Application of the CPA equation of state to reservoir flu chemicals

Fluid Phase Equilibria 276, 75-85 DOI: 10.1016/j.fluid.2008.10.007

Citation Report

#	Article	IF	CITATIONS
1	Applications of CPA to the Oil and Gas Industry. , 0, , 299-331.		0
2	Equations of state: From the ideas of van der Waals to association theories. Journal of Supercritical Fluids, 2010, 55, 421-437.	3.2	50
3	Measurement and modeling of CO2 solubility in NaCl brine and CO2–saturated NaCl brine density. International Journal of Greenhouse Gas Control, 2011, 5, 1460-1477.	4.6	175
4	Phase Behavior of High Pressure and Temperature Gas Reservoirs: Water Solubility and Density Measurement and Modeling from (3.7 to 132) MPa and Temperatures from (422 to 478) K. Journal of Chemical & Engineering Data, 2011, 56, 3839-3847.	1.9	7
5	Water Solubility in Supercritical Methane, Nitrogen, and Carbon Dioxide: Measurement and Modeling from 422 to 483 K and Pressures from 3.6 to 134 MPa. Industrial & Engineering Chemistry Research, 2011, 50, 4029-4041.	3.7	72
6	Mutual solubility of MEC, water and reservoir fluid: Experimental measurements and modeling using the CPA equation of state. Fluid Phase Equilibria, 2011, 300, 172-181.	2.5	17
7	Simultaneous prediction of vapour–liquid and liquid–liquid equilibria (VLE and LLE) of aqueous mixtures with the SAFT-γ group contribution approach. Fluid Phase Equilibria, 2011, 306, 82-96.	2.5	55
8	Solubility of light reservoir gasses in water by the modified Peng-Robinson plus association equation of state using experimental critical properties for pure water. Journal of Petroleum Science and Engineering, 2011, 78, 109-118.	4.2	14
9	Thirty Years with EoS/G ^E Models—What Have We Learned?. Industrial & Engineering Chemistry Research, 2012, 51, 4119-4142.	3.7	68
10	Capabilities and Limitations of an Association Theory for Chemicals in Liquid or Supercritical Solvents. Industrial & Engineering Chemistry Research, 2012, 51, 13496-13517.	3.7	18
11	Association theories for complex thermodynamics. Chemical Engineering Research and Design, 2013, 91, 1840-1858.	5.6	34
12	Modeling the solubility of light reservoir components, HCFCs and HFCs in water using the CPA and sPC-SAFT equations of state. Journal of Molecular Liquids, 2013, 187, 359-367.	4.9	19
13	Distribution of MEG and methanol in well-defined hydrocarbon and water systems: Experimental measurement and modeling using the CPA EoS. Fluid Phase Equilibria, 2013, 337, 298-310.	2.5	18
14	Liquid–liquid equilibria for reservoir fluids+monoethylene glycol and reservoir fluids+monoethylene glycol+water: Experimental measurements and modeling using the CPA EoS. Fluid Phase Equilibria, 2013, 340, 1-6.	2.5	14
15	Performance of predictive models in phase equilibria of complex associating systems: PC-SAFT and CEOS/GE. Brazilian Journal of Chemical Engineering, 2013, 30, 75-82.	1.3	2
16	On correlating water solubility in ill-defined hydrocarbons. Fuel, 2014, 134, 644-658.	6.4	18
17	Distribution of Gas Hydrate Inhibitor Monoethylene Glycol in Condensate and Water Systems: Experimental Measurement and Thermodynamic Modeling Using the Cubic-Plus-Association Equation of State. Energy & Fuels, 2014, 28, 3530-3538.	5.1	10
18	Calculation of vapor–liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part III. Extension to water–light hydrocarbons systems. Geochimica Et Cosmochimica Acta, 2014, 125, 504-51 <u>8.</u>	3.9	16

