Recent advances in the synthesis of 2-deoxy-glycosides

Carbohydrate Research 344, 1911-1940

DOI: 10.1016/j.carres.2009.07.013

Citation Report

#	Article	IF	CITATIONS
1	Stereoselective Tandem Epoxidation–Alcoholysis/Hydrolysis of Glycals with Molybdenum Catalysts. Advanced Synthesis and Catalysis, 2010, 352, 3407-3418.	2.1	14
4	Gold(I)â€Catalyzed Glycosylation with Glycosyl <i>ortho</i> â€Alkynylbenzoates as Donors: General Scope and Application in the Synthesis of a Cyclic Triterpene Saponin. Chemistry - A European Journal, 2010, 16, 1871-1882.	1.7	206
6	Fluorineâ€Directed Glycosylation. Angewandte Chemie - International Edition, 2010, 49, 8724-8728.	7.2	109
7	Synthesis of 5-deoxy- \hat{l}^2 -d-galactofuranosides as tools for the characterization of \hat{l}^2 -d-galactofuranosidases. Bioorganic and Medicinal Chemistry, 2010, 18, 5339-5345.	1.4	13
8	Solid-phase de novo synthesis of a (±)-2-deoxy-glycoside. Carbohydrate Research, 2010, 345, 844-849.	1.1	8
9	An efficient method for the selective synthesis of 2-deoxy-2-iodo-glycosides by O-glycosidation of d-glucal using l2–Cu(OAc)2. Carbohydrate Research, 2010, 345, 2401-2407.	1.1	18
10	\hat{l}^2 -Selective Arabinofuranosylation Using a 2,3- <i>O</i> -Xylylene-Protected Donor. Organic Letters, 2010, 12, 3686-3689.	2.4	60
11	Methodology Development and Physical Organic Chemistry: A Powerful Combination for the Advancement of Glycochemistry. Journal of Organic Chemistry, 2011, 76, 9193-9209.	1.7	114
12	Cyclopropenium Cation Promoted Dehydrative Glycosylations Using 2-Deoxy- and 2,6-Dideoxy-Sugar Donors. Organic Letters, 2011, 13, 2814-2817.	2.4	64
13	Hydrolysis of Glycosides with Microgel Catalysts. Inorganic Chemistry, 2011, 50, 8869-8878.	1.9	25
14	HSAB-driven regioselectivity difference in the Lewis-acid catalyzed reactions of 2-C-substituted glycals with sulfur and oxygen nucleophiles: direct versus allylic substitution. Tetrahedron, 2011, 67, 9322-9328.	1.0	12
15	Stereoselective glycosylation of endo-glycals by microwave- and AlCl3-assisted catalysis. Tetrahedron, 2011, 67, 6362-6368.	1.0	30
16	Synthesis and Biological Activities of a 3'-Azido Analogue of Doxorubicin Against Drug-Resistant Cancer Cells. International Journal of Molecular Sciences, 2012, 13, 3671-3684.	1.8	14
17	Recent Advances in the Synthesis of Natural 2-Deoxy-Î ² -glycosides. Journal of Carbohydrate Chemistry, 2012, 31, 255-283.	0.4	82
18	Facile TMSOTf-catalyzed preparation of 2-deoxy \hat{l} ±-O-aryl-D-glycosides from glycosyl acetates. Glycoconjugate Journal, 2012, 29, 453-456.	1.4	9
19	The diazofluorene antitumor antibiotics: Structural elucidation, biosynthetic, synthetic, and chemical biological studies. Natural Product Reports, 2012, 29, 87-118.	5.2	70
20	Recent Advances in Transition Metal-Catalyzed Glycosylation. ACS Catalysis, 2012, 2, 1563-1595.	5 . 5	168
21	The synthesis of 2-deoxy-α-d-glycosides from d-glycals catalyzed by TMSI and PPh3. Carbohydrate Research, 2012, 358, 19-22.	1.1	28

#	Article	IF	CITATIONS
23	αâ€Selective Organocatalytic Synthesis of 2â€Deoxygalactosides. Angewandte Chemie - International Edition, 2012, 51, 9152-9155.	7.2	148
24	Microwave-Assisted Regioselective Benzylation: An Access to Glycal Derivatives with a Free Hydroxyl Group at C4. Journal of Carbohydrate Chemistry, 2012, 31, 593-601.	0.4	7
