavage, 1,4-Migration, sp ³ C–H Activation, and Heck Reaction: Four Controllable Diverse Pathways Depending on the Judicious Choice of the Base and Ligand. Journal of the American Chemical Society, 2015, 137, 1341-1347.	6.6	149
918	Palladium-catalyzed regio-selective oxidative C–H bond acylation of azoxybenzenes with alcohols. Organic and Biomolecular Chemistry, 2015, 13, 4160-4164.	1.5	17
919	Ligand-Enabled β-C–H Arylation of α-Amino Acids Using a Simple and Practical Auxiliary. Journal of the American Chemical Society, 2015, 137, 3338-3351.	6.6	147
920	When cross-coupling partners meet indolylphosphines. Coordination Chemistry Reviews, 2015, 293-294, 158-186.	9.5	54
921	Aerobic Oxidation of Pd ^{II} to Pd ^{IV} by Active Radical Reactants: Direct C–H Nitration and Acylation of Arenes via Oxygenation Process with Molecular Oxygen. ACS Catalysis, 2015, 5, 1956-1963.	5.5	194
922	Palladium-Catalyzed Intermolecular Aminocarbonylation of Alkenes: Efficient Access of β-Amino Acid Derivatives. Journal of the American Chemical Society, 2015, 137, 2480-2483.	6.6	127
923	Arylmethyl Chlorides: New Bifunctional Reagents for Palladiumâ€Catalyzed <i>ortho</i> â€Chlorination and Acylation of 2â€Arylpyridines. Advanced Synthesis and Catalysis, 2015, 357, 443-450.	2.1	25
924	Palladium-catalyzed direct arylation of phenols with aryl iodides. Organic and Biomolecular Chemistry, 2015, 13, 3571-3574.	1.5	15
925	Cu(II)-Catalyzed Coupling of Aromatic C–H Bonds with Malonates. Organic Letters, 2015, 17, 1228-1231.	2.4	71
926	Copper-catalyzed ortho-halogenation of arenes and heteroarenes directed by a removable auxiliary. Chemical Communications, 2015, 51, 5093-5096.	2.2	84
927	Rhodium-Catalyzed Dehydrogenative Coupling of Phenylheteroarenes with Alkynes or Alkenes. Journal of Organic Chemistry, 2015, 80, 2804-2814.	1.7	47
928	Factors Impacting the Mechanism of the Mono-N-Protected Amino Acid Ligand-Assisted and Directing-Group-Mediated C–H Activation Catalyzed by Pd(II) Complex. ACS Catalysis, 2015, 5, 830-840.	5.5	72
929	Green Method for the Synthesis of Chromeno[2,3- <i>c</i>]pyrazol-4(1 <i>H</i>)-ones through Ionic Liquid Promoted Directed Annulation of 5-(Aryloxy)-1 <i>H</i> -pyrazole-4-carbaldehydes in Aqueous Media. Organic Letters, 2015, 17, 932-935.	2.4	70
930	Dehydrogenative and decarboxylative C–H alkynylation of heteroarenes catalyzed by Pd(II)–carbene complex. Tetrahedron, 2015, 71, 1975-1981.	1.0	17
931	Deprotonative C–H Silylation of Functionalized Arenes and Heteroarenes Using Trifluoromethyltrialkylsilane with Fluoride. Organic Letters, 2015, 17, 848-851.	2.4	33
932	Copper atalyzed Cross Dehydrogenative Coupling of <i>N</i> , <i>N</i> â€Disubstituted Formamides and Phenols: A Direct Access to Carbamates. Advanced Synthesis and Catalysis, 2015, 357, 515-522.	2.1	42

#	Article	IF	CITATIONS
933	Transition-Metal-Catalyzed Arylation of Nitroimidazoles and Further Transformations of Manipulable Nitro Group. Journal of Organic Chemistry, 2015, 80, 2103-2119.	1.7	37
934	Nickel-catalyzed thiolation of unactivated aryl C–H bonds: efficient access to diverse aryl sulfides. Chemical Communications, 2015, 51, 4069-4072.	2.2	150
935	Palladium(II)-Catalyzed Sequential C–H Arylation/Aerobic Oxidative C–H Amination: One-Pot Synthesis of Benzimidazole-Fused Phenanthridines from 2-Arylbenzimidazoles and Aryl Halides. Journal of Organic Chemistry, 2015, 80, 2827-2834.	1.7	43
936	Regioselective C–H bond amination by aminoiodanes. Chemical Communications, 2015, 51, 3574-3577.	2.2	30
937	Direct Oxidative Arylation of Aryl CH Bonds with Aryl Boronic Acids via Pd Catalysis Directed by the <i>N</i> , <i>N</i> â€Ðimethylaminomethyl Group. Chemistry - an Asian Journal, 2015, 10, 840-843.	1.7	13
938	Rhodium atalyzed Desulfination of Sodium Arenesulfinates and Oxidative Annulation with Alkynes. Advanced Synthesis and Catalysis, 2015, 357, 489-499.	2.1	6
939	Copper-Mediated Formally Dehydrative Biaryl Coupling of Azine <i>N</i> -Oxides and Oxazoles. Journal of Organic Chemistry, 2015, 80, 2384-2391.	1.7	54
940	The Mechanism of a Ligand-Promoted C(sp ³)–H Activation and Arylation Reaction via Palladium Catalysis: Theoretical Demonstration of a Pd(II)/Pd(IV) Redox Manifold. Journal of the American Chemical Society, 2015, 137, 2006-2014.	6.6	106
941	Rh(III)-catalyzed C–H activation of benzamides: Coupling with quinones. Chinese Journal of Catalysis, 2015, 36, 48-56.	6.9	17
942	Salicylic acids as readily available starting materials for the synthesis of meta-substituted biaryls. Chemical Communications, 2015, 51, 3127-3130.	2.2	69
943	Rhodium(III) atalyzed <i>ortho</i> â€Arylation of Anilides with Aryl Halides. Advanced Synthesis and Catalysis, 2015, 357, 366-370.	2.1	43
944	Regio- and Stereoselective Pd-Catalyzed Direct Arylation of Unactivated sp ³ C(3)–H Bonds of Tetrahydrofuran and 1,4-Benzodioxane Systems. Journal of Organic Chemistry, 2015, 80, 2339-2355.	1.7	68
945	Computational Organic Chemistry: Bridging Theory and Experiment in Establishing the Mechanisms of Chemical Reactions. Journal of the American Chemical Society, 2015, 137, 1706-1725.	6.6	271
946	Ruthenium(II) atalyzed CH Arylation of Anilides with Boronic Acids, Borinic Acids and Potassium Trifluoroborates. Advanced Synthesis and Catalysis, 2015, 357, 474-480.	2.1	53
947	Pd(ii)-catalyzed, controllable C–H mono-/diarylation of aryl tetrazoles: concise synthesis of Losartan. Organic and Biomolecular Chemistry, 2015, 13, 3198-3201.	1.5	9
948	Palladium catalyzed ortho-halogenation of 2-arylbenzothiazole and 2,3-diarylquinoxaline. RSC Advances, 2015, 5, 11960-11965.	1.7	30
949	Functionalization of C–H Bonds via Metal-Catalyzed Desulfitative Coupling: An Alternative Tool for Access to Aryl- or Alkyl-Substituted (Hetero)arenes. ACS Catalysis, 2015, 5, 978-991.	5.5	142
950	Orchestrated Triple Cï£;H Activation Reactions Using Two Directing Groups: Rapid Assembly of Complex Pyrazoles. Angewandte Chemie - International Edition, 2015, 54, 2501-2504.	7.2	66

#	Article	IF	CITATIONS
951	Rhodium(III)-Catalyzed Oxidative Alkenylation of 1,3-Dithiane-Protected Arenecarbaldehydes via Regioselective C–H Bond Cleavage. Organic Letters, 2015, 17, 704-707.	2.4	57
952	Palladium-catalyzed oxidative ortho-acylation of 2-arylbenzoxazoles and 2-arylbenzothiazoles with toluene derivatives. Tetrahedron, 2015, 71, 1574-1580.	1.0	32
953	Palladium atalyzed C–H Bond Acylation of Acetanilides with Benzylic Alcohols under Aqueous Conditions. European Journal of Organic Chemistry, 2015, 2015, 2463-2469.	1.2	34
954	A sustainable and simple catalytic system for direct alkynylation of C(sp ²)–H bonds with low nickel loadings. Chemical Communications, 2015, 51, 6388-6391.	2.2	106
955	Synthesis of Indolines by Copper-Mediated Intramolecular Aromatic C–H Amination. Journal of Organic Chemistry, 2015, 80, 3242-3249.	1.7	75
956	Ligand-enabled meta-C–H activation using a transient mediator. Nature, 2015, 519, 334-338.	13.7	494
957	Nickel complexes for catalytic C–H bond functionalization. Dalton Transactions, 2015, 44, 10905-10913.	1.6	42
958	Copper-catalyzed oxidative esterification of ortho-formyl phenols without affecting labile formyl group. Tetrahedron Letters, 2015, 56, 4569-4573.	0.7	12
959	Cp*Ir(III)-Catalyzed Mild and Broad Câ^'H Arylation of Arenes and Alkenes with Aryldiazonium Salts Leading to the External Oxidant-Free Approach. Journal of the American Chemical Society, 2015, 137, 8584-8592.	6.6	125
960	Palladium-catalyzed oxalyl amide assisted direct ortho-alkynylation of arylalkylamine derivatives at δ and ε positions. Chemical Communications, 2015, 51, 12103-12106.	2.2	46
961	Copper-Mediated Oxidative Coupling of Benzamides with Maleimides via Directed C–H Cleavage. Organic Letters, 2015, 17, 4034-4037.	2.4	129
962	Rhodium-catalyzed direct ortho-alkenylation of phenyl sulfones with alkynes utilizing sulfonyl function as modifiable directing group. Tetrahedron, 2015, 71, 6506-6512.	1.0	21
963	Palladium-catalyzed intramolecular rearrangement of vinylidenecyclopropanes through C–C bond activation. Organic Chemistry Frontiers, 2015, 2, 792-796.	2.3	4
964	Copper-Catalyzed Intramolecular Dehydrogenative Amidation of Unactivated C(sp ³)–H Bonds Using O ₂ as the Sole Oxidant. Journal of Organic Chemistry, 2015, 80, 8424-8429.	1.7	62
965	Synthesis, Structural Characterization, and Cyclometalation Chemistry of Tantalum Terphenyl Compounds. Organometallics, 2015, 34, 1828-1843.	1.1	2
966	Copper-Catalyzed Formal [4 + 1] Cycloaddition of Benzamides and Isonitriles via Directed C–H Cleavage. Organic Letters, 2015, 17, 4066-4069.	2.4	71
967	Ruthenium- and palladium-catalyzed consecutive coupling and cyclization of aromatic sulfoximines with phenylboronic acids: an efficient route to dibenzothiazines. Chemical Communications, 2015, 51, 12992-12995.	2.2	68
968	Copper-catalyzed oxidative C–H/C–H cross-coupling of benzamides and thiophenes. Chemical Communications, 2015, 51, 12823-12826.	2.2	66

	CITATION REF	PORT	
#	Article	IF	CITATIONS
969	Rapid Access to 3-Aminoindazoles from Tertiary Amides. Organic Letters, 2015, 17, 3386-3389.	2.4	45
970	Dynamic behaviour of monohaptoallylpalladium species: internal coordination as a driving force in allylic alkylation chemistry. Chemical Science, 2015, 6, 5734-5739.	3.7	8
971	Monoselective <i>o</i> -C–H Functionalizations of Mandelic Acid and α-Phenylglycine. Journal of the American Chemical Society, 2015, 137, 9877-9884.	6.6	70
972	Copper-/Silver-Mediated Arylation of C(sp ²)–H Bonds with 2-Thiophenecarboxylic Acids. Organic Letters, 2015, 17, 3338-3341.	2.4	70
973	Pd(<scp>ii</scp>)-catalyzed remote regiodivergent <i>ortho</i> - and <i>meta</i> -C–H functionalizations of phenylethylamines. Chemical Science, 2015, 6, 5595-5600.	3.7	139
974	Investigation of 3d-transition metal acetates in the oxidation of substituted dioxolene and phenols. Journal of Molecular Catalysis A, 2015, 407, 93-101.	4.8	16
975	Pyridine-enabled copper-promoted cross dehydrogenative coupling of C(sp ²)–H and unactivated C(sp ³)–H bonds. Chemical Science, 2015, 6, 5978-5983.	3.7	61
976	Palladium-Catalyzed <i>ortho</i> -Olefination of Phenyl Acetic and Phenyl Propylacetic Esters via C–H Bond Activation. Journal of Organic Chemistry, 2015, 80, 7896-7904.	1.7	35
977	Palladium-Catalyzed Site-Selective Fluorination of Unactivated C(sp ³)–H Bonds. Organic Letters, 2015, 17, 3738-3741.	2.4	87
978	Pd/Cu-cocatalyzed reigoselective arylation of thiazole derivatives at 2-position under ligand-free conditions. RSC Advances, 2015, 5, 56311-56315.	1.7	15
979	Copper-Mediated Intermolecular C–H/C–H and C–H/N–H Couplings via Aromatic C–H Cleavage. Topics in Organometallic Chemistry, 2015, , 47-65.	0.7	4
980	Pd(II)-Catalyzed Direct Sulfonylation of Unactivated C(sp ³)–H Bonds with Sodium Sulfinates. Organic Letters, 2015, 17, 3552-3555.	2.4	105
981	Recent Advances in Copper-mediated Direct Biaryl Coupling. Chemistry Letters, 2015, 44, 868-873.	0.7	150
982	Mechanistic Insight into Ketone α-Alkylation with Unactivated Olefins via C–H Activation Promoted by Metal–Organic Cooperative Catalysis (MOCC): Enriching the MOCC Chemistry. Journal of the American Chemical Society, 2015, 137, 6279-6291.	6.6	66
983	Photocatalyzed Site-Selective C–H to C–C Conversion of Aliphatic Nitriles. Organic Letters, 2015, 17, 1292-1295.	2.4	53
984	Asymmetric C–H functionalization involving organocatalysis. Tetrahedron Letters, 2015, 56, 3703-3714.	0.7	36
985	Copper-mediated thiolation of carbazole derivatives and related N-heterocycle compounds. RSC Advances, 2015, 5, 39358-39365.	1.7	52
986	Palladiumâ€Catalyzed Domino Mizoroki–Heck/Intermolecular C(sp ³)–H Activation Sequence: An Approach to the Formation of C(sp ³)–C(sp ³) Bonds. European Journal of Organic Chemistry, 2015, 2015, 2579-2584.	1.2	15

#	Article	IF	CITATIONS
987	Cobalt(II)-Catalyzed Oxidative C–H Alkenylations: Regio- and Site-Selective Access to Isoindolin-1-one. ACS Catalysis, 2015, 5, 2822-2825.	5.5	172
988	Modular Approach to Reductive C _{sp2} –H and C _{sp3} –H Silylation of Carboxylic Acid Derivatives through Single-Pot, Sequential Transition Metal Catalysis. Journal of Organic Chemistry, 2015, 80, 4661-4671.	1.7	25
989	Transition-Metal-Free C-3 Arylation of Quinoline-4-ones with Arylhydrazines. Journal of Organic Chemistry, 2015, 80, 5369-5376.	1.7	60
990	Palladium-catalyzed oxygenation of C(sp ²)–H and C(sp ³)–H bonds under the assistance of oxalyl amide. RSC Advances, 2015, 5, 28430-28434.	1.7	33
991	Pd(<scp>ii</scp>)-catalyzed C(sp ³)–H arylation of amino acid derivatives with click-triazoles as removable directing groups. Organic and Biomolecular Chemistry, 2015, 13, 5444-5449.	1.5	31
992	Single-Site Palladium(II) Catalyst for Oxidative Heck Reaction: Catalytic Performance and Kinetic Investigations. ACS Catalysis, 2015, 5, 3752-3759.	5.5	66
993	Nickel-Catalyzed Alkynylation of a C(sp2)–H Bond Directed by an 8-Aminoquinoline Moiety. Journal of Organic Chemistry, 2015, 80, 6213-6221.	1.7	90
995	Cp*Rh(<scp>iii</scp>) and Cp*lr(<scp>iii</scp>)-catalysed redox-neutral C–H arylation with quinone diazides: quick and facile synthesis of arylated phenols. Chemical Communications, 2015, 51, 10240-10243.	2.2	87
996	Direct <i>ortho</i> -C–H Functionalization of Aromatic Alcohols Masked by Acetone Oxime Ether via <i>exo</i> -Palladacycle. Organic Letters, 2015, 17, 1802-1805.	2.4	51
997	Potassium ethoxide/phenanthroline promoted chemoselective direct C–H arylation of unactivated arenes with aryl iodides. Tetrahedron, 2015, 71, 2622-2628.	1.0	14
998	Cobalt-catalysed site-selective intra- and intermolecular dehydrogenative amination of unactivated sp3 carbons. Nature Communications, 2015, 6, 6462.	5.8	229
999	Nickel-catalyzed direct thiolation of unactivated C(sp ³)–H bonds with disulfides. Chemical Communications, 2015, 51, 7341-7344.	2.2	131
1000	Mechanism of Pd-catalyzed selective C-H activation of aliphatic amines via four-membered-ring cyclometallation pathway. Science China Chemistry, 2015, 58, 1316-1322.	4.2	13
1001	Ligand-promoted intramolecular dehydrogenative cross-coupling using a Cu catalyst: direct access to polycyclic heteroarenes. Chemical Communications, 2015, 51, 7065-7068.	2.2	27
1002	CuBr/prolineâ€catalyzed crossâ€coupling of unactivated benzene with aryl halides. Applied Organometallic Chemistry, 2015, 29, 368-371.	1.7	7
1003	Unexpected fragmentations of triphosphaferrocene – formation of supramolecular assemblies containing the (1,2,4-P ₃ C ₂ Mes ₂) ^{â^*} ligand. Dalton Transactions, 2015, 44, 6502-6509.	1.6	20
1004	Palladiumâ€Assisted "Aromatic Metamorphosis―of Dibenzothiophenes into Triphenylenes. Angewandte Chemie - International Edition, 2015, 54, 7162-7166.	7.2	120
1005	Regiospecific Benzoylation of Electron-Deficient <i>N</i> -Heterocycles with Methylbenzenes via a Minisci-Type Reaction. Journal of Organic Chemistry, 2015, 80, 5625-5632.	1.7	67

#	Article	IF	CITATIONS
1006	A Unique Alkylation of Azobenzenes with Allyl Acetates by Rh ^{III} -Catalyzed C–H Functionalization. Organic Letters, 2015, 17, 2450-2453.	2.4	46
1007	Rhenium-Catalyzed [4 + 1] Annulation of Azobenzenes and Aldehydes via Isolable Cyclic Rhenium(I) Complexes. Organic Letters, 2015, 17, 2434-2437.	2.4	96
1008	Direct synthesis of 2-arylbenzothiazoles from benzothiazoles with phenylglycine derivatives mediated by Cu(OTf)2/K2S2O8. Tetrahedron Letters, 2015, 56, 2077-2082.	0.7	4
1009	Direct Aerobic Carbonylation of C(sp ²)–H and C(sp ³)–H Bonds through Ni/Cu Synergistic Catalysis with DMF as the Carbonyl Source. Journal of the American Chemical Society, 2015, 137, 4924-4927.	6.6	223
1010	Cu-catalyzed sp3 C–H bond oxidative functionalization of alkylazaarenes and substituted ethanones: an efficient approach to isoxazoline derivatives. Organic Chemistry Frontiers, 2015, 2, 569-573.	2.3	25
1011	Nickel-catalyzed directed sulfenylation of sp ² and sp ³ C–H bonds. Chemical Communications, 2015, 51, 7863-7866.	2.2	116
1012	Pd-catalyzed direct C2-acylation and C2,C7-diacylation of indoles: pyrimidine as an easily removable C–H directing group. RSC Advances, 2015, 5, 28292-28298.	1.7	26
1013	Understanding the Effects of Bidentate Directing Groups: A Unified Rationale for sp2 and sp3 C–H Bond Activations. Journal of Organic Chemistry, 2015, 80, 4672-4682.	1.7	58
1014	Mechanism and Origins of Selectivities in the Copper-Catalyzed Dearomatization-Induced <i>ortho</i> C–H Cyanation of Vinylarenes. ACS Catalysis, 2015, 5, 2944-2951.	5.5	84
1015	Directing group-assisted transition-metal-catalyzed vinylic C-H bond functionalization. Science China Chemistry, 2015, 58, 1252-1265.	4.2	107
1016	Copperâ€Catalyzed Radical/Radical Cï£įH/Pï£įH Cross oupling: αâ€Phosphorylation of Aryl Ketone <i>O</i> â€Acetyloximes. Angewandte Chemie - International Edition, 2015, 54, 6604-6607.	7.2	223
1017	From Indoles to Carbazoles: Tandem Cp*Rh(III)-Catalyzed C–H Activation/BrÃ,nsted Acid-Catalyzed Cyclization Reactions. ACS Catalysis, 2015, 5, 6453-6457.	5.5	136
1018	Rhodium(III)-Catalyzed Direct Coupling of Arylphosphine Derivatives with Heterobicyclic Alkenes: A Concise Route to Biarylphosphines and Dibenzophosphole Derivatives. ACS Catalysis, 2015, 5, 6634-6639.	5.5	98
1019	Sequential one-pot Rh(III)-catalyzed direct C2 and C7 alkylation of (hetero)aromatic C–H bonds of indoles. Tetrahedron Letters, 2015, 56, 6214-6218.	0.7	32
1020	Cobalt-Catalyzed Cyclization of Aliphatic Amides and Terminal Alkynes with Silver-Cocatalyst. Journal of the American Chemical Society, 2015, 137, 12990-12996.	6.6	242
1021	Bidentate ligand 8-aminoquinoline-aided Pd-catalyzed diastereoselective β-arylation of the prochiral secondary sp3 C–H bonds of 2-phenylbutanamides and related aliphatic carboxamides. Tetrahedron, 2015, 71, 8333-8349.	1.0	27
1022	Quinazoline-directed regioselective arylation via palladium catalysis: synthesis of 2-(1-biaryl)-4-arylquinazolines. Tetrahedron, 2015, 71, 9457-9462.	1.0	14
1023	A steric tethering approach enables palladium-catalysed C–H activation of primary amino alcohols. Nature Chemistry, 2015, 7, 1009-1016.	6.6	164

#	Article	IF	CITATIONS
1024	Ruthenium(II) Catalyzed Regiospecific C–H/O–H Annulations of Directing Arenes via Weak Coordination. Organic Letters, 2015, 17, 5678-5681.	2.4	32
1025	Copper-Catalyzed Cross-Dehydrogenative C–N Bond Formation of Azines with Azoles: Overcoming the Limitation of Oxidizing N–O Activation Strategy. ACS Catalysis, 2015, 5, 7194-7198.	5.5	70
1026	Palladium-catalysed norbornene-mediated C–H functionalization of arenes. Nature Chemistry, 2015, 7, 863-870.	6.6	433
1027	A three-component synthesis of aryl(heteroaryl)acylamides. Organic and Biomolecular Chemistry, 2015, 13, 9872-9882.	1.5	17
1028	Cu(II)-Mediated C(sp ²)–H Hydroxylation. Journal of Organic Chemistry, 2015, 80, 8843-8848.	1.7	85
1029	Remote <i>Meta</i> -C–H Activation Using a Pyridine-Based Template: Achieving Site-Selectivity via the Recognition of Distance and Geometry. ACS Central Science, 2015, 1, 394-399.	5.3	164
1030	Pd(OAc) ₂ /AgOAc Catalytic System Based Bidentate Ligand Directed Regiocontrolled C–H Arylation and Alkylation of the Câ€3 Position of Thiophene―and Furanâ€2 arboxamides. European Journal of Organic Chemistry, 2015, 2015, 3727-3742.	1.2	48
1031	Catalytic C–H bond functionalisation chemistry: the case for quasi-heterogeneous catalysis. Chemical Communications, 2015, 51, 16289-16307.	2.2	103
1032	Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. Russian Chemical Reviews, 2015, 84, 917-951.	2.5	56
1033	Cp*Co(III)-Catalyzed Annulations of 2-Alkenylphenols with CO: Mild Access to Coumarin Derivatives. Organic Letters, 2015, 17, 5404-5407.	2.4	132
1034	Diverse sp3 Câ^'H functionalization through alcohol β-sulfonyloxylation. Nature Chemistry, 2015, 7, 829-834.	6.6	98
1035	Directing-group-assisted copper-catalyzed oxidative esterification of phenols with aldehydes. Organic and Biomolecular Chemistry, 2015, 13, 10834-10843.	1.5	11
1036	Recent advances in the C–H-functionalization of the distal positions in pyridines and quinolines. Tetrahedron, 2015, 71, 8683-8716.	1.0	135
1037	Palladium(II)-Catalyzed Direct C–H Alkenylation of Thienothiophene and Related Fused Heteroarenes. Organic Letters, 2015, 17, 4384-4387.	2.4	31
1038	Transition-Metal-Free Dehydrosilylative Difluoroamidation of Tetrahydroisoquinolines under Mild Conditions. Organic Letters, 2015, 17, 4212-4215.	2.4	45
1039	α-Arylation of Saturated Azacycles and <i>N</i> -Methylamines via Palladium(II)-Catalyzed C(sp ³)–H Coupling. Journal of the American Chemical Society, 2015, 137, 11876-11879.	6.6	153
1040	Mechanism of Pd-catalyzed C(sp ³)–H activation of aliphatic amines: an insight from DFT calculations. RSC Advances, 2015, 5, 71586-71592.	1.7	10
1041	Sonogashira cross-coupling on the Au(1 1 1) and Au(1 0 0) facets of gold nanorod catalysts: Experimental and computational investigation. Journal of Catalysis, 2015, 330, 354-361.	3.1	45

