Zirconia-based amperometric sensor using La–Sr-baselectrode for detection of NO2

Electrochemistry Communications 11, 1654-1656 DOI: 10.1016/j.elecom.2009.06.030

Citation Report

#	Article	IF	CITATIONS
1	Amperometric-type NOx sensor based on YSZ electrolyte and La-based perovskite-type oxide sensing electrode. Journal of the Ceramic Society of Japan, 2010, 118, 180-183.	0.5	14
2	Effects of Sr Addition to La-Based Perovskite Sensing-Electrode on YSZ-Based Amperometric-Type NOx Sensor. IOP Conference Series: Materials Science and Engineering, 2011, 18, 212012.	0.3	2
3	Synthesis and Characterization of ZrO ₂ /Graphene Nanocomposite Materials. Advanced Materials Research, 2012, 531, 161-164.	0.3	3
4	One Step Synthesis and Characterization of Zirconia-Graphene Composites. Advanced Materials Research, 2012, 600, 174-177.	0.3	Ο
5	An amperometric NO2 sensor based on nano-structured La0.75Sr0.25Cr0.5Mn0.5O3â^`î´ prepared by impregnating method. Journal of Alloys and Compounds, 2012, 526, 145-150.	2.8	18
6	Effect of Sr addition to La-based perovskite-type oxide as an electrode material for zirconia-based amperometric-type NOx sensor. Ionics, 2012, 18, 337-342.	1.2	8
7	A La10Si5NbO27.5 based electrochemical sensor using nano-structured NiO sensing electrode for detection of NO2. Materials Letters, 2013, 109, 16-19.	1.3	19
8	Pt-CeO2 nanofibers based high-frequency impedancemetric gas sensor for selective CO and C3H8 detection in high-temperature harsh environment. Sensors and Actuators B: Chemical, 2013, 188, 1141-1147.	4.0	48
9	A novel impedancemetric NO2 sensor based on nano-structured La0.75Sr0.25Cr0.5Mn0.5O3â^`δ prepared by impregnating method. Sensors and Actuators B: Chemical, 2013, 188, 778-786.	4.0	17
10	An amperometric NO2 sensor based on La10Si5NbO27.5 electrolyte and nano-structured CuO sensing electrode. Journal of Hazardous Materials, 2013, 262, 545-553.	6.5	39
11	Temperature dependence of NO2 sensitivity of YSZ-based mixed potential type sensor attached with NiO sensing electrode. Ionics, 2013, 19, 1681-1686.	1.2	16
12	High temperature amperometric NO2 sensor based on nano-structured Gd0.2Sr0.8FeO3â^î^ prepared by impregnating method. Journal of Alloys and Compounds, 2014, 583, 361-365.	2.8	19
13	Solid-state gas sensors for high temperature applications – a review. Journal of Materials Chemistry A, 2014, 2, 9919-9943.	5.2	223
14	A review of mixed-potential type zirconia-based gas sensors. Ionics, 2014, 20, 901-925.	1.2	271
15	Planar Impedancemetric NO Sensor with Thick Film Perovskite Electrodes Based on Samarium Cobaltite. Electroanalysis, 2015, 27, 760-769.	1.5	7
16	Effective improvement of sensing performance of amperometric NO2 sensor by Ag-modified nano-structured CuO sensing electrode. Sensors and Actuators B: Chemical, 2015, 207, 791-800.	4.0	36
17	NO2 sensing properties of electrode-supported sensor by tape casting and co-firing method. lonics, 2015, 21, 2655-2662.	1.2	7
18	The effects of sintering temperature of (La0.8Sr0.2)2FeMnO6â^´î´ on the NO2 sensing property for YSZ-based potentiometric sensor. Sensors and Actuators B: Chemical, 2015, 206, 311-318.	4.0	29