25	Halide Effects on Cyclopropenium Cation Promoted Glycosylation with Deoxy Sugars: Highly αâ€Selective Glycosylations Using a 3,3â€Dibromoâ€1,2â€diphenylcyclopropene Promoter. European Journal of Organic Chemistry, 2012, 2012, 4927-4930.	1.2	43
26	Bromodimethylsulfonium Bromide Catalyzed Synthesis of Methyl 2â€Dexoyâ€4,6â€Oâ€benzylidene Galactopyranoside from Galactal and the Rapid Route to 2,3―and 2,6â€Dideoxygalactopyranoses. Chinese Journal of Chemistry, 2012, 30, 409-412.	2.6	5
27	pTSA/[bmim][BF4] Ionic Liquid: A Powerful Recyclable Catalytic System for the Synthesis of l±-2-Deoxyglycosides. Topics in Catalysis, 2012, 55, 644-648.	1.3	12
28	Chemical Synthesis of the Cardiotonic Steroid Glycosides and Related Natural Products. Chemistry - A European Journal, 2012, 18, 3092-3120.	1.7	82
29	Reagent Controlled \hat{l}^2 -Specific Dehydrative Glycosylation Reactions with 2-Deoxy-Sugars. Organic Letters, 2013, 15, 4170-4173.	2.4	73
30	Synthesis and biological activity of divalent ligands based on 3-deoxy-4-thiolactose, an isosteric analogue of lactose. Organic and Biomolecular Chemistry, 2013, 11, 5500.	1.5	14
31	Recent Developments in the Ferrier Rearrangement. European Journal of Organic Chemistry, 2013, 2013, 7221-7262.	1.2	136
32	NaBH3CN and other systems as substitutes of tin and silicon hydrides in the light or heat-initiated reduction of halosugars: a tunable access to either 2-deoxy sugars or 1,5-anhydro-itols. Tetrahedron, 2013, 69, 9656-9662.	1.0	6
33	Pathways leading to 3-amino- and 3-nitro-2,3-dideoxy sugars: strategies and synthesis. RSC Advances, 2013, 3, 13594.	1.7	21
34	Gold-Catalyzed Synthesis of 2-Deoxy Glycosides Using <i>S</i> -But-3-ynyl Thioglycoside Donors. ACS Catalysis, 2013, 3, 57-60.	5.5	73
35	Tackling the Challenges in the Total Synthesis of Landomycin A. Chemical Record, 2013, 13, 70-84.	2.9	11
36	Highly Stereoselective Glycosylâ€Chlorideâ€Mediated Synthesis of 2â€Deoxyglucosides. Chemistry - A European Journal, 2013, 19, 846-851.	1.7	39
37	Umpolung Reactivity in the Stereoselective Synthesis of Sâ€Linked 2â€Deoxyglycosides. Angewandte Chemie - International Edition, 2013, 52, 8012-8016.	7.2	67
40	Synthesis of 2-deoxygalactopyranoside derivatives of benzyl alcohols with \hat{l}^2 -galactosidase from < i>Aspergillus oryzae < /i>. Biocatalysis and Biotransformation, 2014, 32, 290-294.	1.1	1
41	Stereoselective Synthesis of αâ€Linked 2â€Deoxy Glycosides Enabled by Visibleâ€Lightâ€Mediated Reductive Deiodination. Chemistry - A European Journal, 2014, 20, 17319-17323.	1.7	52
42	Matched/Mismatched Interactions in Chiral Brønsted Acid-Catalyzed Glycosylation Reactions with 2-Deoxy-Sugar Trichloroacetimidate Donors. Journal of Carbohydrate Chemistry, 2014, 33, 423-434.	0.4	40

#	Article	IF	CITATIONS
44	Iterative αâ€Clycosylation Strategy for 2â€Deoxy―and 2,6â€Dideoxysugars: Application to the Oneâ€Pot Synth of Deoxysugarâ€Containing Oligosaccharides. European Journal of Organic Chemistry, 2014, 2014, 1827-1831.	iesis 1.2	37
45	An Air- and Water-Stable Iodonium Salt Promoter for Facile Thioglycoside Activation. Organic Letters, 2014, 16, 1780-1782.	2.4	37
46	Scope and Limitations of 2-Deoxy- and 2,6-Dideoxyglycosyl Bromides as Donors for the Synthesis of \hat{l}^2 -2-Deoxy- and \hat{l}^2 -2,6-Dideoxyglycosides. Organic Letters, 2014, 16, 2776-2779.	2.4	53
