CITATION REPORT List of articles citing

A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method

DOI: 10.1016/j.eswa.2009.03.039 Expert Systems With Applications, 2009, 36, 11363-11368.

Source: https://exaly.com/paper-pdf/46530648/citation-report.pdf

Version: 2024-04-27

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
1072	Purchasing's Role in Supply Chain Management. 1996 , 7, 29-38		82
1071	The ELECTRE multicriteria analysis approach based on intuitionistic fuzzy sets. 2009,		8
1070	A new integrated design concept evaluation approach based on vague sets. <i>Expert Systems With Applications</i> , 2010 , 37, 6629-6638	7.8	63
1069	Recent advances in intuitionistic fuzzy information aggregation. 2010 , 9, 359-381		105
1068	A fuzzy multicriteria approach for evaluating environmental performance of suppliers. 2010 , 126, 370-3	378	385
1067	Comparison of first aggregation and last aggregation in fuzzy group TOPSIS. 2010 , 34, 3754-3766		70
1066	Thermal Power Plants Cleaner Production Performance Evaluation Based on Intuitionistic Fuzzy Set Group Decision-Making. 2010 , 113-116, 1311-1315		1
1065	An Integrated Methodology using Linguistic PROMETHEE and Maximum Deviation Method for Third-party Logistics Supplier Selection. 2010 , 3, 438-451		41
1064	Multiattribute Supplier Selection Using Fuzzy Analytic Hierarchy Process. 2010 , 3, 553-565		16
1063	Demand Feature Identifying for Emergency Goods under Earthquake Rescue Logistics by Vague Set Based BP Neural Network. 2010 ,		
1062	Selection of green product design scheme based on multi-attribute decision-making method. 2010 , 3, 277-291		24
1061	A note to TOPSIS method in MADM problems under fuzzy environment. 2010,		
1060	Artificial Intelligence and Computational Intelligence. 2010,		7
1059	CONTRACTOR SELECTION FOR CONSTRUCTION WORKS BY APPLYING SAW-G AND TOPSIS GREY TECHNIQUES. 2010 , 11, 34-55		107
1058	Multiple attribute decision making method in the frame of interval-valued intuitionistic fuzzy sets. 2011 ,		2
1057	Extended VIKOR for multi-criteria decision making problems under intuitionistic environment. 2011		4
1056	Intelligent Automation and Systems Engineering. 2011 ,		2

1055	Intuitionistic fuzzy Bonferroni means. 2011 , 41, 568-78		288
1054	An Integrated Intuitionistic Fuzzy Multi Criteria Decision Making Method for Facility Location Selection. 2011 , 16, 487-496		36
1053	An integrated fuzzy-AHP-LP (FAHLP) approach for supplier selection and purchasing decisions. 2011 , 10, 400		24
1052	The selection of flexible manufacturing system using preference selection index method. 2011 , 9, 330		21
1051	Supplier selection in Supply Chain Management: a fuzzy multi-criteria decision-making approach. 2011 , 8, 108		13
1050	An interactive method for dynamic intuitionistic fuzzy multi-attribute group decision making. <i>Expert Systems With Applications</i> , 2011 , 38, 15286-15295	7.8	88
1049	Objective weights with intuitionistic fuzzy entropy measures and computational experiment analysis. 2011 , 11, 5411-5423		54
1048	A multicriteria group decision-making approach based on interval-valued intuitionistic fuzzy sets: A comparative perspective. <i>Expert Systems With Applications</i> , 2011 , 38, 7647-7658	7.8	134
1047	A new multiple attribute group decision making method in intuitionistic fuzzy setting. 2011 , 35, 4424-4	437	104
1046	Personnel selection based on intuitionistic fuzzy sets. 2011 , 21, 493-503		78
1046	Personnel selection based on intuitionistic fuzzy sets. 2011 , 21, 493-503 A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. <i>Expert Systems With Applications</i> , 2011 , 38, 3023-3033	7.8	78
<u> </u>	A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet	7.8 7.8	<u> </u>
1045	A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. <i>Expert Systems With Applications</i> , 2011 , 38, 3023-3033 Joint selection of customs broker agencies and international road transportation firms by a fuzzy	,	<u> </u>
1045	A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. <i>Expert Systems With Applications</i> , 2011 , 38, 3023-3033 Joint selection of customs broker agencies and international road transportation firms by a fuzzy analytic network process approach. <i>Expert Systems With Applications</i> , 2011 , 38, 8251-8258 A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel	7.8	212
1045	A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. <i>Expert Systems With Applications</i> , 2011 , 38, 3023-3033 Joint selection of customs broker agencies and international road transportation firms by a fuzzy analytic network process approach. <i>Expert Systems With Applications</i> , 2011 , 38, 8251-8258 A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. <i>Expert Systems With Applications</i> , 2011 , 38, 11401-11405 Group decision making problems in a linguistic and dynamic context. <i>Expert Systems With</i>	7.8 7.8	7
1045 1044 1043	A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. <i>Expert Systems With Applications</i> , 2011 , 38, 3023-3033 Joint selection of customs broker agencies and international road transportation firms by a fuzzy analytic network process approach. <i>Expert Systems With Applications</i> , 2011 , 38, 8251-8258 A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. <i>Expert Systems With Applications</i> , 2011 , 38, 11401-11405 Group decision making problems in a linguistic and dynamic context. <i>Expert Systems With Applications</i> , 2011 , 38, 1675-1688 Supplier selection with an integrated methodology in unknown environment. <i>Expert Systems With</i>	7.8 7.8 7.8	7 190 67
1045 1044 1043 1042	A multi-criteria interval-valued intuitionistic fuzzy group decision making with Choquet integral-based TOPSIS. Expert Systems With Applications, 2011, 38, 3023-3033 Joint selection of customs broker agencies and international road transportation firms by a fuzzy analytic network process approach. Expert Systems With Applications, 2011, 38, 8251-8258 A GRA-based intuitionistic fuzzy multi-criteria group decision making method for personnel selection. Expert Systems With Applications, 2011, 38, 11401-11405 Group decision making problems in a linguistic and dynamic context. Expert Systems With Applications, 2011, 38, 1675-1688 Supplier selection with an integrated methodology in unknown environment. Expert Systems With Applications, 2011, 38, 2133-2139 A weighted additive fuzzy programming approach for multi-criteria supplier selection. Expert	7.8 7.8 7.8 7.8	212 7 190 67

1037	The ELECTRE multicriteria analysis approach based on Atanassov∃ intuitionistic fuzzy sets. <i>Expert Systems With Applications</i> , 2011 , 38, 12318-12327	7.8	121
1036	A mathematical programming approach to multi-attribute decision making with interval-valued intuitionistic fuzzy assessment information. <i>Expert Systems With Applications</i> , 2011 , 38, 12462-12469	7.8	65
1035	Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation operators. 2011 , 24, 749-760		322
1034	Intuitionistic fuzzy ordered weighted distance operator. 2011 , 24, 1224-1232		171
1033	Modeling Risk Management in Sustainable Construction. 2011,		1
1032	Notice of Retraction: Construction safety evaluation based on intuitionistic fuzzy TOPSIS. 2011 ,		
1031	A MOBILE GROUP DECISION MAKING MODEL FOR HETEROGENEOUS INFORMATION AND CHANGEABLE DECISION CONTEXTS. 2011 , 19, 33-52		15
1030	The DEA and Intuitionistic Fuzzy TOPSIS Approach to Departments' Performances: A Pilot Study. 2011 , 2011, 1-16		18
1029	The Evaluation of Renewable Energy Technologies for Electricity Generation in Turkey Using Intuitionistic Fuzzy TOPSIS. 2012 , 7, 81-90		118
1028	Multisourcing suppliers selection in service outsourcing. 2012 , 63, 582-596		18
1027	A NEW RULE-BASED SIR APPROACH TO SUPPLIER SELECTION UNDER INTUITIONISTIC FUZZY ENVIRONMENTS. 2012 , 20, 451-471		48
1026	Evaluating Projects Based on Intuitionistic Fuzzy Group Decision Making. 2012 , 2012, 1-16		11
1025	A FUZZY ENVELOPE FOR HESITANT FUZZY LINGUISTIC TERM SETS BASED ON CHOQUET INTEGRAL. 2012 , 52-57		
1024	A novel similarity measure of intuitionistic fuzzy sets induced by triangular norm. 2012,		
1023	A new model for supplier selection by an integrated method FAHP-IFTOPSIS. 2012 , 4, 91		5
1022	Supplier selection problem: A state-of-the-art review. 2012 , 2, 1465-1490		44
1021	Supplier selection using integrated multi-criteria decision-making methodology. 2012 , 13, 359		14
1020	Green supplier evaluation and selection using VIKOR method embedded in fuzzy expert system with interval-valued fuzzy numbers. 2012 , 5, 647		37

1019	A novel method for supplier selection by two competitors, including multiple criteria. 2012 , 25, 527-535	18
1018	An integrated multiple criteria decision making model applying axiomatic fuzzy set theory. 2012 , 36, 5046-5058	38
1017	A state-of the-art survey of TOPSIS applications. <i>Expert Systems With Applications</i> , 2012 , 39, 13051-1306 9 .8	1095
1016	A Hybrid Method for Evaluating Biomass Suppliers 🗓 se of Intuitionistic Fuzzy Sets and Multi-Periodic Optimization. 2012 , 217-223	2
1015	MULTI-CRITERIA DECISION-MAKING METHOD BASED ON INDUCED INTUITIONISTIC NORMAL FUZZY RELATED AGGREGATION OPERATORS. 2012 , 20, 559-578	27
1014	Group Decision Making Process for Supplier Selection with TOPSIS Method under Interval-Valued Intuitionistic Fuzzy Numbers. 2012 , 2012, 1-14	27
1013	Decision support model for selecting and evaluating suppliers in the construction industry. 2012 , 32, 643-662	21
1012	A Multi-Criteria Intuitionistic Fuzzy Group Decision Making Method for Supplier Selection with VIKOR Method. 2012 , 2, 1-17	23
1011	Metodologias para sele B de fornecedores: uma revis B da literatura. 2012 , 22, 625-636	5
1010	Hesitant fuzzy entropy and cross-entropy and their use in multiattribute decision-making. 2012 , 27, 799-822	2 00
1009	An assignment method for group decision making with uncertain preference ordinals. 2012 , 21, 174-183	4
1008	An intuitionistic fuzzy group decision making method using entropy and association coefficient. 2012 , 16, 1197-1211	27
1007	An outranking method for multi-criteria decision making with duplex linguistic information. 2012 , 198, 20-33	27
1006	Identifying and eliminating dominated alternatives in multi-attribute decision making with intuitionistic fuzzy information. 2012 , 12, 1451-1456	25
1005	Supplier selection using a novel intuitionist fuzzy clustering approach. 2012 , 12, 1741-1754	49
1004	An attitudinal-based method for constructing intuitionistic fuzzy information in hybrid MADM under uncertainty. 2012 , 208, 28-38	52
1004		
1003	Some induced correlated aggregating operators with intuitionistic fuzzy information and their application to multiple attribute group decision making. <i>Expert Systems With Applications</i> , 2012 , 39, 2026-203	4 ¹⁸⁴

1001	Induced generalized intuitionistic fuzzy OWA operator for multi-attribute group decision making. <i>Expert Systems With Applications</i> , 2012 , 39, 1902-1910	7.8	82
1000	A novel approach to multi-attribute decision making based on intuitionistic fuzzy sets. <i>Expert Systems With Applications</i> , 2012 , 39, 2560-2566	7.8	75
999	A new multiple criteria decision making method based on intuitionistic fuzzy information. <i>Expert Systems With Applications</i> , 2012 , 39, 4328-4334	7.8	29
998	An alternative to fuzzy methods in decision-making problems. <i>Expert Systems With Applications</i> , 2012 , 39, 7729-7735	7.8	43
997	Some issues on intuitionistic fuzzy aggregation operators based on Archimedean t-conorm and t-norm. 2012 , 31, 78-88		188
996	Evaluation of the results of multi-attribute group decision-making with linguistic information. 2012 , 40, 294-301		94
995	Intuitionistic Fuzzy Multiattribute Decision Making: An Interactive Method. 2012 , 20, 514-525		82
994	A computer-integrated evaluation for supply chain alliance in a bidding environment. 2013 , 68, 1203-1	1217	3
993	A multicriteria intuitionistic fuzzy group decision making for plant location selection with ELECTRE method. 2013 , 66, 1219-1229		91
992	A framework for comparative evaluation of lean performance of firms using fuzzy TOPSIS. 2013 , 11, 371		28
991	A new mixed fuzzy-LP method for selecting the best supplier using fuzzy group decision making. 2013 , 23, 345-352		10
990	A Hierarchical Fuzzy TOPSIS Approach for the Risk Assessment of Green Supply Chain Implementation. 2013 , 115-134		2
989	TOPSIS for Hesitant Fuzzy Linguistic Term Sets. 2013 , 28, 1162-1171		233
988	An application of soft computing technique in group decision making under interval-valued intuitionistic fuzzy environment. 2013 , 13, 2490-2503		48
987	A novel approach to characterizing hesitations in intuitionistic fuzzy numbers. 2013 , 22, 283-294		6
986	Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing. 2013,		2
985	A Probabilistic and Decision Attitude Aggregation Operator for Intuitionistic Fuzzy Environment. 2013 , 28, 806-839		17
984	A fuzzy MCDM approach based on COPRAS method to solve supplier selection problems. 2013 ,		9

983	IF-TODIM: An intuitionistic fuzzy TODIM to multi-criteria decision making. 2013 , 53, 142-146	107
982	Extended TODIM method for hybrid multiple attribute decision making problems. 2013 , 42, 40-48	143
981	IFSJSP: A novel methodology for the Job-Shop Scheduling Problem based on intuitionistic fuzzy sets. 2013 , 51, 5100-5119	66
980	A fuzzy inference and categorization approach for supplier selection using compensatory and non-compensatory decision rules. 2013 , 13, 4133-4147	53
979	Choquet integral vs. TOPSIS: An intuitionistic fuzzy approach. 2013,	1
978	A general type-2 Fuzzy Logic based Multi-Criteria group decision making for lighting level selection in an intelligent environment. 2013 ,	1
977	Green supplier selection based on IFS and GRA. 2013 , 3, 158-176	42
976	A new design of the elimination and choice translating reality method for multi-criteria group decision-making in an intuitionistic fuzzy environment. 2013 , 37, 1781-1799	102
975	Multi-criteria semantic dominance: A linguistic decision aiding technique based on incomplete preference information. 2013 , 231, 171-181	29
974	Evaluating and selecting the supplier in detergent production industry using hierarchical fuzzy TOPSIS. 2013 , 37, 10170-10181	73
973	Generalized Atanassov intuitionistic fuzzy power geometric operators and their application to multiple attribute group decision making. 2013 , 14, 460-486	52
972	Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems With Applications, 2013, 40, 3872-3885 7.8	610
971	An integrated approach for supplier selection in multi-item/multi-supplier environment. 2013 , 37, 7752-7763	79
970	A method to aggregate crisp values into interval-valued intuitionistic fuzzy information for group decision making. 2013 , 13, 2304-2317	36
969	Hierarchical Model in Decision Making. 2013 , 25-43	1
968	A Compromise Ratio Method with an Application to Water Resources Management: An Intuitionistic Fuzzy Set. 2013 , 27, 2029-2051	29
967	A COMPLEX PROPORTIONAL ASSESSMENT METHOD FOR GROUP DECISION MAKING IN AN INTERVAL-VALUED INTUITIONISTIC FUZZY ENVIRONMENT. 2013 , 19, 22-37	81
966	Some Intuitionistic Fuzzy Weighted Distance Measures and Their Application to Group Decision Making. 2013 , 22, 281-298	52

965	A hierarchical fuzzy TOPSIS approach to assess improvement areas when implementing green supply chain initiatives. 2013 , 51, 3117-3130	97
964	Generalized intuitionistic fuzzy soft sets with applications in decision-making. 2013 , 13, 3552-3566	113
963	An intuitionistic fuzzy projection-based approach for partner selection. 2013 , 37, 9538-9551	48
962	An avoiding information loss approach to group decision making. 2013 , 37, 112-126	44
961	Same families of geometric aggregation operators with intuitionistic trapezoidal fuzzy numbers. 2013 , 37, 318-327	91
960	Interval-valued hesitant preference relations and their applications to group decision making. 2013 , 37, 528-540	362
959	Assessment and selection of vendor in a manufacturing organisation - a graph theoretic approach. 2013 , 14, 447	6
958	A Fuzzy Multicriteria Group Decision-Making Method with New Entropy of Interval-Valued Intuitionistic Fuzzy Sets. 2013 , 2013, 1-8	4
957	Hybrid Multicriteria Group Decision Making Method for Information System Project Selection Based on Intuitionistic Fuzzy Theory. 2013 , 2013, 1-12	5
956	Research on the IAMM and IGMM Operators in Group Decision Making with Intuitionistic Preference Relations. 2013 , 753-755, 2806-2815	
955	Configuration Evaluation of Printing Machine Based on Intuitionistic Fuzzy Entropy and TOPSIS. 2013 , 646, 113-119	
954	Hybrid Multiattribute Group Decision Making Based on Intuitionistic Fuzzy Information and GRA Method. 2013 , 2013, 1-10	6
953	Selecting a CNC Machine Tool Using the Intuitionistic Fuzzy TOPSIS Approach for FMC. 2013 , 315, 196-205	3
952	Extension of Axiomatic Design Principles for Multicriteria Decision Making Problems in Intuitionistic Fuzzy Environment. 2013 , 2013, 1-10	6
951	A general type-2 fuzzy logic based approach for Multi-Criteria Group Decision Making. 2013,	4
950	A Hesitant Fuzzy Multiple Attribute Group Decision Making Approach Based on TOPSIS for Parts Supplier Selection. 2013 , 357-360, 2730-2737	6
949	Consensus intuitionistic fuzzy group decision-making method for aircraft cockpit display and control system evaluation. 2013 , 24, 634-641	4
948	Manufacturing vendor selection based on cross-entropy measure with fuzzy VIKOR method. 2013 , 46, 1973-1978	

(2014-2013)