		CITATION RE	PORT	
#	Article		IF	CITATIONS
19	A GdAlO3 Perovskite Oxide Electrolyte-Based NOx Solid-State Sensor. Scientific Reports, 20	16, 6, 37795.	1.6	18
20	High-temperature stabilized zirconia-based sensors utilizing MNb2O6 (M: Co, Ni and Zn) ser electrodes for detection of NO2. Sensors and Actuators B: Chemical, 2016, 232, 523-530.	ising	4.0	35
21	Synthesis and NOx sensing evaluation of hollow/porous La0.8Sr0.2MnO3 microspheres. RS0 2016, 6, 53919-53924.	2 Advances,	1.7	1
22	NO2-sensing properties of La0.65Sr0.35MnO3 synthesized by self-propagating combustion. 22, 927-934.	lonics, 2016,	1.2	22
23	Ammonia sensing characteristics of La10Si5MgO26-based amperometric-type sensor attach nano-structured CoWO4 sensing electrode. Journal of Alloys and Compounds, 2016, 663, 8	ed with 6-93.	2.8	21
24	Impedancemetric YSZ-based oxygen sensor using BaFeO3 sensing-electrode. Sensors and Ac Chemical, 2017, 243, 279-282.	ctuators B:	4.0	18
25	High-temperature NO 2 sensor based on aluminum/indium co-doped lanthanum silicate oxya electrolyte and cobalt-free perovskite oxide sensing electrode. Sensors and Actuators B: Che 2017, 250, 629-640.	apatite emical,	4.0	13
26	Review—Electrochemical NO <i>_x</i> Gas Sensors Based on Stabilized Zirconia the Electrochemical Society, 2017, 164, B610-B619.	a. Journal of	1.3	43
27	A Novel Highly Sensitive NO2 Sensor Based on Perovskite Na0.5+xBi0.5TiO3â^î^ Electrolyte. Reports, 2017, 7, 4997.	Scientific	1.6	7
28	High-temperature NO2 gas sensor based on stabilized zirconia and CoTa2O6 sensing electro Sensors and Actuators B: Chemical, 2017, 240, 148-157.	ode.	4.0	52
29	Enhanced mixed potential NOx gas response performance of surface modified and NiO nanc infiltrated solid-state electrochemical-based NiO-YSZ composite sensing electrodes. Sensors Actuators B: Chemical, 2018, 262, 664-677.	particles and	4.0	12
30	Impedancemetric NO2 sensor based on Pd doped perovskite oxide sensing electrode conjun phase angle response. Electrochimica Acta, 2018, 265, 411-418.	ction with	2.6	20
31	Dense LaSrMnO3 composite electrodes for NOx sensing. Sensors and Actuators B: Chemica 351-358.	l, 2018, 256,	4.0	16
32	Electronic Noses: From Advanced Materials to Sensors Aided with Data Processing. Advance Materials Technologies, 2019, 4, 1800488.	d	3.0	227
33	Preparation of (La0.8Sr0.2)2FeNiO6-Δ Nanopowder by Pechini Method and Its Sensitivity to Web of Conferences, 2018, 175, 01034.	NO2. MATEC	0.1	0
34	High-response mixed-potential type planar YSZ-based NO2 sensor coupled with CoTiO3 sense electrode. Sensors and Actuators B: Chemical, 2019, 287, 185-190.	sing	4.0	36
35	High-response dual-purpose NO2 sensor with layered-Bi2WO6 sensing electrode. Sensors ar Actuators A: Physical, 2021, 331, 112937.	ıd	2.0	5
36	Towards an all-fiber system for detection and monitoring of ammonia. , 2019, , .			1

ARTICLE IF CITATIONS # Investigation on Impedencemetric-type NO₂ Sensor Based on La_{0.75}Sr_{0.25}Mn_{0.5}Co_{0.5}O_{3-δ} Sensing 37 0.6 4 Electrode. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2011, 26, 523-528. A novel yttria-doped ZrO2 based conductometric sensor for hydrogen leak monitoring. International Journal of Hydrogen Energy, 2022, 47, 9819-9828. 3.8 Improvement of the response performance of impedimetric NO2 sensor by halogen doping of 39 4.0 5 La0.75Sr0.25CrO3-l' sensing electrode. Sensors and Actuators B: Chemical, 2022, 358, 131516. Investigation of an Impedimetric LaSrMnO3-Au/Y2O3-ZrO2-Al2O3 Composite NOx Sensor. Materials, 2022, 15, 1165. A review of zirconia oxygen, NOx, and mixed potential gas sensors â€" History and current trends. 41 4.0 20 Sensors and Actuators B: Chemical, 2022, 370, 132363. Amperometric type NO2 sensor based on La0.75Sr0.25Cr0.5Fe0.5O3-δ-Bi2O3 sensing electrode prepared by self-demixing. Sensors and Actuators B: Chemical, 2023, 378, 133136. 4.0 A review of high-temperature solid-state ammonia sensors. Journal of Materials Science, 2023, 58, 43 2 1.7 10600-10634.

CITATION REPORT