47	Stereoselective Synthesis of α-Digitoxosides and α-Boivinosides via Chelation-Controlled Anomeric <i>O</i> -Alkylation. Journal of Carbohydrate Chemistry, 2014, 33, 438-451.	0.4	29
48	6.01 Synthesis of Glycosides. , 2014, , 1-33.		2
49	Tuning the Stereoelectronic Properties of 1-Sulfanylhex-1-enitols for the Sequential Stereoselective Synthesis of 2-Deoxy-2-iodo-β-d-allopyranosides. Journal of Organic Chemistry, 2014, 79, 3060-3068.	1.7	12
50	Direct Synthesis of 2-Deoxy- \hat{l}^2 -Glycosides via Anomeric <i>O</i> -Alkylation with Secondary Electrophiles. Journal of the American Chemical Society, 2014, 136, 3172-3175.	6.6	90
51	Organoboron-Catalyzed Regio- and Stereoselective Formation of \hat{l}^2 -2-Deoxyglycosidic Linkages. Organic Letters, 2014, 16, 3604-3607.	2.4	82
52	Studies Toward the Total Synthesis of Pluraflavin A. Chemistry - A European Journal, 2014, 20, 8731-8736.	1.7	23
53	A Reagent-Controlled S _N 2-Glycosylation for the Direct Synthesis of β-Linked 2-Deoxy-Sugars. Journal of the American Chemical Society, 2014, 136, 5740-5744.	6.6	136
54	A 3,4â€ <i>trans</i> â€Fused Cyclic Protecting Group Facilitates αâ€Selective Catalytic Synthesis of 2â€Deoxyglycosides. Angewandte Chemie - International Edition, 2014, 53, 8190-8194.	7.2	99
55	An approach for disaccharide chiron synthesis using a Ferrier-type rearrangement. Tetrahedron Letters, 2014, 55, 3709-3712.	0.7	2
56	Au(<scp>i</scp>) ï€-bis(tert-butyldimethylsilyl)acetylene triphenylphosphine complex, an effective pre-catalyst for Au(<scp>i</scp>)-catalyzed reactions. Organic Chemistry Frontiers, 2015, 2, 360-365.	2.3	18
57	Organokatalytische Glycosylierung durch elektronenarme Pyridiniumsalze. Angewandte Chemie, 2015, 127, 12656-12660.	1.6	25
58	Organocatalytic Glycosylation by Using Electronâ€Deficient Pyridinium Salts. Angewandte Chemie - International Edition, 2015, 54, 12479-12483.	7.2	65
59	Organocatalyzed Glycosylation Reactions of Carbohydrates. Springer Briefs in Molecular Science, 2015, , 67-93.	0.1	O
60	ortho-(Methyltosylaminoethynyl)benzyl glycosides as new glycosyl donors for latent-active glycosylation. Chemical Communications, 2015, 51, 13957-13960.	2.2	49
61	O-Glycosylation methods in the total synthesis of complex natural glycosides. Natural Product Reports, 2015, 32, 1331-1355.	5.2	158

#	Article	IF	CITATIONS
62	Synthesis of <scp> </scp> -Hexoses. Chemical Reviews, 2015, 115, 3615-3676.	23.0	68
63	Synthesis and antibacterial properties of 2,3-dideoxyglucosides of terpene alcohols and phenols. Food Chemistry, 2015, 185, 192-199.	4.2	22
64	Catalysis Based on Reversible Covalent Interactions of Organoboron Compounds. Accounts of Chemical Research, 2015, 48, 295-305.	7.6	135
65	TMSBr-mediated solvent- and work-up-free synthesis of α-2-deoxyglycosides from glycals. Beilstein Journal of Organic Chemistry, 2016, 12, 1758-1764.	1.3	20
66	Regioselective Direct Difunctionalization of Glycals: Convenient Access to 2â€Deoxyglycoconjugates Mediated by Tetraâ€∢i>n Mediated by Tetraâ€∢i>n i>aêbutylammonium Iodide/Sodium Periodate. Asian Journal of Organic Chemistry, 2016, 5, 264-270.	1.3	16
67	Reaction of Glycals with Organic Peroxides: Synthesis of 2-iodo, 2-Deoxy and 2,3-Unsaturated Glycosides. ChemistrySelect, 2016, 1, 6553-6557.	0.7	5
68	Reagentâ€Controlled αâ€Selective Dehydrative Glycosylation of 2,6â€Dideoxy―and 2,3,6â€Trideoxy Sugars. Angewandte Chemie, 2016, 128, 10242-10246.	1.6	18