947	A Big-Bang Big-Crunch Optimized General Type-2 Fuzzy Logic Approach for Multi-Criteria Group Decision Making. 2013 , 3, 117-132	4
946	Evaluation of project and portfolio Management Information Systems with the use of a hybrid IFS-TOPSIS method. 2013 , 7, 91-105	6
945	Using MACBETH method for supplier selection in manufacturing environment. 2013, 4, 259-272	17
944	MEodos de decisio multicriteio para seleio de fornecedores: um panorama do estado da arte. 2013 , 20, 781-801	8
943	A Fuzzy Ahp Approach For Supplier Selection Problem: A Case Study In A Gearmotor Company. 2013 , 4, 11-23	142
942	Contractor Selection Using Integrated Goal Programming and Fuzzy ELECTRE. 2014 , 5, 65-86	3
941	Contractor Selection for Enhancing the Quality of University Education in Nigeria using the Hamming Distance. 2014 , 3, 272-284	
940	Application of genomic SSR locus polymorphisms on the identification and classification of chrysanthemum cultivars in China. 2014 , 9, e104856	20
939	MADM Problems with Correlation Coefficient of Trapezoidal Fuzzy Intuitionistic Fuzzy Sets. 2014 , 2014, 1-10	8
938	Selection of Vendor Based on Intuitionistic Fuzzy Analytical Hierarchy Process. 2014 , 2014, 1-10	25
937	An interval 2-tuple linguistic MCDM method for robot evaluation and selection. 2014 , 52, 2867-2880	73
936	Discussion on Definitions for Similarity Measures of Intuitionistic Fuzzy Sets. 2014 , 17, 149-156	4
935	Application of a collaborative modelling and strategic fuzzy decision support system for selecting appropriate resilience strategies for seaport operations. 2014 , 1, 159-179	9
934	Aggregation Operators on Triangular Intuitionistic Fuzzy Numbers and its Application to Multi-Criteria Decision Making Problems. 2014 , 39, 189-208	19
933	A Novel Method for Dynamic Multicriteria Decision Making with Hybrid Evaluation Information. 2014 , 2014, 1-11	2
932	Induced generalized uncertain linguistic correlated averaging operator and their application to multiple attribute decision making. 2014 , 26, 2271-2279	
931	Parameterized intuitionistic fuzzy trapezoidal operators and their application to multiple attribute group decision making. 2014 , 26, 1401-1431	1
930	Fuzzy multicriteria decision-making method based on a family of novel measured functions under vague environment. 2014 , 27, 2797-2808	3

929	Atanassov's intuitionistic linguistic ordered weighted averaging distance operator and its application to decision making. 2014 , 26, 1491-1502	17
928	Method for aggregating induced correlated interval grey linguistic variables and their application to multiple attribute decision making. 2014 , 27, 1169-1177	2
927	TOPSIS method for hesitant fuzzy multiple attribute decision making. 2014 , 26, 2263-2269	10
926	Approach to multiple attribute decision making based on the Hamacher operation with fuzzy number intuitionistic fuzzy information and their application. 2014 , 27, 1087-1094	20
925	Approaches to multiple attribute decision making with hesitant interval-valued fuzzy information under correlative environment. 2014 , 27, 1057-1065	7
924	Weight calculation for seafarer competency evaluation based on intuitionistic fuzzy entropy. 2014 ,	1
923	Analysis of supplier selection methods through analytical approach. 2014 , 18, 100	8
922	An integrated Delphi-AHP-DEA-LPP multi criteria decision making approach for supplier selection and order quantity allocation system. 2014 , 18, 366	6
921	A new approach for supplier selection using fuzzy MCDM. 2014 , 19, 91	12
920	Multi-terms MADM procedures with GRA and TOPSIS based on IFS and IVIFS. 2014 , 4, 164-185	5
919	A novel hybrid model based on DEMATEL, ANP and TOPSIS for supplier selection in agile supply chains. 2014 , 18, 179	12
918	A Novel Method for Fuzzy Multi-Criteria Decision Making. 2014 , 13, 497-519	9
917	AN INTEGRATED FUZZY MULTI CRITERIA GROUP DECISION MAKING MODEL FOR HANDLING EQUIPMENT SELECTION. 2014 , 20, 660-673	32
916	Integrated multi-choice goal programming and multi-segment goal programming for supplier selection considering imperfect-quality and price-quantity discounts in a multiple sourcing environment. 2014 , 45, 1101-1111	21
915	How can a group of procurement experts select suppliers? An approach for group decision support. 2014 , 27, 337-357	23
914	Failure mode and effects analysis using intuitionistic fuzzy hybrid weighted Euclidean distance operator. 2014 , 45, 2012-2030	94
913	A mixed-integer non-linear program to model dynamic supplier selection problem. <i>Expert Systems With Applications</i> , 2014 , 41, 671-678	95
912	A new method for ranking fuzzy numbers and its application to group decision making. 2014 , 38, 1563-1582	39

911	Supplier selection using AHP methodology extended by D numbers. <i>Expert Systems With Applications</i> , 2014 , 41, 156-167	.8	309
910	Aggregating crisp values into intuitionistic fuzzy number for group decision making. 2014 , 38, 2969-2982		21
909	Multi-criteria Group Decision-Making Method Based on Intuitionistic Interval Fuzzy Information. 2014 , 23, 715-733		67
908	Groundwater vulnerability assessment using an improved DRASTIC method in GIS. 2014 , 86, 74-86		122
907	Intuitionistic Preference Modeling and Interactive Decision Making. 2014,		17
906	A robust hybrid multi-criteria decision making methodology for contractor evaluation and selection in third-party reverse logistics. <i>Expert Systems With Applications</i> , 2014 , 41, 50-58	.8	134
905	Multi-criteria decision-making method based on normal intuitionistic fuzzy-induced generalized aggregation operator. 2014 , 22, 1103-1122		43
904	A fuzzy multi-objective programming model for supplier selection with volume discount and risk criteria. 2014 , 71, 1483-1492		10
903	Intuitionistic fuzzy TOPSIS for ergonomic compatibility evaluation of advanced manufacturing technology. 2014 , 70, 2283-2292		39
902	Revisiting the supplier selection problem: An integrated approach for group decision support. Expert Systems With Applications, 2014, 41, 2762-2771	.8	64
901	The Hellinger distance in Multicriteria Decision Making: An illustration to the TOPSIS and TODIM methods. <i>Expert Systems With Applications</i> , 2014 , 41, 4414-4421	.8	70
900	A peer IF-TOPSIS based decision support system for packaging machine selection. <i>Expert Systems With Applications</i> , 2014 , 41, 2157-2165	.8	48
899	A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. 2014 , 21, 194-209		487
898	Robot selection by using generalized interval-valued fuzzy numbers with TOPSIS. 2014 , 21, 462-468		79
897	Intuitionistic fuzzy optimization technique for solving multi-objective reliability optimization problems in interval environment. <i>Expert Systems With Applications</i> , 2014 , 41, 3157-3167	2.8	112
896	Ranking the sustainability performance of pavements: An intuitionistic fuzzy decision making method. 2014 , 40, 33-43		74
895	Extension of TOPSIS to Multiple Criteria Decision Making with Pythagorean Fuzzy Sets. 2014 , 29, 1061-10	78	813
894	Amount of Information and Attitudinal-Based Method for Ranking Atanassov's Intuitionistic Fuzzy Values. 2014 , 22, 177-188		45

893	The fuzzy TOPSIS and generalized Choquet fuzzy integral algorithm for nuclear power plant site selection (b) case study from Turkey. 2014 , 51, 1241-1255		27
892	Decentralized Bilevel Optimization for Supplier Selection Problem with Multiple Items under Fuzzy Random Environment. 2014 ,		
891	Multiple criteria decision analysis using a likelihood-based outranking method based on interval-valued intuitionistic fuzzy sets. 2014 , 286, 188-208		47
890	A supplier pre-selection model for multiple products with synergy effect. 2014 , 52, 5206-5222		20
889	An integrated supplier selection methodology incorporating QFD and DEA with imprecise data. <i>Expert Systems With Applications</i> , 2014 , 41, 6995-7004	7.8	84
888	A hybrid fuzzy evaluation method for safety assessment of food-waste feed based on entropy and the analytic hierarchy process methods. <i>Expert Systems With Applications</i> , 2014 , 41, 7328-7337	7.8	81
887	Semantic dominance analysis for multicriteria decision-making problems with unbalanced linguistic scale. 2014 , 21, 627-647		6
886	Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment. 2014 , 87, 274-284		63
885	Extension of weighted aggregated sum product assessment with interval-valued intuitionistic fuzzy numbers (WASPAS-IVIF). 2014 , 24, 1013-1021		172
884	Interval-valued fuzzy multiple criteria decision-making methods based on dual optimistic/pessimistic estimations in averaging operations. 2014 , 24, 923-947		5
883	A fuzzy hybrid group decision support system approach for the supplier evaluation process. 2014 , 73, 1105-1117		23
882	Supplier selection in the airline retail industry using a funnel methodology: Conjunctive screening method and fuzzy AHP. <i>Expert Systems With Applications</i> , 2014 , 41, 8165-8179	7.8	123
881	Performance Measurement with Fuzzy Data Envelopment Analysis. 2014,		46
880	A fuzzy analytic hierarchy process methodology for the supplier selection problem. 2014 , 27, 292-301		12
879	Extension of the TOPSIS method based on prospect theory and trapezoidal intuitionistic fuzzy numbers for group decision making. 2014 , 23, 231-247		35
878	Evaluation of the provincial competitiveness of the Chinese high-tech industry using an improved TOPSIS method. <i>Expert Systems With Applications</i> , 2014 , 41, 2824-2831	7.8	70
877	A fuzzy envelope for hesitant fuzzy linguistic term set and its application to multicriteria decision making. 2014 , 258, 220-238		280
876	TOPSIS-based group decision-making methodology in intuitionistic fuzzy setting. 2014 , 277, 141-153		129

(2015-2014)

875	Intuitionistic fuzzy entropy and distance measure based TOPSIS method for multi-criteria decision making. 2014 , 15, 97-104	88
874	A new type-2 fuzzy set of linguistic variables for the fuzzy analytic hierarchy process. <i>Expert Systems</i> 7.8 With Applications, 2014 , 41, 3297-3305	113
873	An extended TOPSIS model based on the Possibility theory under fuzzy environment. 2014 , 67, 263-269	53
872	A complex multi-attribute large-group PLS decision-making method in the interval-valued intuitionistic fuzzy environment. 2014 , 38, 4512-4527	43
871	A prioritized aggregation operator-based approach to multiple criteria decision making using interval-valued intuitionistic fuzzy sets: A comparative perspective. 2014 , 281, 97-112	53
870	Identifying Citation Classics in Fuzzy Decision Making Field Using the Concept of H-Classics. 2014 , 31, 567-576	8
869	Power planning in ICT infrastructure: A multi-criteria operational performance evaluation approach. 2014 , 49, 134-148	11
868	An outranking approach for multi-criteria decision-making with hesitant fuzzy linguistic term sets. 2014 , 280, 338-351	134
867	Multi-criteria trapezoidal valued intuitionistic fuzzy decision making with Choquet integral based TOPSIS. 2014 , 51, 98-129	40
866	A hybrid AHP-FCM model for backup supplier selection in presence of disruption risk. 2014 , 5, 213	1
865	Performance measurement of sustainable third party reverse logistics provider by data envelopment analysis: a case study of an Indian apparel manufacturing group. 2015 , 1, 273	7
864	Site Selection with TOPSIS and Entropy Weight for Network Nodes in a Closed-Loop Military Supply Chain. 2015 ,	O
863	New intuitionistic fuzzy approach with multi-objective optimisation on the basis of ratio analysis method. 2015 , 9, 355	6
862	A fuzzy DEMATEL approach based on intuitionistic fuzzy information for evaluating knowledge transfer effectiveness in GSD projects. 2015 , 6, 203	18
861	Understanding the Impact of Subjective Uncertainty on Architecture and Supplier Identification in Early Complex Systems Design. 2015 , 1,	6
860	Robust decision making for UAV air-to-ground attack under severe uncertainty. 2015 , 22, 4263-4273	5
859	Decision-making in a coordinated control structure. 2015 , 5, 39	
858	Framework to manage suppliers for strategic alliances with a multicriteria method. 2015 , 25, 713-724	

857	Supplier selection in an agent based pharmaceutical supply chain: An application of TOPSIS and PROMETHEE \square 2015 , 3, 231-240		11
856	Statese dos Principais Crittios, Mtodos e Subproblemas da Seleto de Fornecedores Multicrittio. 2015 , 19, 1-25		10
855	Supplier selection of foreign trade sourcing company using ANP-VIKOR method in hesitant fuzzy environment. 2015 , 04,		3
854	Intuitionistic Fuzzy MOORA for Supplier Selection. 2015 , 82, 34-41		25
853	Uma comparaß entre os m£odos TOPSIS e Fuzzy-TOPSIS no apoio 🏻 tomada de decis b multicritEio para seleß de fornecedores. 2015 , 22, 17-34		16
852	A Method of Hybrid Multiple Attributes Group Decision Making with Risk Considering Decision-Makers' Confidence. 2015 , 20, 62-75		1
851	A Multiple Attribute Group Decision Making Approach for Solving Problems with the Assessment of Preference Relations. 2015 , 2015, 1-10		7
850	A New Method Based on TOPSIS and Response Surface Method for MCDM Problems with Interval Numbers. 2015 , 2015, 1-11		16
849	MAGDM Problems with Correlation Coefficient of Triangular Fuzzy IFS. 2015 , 4, 1-32		17
848	A group decision making model with hybrid intuitionistic fuzzy information. 2015 , 87, 202-212		40
847	Selecting supplier combination based on fuzzy multicriteria analysis. 2015 , 44, 572-590		1
846	AHP and Intuitionistic Fuzzy TOPSIS Methodology for SCM Selection. 2015 , 181-194		
845	Advanced Business Analytics. 2015,		2
844	Approaches to manage hesitant fuzzy linguistic information based on the cosine distance and similarity measures for HFLTSs and their application in qualitative decision making. <i>Expert Systems With Applications</i> , 2015 , 42, 5328-5336	7.8	209
843	An application of intuitionistic fuzzy TOPSIS on mobile phone selection. 2015,		3
842	A Comparison between Two Types of Fuzzy TOPSIS Method. 2015 ,		1
841	Decision framework of photovoltaic module selection under interval-valued intuitionistic fuzzy environment. 2015 , 106, 1242-1250		34
840	A new method for fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and the evidential reasoning methodology. 2015 ,		2

839	Supplier selection in blood bags manufacturing industry using TOPSIS model. 2015, 24, 461	9
838	A novel Multiple Attribute Group Decision Making methodology based on Intuitionistic Fuzzy TOPSIS. 2015 ,	1
837	Green supplier selection: a fuzzy AHP and fuzzy ARAS approach. 2015 , 22, 165	32
836	A Method for Multi-attribute Decision Making Under Uncertainty Using Evidential Reasoning and Prospect Theory. 2015 , 8, 48-62	4
835	An intuitionistic fuzzy grey model for selection problems with an application to the inspection planning in manufacturing firms. 2015 , 39, 157-167	36
834	A Fuzzy TODIM Approach for the Supplier Selection Problem. 2015 , 8, 317-329	39
833	An analytical solution to fuzzy TOPSIS and its application in personnel selection for knowledge-intensive enterprise. 2015 , 30, 190-204	74
832	Fuzzy multiple criteria decision-making techniques and applications ITwo decades review from 1994 to 2014. <i>Expert Systems With Applications</i> , 2015 , 42, 4126-4148	508
831	Multi-criteria group decision making based on trapezoidal intuitionistic fuzzy information. 2015 , 30, 454-46	1 29
830	A fuzzy criticality assessment system of process equipment for optimised maintenance management. 2015 , 28, 112-125	4
829	Intuitionistic fuzzy data envelopment analysis: An application to the banking sector in India. <i>Expert Systems With Applications</i> , 2015 , 42, 4982-4998	41
828	Integrating social network analysis with analytic network process for international development project selection. <i>Expert Systems With Applications</i> , 2015 , 42, 5128-5138	19
827	A Novel Linguistic Group Decision-Making Model Based on Extended Hesitant Fuzzy Linguistic Term Sets. 2015 , 23, 379-398	28
826	Comparative Analysis of MCDM Methods for Assessing the Severity of Chronic Liver Disease. 2015 , 228-238	24
825	A note on the TOPSIS method in MADM problems with linguistic evaluations. 2015 , 36, 24-35	28
824	Group multi-criteria supplier selection using combined grey systems theory and uncertainty theory. Expert Systems With Applications, 2015 , 42, 7951-7959	101
823	Uncertain linguistic fuzzy soft sets and their applications in group decision making. 2015, 34, 587-605	24
822	Multi-criteria decision-making based on hesitant fuzzy linguistic term sets: An outranking approach. 2015 , 86, 224-236	82

821	An integrated supplier selection and procurement planning model using product predesign and operational criteria. 2015 , 9, 213-224	11
820	An intuitionsitic fuzzy judgement matrix and TOPSIS integrated multi-criteria decision making method for green supplier selection. 2015 , 28, 117-126	41
819	A rapid life cycle assessment method based on green features in supporting conceptual design. 2015 , 2, 189-196	11
818	A group decision-making approach for supplier selection in configuration design: A case study. 2015 , 81, 1139-1154	9
817	A two stage approach for supplier selection problem in multi-item/multi-supplier environment with quantity discounts. 2015 , 85, 1-12	8o
816	IFWA and IFWGM Methods for MADM under Atanassov's Intuitionistic Fuzzy Environment. 2015 , 23, 263-284	10
815	Application of Alternative Multi-criteria Decision Making Approaches to Supplier Selection Process. 2015 , 723-743	9
814	Fuzzy Multicriteria Decision-Making: A Literature Review. 2015 , 8, 637-666	282
813	Integrating LINMAP and TOPSIS methods for hesitant fuzzy multiple attribute decision making. 2015 , 28, 257-269	17
812	Application of DOE-TOPSIS Technique in Decision-Making Problems. 2015 , 48, 773-777	10
811	Optimal selection of third-party logistics service providers using quality function deployment and Taguchi loss function. 2015 , 22, 1281-1300	31
810	A Combined Grey System Theory and Uncertainty Theory-Based Approach for Supplier Selection in Supply Chain Management. 2015 , 461-473	1
809	A fuzzy extended analytic network process-based approach for global supplier selection. 2015 , 43, 760-772	36
808	Attitudinal ranking and correlated aggregating methods for multiple attribute group decision making with triangular intuitionistic fuzzy Choquet integral. 2015 , 44, 1437-1454	11
807	Evolving a linear programming technique for MAGDM problems with interval valued intuitionistic fuzzy information. <i>Expert Systems With Applications</i> , 2015 , 42, 9318-9325	23
806	Consensus model for multi-criteria large-group emergency decision making considering non-cooperative behaviors and minority opinions. 2015 , 79, 150-160	227
805	A hybrid group decision support system for supplier selection using analytic hierarchy process, fuzzy set theory and neural network. 2015 , 6, 23-33	94
804	A fuzzy ANP model for the selection of 3D coordinate-measuring machine. 2015 , 26, 999-1010	20