#	Article	IF	CITATIONS
1042	cycloamination under open air leading to bioactive polynuclear N-heteroarenes. RSC Advances, 2015, 5, 70604-70608.	1.7	7
1043	Palladium-Catalyzed Oxalyl Amide-Directed Î ³ -Arylation of Aliphatic Amines. Journal of Organic Chemistry, 2015, 80, 9297-9306.	1.7	29
1044	Palladium-Catalyzed Selective β-Arylation of Aliphatic Amides Using a Removable <i>N</i> , <i>O</i> -Bidentate Auxiliary. Organometallics, 2015, 34, 4331-4339.	1.1	38
1045	Ligand-Enabled <i>Meta</i> -C–H Alkylation and Arylation Using a Modified Norbornene. Journal of the American Chemical Society, 2015, 137, 11574-11577.	6.6	275
1046	Remote <i>para-</i> C–H Functionalization of Arenes by a D-Shaped Biphenyl Template-Based Assembly. Journal of the American Chemical Society, 2015, 137, 11888-11891.	6.6	302
1047	Iridium(III)-Catalyzed Direct Arylation of C–H Bonds with Diaryliodonium Salts. Journal of the American Chemical Society, 2015, 137, 12231-12240.	6.6	146
1048	C–H arylation and alkenylation of imidazoles by nickel catalysis: solvent-accelerated imidazole C–H activation. Chemical Science, 2015, 6, 6792-6798.	3.7	110
1049	Synthesis of 1,2,4-Triazoles via Oxidative Heterocyclization:ÂSelective C–N Bond Over C–S Bond Formation. Journal of Organic Chemistry, 2015, 80, 9016-9027.	1.7	30
1050	Mild N-deacylation of secondary amides by alkylation with organocerium reagents. Chinese Chemical Letters, 2015, 26, 1055-1058.	4.8	11
1051	Synthesis of Multisubstituted Triphenylenes and Phenanthrenes by Cascade Reaction of <i>o</i> -lodobiphenyls or (<i>Z</i>)-β-Halostyrenes with <i>o</i> Bromobenzyl Alcohols through Two Sequential C–C Bond Formations Catalyzed by a Palladium Complex. Journal of Organic Chemistry, 2015, 80, 9247-9263.	1.7	59
1052	Palladium-Catalyzed Synthesis of 2-Aryl- <i>2H</i> -Benzotriazoles from Azoarenes and TMSN ₃ . Journal of Organic Chemistry, 2015, 80, 9662-9670.	1.7	44
1053	Palladium-Catalyzed C-2 C–H Heteroarylation of Chiral Oxazolines: Diverse Synthesis of Chiral Oxazoline Ligands. Organic Letters, 2015, 17, 5939-5941.	2.4	28
1054	The mechanism of Cu-catalyzed C–N cyclization from N-phenylbenzamidine to 2-phenylbenzimidazole: A DFT study. Computational and Theoretical Chemistry, 2015, 1054, 16-21.	1.1	13
1055	Palladium(II)-Catalyzed Intramolecular Tandem Aminoalkylation via Divergent C(sp ³)–H Functionalization. Journal of the American Chemical Society, 2015, 137, 1130-1135.	6.6	103
1056	Direct construction of 2-alkylbenzo-1,3-azoles via C–H activation of alkanes for C–C and C–X (X = O, S) bond formation. Organic and Biomolecular Chemistry, 2015, 13, 2606-2611.	1.5	31
1057	Regioselective Direct Arylation of Fused 3â€Nitropyridines and Other Nitroâ€Substituted Heteroarenes: The Multipurpose Nature of the Nitro Group as a Directing Group. ChemCatChem, 2015, 7, 316-324.	1.8	27
1058	Preparation of 3-Acyl-4-arylcoumarins via Metal-Free Tandem Oxidative Acylation/Cyclization between Alkynoates with Aldehydes. Journal of Organic Chemistry, 2015, 80, 148-155.	1.7	96
1059	Copper-catalyzed oxidative coupling of acids with alkanes involving dehydrogenation: facile access to allylic esters and alkylalkenes. Chemical Communications, 2015, 51, 2361-2363.	2.2	68

#	Article	IF	CITATIONS
1060	Silver-Catalyzed C(sp ²)–H Functionalization/C–O Cyclization Reaction at Room Temperature. Journal of Organic Chemistry, 2015, 80, 911-919.	1.7	89
1061	Transitionâ€Metalâ€Free Synthesis of Fluorinated Nitriles and Diaryl Ketones Through a Selective C–F Bond Functionalization Under Mild Conditions. European Journal of Organic Chemistry, 2015, 2015, 616-624.	1.2	14
1062	Transition-metal-catalyzed etherification of unactivated C H bonds. Tetrahedron Letters, 2015, 56, 15-22.	0.7	78
1063	Application of Two Direct C(sp ³)–H Functionalizations for Total Synthesis of (+)-Lactacystin. Organic Letters, 2015, 17, 90-93.	2.4	43
1064	Copper-Catalyzed C–H Functionalization Reactions: Efficient Synthesis of Heterocycles. Chemical Reviews, 2015, 115, 1622-1651.	23.0	843
1065	A mild and efficient carboxylate-directed C–H arylation of aryl carboxylic acids with iodobenzenes in water. Tetrahedron Letters, 2015, 56, 475-477.	0.7	24
1066	Transition metal-catalyzed direct remote C–H functionalization of alkyl groups via C(sp ³)–H bond activation. Organic Chemistry Frontiers, 2015, 2, 169-178.	2.3	161
1067	Pd-Catalyzed Monoselective <i>ortho</i> -C–H Alkylation of <i>N</i> -Quinolyl Benzamides: Evidence for Stereoretentive Coupling of Secondary Alkyl Iodides. Journal of the American Chemical Society, 2015, 137, 531-539.	6.6	152
1068	Tandem Catalysis: Rh(III)-Catalyzed C–H Allylation/Pd(II)-Catalyzed <i>N</i> -Allylation Toward the Synthesis of Vinyl-Substituted <i>N</i> -Heterocycles. ACS Catalysis, 2015, 5, 210-214.	5.5	101
1069	Transition metal catalyzed meta-C–H functionalization of aromatic compounds. Organic and Biomolecular Chemistry, 2015, 13, 1930-1941.	1.5	191
1070	Palladium-Catalyzed C8-Selective C–H Arylation of Quinoline <i>N</i> -Oxides: Insights into the Electronic, Steric, and Solvation Effects on the Site Selectivity by Mechanistic and DFT Computational Studies. ACS Catalysis, 2015, 5, 167-175.	5.5	127
1071	Remote <i>meta</i> â€CH Olefination of Phenylacetic Acids Directed by a Versatile Uâ€Shaped Template. Angewandte Chemie - International Edition, 2015, 54, 888-891.	7.2	123
1072	A nickel-mediated oxidative α-C(sp ³)–H functionalization of amides with allylic alcohols terminated by radical 1,2-aryl migration. Chemical Communications, 2015, 51, 749-752.	2.2	63
1073	Palladium(ii)-catalyzed meta-selective direct arylation of O-β-naphthyl carbamate. Chemical Communications, 2015, 51, 1297-1300.	2.2	35
1074	Oxidative radical 1,2-alkylarylation of alkenes with α-C(sp ³)–H bonds of acetonitriles involving 1,2-aryl migration. Chemical Communications, 2015, 51, 1024-1026.	2.2	94
1075	Oxidative Coupling of Alkenes with Aldehydes and Hydroperoxides: Oneâ€Pot Synthesis of 2,3â€Epoxy Ketones. Advanced Synthesis and Catalysis, 2015, 357, 59-63.	2.1	43
1076	Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones. Organic and Biomolecular Chemistry, 2015, 13, 1254-1263.	1.5	28
1077	Sulphur promoted C(sp ³)–C(sp ²) cross dehydrogenative cyclisation of acetophenone hydrazones with aldehydes: efficient synthesis of 3,4,5-trisubstituted 1H-pyrazoles. Chemical Communications, 2015, 51, 366-369.	2.2	57

#	Article	IF	CITATIONS
1078	Palladium-catalyzed unactivated β-methylene C(sp ³)–H bond alkenylation of aliphatic amides and its application in a sequential C(sp ³)–H/C(sp ²)–H bond alkenylation. Organic and Biomolecular Chemistry, 2015, 13, 697-701.	1.5	29
1079	Copper/Silverâ€Mediated Direct <i>ortho</i> â€Ethynylation of Unactivated (Hetero)aryl Cï£;H Bonds with Terminal Alkyne. Chemistry - A European Journal, 2015, 21, 205-209.	1.7	91
1080	Rhodium(<scp>iii</scp>)-catalyzed C–H/C–C activation sequence: vinylcyclopropanes as versatile synthons in direct C–H allylation reactions. Chemical Communications, 2015, 51, 77-80.	2.2	106
1081	Pd(<scp>ii</scp>)-catalyzed C–H arylation of aryl and benzyl Weinreb amides. Organic and Biomolecular Chemistry, 2015, 13, 353-356.	1.5	24
1082	Enantioselective Radical Alkynylation of C(sp ³)â€H Bonds Using Sulfoximine as a Traceless Chiral Auxiliary. Chemistry - an Asian Journal, 2015, 10, 120-123.	1.7	39
1084	Oxidation of Metal–Carbon Bonds. , 2016, , .		0
1085	Direct arylation catalysis with chloro[8-(dimesitylboryl)quinoline-κN]copper(I). Beilstein Journal of Organic Chemistry, 2016, 12, 2757-2762.	1.3	1
1086	Cationic Pd(II)-catalyzed C–H activation/cross-coupling reactions at room temperature: synthetic and mechanistic studies. Beilstein Journal of Organic Chemistry, 2016, 12, 1040-1064.	1.3	36
1087	Rh ^I -Catalyzed Cycloaddition between Allenyl π-Bonds and C-C Triple Bonds. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 1108-1118.	0.0	4
1088	Pd(<scp>ii</scp>)-catalyzed direct functionalization of C–H bonds of benzamides for synthesis of 1,1-difluoro-1-alkenes. Organic Chemistry Frontiers, 2016, 3, 1080-1083.	2.3	16
1089	Highâ€Valent Pentamethylcyclopentadienylcobalt(III) or â€iridium(III)â€Catalyzed CH Annulation with Alkynes: Synthesis of Heterocyclic Quaternary Ammonium Salts. Advanced Synthesis and Catalysis, 2016, 358, 2186-2191.	2.1	52
1090	Palladiumâ€Catalyzed Oxidative Carbonylation of Aromatic Câ^'H Bonds with Alcohols using Molybdenum Hexacarbonyl as the Carbon Monoxide Source. Advanced Synthesis and Catalysis, 2016, 358, 2855-2859.	2.1	25
1091	Nâ€Heterocyclic Carbeneâ€Catalyzed Synthesis of Multiâ€Substituted Benzenes from Enals and αâ€Cyanoâ€Î²â€methylenones. Advanced Synthesis and Catalysis, 2016, 358, 2862-2866.	2.1	53
1092	Catalytic C(sp 3)â^'H Arylation of Free Primary Amines with an exo Directing Group Generated Inâ€Situ. Angewandte Chemie, 2016, 128, 9230-9233.	1.6	51
1093	Catalytic C(sp ³)â^'H Arylation of Free Primary Amines with an <i>exo</i> Directing Group Generated Inâ€Situ. Angewandte Chemie - International Edition, 2016, 55, 9084-9087.	7.2	208
1094	Copperâ€Mediated <i>ortho</i> â€Arylation of Benzamides with Arylboronic Acid. Advanced Synthesis and Catalysis, 2016, 358, 509-514.	2.1	43
1095	Palladium atalyzed Câ€7 Selective CH Carbonylation of Indolines for Expedient Synthesis of Pyrroloquinazolinediones. Advanced Synthesis and Catalysis, 2016, 358, 1048-1053.	2.1	28
1096	Rhodium atalyzed Direct C–H Phosphorylation of (Hetero)arenes Suitable for Late‧tage Functionalization. Advanced Synthesis and Catalysis, 2016, 358, 1296-1301.	2.1	49

#	Article	IF	CITATIONS
1097	Ligandâ€Assisted Palladium(II)/(IV) Oxidation for <i>sp</i> ³ CH Fluorination. Advanced Synthesis and Catalysis, 2016, 358, 1946-1957.	2.1	20
1098	Transition-Metal-Catalyzed Direct Addition of Aryl C-H Bonds to Unsaturated Electrophiles. Chemical Record, 2016, 16, 1178-1190.	2.9	21
1099	Highâ€Valentâ€Cobaltâ€Catalyzed Câ^'H Functionalization Based on Concerted Metalation–Deprotonation and Singleâ€Electronâ€Transfer Mechanisms. ChemCatChem, 2016, 8, 1242-1263.	1.8	270
1100	A Preliminary Study of Diastereoselectivity in the Pd ^{II} â€Catalyzed C(sp ³)â€H Alkoxylation of Cyclic Systems. Chemistry - A European Journal, 2016, 22, 3273-3277.	1.7	16
1101	Copperâ€Catalyzed 8â€Amido Chelationâ€Induced Remote Câ^'H Amination of Quinolines. Chemistry - A European Journal, 2016, 22, 1592-1596.	1.7	81
1102	Rhodiumâ€Catalysed Enantioselective C–H Functionalization in Asymmetric Synthesis. European Journal of Organic Chemistry, 2016, 2016, 1459-1475.	1.2	50
1103	Design and Synthesis of 2â€Methylâ€7â€aminobenzoxazole as Auxiliary in the Palladium(II)â€Catalyzed Arylation of a <i>beta</i> â€Positioned C(<i>sp</i> ³)H Bond. Advanced Synthesis and Catalysis, 2016, 358, 887-893.	2.1	21
1104	Pdâ€Catalyzed Lateâ€Stage Monoacetoxylation and Monoiodination of 4â€Alkylâ€1,5â€diarylâ€1 <i>H</i> â€pyrazoleâ€3â€carboxylates via Direct Csp ² â^'H Bond Act Journal of Organic Chemistry, 2016, 5, 499-505.	tiva ti øn. A	sian4
1105	Palladiumâ€Catalyzed Directed <i>para</i> Câ^'H Functionalization of Phenols. Angewandte Chemie, 2016, 128, 7882-7886.	1.6	39
1106	Photoinduced Copperâ€Catalyzed Câ^'H Arylation at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 4759-4762.	7.2	129
1107	Nickelâ€Catalyzed Borylation of Aryl and Benzyl 2â€Pyridyl Ethers: A Method for Converting a Robust <i>ortho</i> â€Directing Group. Advanced Synthesis and Catalysis, 2016, 358, 2417-2421.	2.1	51
1108	Photoinduced Copper atalyzed Câ^'H Arylation at Room Temperature. Angewandte Chemie, 2016, 128, 4837-4840.	1.6	36
1109	Ligand-Promoted <i>Meta</i> -C–H Arylation of Anilines, Phenols, and Heterocycles. Journal of the American Chemical Society, 2016, 138, 9269-9276.	6.6	216
1110	Palladiumâ€Catalyzed Directed <i>para</i> Câ^H Functionalization of Phenols. Angewandte Chemie - International Edition, 2016, 55, 7751-7755.	7.2	184
1111	Nâ€Heterocyclic Carbene Ligandâ€Enabled C(sp ³)â^'H Arylation of Piperidine and Tetrahydropyran Derivatives. Chemistry - A European Journal, 2016, 22, 4748-4752.	1.7	56
1112	Copper(II)/Silver(I)â€Catalyzed Sequential Alkynylation and Annulation of Aliphatic Amides with Alkynyl Carboxylic Acids: Efficient Synthesis of Pyrrolidones. Advanced Synthesis and Catalysis, 2016, 358, 792-807.	2.1	44
1113	Copperâ€Catalyzed or â€Mediated CH Bond Functionalizations Assisted by Bidentate Directing Groups. Advanced Synthesis and Catalysis, 2016, 358, 1174-1194.	2.1	209
1114	Palladiumâ€Catalyzed C(sp ³)â^H Functionalization at the C3 Position of <scp>l</scp> â€Pipecolinic Acid Derivatives. Asian Journal of Organic Chemistry, 2016, 5, 608-612.	1.3	31

#	Article	IF	CITATIONS
1115	Regioselective catalytic alkylation of <i>N</i> -heterocycles in continuous flow. Journal of Flow Chemistry, 2016, 6, 117-122.	1.2	6
1116	Eine einfache und vielseitige dirigierende Amidgruppe zur Funktionalisierung von Câ€Hâ€Bindungen. Angewandte Chemie, 2016, 128, 10734-10756.	1.6	135
1117	A Domino Oxidation/Arylation/Protodecarboxylation Reaction of Salicylaldehydes: Expanded Access to <i>meta</i> â€Arylphenols. Chemistry - an Asian Journal, 2016, 11, 347-350.	1.7	34
1118	Lightâ€Stable Silver Nâ€Heterocyclic Carbene Catalysts for the Alkynylation of Ketones in Air. ChemCatChem, 2016, 8, 209-213.	1.8	29
1119	Ligand-Controlled Monoselective <i>C</i> -Aryl Glycoside Synthesis via Palladium-Catalyzed C–H Functionalization of <i>N</i> -Quinolyl Benzamides with 1-lodoglycals. Organic Letters, 2016, 18, 1836-1839.	2.4	69
1120	Fast and Selective Dehydrogenative C–H/C–H Arylation Using Mechanochemistry. ACS Catalysis, 2016, 6, 3890-3894.	5.5	104
1121	Metal-free cross-dehydrogenative coupling of aryl aldehydes to give symmetrical carboxylic anhydrides promoted by the TBHP/nBu4PBr system. Tetrahedron Letters, 2016, 57, 3071-3074.	0.7	11
1122	5-Methylisoxazole-3-carboxamide-Directed Palladium-Catalyzed γ-C(sp ³)–H Acetoxylation and Application to the Synthesis of γ-Mercapto Amino Acids for Native Chemical Ligation. Organic Letters, 2016, 18, 2696-2699.	2.4	30
1123	Nickel-Catalyzed Reaction of C–H Bonds in Amides with I ₂ : <i>ortho</i> -lodination via the Cleavage of C(sp ²)–H Bonds and Oxidative Cyclization to β-Lactams via the Cleavage of C(sp ³)–H Bonds. ACS Catalysis, 2016, 6, 4323-4329.	5.5	119
1124	A breathing MOF: direct crystallographic observation of the site-selective C(sp ³)–H functionalization. RSC Advances, 2016, 6, 51936-51940.	1.7	9
1125	Mechanistic insight into Cu/Ag-cocatalyzed C–H activation of arenes with oxygen as the terminal oxidant. RSC Advances, 2016, 6, 35855-35858.	1.7	5
1126	Positional Selectivity in C–H Functionalizations of 2-Benzylfurans with Bimetallic Catalysts. Journal of the American Chemical Society, 2016, 138, 4260-4266.	6.6	53
1127	[RuCl ₂ (η ⁶ -p-cymene)] complexes bearing phosphinous acid ligands: preparation, application in C–H bond functionalization and mechanistic investigations. Dalton Transactions, 2016, 45, 6491-6502.	1.6	30
1128	Direct Observation of C–H Cyclopalladation at Tertiary Positions Enabled by an Exo-Directing Group. Organometallics, 2016, 35, 1057-1059.	1.1	29
1129	Palladium-Catalyzed Carbamate-Directed Regioselective Halogenation: A Route to Halogenated Anilines. Journal of Organic Chemistry, 2016, 81, 3868-3876.	1.7	56
1130	Mechanism of Ruthenium-Catalyzed Direct Arylation of C–H Bonds in Aromatic Amides: A Computational Study. Organometallics, 2016, 35, 1440-1445.	1.1	39
1131	Rhodium(II)-Catalyzed C–H Functionalization of Electron-Deficient Methyl Groups. Journal of the American Chemical Society, 2016, 138, 5761-5764.	6.6	41
1132	Pd-Catalyzed Intramolecular Heck Reaction, C(sp ²)–H Activation, 1,4-Pd Migration, and Aminopalladation: Chemoselective Synthesis of Dihydroindeno[1,2,3- <i>kl</i>]acridines and 3-Arylindoles. Organic Letters, 2016, 18, 2379-2382.	2.4	48

#	Article	IF	CITATIONS
1133	Metal and Metal Oxide Nanoparticles: A Lever for C–H Functionalization. ACS Catalysis, 2016, 6, 3537-3552.	5.5	86
1134	Copper-promoted site-selective carbonylation of sp ³ and sp ² C–H bonds with nitromethane. Chemical Science, 2016, 7, 5260-5264.	3.7	48
1135	Synthesis of 2-trifluoromethylquinolines via copper-mediated intramolecular oxidative cyclization of N-(2-alkenylaryl) enamines. RSC Advances, 2016, 6, 48767-48773.	1.7	10
1136	Main Group Lewis Acid-Mediated Transformations of Transition-Metal Hydride Complexes. Chemical Reviews, 2016, 116, 8873-8911.	23.0	114
1137	Orthogonal Palladium atalyzed Direct Câ^'H Bond Arylation of Heteroaromatics with Aryl Halides. ChemCatChem, 2016, 8, 3183-3194.	1.8	51
1138	A unified synthesis of cyclic ethers or lactones via Pd-catalyzed intramolecular O -functionalization of sp 3 C H bonds. Tetrahedron Letters, 2016, 57, 4544-4548.	0.7	15
1139	Rhodium(III)-Catalyzed Site-Selective C–H Alkylation and Arylation of Pyridones Using Organoboron Reagents. Organic Letters, 2016, 18, 5376-5379.	2.4	64
1140	Recyclable Pd(II)complex catalyzed oxidative sp2 CH bond acylation of 2-aryl pyridines with toluene derivatives. Journal of Organometallic Chemistry, 2016, 822, 189-195.	0.8	12
1141	Divergent and Stereoselective Synthesis of βâ€Silylâ€Î±â€Amino Acids through Palladiumâ€Catalyzed Intermolecular Silylation of Unactivated Primary and Secondary Câ^'H Bonds. Angewandte Chemie, 2016, 128, 14063-14066.	1.6	36
1142	Divergent and Stereoselective Synthesis of βâ€Silylâ€Î±â€Amino Acids through Palladiumâ€Catalyzed Intermolecular Silylation of Unactivated Primary and Secondary Câ°'H Bonds. Angewandte Chemie - International Edition, 2016, 55, 13859-13862.	7.2	125
1143	Regioselective Synthesis of Benzo[<i>b</i>]phosphole Derivatives via Direct <i>ortho</i> -Alkenylation and Cyclization of Arylthiophosphinamides. Organic Letters, 2016, 18, 5436-5439.	2.4	41
1144	Carboxylic Acids as Directing Groups for Câ^'H Bond Functionalization. Chemistry - A European Journal, 2016, 22, 18654-18677.	1.7	258
1145	Facile Synthesis of [1,2,3]Triazolo[5,1â€ <i>a</i>]isoquinolines through a Copper atalyzed Tandem Sonogashira Coupling/Cyclization Reaction. European Journal of Organic Chemistry, 2016, 2016, 5470-5473.	1.2	27
1146	Multicomponent reaction comprising one-pot installation of bidentate directing group and Pd(II)-catalyzed direct β-arylation of C(sp3) H bond of aliphatic and alicyclic carboxamides. Tetrahedron, 2016, 72, 5853-5863.	1.0	12
1147	Advances in the development of catalytic tethering directing groups for C–H functionalization reactions. Organic and Biomolecular Chemistry, 2016, 14, 8389-8397.	1.5	70
1148	Copper-Catalyzed Intramolecular Benzylic C–H Amination for the Synthesis of Isoindolinones. Journal of Organic Chemistry, 2016, 81, 7675-7684.	1.7	71
1149	Aerobic Direct C(sp2)-H Hydroxylation of 2-Arylpyridines by Palladium Catalysis Induced with Aldehyde Auto-Oxidation. ACS Catalysis, 2016, 6, 6050-6054.	5.5	66
1150	Direct C–H Arylation of Heteroarenes with Copper Impregnated on Magnetite as a Reusable Catalyst: Evidence for CuO Nanoparticle Catalysis in Solution. ACS Catalysis, 2016, 6, 5954-5961.	5.5	60

