Chitin and chitosan polymers: Chemistry, solubility and

Progress in Polymer Science 34, 641-678

DOI: 10.1016/j.progpolymsci.2009.04.001

Citation Report

#	Article	IF	CITATIONS
1	Physicochemical, microbial, and sensory properties of yogurt supplemented with nanopowdered chitosan during storage. Journal of Dairy Science, 2009, 92, 5907-5916.	1.4	47
2	X-Ray Diffraction Studies of Chitin, Chitosan and Their Derivatives. , 2010, , 83-94.		4
3	Green Chemistry: Principles and Practice. Chemical Society Reviews, 2010, 39, 301-312.	18.7	3,379
4	Egg white lysozyme purification with a chitin–silica-based affinity chromatographic matrix. European Food Research and Technology, 2010, 231, 181-188.	1.6	27
5	Non-woven mats of poly(vinyl alcohol)/chitosan blends containing silver nanoparticles: Fabrication and characterization. Carbohydrate Polymers, 2010, 82, 472-479.	5.1	125
6	Synthesis and characterization of quaternized β-chitin. Carbohydrate Research, 2010, 345, 1609-1612.	1.1	21
7	Synthesis of chitin cycloalkyl ester derivatives and their physical properties. Carbohydrate Research, 2010, 345, 2102-2106.	1.1	11
8	Screening of industrial enzymes for deproteinization of shrimp head for chitin recovery. Food Science and Biotechnology, 2010, 19, 553-557.	1.2	61
9	Antidiabetic activity of nanopowdered chitosan in db/db mice. Food Science and Biotechnology, 2010, 19, 1245-1250.	1.2	18
10	Preparation and application of 4-amino-4′-nitro azobenzene modified chitosan as a selective adsorbent for the determination of Au(III) and Pd(II). Mikrochimica Acta, 2010, 168, 99-105.	2.5	40
11	Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose, 2010, 17, 1045-1065.	2.4	146
12	Novel chitin and chitosan nanofibers in biomedical applications. Biotechnology Advances, 2010, 28, 142-150.	6.0	868
13	Direct determinations of energetic parameters at chitosan/Cr(VI) interfaces by means of immersion heat-conduction microcalorimetry. Journal of Colloid and Interface Science, 2010, 352, 491-497.	5.0	14
14	NMR and FT Raman characterisation of regioselectively sulfated chitosan regarding the distribution of sulfate groups and the degree of substitution. Polymer, 2010, 51, 4698-4705.	1.8	54
15	Biosensor based on pequi polyphenol oxidase immobilized on chitosan crosslinked with cyanuric chloride for thiodicarb determination. Enzyme and Microbial Technology, 2010, 47, 153-158.	1.6	33
16	Time- and pH-dependent self-rearrangement of a swollen polymer network based on polyelectrolytes complexes of chitosan/chondroitin sulfate. Carbohydrate Polymers, 2010, 80, 934-943.	5.1	75
17	Multistage deacetylation of chitin: Kinetics study. Carbohydrate Polymers, 2010, 81, 892-896.	5.1	26
18	Modified chitosan pretreatment of polyester fabric for printing by ink jet ink. Carbohydrate Polymers, 2010, 82, 1124-1135.	5.1	36