803	Failure mode and effects analysis using intuitionistic fuzzy hybrid TOPSIS approach. 2015 , 19, 1085-1098	}	103
802	Generalized cross-entropy based group decision making with unknown expert and attribute weights under interval-valued intuitionistic fuzzy environment. 2015 , 79, 52-64		99
801	IVIF-PROMETHEE outranking methods for multiple criteria decision analysis based on interval-valued intuitionistic fuzzy sets. 2015 , 14, 173-198		35
800	The Characteristic Objects Method: A New Distance-based Approach to Multicriteria Decision-making Problems. 2015 , 22, 37-50		93
799	The inclusion-based TOPSIS method with interval-valued intuitionistic fuzzy sets for multiple criteria group decision making. 2015 , 26, 57-73		160
798	Group multi-criteria supplier selection using an extended VIKOR method with interval 2-tuple linguistic information. <i>Expert Systems With Applications</i> , 2015 , 42, 1906-1916	7.8	145
797	Hesitant fuzzy ELECTRE II approach: A new way to handle multi-criteria decision making problems. 2015 , 292, 175-197		120
796	Supplier selection in resilient supply chains: a grey relational analysis approach. 2015 , 86, 343-359		226
795	Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia. 2016 , 35, 360-377		67
794	Evaluating Selection Criteria for Chinese Solar Greenhouses: A Case Study for Northern Jiangsu Province. 2016 , 32, 401-413		2
793	Food Safety Management Performance Evaluation Based on Fuzzy TOPSIS Method. 2016 , 11, 675-679		
792	Parents Preference for Students Choice of Urban Schools in Benin City, Nigeria: Integrated AHP Intuitionistic Fuzzy Topsis. 2016 , 10, 254		1
791	A review of intuitionistic fuzzy topsis for supplier selection. 2016 , 5, 91-102		1
790	TOPSIS for Multi Criteria Decision Making in Intuitionistic Fuzzy Environment. 2016 , 156, 42-49		11
789	A Model for Sorting Activities to Be Outsourced in Civil Construction Based on ROR-UTADIS. 2016 , 2016, 1-15		11
788	TOPSIS and Choquet integral hybrid technique for solving MAGDM problems with interval type-2 fuzzy numbers. 2016 , 30, 1301-1310		11
787	Intuitionistic fuzzy multi-attribute decision making with ideal-point-based method and correlation measure. 2016 , 30, 747-757		10
786	Visualization and quantitative research on intuitionistic fuzzy studies. 2016 , 30, 3653-3663		82

785	A risk assessment approach for failure mode and effects analysis based on intuitionistic fuzzy sets and evidence theory. 2016 , 30, 869-881	32
7 ⁸ 4	Integration of interval Type-2 fuzzy sets and analytic hierarchy process: Implication to computational procedures. 2016 ,	1
783	Evaluation of hospital web services using intuitionistic fuzzy AHP and intuitionistic fuzzy VIKOR. 2016 ,	14
782	Intuitionistic fuzzy similarity measure: Theory and applications. 2016 , 30, 821-829	6
781	Fuzzy sets based team decision-making for Cyber Situation Awareness. 2016,	2
78o	A MULTI-CRITERIA INTUITIONISTIC FUZZY GROUP DECISION MAKING MODEL FOR REAL TIME LOCATION SYSTEM INTEGRATION: AN APPLICATION FROM HEALTHCARE SYSTEM. 2016 ,	О
779	Correlation and aggregation integrated MCDM with interval-valued intuitionistic fuzzy numbers. 2016 ,	1
778	Application of interpretative structural modelling integrated multi criteria decision making methods for sustainable supplier selection. 2016 , 11, 358-388	46
777	Cross-Entropy and Prioritized Aggregation Operator with Simplified Neutrosophic Sets and Their Application in Multi-Criteria Decision-Making Problems. 2016 , 18, 1104-1116	83
776	2-tuple linguistic Muirhead mean operators for multiple attribute group decision making and its application to supplier selection. 2016 , 45, 2-29	63
775	Supplier/partner selection in agile supply chain. 2016 , 23, 866-892	10
774	Social impacts profile of suppliers: a S-LCA approach. 2016 , 49, 36-41	6
773	Structured selection of partners in open innovation: an IF-TOPSIS based approach. 2016 , 20, 53-66	11
772	FMEA Using Uncertainty Theories and MCDM Methods. 2016 ,	19
77 ¹	A Centroid-based Ranking Method of Trapezoidal Intuitionistic Fuzzy Numbers and Its Application to MCDM ProblemsPeer review under responsibility of Fuzzy Information and Engineering Branch of the Operations Research Society of China 2016 , 8, 41-74	28
770	An integrating OWATOPSIS framework in intuitionistic fuzzy settings for multiple attribute decision making. 2016 , 98, 185-194	35
769	A combined MCDM approach for evaluation and selection of third-party reverse logistics partner for Indian electronics industry. 2016 , 7, 66-78	101
768	A Hybrid Fuzzy-Intelligent System for Group Multi-Attribute Decision Making. 2016 , 18, 1117-1130	14

767	A framework for multi-stakeholder decision-making and conflict resolution. 2016 , 90, 136-150	45
766	Development of TOPSIS Method to Solve Complicated Decision-Making Problems IAn Overview on Developments from 2000 to 2015. 2016 , 15, 645-682	189
765	A simulation based multi-attribute group decision making technique with decision constraints. 2016 , 49, 629-640	13
764	EVALUATION OF GOVERNMENT WEBSITES USING INTUITIONISTIC FUZZY AHP AND TOPSIS. 2016,	O
763	A multi-attribute model for construction site layout using intuitionistic fuzzy logic. 2016 , 72, 380-387	26
762	A model for failure mode and effects analysis based on intuitionistic fuzzy approach. 2016 , 49, 238-247	64
761	Intuitionistic fuzzy multi-attribute group decision-making with an application to plant location selection based on a new extended VIKOR method. 2016 , 370-371, 184-203	79
760	Multi-criteria analysis in Artemia farming site selection for sustainable desert ecosystems planning and management (case study: Siahkouh Playa, Iran). 2016 , 75, 1	3
759	A Multicriteria Decision Model for Collaborative Partnerships in Supplier Strategic Management. 2016 , 15, 101-131	8
758	Dynamic supplier selection model under two-echelon supply network. <i>Expert Systems With Applications</i> , 2016 , 65, 255-270	17
75 ⁸		17
	Applications, 2016 , 65, 255-270 7.8	
757	Applications, 2016 , 65, 255-270 7.8 Supplier selection in agile supply chain. 2016 , 23, 2027-2060	22
757 75 ⁶	Applications, 2016, 65, 255-270 Supplier selection in agile supply chain. 2016, 23, 2027-2060 A correlation based Intuitionistic fuzzy TOPSIS method on supplier selection problem. 2016, Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental,	22
757 756 755	Applications, 2016, 65, 255-270 Supplier selection in agile supply chain. 2016, 23, 2027-2060 A correlation based Intuitionistic fuzzy TOPSIS method on supplier selection problem. 2016, Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. 2016, 8, 78-92 Identification and Phylogenetic Classification of Pennisetum (Poaceae) Ornamental Grasses Based	22 8 53
757 756 755 754	Applications, 2016, 65, 255-270 Supplier selection in agile supply chain. 2016, 23, 2027-2060 A correlation based Intuitionistic fuzzy TOPSIS method on supplier selection problem. 2016, Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. 2016, 8, 78-92 Identification and Phylogenetic Classification of Pennisetum (Poaceae) Ornamental Grasses Based on SSR Locus Polymorphisms. 2016, 34, 1181-1192	22 8 53
757 756 755 754 753	Supplier selection in agile supply chain. 2016, 23, 2027-2060 A correlation based Intuitionistic fuzzy TOPSIS method on supplier selection problem. 2016, Intuitionistic fuzzy multi-criteria decision making framework based on life cycle environmental, economic and social impacts: The case of U.S. wind energy. 2016, 8, 78-92 Identification and Phylogenetic Classification of Pennisetum (Poaceae) Ornamental Grasses Based on SSR Locus Polymorphisms. 2016, 34, 1181-1192 An exploration of issues and limitations in current methods of TOPSIS and fuzzy TOPSIS. 2016, Component oriented remanufacturing decision-making for complex product using DEA and interval	22 8 53 3

749	Medical diagnosis with the aid of using fuzzy logic and intuitionistic fuzzy logic. 2016 , 45, 850-867	34
748	Multi Criteria Group Decision Making Approach for Smart Phone Selection Using Intuitionistic Fuzzy TOPSIS. 2016 , 9, 709-725	51
747	A new preference scale mcdm method based on interval-valued intuitionistic fuzzy sets and the analytic hierarchy process. 2016 , 20, 511-523	47
746	A resilient global supplier selection strategy acase study of an automotive company. 2016, 87, 1475-1490	20
745	Taxonomy and review of non-deterministic analytical methods for supplier selection. 2016 , 29, 263-286	29
744	Hesitant fuzzy information measures and their applications in multi-criteria decision making. 2016 , 47, 62-76	43
743	A new distance measure for interval valued intuitionistic fuzzy sets and its application to group decision making problems with incomplete weights information. 2016 , 41, 120-134	79
742	On the TOPSIS-Class Methods in the Intuitionistic Fuzzy Environment. 2016 , 159-175	
741	A multi-criteria decision analysis framework for evaluating point-of-use water treatment alternatives. 2016 , 18, 1263-1279	15
740	An improved TOPSIS with weighted hesitant vague information. 2016 , 89, 47-53	16
739	Applying a linguistic multi-criteria decision-making model to the analysis of ICT suppliers	26
738	An interval-valued intuitionistic fuzzy permutation method with likelihood-based preference functions and its application to multiple criteria decision analysis. 2016 , 42, 390-409	49
737	Evaluation and selection of resilient suppliers in fuzzy environment. 2016 , 23, 651-673	44
736	Recent advances in multiple criteria decision making techniques. 2016 , 1	10
735	An analysis of integrated robust hybrid model for third-party reverse logistics partner selection under fuzzy environment. 2016 , 108, 63-81	83
734	Cross-docking Location Selection in Distribution Systems: A New Intuitionistic Fuzzy Hierarchical Decision Model. 2016 , 9, 91-109	33
733	Supplier selection in automobile industry: A mixed balanced scorecard B uzzy AHP approach. 2016 , 55, 93-100	61
732	Application of the TOPSIS and intuitionistic fuzzy set approaches for ranking the life cycle sustainability performance of alternative vehicle technologies. 2016 , 6, 12-25	99

731	A decision making model for selecting start-up businesses in a government venture capital scheme. 2016 , 54,	20
730	Simplified interval-valued intuitionistic fuzzy integrals and their use in park siting. 2016 , 20, 4377-4393	5
729	Pythagorean fuzzy TODIM approach to multi-criteria decision making. 2016 , 42, 246-259	398
728	Dual hesitant fuzzy group decision making method and its application to supplier selection. 2016 , 7, 819-831	43
727	A hybrid fuzzy evaluation method for curtain grouting efficiency assessment based on an AHP method extended by D numbers. <i>Expert Systems With Applications</i> , 2016 , 44, 289-303	96
726	A generalized TOPSIS method for group decision making with heterogeneous information in a dynamic environment. 2016 , 330, 1-18	82
725	Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S 2016 , 112, 291-307	79
724	INTUITIONISTIC FUZZY GENERALIZED PROBABILISTIC ORDERED WEIGHTED AVERAGING OPERATOR AND ITS APPLICATION TO GROUP DECISION MAKING. 2016 , 22, 177-193	38
723	Interval-valued intuitionistic hesitant fuzzy Choquet integral based TOPSIS method for multi-criteria group decision making. 2016 , 248, 183-191	208
722	Consistency in MCGDM Problems with Intuitionistic Fuzzy Preference Relations Based on an Exponential Score Function. 2016 , 25, 399-420	16
721	Information fusion for intuitionistic fuzzy decision making: An overview. 2016 , 28, 10-23	141
720	TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. 2016 , 27, 727-737	232
719	An Extended PROMETHE II Multi-Criteria Group Decision Making Technique Based on Intuitionistic Fuzzy Logic for Sustainable Energy Planning. 2016 , 25, 221-244	52
718	An integrated model for green supplier selection under fuzzy environment: application of data envelopment analysis and genetic programming approach. 2016 , 27, 707-725	89
717	An analytical solution to the TOPSIS model with interval type-2 fuzzy sets. 2016 , 20, 1213-1230	21
716	Fuzzy multiattribute group decision making based on intuitionistic fuzzy sets and evidential reasoning methodology. 2016 , 27, 215-227	140
7 ¹ 5	A SD-IITFOWA OPERATOR AND TOPSIS BASED APPROACH FOR MAGDM PROBLEMS WITH INTUITIONISTIC TRAPEZOIDAL FUZZY NUMBERS. 2017 , 21, 28-47	14
7 1 4	A Markov chain approximation to multi-stage interactive group decision-making method based on interval fuzzy number. 2017 , 21, 2701-2708	8

713	Assessing Commercial Viability of Technology Start-up Businesses in a Government Venture Capital under Intuitionistic Fuzzy Environment. 2017 , 19, 400-413	8
712	Hybrid vector similarity measures and their applications to multi-attribute decision making under neutrosophic environment. 2017 , 28, 1163-1176	62
711	A multiple attribute interval type-2 fuzzy group decision making and its application to supplier selection with extended LINMAP method. 2017 , 21, 3207-3226	58
710	AN APPROACH FOR MADM PROBLEMS WITH INTERVAL-VALUED INTUITIONISTIC FUZZY SETS BASED ON NONLINEAR FUNCTIONS. 2017 , 22, 336-356	8
709	AN IVIF-ELECTRE OUTRANKING METHOD FOR MULTIPLE CRITERIA DECISION-MAKING WITH INTERVAL-VALUED INTUITIONISTIC FUZZY SETS. 2017 , 22, 416-452	10
708	NEW GROUP DECISION MAKING METHOD IN INTUITIONISTIC FUZZY SETTING BASED ON TOPSIS. 2017 , 23, 441-461	16
707	A unified framework for the key weights in MAGDM under uncertainty. 2017 , 21, 2251-2262	4
706	Interval-valued intuitionistic fuzzy programming technique for multicriteria group decision making based on Shapley values and incomplete preference information. 2017 , 21, 5787-5804	14
705	Linguistic multi-criteria decision-making with representing semantics by programming. 2017 , 48, 225-235	4
704	An efficient approach to radiotherapy dose planning problem: a TOPSIS case-based reasoning approach. 2017 , 4, 4-12	2
703	A decision support model for sustainable supplier selection in sustainable supply chain management. 2017 , 105, 391-410	143
702	Sustainable third-party reverse logistic provider selection with fuzzy SWARA and fuzzy MOORA in plastic industry. 2017 , 91, 2401-2418	125
701	Similarity-matching in decision-making processes of Supply Chain Analytics: a systematic literature review. 2017 , 18, 13-20	4
700	A bibliometric-based survey on AHP and TOPSIS techniques. <i>Expert Systems With Applications</i> , 2017 , 78, 158-181	207
699	Multiple attribute group decision making: A generic conceptual framework and a classification scheme. 2017 , 123, 13-30	47
698	. 2017 , 28, 88-96	8
697	Modelling Uncertainties in Multi-Criteria Decision Making using Distance Measure and TOPSIS for Hesitant Fuzzy Sets. 2017 , 7, 103-109	15
696	Supplier evaluation and selection in fuzzy environments: a review of MADM approaches. 2017 , 30, 1073-1118	78

(2017-2017)

695	Multi-criteria group decision-making based sustainability measurement of wastewater treatment processes. 2017 , 65, 91-99		43
694	Multi-criteria alternative-fuel technology selection using interval-valued intuitionistic fuzzy sets. 2017 , 53, 128-148		54
693	Linguistic multi-criteria decision-making model with output variable expressive richness. <i>Expert Systems With Applications</i> , 2017 , 83, 350-362	7.8	13
692	INTEGRATED FANP-F-MIGP MODEL FOR SUPPLIER SELECTION IN THE RENEWABLE ENERGY SECTOR. 2017 , 18, 427-450		3
691	Dynamic Aggregation Operators Based on Intuitionistic Fuzzy Tools and Einstein OperationsPeer review under responsibility of Fuzzy Information and Engineering Branch of the Operations Research Society of China 2017 , 9, 45-65		8
690	A new combined IF-DEMATEL and IF-ANP approach for CRM partner evaluation. 2017 , 191, 194-206		67
689	Distance-Based Multi-Criteria Group Decision-Making Approaches with Multi-Hesitant Fuzzy Linguistic Information. 2017 , 16, 1069-1099		18
688	Technique selection and evaluation of ballast water management methods under an intuitionistic fuzzy environment: An information axiom approach. 2017 , 231, 782-800		2
687	A consensus process for group decision making with probabilistic linguistic preference relations. 2017 , 414, 260-275		145
686	Integrated group fuzzy multi-criteria model: Case of facilities management strategy selection. <i>Expert Systems With Applications</i> , 2017 , 82, 317-331	7.8	48
686 685		7.8	48 279
	Expert Systems With Applications, 2017, 82, 317-331 Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy	7.8	
685	Expert Systems With Applications, 2017, 82, 317-331 Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. 2017, 152, 242-258 Multiattribute group decision making based on interval-valued intuitionistic fuzzy sets and	7.8	279
68 ₅	Expert Systems With Applications, 2017, 82, 317-331 Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. 2017, 152, 242-258 Multiattribute group decision making based on interval-valued intuitionistic fuzzy sets and analytically evidential reasoning methodology. 2017, 33, 2953-2960 Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria	7.8	279
685 684 683	Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. 2017, 152, 242-258 Multiattribute group decision making based on interval-valued intuitionistic fuzzy sets and analytically evidential reasoning methodology. 2017, 33, 2953-2960 Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria decision making problems. 2017, 33, 3323-3337 Some new Shapley dual hesitant fuzzy Choquet aggregation operators and their applications to	7.8	279 11 77
685 684 683	Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. 2017, 152, 242-258 Multiattribute group decision making based on interval-valued intuitionistic fuzzy sets and analytically evidential reasoning methodology. 2017, 33, 2953-2960 Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria decision making problems. 2017, 33, 3323-3337 Some new Shapley dual hesitant fuzzy Choquet aggregation operators and their applications to multiple attribute group decision making-based TOPSIS. 2017, 33, 2463-2483 A thermodynamic method of intuitionistic fuzzy MCDM to assist the hierarchical medical system in	7.8	279 11 77 7
685 684 683 682	Supplier selection among SMEs on the basis of their green innovation ability using BWM and fuzzy TOPSIS. 2017, 152, 242-258 Multiattribute group decision making based on interval-valued intuitionistic fuzzy sets and analytically evidential reasoning methodology. 2017, 33, 2953-2960 Aggregation operators on triangular cubic fuzzy numbers and its application to multi-criteria decision making problems. 2017, 33, 3323-3337 Some new Shapley dual hesitant fuzzy Choquet aggregation operators and their applications to multiple attribute group decision making-based TOPSIS. 2017, 33, 2463-2483 A thermodynamic method of intuitionistic fuzzy MCDM to assist the hierarchical medical system in China. 2017, 420, 490-504 Community evolution analysis based on co-author network: a case study of academic communities	7.8	279 11 77 7 34