#	Article	IF	CITATIONS
1151	C–H functionalization of amines with aryl halides by nickel-photoredox catalysis. Chemical Science, 2016, 7, 7002-7006.	3.7	141
1152	Palladium(II)-Promoted Directing Group-Enabled Regioselective C-H Arylation of The C-3 Position of 2- or 3-(Aminoalkyl)-Thiophene and Furfurylamine Derivatives. ChemistrySelect, 2016, 1, 1207-1219.	0.7	16
1153	Cobalt-catalyzed C–H olefination of aromatics with unactivated alkenes. Chemical Communications, 2016, 52, 10533-10536.	2.2	71
1154	Palladiumâ€Catalyzed Directed C(sp ³)–H Arylation of Saturated Heterocycles at Câ€3 Using a Concise Optimization Approach. European Journal of Organic Chemistry, 2016, 2016, 139-149.	1.2	66
1155	Cobalt-Catalyzed C(sp ²)-H Borylation: Mechanistic Insights Inspire Catalyst Design. Journal of the American Chemical Society, 2016, 138, 10645-10653.	6.6	116
1156	A Simple and Versatile Amide Directing Group for Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2016, 55, 10578-10599.	7.2	533
1157	Nickel-Catalyzed <i>Ortho-</i> Arylation of Unactivated (Hetero)aryl C–H Bonds with Arylsilanes Using a Removable Auxiliary. Organic Letters, 2016, 18, 4586-4589.	2.4	63
1158	Ruthenium-Catalyzed Cross-Coupling of Maleimides with Alkenes. Organic Letters, 2016, 18, 4598-4601.	2.4	28
1160	Cobaltâ€Catalyzed sp ² â€Câ^'H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature. Angewandte Chemie, 2016, 128, 12549-12553.	1.6	38
1161	Cobaltâ€Catalyzed sp ² â€Câ^'H Activation: Intermolecular Heterocyclization with Allenes at Room Temperature. Angewandte Chemie - International Edition, 2016, 55, 12361-12365.	7.2	144
1162	Synthesis of Cyclopentadienols by Rhodium-Catalyzed C–H Activation of 8-Formylquinolines and [2+2+1] Carbocyclization with Alkynes. ACS Catalysis, 2016, 6, 6372-6376.	5.5	25
1163	Functionalization of Quinolines through Copper atalyzed Regioselective Halogenation Reaction. ChemistrySelect, 2016, 1, 1949-1953.	0.7	30
1164	Synthesis of ortho-arylated/benzylated arylacetamide derivatives: Pd(OAc)2-catalyzed bidentate ligand-aided arylation and benzylation of the γ-CH bond of arylacetamides. Tetrahedron, 2016, 72, 5886-5897.	1.0	17
1165	Reaching the south: metal-catalyzed transformation of the aromatic para-position. Chemical Communications, 2016, 52, 12398-12414.	2.2	132
1166	Site-Selective Alkenylation of Β-C(sp ³)–H Bonds with Alkynes via a Six-Membered Palladacycle. Journal of the American Chemical Society, 2016, 138, 10750-10753.	6.6	173
1167	Copper-mediated etherification of arenes with alkoxysilanes directed by an (2-aminophenyl)pyrazole group. RSC Advances, 2016, 6, 79361-79365.	1.7	20
1169	Rhodium(III)-catalyzed Mono- and Dialkenylation of <i>N</i> -Phenyl-7-azaindoles via Regioselective C–H Bond Cleavage. Chemistry Letters, 2016, 45, 682-684.	0.7	8
1170	Synthesis of Benzobis- and Benzotrisbenzofurans by Palladium-Catalyzed Multiple Intramolecular C–H/C–H Coupling. Chemistry Letters, 2016, 45, 1069-1071.	0.7	31

#	Article	IF	Citations
1171	Easy Access to Difluoromethyleneâ€Containing Arene Analogues through Palladiumâ€Catalysed C–H Olefination. European Journal of Organic Chemistry, 2016, 2016, 5529-5538.	1.2	9
1172	Iridium-Catalyzed Direct ortho-C–H Amidation of Benzaldehydes through <i>N</i> -Sulfonyl Imines as Mask. Organic Letters, 2016, 18, 4924-4927.	2.4	43
1173	Highly selective synthesis of 6-substituted benzothiophenes by Sc(OTf) ₃ -catalyzed intermolecular cyclization and sulfur migration. Organic Chemistry Frontiers, 2016, 3, 1619-1623.	2.3	22
1174	Photochemical Nickel-Catalyzed C–H Arylation: Synthetic Scope and Mechanistic Investigations. Journal of the American Chemical Society, 2016, 138, 12715-12718.	6.6	399
1175	Directing Group in Decarboxylative Cross-Coupling: Copper-Catalyzed Site-Selective C–N Bond Formation from Nonactivated Aliphatic Carboxylic Acids. Journal of the American Chemical Society, 2016, 138, 9714-9719.	6.6	72
1176	Rhodium-Catalyzed C6-Selective C–H Borylation of 2-Pyridones. Organic Letters, 2016, 18, 3742-3745.	2.4	58
1177	Palladium(II)-Catalyzed Oxidative Difunctionalization of Alkenes: Bond Forming at a High-Valent Palladium Center. Accounts of Chemical Research, 2016, 49, 2413-2423.	7.6	563
1178	Cobalt-Catalyzed Monoselective <i>Ortho</i> -C–H Functionalization of Carboxamides with Organoaluminum Reagent. Organic Letters, 2016, 18, 5628-5631.	2.4	37
1179	Synthesis of Difluorinated Enynes through Sonogashira-Type Coupling. Organic Letters, 2016, 18, 5688-5691.	2.4	30
1180	Palladium N-heterocyclic carbene catalyzed expected and unexpected C–C and C–N functionalization reactions of 1-aryl-3-methyl-1H-pyrazol-5(4H)-ones. RSC Advances, 2016, 6, 111139-111143.	1.7	10
1181	Primary Amide Directed Regioselective <i>ortho</i> -C–H-Arylation of (Aryl)Acetamides. Journal of Organic Chemistry, 2016, 81, 12499-12505.	1.7	38
1182	Pd-Catalyzed γ-C(sp ³)–H Arylation of Free Amines Using a Transient Directing Group. Journal of the American Chemical Society, 2016, 138, 14554-14557.	6.6	215
1183	Palladium(II)/copper(I)-catalyzed sequential CH arylation and oxidative CN bond cleavage of aryl sulfonamino acids: Efficient one-pot synthesis of primary biaryl sulfonamides. Tetrahedron, 2016, 72, 8382-8386.	1.0	3
1184	Remote meta C–H bond functionalization of 2-phenethylsulphonic acid and 3-phenylpropanoic acid derivatives. Chemical Communications, 2016, 52, 13916-13919.	2.2	56
1185	Transition metal-free intramolecular regioselective couplings of aliphatic and aromatic C-H bonds. Scientific Reports, 2016, 6, 19931.	1.6	16
1186	Stereoselective alkoxycarbonylation of unactivated C(sp3)–H bonds with alkyl chloroformates via Pd(II)/Pd(IV) catalysis. Nature Communications, 2016, 7, 12901.	5.8	66
1187	Benzylation of heterocyclic N-oxides via direct oxidative cross-dehydrogenative coupling with toluene derivatives. New Journal of Chemistry, 2016, 40, 10227-10232.	1.4	21
1188	Ligand Promoted <i>meta</i> -C–H Chlorination of Anilines and Phenols. Journal of the American Chemical Society, 2016, 138, 14876-14879.	6.6	100

#	Article	IF	CITATIONS
1189	Palladiumâ€Catalyzed Monoâ€Selective <i>ortho</i> Cï£;H Arylation of Aryl Sulfonamides in Water: A Concise Access to Biaryl Sulfoamide Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1968-1974.	2.1	28
1190	Palladiumâ€Catalyzed Remote <i>ortho</i> â€CH Alkenylation of Alkyl Aryl Sulfones: Access to Densely Functionalized Indane Derivatives. Advanced Synthesis and Catalysis, 2016, 358, 1065-1072.	2.1	18
1191	A Powerful Method for the Direct Arylation of Furans at a Sterically Congested Câ [~] 'H Bond. Asian Journal of Organic Chemistry, 2016, 5, 466-469.	1.3	8
1192	Domino Carbopalladation/CH Functionalization Sequence: An Expedient Synthesis of Bisâ€Heteroaryls through Transient Alkyl/Vinyl–Palladium Species Capture. Chemistry - A European Journal, 2016, 22, 481-485.	1.7	52
1193	Rh(III)-Catalyzed C–C/C–N Coupling of Imidates with α-Diazo Imidamide: Synthesis of Isoquinoline-Fused Indoles. Organic Letters, 2016, 18, 2914-2917.	2.4	84
1194	Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C–C/C–N Coupling of Bifunctional Substrates. Organic Letters, 2016, 18, 2812-2815.	2.4	128
1195	Catalytic Reductive <i>ortho</i> -C–H Silylation of Phenols with Traceless, Versatile Acetal Directing Groups and Synthetic Applications of Dioxasilines. Journal of the American Chemical Society, 2016, 138, 7982-7991.	6.6	84
1196	Synthesis of β-acetoxy alcohols by PhI(OAc) ₂ -mediated metal-free diastereoselective β-acetoxylation of alcohols. Organic and Biomolecular Chemistry, 2016, 14, 6795-6803.	1.5	9
1197	Recent advances in copper-mediated chelation-assisted functionalization of unactivated C–H bonds. Organic Chemistry Frontiers, 2016, 3, 1028-1047.	2.3	230
1198	A fluorous ethylenediamine promoted direct C H arylation of unactivated arenes with aryl halides. Journal of Fluorine Chemistry, 2016, 188, 10-13.	0.9	2
1199	Nickel(<scp>ii</scp>)-catalyzed direct arylation of aryl C–H bonds with aryl-boron reagents directed by a removable bidentate auxiliary. Organic Chemistry Frontiers, 2016, 3, 897-900.	2.3	30
1200	Cu(<scp>ii</scp>)-catalyzed C6-selective C–H thiolation of 2-pyridones using air as the oxidant. RSC Advances, 2016, 6, 57441-57445.	1.7	48
1201	Fluorescence Quenching in BODIPYs Having Ir―and Rhâ€Tethered Complexes. European Journal of Inorganic Chemistry, 2016, 2016, 844-852.	1.0	11
1202	(Pentamethylcyclopentadienyl)cobalt(III)â€Catalyzed Oxidative [4+2] Annulation of NH Imines with Alkynes: Straightforward Synthesis of Multisubstituted Isoquinolines. Advanced Synthesis and Catalysis, 2016, 358, 1705-1710.	2.1	62
1203	An Approach to Fiveâ€Membered Lactams from Aliphatic Amides and Terminal Acetylenes by Nickel Catalysis. Advanced Synthesis and Catalysis, 2016, 358, 1778-1793.	2.1	33
1204	Catalystâ€Free Threeâ€Component Tandem CDC Cyclization: Convenient Access to Isoindolinones from Aromatic Acid, Amides, and DMSO by a Pummererâ€Type Rearrangement. Chemistry - A European Journal, 2016, 22, 6262-6267.	1.7	29
1205	The mechanism of palladium(II)-mediated C–H cleavage with mono- <i>N</i> -protected amino acid (MPAA) ligands: origins of rate acceleration. Pure and Applied Chemistry, 2016, 88, 119-138.	0.9	72
1206	Regioselectivity in palladium-catalysed direct arylation of 5-membered ring heteroaromatics. Catalysis Science and Technology, 2016, 6, 2005-2049.	2.1	190

#	Article	IF	CITATIONS
1207	Functionalization of C(sp ³)–H bonds using a transient directing group. Science, 2016, 351, 252-256.	6.0	588
1208	Access to Different Isomeric Dibenzoxazepinones through Copper-Catalyzed C–H Etherification and C–N Bond Construction with Controllable Smiles Rearrangement. Organic Letters, 2016, 18, 380-383.	2.4	29
1209	Pd(<scp>ii</scp>)-catalyzed β-C–H arylation of O-methyl ketoximes with iodoarenes. Organic Chemistry Frontiers, 2016, 3, 380-384.	2.3	25
1210	Mechanistic Insights into the Initiation Step of the Base Promoted Direct C–H Arylation of Benzene in the Presence of Additive. Journal of Organic Chemistry, 2016, 81, 632-639.	1.7	38
1211	Evolution of C–H Bond Functionalization from Methane to Methodology. Journal of the American Chemical Society, 2016, 138, 2-24.	6.6	632
1212	Palladium-catalyzed C–H bond carboxylation of acetanilides: an efficient usage of N,N-dimethyloxamic acid as the carboxylate source. Chemical Communications, 2016, 52, 1286-1289.	2.2	15
1213	Regioselective α-arylation of coumarins and 2-pyridones with phenylhydrazines under transition-metal-free conditions. RSC Advances, 2016, 6, 109-118.	1.7	53
1214	Synthesis of chiral α-hydroxy acids via palladium-catalyzed C(sp ³)–H alkylation of lactic acid. Chemical Communications, 2016, 52, 1915-1918.	2.2	23
1215	Palladium-catalyzed C(sp ³)–H arylation of lactic acid: efficient synthesis of chiral β-aryl-α-hydroxy acids. Organic Chemistry Frontiers, 2016, 3, 204-208.	2.3	17
1216	Catechol oxidase and phenoxazinone synthase: Biomimetic functional models and mechanistic studies. Coordination Chemistry Reviews, 2016, 310, 80-115.	9.5	202
1217	Synthesis, regioselective aerobic Pd(ii)-catalyzed C–H bond alkenylation and the photophysical properties of pyrenylphenylpyrazoles. Photochemical and Photobiological Sciences, 2016, 15, 580-588.	1.6	6
1218	C–H Bond Functionalization of Benzoxazoles with Chromium(0) Fischer Carbene Complexes. Organometallics, 2016, 35, 1409-1414.	1.1	12
1219	Low-valent cobalt-catalyzed C–H allylation. Organic Chemistry Frontiers, 2016, 3, 673-677.	2.3	19
1220	Palladium-catalyzed decarboxylative ortho-acylation of N-nitrosoanilines with α-oxocarboxylic acids. Tetrahedron Letters, 2016, 57, 1687-1690.	0.7	26
1221	Pd(<scp>ii</scp>) pincer type complex catalyzed tandem C–H and N–H activation of acetanilide in aqueous media: a concise access to functionalized carbazoles in a single step. Green Chemistry, 2016, 18, 3295-3301.	4.6	39
1222	lr(<scp>iii</scp>)-catalyzed C–H alkynylation of arenes under chelation assistance. Organic and Biomolecular Chemistry, 2016, 14, 2898-2904.	1.5	24
1223	Pd-Catalyzed α-Selective C–H Functionalization of Olefins: En Route to 4-Imino-β-Lactams. Journal of the American Chemical Society, 2016, 138, 2146-2149.	6.6	69
1224	Unveiling Secrets of Overcoming the "Heteroatom Problem―in Palladium-Catalyzed Aerobic C–H Functionalization of Heterocycles: A DFT Mechanistic Study. Journal of the American Chemical Society, 2016, 138, 2712-2723.	6.6	65

#	Article	IF	CITATIONS
1225	Ruthenium-Catalyzed Regioselective C–H Bond Acetoxylation on Carbazole and Indole Frameworks. Organic Letters, 2016, 18, 1150-1153.	2.4	85
1226	Intermolecular cyclization of N-methylanilines and maleimides to tetrahydroquinolines via K2S2O8 promoted C(sp3)–H activation. Tetrahedron Letters, 2016, 57, 1489-1491.	0.7	29
1227	Control over Organometallic Intermediate Enables Cp*Co(III) Catalyzed Switchable Cyclization to Quinolines and Indoles. ACS Catalysis, 2016, 6, 2352-2356.	5.5	151
1228	Palladium-catalyzed arylation of β-methylene C(sp3)–H bonds at room temperature: desymmetrization of simple cycloalkyl carboxylic acids. Organic Chemistry Frontiers, 2016, 3, 561-564.	2.3	29
1229	Unraveling innate substrate control in site-selective palladium-catalyzed C–H heterocycle functionalization. Chemical Science, 2016, 7, 3900-3909.	3.7	58
1230	Nickel-catalyzed ortho-halogenation of unactivated (hetero)aryl C–H bonds with lithium halides using a removable auxiliary. Chemical Communications, 2016, 52, 4934-4937.	2.2	74
1231	A Computational Mechanistic Study of Amidation of Quinoline N-Oxide: The Relative Stability of Amido Insertion Intermediates Determines the Regioselectivity. ACS Catalysis, 2016, 6, 2452-2461.	5.5	39
1232	Half-sandwich rhodium and iridium metallamacrocycles constructed via C–H activation. Dalton Transactions, 2016, 45, 7014-7021.	1.6	4
1233	Palladium–Silver Cooperativity in an Aryl Amination Reaction through C–H Functionalization. ACS Catalysis, 2016, 6, 696-708.	5.5	68
1234	Metal-Free CH–CH-Type Cross-Coupling of Arenes and Alkynes Directed by a Multifunctional Sulfoxide Group. Journal of the American Chemical Society, 2016, 138, 790-793.	6.6	106
1235	Palladium-catalyzed direct C–H arylation of 3-aryl-2H-benzo[1,2,4]thiadiazine 1,1-dioxides: an efficient strategy to the synthesis of benzothiadiazine-1,1-dioxide derivatives. Organic and Biomolecular Chemistry, 2016, 14, 1921-1924.	1.5	10
1236	Rhenium and base co-catalyzed [3 + 2] annulations of N–H ketimines and alkynes to access unprotected tertiary indenamines through C–H bond activation. Organic Chemistry Frontiers, 2016, 3, 268-272.	2.3	38
1237	Ligand-Promoted Pd(II)-Catalyzed Functionalization of Unactivated C(sp ³)–H Bond: Regio- and Stereoselective Synthesis of Arylated Rimantadine Derivatives. ACS Catalysis, 2016, 6, 769-774.	5.5	24
1238	Recent advances of remote selective C–H activation: Ligand and template design. Chinese Journal of Catalysis, 2016, 37, 98-101.	6.9	8
1239	Synthesis of cinnolines via Rh(<scp>iii</scp>)-catalysed dehydrogenative C–H/N–H functionalization: aggregation induced emission and cell imaging. Organic and Biomolecular Chemistry, 2016, 14, 1958-1968.	1.5	55
1240	Efficient and recyclable Cu2(BPDC)2(DABCO)-catalyzed direct amination of activated sp3 C H bonds by N–H heterocycles. Applied Catalysis A: General, 2016, 510, 27-33.	2.2	27
1241	Haloalkyne Chemistry. Springer Briefs in Molecular Science, 2016, , .	0.1	17
1242	Reactions of Haloalkynes. Springer Briefs in Molecular Science, 2016, , 9-76.	0.1	1

#	Article	IF	CITATIONS
1243	Sequential meta-C–H olefination of synthetically versatile benzyl silanes: effective synthesis of meta-olefinated toluene, benzaldehyde and benzyl alcohols. Chemical Communications, 2016, 52, 2027-2030.	2.2	87
1244	Copper-catalyzed direct C–H fluoroalkenylation of heteroarenes. Organic and Biomolecular Chemistry, 2016, 14, 353-357.	1.5	15
1245	Copper mediated decarboxylative direct C–H arylation of heteroarenes with benzoic acids. Chemical Communications, 2016, 52, 1432-1435.	2.2	86
1246	Unprecedented copper-mediated oxidative demethylation of propionamides via bidentate-chelation assistance. Chemical Communications, 2016, 52, 1242-1245.	2.2	5
1247	A bio-inspired synthesis of oxindoles by catalytic aerobic dual C–H functionalization of phenols. Chemical Science, 2016, 7, 358-369.	3.7	32
1248	Role of Silver Salts in Palladium-Catalyzed Arene and Heteroarene C–H Functionalization Reactions. Organometallics, 2017, 36, 165-171.	1.1	151
1249	Palladium-Catalyzed β-C–H Arylation of Alkyl Carboxamides with Sterically Hindered Aryl Iodides Using <i>ortho</i> -Sulfinyl Aniline Auxiliaries. ACS Catalysis, 2017, 7, 1880-1885.	5.5	35
1250	Palladium-catalyzed interannular meta-C–H arylation. Chemical Communications, 2017, 53, 2166-2169.	2.2	37
1251	Metal–Organic Cooperative Catalysis in C–H and C–C Bond Activation. Chemical Reviews, 2017, 117, 8977-9015.	23.0	525
1252	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774.	2.9	78
1252 1253	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824.	2.9 0.7	78
1252 1253 1254	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824. Oxidative C–H/C–H Coupling Reactions between Two (Hetero)arenes. Chemical Reviews, 2017, 117, 8787-8863.	2.9 0.7 23.0	78 142 925
1252 1253 1254 1255	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824. Oxidative C–H/C–H Coupling Reactions between Two (Hetero)arenes. Chemical Reviews, 2017, 117, 8787-8863. Remote C(sp ³)–H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Organic Letters, 2017, 19, 572-575.	2.9 0.7 23.0 2.4	78 142 925 63
1252 1253 1254 1255 1255	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774.Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824.Oxidative Câ€"H/Câ€"H Coupling Reactions between Two (Hetero)arenes. Chemical Reviews, 2017, 117, 8787-8863.Remote C(sp ³)â€"H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Organic Letters, 2017, 19, 572-575.Cobalt(II)-Catalyzed Oxidative Câ€"H Arylation of Indoles and Boronic Acids. Organic Letters, 2017, 19, 596-599.	2.9 0.7 23.0 2.4 2.4	 78 142 925 63 94
1252 1253 1254 1255 1255 1256	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824. Oxidative C–H/C—H Coupling Reactions between Two (Hetero)arenes. Chemical Reviews, 2017, 117, 8787-8863. Remote C(sp ³)–H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Organic Letters, 2017, 19, 572-575. Cobalt(II)-Catalyzed Oxidative C–H Arylation of Indoles and Boronic Acids. Organic Letters, 2017, 19, 596-599. TBHP Promoted Crossâ€Dehydrogenative coupling (CDC) Reaction: Metal/Additiveâ€Free Synthesis of Chromoneâ€Fused Quinolines. ChemistrySelect, 2017, 2, 1207-1210.	2.9 0.7 23.0 2.4 2.4 0.7	 78 142 925 63 94 23
1252 1253 1254 1255 1256 1257	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824. Oxidative C–H/C–H Coupling Reactions between Two (Hetero)arenes. Chemical Reviews, 2017, 117, 8787-8863. Remote C(sp ³)〓H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Organic Letters, 2017, 19, 572-575. Cobalt(II)-Catalyzed Oxidative C–H Arylation of Indoles and Boronic Acids. Organic Letters, 2017, 19, 596-599. TBHP Promoted Crossâ€Dehydrogenative coupling (CDC) Reaction: Metal/Additiveâ€Free Synthesis of Chromoneâ€Fused Quinolines. ChemistrySelect, 2017, 2, 1207-1210. Rh(III)-Catalyzed <i>meta</i> >C–H Olefination Directed by a Nitrile Template. Journal of the American Chemical Society, 2017, 139, 2200-2203.	2.9 0.7 23.0 2.4 2.4 0.7 6.6	 78 142 925 63 94 23 126
1252 1253 1254 1255 1256 1257 1258	Functionalization of C-H Bonds by Photoredox Catalysis. Chemical Record, 2017, 17, 754-774. Recent advancements in dehydrogenative cross coupling reactions for CC bond formation. Tetrahedron Letters, 2017, 58, 803-824. Oxidative C–H/C–H Coupling Reactions between Two (Hetero)arenes. Chemical Reviews, 2017, 117, 8787-8863. Remote C(sp ³)—H Oxygenation of Protonated Aliphatic Amines with Potassium Persulfate. Organic Letters, 2017, 19, 572-575. Cobalt/(II)-Catalyzed Oxidative C–H Arylation of Indoles and Boronic Acids. Organic Letters, 2017, 19, 596-599. TBHP Promoted Crossâ€Dehydrogenative coupling (CDC) Reaction: Metal/Additiveâ€Free Synthesis of Chromoneâ€Fused Quinolines. ChemistrySelect, 2017, 2, 1207-1210. Rh(III)-Catalyzed <\>meta Rh(III)-Catalyzed Regioselective Direct Hydroxymethylation of (Hetero)Arenes via C–H Activation. Organic Letters, 2017, 19, 1216-1219.	2.9 0.7 23.0 2.4 2.4 0.7 6.6 2.4	 78 142 925 63 94 23 126 47