69	Chemical Oâ€Glycosylations: An Overview. ChemistryOpen, 2016, 5, 401-433.	0.9	111
71	Reagentâ€Controlled αâ€Selective Dehydrative Glycosylation of 2,6â€Dideoxy―and 2,3,6â€Trideoxy Sugars. Angewandte Chemie - International Edition, 2016, 55, 10088-10092.	7.2	54
72	Fluorine-directed 1,2-trans glycosylation of rare sugars. Organic and Biomolecular Chemistry, 2016, 14, 5534-5538.	1.5	26
73	Copper mediated iodoacetoxylation and glycosylation: effective and convenient approaches for the stereoselective synthesis of 2-deoxy-2-iodo glycosides. Tetrahedron Letters, 2016, 57, 811-814.	0.7	14
74	Catching elusive glycosyl cations in a condensed phase with HF/SbF5 superacid. Nature Chemistry, 2016, 8, 186-191.	6.6	127
76	Chemical Access to <scp>d</scp> -Sarmentose Units Enables the Total Synthesis of Cardenolide Monoglycoside N-1 from <i>Nerium oleander</i>). Journal of Organic Chemistry, 2017, 82, 3327-3333.	1.7	9
77	Reductive Deamination by Benzyne for Deoxy Sugar Synthesis Through a Domino Reaction. ChemistryOpen, 2017, 6, 331-335.	0.9	5
78	Recent progress on the synthesis of 2-deoxy glycosides. Science China Chemistry, 2017, 60, 1162-1179.	4.2	51
79	Cooperative Brønsted Acid-Type Organocatalysis for the Stereoselective Synthesis of Deoxyglycosides. Journal of Organic Chemistry, 2017, 82, 407-414.	1.7	58
80	Recent Advances in Organocatalytic Glycosylations. European Journal of Organic Chemistry, 2017, 2017, 6247-6264.	1.2	76
81	2-Deoxyglycosyl 3-benzoylpropionates as novel donors for the direct and stereoselective synthesis of 2-deoxy-glycosides. Organic and Biomolecular Chemistry, 2018, 16, 2248-2257.	1.5	10

#	Article	IF	CITATIONS
82	Efficient glycosylation of natural Danshensu and its enantiomer by sugar and 2-deoxy sugar donors. Carbohydrate Research, 2018, 460, 19-28.	1.1	0
83	Stereoselective Synthesis of 2â€Deoxyglycosides from Glycals by Visibleâ€Lightâ€Induced Photoacid Catalysis. Angewandte Chemie, 2018, 130, 6228-6232.	1.6	21
84	An Improved Approach to the Direct Construction of 2â€Deoxyâ€Î²â€Linked Sugars: Applications to Oligosaccharide Synthesis. Chemistry - A European Journal, 2018, 24, 7610-7614.	1.7	35
85	Stereocontrolled Synthesis of 2-Deoxy-galactopyranosides via Isopropylidene-Protected 6- <i>O</i> -Silylated Donors. Organic Letters, 2018, 20, 2287-2290.	2.4	13
86	\hat{l}_{\pm} -Selective synthesis of 2-deoxy-glycosides and disaccharides. Journal of Carbohydrate Chemistry, 2018, 37, 128-152.	0.4	3
87	Stereoselective Synthesis of 2â€Deoxyglycosides from Glycals by Visibleâ€Lightâ€Induced Photoacid Catalysis. Angewandte Chemie - International Edition, 2018, 57, 6120-6124.	7.2	106
88	Methods for 2-Deoxyglycoside Synthesis. Chemical Reviews, 2018, 118, 7931-7985.	23.0	235
89	Catalytic Glycosylations in Oligosaccharide Synthesis. Chemical Reviews, 2018, 118, 8285-8358.	23.0	199
90	A Glycal Approach to the Synthesis of Pregnane Glycoside P57. Chinese Journal of Chemistry, 2018, 36, 1007-1010.	2.6	8
91	Highly reactive 2-deoxy-2-iodo- $<$ scp>d $<$ /scp>- $<$ i>allo $<$ (i> and $<$ scp>d $<$ /scp>- $<$ i>gulo $<$ (i> pyranosyl sulfoxide donors ensure \hat{I}^2 -stereoselective glycosylations with steroidal aglycones. RSC Advances, 2018, 8, 30076-30079.	1.7	5
92	Additiveâ€Free Gold(III)â€Catalyzed Stereoselective Synthesis of 2â€Deoxyglycosides Using Phenylpropiolate Glycosides as Donors. Chemistry - an Asian Journal, 2019, 14, 4651-4658.	1.7	14