#	ARTICLE	IF	Citations
19	The impact of cupric ion on thermoâ€oxidative degradation of chitosan. Polymer International, 2010, 59, 1110-1115.	1.6	2
20	Perspectives of Chitin and Chitosan Nanofibrous Scaffolds in Tissue Engineering. , 0, , .		8
22	In Vivo Biocompatibility Study of Electrospun Chitosan Microfiber for Tissue Engineering. International Journal of Molecular Sciences, 2010, 11, 4140-4148.	1.8	34
23	Chitin, Chitosan and Derivatives for Wound Healing and Tissue Engineering. Advances in Biochemical Engineering/Biotechnology, 2010, 125, 1-27.	0.6	54
24	Application of Spectroscopic Methods for Structural Analysis of Chitin and Chitosan. Marine Drugs, 2010, 8, 1567-1636.	2.2	815
25	Chitosan Macromolecules on a Substrate: Deposition from Solutions in sc CO ₂ and Reorganisation in Vapours. Macromolecular Symposia, 2010, 296, 531-540.	0.4	6
26	Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance. Journal of Biomaterials Applications, 2010, 25, 291-366.	1.2	270
27	Challenges for Natural Monomers and Polymers: Novel Design Strategies and Engineering to Develop Advanced Polymers. Designed Monomers and Polymers, 2010, 13, 87-121.	0.7	78
28	Dilute solution properties of four natural chitin in NaOH/urea aqueous system. Carbohydrate Polymers, 2010, 80, 970-976.	5.1	50
29	A facile bottom-up route to self-assembled biogenic chitin nanofibers. Soft Matter, 2010, 6, 5298.	1.2	90
30	Chitosan for Biomaterials I. Advances in Polymer Science, 2011, , .	0.4	14
31	Method Development for Flow Adsorption and Removal of Lead and Copper in Contaminated Water Using Electrospun Nanofibers of Chitosan Blend. Analytical Letters, 2011, 44, 1937-1955.	1.0	16
32	Chitosan. , 2011, , 221-237.		15
33	Biomedical Activity of Chitin/Chitosan Based Materialsâ€"Influence of Physicochemical Properties Apart from Molecular Weight and Degree of N-Acetylation. Polymers, 2011, 3, 1875-1901.	2.0	213
34	Chitosan and Its Derivatives for Drug Delivery Perspective. Advances in Polymer Science, 2011, , 23-53.	0.4	174
35	Catechol-Functionalized Chitosan/Pluronic Hydrogels for Tissue Adhesives and Hemostatic Materials. Biomacromolecules, 2011, 12, 2653-2659.	2.6	568
36	Examination of the $\hat{l}\pm$ -Chitin Structure and Decrystallization Thermodynamics at the Nanoscale. Journal of Physical Chemistry B, 2011, 115, 4516-4522.	1.2	71
37	Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. Journal of Materials Chemistry, 2011, 21, 3865.	6.7	192

#	ARTICLE	lF	Citations
38	Assembly of Bioactive Peptide–Chitosan Nanocomplexes. Journal of Physical Chemistry B, 2011, 115, 7515-7523.	1.2	76
39	Polymers of Biological Origin. , 2011, , 187-205.		2
40	Gold nanoparticles in an ionic liquid phase supported in a biopolymeric matrix applied in the development of a rosmarinic acid biosensor. Analyst, The, 2011, 136, 2495.	1.7	31
41	Complex coacervation in pea protein isolate–chitosan mixtures. Food Research International, 2011, 44, 1441-1446.	2.9	108
42	Preparation, Properties and Applications of Chitosan-Based Biocomposites/Blend Materials: A Review. Composite Interfaces, 2011, 18, 449-507.	1.3	51
43	Smart Chitosan-Based Stimuli-Responsive Nanocarriers for the Controlled Delivery of Hydrophobic Pharmaceuticals. Macromolecules, 2011, 44, 1298-1302.	2.2	86
44	Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery. Advances in Polymer Science, 2011, , 111-137.	0.4	11
45	Novel water soluble phosphonium chitosan derivatives: Synthesis, characterization and cytotoxicity studies. International Journal of Biological Macromolecules, 2011, 48, 375-380.	3.6	41
46	Optimization of capacity and kinetics for a novel bio-based arsenic sorbent, TiO2-impregnated chitosan bead. Water Research, 2011, 45, 5745-5754.	5.3	69
47	Biomimetic fabrication of information-rich phenolic-chitosan films. Soft Matter, 2011, 7, 9601.	1.2	51
48	The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chemistry, 2011, 13, 1061.	4.6	610
49	A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation. Desalination and Water Treatment, 2011, 28, 287-320.	1.0	77
50	Polymeric Scaffolds for Regenerative Medicine. Polymer Reviews, 2011, 51, 23-52.	5.3	93
51	Chitin. Profiles of Drug Substances, Excipients and Related Methodology, 2011, 36, 35-102.	3 . 5	28
52	Proteolysis of shrimp by-products ($\langle i \rangle$ Peaneus monodon $\langle i \rangle$) from Madagascar Prote \tilde{A}^3 lisis de derivados de langostino ($\langle i \rangle$ Peaneus monodon $\langle i \rangle$) de Madagascar. CYTA - Journal of Food, 2011, 9, 220-228.	0.9	15
54	Influence of the Chemical Structure and Physicochemical Properties of Chitin- and Chitosan-Based Materials on Their Biomedical Activity. , 2011, , .		10
55	Preparation and Characterization of Chitin Benzoic Acid Esters. Molecules, 2011, 16, 3029-3036.	1.7	11
56	Original article. Development of chitosan/nanosized apatite composites for bone cements. Asian Biomedicine, 2011, 5, 499-506.	0.2	1