ITATION REDO

#	Article	IF	CITATIONS
19	Prediction of water solubility in petroleum fractions and heavy crudes using cubic-plus-association equation of state (CPA-EoS). Fuel, 2015, 159, 894-899.	6.4	37
20	Evaluation of the Cubic-Plus-Association Equation of State for Ternary, Quaternary, and Multicomponent Systems in the Presence of Monoethylene Glycol. Industrial & Engineering Chemistry Research, 2016, 55, 11371-11382.	3.7	11
21	Modelling the phase equilibria of multicomponent mixtures containing CO ₂ , alkanes, water, and/or alcohols using the quadrupolar CPA equation of state. Molecular Physics, 2016, 114, 2641-2654.	1.7	3
22	Modeling of phase equilibrium of North Sea oils with water and MEG. Fluid Phase Equilibria, 2016, 424, 79-89.	2.5	2
23	Phase equilibrium of North Sea oils with polar chemicals: Experiments and CPA modeling. Fluid Phase Equilibria, 2016, 424, 122-136.	2.5	4
24	Phase behavior of the CO2–H2O system at temperatures of 273–623ÂK and pressures of 0.1–200ÂMPa using Peng-Robinson-Stryjek-Vera equation of state with a modified Wong-Sandler mixing rule: An extension to the CO2–CH4–H2O system. Fluid Phase Equilibria, 2016, 417, 96-108.	2.5	35
25	Prediction of water solubility in ill-defined hydrocarbons at high temperatures: Modeling with the CPA-EoS. Fluid Phase Equilibria, 2017, 454, 11-21.	2.5	7
26	Improved Prediction of Water Properties and Phase Equilibria with a Modified Cubic Plus Association Equation of State. Industrial & Engineering Chemistry Research, 2017, 56, 15163-15176.	3.7	21
27	Modeling of the Interaction Between Asphaltene and Water for Multiphase Reservoir Fluids by Use of Cubic-Plus-Association Equation of State. , 2017, , .		4
28	Modelling of phase equilibrium of natural gas mixtures containing associating compounds. Fluid Phase Equilibria, 2017, 433, 135-148.	2.5	18
29	Water content of light nâ€alkanes: New measurements and cubicâ€plusâ€association equation of state modeling. AICHE Journal, 2017, 63, 1384-1389.	3.6	10
30	Modeling of asphaltene and water associations in petroleum reservoir fluids using cubicâ€plusâ€association EOS. AICHE Journal, 2018, 64, 3429-3442.	3.6	19
31	RAND-Based Formulations for Isothermal Multiphase Flash. SPE Journal, 2018, 23, 535-549.	3.1	9
32	Modeling binary mixtures of n-alkanes and water using PC-SAFT. Fluid Phase Equilibria, 2018, 470, 203-211.	2.5	31
34	Modeling of Gas Solubility Using the Electrolyte Cubic Plus Association Equation of State. Industrial & Engineering Chemistry Research, 2019, 58, 17555-17567.	3.7	23
36	Modelling density and excess volume of hydrocarbonÂ+ water mixtures near the critical region. Fluid Phase Equilibria, 2019, 492, 55-66.	2.5	3
37	Flash Computation and EoS Modelling for Compositional Thermal Simulation of Flow in Porous Media. Springer Theses, 2019, , .	0.1	3
38	Phase equilibrium modeling for methane solubility in aqueous sodium chloride solutions using an association equation of state. Fluid Phase Equilibria, 2020, 506, 112416.	2.5	11

#	Article	IF	CITATIONS
39	Correlation of binary interaction coefficients for hydrate inhibition using the Soave-Redlich-Kwong Equation of State and the Huron-Vidal mixing rule. Journal of Natural Gas Science and Engineering, 2020, 77, 103259.	4.4	9
40	Density, compressibility and phase equilibrium of high pressure-high temperature reservoir fluids up to 473 K and 140 MPa. Journal of Supercritical Fluids, 2020, 159, 104781.	3.2	7
41	Water–Hydrocarbon Phase Equilibria with SAFT-VR Mie Equation of State. Industrial & Engineering Chemistry Research, 2021, 60, 5278-5299.	3.7	8
42	A comparative performance evaluation of cubic equations of state for predicting the compositional distribution of hydrate inhibitors in reservoir fluid systems. Fluid Phase Equilibria, 2021, 535, 112964.	2.5	2
43	Review of Asphaltene Deposition Modeling in Oil and Gas Production. Energy & Fuels, 2021, 35, 965-986.	5.1	23
44	Chapter 5. Mixing and Combining Rules. , 2010, , 84-134.		6
45	Modeling of Gas Solubility in Aqueous Electrolyte Solutions with the eSAFT-VR Mie Equation of State. Industrial & Engineering Chemistry Research, 2021, 60, 15327-15342.	3.7	19
46	Model Comparison for Phase Equilibrium in Heavy Oil-/Steam-/Solvent-Related Systems. Springer Theses, 2019, , 13-56.	0.1	0
47	Modified RAND Framework for Phase Split Calculations. Springer Theses, 2019, , 83-124.	0.1	0
48	Vapor–Liquid Equilibrium Measurements and Cubic-Plus-Association Modeling of Triethylene Glycol + Water + Methane Systems at 6.0 and 12.5 MPa. Journal of Chemical & Engineering Data, 2023, 68, 127-137.	1.9	2
49	A cage-specific hydrate equilibrium model for robust predictions of industrially-relevant mixtures. Physical Chemistry Chemical Physics, 2023, 25, 16807-16823.	2.8	2
50	Modelling phase equilibria in the CO2/CH4-H2O-NaCl system using the association equation of state. Fluid Phase Equilibria, 2024, 577, 113987.	2.5	0

CITATION REPORT