677	CRITICAL FACTORS OF THE APPLICATION OF NANOTECHNOLOGY IN CONSTRUCTION INDUSTRY BY USING ANP TECHNIQUE UNDER FUZZY INTUITIONISTIC ENVIRONMENT. 2017 , 23, 914-925	15
676	A Predictive Integrated Genetic-Based Model for Supplier Evaluation and Selection. 2017 , 19, 1041-1057	18
675	Multiple Attributes Decision Fusion for Wireless Sensor Networks Based on Intuitionistic Fuzzy Set. 2017 , 5, 12798-12809	17
674	A new hybrid simulation-based assignment approach for evaluating airlines with multiple service quality criteria. 2017 , 63, 45-60	42
673	A privacy-preserving degree-matching multi-attribute auction scheme in smart grid auction market. 2017 , 21, 779-789	2
672	Development of an interval type-2 fuzzy sets based hierarchical MADM model by combining DEMATEL and TOPSIS. <i>Expert Systems With Applications</i> , 2017 , 70, 37-51	116
671	A performance measurement decision support system method applied for technology-based firms suppliers. 2017 , 26, 93-109	6
670	Application of a new combined intuitionistic fuzzy MCDM approach based on axiomatic design methodology for the supplier selection problem. 2017 , 52, 1222-1238	123
669	An Intuitionistic Fuzzy MCDM Approach for Effective Hazardous Waste Management. 2017, 21-40	13
668	Hesitant Fuzzy Multiple Criteria Decision Analysis Based on TOPSIS. 2017 , 1-30	1
667	Hesitant Fuzzy Methods for Multiple Criteria Decision Analysis. 2017,	8
666	Comparative State-of-the-Art Survey of Classical Fuzzy Set and Intuitionistic Fuzzy Sets in Multi-Criteria Decision Making. 2017 , 19, 726-738	14
665	A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. 2017 , 69, 596-609	659
664	Intuitionistic fuzzy induced ordered weighted averaging distance operator and îts 'application to decision making. 2017 , 32, 11-22	37
663	Pythagorean triangular fuzzy linguistic bonferroni mean operators and their application for multi-attribute decision making. 2017 ,	5
662	Drafting a fuzzy TOPSIS-multi-objective approach for a sustainable supplier selection. 2017,	3
661	Combining comparative linguistic expressions and numerical information in multi-attribute group decision making A simulation-based approach. 2017 , 33, 3835-3852	1
660	Efficient RAT-selection for group calls using intuitionistic fuzzy TOPSIS in heterogeneous wireless networks. 2017 ,	3

659	Supplier Selection by Extended TOPSIS to Obtain the Ideal Compromise Solution in Group Decision Making. 2017 , 4, 71-85	1
658	Similarity measure of intuitionistic fuzzy numbers and its application to clustering. 2017, 10, 399	2
657	Environmentally Friendly Supplier Selection Using Prospect Theory. 2017 , 9, 377	6
656	Decision framework of solar thermal power plant project under intuitionistic fuzzy environment. 2017 , 17, 281	1
655	Application of fuzzy MCDM in supplier selection of fertiliser manufacturing industry. 2017, 9, 133	7
654	Evaluation and selection of suppliers in the supply chain using the extended group PROMETHEE I procedures. 2017 , 3, 56	1
653	An Improved Hybrid Grey Relational Analysis Approach for Green Resilient Supply Chain Network Assessment. 2017 , 9, 1433	27
652	Quantitative grey-ANP-TOPSIS based model for evaluating healthcare waste disposal partner. 2017 , 10, 683	
651	Vector similarity measures of hesitant fuzzy linguistic term sets and their applications. 2017 , 12, e0189579	15
650	Intuitionistic fuzzy hedges modeling for supplier selection of responsive agroindustrial multi products supply chains in small and medium enterprises. 2017 ,	О
649	An analytical framework for supplier evaluation and selection: a multi-criteria decision making approach. 2017 , 9, 57	5
648	Application of fuzzy TOPSIS and generalized Choquet integral methods to select the best supplier. 2017 , 137-150	8
647	Multicriteria Recommender System for Life Insurance Plans based on Utility Theory. 2017 , 10, 1-8	2
646	Fishmeal Supplier Evaluation and Selection for Aquaculture Enterprise Sustainability with a Fuzzy MCDM Approach. 2017 , 9, 286	4
645	A New Hesitant Fuzzy Linguistic TOPSIS Method for Group Multi-Criteria Linguistic Decision Making. 2017 , 9, 289	19
644	A TOPSIS method based on intuitionistic fuzzy values: a case study of North African airports. 2017 , 351-358	9
643	Interval Type-2 Fuzzy Analytic Hierarchy Process for Sustainable Energy Sources Selection. 2017 , 6, 124-137	4
642	An improved approach for water quality evaluation: TOPSIS-based informative weighting and ranking (TIWR) approach. 2018 , 89, 356-364	38

641	Risk assessment based on novel intuitionistic fuzzy-hybrid-modified TOPSIS approach. 2018 , 110, 438-448	86
640	Optimization of Glass fiber and MoS2 Filled PTFE Composites Using Non Traditional Optimization Techniques. 2018 , 5, 7310-7319	6
639	Co-evolution of product family configuration and supplier selection: a game-theoretic bilevel optimisation approach. 2018 , 29, 201-234	9
638	Supplier selection towards uncertain and unavailable information: An extension of TOPSIS method. 2018 , 5, 69-79	30
637	A consensus facilitation model based on experts weights for investment strategy selection. 2018 , 69, 1435-1444	14
636	On Intuitionistic Fuzzy Copula Aggregation Operators in Multiple- Attribute Decision Making. 2018 , 10, 610-624	30
635	A New Parametric Intuitionistic Fuzzy Entropy and its Applications in Multiple Attribute Decision Making. 2018 , 4, 1	25
634	Sustainable supplier selection in intuitionistic fuzzy environment: a decision-making perspective. 2018 , 25, 545-574	38
633	Selection of sustainable urban transportation alternatives using an integrated intuitionistic fuzzy Choquet integral approach. 2018 , 58, 186-207	58
632	Pythagorean Hesitant Fuzzy Information Aggregation and Their Application to Multi-Attribute Group Decision-Making Problems. 2018 , 29, 154-171	12
631	Intuitionistic fuzzy analytical hierarchical processes for selecting the paradigms of mangroves in municipal wastewater treatment. 2018 , 197, 634-642	18
630	Integration of GIS, AHP and TOPSIS for earthquake hazard analysis. 2018 , 92, 1523-1546	36
629	An improved-based TOPSIS method in interval-valued intuitionistic fuzzy environment. 2018 , 7, 81-88	10
628	An extended TODIM approach with intuitionistic linguistic numbers. 2018 , 25, 781-805	112
627	Sustainable energy planning decision using the intuitionistic fuzzy analytic hierarchy process: choosing energy technology in Malaysia: necessary modifications. 2018 , 37, 436-437	3
626	Technology assessment with IF-TOPSIS: An application in the advanced underwater system sector. 2018 , 131, 38-48	23
625	Ranking of drivers for integrated lean-green manufacturing for Indian manufacturing SMEs. 2018 , 171, 675-689	122
624	Multi-criteria weighted decision making for operational maintenance processes. 2018 , 68, 152-164	18

623	Similarity and entropy measures for hesitant fuzzy sets. 2018 , 25, 857-886	55
622	A comprehensive end-of-life strategy decision making approach to handle uncertainty in the product design stage. 2018 , 29, 469-487	19
621	An integrated weighted fuzzy multi-objective model for supplier selection and order scheduling in a supply chain. 2018 , 56, 3590-3614	26
620	Extension of TOPSIS Method and its Application in Investment. 2018 , 43, 693-705	18
619	Risk Analysis of Ports in Maritime Industry in Turkey using FMEA Based Intuitionistic Fuzzy TOPSIS Approach. 2018 , 22, 01018	11
618	Allocation of logistic risk-investment in public-private-partnership luse of fuzzy TOPSIS method. 2018 , 184, 04025	2
617	Supplier selection in supply chain management: a review study. 2018 , 10, 107	5
616	Solving group decision-making problems in manufacturing systems by an uncertain compromise ranking method. 2018 , 11, 55	8
615	Risks assessment in Moroccan microfinance sector: An interval-valued intuitionistic fuzzy set approach. 2018 , 10, 184797901880535	2
614	Design of near optimal user interface with minimal UI elements using evidence based recommendations and multi criteria decision making: TOPSIS method. 2018 , 1, 40	
613	A model for supplier evaluation and selection based on integrated interval-valued intuitionistic fuzzy AHP-TOPSIS approach. 2018 , 13, 401	7
612	Selecting Ubiquitous Services in Future Heterogenous Wireless Networks using Multi-Attributes Decision Making. 2018 ,	
611	Multi-Criteria Analysis of Pollution Caused by Auto Traffic in a Geographical Area Limited to Applicability for an Eco-Economy Environment. 2018 , 10, 4240	5
610	An Intuitionistic Fuzzy Group Decision-Making to Measure the Performance of Green Supply Chain Management with TOPSIS Method. 2018 ,	2
609	Analizing Topsis Method for Selecting the Best Wood Type. 2018,	0
608	Multi-Criteria Decision-Making Methods Application in Supply Chain Management: A Systematic Literature Review. 2018 ,	9
607	Dynamic Agent Evaluation Using Intuitionistic Fuzzy TOPSIS. 2018,	
606	Decision-Maker Risk Preference Based Intuitionistic Fuzzy Multiattribute Decision-Making and Its Application in Robot Enterprises Investment. 2018 , 2018, 1-6	3

605	A Rough Approximation of Fuzzy Soft Set-Based Decision-Making Approach in Supplier Selection Problem. 2018 , 10, 178-195	3
604	Assessment of critical failure factors (CFFs) of Lean Six Sigma in real life scenario. 2018 , 25, 3320-3336	37
603	Probabilistic Hesitant Intuitionistic Linguistic Term Sets in Multi-Attribute Group Decision Making. 2018 , 10, 392	14
602	Theoretical Guidance on Evacuation Decisions after a Big Nuclear Accident under the Assumption That Evacuation Is Desirable. 2018 , 10, 3095	2
601	Recent approaches to supplier selection: a review of literature within 2006-2016. 2018 , 12, 22	14
600	A hybrid fuzzy multi-criteria decision making model for green supplier selection. 2018 , 9, 417	1
599	Socially responsible supplier selection and sustainable supply chain development: A combined approach of total interpretive structural modeling and fuzzy analytic network process. 2018 , 27, 1708-1719	36
598	Green Supplier Selection Based on Consensus Process and Integrating Prioritized Operator and Choquet Integral. 2018 , 10, 2744	14
597	Systematic Review of Decision Making Algorithms in Extended Neutrosophic Sets. 2018, 10, 314	25
596	A Neutrosophic Set Based Fault Diagnosis Method Based on Multi-Stage Fault Template Data. 2018 , 10, 346	4
595	A Hybrid Evaluation Framework for QoS Based Service Selection and Ranking in Cloud Environment. 2018 ,	6
594	Multi-Criteria Decision-Making Methods in Bipolar Fuzzy Environment. 2018 , 20, 2057-2064	53
593	A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI. 2018 , 202, 182-196	30
592	Interval-Valued Intuitionistic Uncertain Linguistic Information-Based TOPSIS Method for Multi-criteria Group Decision-Making Problems. 2018 , 305-315	
591	Interval type-2 fuzzy TOPSIS method for calibration supplier selection problem: a case study in an automotive company. 2018 , 11, 1	9
590	Threat assessment of air defense combat based on intuitionistic fuzzy sets. 2018,	O
589	Closeness Degree-Based Hesitant Trapezoidal Fuzzy Multicriteria Decision Making Method for Evaluating Green Suppliers with Qualitative Information. 2018 , 2018, 1-13	3
588	A multicriteria group decision making approach for evaluating sustainable smart grid systems. 2018	1

(2019-2018)

587	A dynamic weighted TOPSIS method for identifying influential nodes in complex networks. 2018 , 32, 1850216	11
586	An Empirical Study on Design Partner Selection in Green Product Collaboration Design. 2018 , 10, 133	15
585	A Study on Green Supplier Selection in Dynamic Environment. 2018 , 10, 1226	15
584	Linguistic Neutrosophic Generalized Partitioned Bonferroni Mean Operators and Their Application to Multi-Attribute Group Decision Making. 2018 , 10, 160	12
583	Assessment of drivers to implement integrated lean green manufacturing system in Indian SMEs through IF-TOPSIS approach. 2018 , 17, 224	2
582	A multi-criteria decision making approach for recommending a product using sentiment analysis. 2018 ,	3
581	An integrated risk assessment model: A case of sustainable freight transportation systems. 2018 , 63, 662-676	31
580	Factors Affecting the Performance of Water Treatment Plants in Pakistan. 2018 , 3, 191-203	15
579	The effect of communication capabilities of suppliers and external green integration on the green and financial performance in Iran. 2018 , 10, 309-323	2
578	A Decision Making Method Based on TOPSIS and Considering the Social Relationship. 2018,	
577	Assessing Euro 2020 Strategy Using Multi-criteria Decision Making Methods: VIKOR and TOPSIS. 2019 , 142, 645-665	16
576	Knowledge acquisition development in failure diagnosis analysis as an interactive approach. 2019 , 13, 193-210	22
575	Evaluating green suppliers: improving supplier performance with DEA in the presence of incomplete data. 2019 , 27, 483-495	9
574	A novel superiority and inferiority ranking method for engineering investment selection under interval-valued intuitionistic fuzzy environment. 2019 , 37, 6645-6653	6
573	A novel VIKOR approach based on entropy and divergence measures of Pythagorean fuzzy sets to evaluate renewable energy technologies in India. 2019 , 238, 117936	121
572	A cumulative belief degree approach for group decision-making problems with heterogeneous information. 2019 , 36, e12458	9
571	Intuitionistic Evidence Sets. 2019 , 7, 106417-106426	31
570	Cleaner Production assessment for sea cucumber aquaculture: methodology and case studies in Dalian, China. 2019 , 21, 1751-1763	3

569	Ranking manufacturing processes from the quality management perspective in the automotive industry. 2019 , 36, e12451	9
568	A New Method for MAGDM Based on Improved TOPSIS and a Novel Pythagorean Fuzzy Soft Entropy. 2019 , 11, 905	18
567	Post factum analysis in TOPSIS based decision making method. <i>Expert Systems With Applications</i> , 2019 , 138, 112806	17
566	A novel fuzzy TOPSIS method using emerging interval-valued spherical fuzzy sets. 2019 , 85, 307-323	108
565	VIKOR method for effect evaluation of ancient village landscape planning based on the heritage historical context under 2-tuple linguistic enviroment. 2019 , 37, 1945-1952	1
564	Pythagorean fuzzy soft MCGDM methods based on TOPSIS, VIKOR and aggregation operators. 2019 , 37, 6937-6957	57
563	The fuzzy TOPSIS applications in the last decade. 2019 , 159, 2294-2303	63
562	Group Decision-Making Based on m-Polar Fuzzy Linguistic TOPSIS Method. 2019 , 11, 735	30
561	A Decision-making Model for Supplier Selection in Indian Pharmaceutical Organizations. 2019 , 21, 351-371	1
560	Ergonomic Room Selection with Intuitive Fuzzy TOPSIS Method. 2019 , 158, 58-67	4
559	A systematic review on supplier selection and order allocation problems. 2019 , 15, 267-289	21
558	A New Fault Diagnosis Method Based on Attributes Weighted Neutrosophic Set. 2019 , 7, 117740-117748	3
557	Comprehensive Evaluation of Power Quality Based on an Improved TOPSIS Method Considering the Correlation between Indices. 2019 , 9, 3603	6
556	A Novel Hybrid Fuzzy Grey TOPSIS Method: Supplier Evaluation of a Collaborative Manufacturing Enterprise. 2019 , 9, 3770	29
555	NonLinear Programming Approach for Single-Valued Neutrosophic TOPSIS Method. 2019 , 15, 307-326	9
554	MAGDM for agribusiness in the environment of various cubic m-polar fuzzy averaging aggregation operators. 2019 , 37, 3671-3691	32
553	Integrating a novel intuitive fuzzy method with quality function deployment for product design: Case study on touch panels. 2019 , 37, 2819-2833	6
552	Application of an Improved Cloud Model and Distance Discrimination to Evaluate Slope Stability. 2019 , 2019, 1-17	1

 $551 \qquad \text{Green Supplier Selection With a Continuous Interval-Valued Linguistic TODIM Method.} \ \textbf{2019}, 7, 124315-124328} \\ 100 \\$