#	Article	IF	CITATIONS
57	MULTIFUNCTIONAL CHITOSAN NANOCARRIERS FOR GENE THERAPY. Technology and Innovation, 2011, 13, 27-37.	0.2	0
58	Chemical Properties of Chitosan as a Marine Cosmeceutical. , 2011, , 39-50.		1
59	The physicochemical and sensory properties of milk supplemented with ascorbic acidâ€soluble nanoâ€chitosan during storage. International Journal of Dairy Technology, 2011, 64, 57-63.	1.3	30
60	Development of dip-strip sucrose sensors: Application of plant invertase immobilized in chitosan–guar gum, gelatin and poly-acrylamide films. Sensors and Actuators B: Chemical, 2011, 160, 1026-1033.	4.0	12
61	A fundamental study of chitosan/PEO electrospinning. Polymer, 2011, 52, 4813-4824.	1.8	315
62	Fabrication, characterization and in vitro drug release behavior of electrospun PLGA/chitosan nanofibrous scaffold. Materials Chemistry and Physics, 2011, 125, 606-611.	2.0	127
63	Layered chitosan conduits with controllable inner diameters. Materials Letters, 2011, 65, 1503-1505.	1.3	5
64	Coaxial electrospun poly(lactic acid)/chitosan (core/shell) composite nanofibers and their antibacterial activity. Carbohydrate Polymers, 2011, 86, 1799-1806.	5.1	168
65	Antimicrobial fibers: therapeutic possibilities and recent advances. Future Medicinal Chemistry, 2011, 3, 1821-1847.	1.1	48
66	Water-soluble polyplexes of modified chitosan. Polymer Science - Series A, 2011, 53, 947-954.	0.4	9
67	Effect of pretreatment of bagasse fibers on the properties of chitosan/microfibrillated cellulose nanocomposites. Journal of Materials Science, 2011, 46, 1732-1740.	1.7	67
68	Biodegradable Polymers- A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 2011, 19, 637-676.	2.4	577
69	Stabilization of bioderived surfactant/polyelectrolyte complexes through surfactant conjugation to the biopolymer. Colloid and Polymer Science, 2011, 289, 1589-1596.	1.0	11
70	Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: Sorption kinetics and uptake mechanism. Bioresource Technology, 2011, 102, 2265-2271.	4.8	160
71	Early stages of non-classic crystal growth. Science China Chemistry, 2011, 54, 1867-1876.	4.2	12
72	Antimicrobial activity of chitosan nanofibers obtained by electrospinning. Polymer International, 2011, 60, 1663-1669.	1.6	51
74	Adsorption of melanoidins by chitin nanofibers. Chemical Engineering Journal, 2011, 166, 890-895.	6.6	57
75	Blends containing chitosan and poly(sodium-4-styrene sulphonate). Compatibility behavior. Carbohydrate Polymers, 2011, 83, 81-87.	5.1	18