#	Article	IF	CITATIONS
1262	Manganese-catalyzed allylation via sequential C–H and C–C/C–Het bond activation. Chemical Science, 2017, 8, 3379-3383.	3.7	157
1263	Pd(II)-Catalyzed Enantioselective C(sp ³)–H Borylation. Journal of the American Chemical Society, 2017, 139, 3344-3347.	6.6	185
1264	Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature, 2017, 543, 538-542.	13.7	238
1265	Copper-Catalyzed Remote C–H Functionalizations of Naphthylamides through a Coordinating Activation Strategy and Single-Electron-Transfer (SET) Mechanism. ACS Catalysis, 2017, 7, 2661-2667.	5.5	122
1266	Nickel-Catalyzed Stereoselective Alkenylation of C(sp ³)–H Bonds with Terminal Alkynes. Organic Letters, 2017, 19, 850-853.	2.4	49
1267	Goldâ€Oxazoline Complexâ€Catalyzed Crossâ€Dehydrogenative Coupling of Glycine Derivatives and Alkenes. Advanced Synthesis and Catalysis, 2017, 359, 824-831.	2.1	31
1268	Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles. Journal of the American Chemical Society, 2017, 139, 3537-3545.	6.6	229
1269	Palladium-Catalyzed C(sp ³)—H Oxygenation via Electrochemical Oxidation. Journal of the American Chemical Society, 2017, 139, 3293-3298.	6.6	305
1270	Manganese atalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie, 2017, 129, 3220-3224.	1.6	96
1271	Manganeseâ€Catalyzed Câ^'H Alkynylation: Expedient Peptide Synthesis and Modification. Angewandte Chemie - International Edition, 2017, 56, 3172-3176.	7.2	253
1272	Anion Induced Dediazotization of In Situ Generated Aniline Diazonium Compounds in Direct C–H Arylation of Heteroarenes: An Experimental and Computational Study. ChemistrySelect, 2017, 2, 1711-1716.	0.7	6
1273	Palladium-Catalyzed Direct Annulation of Benzoic Acids with Phenols to Synthesize Dibenzopyranones. Organic Letters, 2017, 19, 1326-1329.	2.4	34
1274	Palladium-catalyzed regioselective C–H fluoroalkylation of indoles at the C4-position. Chemical Communications, 2017, 53, 3945-3948.	2.2	93
1275	Rhodium(III)â€Catalyzed Controllable Câ~H Bond Functionalization of Benzamides and Vinylidenecyclopropanes: A Directing Group Determined Reaction Pathway. Advanced Synthesis and Catalysis, 2017, 359, 974-983.	2.1	30
1276	Ligand-Enabled Pd(II)-Catalyzed Bromination and Iodination of C(sp ³)–H Bonds. Journal of the American Chemical Society, 2017, 139, 5724-5727.	6.6	58
1277	Modular Approach to Tricyclic Heterocycles through Copper Catalysis and Functionalization by Palladiumâ€Catalyzed C–H Arylation. European Journal of Organic Chemistry, 2017, 2017, 2610-2614.	1.2	6
1278	Palladium-Catalyzed, <i>N</i> -(2-Aminophenyl)acetamide-Assisted <i>Ortho</i> -Arylation of Substituted Benzamides: Application to the Synthesis of Urolithins B, M6, and M7. Journal of Organic Chemistry, 2017, 82, 5080-5095.	1.7	40
1279	Synthesis of Diarylated 4â€Pyridylmethyl Ethers via Palladiumâ€Catalyzed Crossâ€Coupling Reactions. Advanced Synthesis and Catalysis, 2017, 359, 1927-1932.	2.1	10

#	Article	IF	CITATIONS
1280	β-Hydride Elimination and C–H Activation by an Iridium Acetate Complex, Catalyzed by Lewis Acids. Alkane Dehydrogenation Cocatalyzed by Lewis Acids and [2,6-Bis(4,4-dimethyloxazolinyl)-3,5-dimethylphenyl]iridium. Journal of the American Chemical Society, 2017, 139, 6338-6350.	6.6	38
1281	Cp*Rh(III)/Bicyclic Olefin Cocatalyzed C–H Bond Amidation by Intramolecular Amide Transfer. Journal of the American Chemical Society, 2017, 139, 6506-6512.	6.6	107
1282	Palladium-catalyzed sequential monoarylation/amidation of C(sp ³)–H bonds: stereoselective synthesis of α-amino-β-lactams and anti-α,β-diamino acid. Chemical Communications, 2017, 53, 6351-6354.	2.2	40
1283	Palladium(<scp>ii</scp>)-catalyzed ortho-C–H olefination of phenylalanine and phenylethylamine derivatives directed by removable picolinamide group. RSC Advances, 2017, 7, 25031-25040.	1.7	27
1284	Palladium-catalyzed benzofuran and indole synthesis by multiple C–H functionalizations. Chemical Communications, 2017, 53, 6544-6556.	2.2	119
1285	lridium-Catalyzed, Weakly Coordination-Assisted <i>Ortho</i> -Alkynylation of (Hetero)aromatic Carboxylic Acids without Cyclization. Organic Letters, 2017, 19, 2474-2477.	2.4	58
1286	Palladium-Catalyzed Transformations of Alkyl C–H Bonds. Chemical Reviews, 2017, 117, 8754-8786.	23.0	1,660
1287	Silver-catalyzed C2-selective direct alkylation of heteroarenes with tertiary cycloalkanols. Organic and Biomolecular Chemistry, 2017, 15, 324-327.	1.5	60
1288	Copper atalyzed Bromination of C(sp ³)â^'H Bonds Distal to Functional Groups. Angewandte Chemie, 2017, 129, 312-315.	1.6	30
1289	Copperâ€Catalyzed Bromination of C(sp ³)â^'H Bonds Distal to Functional Groups. Angewandte Chemie - International Edition, 2017, 56, 306-309.	7.2	101
1290	Palladium-catalyzed acid-free Fujiwara–Moritani alkenylation of 4-thiazolidinones. Molecular Diversity, 2017, 21, 1011-1020.	2.1	5
1291	Mechanistic Studies on Pd(MPAA)-Catalyzed Enantioselective C–H Activation Reactions. Springer Theses, 2017, , 83-110.	0.0	0
1292	Rhenium atalyzed Annulation Reactions. European Journal of Organic Chemistry, 2017, 2017, 3549-3564.	1.2	43
1293	Cp*Rh(III)â€Catalyzed Directed Câ~H Methylation and Arylation of Quinoline <i>N</i> â€Oxides at the Câ€8 Position. Advanced Synthesis and Catalysis, 2017, 359, 3029-3034.	2.1	69
1294	Carbon–Nitrogen Bond Formation Through Cross-Dehydrogenative Coupling Reactions. Advances in Organometallic Chemistry, 2017, , 401-481.	0.5	20
1295	General Approach to Five-Membered Nitrogen Heteroaryl <i>C</i> -Glycosides Using a Palladium/Copper Cocatalyzed C–H Functionalization Strategy. Organic Letters, 2017, 19, 3608-3611.	2.4	45
1296	Palladium-Catalyzed C(sp ²)–H Acetoxylation via Electrochemical Oxidation. Organic Letters, 2017, 19, 2905-2908.	2.4	131
1297	The Origins of Dramatic Differences in Five-Membered vs Six-Membered Chelation of Pd(II) on Efficiency of C(sp ³)–H Bond Activation. Journal of the American Chemical Society, 2017, 139, 8514-8521.	6.6	96

#	Article	IF	CITATIONS
1298	Sequential Nucleophilic <i>C</i> (sp ³)â€Benzylation/C(sp ²)–H Arylation for the Synthesis of Spiro[oxindoleâ€3,5′â€pyrrolo[2,1â€ <i>a</i>]isoquinolines]. European Journal of Organic Chemistry, 2017, 2017, 3179-3186.	1.2	13
1299	Nickel-Catalyzed C–H Silylation of Arenes with Vinylsilanes: Rapid and Reversible β-Si Elimination. Journal of the American Chemical Society, 2017, 139, 9401-9407.	6.6	42
1300	A unified strategy for silver-, base-, and oxidant-free direct arylation of C–H bonds. Green Chemistry, 2017, 19, 2111-2117.	4.6	36
1301	Control of axial chirality in absence of transition metals based on arynes. Comptes Rendus Chimie, 2017, 20, 682-692.	0.2	5
1302	Platinum-Catalyzed Double Acylation of 2-(Aryloxy)pyridines via Direct C–H Activation. Organic Letters, 2017, 19, 1606-1609.	2.4	29
1303	Pd-catalysed ligand-enabled carboxylate-directed highly regioselective arylation of aliphatic acids. Nature Communications, 2017, 8, 14904.	5.8	74
1304	Ligand-Promoted Direct C–H Arylation of Simple Arenes: Evidence for a Cooperative Bimetallic Mechanism. ACS Catalysis, 2017, 7, 3336-3343.	5.5	76
1305	Visible Light as a Sole Requirement for Intramolecular C(sp ³)–H Imination. Organic Letters, 2017, 19, 1994-1997.	2.4	60
1306	Polyethylene glycol (PEG) promoted hydrodehalogenation of aryl halides. Tetrahedron Letters, 2017, 58, 1673-1676.	0.7	10
1307	Copper-catalyzed oxidative C(sp ³)–H/C(sp ²)–H cross-coupling en route to carbocyclic rings. Chemical Science, 2017, 8, 3838-3842.	3.7	29
1308	Catalytic Arene <i>meta</i> -C–H Functionalization Exploiting a Quinoline-Based Template. ACS Catalysis, 2017, 7, 3162-3168.	5.5	90
1309	Large-Scale Selective Functionalization of Alkanes. Accounts of Chemical Research, 2017, 50, 620-626.	7.6	121
1310	Rhodium(III)-Catalyzed <i>Ortho</i> -Alkenylation of Anilines Directed by a Removable Boc-Protecting Group. Organic Letters, 2017, 19, 1800-1803.	2.4	31
1311	Palladium-Catalyzed β-Mesylation of Simple Amide via Primary sp ³ C–H Activation. Organic Letters, 2017, 19, 1768-1771.	2.4	30
1312	Stereoselective synthesis of (â^')-3-PPP through palladium-catalysed unactivated C(sp3)–H arylation at the C-3 position of l-pipecolinic acid. Tetrahedron Letters, 2017, 58, 606-609.	0.7	16
1313	Palladium catalyzed CH functionalization with electrochemical oxidation. Tetrahedron Letters, 2017, 58, 797-802.	0.7	77
1314	Emergence of Unactivated Olefins for the Synthesis of Olefinated Arenes. European Journal of Organic Chemistry, 2017, 2017, 1239-1252.	1.2	49
1315	Visible light photoredox catalysis with N-hydroxyphthalimide for [4+2] cyclization between N-methylanilines and maleimides. Tetrahedron Letters, 2017, 58, 552-555.	0.7	36

		CITATION R	EPORT	
#	Article		IF	Citations
1316	Iron-Catalyzed Câ€"H Alkylation of Heterocyclic Câ€"H Bonds. Organic Letters, 2017,	19, 46-49.	2.4	71
1317	Ligandâ€Enabled βâ€C–H Arylation of αâ€Amino Acids Without Installing Exogeno Angewandte Chemie - International Edition, 2017, 56, 1506-1509.	us Directing Groups.	7.2	120
1318	Ligandâ€Enabled βâ€C–H Arylation of αâ€Amino Acids Without Installing Exogeno Angewandte Chemie, 2017, 129, 1528-1531.	us Directing Groups.	1.6	31
1319	Transition-metal-free dehalogenation of aryl halides promoted by phenanthroline/pota -butoxide. Tetrahedron, 2017, 73, 931-937.	ssium tert	1.0	20
1320	Detailed Mechanistic Studies on Palladium-Catalyzed Selective C–H Olefination with A Significant Influence of Proton Shuttling. Journal of the American Chemical Society, 2 763-775.	Aliphatic Alkenes: 2017, 139,	6.6	99
1321	Combination of Cp*Rh ^{III} â€Catalyzed Câ^'H Activation and a Wagner–N Rearrangement. Angewandte Chemie - International Edition, 2017, 56, 1381-1384.	leerweinâ€ ⊺ ype	7.2	83
1322	Ruthenium-Catalyzed C–H Benzoxylation of <i>tert</i> -Benzamides with Aromatic A Coordination. Journal of Organic Chemistry, 2017, 82, 12691-12700.	icids by Weak	1.7	25
1323	Trans -selective γ -arylation of macrocyclic N -picolinoylcycloalkylamines through palla methylene sp 3 carbon–hydrogen bond activation. Tetrahedron Letters, 2017, 58, 4	dium-catalyzed 232-4235.	0.7	5
1324	Threeâ€Component Thieno[2,3â€ <i>b</i>]indole Synthesis from Indoles, Alkenes or A Powder under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2017, 359,	lkynes and Sulfur 4300-4304.	2.1	50
1325	Palladium-Catalyzed Direct C(sp ²)–H <i>ortho-</i> Arylation of Anilides 2-Aminophenylpyrazole as the Directing Group. Journal of Organic Chemistry, 2017, 82	Using 2, 11620-11625.	1.7	22
1326	Palladium-catalyzed C–H activation/C–C cross-coupling reactions via electrochem Communications, 2017, 53, 12189-12192.	stry. Chemical	2.2	117
1327	An Epoxide-Mediated Deprotection Method for Acidic Amide Auxiliary. Organic Letters 5860-5863.	, 2017, 19,	2.4	9
1328	Rhodium-Catalyzed Direct <i>Ortho</i> C–H Arylation Using Ketone as Directing Grand Reagent. Organic Letters, 2017, 19, 5940-5943.	oup with Boron	2.4	34
1329	Heteromultimetallic catalysis for sustainable organic syntheses. Chemical Society Revi 7399-7420.	ews, 2017, 46,	18.7	135
1330	Bifurcated Nickelâ€Catalyzed Functionalizations: Heteroarene Câ^'H Activation with A Chemie, 2017, 129, 16107-16111.	lenes. Angewandte	1.6	18
1331	Bifurcated Nickelâ€Catalyzed Functionalizations: Heteroarene Câ^'H Activation with A Chemie - International Edition, 2017, 56, 15891-15895.	lenes. Angewandte	7.2	63
1332	Highly Versatile β-C(sp ³)–H lodination of Ketones Using a Practical Au American Chemical Society, 2017, 139, 12394-12397.	xiliary. Journal of the	6.6	73
1333	Cobalt-Catalyzed Cross-Dehydrogenative Coupling Reaction between Unactivated C(sp ²)–H and C(sp ³)–H Bonds. Organic Letters, 2017,	19, 4676-4679.	2.4	64

#	Article	IF	CITATIONS
1334	Selective C(<i>sp</i> ³)–H Monoarylation Catalyzed by a Covalently Crossâ€Linked Reverse Micelleâ€Supported Palladium Catalyst. Advanced Synthesis and Catalysis, 2017, 359, 3611-3617.	2.1	4
1335	Room-Temperature Direct Arylation of Anilides under External Oxidant-Free Conditions Using CO ₂ -Derived Dimethyl Carbonate (DMC) as a ′Green′ Solvent. ChemistrySelect, 2017, 2, 7565-7569.	0.7	9
1336	Pd-Catalyzed C–H arylation of pyridazine-based fused 1,2,4-triazoles: overriding selectivity at the usual position by undermining of preferred chelate formation. Chemical Communications, 2017, 53, 11709-11712.	2.2	24
1337	Ligand-Enabled γ-C(sp ³)–H Cross-Coupling of Nosyl-Protected Amines with Aryl- and Alkylboron Reagents. ACS Catalysis, 2017, 7, 7777-7782.	5.5	43
1338	Methylene C(sp ³)–H Arylation of Aliphatic Ketones Using a Transient Directing Group. ACS Catalysis, 2017, 7, 6938-6941.	5.5	86
1339	Copperâ€Mediated Thiolation of Unactivated Heteroaryl Câ^'H Bonds with Disulfides under Ligand―and Metalâ€Oxidantâ€Free Conditions. Advanced Synthesis and Catalysis, 2017, 359, 4117-4121.	2.1	36
1340	Synthesis of 3-(2-Olefinbenzyl)-4 <i>H</i> -chromen-4-one through Cyclobenzylation and Catalytic C–H Bond Functionalization Using Palladium(II). Journal of Organic Chemistry, 2017, 82, 10855-10865.	1.7	24
1341	Copperâ€Catalyzed C(sp ³)â^'H/C(sp ³)â^'H Crossâ€Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2â€Trifluoromethylâ€Substituted Dihydropyrrolâ€2â€ols. Angewandte Chemie, 2017, 129, 13509-13513.	1.6	53
1342	Copperâ€Catalyzed C(sp ³)â^'H/C(sp ³)â^'H Crossâ€Dehydrogenative Coupling with Internal Oxidants: Synthesis of 2â€Trifluoromethylâ€Substituted Dihydropyrrolâ€2â€ols. Angewandte Chemie - International Edition, 2017, 56, 13324-13328.	7.2	72
1343	Oxidative coupling of sp 2 and sp 3 carbon–hydrogen bonds to construct dihydrobenzofurans. Nature Communications, 2017, 8, 238.	5.8	26
1344	Ru-Catalyzed <i>Meta</i> -C–H Benzylation of Arenes with Toluene Derivatives. Organic Letters, 2017, 19, 3950-3953.	2.4	78
1345	Transition-Metal-Free Decarboxylative Iodination: New Routes for Decarboxylative Oxidative Cross-Couplings. Journal of the American Chemical Society, 2017, 139, 11527-11536.	6.6	99
1346	Group 9 Transition Metal atalyzed Câ^'H Halogenations. Israel Journal of Chemistry, 2017, 57, 945-952.	1.0	42
1347	Experimental and Computational Development of a Conformationally Flexible Template for the <i>meta</i> -C–H Functionalization of Benzoic Acids. Journal of the American Chemical Society, 2017, 139, 10702-10714.	6.6	91
1348	Chiral Sulfur Functional Groups as Definers of the Chirality at the Metal in Ir and Rh Halfâ€Sandwich Complexes: A Combined CD/Xâ€ray Study. Chemistry - A European Journal, 2017, 23, 14523-14531.	1.7	11
1349	Silicon-Tethered Strategies for C–H Functionalization Reactions. Accounts of Chemical Research, 2017, 50, 2038-2053.	7.6	107
1350	Three-component synthesis of 2-heteroaryl-benzothiazoles under metal-free conditions. Green Chemistry, 2017, 19, 4043-4047.	4.6	76
1351	Kombination von Cp*Rh III â€katalysierter Câ€Hâ€Aktivierung mit einer Variante der Wagnerâ€Meerweinâ€Umlagerung. Angewandte Chemie, 2017, 129, 1401-1405.	1.6	21

#	Article	IF	CITATIONS
1352	A Divergent Approach to Indoles and Oxazoles from Enamides by Directing-Group-Controlled Cu-Catalyzed Intramolecular C–H Amination and Alkoxylation. Journal of Organic Chemistry, 2017, 82, 9112-9118.	1.7	33
1353	Rhodium(III) atalyzed Câ^'H Activation of <i>O</i> â€Acetyl Ketoximes/ <i>N</i> â€Methoxybenzamides toward the Synthesis of Isoquinoline/Isoquinoloneâ€Fused Bicycles. Asian Journal of Organic Chemistry, 2017, 6, 1561-1565.	1.3	12
1354	Redoxneutrale Mangan(I)â€katalysierte Câ€Hâ€Aktivierung: regioselektive Anellierung mithilfe einer spurlosen dirigierenden Gruppe. Angewandte Chemie, 2017, 129, 12954-12958.	1.6	41
1355	Redoxâ€Neutral Manganese(I)â€Catalyzed Câ^'H Activation: Traceless Directing Group Enabled Regioselective Annulation. Angewandte Chemie - International Edition, 2017, 56, 12778-12782.	7.2	160
1356	Synthesis of Bicyclo[<i>n</i> .1.0]alkanes by a Cobaltâ€Catalyzed Multiple C(sp ³)â^'H Activation Strategy. Angewandte Chemie - International Edition, 2017, 56, 13145-13149.	7.2	60
1357	Aliphatic C(sp ³)–H Bond Activation Using Nickel Catalysis: Mechanistic Insights on Regioselective Arylation. Journal of Organic Chemistry, 2017, 82, 9619-9626.	1.7	32
1358	Assembly of 2-Arylbenzothiazoles through Three-Component Oxidative Annulation under Transition-Metal-Free Conditions. Organic Letters, 2017, 19, 4576-4579.	2.4	95
1359	Synthesis of Bicyclo[<i>n</i> .1.0]alkanes by a Cobaltâ€Catalyzed Multiple C(sp ³)â^'H Activation Strategy. Angewandte Chemie, 2017, 129, 13325-13329.	1.6	46
1360	Selective Palladiumâ€Catalyzed Allenic Câ^'H Bond Oxidation for the Synthesis of [3]Dendralenes. Angewandte Chemie - International Edition, 2017, 56, 13112-13116.	7.2	29
1361	Selective Palladiumâ€Catalyzed Allenic Câ^'H Bond Oxidation for the Synthesis of [3]Dendralenes. Angewandte Chemie, 2017, 129, 13292-13296.	1.6	13
1362	Asymmetric S _N 2′-type C–H functionalization of arenes with propargylic alcohols. Organic Chemistry Frontiers, 2017, 4, 2002-2007.	2.3	42
1363	Palladium-Catalyzed Directed Arylation of Unactivated C(sp 3) H Bonds. , 2017, , 167-203.		3
1364	An Approach to 3-(Indol-2-yl)succinimide Derivatives by Manganese-Catalyzed C–H Activation. Organic Letters, 2017, 19, 4042-4045.	2.4	107
1365	A Copper atalyzed Tandem C–H <i>ortho</i> â€Hydroxylation and N–N Bondâ€Formation Transformation: Expedited Synthesis of 1â€(<i>ortho</i> â€Hydroxyaryl)â€1 <i>H</i> â€indazoles. European Journal of Organic Chemistry, 2017, 2017, 6604-6608.	1.2	12
1366	Ligand-accelerated non-directed C–H functionalization of arenes. Nature, 2017, 551, 489-493.	13.7	306
1367	Elemental sulfur mediated 2-substituted benzothiazole formation from 2-aminobenzenethiols and arylacetylenes or styrenes under metal-free conditions. Organic and Biomolecular Chemistry, 2017, 15, 10024-10028.	1.5	24
1368	A Micellar Catalysis Strategy for Suzuki–Miyaura Cross-Couplings of 2-Pyridyl MIDA Boronates: <i>No Copper</i> , in Water, Very Mild Conditions. ACS Catalysis, 2017, 7, 8331-8337.	5.5	52
1369	Selective <i>ortho</i> C–H Activation of Pyridines Directed by Lewis Acidic Boron of PBP Pincer Iridium Complexes. Journal of the American Chemical Society, 2017, 139, 17297-17300.	6.6	70