550	Agent evaluation based on multi-source heterogeneous information table using TOPSIS. 2019 , 42, 100971	4
549	Extended Version of Linguistic Picture Fuzzy TOPSIS Method and Its Applications in Enterprise Resource Planning Systems. 2019 , 2019, 1-8	15
548	Acquiring and Sharing Tacit Knowledge in Failure Diagnosis Analysis Using Intuitionistic and Pythagorean Assessments. 2019 , 19, 369-386	24
547	An integrated neutrosophic ANP and VIKOR method for achieving sustainable supplier selection: A case study in importing field. 2019 , 106, 94-110	126
546	A multi-objective supplier selection and order allocation through incremental discount in a fuzzy environment. 2019 , 37, 1435-1455	40
545	Financial Performance Evaluation Using MADM Approaches in Indian Banks. 2019 , 439-449	O
544	Assessing innovativeness of manufacturing firms using an intuitionistic fuzzy based MCDM framework. 2019 , 26, 1823-1844	5
543	Developing a novel Grey integrated multi-criteria approach for enhancing the supplier selection procedure: A real-world case of Textile Company. 2019 , 211-224	7
542	An approach to solving complex decision-making problems based on IVIFNs: A case of comminution circuit design selection. 2019 , 138, 70-78	6
541	A novel multi-objective optimization approach for sustainable supply chain: A case study in packaging industry. 2019 , 20, 29-39	22
540	EabSearchEA 3D CAD Model-Based Search Engine for Sourcing Manufacturing Services. 2019, 19,	9
539	A bibliometric analysis of aggregation operators. 2019 , 81, 105488	43
538	Hesitant fuzzy N-soft sets: A new model with applications in decision-making. 2019 , 36, 6113-6127	38
537	Selection of material for electric arc spraying by using hierarchical entropy-TOPSIS approach. 2019 , 26, 276	1
536	Multi-objective fixed-charge solid transportation problem with product blending under intuitionistic fuzzy environment. 2019 , 49, 3524-3538	44
535	A Visual Comparison Method and Similarity Measure for Probabilistic Linguistic Term Sets and Their Applications in Multi-criteria Decision Making. 2019 , 21, 1154-1169	16
534	An interval-valued intuitionistic fuzzy DEMATEL method combined with Choquet integral for sustainable solid waste management. 2019 , 82, 207-215	53

533	A Reputation-Enhanced Hybrid Approach for Supplier Selection with Intuitionistic Fuzzy Evaluation Information. 2019 , 7, 298		5
532	. 2019 , 7, 41958-41980		12
531	An extended MABAC method for multi-criteria group decision making based on intuitionistic fuzzy rough numbers. <i>Expert Systems With Applications</i> , 2019 , 127, 241-255	7.8	38
530	An Intuitionistic Evidential Method for Weight Determination in FMEA Based on Belief Entropy. 2019 , 21,		12
529	Group decision-making based on pythagorean fuzzy TOPSIS method. 2019 , 34, 1455-1475		88
528	The VIKOR Method with Pythagorean Fuzzy Sets and Their Applications. 2019 , 195-200		
527	Comparison of AHP and fuzzy AHP models for prioritization of watersheds. 2019 , 23, 13615-13625		49
526	Intuitionistic fuzzy MULTIMOORA approach for multi-criteria assessment of the energy storage technologies. 2019 , 79, 410-423		96
525	An Integrated Neutrosophic-TOPSIS Approach and Its Application to Personnel Selection: A New Trend in Brain Processing and Analysis. 2019 , 7, 29734-29744		59
524	Hospital service quality evaluation with IVIF-PROMETHEE and a case study. 2019 , 68, 100705		27
523	Resilient Supplier Selection Based on Fuzzy BWM and GMo-RTOPSIS under Supply Chain Environment. 2019 , 2019, 1-14		24
522	. 2019 , 27, 2312-2326		15
521	Integrating TOPSIS with interval-valued intuitionistic fuzzy cognitive maps for effective group decision making. 2019 , 485, 394-412		47
520	Three novel fuzzy logic concepts applied to reshoring decision-making. <i>Expert Systems With Applications</i> , 2019 , 126, 133-143	7.8	24
519	Integrating expert knowledge for Bayesian network structure learning based on intuitionistic fuzzy set and Genetic Algorithm. 2019 , 23, 41-56		1
518	Comparative Study of Different MCDA-Based Approaches in Sustainable Supplier Selection Problem. 2019 , 176-193		
517	Hydrogen mobility roll-up site selection using intuitionistic fuzzy sets based WASPAS, COPRAS and EDAS. 2019 , 44, 8585-8600		44
516	Collaborative and sustainable supply chain practices: a case study. 2019 , 14, 3-21		3

515	Dynamic supplier selection through optimal ranking under two-echelon system. 2019, 26, 2574-2607	4
514	Efficient supplier selection - a three-stage multi-criteria decision-making approach. 2019 , 34, 375	O
513	Supplier selection model under changing criteria environment. 2019 , 33, 97	Ο
512	A framework for analysis of the supplier selection in green supply chain. 2019 , 28, 40	1
511	An efficient supplier selection model for hospital pharmacy through fuzzy AHP and fuzzy TOPSIS. 2019 , 33, 468	6
510	Research on Method of Venture Capital Guide Fund Selects Sub-fund under Hybrid Multi-attribute Group Decision-making. 2019 ,	
509	. 2019,	
508	The relationship determination between the Bayesian networks nodes based on the intuitionistic fuzzy set. 2019 , 23, 951-969	
507	A Multi-Criteria Decision Making Approach for ranking Business Schools. 2019 , 10, 33-56	
506	A New Approach to Fuzzy TOPSIS Method Based on Entropy Measure under Spherical Fuzzy Information. 2019 , 21, 1231	40
505	Application of Neutrosophic Multiple Criteria Decision Making in Unmanned System. 2019,	
504	An Extended Multiple Attribute Group Decision Making Method Based on q-Rung Orthopair Fuzzy Numbers. 2019 , 7, 162050-162061	16
503	Intuitionistic Fuzzy AHP Based Strategic Analysis of Service Quality in Digital Hospitality Industry. 2019 , 52, 1687-1692	11
502	A doubly extended TOPSIS method for group decision making based on ordered fuzzy numbers. Expert Systems With Applications, 2019 , 116, 243-254 7.8	33
501	Supplier selection of an Indian heavy locomotive manufacturer: An integrated approach using Taguchi loss function, TOPSIS, and AHP. 2019 , 31, 78-90	23
500	A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agrifood value chain. 2019 , 127, 196-212	43
499	Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. 2019, 50, 9-24	218
498	Pythagorean hesitant fuzzy Choquet integral aggregation operators and their application to multi-attribute decision-making. 2019 , 23, 251-267	34

497	Covering-based generalized IF rough sets with applications to multi-attribute decision-making. 2019 , 478, 275-302		111
496	A hybrid neutrosophic multiple criteria group decision making approach for project selection. 2019 , 57, 216-227		59
495	Covering-Based Variable Precision \$(mathcal {I},mathcal {T})\$-Fuzzy Rough Sets With Applications to Multiattribute Decision-Making. 2019 , 27, 1558-1572		92
494	A Generalized TOPSIS Method for Intuitionistic Fuzzy Multiple Attribute Group Decision Making Considering Different Scenarios of Attributes Weight Information. 2019 , 21, 369-387		19
493	The interval-valued hesitant Pythagorean fuzzy set and its applications with extended TOPSIS and Choquet integral-based method. 2019 , 34, 1063-1085		25
492	Pythagorean fuzzy TOPSIS for multicriteria group decision-making with unknown weight information through entropy measure. 2019 , 34, 1108-1128		44
491	Fuzzy £covering based (I,T)-fuzzy rough set models and applications to multi-attribute decision-making. 2019 , 128, 605-621		76
490	A framework integrating interval-valued hesitant fuzzy DEMATEL method to capture and evaluate co-creative value propositions for smart PSS. 2019 , 215, 611-625		50
489	A novel outranking based multi criteria group decision making methodology integrating ELECTRE and VIKOR under intuitionistic fuzzy environment. <i>Expert Systems With Applications</i> , 2019 , 119, 36-50	7.8	79
488	A new group decision making approach with IF AHP and IF VIKOR for selecting hazardous waste carriers. 2019 , 134, 66-82		40
487	Footprint of knowledge acquisition improvement in failure diagnosis analysis. 2019 , 35, 405-422		20
486	A Novel Trapezoidal Bipolar Fuzzy TOPSIS Method for Group Decision-Making. 2019 , 28, 565-584		38
485	Interval-valued intuitionistic hesitant fuzzy entropy based VIKOR method for industrial robots selection. <i>Expert Systems With Applications</i> , 2019 , 121, 28-37	7.8	89
484	Spherical fuzzy sets and spherical fuzzy TOPSIS method. 2019 , 36, 337-352		287
483	Multi-attribute decision making methods based on reference ideal theory with probabilistic hesitant information. <i>Expert Systems With Applications</i> , 2019 , 118, 459-469	7.8	43
482	Advanced supplier selection: A hybrid multi-agent negotiation protocol supporting supply chain dyadic collaboration. 2019 , 175-192		5
481	Global Research Trends of Intuitionistic Fuzzy Set: A Bibliometric Analysis. 2019 , 28, 621-631		4
480	A fuzzy multi-objective immune genetic algorithm for the strategic location planning problem. 2019 , 22, 3621-3641		3

(2020-2019)

479	An intuitionstic fuzzy factorial analysis model for multi-attribute decision-making under random environment. 2019 , 70, 81-100	7
478	An AHP-IFT Integrated Model for Performance Evaluation of E-Commerce Web Sites. 2019 , 21, 1345-1355	15
477	Integrated decisions for supplier selection and lot-sizing considering different carbon emission regulations in Big Data environment. 2019 , 128, 1052-1062	42
476	A group MCDA method for aiding decision-making of complex problems in public sector: The case of Belo Monte Dam. 2019 , 68, 100625	7
475	A multi-criteria decision-making support system for choice of method of compensation for highway construction contractors in Greece. 2019 , 19, 492-508	11
474	Intuitionistic fuzzy divergence measure-based ELECTRE method for performance of cellular mobile telephone service providers. 2020 , 32, 3901-3921	32
473	Extended MABAC method based on divergence measures for multi-criteria assessment of programming language with interval-valued intuitionistic fuzzy sets. 2020 , 5, 97-117	38
472	Group decision-making and grey programming approaches to optimal product mix in manufacturing supply chains. 2020 , 32, 2635-2649	10
471	Fuzzy Grey Choquet Integral for Evaluation of Multicriteria Decision Making Problems With Interactive and Qualitative Indices. 2020 , 1-14	43
470	A novel WASPAS approach for multi-criteria physician selection problem with intuitionistic fuzzy type-2 sets. 2020 , 24, 2355-2367	37
469	Choosing the Appropriate System for Cloud Computing Implementation by Using the Interval-Valued Intuitionistic Fuzzy CODAS Multiattribute Decision-Making Method (Case Study: Faculty of New Sciences and Technologies of Tehran University). 2020 , 67, 855-868	13
468	A novel fuzzy mechanism for risk assessment in software projects. 2020 , 24, 1683-1705	9
467	Towards a sustainable assessment of suppliers: an integrated fuzzy TOPSIS-possibilistic multi-objective approach. 2020 , 293, 639-668	23
466	A novel extension to VIKOR method under intuitionistic fuzzy context for solving personnel selection problem. 2020 , 24, 1063-1081	22
465	New doctors ranking system based on VIKOR method. 2020, 27, 1236-1261	42
464	Evidential model for intuitionistic fuzzy multi-attribute group decision making. 2020 , 24, 7615-7635	16
463	A multicriteria intuitionistic fuzzy group decision-making method for sustainability ranking of biofuel production pathways. 2020 , 357-376	
462	Assessment of Big Data Vendors by Intuitionistic Fuzzy TODIM. 2020 , 574-582	1

461	Research and Development Project Selection via IF-DEMATEL and IF-TOPSIS. 2020, 625-633	6
460	An Approach to Aggregate Intuitionistic Fuzzy Information with the Help of Linear Operator. 2020 , 735-746	O
459	Analysis of Success Factors in Aviation 4.0 Using Integrated Intuitionistic Fuzzy MCDM Methods. 2020 , 598-606	4
458	IVIFCM-TOPSIS for Bank Credit Risk Assessment. 2020 , 99-108	2
457	Spherical Fuzzy Sets and Decision Making Applications. 2020 , 979-987	10
456	Evaluation of Home Health Care Vehicle Routing Methods by Intuitionistic Fuzzy AHP. 2020 , 607-615	
455	Supplier Selection in a Construction Company Using Fuzzy AHP and Fuzzy TOPSIS. 2020, 481-487	
454	Resilient supplier selection in logistics 4.0 with heterogeneous information. <i>Expert Systems With Applications</i> , 2020 , 139, 112799	36
453	Optimization of mechanical properties of in situ polymerized poly(methyl methacrylate)/alumina nanoparticles nanocomposites using Taguchi approach. 2020 , 77, 2837-2854	8
452	Dynamic uncertain causality graph based on Intuitionistic fuzzy sets and its application to root cause analysis. 2020 , 50, 241-255	7
451	Integrating Soft Computing into Strategic Prospective Methods. 2020,	3
450	A possibility distribution-based multicriteria decision algorithm for resilient supplier selection problems. 2020 , 27, 203-223	6
449	An approach based on linguistic spherical fuzzy sets for public evaluation of shared bicycles in China. 2020 , 87, 103295	48
448	E-commerce logistics distribution mode in big-data context: A case analysis of JD.COM. 2020 , 86, 154-162	35
447	Fuzzy applications of BestIWorst method in manufacturing environment. 2020 , 24, 647-659	9
446	Healthcare evaluation in hazardous waste recycling using novel interval-valued intuitionistic fuzzy information based on complex proportional assessment method. 2020 , 139, 106140	41
445	A combined group decision making based IFCM and SERVQUAL approach for strategic analysis of airline service quality. 2020 , 38, 859-872	8
444	A case of food supply chain management with AHP, DEMATEL, and TOPSIS. 2020 , 27, 104-128	24

(2020-2020)

4	443	performance optimization. 2020 , 190, 105479	11
4	442	Intuitionistic fuzzy TOPSIS method based on CVPIFRS models: An application to biomedical problems. 2020 , 517, 315-339	48
4	441	Evaluation of ship green degree using a novel hybrid approach combining group fuzzy entropy and cloud technique for the order of preference by similarity to the ideal solution theory. 2020 , 22, 493-512	40
4	440	TOPSIS Method Based on Novel Entropy and Distance Measure for Linguistic Pythagorean Fuzzy Sets With Their Application in Multiple Attribute Decision Making. 2020 , 8, 14401-14412	12
4	439	Application of SAW and TOPSIS in Prioritizing Watersheds. 2020 , 34, 715-732	43
4	438	A fitting model based intuitionistic fuzzy rough feature selection. 2020 , 89, 103421	16
4	437	A spherical fuzzy extension of MULTIMOORA method. 2020 , 38, 963-978	25
4	436	Group decision making under generalized fuzzy soft sets and limited cognition of decision makers. 2020 , 87, 103344	10
4	435	Bipolar fuzzy TOPSIS and bipolar fuzzy ELECTRE-I methods to diagnosis. 2020 , 39, 1	43
4	434	Consensus reaching process for fuzzy behavioral TOPSIS method with probabilistic linguistic q-rung orthopair fuzzy set based on correlation measure. 2020 , 35, 494-528	26
4	433	Reconfiguring IVHF-TOPSIS decision making method with parameterized reference solutions and a novel distance for corporate carbon performance evaluation. 2020 , 11, 3811-3832	7
4	432	The cloud model based stochastic multi-criteria decision making technology for river health assessment under multiple uncertainties. 2020 , 581, 124437	16
4	431	Distribution linguistic preference relations with incomplete symbolic proportions for group decision making. 2020 , 88, 106005	14
4	430	A novel hybrid method using fuzzy decision making and multi-objective programming for sustainable-reliable supplier selection in two-echelon supply chain design. 2020 , 250, 119517	114
4	429	A New Pythagorean Fuzzy Based Decision Framework for Assessing Healthcare Waste Treatment. 2020 , 1-15	13
4	428	Mobile Based Decision Support System of Supplier Evaluation. 2020 , 14, 61	3
4	427	Ecological security evaluation of marine ranching with AHP-entropy-based TOPSIS: A case study of Yantai, China. 2020 , 122, 104223	28
4	426	Agriculture supply chain risks and COVID-19: mitigation strategies and implications for the practitioners. 2020 , 1-27	94

425	Sustainability Performance Index for Ranking Energy Storage Technologies using Multi-Criteria Decision-Making Model and Hybrid Computational Method. 2020 , 32, 101820	12
424	Green Supplier Selection Using Fuzzy Multiple-Criteria Decision-Making Methods and Artificial Neural Networks. 2020 , 2020, 8811834	13
423	An (R, S)-norm information measure for hesitant fuzzy sets and its application in decision-making. 2020 , 39, 1	2
422	The sustainable development-oriented development and utilization of renewable energy industry a comprehensive analysis of MCDM methods. 2020 , 212, 118694	52
421	Multi-objective short-term hydropower generation operation for cascade reservoirs and stochastic decision making under multiple uncertainties. 2020 , 276, 122995	19
420	An integrated decision analysis methodology based on IF-DEMATEL and IF-ELECTRE for personnel selection. 2020 , 137, 113360	34
419	Design and Analysis of Novel Hybrid Multi-Objective Optimization Approach for Data-Driven Sustainable Delivery Systems. 2020 , 8, 90280-90293	8
418	Supplier selection and performance evaluation for formulating supplier selection strategy by MCDM-based approach. 2020 , 20, 500	1
417	Improving Food Supply Chain Management by a Sustainable Approach to Supplier Evaluation. 2020 , 8, 1952	8
416	Selection of optimal assembly strategy at an engine assembly plant using fuzzy multi-criteria decision-making tools. 2020 , 36, 281	
415	A supplier selection model using group decision-making systems under multiple criteria considering regret factor. 2020 , 4, 150	
414	A BWM-TOPSIS Hazardous Waste Inventory Safety Risk Evaluation. 2020 , 17,	5
413	Assessing the ICT exploitation in EU energy policy: a multicriteria evaluation. 2020 , 58, 2417-2428	1
412	Diagnosing and routing electronic service quality improvement of academic libraries with the FMEA approach in an intuitionistic fuzzy environment. 2020 , 38, 597-631	2
411	m-polar Neutrosophic Generalized Weighted and m-polar Neutrosophic Generalized Einstein Weighted Aggregation Operators to Diagnose Coronavirus (COVID-19). 2020 , 39, 7381-7401	9
410	Minkowski Weighted Score Functions of Intuitionistic Fuzzy Values. 2020 , 8, 1143	7
409	The Linguistic Picture Fuzzy Set and Its Application in Multi-Criteria Decision-Making: An Illustration to the TOPSIS and TODIM Methods Based on Entropy Weight. 2020 , 12, 1170	10
408	Multi-valued picture fuzzy soft sets and their applications in group decision-making problems. 2020 , 24, 18857-18879	9

(2020-2020)