#	Article	IF	CITATIONS
76	RF hydrazine plasma modification of chitosan for antibacterial activity and nanofiber applications. Carbohydrate Research, 2011, 346, 259-265.	1.1	51
77	Syntheses of chitin-based imprinting polymers and their binding properties for cholesterol. Carbohydrate Research, 2011, 346, 495-500.	1.1	23
78	Green processing of porous chitin structures for biomedical applications combining ionic liquids and supercritical fluid technology. Acta Biomaterialia, 2011, 7, 1166-1172.	4.1	114
79	Organic/inorganic hybrid network structure nanocomposite scaffolds based on grafted chitosan for tissue engineering. Acta Biomaterialia, 2011, 7, 2163-2175.	4.1	116
80	Structure–process–property relationship of the polar graphene oxide-mediated cellular response and stimulated growth of osteoblasts on hybrid chitosan network structure nanocomposite scaffolds. Acta Biomaterialia, 2011, 7, 3432-3445.	4.1	374
81	Shelf life and delivery enhancement of vitamin C using chitosan nanoparticles. Food Chemistry, 2011, 126, 935-940.	4.2	167
82	Preparation and characterization of chitosan hydrogel membrane for the permeation of 5-Fluorouracil. Materials Science and Engineering C, 2011, 31, 1002-1009.	3.8	15
83	Photosensitive chitosan to control cell attachment. Journal of Colloid and Interface Science, 2011, 361, 71-78.	5.0	15
84	The Characteristics of Chitosan Applied in Drinking Water Treatment. Advanced Materials Research, 2011, 233-235, 638-643.	0.3	0
85	Preparation and Characteristics of Novelty Chitosan Schiff Base and its Zinc Complexes. Advanced Materials Research, 0, 239-242, 1364-1367.	0.3	4
86	A Review on Composite Liposomal Technologies for Specialized Drug Delivery. Journal of Drug Delivery, 2011, 2011, 1-19.	2.5	165
88	Characterization of Chitosan and Carboxymethyl Chitosan Films from Various Sources and Molecular Sizes. Advanced Materials Research, 2012, 506, 417-420.	0.3	5
89	Preparation and Preliminary Characterization of Chitosan from <i>Catharsius molossus</i> Discards. Advanced Materials Research, 0, 548, 77-81.	0.3	0
90	NEGATIVE VOLTAGE ELECTROSPINNING AND POSITIVE VOLTAGE ELECTROSPINNING OF TISSUE ENGINEERING SCAFFOLDS: A COMPARATIVE STUDY AND CHARGE RETENTION ON SCAFFOLDS. Nano LIFE, 2012, 02, 1250004.	0.6	13
91	Engineering Biomaterials for Regenerative Medicine. , 2012, , .		16
92	Antimicrobial natural fibres. , 2012, , 428-466.		10
93	ELECTROSPINNING OF BIOMATERIALS AND THEIR APPLICATIONS IN TISSUE ENGINEERING. Nano LIFE, 2012, 02, 1230010.	0.6	3
94	Materials of marine origin: a review on polymers and ceramics of biomedical interest. International Materials Reviews, 2012, 57, 276-306.	9.4	173