#	Article	IF	CITATIONS
1370	Experimental–Computational Synergy for Selective Pd(II)-Catalyzed C–H Activation of Aryl and Alkyl Groups. Accounts of Chemical Research, 2017, 50, 2853-2860.	7.6	189
1371	Regioselective Construction of Functionalized Biarylols by Fe(OTf) ₃ â€Catalyzed Direct Arylation of 1â€Diazonaphthalenâ€2(1 <i>H</i>)â€ones and Their Fluorescence Properties. European Journal of Organic Chemistry, 2017, 2017, 7046-7054.	1.2	21
1372	Direct C-2 acylation of indoles with toluene derivatives via Pd(<scp>ii</scp>)-catalyzed C–H activation. RSC Advances, 2017, 7, 32559-32563.	1.7	17
1373	Highly Efficient and Divergent Construction of Chiral γ-Phosphono-α-Amino Acids via Palladium-Catalyzed Alkylation of Unactivated C(sp ³)–H Bonds. ACS Catalysis, 2017, 7, 5220-5224.	5.5	41
1374	An efficient access to 2,3-diarylimidazo[1,2-a]pyridines via silver(I)-catalyzed C-H bond functionalization. Monatshefte Für Chemie, 2017, 148, 1817-1821.	0.9	3
1375	A palladium-catalyzed synthesis of (hetero)aryl-substituted imidazoles from aryl halides, imines and carbon monoxide. Chemical Science, 2017, 8, 1002-1007.	3.7	39
1376	Remote Câ^'H alkylation and Câ^'C bond cleavage enabled by an in situ generated palladacycle. Nature Chemistry, 2017, 9, 361-368.	6.6	164
1377	Palladiumâ€Catalyzed Câ^'H Functionalization of Phenyl 2â€Pyridylsulfonates. Chemistry - an Asian Journal, 2017, 12, 130-144.	1.7	11
1378	Polystyrene supported Dichloro-(8-aminoquinoline)-Palladium(II) complex catalyzed C H bond activation for ortho-acylation of 2-aryl pyridines. Inorganica Chimica Acta, 2017, 455, 105-111.	1.2	10
1379	Synthesis of C8-alkyl-substituted purine analogues by direct alkylation of 8- H purines with tetrahydrofuran catalyzed by CoCl 2 ·6H 2 O. Chinese Chemical Letters, 2017, 28, 105-108.	4.8	11
1380	Polystyreneâ€supported Pd(II) complexâ€catalysed carboacylation of 2â€arylpyridines with alcohols via C─H bond activation under solventâ€free conditions. Applied Organometallic Chemistry, 2017, 31, e3581.	1.7	4
1381	Toward an Ideal Synthesis of (Bio)molecules through Direct Arene Assembling Reactions. Bulletin of the Chemical Society of Japan, 2017, 90, 367-383.	2.0	34
1382	Palladium(II)-catalyzed arylation of unactivated C(sp 3)-H bonds by using 2,1,3-benzoselenadiazole-4-amine as directing ligand. Tetrahedron Letters, 2017, 58, 54-58.	0.7	7
1383	Study of Lewis acid accelerated palladium catalyzed C H activation. Journal of Molecular Catalysis A, 2017, 426, 444-450.	4.8	11
1384	Palladium(0)-Catalyzed Benzylic C(<i>sp</i> ³)–H Functionalization for the Concise Synthesis of Heterocycles and Its Applications. Chemical and Pharmaceutical Bulletin, 2017, 65, 409-425.	0.6	16
1385	Nondirected C H Bond Functionalizations of (Hetero)arenes. , 2017, , 49-166.		6
1386	Electrochemical Câ^'H Amination by Cobalt Catalysis in a Renewable Solvent. Angewandte Chemie - International Edition, 2018, 57, 5090-5094.	7.2	225
1387	Electrochemical Câ^'H Amination by Cobalt Catalysis in a Renewable Solvent. Angewandte Chemie, 2018, 130, 5184-5188.	1.6	67
#	Article	IF	Citations
------	--	-----	-----------
1388	Transition Metalâ€Catalyzed Dicarbofunctionalization of Unactivated Olefins. Chemical Record, 2018, 18, 1314-1340.	2.9	340
1389	Collective Total Synthesis of (â^)-Lundurines A–C. Organic Letters, 2018, 20, 1509-1512.	2.4	21
1390	Ligand-Enabled γ-C(sp ³)–H Activation of Ketones. Journal of the American Chemical Society, 2018, 140, 3564-3568.	6.6	126
1391	Strategies toward Dicarbofunctionalization of Unactivated Olefins by Combined Heck Carbometalation and Cross-Coupling. Journal of Organic Chemistry, 2018, 83, 3013-3022.	1.7	255
1392	Redox-Neutral Access to Isoquinolinones via Rhodium(III)-Catalyzed Annulations of <i>O</i> -Pivaloyl Oximes with Ketenes. Organic Letters, 2018, 20, 2698-2701.	2.4	27
1393	Rhenium(I)â€Catalyzed <i>ortho</i> â€Câ^'H Addition to Bicyclic Alkenes. Chemistry - an Asian Journal, 2018, 13, 1664-1668.	1.7	22
1394	Site‣elective Î′ (sp ³)â^'H Alkylation of Amino Acids and Peptides with Maleimides via a Sixâ€Membered Palladacycle. Angewandte Chemie, 2018, 130, 5960-5964.	1.6	46
1395	Copper atalyzed Câ^'H Ethoxycarbonyldifluoromethylation of Indoles and Pyrroles. Asian Journal of Organic Chemistry, 2018, 7, 1319-1322.	1.3	11
1396	Rh(III)-Catalyzed Mild Coupling of Nitrones and Azomethine Imines with Alkylidenecyclopropanes via C–H Activation: Facile Access to Bridged Cycles. ACS Catalysis, 2018, 8, 4194-4200.	5.5	88
1397	Siteâ€Selective Î′â€C(sp ³)â~H Alkylation of Amino Acids and Peptides with Maleimides via a Sixâ€Membered Palladacycle. Angewandte Chemie - International Edition, 2018, 57, 5858-5862.	7.2	159
1398	Metal-free C–H arylation of imidazoheterocycles with aryl hydrazines. RSC Advances, 2018, 8, 12360-12367.	1.7	21
1399	Manganese(II/III/I)-Catalyzed C–H Arylations in Continuous Flow. ACS Catalysis, 2018, 8, 4402-4407.	5.5	49
1400	Enantioselective γ-C(sp ³)–H Activation of Alkyl Amines via Pd(II)/Pd(0) Catalysis. Journal of the American Chemical Society, 2018, 140, 5322-5325.	6.6	88
1401	A Copperâ€Catalyzed Domino Reaction of Alkynyl Bromides and Oxazolidineâ€2â€thiones: Synthesis of Thiazolâ€2â€ones. Asian Journal of Organic Chemistry, 2018, 7, 888-891.	1.3	2
1402	Electrooxidative Rhodium atalyzed Câ^'H/Câ^'H Activation: Electricity as Oxidant for Crossâ€Dehydrogenative Alkenylation. Angewandte Chemie - International Edition, 2018, 57, 5828-5832.	7.2	178
1403	Electrooxidative Rhodium atalyzed Câ~H/Câ~H Activation: Electricity as Oxidant for Crossâ€Dehydrogenative Alkenylation. Angewandte Chemie, 2018, 130, 5930-5934.	1.6	64
1404	Electrooxidative Rutheniumâ€Catalyzed Câ^'H/Oâ^'H Annulation by Weak <i>O</i> â€Coordination. Angewandte Chemie, 2018, 130, 5920-5924.	1.6	60
1405	Palladium-Catalyzed Decarboxylative ortho-Acylation of Anilines with Carbamate as a Removable Directing Group. ACS Omega, 2018, 3, 4187-4198.	1.6	13

		CITATION REPORT		
#	Article		IF	Citations
1406	Direct Palladiumâ€Catalyzed βâ€Arylation of Lactams. Angewandte Chemie, 2018, 13	0, 3877-3881.	1.6	3
1407	Theoretical Studies on Pd(II)-Catalyzed meta-Selective C–H Bond Arylation of Arenes 2018, 8, 2498-2507.	. ACS Catalysis,	5.5	17
1408	Areneâ€Ligandâ€Free Ruthenium(II/III) Manifold for <i>meta</i> â€Câ^'H Alkylation: Re Diversification. Chemistry - A European Journal, 2018, 24, 3984-3988.	mote Purine	1.7	65
1409	Unraveling the Role of a Flexible Tetradentate Ligand in the Aerobic Oxidative Carbonâ Formation with Palladium Complexes: A Computational Mechanistic Study. Journal of t Chemical Society, 2018, 140, 3929-3939.	€"Carbon Bond he American	6.6	12
1410	Expedient cobalt(<scp>ii</scp>)-catalyzed site-selective C7-arylation of indolines with acids. Chemical Communications, 2018, 54, 2494-2497.	arylboronic	2.2	53
1411	Copper-catalyzed formylation of alkenyl C–H bonds using BrCHCl ₂ as a formylating reagent. Chemical Science, 2018, 9, 2986-2990.	stoichiometric	3.7	26
1412	Highly <i>meta</i> -selective halogenation of 2-phenylpyridine with a ruthenium(<scp> Organic Chemistry Frontiers, 2018, 5, 1118-1123.</scp>	i) catalyst.	2.3	24
1413	Catalytic Carbo- and Aminoboration of Alkenyl Carbonyl Compounds via Five- and Six-N Palladacycles. Journal of the American Chemical Society, 2018, 140, 3223-3227.	Иembered	6.6	118
1414	Nickel-catalyzed C–O bond reduction of aryl and benzyl 2-pyridyl ethers. Chemical C 2018, 54, 2138-2141.	ommunications,	2.2	16
1415	Palladiumâ€Catalyzed Triarylation of <i>sp</i> ³ Câ^'H Bonds in Heteroary Synthesis of Triaryl(heteroaryl)methanes. Advanced Synthesis and Catalysis, 2018, 360	/lmethanes:), 1493-1498.	2.1	13
1416	sp ³ C–H activation <i>via exo</i> -type directing groups. Chemical Scien	ce, 2018, 9, 1424-1432.	3.7	189
1417	Remote Câ^'H Activation of Various Nâ€Heterocycles Using a Single Template. Chemis Journal, 2018, 24, 3434-3438.	try - A European	1.7	35
1418	A General Protocol for Addressing Speciation of the Active Catalyst Applied to Ligand-⁄ Enantioselective C(sp ³)–H Bond Arylation. ACS Catalysis, 2018, 8, 152	Accelerated 8-1531.	5.5	27
1419	Direct Palladiumâ€Catalyzed βâ€Arylation of Lactams. Angewandte Chemie - Internati 3815-3819.	onal Edition, 2018, 57,	7.2	30
1420	Highly Diastereoselective Palladium-Catalyzed Oxidative Carbocyclization of Enallenes Weakly Coordinating Hydroxyl Group. Journal of the American Chemical Society, 2018	Assisted by a , 140, 3210-3214.	6.6	23
1421	Sustainable Manganeseâ€Catalyzed Câ [~] 'H Activation/Hydroarylation of Imines. ChemC 2768-2772.	atChem, 2018, 10,	1.8	19
1422	Rh ^{II} â€Catalyzed Intermolecular Câ^'H Arylation of Aromatics with Diazo Q - A European Journal, 2018, 24, 4815-4819.	Juinones. Chemistry	1.7	32
1423	Electronic <i>versus</i> steric effects of pyridinophane ligands on Pd(<scp>iii</scp>) of Dalton Transactions, 2018, 47, 1151-1158.	complexes.	1.6	13

#	Article	IF	CITATIONS
1424	Palladium-Catalyzed C–H Bond Acetoxylation via Electrochemical Oxidation. Organic Letters, 2018, 20, 204-207.	2.4	142
1425	Electrochemical Câ^'H/Nâ^'H Activation by Waterâ€Tolerant Cobalt Catalysis at Room Temperature. Angewandte Chemie, 2018, 130, 2407-2411.	1.6	68
1426	Dual Ligandâ€Enabled Nondirected Câ^'H Olefination of Arenes. Angewandte Chemie - International Edition, 2018, 57, 2497-2501.	7.2	92
1427	Co ^{III} atalyzed Isonitrile Insertion/Acyl Group Migration Between Câ^'H and Nâ^'H bonds of Arylamides. Chemistry - A European Journal, 2018, 24, 2360-2364.	1.7	48
1428	Electrochemical Câ^'H/Nâ^'H Activation by Waterâ€Tolerant Cobalt Catalysis at Room Temperature. Angewandte Chemie - International Edition, 2018, 57, 2383-2387.	7.2	219
1429	Palladium atalyzed <i>ortho</i> Câ^'H Arylation of Benzaldehydes Using <i>ortho</i> ulfinyl Aniline as Transient Auxiliary. Chemistry - an Asian Journal, 2018, 13, 2423-2426.	1.7	20
1430	Copper-catalyzed C–H acyloxylation of 2-phenylpyridine using oxygen as the oxidant. RSC Advances, 2018, 8, 16378-16382.	1.7	10
1431	1,4â€ŀron Migration for Expedient Allene Annulations through Ironâ€Catalyzed Câ^'H/Nâ^'H/Câ^'O/Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2018, 57, 7719-7723.	7.2	71
1432	Palladium(II)â€ <i>Nâ€</i> Heterocyclic Carbene Complexes: Efficient Catalysts for the Direct Câ€H Bond Arylation of Furans with Aryl Halides. Applied Organometallic Chemistry, 2018, 32, e4399.	1.7	24
1433	1,4â€ŀron Migration for Expedient Allene Annulations through Ironâ€Catalyzed Câ^'H/Nâ^'H/Câ^'O/Câ^'H Functionalizations. Angewandte Chemie, 2018, 130, 7845-7849.	1.6	10
1434	Durch zwei Liganden ermöglichte nichtâ€dirigierte Câ€Hâ€Olefinierung von Arenen. Angewandte Chemie, 2018, 130, 2523-2527.	1.6	32
1435	Electrooxidative Rutheniumâ€Catalyzed Câ^'H/Oâ^'H Annulation by Weak <i>O</i> â€Coordination. Angewandte Chemie - International Edition, 2018, 57, 5818-5822.	7.2	177
1436	A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 Câ^'H arylation. Nature Chemistry, 2018, 10, 540-548.	6.6	180
1438	Deep eutectic solvent-catalyzed arylation of benzoxazoles with aromatic aldehydes. RSC Advances, 2018, 8, 11127-11133.	1.7	44
1439	Total synthesis of the isoquinoline alkaloid decumbenine B <i>via</i> Ru(<scp>iii</scp>)-catalyzed C–H activation. Organic Chemistry Frontiers, 2018, 5, 1604-1607.	2.3	14
1440	Access to Quaternary Stereogenic Centers via Rhodium(III)-Catalyzed Annulations between 2-Phenylindoles and Ketenes. Organic Letters, 2018, 20, 1957-1960.	2.4	24
1441	Palladium-Catalyzed Decarboxylative ortho-Amidation of Indole-3-carboxylic Acids with Isothiocyanates Using Carboxyl as a Deciduous Directing Group. Journal of Organic Chemistry, 2018, 83, 4375-4383.	1.7	12
1442	A computational mechanistic study of Pd(<scp>ii</scp>)-catalyzed γ-C(sp ³)–H olefination/cyclization of amines: the roles of bicarbonate and ligand effect. Dalton Transactions, 2018, 47, 4893-4901.	1.6	7

#	Article	IF	Citations
1443	Ruthenium (II)-catalyzed synthesis of phthalides via the cascade addition and cyclization of aromatic acids with aldehydes. Science China Chemistry, 2018, 61, 153-158.	4.2	15
1444	Organocatalytic asymmetric arylation of indoles enabled by azo groups. Nature Chemistry, 2018, 10, 58-64.	6.6	296
1445	Copper containing nanosilica thioalated dendritic material: A recyclable catalyst for synthesis of benzimidazoles and benzothiazoles. Applied Organometallic Chemistry, 2018, 32, e3937.	1.7	21
1446	Coordination chemistry of neutral mono-oxide, sulfide and selenide bis(diphenylphosphino)amine (DPPA)-based ligands and their N-substituted/functionalized derivatives. Coordination Chemistry Reviews, 2018, 355, 1-26.	9.5	8
1447	Recent Advances in C–B Bond Formation through a Free Radical Pathway. Advanced Synthesis and Catalysis, 2018, 360, 1040-1053.	2.1	74
1448	2-(1-Methylhydrazinyl)pyridine as a reductively removable directing group in a cobalt-catalyzed C(sp ²)–H bond alkenylation/annulation cascade. Chemical Communications, 2018, 54, 98-101.	2.2	41
1449	Mangan(I)â€katalysierte Câ€Hâ€{2â€IndolyI)methylierung: ein einfacher Zugang zu Diheteroarylmethanâ€Derivaten. Angewandte Chemie, 2018, 130, 1413-1417.	1.6	22
1450	Direct Activation of β-sp ³ -Carbons of Saturated Carboxylic Esters as Electrophilic Carbons via Oxidative Carbene Catalysis. Organic Letters, 2018, 20, 260-263.	2.4	31
1451	Nondirecting Group <i>sp</i> ³ Câ^'H Activation for Synthesis of Bibenzyls <i>via</i> Homoâ€coupling as Catalyzed by Reduced Graphene Oxide Supported PtPd@Pt Porous Nanospheres. Advanced Synthesis and Catalysis, 2018, 360, 932-941.	2.1	14
1452	Manganese(I)â€Catalyzed Câ~'H (2â€Indolyl)methylation: Expedient Access to Diheteroarylmethanes. Angewandte Chemie - International Edition, 2018, 57, 1399-1403.	7.2	85
1453	Ligand-enabled <i>ortho</i> -C–H olefination of phenylacetic amides with unactivated alkenes. Chemical Science, 2018, 9, 1311-1316.	3.7	75
1454	Recent developments in palladium-catalysed non-directed coupling of (hetero)arene C–H bonds with C–Z (Z = B, Si, Sn, S, N, C, H) bonds in bi(hetero)aryl synthesis. Organic Chemistry Frontiers, 2018, 5, 288-321.	2.3	80
1455	Rh(III)-Catalyzed Redox-Neutral Unsymmetrical C–H Alkylation and Amidation Reactions of <i>N</i> -Phenoxyacetamides. Journal of the American Chemical Society, 2018, 140, 42-45.	6.6	120
1456	Plausible Rh(V) Intermediates in Catalytic C–H Activation Reactions. ACS Catalysis, 2018, 8, 242-257.	5.5	134
1457	Direct <i>ortho</i> â€Acyloxylation of Arenes and Alkenes by Cobalt Catalysis. Advanced Synthesis and Catalysis, 2018, 360, 519-532.	2.1	40
1458	Internal Peptide Lateâ€&tage Diversification: Peptideâ€ksosteric Triazoles for Primary and Secondary C(sp ³)â~H Activation. Angewandte Chemie - International Edition, 2018, 57, 203-207.	7.2	121
1459	Internal Peptide Late‣tage Diversification: Peptideâ€ksosteric Triazoles for Primary and Secondary C(sp ³)â~H Activation. Angewandte Chemie, 2018, 130, 209-213.	1.6	44
1460	Facile synthesis of unnatural β-germyl-α-amino amides <i>via</i> Pd(<scp>ii</scp>)-catalyzed primary and secondary C(sp ³)–H bond germylation. Chemical Communications, 2018, 54, 14136-14139.	2.2	27

#	Article	IF	CITATIONS
1461	Solvent-free and room temperature visible light-induced C–H activation: CdS as a highly efficient photo-induced reusable nano-catalyst for the C–H functionalization cyclization of <i>t</i> -amines and C–C double and triple bonds. Green Chemistry, 2018, 20, 5540-5549.	4.6	38
1462	Ruthenium-catalyzed C–H oxygenation of quinones by weak O-coordination for potent trypanocidal agents. Chemical Communications, 2018, 54, 12840-12843.	2.2	48
1463	Cobaltâ€Catalyzed Hiyamaâ€Type Câ^'H Activation with Arylsiloxanes: Versatile Access to Highly <i>ortho</i> â€Decorated Biaryls. Chemistry - A European Journal, 2019, 25, 2213-2216.	1.7	27
1464	Lightâ€Induced Goldâ€Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates. Angewandte Chemie - International Edition, 2018, 57, 16648-16653.	7.2	90
1465	Cobalt(<scp>iii</scp>)-catalyzed site-selective C–H amidation of pyridones and isoquinolones. RSC Advances, 2018, 8, 32659-32663.	1.7	27
1466	A Synthesis of 3,4-Dihydroisoquinolin-1(2H)-one via the Rhodium-Catalyzed Alkylation of Aromatic Amides with N-Vinylphthalimide. Journal of Organic Chemistry, 2018, 83, 13587-13594.	1.7	29
1467	Palladium-Catalyzed Domino Allenamide Carbopalladation/Direct C–H Allylation of Heteroarenes: Synthesis of Primprinine and Papaverine Analogues. Organic Letters, 2018, 20, 6027-6032.	2.4	25
1468	Nickel-Catalyzed Synthesis of Benzo[<i>b</i>]naphtho[1,2- <i>d</i>]azepine via Intramolecular Radical Tandem Cyclization of Alkyl Bromide-Tethered Alkylidenecyclopropanes. Organic Letters, 2018, 20, 6229-6233.	2.4	21
1469	Copper(II)-catalyzed-α-C(sp3)-H activation of cyclic amines: A simple and efficient strategy for the synthesis of fused pyrazole derivatives. Tetrahedron Letters, 2018, 59, 4161-4164.	0.7	11
1470	Monoprotected Amino Acid (MPAA) Ligand Enabled C–H Alkynylation of Phenyl Acetic Acid. Organic Letters, 2018, 20, 7274-7277.	2.4	21
1471	Lightâ€Induced Goldâ€Catalyzed Hiyama Arylation: A Coupling Access to Biarylboronates. Angewandte Chemie, 2018, 130, 16890-16895.	1.6	35
1472	Palladium(<scp>ii</scp>)-catalyzed γ-selective hydroarylation of alkenyl carbonyl compounds with arylboronic acids. Chemical Science, 2018, 9, 8363-8368.	3.7	71
1473	Selective <i>O</i> -Cyclization of <i>N</i> -Methoxy Aryl Amides with CH ₂ Br ₂ or 1,2-DCE via Palladium-Catalyzed C–H Activation. Organic Letters, 2018, 20, 6198-6201.	2.4	8
1474	Sustainable Synthesis of a Fluorinated Arylene Conjugated Polymer via Cu-Catalyzed Direct Arylation Polymerization (DArP). ACS Macro Letters, 2018, 7, 1232-1236.	2.3	18
1475	Ruthenium-catalyzed annulation of aromatic ketones with internal alkynes: A reliable route to substituted naphthalene derivatives. Tetrahedron, 2018, 74, 6263-6269.	1.0	4
1476	Cu(OAc) ₂ -Promoted Ortho C(sp ²)–H Amidation of 8-Aminoquinoline Benzamide with Acyl Azide: Selective Formation of Aroyl or Acetyl Amide Based on Catalyst Loading. Journal of Organic Chemistry, 2018, 83, 11758-11767.	1.7	15
1477	TiO2 Photocatalyzed C–H Bond Transformation for C–C Coupling Reactions. Catalysts, 2018, 8, 355.	1.6	32
1478	Cp*Rh(iii)-catalyzed annulation of N-methoxybenzamide with 1,4,2-bisoxazol-5-one toward 2-aryl	2.3	20

#	Article	IF	CITATIONS
1479	Copper-Catalyzed Electrochemical C–H Amination of Arenes with Secondary Amines. Journal of the American Chemical Society, 2018, 140, 11487-11494.	6.6	262
1480	Electroremovable Traceless Hydrazides for Cobalt-Catalyzed Electro-Oxidative C–H/N–H Activation with Internal Alkynes. Journal of the American Chemical Society, 2018, 140, 7913-7921.	6.6	212
1481	Combining transition metals and transient directing groups for C–H functionalizations. RSC Advances, 2018, 8, 19456-19464.	1.7	87
1482	Câ€Hâ€Aktivierung ermöglicht eine kurze Totalsynthese von Chinin und Analoga mit erhöhter Antiâ€Malariaâ€Aktivitä Angewandte Chemie, 2018, 130, 10897-10901.	1.6	6
1483	Site‣elective γ (sp ³)â^'H and γ (sp ²)â^'H Arylation of Free Amino Esters Prom by a Catalytic Transient Directing Group. Chemistry - A European Journal, 2018, 24, 9535-9541.	ioted 1.7	54
1484	Direct Synthesis of Chalcones from Anilides with Phenyl Vinyl Ketones by Oxidative Coupling Through C–H Bond Activation. ACS Omega, 2018, 3, 5375-5381.	1.6	4
1485	Natural Product Synthesis by Câ 'H Activation. Asian Journal of Organic Chemistry, 2018, 7, 1178-1192.	1.3	100
1486	Rutheniumâ€Catalyzed Siteâ€selective Enone Carbonyl Directed <i>ortho</i> â€Câ [~] H Activation of Aromatics and Heteroaromatics with Alkenes. Advanced Synthesis and Catalysis, 2018, 360, 2650-2658.	2.1	18
1487	Manganese atalyzed Câ^'H Amidation of Heteroarenes in Water. Advanced Synthesis and Catalysis, 2018, 360, 2801-2805.	2.1	24
1488	Mn I /Ag I â€Kaskadenkatalyse: spurlose diazoassistierte C(sp 2)â€H/C(sp 3)â€Hâ€Kupplung für βâ€(Hetero)arylâ€/βâ€Alkenylketone. Angewandte Chemie, 2018, 130, 10892-10896.	1.6	14
1489	Mn I /Ag I Relay Catalysis: Traceless Diazoâ€Assisted C(sp 2)–H/C(sp 3)–H Coupling to βâ€(Hetero)Aryl/Alkenyl Ketones. Angewandte Chemie - International Edition, 2018, 57, 10732-10736.	7.2	39
1490	C–H/C–F functionalization by E-selective ruthenium (II) catalysis. Journal of Catalysis, 2018, 364, 14-18.	3.1	7
1491	Copper mediated C–H amination with oximes: en route to primary anilines. Chemical Science, 2018, 9, 5160-5164.	3.7	50
1492	Cu ^{II} Complex of a 1,10â€Phenanthrolineâ€Based Pincer as an Efficient Catalyst for Oxidative Cross Dehydrogenative Coupling of Carboxylic Acids with Unactivated Alkanes. Asian Journal of Organic Chemistry, 2018, 7, 1681-1688.	1.3	9
1493	Câ^'H Activation Enables a Concise Total Synthesis of Quinine and Analogues with Enhanced Antimalarial Activity. Angewandte Chemie - International Edition, 2018, 57, 10737-10741.	7.2	49
1494	Ligandâ€Enabled γ (sp ³)–H Acetoxylation of Triflylâ€Protected Amines. European Journal of Organic Chemistry, 2018, 2018, 6088-6091.	1.2	15
1495	Palladium-Catalyzed β-Arylation of Amide via Primary sp ³ C–H Activation. Organometallics, 2018, 37, 2188-2192.	1.1	13
1496	A lesson for site-selective C–H functionalization on 2-pyridones: radical, organometallic, directing group and steric controls. Chemical Science, 2018, 9, 22-32.	3.7	116