407	On generalized knowledge measure and generalized accuracy measure with applications to MADM and pattern recognition. 2020 , 39, 1	2
406	The multi-objective supplier selection problem with fuzzy parameters and solving the order allocation problem with coverage. 2020 , 15, 705-725	3
405	An Approach for Resilient-Green Supplier Selection Based on WASPAS, BWM, and TOPSIS under Intuitionistic Fuzzy Sets. 2020 , 2020, 1-18	18
404	Interval-valued Intuitionistic Fuzzy TOPSIS method for Supplier Selection Problem. 2020,	4
403	Application of Multicriteria Decision Making and Multi-Objective Planning Methods for Evaluating Metropolitan Parks in Terms of Budget and Benefits. 2020 , 8, 1304	2
402	An Integrated Approach for Fuzzy-Dynamic Multi-Attribute Group Decision Making With Application in Renewable Energy. 2020 , 8, 145092-145106	2
401	A New Decision-Making Approach Based on Fermatean Fuzzy Sets and WASPAS for Green Construction Supplier Evaluation. 2020 , 8, 2202	36
400	Green supplier selection and order allocation: a nonlinear stochastic model. 2020 , 11, 111	O
399	A Novel Approach Integrating Intuitionistic Fuzzy Analytical Hierarchy Process and Goal Programming for Chickpea Cultivar Selection under Stress Conditions. 2020 , 8, 1288	4
398	Implementation for Comparison Analysis System of Used Transaction Using Big Data. 2020 , 12, 8029	1
397	Interval-valued Pythagorean Fuzzy EDAS method: An Application to Car Selection Problem. 2020 , 38, 4061-4077	17
396	Modified two-phase fuzzy goal programming integrated with IF-TOPSIS for green supplier selection. 2020 , 93, 106371	41
395	Evaluating the feasibility of blockchain in logistics operations: A decision framework. <i>Expert Systems With Applications</i> , 2020 , 158, 113543	43
394	A new ranking method for TOPSIS and VIKOR under interval valued intuitionistic fuzzy sets and possibility measures. 2020 , 38, 4459-4469	5
393	Advanced Operations Management for Complex Systems Analysis. 2020,	
392	Modeling patient preference in an operating room scheduling problem. 2020 , 25, 100257	3
391	Blockchain Service Provider Selection Based on an Integrated BWM-Entropy-TOPSIS Method Under an Intuitionistic Fuzzy Environment. 2020 , 8, 104148-104164	17
390	Study on the commercial value evaluation of commercial photography with uncertain linguistic information. 2020 , 23, 329-335	

389	An efficient controlled elitism non-dominated sorting genetic algorithm for multi-objective supplier selection under fuzziness. 2020 , 7, 469-488	2
388	Multiple attribute group decision making based on 2-dimension linguistic intuitionistic fuzzy aggregation operators. 2020 , 24, 17377-17400	13
387	Interval-valued intuitionistic fuzzy TODIM method based on SchweizerBklar power aggregation operators and their applications to group decision making. 2020 , 24, 14091-14133	10
386	Offshore Wind Farms: A Fuzzy Approach to Site Selection in a Black Sea Region. 2020 ,	2
385	Selection of suitable additive manufacturing machine and materials through bestworst method (BWM). 2020 , 107, 2345-2362	13
384	An extended TOPSIS method based on ordered fuzzy numbers for group decision making. 2020 , 53, 2099-212	910
383	A strategy-based framework for supplier selection: a grey PCA-DEA approach. 2020 , 1	4
382	An integrated fuzzy AHP- fuzzy MULTIMOORA model for supply chain risk-benefit assessment and supplier selection. 2020 , 1-24	9
381	Multi-objective optimization of turning process using fuzzy-TOPSIS analysis. 2020 , 33, 5076-5080	2
380	Performance Efficiency of Public Health Sector Using Intuitionistic Fuzzy DEA. 2020 , 28, 289-315	3
379	Entropy Based Pythagorean Probabilistic Hesitant Fuzzy Decision Making Technique and Its Application for Fog-Haze Factor Assessment Problem. 2020 , 22,	23
378	Extension of multi-Moora method with some q-rung orthopair fuzzy Dombi prioritized weighted aggregation operators for multi-attribute decision making. 2020 , 24, 18545-18563	10
377	Projection of Future Heat Waves in the United States. Part I: Selecting a Climate Model Subset. 2020 , 11, 587	1
376	q-Rung Orthopair Fuzzy Prioritized Aggregation Operators and Their Application Towards Green Supplier Chain Management. 2020 , 12, 976	30
375	Decision support system for dementia patients using intuitionistic fuzzy similarity measure. 2020 , 2, 100005	5
374	Sustainable maintenance supplier performance evaluation based on an extend fuzzy PROMETHEE II approach in petrochemical industry. 2020 , 273, 122771	21
373	A robust decision making approach for hydrogen power plant site selection utilizing (R, S)-Norm Pythagorean Fuzzy information measures based on VIKOR and TOPSIS method. 2020 , 45, 18802-18816	26
372	Co-development of product and supplier platform. 2020 , 54, 372-385	5

(2021-2020)

371	A Choquet integral based fuzzy logic approach to solve uncertain multi-criteria decision making problem. <i>Expert Systems With Applications</i> , 2020 , 149, 113303	7.8	11
370	Green supplier selection for the steel industry using BWM and fuzzy TOPSIS: A case study of Khouzestan steel company. 2020 , 2, 100012		50
369	A Consensus Measure of Expert Judgment in the Fuzzy TOPSIS Method. 2020 , 12, 204		16
368	Strategic sourcing: Developing a progressive framework for make-or-buy decisions. 2020 , 13, 133		1
367	Realistic ranking of exclusive supplier strategies based on the evaluation of real value of the risks in the supply chain. 2020 , 11, 4695-4712		1
366	Computational Intelligence in Emerging Technologies for Engineering Applications. 2020,		
365	A q-rung orthopair fuzzy multi-criteria group decision making method for supplier selection based on a novel distance measure. 2020 , 11, 1749-1780		36
364	A novel intuitionistic fuzzy MCDM-based CODAS approach for locating an authorized dismantling center: a case study of Istanbul. 2020 , 38, 660-672		45
363	Dynamic sustainability requirements of stakeholders and the supply portfolio. 2020 , 255, 120148		14
362	Toward a Sustainable Decentralized Water Supply: Review of Adsorption Desorption Desalination (ADD) and Current Technologies: Saudi Arabia (SA) as a Case Study. 2020 , 12, 1111		13
361	A group risk assessment approach for the selection of pharmaceutical product shipping lanes. 2020 , 229, 107774		15
3 60	A Method of Uncertainty Measurements for Multidimensional Z-number and Their Applications. 2020 , 2020, 1-16		1
359	Big data analytics capabilities and firm performance: An integrated MCDM approach. 2020 , 114, 1-15		54
358	Multi-Criteria Decision-Making (MCDM) for the Assessment of Renewable Energy Technologies in a Household: A Review. 2020 , 13, 1164		60
357	. 2020 , 8, 50921-50933		1
356	An Evolving Partial Consensus Fuzzy Collaborative Forecasting Approach. 2020 , 8, 554		5
355	Z-number-based selection of suitable underground coal gasification site considering information reliability. 2020 , 1-21		
354	Supplier selection in a Turkish textile company by using intuitionistic fuzzy decision-making. 2021 , 112, 322-332		11

353	Sustainable Supplier Selection and Order Allocation Under Risk and Inflation Condition. 2021, 68, 823-837	12
352	Q-rung orthopair fuzzy multiple attribute group decision-making method based on normalized bidirectional projection model and generalized knowledge-based entropy measure. 2021 , 12, 2715-2730	15
351	FineKinney-Based Fuzzy Multi-criteria Occupational Risk Assessment. 2021,	8
350	Multi-attribute decision making using q-rung orthopair fuzzy weighted fairly aggregation operators. 2021 , 12, 8149-8171	9
349	Introducing a New Supply Chain Management Concept by Hybridizing TOPSIS, IoT and Cloud Computing. 2021 , 102, 109-119	5
348	Fuzzy Models in Economics. 2021,	
347	Managing healthcare waste for sustainable environmental development: A hybrid decision approach. 2021 , 30, 357-373	8
346	The role of blockchain in reducing the impact of barriers to humanitarian supply chain management. 2021 , 32, 454-478	13
345	An effective UPLC method for the quantification and fingerprint analysis of amides in a South China native medicinal herb, abri herba. 2021 , 96, 103723	1
344	Tracing knowledge diffusion of TOPSIS: A historical perspective from citation network. <i>Expert Systems With Applications</i> , 2021 , 168, 114238	29
343	Suppliers selection based on intuitionistic fuzzy dimensional analysis. 2021 , 40, 1805-1815	
342	Trust and behavior analysis-based fusion method for heterogeneous multiple attribute group decision-making. 2021 , 152, 106992	8
341	Water-energy-food security nexus based selection of energy recovery from wastewater treatment technologies: An extended decision making framework under intuitionistic fuzzy environment. 2021 , 43, 100937	5
340	Multi-objective optimization-based TOPSIS method for sustainable product design under epistemic uncertainty. 2021 , 98, 106850	9
339	Risk evaluation in failure modes and effects analysis: hybrid TOPSIS and ELECTRE I solutions with Pythagorean fuzzy information. 2021 , 33, 5675-5703	48
338	Intuitionistic Fuzzy Cognitive Map Based Analysis of Supply Chain Risks. 2021 , 634-643	O
337	GSES Using Interval 2-Tuple Linguistic VIKOR Method. 2021 , 133-151	
336	Lean Six Sigma Project Selection in a Manufacturing Environment Using Hybrid Methodology Based on Intuitionistic Fuzzy MADM Approach. 2021 , 1-15	10

335	Technique for Order Preference and Similarity to Ideal Solution (TOPSIS). 2021, 83-91	2
334	P-Indeterminate Vector Similarity Measures of Orthopair Neutrosophic Number Sets and Their Decision-Making Method with Indeterminate Degrees. 2021 , 128, 1219-1230	
333	Aggregation Mechanisms. 2021 , 73-90	
332	Analyzing the Impact of Vaccine Availability on Alternative Supplier Selection Amid the COVID-19 Pandemic: A cFGM-FTOPSIS-FWI Approach. 2021 , 9,	16
331	Sustainable Modern Agricultural Technology Assessment by a Multistakeholder Transdisciplinary Approach. 2021 , 1-15	1
330	APPLICATION OF TOPSIS METHOD WITH TRAPEZOIDAL FUZZY NUMBERS. 2021,	
329	Domino effect risk management: Decision making methods. 2021 , 421-460	2
328	Evaluation and selection of Chinese government venture capital investment projects: A research based on analytic hierarchy process and intuitionistic fuzzy setlechnique for order of preference by similarity to ideal solution method. 2021 , 42, 821-835	3
327	Regional Examination of Energy Investments in Turkey Using an Intuitionistic Fuzzy Method. 2021 , 175-201	
326	Introduction to Fuzzy Group Decision-Making. 2021 , 1-9	1
325	Fuzzy Hybrid FMEA for Risk Assessment in Service Industry. 2021 , 43-75	O
324	A Systematic Literature Review of Multi-Criteria Decision-Making Methods for Sustainable Selection of Insulation Materials in Buildings. 2021 , 13, 737	7
323	Pythagorean fuzzy AHP-TOPSIS integrated approach for transportation management through a new distance measure. 2021 , 25, 4073-4089	21
322	A Thermodynamic Method for Intuitionistic Fuzzy Decision Making. 2021 , 25-43	
321	A group decision making approach for supplier selection with multi-period fuzzy information and opinion interaction among decision makers. 1-14	4
320	A novel approach of complex q-rung orthopair fuzzy hamacher aggregation operators and their application for cleaner production assessment in gold mines. 2021 , 12, 8933-8959	6
319	A Framework to Evaluate Project Complexity Using the Fuzzy TOPSIS Method. 2021 , 13, 3020	3
318	A single-valued neutrosophic multicriteria group decision approach with DPL-TOPSIS method based on optimization. 2021 , 36, 3339-3366	O

317	An approach based on combining Choquet integral and TOPSIS methods to uncertain MAGDM problems. 2021 , 25, 7181-7195	3
316	Distance measures on intuitionistic hesitant fuzzy set and its application in decision-making. 2021 , 40, 1	3
315	An integrated interval type 2 fuzzy AHP and COPRAS-G methodologies for supplier selection in the era of Industry 4.0. 2021 , 33, 10515-10535	9
314	Extended TOPSIS Method for Supplier Selection under Picture Hesitant Fuzzy Environment Using Linguistic Variables. 2021 , 2021, 1-28	6
313	A matching mechanism for public cloud manufacturing platforms using intuitionistic Fuzzy VIKOR and deferred acceptance algorithm. 2021 , 16, 107-122	7
312	Visualization and Mapping of Knowledge and Science Landscapes in Expert Systems With Applications Journal: A 30 Years Bibliometric Analysis. 2021 , 11, 215824402110275	2
311	Single-Valued Neutrosophic DEMATEL for Segregating Types of Criteria: A Case of Subcontractors Selection. 2021 , 2021, 1-12	4
310	AN OVERVIEW OF FUZZY TECHNIQUES IN SUPPLY CHAIN MANAGEMENT: BIBLIOMETRICS, METHODOLOGIES, APPLICATIONS AND FUTURE DIRECTIONS. 2021 , 27, 402-458	9
309	A novel approach towards evaluation of joint technology performances of battery energy storage system in a fuzzy environment. 2021 , 36, 102361	7
308	Intuitionistic Fuzzy Factorial Analysis Model for Supplier Selection of Urban Rail Transit Companies within a Random Environment. 2021 , 2021, 1-13	1
307	Integration of Battery Energy Storage Systems into Natural Gas Combined Cycle Power Plants in Fuzzy Environment. 2021 , 36, 102376	9
306	The relationship between the mathematical reasoning skills and video game addiction of Turkish middle schools students: A serial mediator model. 2021 , 40, 100843	O
305	Digraph and matrix approach for risk evaluations under Pythagorean fuzzy information. <i>Expert Systems With Applications</i> , 2021 , 170, 114518	28
304	A spherical fuzzy methodology integrating maximizing deviation and TOPSIS methods. 2021 , 101, 104212	18
303	Difference sequence-based distance measure for intuitionistic fuzzy sets and its application in decision making process. 2021 , 25, 9139-9161	4
302	Identifying Challenges of Internet of Things on Construction Projects Using Fuzzy Approach. 2021 , 11, 215-227	2
301	Intuitionistic Fuzzy TOPSIS as a Method for Assessing Socioeconomic Phenomena on the Basis of Survey Data. 2021 , 23,	8
300	Multi-criteria healthcare waste disposal location selection based on Fermatean fuzzy WASPAS method. 2021 , 7, 1-16	19

299	Multi-criteria group decision-making method for green supplier selection based on distributed interval variables. 1-16	1
298	Investigating organizational sustainable development through an integrated method of interval-valued intuitionistic fuzzy AHP and WASPAS. 1	5
297	Supportive emergency decision-making model towards sustainable development with fuzzy expert system. 1	21
296	Extension of TOPSIS model to the decision-making under complex spherical fuzzy information. 2021 , 25, 10771-10795	17
295	Circular intuitionistic fuzzy topsis method: pandemic hospital location selection. 2021, 1-22	2
294	To develop a progressive multimetric configuration optimisation method for WRF simulations of extreme rainfall events over Egypt. 2021 , 598, 126237	1
293	Modification of the BWM and MABAC method for MAGDM based on q-rung orthopair fuzzy rough numbers. 2021 , 12, 2693-2715	1
292	A stochastic fuzzy multi-criteria group decision-making for sustainable vendor selection in Indian petroleum refining sector. 2021 , ahead-of-print,	1
291	A dynamic performance evaluation model suggestion for performance-based logistics. 2021 , ahead-of-print,	0
290	A spherical fuzzy TOPSIS method for solving the physician selection problem. 2021 , 1-14	Ο
289	A novel three-way group investment decision model under intuitionistic fuzzy multi-attribute group decision-making environment. 2021 , 569, 557-581	12
288	Improved q-rung orthopair fuzzy line integral aggregation operators and their applications for multiple attribute decision making. 2021 , 54, 5163-5204	1
287	Reliability as Key Software Quality Metric: A Multi-Criterion intuitionistic Fuzzy-Topsis-Based analysis. 2140003	2
286	HOW TO RANK TOURIST DESTINATIONS: A LITERATURE REVIEW. 2021 , 9, 193-209	
285	Structural equation modeling of E-supplier selection criteria in mechanical manufacturing industries. 2021 , 311, 127597	3
284	A new fuzzy multi-criteria decision-making method based on proximity index value. 1-17	2
283	Novel Spherical Fuzzy Eco-holonic Concept in Sustainable Supply Chain of Aviation Fuel. 2022 , 201-235	3
282	Cost Allocation in Integrated Community Energy SystemsBocial Acceptance. 2021 , 13, 9951	2

281	q-Rung orthopair fuzzy TOPSIS method and the application to information service quality evaluation in online health community. 2021 , 41, 3697-3714		О
2 80	A consensus reaching process based on the concordance correlation measure of intuitionistic fuzzy sets in multi-criteria decision making. 2021 , 41, 3121-3136		1
279	Symmetric projection group approach for promoting homogeneity in the analytic hierarchy process. 2021 , 133, 105343		4
278	ÖK KRIIERLIKARAR VERME TEKNILERININ YNETIM MUHASEBESINDE KULLANILABIIRLI ANALIIIK HIJERARISRECIVE HEDEF PROGRAMLAMA UYGULAMASI. 2021 , 14, 1021-1055		
277	Prioritising teaching modalities by extending TOPSIS to single-valued neutrosophic environment. 1		1
276	DENTAL SUPPLIER SELECTION WITH TOPSIS METHOD BY USING LP METHODOLOGY. 2021 , 9, 940-951		
275	Taxonomy method for multiple attribute group decision making based on interval-valued intuitionistic fuzzy with entropy. 2021 , 1-15		15
274	A circular economy model for waste management in India. 2021 , 39, 1427-1436		
273	Evaluation of government strategies against COVID-19 pandemic using q-rung orthopair fuzzy TOPSIS method. 2021 , 110, 107653		21
272	Multi-objective model for supplier selection and order allocation problem with fuzzy parameters. <i>Expert Systems With Applications</i> , 2021 , 180, 115129	7.8	5
271	Multi-attribute three-way decisions based on ideal solutions under interval-valued intuitionistic fuzzy environment. 2021 , 138, 12-37		3
270	Artificial intelligence applications in supply chain management. 2021 , 241, 108250		15
269	A FMEA based novel intuitionistic fuzzy approach proposal: Intuitionistic fuzzy advance MCDM and mathematical modeling integration. <i>Expert Systems With Applications</i> , 2021 , 183, 115413	7.8	3
268	Classifying the degree of exposure of customers to COVID-19 in the restaurant industry: A novel intuitionistic fuzzy set extension of the TOPSIS-Sort. 2021 , 113, 107906		6
267	An intuitionistic fuzzy data-driven product ranking model using sentiment analysis and multi-criteria decision-making. 2021 , 173, 121158		3
266	A three-way decision approach with probabilistic dominance relations under intuitionistic fuzzy information. 2022 , 582, 114-145		10
265	Intuitionistic Fuzzy Quality Function Deployment and an Application. 2021, 13, 87-103		
264	Intuitionistic Fuzzy Assessment of Aggregated Quality of Life Index. 2021 , 174-182		