#	Article	IF	CITATIONS
95	Effect of MWCNTs Doping on the Morphology, Structure and Properties of Chitosan Beads. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 674-679.	1.2	7
96	Preparation and Characterization of Magnetic Chitosan Microspheres for Endotoxin Adsorption. Separation Science and Technology, 2012, 47, 641-645.	1.3	2
97	Chitosan Nanoparticles Self-Assembled from Electrospun Composite Nanofibers. Journal of Textile Science & Engineering, 2012, 02, .	0.2	2
98	Functionalized hydroxyapatite scaffolds coated with sodium alginate and chitosan for controlled drug delivery. Proceedings of the Estonian Academy of Sciences, 2012, 61, 193.	0.9	21
99	- Sensory Analysis and Consumer Search of MAP Acceptability. , 2012, , 758-789.		4
100	Determination of Phase Behavior of Poly(ethylene oxide) and Chitosan Solution Blends Using Rheometry. Macromolecules, 2012, 45, 7621-7633.	2.2	31
101	Preparation and characterization of biomimetic silk fibroin/chitosan composite nanofibers by electrospinning for osteoblasts culture. Nanoscale Research Letters, 2012, 7, 170.	3.1	123
102	Preparation of chitin nanofiber-graft-poly(l-lactide-co-ε-caprolactone) films by surface-initiated ring-opening graft copolymerization. Polymer, 2012, 53, 4977-4982.	1.8	26
103	Preparation of enhanced three-dimensional porous chitosan scaffolds by acetylation and aqueous extraction. Journal of Porous Materials, 2012, 19, 537-542.	1.3	4
104	Self-assembly growth of electrically conductive chitosan nanofibrous scaffold. Macromolecular Research, 2012, 20, 1070-1074.	1.0	1
105	Miscibility Studies of Chitosan and Starch Blends in Buffer Solution. Journal of Macromolecular Science - Pure and Applied Chemistry, 2012, 49, 1099-1105.	1.2	12
106	Biodegradable polymer nanocomposites. , 2012, , 398-430.		8
107	Facile preparation of robust and biocompatible chitin aerogels. Journal of Materials Chemistry, 2012, 22, 5801.	6.7	163
108	Physico-chemical characterization of functionalized polypropylenic fibers for prosthetic applications. Applied Surface Science, 2012, 258, 7889-7896.	3.1	27
109	Subcellular metal partitioning in larvae of the insect Chaoborus collected along an environmental metal exposure gradient (Cd, Cu, Ni and Zn). Aquatic Toxicology, 2012, 120-121, 67-78.	1.9	32
110	Preparation and characterization of polyvinyl alcohol/chitosan blended membrane for alkaline direct methanol fuel cells. Journal of Membrane Science, 2012, 419-420, 65-71.	4.1	101
111	Facile production of chitin from crab shells using ionic liquid and citric acid. International Journal of Biological Macromolecules, 2012, 50, 861-864.	3.6	83
112	Synthesis and property of chitosan graft copolymer by RAFT polymerization with tosylic acid–chitosan complex. International Journal of Biological Macromolecules, 2012, 50, 586-590.	3.6	22

#	Article	IF	CITATIONS
113	Antibacterial cotton fabrics treated with core–shell nanoparticles. International Journal of Biological Macromolecules, 2012, 50, 1245-1253.	3.6	60
114	Investigation of self-assembling proline- and glycine-rich recombinant proteins and peptides inspired by proteins from a symbiotic fungus using atomic force microscopy and circular dichroism spectroscopy. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2012, 1824, 711-722.	1.1	12
115	Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review. Carbohydrate Polymers, 2012, 89, 723-739.	5.1	373
116	Products from microwave and ultrasonic wave assisted acid hydrolysis of chitin. Carbohydrate Polymers, 2012, 90, 73-77.	5.1	59
117	Preparation, characterization and properties of aminoethyl chitin hydrogels. Carbohydrate Polymers, 2012, 90, 1614-1619.	5.1	21
118	Effect of the addition of chitosan ethers on the fresh state properties of cement mortars. Cement and Concrete Composites, 2012, 34, 964-973.	4.6	54
119	Chitosan–ferrocene film as a platform for flow injection analysis applications of glucose oxidase and Gluconobacter oxydans biosensors. Colloids and Surfaces B: Biointerfaces, 2012, 100, 62-68.	2.5	48
120	Non-isothermal kinetics of thermal degradation of chitosan. Chemistry Central Journal, 2012, 6, 81.	2.6	117
121	High-strength pristine porous chitosan scaffolds for tissue engineering. Journal of Materials Chemistry, 2012, 22, 6291.	6.7	106
122	The preparation of chitosan nanoparticles by wet media milling. International Journal of Food Science and Technology, 2012, 47, 2266-2272.	1.3	22
123	Nanochitins and Nanochitosans, Paving the Way to Eco-Friendly and Energy-Saving Exploitation of Marine Resources., 2012,, 153-164.		45
125	Ultrathin Chitin Films for Nanocomposites and Biosensors. Biomacromolecules, 2012, 13, 714-718.	2.6	56
126	Chitosan-Based Delivery System for Tissue Regeneration and Chemotherapy., 2012,, 321-343.		3
127	Carbon nanotubes-based electrochemical biosensors. , 2012, , .		6
128	Biodegradation Study of Microcrystalline Chitosan and Microcrystalline Chitosan/ \hat{I}^2 -TCP Complex Composites. International Journal of Molecular Sciences, 2012, 13, 7617-7628.	1.8	12
129	Polysaccharides: Molecular and Supramolecular Structures. Terminology. , 2012, , 23-64.		8
130	Preparation and characterization of chitin hydrogels by water vapor induced gelation route. International Journal of Biological Macromolecules, 2012, 51, 431-439.	3.6	8
131	Structure and properties of chitin/alginate blend membranes from NaOH/urea aqueous solution. International Journal of Biological Macromolecules, 2012, 51, 1121-1126.	3.6	13