#		IF	CITATIONS
" 1497	Diverse secondary C(sp ³)â€"H bond functionalization <i>via</i> site-selective	3.7	30
1498	Metal-free, base promoted sp ² C–H functionalization in the sulfonamidation of 1,4-naphthoquinones. Organic and Biomolecular Chemistry, 2018, 16, 5294-5300.	1.5	3
1499	Efficient Synthesis of Phthalimides via Cobaltâ€Catalyzed C(<i>sp</i> ²)â^'H Carbonylation of Benzoyl Hydrazides with Carbon Monoxide. Advanced Synthesis and Catalysis, 2018, 360, 3271-3276.	2.1	33
1500	Lateâ€Stage Peptide Diversification by Positionâ€Selective Câ^'H Activation. Angewandte Chemie - International Edition, 2018, 57, 14700-14717.	7.2	262
1501	Chelate Silylene–Silyl Ligand Can Boost Rhodiumâ€Catalyzed Câ^'H Bond Functionalization Reactions. Chemistry - A European Journal, 2018, 24, 14608-14612.	1.7	17
1502	Advances in Development of C–H Activation/Functionalization Using a Catalytic Directing Group. ChemistrySelect, 2018, 3, 5689-5708.	0.7	44
1503	Peptidâ€Diversifizierung durch positionsselektive Câ€Hâ€Aktivierung im spÃæn Synthesestadium. Angewandte Chemie, 2018, 130, 14912-14930.	1.6	77
1504	Die Arenâ€limitierte nichtâ€dirigierte Câ€Hâ€Aktivierung von Aromaten. Angewandte Chemie, 2018, 130, 13198-13209.	1.6	29
1505	Areneâ€Limited Nondirected Câ^'H Activation of Arenes. Angewandte Chemie - International Edition, 2018, 57, 13016-13027.	7.2	139
1506	Cis,exo-1,2,3,4,4a,13b-hexahydro-1,4-methano-5-isopropoxy-9H-tribenzo[b,f]azepine. MolBank, 2018, 2018, M988.	0.2	2
1507	Manganese-Catalyzed <i>ortho</i> -C-H Amidation of Weakly Coordinating Aromatic Ketones. Organic Letters, 2018, 20, 4495-4498.	2.4	35
1508	Room-Temperature C–H Bond Functionalization by Merging Cobalt and Photoredox Catalysis. ACS Catalysis, 2018, 8, 8115-8120.	5.5	113
1509	Visible Lightâ€Induced Câ^'H Bond Functionalization: A Critical Review. Advanced Synthesis and Catalysis, 2018, 360, 4652-4698.	2.1	131
1510	Rhodium-catalyzed intramolecular cascade sequence for the formation of fused carbazole-annulated medium-sized rings by cleavage of C(sp ²)–H/C(sp ³)–H bonds. Chemical Communications, 2018, 54, 9147-9150.	2.2	24
1511	Palladium-Catalyzed C–H Amination of C(sp ²) and C(sp ³)–H Bonds: Mechanism and Scope for N-Based Molecule Synthesis. ACS Catalysis, 2018, 8, 5732-5776.	5.5	127
1512	Palladium-Catalyzed Tandem Reaction of Three Aryl Iodides Involving Triple C–H Activation. Organic Letters, 2018, 20, 2997-3000.	2.4	45
1513	The synergistic effect of self-assembly and visible-light induced the oxidative C–H acylation of N-heterocyclic aromatic compounds with aldehydes. Chemical Communications, 2018, 54, 5744-5747.	2.2	56
1514	Rhodium(III)â€Catalyzed Direct Alkenylation of Benzothiophenes and Related Heterocycles with Alkynes. Asian Journal of Organic Chemistry, 2018, 7, 1330-1333.	1.3	5

#	Article	IF	CITATIONS
1515	Electrooxidative Allene Annulations by Mild Cobalt-Catalyzed C–H Activation. ACS Catalysis, 2018, 8, 9140-9147.	5.5	117
1516	Rhodium(III)-Catalyzed <i>Meta</i> -Selective C–H Alkenylation of Phenol Derivatives. Organic Letters, 2018, 20, 5126-5129.	2.4	35
1517	Rhodium-catalyzed regioselective C8-H amination of quinoline <i>N</i> -oxides with trifluoroacetamide at room temperature. Organic and Biomolecular Chemistry, 2018, 16, 4728-4733.	1.5	22
1518	BODIPY Peptide Labeling by Late‣tage C(sp ³)â^'H Activation. Angewandte Chemie - International Edition, 2018, 57, 10554-10558.	7.2	109
1519	Catalyst―and Reagentâ€Free Electrochemical Azole Câ^'H Amination. Chemistry - A European Journal, 2018, 24, 12784-12789.	1.7	80
1520	Pd(II)â€Catalyzed Phosphorylation of Enamido C(sp ²)–H Bonds: A General Route to βâ€Amidoâ€vinylphosphonates. Chinese Journal of Chemistry, 2018, 36, 809-814.	2.6	20
1521	Unprecedented synthesis of 1,2,3-triazolo-cinnolinone <i>via</i> Sonogashira coupling and intramolecular cyclization. Organic and Biomolecular Chemistry, 2018, 16, 4840-4848.	1.5	10
1522	Rhodium(I)-Catalyzed C8-Alkylation of 1-Naphthylamide Derivatives with Alkenes through a Bidentate Picolinamide Chelation System. ACS Catalysis, 2018, 8, 6699-6706.	5.5	56
1523	Catalytic, metal-free alkylheteroarylation of alkenes <i>via</i> distal heteroaryl <i>ipso</i> -migration. Chemical Communications, 2018, 54, 7499-7502.	2.2	21
1524	BODIPY Peptide Labeling by Lateâ€Stage C(sp 3)â^'H Activation. Angewandte Chemie, 2018, 130, 10714-10718.	1.6	39
1525	Recent Advances in the Synthesis of C–S Bonds via Metal-Catalyzed or -Mediated Functionalization of C–H Bonds. Advances in Organometallic Chemistry, 2018, 69, 135-207.	0.5	11
1526	Recent Advances in C–H Functionalization Using Electrochemical Transition Metal Catalysis. ACS Catalysis, 2018, 8, 7179-7189.	5.5	457
1527	Construction of Quaternary Stereocenters by Palladiumâ€Catalyzed Carbopalladationâ€Initiated Cascade Reactions. Angewandte Chemie, 2019, 131, 1576-1587.	1.6	64
1528	Construction of Quaternary Stereocenters by Palladiumâ€Catalyzed Carbopalladationâ€Initiated Cascade Reactions. Angewandte Chemie - International Edition, 2019, 58, 1562-1573.	7.2	294
1529	Synthesis of enantiopure 2-iodomandelic acid and determination of its absolute configuration by VCD spectroscopy. Chemical Papers, 2019, 73, 47-54.	1.0	0
1530	Carbeneâ€Catalyzed Direct Functionalization of the βâ€sp ³ â€Carbon Atoms of αâ€Chloroaldehyde Chemistry - A European Journal, 2019, 25, 12719-12723.	^S 1.7	9
1531	Tertiary amine-directed and involved carbonylative cyclizations through Pd/Cu-cocatalyzed multiple C–X (X = H or N) bond cleavage. Chemical Science, 2019, 10, 9292-9301.	3.7	12
1532	Copper-catalyzed direct C–H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Advances, 2019, 9, 25368-25376.	1.7	27

#	Article	IF	CITATIONS
1533	A Computational Mechanistic Study of Pd(II)-Catalyzed Enantioselective C(sp ³)–H Borylation: Roles of APAO Ligands. Journal of Organic Chemistry, 2019, 84, 10690-10700.	1.7	9
1534	Benzaldehyde- and Nickel-Catalyzed Photoredox C(sp ³)–H Alkylation/Arylation with Amides and Thioethers. Organic Letters, 2019, 21, 6329-6332.	2.4	40
1535	Copperâ€Catalyzed Domino Synthesis of Sulfurâ€Containing Heterocycles Using Carbon Disulfide as a Building Block. Advanced Synthesis and Catalysis, 2019, 361, 4558-4567.	2.1	33
1536	Palladium-catalysed Câ^'H glycosylation for synthesis of C-aryl glycosides. Nature Catalysis, 2019, 2, 793-800.	16.1	97
1537	Styrene Production from Benzene and Ethylene Catalyzed by Palladium(II): Enhancement of Selectivity toward Styrene via Temperature-dependent Vinyl Ester Consumption. Organometallics, 2019, 38, 3532-3541.	1.1	15
1538	Cupraelectro-Catalyzed Alkyne Annulation: Evidence for Distinct C–H Alkynylation and Decarboxylative C–H/C–C Manifolds. ACS Catalysis, 2019, 9, 7690-7696.	5.5	76
1539	Fused Heteroaromatic Rings via Metal-Mediated/Catalyzed Intramolecular C–H Activation: A Comprehensive Review. Topics in Current Chemistry, 2019, 377, 21.	3.0	28
1540	Cobalt(III)-Catalyzed Intermolecular Carboamination of Propiolates and Bicyclic Alkenes via Non-Annulative Redox-Neutral Coupling. Organic Letters, 2019, 21, 5884-5888.	2.4	28
1541	Controllable α- or β-Functionalization of α-Diazoketones with Aromatic Amides via Cobalt-Catalyzed C–H Activation: A Regioselective Approach to Isoindolinones. Organic Letters, 2019, 21, 6264-6269.	2.4	21
1542	Cobaltaelectro-Catalyzed Oxidative C–H/N–H Activation with 1,3-Diynes by Electro-Removable Hydrazides. Organic Letters, 2019, 21, 6534-6538.	2.4	74
1543	Oxidant speciation and anionic ligand effects in the gold-catalyzed oxidative coupling of arenes and alkynes. Chemical Science, 2019, 10, 8411-8420.	3.7	32
1544	Efficient Câ^'S Bond Formation by Direct Functionalization of C(sp 3)â^'H Bond Adjacent to Heteroatoms under Metalâ€Free Conditions. Advanced Synthesis and Catalysis, 2019, 361, 4075-4081.	2.1	24
1545	Electrochemical Cross oupling of C(<i>sp</i> ²)â^'H with Aryldiazonium Salts via a Paired Electrolysis: an Alternative to Visible Light Photoredoxâ€Based Approach. Advanced Synthesis and Catalysis, 2019, 361, 5170-5175.	2.1	52
1546	1,10â€Phenanthroline Carboxylic Acids for Preparation of Functionalized Metalâ€Organic Frameworks. Asian Journal of Organic Chemistry, 2019, 8, 2128-2142.	1.3	8
1547	Tetramethylammonium Fluoride Tetrahydrate-Mediated Transition Metal-Free Coupling of Aryl Iodides with Unactivated Arenes in Air. Chemical and Pharmaceutical Bulletin, 2019, 67, 1042-1045.	0.6	4
1550	Understanding the Role of Solvents and Spin–Orbit Coupling in an Oxygenâ€Assisted S N 2â€Type Oxidative Transmetalation Reaction. Chemistry - A European Journal, 2019, 25, 16606-16616.	1.7	2
1551	Recent Advances and Prospects of Organic Reactions "On Water― ChemistrySelect, 2019, 4, 12337-12355.	0.7	25
1552	Palladiumâ€Catalyzed C8â€Arylation of Naphthalenes through Câ^'H Activation: A Combined Experimental and Computational Study. Chemistry - A European Journal, 2019, 25, 14441-14446.	1.7	15

#	Article	IF	CITATIONS
1553	Nickel(II)â€Catalysed C–H Functionalization and Tandem Coupling of Terminal Alkynes with 1,3â€Dicarbonyls: Expedient Route to Functionalized Furans. European Journal of Organic Chemistry, 2019, 2019, 6702-6706.	1.2	7
1555	Palladium-Catalyzed Site-Selective C(sp ³)–H Arylation of Phenylacetaldehydes. Organic Letters, 2019, 21, 7084-7088.	2.4	28
1557	Heterocycles via Cross Dehydrogenative Coupling. , 2019, , .		9
1558	Donor–Acceptor–Donor NIR II Emissive Rhodindolizine Dye Synthesized by C–H Bond Functionalization. Journal of Organic Chemistry, 2019, 84, 13186-13193.	1.7	45
1559	Orthogonal Selectivity in C–H Olefination: Synthesis of Branched Vinylarene with Unactivated Aliphatic Substitution. ACS Catalysis, 2019, 9, 9606-9613.	5.5	30
1560	Cuprous cluster as effective single-molecule metallaphotocatalyst in white light-driven C H arylation. Journal of Catalysis, 2019, 378, 270-276.	3.1	9
1561	Cobaltâ€Catalyzed 2â€(1â€Methylhydrazinyl)pyridineâ€Assisted Direct Câ^'H/Nâ^'H Functionalization of Benzoyl Hydrazide with Isocyanide: Efficient Synthesis of Iminoisoindolinone Derivatives. Advanced Synthesis and Catalysis, 2019, 361, 1678-1682.	2.1	13
1562	Sequential Functionalization of <i>meta</i> -C–H and <i>ipso</i> -C–O Bonds of Phenols. Journal of the American Chemical Society, 2019, 141, 1903-1907.	6.6	79
1563	Intermolecular Nitrene Insertion by Bimetallic Catalysts. Asian Journal of Organic Chemistry, 2019, 8, 275-278.	1.3	2
1564	Rh-Catalyzed tandem C–C/C–N bond formation of quinoxalines with alkynes leading to heterocyclic ammonium salts. Organic and Biomolecular Chemistry, 2019, 17, 2148-2152.	1.5	13
1565	Palladium-Catalyzed C(sp3)–H Bond Functionalization of Aliphatic Amines. CheM, 2019, 5, 1031-1058.	5.8	184
1566	Multiple activations of CH bonds in arenes and heteroarenes. Dalton Transactions, 2019, 48, 8530-8540.	1.6	2
1567	Site-selective C–H activation and regiospecific annulation using propargylic carbonates. Chemical Science, 2019, 10, 6560-6564.	3.7	47
1568	Glycopeptides by Linchâ€Pin Câ^'H Activations for Peptideâ€Carbohydrate Conjugation by Manganese(l)â€Catalysis. Chemistry - A European Journal, 2019, 25, 10585-10589.	1.7	39
1569	Direct C-H bond (Hetero)arylation of thiazole derivatives at 5-position catalyzed by N-heterocyclic carbene palladium complexes at low catalyst loadings under aerobic conditions. Journal of Organometallic Chemistry, 2019, 897, 13-22.	0.8	16
1570	Three-Component Synthesis of Isoquinoline Derivatives by a Relay Catalysis with a Single Rhodium(III) Catalyst. Organic Letters, 2019, 21, 4971-4975.	2.4	30
1571	Rhodium catalyzed template-assisted distal <i>para</i> -C–H olefination. Chemical Science, 2019, 10, 7426-7432.	3.7	75
1572	Palladium-Catalyzed Amide-Directed Enantioselective Carboboration of Unactivated Alkenes Using a Chiral Monodentate Oxazoline Ligand. ACS Catalysis, 2019, 9, 6502-6509.	5.5	74

#	Article	IF	CITATIONS
1573	Carboxylateâ€Assisted Oxidative Addition to Aminoalkyl Pd II Complexes: C(sp 3)â^'H Arylation of Alkylamines by Distinct Pd II /Pd IV Pathway. Angewandte Chemie, 2019, 131, 9152-9157.	1.6	5
1574	Pd-Catalyzed Denitrative Intramolecular C–H Arylation. Organic Letters, 2019, 21, 4721-4724.	2.4	38
1575	C2/C4 Regioselective Heteroarylation of Indoles by Tuning C–H Metalation Modes. ACS Catalysis, 2019, 9, 6372-6379.	5.5	62
1576	Copper-Catalyzed Intermolecular [4 + 2] Annulation Enabled by Internal Oxidant-Promoted C(sp3)–H Functionalization: Access to 3-Trifluoromethylated 3-Hydroxy-cyclohexan-1-ones. Organic Letters, 2019, 21, 4900-4904.	2.4	12
1577	Construction of Natural-Product-Like Cyclophane-Braced Peptide Macrocycles via sp ³ C–H Arylation. Journal of the American Chemical Society, 2019, 141, 9401-9407.	6.6	108
1578	Ligand Promoted, Palladium-Catalyzed C(sp ²)–H Arylation of Free Primary 2-Phenylethylamines. Organic Letters, 2019, 21, 4224-4228.	2.4	15
1579	Recent advances in the direct functionalization of quinoxalin-2(1 <i>H</i>)-ones. Organic and Biomolecular Chemistry, 2019, 17, 5863-5881.	1.5	165
1580	A ruthenium(<scp>ii</scp>)-catalyzed C–H allenylation-based approach to allenoic acids. Chemical Science, 2019, 10, 6316-6321.	3.7	32
1581	Sichtbares Licht ermöglicht Rutheniumâ€katalysierte <i>meta</i> â€Câ€Hâ€Alkylierung bei Raumtemperatur. Angewandte Chemie, 2019, 131, 9925-9930.	1.6	39
1582	Visibleâ€Lightâ€Enabled Rutheniumâ€Catalyzed <i>meta</i> â€Câ^'H Alkylation at Room Temperature. Angewand Chemie - International Edition, 2019, 58, 9820-9825.	te 7.2	134
1583	Copper-Mediated Selective Mono- and Sequential Organochalcogenation of C–H Bonds: Synthesis of Hybrid Unsymmetrical Aryl Ferrocene Chalcogenides. Journal of Organic Chemistry, 2019, 84, 6669-6678.	1.7	21
1584	Aromatic Metamorphosis of Indoles into 1,2-Benzazaborins. Organic Letters, 2019, 21, 3855-3860.	2.4	32
1585	From Reactivity and Regioselectivity to Stereoselectivity: An Odyssey of Designing PIP Amine and Related Directing Groups for C—H Activation. Chinese Journal of Chemistry, 2019, 37, 647-656.	2.6	126
1586	One-Pot Protocol To Synthesize 2-Aminophenols from Anilines via Palladium-Catalyzed C–H Acetoxylation. Organometallics, 2019, 38, 2084-2091.	1.1	9
1587	Modular, stereocontrolled C _β –H/C _α –C activation of alkyl carboxylic acids. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 8721-8727.	3.3	39
1588	Copper-mediated direct sulfonylation of C(sp ²)–H bonds employing TosMIC as a sulfonyl source. Organic Chemistry Frontiers, 2019, 6, 2215-2219.	2.3	21
1589	Carboxylateâ€Assisted Oxidative Addition to Aminoalkyl Pd ^{II} Complexes: C(sp ³)â^'H Arylation of Alkylamines by Distinct Pd ^{II} /Pd ^{IV} Pathway. Angewandte Chemie - International Edition, 2019, 58, 9054-9059.	7.2	37
1590	α-Keto Acids: Acylating Agents in Organic Synthesis. Chemical Reviews, 2019, 119, 7113-7278.	23.0	151

#	Article	IF	CITATIONS
1591	Resource Economy by Metallaelectrocatalysis: Merging Electrochemistry and C H Activation. Trends in Chemistry, 2019, 1, 63-76.	4.4	174
1592	Recent advances and prospects in nickel-catalyzed C–H activation. Catalysis Science and Technology, 2019, 9, 1726-1743.	2.1	81
1593	Cobaltaelectro atalyzed C—H Acyloxylation. Chinese Journal of Chemistry, 2019, 37, 552-556.	2.6	41
1594	Palladiumâ€Catalyzed Hydroxy Group Directed Regioselective Monoâ€arylation of 2â€Hydroxybiphenyls to 2â€Hydroxy to <i>ortho</i> â€Terphenyls. European Journal of Organic Chemistry, 2019, 2019, 2472-2480.	1.2	6
1595	Pd(II)-Catalyzed Enantioselective Alkynylation of Unbiased Methylene C(sp ³)–H Bonds Using 3,3â€2-Fluorinated-BINOL as a Chiral Ligand. Journal of the American Chemical Society, 2019, 141, 4558-4563.	6.6	109
1596	Palladium-Catalyzed <i>meta</i> -C–H Olefination of Arene-Tethered Diols Directed by Well-Designed Pyrimidine-Based Group. Organic Letters, 2019, 21, 1841-1844.	2.4	22
1597	Visible-light-induced Pd-catalyzed <i>ortho</i> -trifluoromethylation of acetanilides with CF ₃ SO ₂ Na under ambient conditions in the absence of an external photocatalyst. Chemical Communications, 2019, 55, 3737-3740.	2.2	45
1598	Synthesis of reversible PAD4 inhibitors via copper-catalyzed Câ^'H arylation of benzimidazole. Science China Chemistry, 2019, 62, 592-596.	4.2	4
1599	Directed, Palladium(II)-Catalyzed Enantioselective <i>anti-</i> Carboboration of Alkenyl Carbonyl Compounds. ACS Catalysis, 2019, 9, 3260-3265.	5.5	85
1600	10 Palladium in Photocatalysis. , 2019, , .		0
1601	Carboxylate-Assisted Pd(II)-Catalyzed <i>ortho</i> -C–H and Remote C–H Activation: Economical Synthesis of Pyrano[4,3- <i>b</i>]Indol-1(5 <i>H</i>)-ones. Organic Letters, 2019, 21, 2847-2850.	2.4	22
1602	Activation of Heteroaromatic C–H Bonds in Furan and 2,5-Dimethylfuran. Inorganic Chemistry, 2019, 58, 6008-6015.	1.9	7
1603	NBE-Controlled Palladium-Catalyzed Interannular Selective C–H Silylation: Access to Divergent Silicon-Containing 1,1′-Biaryl-2-Acetamides. Organic Letters, 2019, 21, 2718-2722.	2.4	40
1604	Mnâ€Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through Câ [~] H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angewandte Chemie, 2019, 131, 5144-5148.	1.6	9
1605	The Dual Role of Benzophenone in Visibleâ€Light/Nickel Photoredoxâ€Catalyzed Câ^'H Arylations: Hydrogenâ€Atom Transfer and Energy Transfer. Angewandte Chemie - International Edition, 2019, 58, 3566-3570.	7.2	130
1606	Rhodium(<scp>iii</scp>)-catalyzed diverse [4 + 1] annulation of arenes with 1,3-enynes <i>via</i> sp ³ /sp ² C–H activation and 1,4-rhodium migration. Chemical Science, 2019, 10, 3987-3993.	3.7	43
1607	Nickel, Cobalt and Palladium Catalysed Câ	2.9	49
1608	The Dual Role of Benzophenone in Visible‣ight/Nickel Photoredox atalyzed Câ^'H Arylations: Hydrogenâ€Atom Transfer and Energy Transfer. Angewandte Chemie, 2019, 131, 3604-3608.	1.6	25