(2020-2021)

A Review of Multi-criteria Decision-Making Methods Using Application of Variable Weight Theory 263 and IF-TOPSIS-EF. 2021, 13-24 An Approach to Generalization of the Intuitionistic Fuzzy Topsis Method in the Framework of 262 4 Evidence Theory. **2021**, 11, 157-175 . 2021, 9, 99651-99666 261 2 Fuzzy Group Decision-Making Methods. 2021, 11-27 260 A Framework for the Selection of Logistic Service Provider Using Fuzzy Delphi and Fuzzy Topsis. 259 3 **2011**. 189-202 Fuzzy-Based Failure Diagnostic Analysis in a Chemical Process Industry. 2019, 724-731 258 4 Optimal Site Selection of Electric Vehicle Charging Station by Using Spherical Fuzzy TOPSIS 12 257 Method. 2021, 201-216 Fuzzy Multi-attribute Evaluation of Investments. 2015, 141-156 256 3 Multiple Criteria Evaluation of Suppliers in Different Industries - Comparative Analysis of Three 5 255 Case Studies. 2018, 121-155 Triangle Fuzzy Number Intuitionistic Fuzzy Aggregation Operators and Their Application to Group 254 7 Decision Making. 2010, 350-357 Using a Combined Intuitionistic Fuzzy Set-TOPSIS Method for Evaluating Project and Portfolio 3 253 Management Information Systems. 2011, 67-81 Supplier Evaluation and Selection Using a FDEA Model. 2014, 255-269 252 Supplier Evaluation Using Fuzzy Clustering. 2014, 61-79 251 7 FMEA Using Intuitionistic Fuzzy Hybrid TOPSIS Approach. 2016, 117-130 250 Multi Criteria Decision Making Under Fuzzy, Intuitionistic and Interval-Valued Intuitionistic Fuzzy 249 2 Environment: A Review. 2021, 779-797 A new emergency response of spherical intelligent fuzzy decision process to diagnose of COVID19. 248 25 2020, 1-17 Multi-criteria COPRAS Method Based on Parametric Measures for Intuitionistic Fuzzy Sets: 247 59 Application of Green Supplier Selection. 2020, 44, 1645-1662 From sustainability assessment to sustainability management for policy development: The case for 246 21 electric vehicles. **2020**, 216, 112937

245	Developing an Integrated ANP and Intuitionistic Fuzzy TOPSIS Model for Supplier Selection. 2015 , 43, 20130114	18
244	Przedziaßwa metoda TOPSIS dla grupowego podejmowania decyzji. 2018 , 256-273	1
243	TOPSIS Method for Neutrosophic Hesitant Fuzzy Multi-Attribute Decision Making. 2020, 35-63	3
242	An Extended Intuitionistic Fuzzy Multi-Attributive Border Approximation Area Comparison Approach for Smartphone Selection Using Discrimination Measures. 2021 , 119-143	8
241	Using FITradeoff in a ranking problem for supplier selection under TBL performance evaluation: An application in the textile sector. 30,	7
240	TOPSIS VE MOORA YNTEMLERILE TEDARKISEMETURIZM SEKTRNDE BR UYGULAMA. 2015 , 18, 133-161	7
239	USING FUZZY TOPSIS AND REGRESSION BASED WEIGHTS TO RANK E-COMMERCE WEBSITES. 2019 , 27, 116-124	1
238	On aggregation operators for linguistic trapezoidal fuzzy intuitionistic fuzzy sets and their application to multiple attribute group decision making. 2020 , 38, 2907-2950	6
237	Novel Multi-Criteria Intuitionistic Fuzzy SWARA©OPRAS Approach for Sustainability Evaluation of the Bioenergy Production Process. 2020 , 12, 4155	53
236	BALANCING PUBLIC AND PRIVATE INTERESTS THROUGH OPTIMIZATION OF CONCESSION AGREEMENT DESIGN FOR USER-PAY PPP PROJECTS. 2018 , 24, 116-129	13
235	THE EFFECTIVENESS OF IF-MADM (INTUITIONISTIC-FUZZY MULTI-ATTRIBUTE DECISION-MAKING) FOR GROUP DECISIONS: METHODS AND AN EMPIRICAL ASSESSMENT FOR THE SELECTION OF A SENIOR CENTRE. 2019 , 25, 322-364	20
234	AN INTEGRATED DEMATELIF-TOPSIS METHODOLOGY FOR LOGISTICS CENTERSILOCATION SELECTION PROBLEM: AN APPLICATION FOR ISTANBUL METROPOLITAN AREA. 2020 , 35, 548-556	7
233	Some Generalized Intuitionistic Fuzzy Geometric Aggregation Operators with Applications in Multi-Criteria Decision Making Process. 2016 , 159-179	3
232	A Hybrid Approach using the Bees Algorithm and Fuzzy-AHP for Supplier Selection. 2016 , 171-194	3
231	B-School Selection by Fuzzy TOPSIS and AHP. 2018 , 929-955	3
230	Fuzzy Optimization and Decision Making. 2019 , 310-326	11
229	Hybrid Multi-Criteria Models. 2020 , 62-84	3
228	Selecting Adequate Security Mechanisms in E-Business Processes Using Fuzzy TOPSIS. 2012 , 2, 35-53	5

227	A Dynamic Web Service Composition Algorithm Based on TOPSIS. 2011 , 6,	1
226	Group Decision Making Using Intuitionistic Hesitant Fuzzy Sets. 2014 , 14, 181-187	50
225	Analytic hierarchy process-technique for order preference by similarity to ideal solution: A multi criteria decision-making technique to select the best dental restorative composite materials. 2021 , 42, 6867	8
224	An Improved Fuzzy TOPSIS Method with a New Ranking Index. 1-27	O
223	An Intuitionistic Fuzzy Approach for Smart City Development Evaluation for Developing Countries: Moroccan Context. 2021 , 9, 2668	2
222	Applications of Modern Mathematics in Economics and Finance. 2011 , 7-39	
221	A Novel MGDM Method Based on Information Granularity under Linguistic Setting. 2013, 261-268	
220	Multi-Criteria Decision Making for Supplier Selection in Biomass Supply Networks for Bioenergy Production. 2013 , 313-343	
219	A Short Review of Multi Criteria Decision Making Approaches for Supplier Selection Problem. 2015 , 4961-496	9
218	Development of an Optimization Approach for Dynamic Scheduling Problems in RFAC. 2016 , 93-119	
217	Supplier Selection Decision-Making Model Based on Entropy and Its Application in the Large Aircraft Project. 2016 , 733-742	
216	A Fuzzy-Based Decision Support Tool for Appraisement of Supplier's Quality Assurance Practices. 2016 , 255-290	
215	B-School Selection by Fuzzy TOPSIS and AHP. 2016 , 1-27	1
214	MAGDM Problems with Correlation Coefficient of Triangular Fuzzy IFS. 2017 , 154-192	
213	TEDARKĪDEĒRLENDRME VE SPARĪMKTARI BELRLEME PROBLEMĪN BULANIK BR YAKLAĪM.	O
212	AHP-VIKOR YNTEMILE ETKN TASARRUFA YNELK EN Y LEDARK BEM (2017, 16, 1203-1217	O
211	Some Generalized Intuitionistic Fuzzy Geometric Aggregation Operators With Applications in Multi-Criteria Decision Making Process. 2018 , 1190-1211	
210	Cyber Security Decision Support for Remediation in Automated Computer Network Defence. 2018 , 198-217	

209	A New Method for OWA Aggregation of Interval Values in Multi-Criteria Decision Making. 2018,	0
208	IFSOM: A Two-Phase Framework for COTS Evaluation and Selection. 2019 , 871-888	1
207	Development of Fuzzy-Single Valued Neutrosophic MADM Technique to Improve Performance in Manufacturing and Supply Chain Functions. 2019 , 711-729	
206	Fuzzy Analysis of Macroeconomic Stability. 2019 , 223-229	1
205	Assessment Operational Risk and Dependability of Logistic Networks Application Examples. 2019, 215-253	
204	Intuitionistic Fuzzy Model of Traffic Jam Regions and Rush Hours for the Time Dependent Traveling Salesman Problem. 2019 , 123-134	1
203	An Application of TOPSIS Approach in Determination of Spread Influencers in a Competitive Industrial Space: Evidence from the Banking Network of Ghana. 2019 , 07, 312-327	0
202	Different Aggregation Modes Applications Within the Framework of Weights Uncertainty. 2019 , 373-384	
201	Integration von Nachhaltigkeitsaspekten bei der Lieferantenauswahl am Beispiel eines deutschen Industrieunternehmens. 2019 , 191-212	
200	A Short Review on Supplier Selection Problem Methods Under Uncertainty. 2019 , 157-168	1
2 00	A Short Review on Supplier Selection Problem Methods Under Uncertainty. 2019 , 157-168 The importance of the place of defuzzification step in fuzzy systems. 1-1	1
		1
199	The importance of the place of defuzzification step in fuzzy systems. 1-1	0
199 198	The importance of the place of defuzzification step in fuzzy systems. 1-1 Doubly Extended Fuzzy TOPSIS Method for Group Decision Making. 2019, 66, 27-50 A New Method for Multi-objective Optimal Design of Milling Parameters by Considering Chatter	
199 198 197	The importance of the place of defuzzification step in fuzzy systems. 1-1 Doubly Extended Fuzzy TOPSIS Method for Group Decision Making. 2019, 66, 27-50 A New Method for Multi-objective Optimal Design of Milling Parameters by Considering Chatter Vibrations. Sectorial evaluation of Islamic banking contracts: a fuzzy multi-criteria-decision-making approach.	0
199 198 197 196	The importance of the place of defuzzification step in fuzzy systems. 1-1 Doubly Extended Fuzzy TOPSIS Method for Group Decision Making. 2019, 66, 27-50 A New Method for Multi-objective Optimal Design of Milling Parameters by Considering Chatter Vibrations. Sectorial evaluation of Islamic banking contracts: a fuzzy multi-criteria-decision-making approach. 2019, 16, 370-382 SRDRIEBER ENERJIYNETIMIVE PLANLAMASI IN SEZGBEL BULANIK EVREDE DK	0 2
199 198 197 196	The importance of the place of defuzzification step in fuzzy systems. 1-1 Doubly Extended Fuzzy TOPSIS Method for Group Decision Making. 2019, 66, 27-50 A New Method for Multi-objective Optimal Design of Milling Parameters by Considering Chatter Vibrations. Sectorial evaluation of Islamic banking contracts: a fuzzy multi-criteria-decision-making approach. 2019, 16, 370-382 SRDRIJEBUR ENERJIYNETMIVE PLANLAMASI IN SEZGSEL BULANIK BYREDE DK KRITERLIKARAR VERME YNTEMLERNE DAYALI BR KARAR PROSEDRIJ2019, 17, 21-41	0 2

191	Technology Selection for Logistics and Supply Chain Management by the Extended Intuitionistic Fuzzy TOPSIS. 2019 ,	1
190	Fuzzy Estimation of Level of Country Social Security. 2020 , 190-196	
189	Multi-stakeholder Multi-criteria Decision-Making Framework for Sustainability Prioritization: Investigation of the Processes for Sludge-to-Wealth. 2020 , 79-104	
188	Supplier selection using multi-criteria decision making technique. 2020 ,	
187	Multi-criteria Decision Making Problem with Intuitionistic Fuzzy Sets: A Novel Ranking Method. 2021 , 750-757	
186	SOLUTION OF A MULTI-CRITERIA DECISION- MAKING PROBLEM ON BASE OF PROMETHEE METHOD. 2020 ,	
185	Supplier Selection Very Small Aperture Terminal using AHP-TOPSIS Framework. 2020, 1, 39	O
184	A policy prioritization framework using causal layered analysis and MCDM: case study of Iran environmental policies. 2021 , ahead-of-print,	
183	. 2020,	2
182	Religious tourism in Pakistan: Scope, obstacles & strategies. 2021 , 22, 134-154	1
181	BISTBe Iem Glen Tekstil Firmalarññ Finansal Performanslarññ Dinamik Sezgisel Bulan k WASPAS Ylltemi ile Delirlendirilmesi.	O
180	A Novel Hybrid Multi-objective Optimization Approach for Sustainable Delivery Systems with a Case Study of Izmir. 2020 , 105-125	
179	Intuitionistic Fuzzy Shannon Entropy Weight Based Multi-criteria Decision Model with TOPSIS to Analyze Security Risks and Select Online Transaction Method. 2020 , 1-17	1
178	EVALUATION OF SUPPLY CHAIN PERFORMANCE USING AN INTEGRATED TWO-STEP CLUSTERING AND INTERVAL TYPE-2 FUZZY TOPSIS METHOD: A CASE STUDY.	O
177	Quasi-Optimization of the Time Dependent Traveling Salesman Problem by Intuitionistic Fuzzy Model and Memetic Algorithm. 2020 , 239-253	
176	Y®ECEK ¶CEK ¶ETMELERNDE MOORA YNTEM¶E TEDAR®®EMNN UYGULANAB¶®L¶	1
175	Redefinition of Intuitionistic Fuzzy TOPSIS Method in the Framework of Evidence Theory. 2020 , 351-360	О
174	The Technique for Order of Preference by Similarity to Ideal Solution Method in Fuzzy Environment. 2020 , 139-168	1

173	Supplier in the Supply Chain: A Bibliometric Analysis. 2020 , 53-65	1
172	Digital Supply Chain Agility Analysis Using IFTOPSIS Method. 2020 , 8, 11-15	
171	Recommendation System for Thesis Examiner Selection using Intuitionistic Fuzzy TOPSIS method for Effective Multicriteria Decision-Making. 2021 ,	
170	A Novel Extension of the Technique for Order Preference by Similarity to Ideal Solution Method with Objective Criteria Weights for Group Decision Making with Interval Numbers. 2021 , 23,	Ο
169	A Multi-Criteria Intuitionistic Fuzzy Group Decision Making Method for Supplier Selection with VIKOR Method. 967-983	
168	FineKinney-Based Occupational Risk Assessment Using Intuitionistic Fuzzy TODIM. 2021, 69-89	1
167	Study on performance evaluation of 'the 'production process - fuzzy MCDM approach. 2020 , 39, 4009-4026	2
166	A New Multiple Attribute Group Decision-making Approach to the Selection of Hotels for a Travel Company. 2020 ,	
165	Models of Socioeconomic Security. 2021 , 73-98	
164	Designing Vendor Selection System Using Intuitionistic Fuzzy TOPSIS and Entropy Weighting Method in Oil and Gas Industry. 2020 ,	O
163	SELECTION OF THE BEST SUPPLIER WITH 0-1 GOAL PROGRAMMING BY INTEGRATING AHP IN THE HEALTHCARE INDUSTRY.	
162	Sensory Evaluation of Pliek-U Quality Using Fuzzy-Topsis Method. 2020 , 23, 161-167	O
161	Prioritization of policy initiatives to overcome Industry 4.0 transformation barriers based on a Pythagorean fuzzy multi-criteria decision making approach. 2021 , 8,	1
160	The selection of feasible strategies based on consistency measurement of cliques. 2022 , 583, 33-55	2
159	Attributes Based Ranking and Selection of Vending Carts using Fuzzy TOPSIS. 2021,	
158	Models for MADM with hesitant interval-valued fuzzy information under uncertain environment. 2021 , 25, 315-322	1
157	Selection of resilient suppliers in manufacturing industries post-COVID-19: implications for economic and social sustainability in emerging economies. 2021 , ahead-of-print,	1
156	A Proposed Framework for Developing FMEA Method Using Pythagorean Fuzzy CODAS. 2021 , 13, 2236	1

155	Multi-Criteria Decision Making Methods and Project Delivery Approaches. 2020,	1
154	Generalized Intuitionistic Fuzzy Entropy on IF-MARCOS Technique in Multi-criteria Decision Making. 2021 , 592-603	O
153	A novel decision-making tool for performance evaluation of vegetable oils used as heat transfer fluids in concentrated solar power plants. 1	1
152	Evaluation of circular economy business models for SMEs using spherical fuzzy TOPSIS: an application from a developing countries[perspective. 1	2
151	Evaluating Labour Market Flexibility Using the TOPSIS Method: Sustainable Industrial Relations. 2022 , 14, 526	2
150	Fabrication, characterization, and optimization selection of ceramic particulate reinforced dental restorative composite materials. 2022 , 30, 096739112110627	2
149	Multi-criteria decision analysis for pharmaceutical supplier selection problem using fuzzyTOPSIS. 2022 , ahead-of-print,	1
148	Supplier selection in sustainable supply chains: Using the integrated BWM, fuzzy Shannon entropy, and fuzzy MULTIMOORA methods. <i>Expert Systems With Applications</i> , 2022 , 195, 116567	8
147	The Compromise Ratio Method With Intuitionistic Fuzzy Distance for FMAGDM. 2022 , 11, 1-17	
146	An extended MAIRCA method using intuitionistic fuzzy sets for coronavirus vaccine selection in the age of COVID-19 2022 , 34, 1-21	5
145	Application of Modern Digital Systems and Approaches to Business Process Management. 2022 , 14, 1697	O
144	Bipolar disorder diagnosis with cubic bipolar fuzzy information using TOPSIS and ELECTRE-I.	O
143	Complex fermatean fuzzy -soft sets: a new hybrid model with applications 2022, 1-34	9
142	A Decision-Making Framework Using q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information for the Drug Selection to Treat COVID-19. 2022 , 2022, 1-37	3
141	Service supplier selection under fuzzy and stochastic uncertain environments. 2022 , 42, 1301-1315	2
140	The role of artificial intelligence in supply chain management: mapping the territory. 1-24	9
139	TODIM Approach for Selection of Inventory Policy in Supply Chain. 2022, 2022, 1-7	O
138	New Intuitionistic Fuzzy Similarity Measure for Enhanced Decision Support System in Dementia Patients.	