93	Reagent Controlled Direct Dehydrative Glycosylation with 2-Deoxy Sugars: Construction of the Saquayamycin Z Pentasaccharide. Organic Letters, 2019, 21, 5922-5927.	2.4	22
94	Stereoselective organocatalyzed glycosylations $\hat{a}\in$ " thiouracil, thioureas and monothiophthalimide act as BrÃ, nsted acid catalysts at low loadings. Chemical Science, 2019, 10, 508-514.	3.7	46
95	Tuning the Chemoselectivity of Silyl Protected Rhamnals by Temperature and Brønsted Acidity: Kinetically Controlled 1,2-Addition vs Thermodynamically Controlled Ferrier Rearrangement. Organic Letters, 2019, 21, 1103-1107.	2.4	21
96	Synthesis of the Hexasaccharide Fragment of Landomycin A Using a Mild, Reagent-Controlled Approach. Organic Letters, 2019, 21, 3674-3677.	2.4	28
97	Tris(Pentafluorophenyl)Boraneâ€Driven Stereoselective <i>O</i> à€Glycosylation with Glycal Donors under Mild Condition. Asian Journal of Organic Chemistry, 2019, 8, 549-554.	1.3	11
98	Rapid <i>de Novo</i> Preparation of 2,6-Dideoxy Sugar Libraries through Gold-Catalyzed Homopropargyl Orthoester Cyclization. Organic Letters, 2019, 21, 9646-9651.	2.4	13
99	A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6â€√rideoxypyranoglycosides. Angewandte Chemie, 2019, 131, 638-641.	1.6	6

#	ARTICLE	IF	CITATIONS
100	A Convergent Synthetic Strategy towards Oligosaccharides containing 2,3,6‶rideoxypyranoglycosides. Angewandte Chemie - International Edition, 2019, 58, 628-631.	7.2	22
101	Flexible Total Synthesis of 11â€Deoxylandomycins and Their Nonâ€Natural Analogues by Way of Asymmetric Metal Catalysis. Angewandte Chemie - International Edition, 2020, 59, 2349-2353.	7.2	25
102	Flexible Total Synthesis of 11â€Deoxylandomycins and Their Nonâ€Natural Analogues by Way of Asymmetric Metal Catalysis. Angewandte Chemie, 2020, 132, 2369-2373.	1.6	6
103	C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone. Angewandte Chemie - International Edition, 2020, 59, 2755-2759.	7.2	33
104	Total Synthesis of the Monomeric Unit of Lomaiviticin A. Journal of the American Chemical Society, 2020, 142, 20201-20207.	6.6	18
105	Conformationally Constrained Glycosyl Donors as Tools to Control Glycosylation Outcomes. Journal of Organic Chemistry, 2020, 85, 15801-15826.	1.7	27
106	Stereoselective Electroâ€2â€deoxyglycosylation from Glycals. Angewandte Chemie, 2020, 132, 15316-15320.	1.6	11
107	Stereoselective Electroâ€2â€deoxyglycosylation from Glycals. Angewandte Chemie - International Edition, 2020, 59, 15204-15208.	7.2	39
108	Copper(<scp>ii</scp>)-catalyzed stereoselective 1,2-addition <i>vs</i> . Ferrier glycosylation of â∈œarmed―and â∈œdisarmed―glycal donors. Organic and Biomolecular Chemistry, 2020, 18, 4848-4862.	1.5	14
109	C1 Oxidation/C2 Reduction Isomerization of Unprotected Aldoses Induced by Light/Ketone. Angewandte Chemie, 2020, 132, 2777-2781.	1.6	5
110	Reagent-Controlled \hat{l}_{\pm} -Selective Dehydrative Glycosylation of 2,6-Dideoxy Sugars: Construction of the Arugomycin Tetrasaccharide. Organic Letters, 2020, 22, 3649-3654.	2.4	11
111	Synthesis and Structural Characteristics of all Mono- and Difluorinated 4,6-Dideoxy- <scp>d</scp> - <i>xylo</i> -hexopyranoses. Journal of Organic Chemistry, 2021, 86, 7725-7756.	1.7	7
112	Recent advances in direct synthesis of 2-deoxy glycosides and thioglycosides. Tetrahedron, 2021, 88, 132140.	1.0	29