#	Article	IF	CITATIONS
1609	Mnâ€Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through Câ^'H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angewandte Chemie - International Edition, 2019, 58, 5090-5094.	7.2	45
1610	Metal-catalyzed, bidentate directing group-assisted Câ^'H functionalization: Application to the synthesis of complex natural products. Studies in Natural Products Chemistry, 2019, 63, 81-112.	0.8	5
1611	C–H Bond Alkylation of Cyclic Amides with Maleimides via a Site-Selective-Determining Six-Membered Ruthenacycle. Journal of Organic Chemistry, 2019, 84, 16183-16191.	1.7	27
1612	Metal-Free Oxidative Cross-Coupling Reaction of Heteroaromatic and Related Compounds. Chemical and Pharmaceutical Bulletin, 2019, 67, 1259-1270.	0.6	13
1613	Co-catalyzed <i>ortho</i> -C–H functionalization/annulation of arenes and alkenes with alkynylsilanes: access to isoquinolone and pyridone motifs. RSC Advances, 2019, 9, 30650-30654.	1.7	23
1614	Regioselective cyclometallation of N-methyl-N-(naphthalen-2-ylmethyl)-2-(pyridin-2-yl)ethanamine with palladium(II) acetate and catalytic reduction of various functional groups. Inorganica Chimica Acta, 2019, 484, 27-32.	1.2	5
1615	Twoâ€inâ€One Strategy for Palladiumâ€Catalyzed Câ^'H Functionalization in Water. Angewandte Chemie, 2019, 131, 2885-2889.	1.6	9
1616	Rh(III)-Catalyzed <i>meta</i> -C–H Alkenylation with Alkynes. Journal of the American Chemical Society, 2019, 141, 76-79.	6.6	89
1617	Lateâ€Stage Diversification through Manganeseâ€Catalyzed Câ^'H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angewandte Chemie, 2019, 131, 3514-3518.	1.6	36
1618	Lateâ€Stage Diversification through Manganeseâ€Catalyzed Câ^'H Activation: Access to Acyclic, Hybrid, and Stapled Peptides. Angewandte Chemie - International Edition, 2019, 58, 3476-3480.	7.2	84
1619	MnCl ₂ -Catalyzed C–H Alkylation on Azine Heterocycles. Organic Letters, 2019, 21, 571-574.	2.4	35
1620	Oxidative Coupling Reactions Between Hydrocarbons and Organometallic Reagents (The Second) Tj ETQq1 1 0.78	343]4 rgE	BT /Overlock
1621	Twoâ€inâ€One Strategy for Palladiumâ€Catalyzed Câ^'H Functionalization in Water. Angewandte Chemie - International Edition, 2019, 58, 2859-2863.	7.2	50
1622	3d Transition Metals for C–H Activation. Chemical Reviews, 2019, 119, 2192-2452.	23.0	1,666
1623	Arylation/Intramolecular Conjugate Addition of 1,6-Enynes Enabled by Manganese(I)-Catalyzed C–H Bond Activation. Organic Letters, 2019, 21, 5-9.	2.4	43
1624	Benzaldehyd in Nickelâ€katalysierten Photoredoxâ€sp 3 â€Câ€Hâ€Alkylierungen/Arylierungen. Angewandte Chemie, 2019, 131, 1837-1841.	1.6	20
1625	The Combination of Benzaldehyde and Nickelâ€Catalyzed Photoredox C(sp ³)â^'H Alkylation/Arylation. Angewandte Chemie - International Edition, 2019, 58, 1823-1827.	7.2	98
1626	Synthesis of Enantiomerically Pure 1,2,3-Trisubstituted Cyclopropane Nucleosides Using Pd-Catalyzed Substitution via Directing Group-Mediated C(sp ³)–H Activation as a Key Step. Organic Letters, 2019, 21, 656-659.	2.4	13

#	Article	IF	CITATIONS
1627	One-pot, solvent-free Pd(II)-catalyzed direct Î ² -C-H arylation of carboxamides involving anhydrides as substrates via in situ installation of directing group. Tetrahedron, 2019, 75, 1246-1257.	1.0	9
1628	Multiple Aromatic C–H Bond Activations by an Unsaturated Dirhenium Carbonyl Complex. Inorganic Chemistry, 2019, 58, 2109-2121.	1.9	7
1629	Room-temperature Pd(<scp>ii</scp>)-catalyzed direct C–H TIPS-ethynylation of phenylacetic amides with terminal alkynes. Organic Chemistry Frontiers, 2019, 6, 442-446.	2.3	10
1630	Multiple nitrogen-containing heterocycles: Metal and non-metal assisted synthesis. Synthetic Communications, 2019, 49, 1633-1658.	1.1	48
1631	Rapid Synthesis of Î ³ -Arylated Carbonyls Enabled by the Merge of Copper- and Photocatalytic Radical Relay Alkylarylation of Alkenes. Organic Letters, 2019, 21, 56-59.	2.4	63
1632	Palladium-catalyzed phosphination and amination through C H bond functionalization on biphenyl: Amido-substituent as directing group. Tetrahedron, 2019, 75, 387-397.	1.0	4
1633	Intramolecular Cyclizations of Vinyl-Substituted <i>N</i> , <i>N</i> -Dialkyl Arylamines Enabled by Borane-Assisted Hydride Transfer. ACS Catalysis, 2019, 9, 295-300.	5.5	51
1634	Lateâ€Stage Peptide Diversification through Cobaltâ€Catalyzed Câ^'H Activation: Sequential Multicatalysis for Stapled Peptides. Angewandte Chemie - International Edition, 2019, 58, 1684-1688.	7.2	104
1635	Lateâ€Stage Peptide Diversification through Cobaltâ€Catalyzed Câ^'H Activation: Sequential Multicatalysis for Stapled Peptides. Angewandte Chemie, 2019, 131, 1698-1702.	1.6	37
1636	Accessing Remote <i>meta</i> ―and <i>para</i> (sp ²)â^'H Bonds with Covalently Attached Directing Groups. Angewandte Chemie - International Edition, 2019, 58, 10820-10843.	7.2	273
1637	Zugang zu <i>meta</i> ―und <i>para</i> (sp ²)â€Hâ€Bindungen mithilfe kovalent gebundener dirigierender Gruppen. Angewandte Chemie, 2019, 131, 10934-10958.	1.6	56
1638	Rhodium(III)â€Catalyzed C–H Alkylation/Nucleophilic Addition Domino Reaction. European Journal of Organic Chemistry, 2019, 2019, 660-664.	1.2	13
1639	Rhodiumkatalysierte sp ² ―und sp ³ â€Câ€Hâ€Funktionalisierungen mit entfernbaren dirigierenden Gruppen. Angewandte Chemie, 2019, 131, 8390-8416.	1.6	41
1640	Rhodiumâ€Catalyzed C(sp ²)―or C(sp ³)â^'H Bond Functionalization Assisted by Removable Directing Groups. Angewandte Chemie - International Edition, 2019, 58, 8304-8329.	7.2	309
1641	Palladium-Catalyzed Electrochemical C–H Alkylation of Arenes. Organometallics, 2019, 38, 1208-1212.	1.1	40
1642	Ruthenium(II)â€Catalyzed Hydrogen Isotope Exchange of Pharmaceutical Drugs by Câ^'H Deuteration and Câ^'H Tritiation. ChemCatChem, 2020, 12, 100-104.	1.8	35
1643	Efficient Heterogeneous Palladiumâ€Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie - International Edition, 2020, 59, 1992-1996.	7.2	24
1644	Nickelaâ€electrocatalyzed Câ^'H Alkoxylation with Secondary Alcohols: Oxidationâ€Induced Reductive Elimination at Nickel(III). Angewandte Chemie - International Edition, 2020, 59, 3178-3183.	7.2	81

#	Article	IF	CITATIONS
1645	Nickelâ€mediated crossâ€coupling via C–O activation assisted by organoaluminum. Journal of the Chinese Chemical Society, 2020, 67, 376-382.	0.8	3
1646	Copper mediated C(sp ²)–H amination and hydroxylation of phosphinamides. Chemical Communications, 2020, 56, 1444-1447.	2.2	8
1647	Metal- and solvent-free direct C–H thiolation of aromatic compounds with sulfonyl chlorides. Green Chemistry, 2020, 22, 427-432.	4.6	23
1648	Oxidative Annulation of 3â€Arylâ€2 <i>H</i> â€benzo[e][1,2,4]thiadiazineâ€1,1â€dioxides with Aryl Aldehydes: Ar Easy Access to Hydroxyisoindolo[1,2â€ <i>b</i>] benzothiadiazinedioxide Scaffolds. European Journal of Organic Chemistry, 2020, 2020, 923-931.	۱ 1.2	11
1649	Rh(III)-catalyzed C8 arylation of quinoline N-oxides with arylboronic acids. Chinese Chemical Letters, 2020, 31, 1572-1575.	4.8	8
1650	Bidentate Directing Groups: An Efficient Tool in C–H Bond Functionalization Chemistry for the Expedient Construction of C–C Bonds. Chemical Reviews, 2020, 120, 1788-1887.	23.0	687
1651	Cu-Catalyzed Direct C7 Sulfonylation of Indolines with Arylsulfonyl Chlorides. Journal of Organic Chemistry, 2020, 85, 1022-1032.	1.7	33
1652	Palladium-Catalyzed Amide-Directed Hydrocarbofunctionalization of 3-Alkenamides with Alkynes. ACS Catalysis, 2020, 10, 933-940.	5.5	52
1653	Recent Development on Cp*lr(III) atalyzed Câ^'H Bond Functionalization. ChemCatChem, 2020, 12, 2358-2384.	1.8	47
1654	Efficient Heterogeneous Palladiumâ€Catalyzed Oxidative Cascade Reactions of Enallenols to Furan and Oxaborole Derivatives. Angewandte Chemie, 2020, 132, 2008-2012.	1.6	10
1656	Para-selective borylation of monosubstituted benzenes using a transient mediator. Science China Chemistry, 2020, 63, 336-340.	4.2	86
1657	Nickelaelektroâ€katalysierte Câ€Hâ€Alkoxylierung mit sekundäen Alkoholen: oxidationsinduzierte reduktive Eliminierung an Nickel(III). Angewandte Chemie, 2020, 132, 3204-3209.	1.6	19
1658	Zusammenwirken von Rutheniumkatalysatoren und elektrokatalytisch generierten, hypervalenten Iodreagenzien für die Câ€Hâ€Oxygenierung. Angewandte Chemie, 2020, 132, 3210-3215.	1.6	28
1659	Câ^'H Oxygenation Reactions Enabled by Dual Catalysis with Electrogenerated Hypervalent Iodine Species and Ruthenium Complexes. Angewandte Chemie - International Edition, 2020, 59, 3184-3189.	7.2	83
1660	Late-stage functionalization of peptides <i>via</i> a palladium-catalyzed C(sp ³)–H activation strategy. Chemical Communications, 2020, 56, 13950-13958.	2.2	70
1661	Iridium-catalyzed direct C–H arylation of cyclic N-sulfonyl ketimines with arylsiloxanes at ambient temperature. Organic and Biomolecular Chemistry, 2020, 18, 7074-7078.	1.5	13
1662	Transition Metalâ€Catalyzed Enantioselective Câ^'H Functionalization via Chiral Transient Directing Group Strategies. Angewandte Chemie - International Edition, 2020, 59, 19773-19786.	7.2	223
1664	In-Situ Synthesis and Characterization of Nanocomposites in the Si-Ti-N and Si-Ti-C Systems. Molecules, 2020, 25, 5236.	1.7	11

#	Article	IF	CITATIONS
1665	Recent advances and prospects in the metal-free synthesis of quinolines. Organic and Biomolecular Chemistry, 2020, 18, 9775-9790.	1.5	38
1666	Palladium-Catalyzed C(sp ³)–H Nitrooxylation with <i>tert</i> Butyl Nitrite and Molecular Oxygen. Organic Letters, 2020, 22, 9719-9723.	2.4	19
1667	Copperâ€Mediated Phosphorylation of Arylsilanes with Hâ€Phosphonate Diesters. Asian Journal of Organic Chemistry, 2020, 9, 2083-2086.	1.3	10
1668	Transition Metal atalyzed Enantioselective Câ^'H Functionalization via Chiral Transient Directing Group Strategies. Angewandte Chemie, 2020, 132, 19941-19954.	1.6	37
1669	Synthesis of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Intramolecular C(sp ³)–H Arylation of <i>N</i> -Methyl Alanine at C-Termini. Organic Letters, 2020, 22, 6209-6213.	2.4	24
1670	Straightforward synthesis of benzoxazoles and benzothiazoles via photocatalytic radical cyclization of 2-substituted anilines with aldehydes. Catalysis Communications, 2020, 145, 106120.	1.6	19
1671	DFT Studies on Copper-Catalyzed Dearomatization of Pyridine. ACS Catalysis, 2020, 10, 9585-9593.	5.5	12
1672	Transition Metals and Transition Metals/Lewis Acid Cooperative Catalysis for Directing Group Assisted <i>para</i> -C–H Functionalization. Chemistry Letters, 2020, 49, 1406-1420.	0.7	28
1673	Lewis acid-assisted Ir(<scp>iii</scp>) reductive elimination enables construction of seven-membered-ring sulfoxides. Chemical Science, 2020, 11, 10149-10158.	3.7	9
1674	Silver/Palladium Relay Catalyzed Crossâ€Coupling of N' â€Acetylâ€8â€quinolinesulfonylhydrazide with Alcohols: An Easy Access to 8â€Quinolinesulfinate Esters. European Journal of Organic Chemistry, 2020, 2020, 5709-5713.	1.2	3
1675	Direct remote Î′-C(sp ²)–H olefination of β-aryl-substituted aliphatic aldehydes <i>via</i> palladium/enamine co-catalysis. Organic Chemistry Frontiers, 2020, 7, 2965-2974.	2.3	8
1676	Construction of Cyclophane-Braced Peptide Macrocycles via Palladium-Catalyzed Picolinamide-Directed Intramolecular C(sp ²)–H Arylation. Organic Letters, 2020, 22, 6879-6883.	2.4	35
1677	Chiral Transient Directing Group Strategies in Asymmetric Synthesis. Chemistry - an Asian Journal, 2020, 15, 3225-3238.	1.7	14
1678	Late-stage diversification by rutheniumelectro-catalyzed C–H mono- and di-acyloxylation. Green Synthesis and Catalysis, 2020, 1, 175-179.	3.7	20
1679	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective βâ€C(sp 3)â^'H Arylation. Angewandte Chemie, 2020, 132, 12874-12878.	1.6	13
1680	Cobalta-Electrocatalyzed C–H Allylation with Unactivated Alkenes. ACS Catalysis, 2020, 10, 6457-6462.	5.5	48
1681	Directed Cobalt-Catalyzed <i>anti</i> -Markovnikov Hydroalkylation of Unactivated Alkenes Enabled by "Co–H―Catalysis. Organic Letters, 2020, 22, 4333-4338.	2.4	33
1682	MnBr ₂ -Catalyzed Direct and Site-Selective Alkylation of Indoles and Benzo[<i>h</i>]quinoline. Organic Letters, 2020, 22, 4643-4647.	2.4	21

#	Article	IF	CITATIONS
1683	3d metallaelectrocatalysis for resource economical syntheses. Chemical Society Reviews, 2020, 49, 4254-4272.	18.7	150
1684	Achieving Site-Selectivity for C–H Activation Processes Based on Distance and Geometry: A Carpenter's Approach. Journal of the American Chemical Society, 2020, 142, 10571-10591.	6.6	236
1685	<scp>Pdâ€Catalyzed Siteâ€Selective</scp> Borylation of Simple Arenes <i>via</i> Thianthrenation ^{â€} . Chinese Journal of Chemistry, 2020, 38, 1269-1272.	2.6	23
1686	Remote γ-C(sp ³)–H Alkylation of Aliphatic Carboxamides via an Unexpected Regiodetermining Pd Migration Process: Reaction Development and Mechanistic Study. ACS Catalysis, 2020, 10, 8212-8222.	5.5	32
1687	Rhodium(III)-Catalyzed C–H Olefination of Aromatic/Vinyl Acids with Unactivated Olefins at Room Temperature. Organic Letters, 2020, 22, 5057-5062.	2.4	32
1688	NaH-mediated direct C–H arylation in the presence of 1,10-phenanthroline. Chemical Communications, 2020, 56, 7773-7776.	2.2	5
1689	Cu-Catalyzed C–H Alkenylation of Benzoic Acid and Acrylic Acid Derivatives with Vinyl Boronates. Organic Letters, 2020, 22, 4692-4696.	2.4	16
1690	Copperâ€Mediated Intramolecular Oxidative αâ€Functionalization of Ugi Precursor: An Efficient Synthesis of Highly Functionalized 2Hâ€Benzo[e][1,3]oxazinâ€4(3H)â€one Derivatives. ChemistrySelect, 2020, 5, 6780-6785.	0.7	3
1691	Late-stage C(sp ²)–H and C(sp ³)–H glycosylation of <i>C</i> -aryl/alkyl glycopeptides: mechanistic insights and fluorescence labeling. Chemical Science, 2020, 11, 6521-6526.	3.7	76
1692	Catalyst and solvent switched divergent C–H functionalization: oxidative annulation of <i>N</i> -aryl substituted quinazolin-4-amine with alkynes. Organic and Biomolecular Chemistry, 2020, 18, 3032-3037.	1.5	8
1694	From Pd(OAc) ₂ to Chiral Catalysts: The Discovery and Development of Bifunctional Mono-N-Protected Amino Acid Ligands for Diverse C–H Functionalization Reactions. Accounts of Chemical Research, 2020, 53, 833-851.	7.6	283
1695	Regioselective Câ^'H Functionalization of Naphthalenes: Reactivity and Mechanistic Insights. ChemPlusChem, 2020, 85, 476-486.	1.3	25
1696	DFT-Guided Phosphoric-Acid-Catalyzed Atroposelective Arene Functionalization of Nitrosonaphthalene. CheM, 2020, 6, 2046-2059.	5.8	83
1697	Utilization of Rh-carbenoid C H insertion reactions for the synthesis of bioactive natural products. Studies in Natural Products Chemistry, 2020, , 349-380.	0.8	3
1698	Differentiation and functionalization of remote C–H bonds in adjacent positions. Nature Chemistry, 2020, 12, 399-404.	6.6	98
1699	Chiral phosphoric acid catalyzed asymmetric arylation of indoles <i>via</i> nucleophilic aromatic substitution: mechanisms and origin of enantioselectivity. Catalysis Science and Technology, 2020, 10, 2277-2292.	2.1	9
1700	New Strategies for the Transition-Metal Catalyzed Synthesis of Aliphatic Amines. Chemical Reviews, 2020, 120, 2613-2692.	23.0	510
1701	A palladium-catalyzed C–H functionalization route to ketones <i>via</i> the oxidative coupling of arenes with carbon monoxide. Chemical Science, 2020, 11, 3104-3109.	3.7	10

#	Article	IF	CITATIONS
1702	Rh(III)â€Catalyzed Câ^'H Acylmethylation of 6â€Arylpurines Using Sulfoxonium Ylides as Carbene Precursors. ChemistrySelect, 2020, 5, 2465-2468.	0.7	9
1703	Development of a Traceless Directing Group: Cp*-Free Cobalt-Catalyzed C–H Activation/Annulations to Access Isoquinolinones. Journal of Organic Chemistry, 2020, 85, 4067-4078.	1.7	30
1704	<scp>Niâ€Catalyzed Chelationâ€Assisted</scp> Direct Functionalization of Inert C—H Bonds. Chinese Journal of Chemistry, 2020, 38, 635-662.	2.6	59
1705	Rhodium-Catalyzed ortho-Selective Carbene C–H Insertion of Unprotected Phenols Directed by a Transient Oxonium Ylide Intermediate. Organic Letters, 2020, 22, 908-913.	2.4	13
1706	Rhodium(III)â€Catalyzed Directed Câ^'H Bond Naphthylation with 7â€Azabenzonorbornadiene as the Naphthylating Reagent. Asian Journal of Organic Chemistry, 2020, 9, 233-237.	1.3	7
1707	Photoinduced Heterogeneous Câ^'H Arylation by a Reusable Hybrid Copper Catalyst. Chemistry - A European Journal, 2020, 26, 3509-3514.	1.7	24
1708	Metal-containing ceramic nanocomposites synthesized from metal acetates and polysilazane. Open Ceramics, 2020, 1, 100001.	1.0	15
1709	Nickelaelektrokatalysierte, milde Câ€Hâ€Alkylierungen bei Raumtemperatur. Angewandte Chemie, 2020, 132, 14258-14263.	1.6	8
1710	Hybrid Palladium Catalyst Assembled from Chiral Phosphoric Acid and Thioamide for Enantioselective β (sp ³)â^'H Arylation. Angewandte Chemie - International Edition, 2020, 59, 12774-12778.	7.2	39
1711	Iodide-enhanced palladium catalysis via formation of iodide-bridged binuclear palladium complex. Communications Chemistry, 2020, 3, .	2.0	4
1712	Cobalt-catalyzed 2-(1-methylhydrazinyl)pyridine-assisted cyclization of thiophene-2-carbohydrazides with maleimides: efficient synthesis of thiophene-fused pyridones. Chemical Communications, 2020, 56, 5524-5527.	2.2	32
1713	Copper-catalyzed remote C–H arylation of polycyclic aromatic hydrocarbons (PAHs). Beilstein Journal of Organic Chemistry, 2020, 16, 530-536.	1.3	8
1714	Nickelaâ€electrocatalyzed Mild Câ^'H Alkylations at Room Temperature. Angewandte Chemie - International Edition, 2020, 59, 14154-14159.	7.2	46
1715	Iridiumâ€Catalyzed Enantioselective Hydroarylation of Alkenes through Câ°H bond Activation: Experiment and Computation. Chemistry - A European Journal, 2020, 26, 8308-8313.	1.7	25
1716	Directing-Group-Controlled Ring-Opening Addition and Hydroarylation of Oxa/azabenzonorbornadienes with Arenes via C–H Activation. Organic Letters, 2020, 22, 3339-3344.	2.4	20
1717	Nano palladium catalyzed C(sp3) H bonds arylation by a transient directing strategy. Chinese Chemical Letters, 2021, 32, 465-469.	4.8	8
1718	Regioselective Direct C2 Arylation of Indole, Benzothiophene and Benzofuran: Utilization of Reusable Pd NPs and NHC-Pd@MNPs Catalyst for C–H Activation Reaction. Catalysis Letters, 2021, 151, 1397-1405.	1.4	17
1719	<scp>Pdâ€Catalyzed <i>Ortho</i>â€Directed</scp> C—H Glycosylation of Arenes Using Nâ€ŀinked Bidentate Auxiliaries. Chinese Journal of Chemistry, 2021, 39, 571-576.	2.6	24

ARTICLE IF CITATIONS Advancing the Logic of Chemical Synthesis: Câ[^]H Activation as Strategic and Tactical Disconnections 1720 50 1.6 for Câ[^]C Bond Construction. Angewandte Chemie, 2021, 133, 15901-15924. Advancing the Logic of Chemical Synthesis: Câ[^]'H Activation as Strategic and Tactical Disconnections 7.2 208 for Câ[°]C Bond Construction. Angewandte Chemie - International Edition, 2021, 60, 15767-15790. Catalytic Câ[^]H Functionalization of Unreactive Furan Cores in Bioâ€Derived Platform Chemicals. 1722 3.6 19 ChemSusChem, 2021, 14, 558-568. Site-selective functionalization of remote aliphatic Câ€"H bonds <i>via</i> Câ€"H metallation. Chemical Science, 2021, 12, 841-852. Remote methylene C(sp³)â€"H functionalization enabled by organophosphine-catalyzed 1724 2.3 6 alkyne isomerization. Organic Chemistry Frontiers, 2021, 8, 1125-1131. The Ketone-Amine-Alkyne (KA2) coupling reaction: Transition metal-catalyzed synthesis of quaternary propargylamines. Coordination Chemistry Reviews, 2021, 429, 213603. A simple removable aliphatic nitrile template 2-cyano-2,2-di-isobutyl acetic acid for remote 1726 2.312 <i>meta</i>>-selective Câ€"H functionalization. Órganic Chemistry Frontiers, 2021, 8, 1959-1969. Palladium-Catalyzed Denitrative α-Arylation of Ketones with Nitroarenes. Organic Letters, 2021, 23, 1727 2.4 24 881-885. Sulfur stereogenic centers in transition-metal-catalyzed asymmetric Câ€"H functionalization: 1728 3.7 28 generation and utilization. Chemical Science, 2021, 12, 10972-10984. Phenanthroline Ligands., 2021, , 78-89. Microwave assisted and in-situ generated palladium nanoparticles catalysed desulfitative synthesis of cross-biphenyls from arylsulfonyl chlorides and phenylboronic acids. Results in Chemistry, 2021, 3, 1730 2 0.9 100181. 8-Aminoimidazo[1,2-<i>a</i>)pyridine (AIP) directed Pd(<scp>ii</scp>) catalysis: site-selective <i>ortho</i>-C(sp²)–H arylation in aqueous medium. Organic and Biomolecular Chemistry, 2021, 19, 1604-1609. 1.5 Progress and perspectives on directing group-assisted palladium-catalysed Câ€"H functionalisation of 1732 18.7 45 amino acids and peptides. Chemical Society Reviews, 2021, 50, 9278-9343. C3-Arylation of indoles with aryl ketones <i>via</i> C–C/C–H activations. Chemical Communications, 2021, 57, 9716-9719. 2.2 Iron-Catalyzed Triazole-Enabled Câ€"H Activation with Bicyclopropylidenes. ACS Catalysis, 2021, 11, 1735 5.514 1053-1064. Copper-Catalyzedortho-Sulfonylation with 5-Chloro-8-aminoquinoline Group-Directed. Chinese Journal of Organic Chemistry, 2021, 41, 384. Directing group strategies in catalytic sp² C–H cyanations: scope, mechanism and 1738 2.1 10 limitations. Catalysis Science and Technology, 2021, 11, 3308-3325. Copper-Catalyzed Meta-Selective Arylation of Phenol Derivatives: An Easy Access to <i>m</i>-Aryl 1739 5.5

CITATION REPORT

Phenols. ACS Catalysis, 2021, 11, 2302-2309.