137	A Personalized Comprehensive Cloud-Based Method for Heterogeneous MAGDM and Application in COVID-19. 2022 , 131, 1-42		O
136	Application of Multi-Criteria Decision Making to Sustainable Deep-Sea Mining Vertical Transport Plans.		
135	Emergency Decision Making Fuzzy-Expert Aided Disaster Management System. 2022, 139-150		
134	How Can Structural Change Contribute to Concurrent Sustainability Policy Targets on GDP, Emissions, Energy, and Employment in China?.		
133	Evaluation of the Global Competitiveness Index (GCI) by Multi-Criteria Decision-Making Methods Based on Intuitionistic Fuzzy Sets. 2022 , 339-367		
132	Bk Kriterli Grup Karar Verme Problemleri i i h Sezgisel Bulan k SAW Yfiteminin Geniletilmesi. 2022 , 22, 142-153		
131	Intuitionistic fuzzy divergences: critical analysis and an application in figure skating. 1		O
130	Organizational quality specific immune evaluation of manufacturing enterprises: Multi-attribute group decision-making method with complete ignorance of weight information based on evidence distance and fuzzy entropy transformation. 2022 , 1-10		
129	An extended MABAC method based on prospect theory with unknown weight information under Fermatean fuzzy environment for risk investment assessment in B&R 2022 , 1-30		4
128	Online education satisfaction assessment based on cloud model and fuzzy TOPSIS 2022 , 1-16		O
127	Group decision making based on advanced intuitionistic fuzzy weighted Heronian mean aggregation operator of intuitionistic fuzzy values. 2022 ,		1
126	The evaluation of renewable energy alternatives for sustainable development in Turkey using ?intuitionistic? ?fuzzy?-TOPSIS method. 2022 , 189, 1443-1458		5
125	Novel measures for linguistic hesitant Pythagorean fuzzy sets and improved TOPSIS method with application to contributions of system-of-systems. <i>Expert Systems With Applications</i> , 2022 , 117088	7.8	2
124	An intuitionistic fuzzy multi-distance based evaluation for aggregated dynamic decision analysis (IF-DEVADA): Its application to waste disposal location selection. 2022 , 111, 104809		5
123	A multicriteria approach to integrating occupational safety & map; health performance and industry systems productivity in the context of aging workforce: A case study. 2022 , 152, 105764		3
122	Ekonomik GBtergelere Dayal⊤edarikDSelmi ilh Sezgisel Bulan¥ YaklaEn. 2021 , 23, 1017-1037		O
121	TRABZON [I]ELERNN CITASLOW KRITERLER[A]SINDAN SEZGBEL BULANIK TOPSIS YNTEM[] [IE DEERLENDRI]MES[]		1
120	A Multi-Attribute Group Decision Making Method for Express Supplier Selection Based on Generalized Fuzzy Soft Set. 2022 ,		

119	Assessment of structural cracks in buildings using single-valued neutrosophic DEMATEL model. 2022 ,	0
118	Analysis of evolutionary process in intuitionistic fuzzy set theory: A dynamic perspective. 2022 , 601, 175-188	8
117	Weight for TOPSIS Method Combined with Intuitionistic Fuzzy Sets in Multi-criteria Decision Making. 2022 , 202-212	
116	An integrated interval-valued intuitionistic fuzzy AHP-TOPSIS methodology to determine the safest route for cash in transit operations: a real case in Istanbul. 1	О
115	A network attack evaluation model based on variable weight theory. 2022,	
114	A new extension of fuzzy decision by opinion score method based on Fermatean fuzzy: A benchmarking COVID-19 machine learning methods. 2022 , 1-11	1
113	Spherical Fuzzy Soft Topology and Its Application in Group Decision-Making Problems. 2022 , 2022, 1-19	1
112	A Decision-Making Tool for Algorithm Selection Based on a Fuzzy TOPSIS Approach to Solve Replenishment, Production and Distribution Planning Problems. 2022 , 10, 1544	
111	Assessment of groundwater potential using multi-criteria decision analysis and geoelectrical surveying. 1-19	1
110	A Combined Multi-Criteria Decision-Making Framework for Process-Based Digitalisation Opportunity and Priority Assessment (DOPA). 2022 , 9, 1-22	
109	A Systematic Review of the Applications of Multi-Criteria Decision Aid Methods (1977 2 022). 2022 , 11, 1720	13
108	An efficient generalized fuzzy TOPSIS algorithm for the selection of the hybrid energy resources: A comparative study between single and hybrid energy plant installation in Turkey.	
107	A Comparative study and efficiency analysis between Sanchez and Fuzzy TOPSIS methods in a multi-criteria decision-making problem for energy plant instalment. 2022 , 2267, 012082	
106	Integrated decision-making methods based on 2-tuple linguistic \$ m \$-polar fuzzy information. 2022 , 7, 14557-14594	1
105	BEBleik ök Kriterli Karar Verme Teknikleri ile Yell TedarikliSelmi.	
104	Aral k -Deërli Sezgisel Bulan k Ortamda KKV Yfitemleri Kullan l arak Tekstil Endfitrisinde Ye il TedarikliSelmi. 2022 , 12, 296-316	
103	Selection of Additive Manufacturing Machine Using Analytical Hierarchy Process. 2022, 2022, 1-20	2
102	How can structural change contribute to concurrent sustainability policy targets on GDP, emissions, energy, and employment in China?. 2022 , 124614	О

101	Exploration of barriers and enablers of blockchain adoption for sustainable performance: implications for e-enabled agriculture supply chains. 1-38	2
100	Integrated multi-criteria group decision-making model for supplier selection in an uncertain environment. 2022 , 9,	1
99	A novel hierarchical fuzzy inference system for supplier selection and performance improvement in the oil & amp; gas industry. 1-28	2
98	BMW-TOPSIS: A generalized TOPSIS model based on three-way decision. 2022 , 607, 799-818	O
97	A Soft Computing System with Dimensional Analysis Intuitionist Fuzzy´Under Multi-Criteria Decision-Making Circumstances.	
96	What Are the Critical Well-Drilling Blowouts Barriers? A Progressive DEMATEL-Game Theory. 2022 , 29-46	O
95	A Multi-attribute Decision Approach in Triangular Fuzzy Environment Under TOPSIS Method for All-rounder Cricket Player Selection. 2022 , 175-187	
94	Comparing SMEs According to Industry 4.0 Adaptations for Mitigating the Bullwhip Effect. 2022 , 151-166	
93	Fuzzy multi-attribute decision-making: Theory, methods and Applications. 2022 , 621-658	
92	A Literature Review on Supplier Selection Problem and Fuzzy Logic. 2022 , 339-351	
91	Performance Measurement of Healthcare: A Case Study for Pilot Hospital. 2022, 400-408	
90	An Integrated Intuitionistic Fuzzy MCDM Model: Its Application to RIS. 2022 , 27-38	
89	An EFQM-Based Self-Assessment Method for Railway Transportation Service Quality: An Application with Intuitionistic Fuzzy AHP.	
88	A NEW INTEGRATED INTUITIONISTIC FUZZY GROUP DECISION MAKING APPROACH FOR R&D PROJECT SELECTION PROCESS. 2022 , 10, 643-653	O
87	A Decision-Making Model for Selection of the Suitable FDM Machine Using Fuzzy TOPSIS. 2022 , 2022, 1-15	4
86	A robust group decision making framework using fuzzy TOPSIS and Monte Carlo simulation for wind energy projects multicriteria evaluation.	O
85	Literature review: Multi-criteria decision-making method application for sustainable deep-sea mining transport plans. 2022 , 140, 109049	2
84	Novel distance and entropy definitions for linear Diophantine fuzzy sets and an extension of TOPSIS (LDF-TOPSIS).	Ο

83	Spherical Linear Diophantine Fuzzy TOPSIS Algorithm for Green Supply Chain Management System. 2022 , 2022, 1-12	O
82	Intuitionistic fuzzy decision support based on EDAS and grey relational degree for historic bridges reconstruction priority. 2022 , 26, 9419-9444	O
81	Blockchain technology: a ´catalyst´for reverse logistics of ´the ´automobile industry.	2
80	Cumulative prospect theory integrated CRITIC and TOPSIS methods for intuitionistic fuzzy multiple attribute group decision making. 2022 , 1-14	O
79	On Some Extension of Intuitionistic Fuzzy Synthetic Measures for Two Reference Points and Entropy Weights. 2022 , 24, 1081	О
78	Probabilistic Approach to Multi-Stage Supplier Evaluation: Confidence Level Measurement in Ordinal Priority Approach.	1
77	Research on Hybrid Multi-Attribute Three-Way Group Decision Making Based on Improved VIKOR Model. 2022 , 10, 2783	
76	Operations on Multi-Valued Neutrosophic Matrices and Its Application to Neutrosophic Simplified-TOPSIS Method.	
75	A new decision model with integrated approach for healthcare waste treatment technology selection with generalized orthopair fuzzy information. 2022 , 610, 1010-1028	2
74	Exploring the circular economy paradigm: A natural resource-based view on supplier selection criteria. 2022 , 28, 100793	o
73	Stakeholder-inclusive multi-criteria development of smart cities. 2023 , 154, 113281	2
72	An Intelligent Method Based on Dissimilarity Measure Picture Fuzzy and Apply to Supplier Selection. 2022 , 32-43	O
71	A new model to design the suppliers portfolio in newsvendor problem based on product reliability. 2022 , 0	O
70	A Monotonous Intuitionistic Fuzzy TOPSIS Method Under General Linear Orders Via Admissible Distance Measures. 2022 , 1-14	O
69	Selection of Suitable Automatic CPR Device Chassis Material Using Intuitionistic Fuzzy TOPSIS, VIKOR, and CODAS Methods.	O
68	New MCDM Algorithms with Linear Diophantine Fuzzy Soft TOPSIS, VIKOR and Aggregation Operators. 2022 , 10, 3080	1
67	A sustainable framework development and assessment for enhancing the environmental performance of cold supply chain.	O
66	Multi-attribute group decision-making model for selecting the most suitable construction company using the linguistic interval-valued T-spherical fuzzy TOPSIS method.	O

65	Salgā sā sā sā daki elektronik 🗗 alā latā da kar 🗗 🗗 malā ir karar verme.	0
64	Distance measure and intuitionistic fuzzy TOPSIS method based on the centroid coordinate representation *. 2022 , 1-17	O
63	An Evaluation of Supermarkets From the Lens of Multiple Criteria: The Intuitionistic Fuzzy TOPSIS Method.	0
62	On prioritization of hydrogen fuel cell technology utilizing bi-parametric picture fuzzy information measures in VIKOR & TOPSIS decision-making approaches. 2022 ,	1
61	Divergence measures for circular intuitionistic fuzzy sets and their applications. 2022 , 116, 105455	1
60	An Innovative Application On Supermarket Selection Through Using Intuitionistic Fuzzy TOPSIS Method.	O
59	An integrated intuitionistic fuzzy set and stochastic multi-criteria acceptability analysis approach for supplier selection.	0
58	DECISION-MAKING MODEL FOR DESIGNING TELECOM PRODUCTS/SERVICES BASED ON CUSTOMER PREFERENCES AND NON-PREFERENCES. 2022 , 1-36	2
57	Relative Knowledge Distance Measure of Intuitionistic Fuzzy Concept. 2022 , 11, 3373	0
56	Selection of Third-Party Reverse Logistics Service Provider Based on Intuitionistic Fuzzy Multi-Criteria Decision Making. 2022 , 10, 188	2
55	Decision making for cloud service selection: a novel and hybrid MCDM approach.	0
54	A Fuzzy Linguistic Multi-Criteria Decision-Making Approach to Assess Emergency Suppliers. 2022 , 14, 13114	O
53	A circular intuitionistic fuzzy evaluation method based on distances from the average solution to support multiple criteria intelligent decisions involving uncertainty. 2023 , 117, 105499	0
52	Understanding business model development through the lens of complexity theory: Enablers and barriers. 2023 , 155, 113350	O
51	A Neutrosophic Set Based Fault Diagnosis Method Based on Power Average Operator (Poster). 2019 ,	0
50	Quality Performance Indicators Evaluation and Ranking by Using TOPSIS with the Interval-Intuitionistic Fuzzy Sets in Project-Oriented Manufacturing Companies. 2022 , 10, 4174	O
49	q-Rung Orthopair Probabilistic Hesitant Fuzzy Rough Aggregation Information and Their Application in Decision Making.	0
48	A Multicriteria Decision Framework for Solar Power Plant Location Selection Problem with Pythagorean Fuzzy Data: A Case Study on Green Energy in Turkey. 2022 , 14, 14921	1

47	Sustainable Development of Road Transport in the EU: Multi-Criteria Analysis of Countries Achievements. 2022 , 15, 8291	1
46	Application of multi-criteria decision making to sustainable deep-sea mining vertical transport plans. 9,	O
45	The intuitionistic fuzzy concept-oriented three-way decision model. 2023, 619, 52-83	1
44	Proposed Intuitionistic Fuzzy Entropy Measure along with Novel Multicriteria Sorting Techniques. 2022 , 1-1	0
43	Industrial filtration technologies selection for contamination control in natural gas processing plants: A sustainability and maintainability-based decision support system under q-rung orthopair fuzzy set. 2023 , 170, 310-327	3
42	A patent infringement early-warning methodology based on intuitionistic fuzzy sets: A case study of Huawei. 2022 , 54, 101811	O
41	Evolved distance measures for circular intuitionistic fuzzy sets and their exploitation in the technique for order preference by similarity to ideal solutions.	О
40	Risk assessment model for halal supply chain using an integrated approach of IFN and D number.	O
39	Sustainable supplier selection model with a trade-off between supplier development and supplier switching.	О
38	Multi-criteria evaluation of medical waste management process under intuitionistic fuzzy environment: A case study on hospitals in Turkey. 2022 , 101499	O
37	A novel two-phase group decision-making model for circular supplier selection under picture fuzzy environment.	0
36	Comparison of Herd Tracking Systems Using Fuzzy Logic-Based Multi-Criteria Decision Making Methods. 2023 , 483-506	O
35	Intuitionistic fuzzy credibility Dombi aggregation operators and their application of railway train selection in Pakistan. 2023 , 8, 6520-6542	1
34	A two-stage multi-criteria decision-making method with interval-valued q-Rung Orthopair fuzzy technology for selecting bike-sharing recycling supplier. 2023 , 119, 105827	1
33	An integrated Analytic Hierarchy Process and Complex Proportional Assessment for vendor selection in supply chain management. 2023 , 6, 100155	1
32	Facilitating decision-making for the adoption of smart manufacturing technologies by SMEs via fuzzy TOPSIS. 2023 , 257, 108762	O
31	Evaluation of the Airline Website Quality with the Intuitionistic Fuzzy TOPSIS Method.	О
30	Leveraging blockchain in response to a pandemic through disaster risk management: an IF-MCDM framework.	O

29	Supply Network 5.0 Life Cycle. 2023 , 227-285	0
28	A Multi-Criteria Decision Approach using Divergence Measures for Selection of the Best COVID-19 Vaccine. 2023 , 321-332	O
27	A novel fuzzy group decision-making approach based on CCSD method for thermal insulation board selection problem: A case study. 2023 , 121, 105986	0
26	A multi-criteria decision framework for IP valuation method selection: Valuation caseImatters. 2023 , 73, 102176	O
25	A hybrid approach using Z-number DEA model and Artificial Neural Network for Resilient supplier Selection. 2023 , 222, 119746	0
24	Intuitionistic fuzzy DEMATEL for developing causal relationship of water security.	O
23	Decision making framework for heterogeneous QoS information: an application to cloud service selection. 2023 , 14, 2915-2934	0
22	A Hybrid Fuzzy Multi-Criteria Decision-Making Model for Evaluating the Influence of Industry 4.0 Technologies on Manufacturing Strategies. 2023 , 11, 310	1
21	Evaluating the quality factors of leaf plates by fuzzy TOPSIS method. 2023,	O
20	Evaluation of the Special Warehouse Handling Equipment (Turret Trucks) Using Integrated FUCOM and WASPAS Techniques Based on Intuitionistic Fuzzy Dombi Aggregation Operators.	o
19	Pythagorean Fuzzy MCDM Method in Renewable Energy Resources Assessment.	O
18	Some distance measures for triangular fuzzy numbers under technique for order of preference by similarity to ideal solution environment.	o
17	A Fuzzy Hybrid MCDM Approach for Assessing the Emergency Department Performance during the COVID-19 Outbreak. 2023 , 20, 4591	0
16	Multiple criteria group decision making based on q-rung orthopair fuzzy soft sets.	0
15	IFEJM: New Intuitionistic Fuzzy Expert Judgment Method for Effort Estimation in Agile Software Development.	0
14	Evaluation of dynamic technological innovation capability in high-tech enterprises based on pythagorean fuzzy LBWA and MULTIMOORA. 2023 , 1-23	0
13	Integrating TOPSIS and ELECTRE-I methods with cubic \$ m \$-polar fuzzy sets and its application to the diagnosis of psychiatric disorders. 2023 , 8, 11875-11915	0
12	Techniques to preprocess the climate projections review. 2023 , 152, 521-533	0

CITATION REPORT

11	An Integrated EDAS Model for Fermatean Fuzzy Multi-Attribute Group Decision Making and Its Application in Green-Supplier Selection. 2023 , 11, 162	0
10	Integrated fuzzy AHP and fuzzy TOPSIS for multi response optimization in incremental forming process.	0
9	Intuitionistic fuzzy fairly operators and additive ratio assessment-based integrated model for selecting the optimal sustainable industrial building options. 2023 , 13,	1
8	SRDRIIEBIIRLK, RSKLER VE SEZGSEL BULANIK ORTAM ALTINDA SIRALAMA PROBLEMLERII IN IDK KRIITERLIGRUP KARAR VERME YINTEMII	Ο
7	Identify Important Cities in the Belt and Road Comprehensive Traffic Network. 2023, 12, 154	0
6	A Decision-Making Carbon Reinforced Material Selection Model for Composite Polymers in Pipeline Applications. 2023 , 2023, 1-9	Ο
5	C r cular Intu to n s te Fuzzy Dec so n Mak n g and Its Appleaton. 2023 , 120076	0
4	Collaborative intuitionistic fuzzy-AHP to evaluate simulation-based analytics for freight transport. 2023 , 225, 120116	O
3	Multicriteria Decision Making in Supply Chain Management Using FMEA and Hybrid AHP-PROMETHEE Algorithms. 2023 , 23, 4041	0
2	A new definition for quartic fuzzy sets with hesitation grade applied to multi-criteria decision-making problems under uncertainty. 2023 , 7, 100239	O
1	Soft Power Effect on Long-Term Buyer-Seller Relationship: A Fuzzy Multi-Criteria Decision-Making Approach and Evidence from the Turkish Smartphone Sector. 1-19	0