113	Convergent Synthesis of Tetrasaccharide Fragment of Cervimycin K. Organic Letters, 2021, 23, 4468-4472.	2.4	4
114	Photolabile Protecting <scp>Groupâ€Mediated </scp> Synthesis of <scp>2â€Deoxyâ€Glycosides </scp> . Chinese Journal of Chemistry, 2021, 39, 3309-3314.	2.6	14
115	Rhenium(V)-catalyzed synthesis of 1,1′-2-deoxy thioglycosides. Carbohydrate Research, 2021, 508, 108415.	1.1	8
116	A Convenient Synthesis of 3,4-Di-O-acetyl-d-rhamnal (3,4-Di-O-acetyl-6-deoxy-d-glucal). , 2017, , 117-124.		0
117	Deoxy sugars. General methods for carbohydrate deoxygenation and glycosidation. Organic and Biomolecular Chemistry, 2022, 20, 934-962.	1.5	8

#	Article	IF	CITATIONS
118	Synthesis and Preliminary Anticancer Activity Assessment of N-Glycosides of 2-Amino-1,3,4-thiadiazoles. Molecules, 2021, 26, 7245.	1.7	6
119	4,5-Dioxo-imidazolinium Cation-Promoted α-Selective Dehydrative Glycosylation of 2-Deoxy- and 2,6-Dideoxy Sugars. Journal of Organic Chemistry, 2022, 87, 3718-3729.	1.7	5
120	Synthesis of the \hat{l} ±-Linked Digitoxose Trisaccharide Fragment of Kijanimicin: An Unexpected Application of Glycosyl Sulfonates. Organic Letters, 2022, 24, 731-735.	2.4	6
121	Catalytic stereoselective synthesis of 2-deoxy α-glycosides using glycosyl <i>ortho</i> -[1-(<i>p</i> -MeOPhenyl)Vinyl]Benzoate (PMPVB) donors. Organic and Biomolecular Chemistry, 2022, 20, 1874-1878.	1.5	5
122	<scp>2â€Diphenylphosphinoyl</scp> â€acetyl as a Remote Directing Group for the Highly Stereoselective Synthesis of <scp>βâ€Glycosides</scp> . Chinese Journal of Chemistry, 2022, 40, 443-452.	2.6	18
123	Total Synthesis of the Potent and Broad-Spectrum Antibiotics Amycolamicin and Kibdelomycin. Journal of the American Chemical Society, 2021, 143, 21258-21263.	6.6	15
124	Direct Synthesis of 2,6â€Dideoxyâ€Î²â€glycosides and βâ€Rhamnosides with a Stereodirecting 2â€(Diphenylphosphinoyl)acetyl Group. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
125	Recent Advances in Stereoselective Chemical O-Glycosylation Reactions. Frontiers in Molecular Biosciences, 0, 9, .	1.6	13
126	Direct Synthesis of 2,6â€Dideoxyâ€Î²â€glycosides and βâ€Rhamnosides with a Stereodirecting 2â€(Diphenylphosphinoyl)acetyl Group. Angewandte Chemie, 2022, 134, .	1.6	1
127	Debenzylation of Benzyl-Protected Methylcellulose. Polysaccharides, 2022, 3, 458-479.	2.1	0
128	Application of the 2-deoxyglucose scaffold as a new chiral probe for elucidation of the absolute configuration of secondary alcohols. Scientific Reports, 2022, 12, .	1.6	1
129	Influence of Various Silyl Protecting Groups on Stereoselective 2-Deoxyrhamnosylation. Journal of Organic Chemistry, 0, , .	1.7	0
130	Stereoselective glycosylation reactions with 2-deoxyglucose: A computational study of some catalysts. Computational and Theoretical Chemistry, 2023, 1224, 114122.	1.1	0
131	Ferrier/Azaâ€Wacker/Epoxidation/Glycosylation (FAWEG) Sequence to Access 1,2― <i>Trans</i> 3â€Aminoâ€3â€deoxyglycosides. Chemistry - A European Journal, 2023, 29, .	1.7	1
132	Reversible-Hydrogen-Transfer-Mediated Anomerization of Azaheterocyclyl 2-Deoxy- <i>C</i> glycosides and Mechanistic Studies. ACS Catalysis, 2023, 13, 5656-5664.	5.5	6
133	Regio and Stereoselective One-Pot Synthesis of 2-Deoxy-3-thio Pyranoses and Their <i>O</i> -Glycosides from Glycals. Journal of Organic Chemistry, 0, , .	1.7	O