#	Article	IF	CITATIONS
1740	Merging C–H and C–C Activation in Pd(II)-Catalyzed Enantioselective Synthesis of Axially Chiral Biaryls. CCS Chemistry, 2021, 3, 455-465.	4.6	40
1742	Copperâ€Catalyzed Crossâ€Dehydrogenative Coupling Reactions. European Journal of Organic Chemistry, 2021, 2021, 1776-1808.	1.2	21
1743	Diaryliodonium Salts in Transitionâ€Metalâ€Catalyzed Chelationâ€Induced C(sp 2 /sp 3)â^'H Arylations. European Journal of Organic Chemistry, 2021, 2021, 1837-1858.	1.2	9
1744	Triflic Acidâ€Catalyzed Chemo―and Siteâ€Selective Câ°'H Bond Functionalization of Phenols With 1,3â€Dienes. Advanced Synthesis and Catalysis, 2021, 363, 2740-2745.	2.1	10
1745	Zinc-Catalyzed Hydroalkoxylation/Cyclization of Alkynyl Alcohols. Inorganic Chemistry, 2021, 60, 5322-5332.	1.9	5
1746	Copperâ€Catalyzed Remote C5â€Selective Chlorination of 8â€Amidoquinolines Using Sulfonyl Chlorides as Cl Source. ChemistrySelect, 2021, 6, 2319-2322.	0.7	3
1747	CO ₂ -Promoted Reactions: An Emerging Concept for the Synthesis of Fine Chemicals and Pharmaceuticals. ACS Catalysis, 2021, 11, 3414-3442.	5.5	73
1748	Remarkably Efficient Iridium Catalysts for Directed C(sp ²)–H and C(sp ³)–H Borylation of Diverse Classes of Substrates. Journal of the American Chemical Society, 2021, 143, 5022-5037.	6.6	99
1749	Asymmetric Alkyl and Aryl/Azolation of Alkenes via a Single Cu(I) Complex. ACS Catalysis, 2021, 11, 5108-5118.	5.5	21
1750	Cobalt-catalyzed C H activation of N-carbamoyl indoles or benzamides with maleimides: Synthesis of imidazo[1,5-a]indole- or isoindolone-incorporated spirosuccinimides. Tetrahedron Letters, 2021, 70, 152872.	0.7	9
1751	Regioselective Intermolecular Hydroamination of Unactivated Alkenes: "Co–H―Enabled Remote Functionalization. ACS Catalysis, 2021, 11, 6602-6613.	5.5	19
1752	Theoretical studies on the mechanism of Pd2+-catalyzed regioselective C-H alkylation of indole with MesICH2CF3OTf. Journal of Molecular Modeling, 2021, 27, 150.	0.8	1
1753	Mechanism of 8-Aminoquinoline-Directed Ni-Catalyzed C(sp ³)–H Functionalization: Paramagnetic Ni(II) Species and the Deleterious Effect of Carbonate as a Base. Organometallics, 2021, 40, 2970-2982.	1.1	9
1754	<i>N</i> â€Heterocyclic Carbene Catalyzed Benzannulations: Mechanism and Synthetic Utility. Asian Journal of Organic Chemistry, 2021, 10, 2263-2273.	1.3	10
1755	Experimental and Computational Studies of Palladium-Catalyzed Spirocyclization via a Narasaka–Heck/C(sp ³ or sp ²)–H Activation Cascade Reaction. Journal of the American Chemical Society, 2021, 143, 7868-7875.	6.6	31
1756	Mechanism of Ir-Mediated Selective Pyridine <i>o</i> -C–H Activation: The Role of Lewis Acidic Boryl Group. ACS Catalysis, 2021, 11, 6186-6192.	5.5	7
1757	Aryne Multicomponent Reactions by Directed Câ^'H Activation. Chemistry - A European Journal, 2021, 27, 8846-8850.	1.7	6
1758	Meta Selective C–H Borylation of Sterically Biased and Unbiased Substrates Directed by Electrostatic Interaction. Journal of the American Chemical Society, 2021, 143, 7604-7611.	6.6	57

#	Article	IF	CITATIONS
1759	Mechanism of the Areneâ€Limited Nondirected Câ^'H Activation of Arenes with Palladium**. Angewandte Chemie - International Edition, 2021, 60, 15641-15649.	7.2	30
1760	Intermolecular Dehydrogenative Câ^'H/Siâ^'H Crossâ€Coupling for the Synthesis of Arylbenzyl Bis(silanes). European Journal of Organic Chemistry, 2021, 2021, 3079-3082.	1.2	6
1761	Ruthenium-Catalyzed Regioselective C(sp ²)–H Activation/Annulation of <i>N</i> -(7-Azaindole)amides with 1,3-Diynes Using <i>N</i> -Amino-7-azaindole as the <i>N</i> , <i>N</i> -Bidentate Directing Group. Journal of Organic Chemistry, 2021, 86, 9428-9443.	1.7	7
1762	Copper-mediated ortho C H primary amination of anilines. Tetrahedron Letters, 2021, 73, 153099.	0.7	1
1763	Modular synthesis of non-conjugated N-(quinolin-8-yl) alkenyl amides via cross-metathesis. Tetrahedron, 2021, 93, 132279.	1.0	1
1764	Mechanismus der Arenâ€limitierten, nichtâ€dirigierten Câ€Hâ€Aktivierung von Arenen mit Palladium**. Angewandte Chemie, 2021, 133, 15770-15779.	1.6	6
1765	The Activating Effect of Strong Acid for Pd-Catalyzed Directed C–H Activation by Concerted Metalation-Deprotonation Mechanism. Molecules, 2021, 26, 4083.	1.7	5
1766	The hydrogen bond effect on excited state mechanism for 2-isopropyl thioxanone in protic solvents: Experimental and theoretical investigation. Journal of Molecular Liquids, 2022, 345, 117012.	2.3	9
1767	AlEâ€Active Difluoroboron Complexes with N,Oâ€Bidentate Ligands: Rapid Construction by Copperâ€Catalyzed Câ^'H Activation. Advanced Science, 2021, 8, e2101814.	5.6	18
1768	Arene C–H Iodination Using Aryl Iodides. CCS Chemistry, 2022, 4, 1889-1900.	4.6	21
1769	Stereoselective Synthesis of <i>C</i> â€Vinyl Glycosides via Palladiumâ€Catalyzed Câ^'H Glycosylation of Alkenes. Angewandte Chemie - International Edition, 2021, 60, 19620-19625.	7.2	48
1770	Stereoselective Synthesis of <i>C</i> â€Vinyl Glycosides via Palladiumâ€Catalyzed Câ^H Glycosylation of Alkenes. Angewandte Chemie, 2021, 133, 19772-19777.	1.6	8
1771	Palladium-Catalyzed Butoxycarbonylation of Polybromo(hetero)arenes: A Practical Method for the Preparation of (Hetero)arenepolycarboxylates and -carboxylic Acids. Synthesis, 2022, 54, 403-410.	1.2	1
1772	Rhodium-Catalyzed and Chiral Zinc Carboxylate-Assisted Allenylation of Benzamides via Kinetic Resolution. Organic Letters, 2021, 23, 7038-7043.	2.4	11
1773	Construction of Siâ€ S tereogenic Silanes through Câ^'H Activation Approach. European Journal of Organic Chemistry, 2021, 2021, 6006-6014.	1.2	40
1774	Palladium-Catalyzed Arylation of C(sp2)–H Bonds with 2-(1-Methylhydrazinyl)pyridine as the Bidentate Directing Group. ACS Omega, 2021, 6, 25151-25161.	1.6	0
1775	Palladium-Catalyzed Distal <i>m</i> -C–H Functionalization of Arylacetic Acid Derivatives. Organic Letters, 2021, 23, 7353-7358.	2.4	11
1776	Visible-Light-Induced Amination of Quinoline at the C8 Position via a Postcoordinated Interligand-Coupling Strategy under Mild Conditions. Inorganic Chemistry, 2021, 60, 908-918.	1.9	9

#	Article	IF	CITATIONS
1777	Tunable C–H arylation and acylation of azoles with carboxylic acids by Pd/Cu cooperative catalysis. Organic Chemistry Frontiers, 2021, 8, 2543-2550.	2.3	21
1778	Ag-Catalyzed Remote Unactivated C(sp ³)–H Heteroarylation of Free Alcohols in Water. Organic Letters, 2021, 23, 722-726.	2.4	15
1779	Green Chemistry on Câ \in "H Activation. Materials Horizons, 2021, , 181-200.	0.3	0
1781	Pyridine- and Quinoline-Derived Imines as N,N-Bidentate Directing Groups in Palladium versus Platinum C–H Bond Activation Reactions. Organometallics, 2021, 40, 203-217.	1.1	3
1782	Nickel atalyzed Câ^'H Heteroarylation of Chiral Oxazolines. Asian Journal of Organic Chemistry, 2018, 7, 542-544.	1.3	7
1783	Mechanistic Pathways Toward the Synthesis of Heterocycles Under Cross-Dehydrogenative Conditions. , 2019, , 329-356.		4
1784	Recent advances and prospects in the nickel- catalyzed cyanation. Journal of Organometallic Chemistry, 2020, 920, 121337.	0.8	24
1785	Site-Selective Aerobic C–H Monoacylation of Carbazoles Using Palladium Catalysis. Journal of Organic Chemistry, 2021, 86, 1396-1407.	1.7	15
1786	Asymmetric Functionalization of C–H Bonds <i>via</i> a Transient Carbon–Metal (C–M) Species. RSC Catalysis Series, 2015, , 141-213.	0.1	20
1787	Overriding <i>ortho</i> selectivity by template assisted <i>meta</i> -C–H activation of benzophenones. Chemical Communications, 2020, 56, 7281-7284.	2.2	14
1788	igand-Accelerated ortho-C-H Olefination of Phenylacetic Acids. Organic Syntheses, 2015, 92, 58-75.	1.0	5
1789	Phosphorus-Containing Groups Assisted Transition Metal Catalyzed C-H Activation Reactions. Current Organic Chemistry, 2019, 23, 103-135.	0.9	6
1790	Oxidative Rearrangement of Benzylamines to 4H-3,1-Benzoxazines via Cu/Mn-Promoted Intramolecular C–H Amination/Electrocyclic Reaction Cascade. Heterocycles, 2018, 97, 395.	0.4	2
1791	Rhodium-Catalyzed Highly Regioselective C-H Arylation of Imidazo[1,2-a]pyridines with Aryl Halides and Triflates. Bulletin of the Korean Chemical Society, 2013, 34, 2340-2342.	1.0	13
1792	C-H Functionalization of Heteroarenes Using First-Row Transition Metals: Copper and Nickel Catalyses. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 252-265.	0.0	5
1793	Development of a Novel and Practical Synthesis of Angiotensin II Receptor Blockers by Means of C-H Bond Activation. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 1295-1304.	0.0	3
1794	New Development toward Direct C-H Functionalization Strategies: Oxidations and Carbon-Unit Installations. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 996-1010.	0.0	1
1795	Development of Chelation-Assisted Transformations Involving C-H Bond Activation: Utilization of a Bidentate Directing Group. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2013, 71, 406-416.	0.0	4

#	Article	IF	CITATIONS
1796	Feâ€catalyzed Dehydrogenative Câ^'S Bond Formation for Access to 3â€Alkylâ€2â€(N â€aroyl)iminoâ€benzo[d]thiazolines. Asian Journal of Organic Chemistry, 2021, 10, 3241.	1.3	0
1797	Control of atroposelectivity via non-covalent interaction in Cu-catalyzed synthesis of axially chiral biaryls from azonaphthalenes and arylboronic acids. Molecular Catalysis, 2021, 515, 111833.	1.0	0
1799	Insight into the Mechanism and Regioselectivity of Pd(OAc)2-Catalyzed C–O Bond Activation via a β-O Elimination Approach: A Computational Study. Journal of Physical Chemistry A, 2021, 125, 9267-9278.	1.1	2
1802	Mechanistic Studies on Pd(OAc)2-Catalyzed Meta-C–H Activation Reaction. Springer Theses, 2017, , 43-62.	0.0	0
1804	Transition-Metal-Catalyzed, Coordination-Assisted Functionalization of Nonactivated C(sp ³)–H Bonds. Chemical Reviews, 2021, 121, 14957-15074.	23.0	262
1806	"Designer"-Surfactant-Enabled Cross-Couplings in at Room Temperature. Aldrichimica Acta, 2012, 45, 3-16.	4.0	98
1807	Understanding Cu(<scp>ii</scp>)-based systems for C(sp ³)–H bond functionalization: insights into the synthesis of aza-heterocycles. Organic and Biomolecular Chemistry, 2021, 20, 219-227.	1.5	2
1808	A Mechanism Study for Self-Cleaving Chlorotetrafluoroethylsulfinyl (â^'SOCF2CF2Cl)-Directed Pd(II)-Catalyzed C–H Activation. Journal of Organic Chemistry, 2021, 86, 16511-16517.	1.7	0
1809	Copper catalyzed decarboxylative coupling between coumarin 3-carboxylic acid and 4-thiazolidinones. Tetrahedron Letters, 2022, 91, 153538.	0.7	5
1810	Manganese-Catalyzed [4 + 2] Annulation of N–H Amidines with Vinylene Carbonate via C–H Activation. Journal of Organic Chemistry, 2021, 86, 18204-18210.	1.7	27
1811	Rh(<scp>iii</scp>)-catalyzed diastereoselective cascade annulation of enone-tethered cyclohexadienones <i>via</i> C(sp ²)–H bond activation. Chemical Communications, 2021, 57, 13598-13601.	2.2	3
1812	Direct Hydrodecarboxylation of Aliphatic Carboxylic Acids: Metal- and Light-Free. Organic Letters, 2022, , .	2.4	11
1813	Recent advances in γ-C(sp3)–H bond activation of amides, aliphatic amines, sulfanilamides and amino acids. Coordination Chemistry Reviews, 2022, 455, 214255.	9.5	18
1814	<scp>Copperâ€Mediated</scp> and Catalyzed C—H Bond Amination via Chelation Assistance: Scope, Mechanism and Synthetic Applications. Chinese Journal of Chemistry, 2022, 40, 1204-1223.	2.6	14
1815	Selective benzylic C _{sp3} –H bond activations mediated by a phosphorus–nitrogen PN ³ P-nickel complex. Chemical Communications, 2022, 58, 1593-1596.	2.2	2
1816	Cobalt(II)-Catalyzed Activation of C(sp ³)–H Bonds: Organic Oxidant Enabled Selective Functionalization. ACS Catalysis, 2022, 12, 1650-1656.	5.5	15
1817	Recyclable Aliphatic Nitrile-Template Enabled Remote <i>meta</i> -C–H Functionalization at Room Temperature. Journal of Organic Chemistry, 2022, 87, 2204-2221.	1.7	7
1818	Palladium-catalyzed three-component 1,4-aminoarylation of [60]fullerene with aryl iodides and N-methoxysulfonamides. Organic Chemistry Frontiers, 0, , .	2.3	8

#	Article	IF	CITATIONS
1819	A novel quinoline-based NNN-pincer Cu(<scp>ii</scp>) complex as a superior catalyst for oxidative esterification of allylic C(sp ³)–H bonds. Organic and Biomolecular Chemistry, 2022, 20, 3540-3549.	1.5	4
1820	Recent Progress in Direct Catalytic C(sp ³)—H Silylation Reactions. Chinese Journal of Organic Chemistry, 2022, 42, 323.	0.6	2
1821	Recent Advances in Metal Catalyzed Câ^'H Functionalization with a Wide Range of Directing Groups. ChemistrySelect, 2022, 7, .	0.7	4
1822	Palladium-Catalyzed Three-Component 1,4-Alkoxyarylation Reaction of [60]Fullerene. Journal of Organic Chemistry, 2022, 87, 4051-4060.	1.7	6
1823	4-Aminobenzotriazole (ABTA) as a Removable Directing Group for Palladium-Catalyzed Aerobic Oxidative C–H Olefination. Organic Letters, 2022, 24, 3107-3112.	2.4	5
1824	Alkene Difunctionalization Directed by Free Amines: Diamine Synthesis via Nickel-Catalyzed 1,2-Carboamination. ACS Catalysis, 2022, 12, 3890-3896.	5.5	23
1825	Pd-catalyzed Site-selective direct arene CÂ ÂH arylation of Pyrrolo[2,3-d]pyrimidine derivatives with aryl iodides. Tetrahedron Letters, 2022, 96, 153754.	0.7	3
1826	Metalâ€Free Electrocatalytic C(sp ²)â€H Acyloxylation of Aromatic Ring to Synthesis of Acetoxylated Phenylethers. ChemistrySelect, 2021, 6, 13851-13855.	0.7	1
1827	Copperâ€Catalyzed Ligandâ€Free Remote Câ^'H Bond Amidation of 8â€Amidoquinolines with <i>N</i> â€Fluorobenzenesulfonimide. ChemistrySelect, 2021, 6, 13559-13563.	0.7	1
1828	Manganese-Catalyzed Allylation of Quinazolinones with 4-Vinyl-1,3-dioxolan-2-one via C—H Activation. Chinese Journal of Organic Chemistry, 2022, 42, 847.	0.6	1
1829	Visible Light Driven CO ₂ Insertion from Phenylacetylene to Phenylpropiolic Acid Using Soft-Oxometalates. Journal of Molecular and Engineering Materials, 0, , .	0.9	0
1830	Copper-catalyzed C-N Bond Cleavage: Synthesis of N-sulfonylformamidines from N-(2-pyridinylmethyl)benzenesulfonamides. Current Organic Synthesis, 2022, 19, 797-807.	0.7	1
1831	Regioselective synthesis of spirocyclic pyrrolines <i>via</i> a palladium-catalyzed Narasaka–Heck/C–H activation/[4 + 2] annulation cascade reaction. Chemical Science, 2022, 13, 6348-6354.	3.7	13
1832	Directed Ni-Catalyzed Reductive Arylation of Aliphatic C–H Bonds. Organic Letters, 2022, 24, 3313-3318.	2.4	8
1833	Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chemical Reviews, 2022, 122, 12308-12369.	23.0	60
1834	Transition Metal-catalyzed Regioselective Direct C-H Arylations Using Quinone Diazide as Arylating Agent: A Mini Review. Mini-Reviews in Organic Chemistry, 2023, 20, 494-508.	0.6	0
1835	Transitionâ€Metal atalyzed Remote C(sp ³)â^'H Functionalization Of Carboxylic Acid And Its Derivatives. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	6
1836	Transient directing group enabled Pd-catalyzed C–H oxygenation of benzaldehydes and benzylic amines. RSC Advances, 2022, 12, 18722-18727.	1.7	3

#	Article	IF	CITATIONS
1837	Research Progress on Density Functional Theory Study of Palladium-Catalyzed C—H Functionalization to Form C—X (X=O, N, F, I, …) Bonds. Chinese Journal of Organic Chemistry, 2022, 42, 1346.	0.6	0
1838	Emerging trends in C(sp3)–H borylation. Trends in Chemistry, 2022, 4, 685-698.	4.4	20
1839	<scp>Palladiumâ€Catalyzed Methionineâ€Facilitated</scp> β and γ C(sp ³)–H Arylation of <scp>Nâ€Terminal</scp> Aliphatic Amino Acids of Peptides. Chinese Journal of Chemistry, 2022, 40, 2502-2506.	2.6	2
1840	Visible Lightâ€Induced Unactivated Î′â€C(sp ³)â^'H Amination of Alcohols Catalyzed by Iron. ChemSusChem, 2022, 15, .	3.6	7
1841	Crossâ€Coupling of Câ^'H and Nâ^'H Bonds: A Hydrogen Evolution Strategy for the Construction of Câ^'N Bonds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	12
1842	Silverâ€Free Câ^'H Activation: Strategic Approaches towards Realizing the Full Potential of Câ^'H Activation in Sustainable Organic Synthesis. Angewandte Chemie - International Edition, 2022, 61, .	7.2	17
1843	Directing group strategies in rhodium-catalyzed C–H amination. Organic and Biomolecular Chemistry, 2022, 20, 7554-7576.	1.5	4
1846	Silberfreie Câ^'Hâ€Aktivierung: Strategische AnsÃໝe zur Erschließung des vollen Potenzials von Câ^'Hâ€Aktivierungen in der nachhaltigen organischen Synthese. Angewandte Chemie, 2022, 134, .	1.6	2
1848	Palladium-Catalyzed C(sp ³)–H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. Journal of Organic Chemistry, 0, , .	1.7	1
1852	Pdâ€Catalyzed Oneâ€pot Sequential Sonogashira Coupling and Dual Annulations Cascade for the Synthesis of Benzofuro[3,2â€c]â€Triazalo/Pyrroloâ€Quinolines. Advanced Synthesis and Catalysis, 0, , .	2.1	2
1855	Deep learning for enantioselectivity predictions in catalytic asymmetric β-C–H bond activation reactions. , 2022, 1, 926-940.		8
1856	Pd(II) catalyzed regioselective ortho arylation of 2-arylpyridines, 1-phenyl-1H-pyrazoles, and N-pyridinylcarbazoles with diaryliodonium salts. Monatshefte FA¼r Chemie, 2022, 153, 1261-1267.	0.9	0
1858	Manganese-catalyzed hydroarylation of multiple bonds. Organic and Biomolecular Chemistry, 2023, 21, 441-464.	1.5	4
1862	Indolyl-based Copper(I) Complex-Catalyzed Intermolecular Trifluoromethylazolation of Alkenes via Radical Process. Organic Letters, 2022, 24, 8948-8953.	2.4	2
1863	C-H arylation enables synthesis of imidazole-4-carboxamide (ICA) based fairy chemicals with plant growth promoting activity. Canadian Journal of Chemistry, 0, , .	0.6	0
1864	Regio- and chemoselective hydroamination of unactivated alkenes with anthranils <i>via</i> NiH-catalysis. Chemical Communications, 2023, 59, 2751-2754.	2.2	4
1865	Palladium-catalyzed remote <i>meta</i> -C–H olefination of cinnamates. Chemical Communications, 2023, 59, 5249-5252.	2.2	3
1866	Palladiumâ€Catalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie - International Edition, 2023, 62, .	7.2	2

\sim				
	ΙΤΔΤ	IV F		D T
<u> </u>	IIAI	IVL	. 0	

#	Article	IF	CITATIONS
1867	Diyne-steered switchable regioselectivity in cobalt(<scp>ii</scp>)-catalysed C(sp ²)–H activation of amides with unsymmetrical 1,3-diynes. Organic and Biomolecular Chemistry, 2023, 21, 1942-1951.	1.5	2
1868	Distal <i>meta</i> -C–H functionalization of α-substituted cinnamates. Chemical Science, 0, , .	3.7	0
1869	Palladium atalyzed Enantioselective Isodesmic Câ^'H Iodination of Phenylacetic Weinreb Amides. Angewandte Chemie, 2023, 135, .	1.6	1
1870	Baseâ€Promoted Electrochemical Co ^{II} â€catalyzed Enantioselective Câ^H Oxygenation. Angewandte Chemie - International Edition, 2023, 62, .	7.2	27
1871	Baseâ€Promoted Electrochemical Co ^{II} atalyzed Enantioselective Câ^'H Oxygenation. Angewandte Chemie, 0, , .	1.6	2
1872	Polystyrene Supported Pyrazole-based Palladium Catalysts/Precatalysts for Acceptorless Dehydrogenative Coupling of Alcohols in Water. Catalysis Letters, 2024, 154, 737-748.	1.4	1
1873	Iron/Photosensitizer-Catalyzed Directed C–H Activation Triggered by the Formation of an Iron Metallacycle. ACS Catalysis, 2023, 13, 4552-4559.	5.5	5
1874	Sterically controlled isodesmic late-stage C–H iodination of arenes. Chemical Science, 2023, 14, 4357-4362.	3.7	2
1875	Fe-Catalyzed Difunctionalization of Aryl Titanates Enabled by Fe/Ti Synergism. Organic Letters, 2023, 25, 2745-2749.	2.4	2
1876	Iridium catalysed C2 site-selective methylation of indoles using a pivaloyl directing group through weak chelation-assistance. RSC Advances, 2023, 13, 11291-11295.	1.7	0
1880	An air-stable [Cu(NHC)(OR)] (R = C(H)(CF ₃) ₂) complex for C–H, N–H and S–H bond activation. Chemical Communications, 2023, 59, 9126-9129.	2.2	3
1881	An account of synthetic strategies towards transition metal complexes. AIP Conference Proceedings, 2023, , .	0.3	0
1901	Synthesis of Complex Arylated Pyrazolones Enabled by Sequential Regioselective C/N/O-Arylation with Diaryliodonium Salts. Organic and Biomolecular Chemistry, 0, , .	1.5	0
1906	Benzotriazole ring cleavage methodology under free radical condition: an ample opportunity in organic synthesis. , 2024, , 231-272.		0