#	ARTICLE	IF	CITATIONS
132	Chitin extraction from shrimp shell waste using Bacillus bacteria. International Journal of Biological Macromolecules, 2012, 51, 1196-1201.	3.6	112
133	Surface studies of microcrystalline chitosan/poly(vinyl alcohol) mixtures. Applied Surface Science, 2012, 263, 115-123.	3.1	24
134	Inhibitory effects of trolox-encapsulated chitosan nanoparticles on tert-butylhydroperoxide induced RAW264.7 apoptosis. Biomaterials, 2012, 33, 8517-8528.	5.7	44
135	Influence of chitosan characteristics on the properties of biopolymeric chitosan–montmorillonite. Progress in Natural Science: Materials International, 2012, 22, 502-508.	1.8	63
137	Alginate and Chitosan Foam Combined with Electromembrane Extraction for Dried Blood Spot Analysis. Analytical Chemistry, 2012, 84, 8783-8789.	3.2	44
139	Tough and Catalytically Active Hybrid Biofibers Wet-Spun From Nanochitin Hydrogels. Biomacromolecules, 2012, 13, 4205-4212.	2.6	61
140	Preparation and Kinetic Modeling of Cross-Linked Chitosan Microspheres Immobilized Zn(II) for Urea Adsorption. Analytical Letters, 2012, 45, 1632-1644.	1.0	23
141	pH- and Voltage-Responsive Chitosan Hydrogel through Covalent Cross-Linking with Catechol. Journal of Physical Chemistry B, 2012, 116, 1579-1585.	1.2	50
142	Transient charge-masking effect of applied voltage on electrospinning of pure chitosan nanofibers from aqueous solutions. Science and Technology of Advanced Materials, 2012, 13, 015003.	2.8	39
143	Electromagnetic interference shielding material from electroless copper plating on birch veneer. Wood Science and Technology, 2012, 46, 1061-1071.	1.4	20
144	Antimicrobial natural fibres. , 2012, , 653-687.		6
146	Novel Biopolymer Composite Membrane Involved with Selective Mass Transfer and Excellent Water Permeability., 0, , .		14
147	EFFECT OF DEGREE OF DEACETYLATION OF CHITOSAN ON THERMAL STABILITY AND COMPATIBILITY OF CHITOSAN-POLYAMIDE BLEND. BioResources, 2012, 7, .	0.5	59
148	Confinement and controlled release of quinine on chitosan–montmorillonite bionanocomposites. Journal of Polymer Science Part A, 2012, 50, 423-430.	2.5	34
149	Modification of cellulose/chitin mix fibers with <i>N</i> â€isopropylacrylamide and poly(<i>N</i> â€isopropylacrylamide) under cold plasma conditions. Polymer International, 2012, 61, 1767-1777.	1.6	11
150	Preparation of highly porous β-chitin structure through nonsolvent–solvent exchange-induced phase separation and supercritical CO2 drying. Journal of Supercritical Fluids, 2012, 68, 31-38.	1.6	18
151	Formation of chitin-based nanomaterials using a chitin-binding peptide selected by phage-display. International Journal of Biological Macromolecules, 2012, 50, 1267-1274.	3 . 6	11
152	Immobilization of 2-mercaptoethylamine on oxidized chitosan: a substantially mucoadhesive and permeation enhancing polymer. Journal of Materials Chemistry, 2012, 22, 3899.	6.7	14

#	Article	IF	CITATIONS
153	Assessment of parameters influencing fiber characteristics of chitosan nanofiber membrane to optimize fiber mat production. Polymer Engineering and Science, 2012, 52, 1293-1300.	1.5	16
154	Processing–structure–functional property relationship in organic–inorganic nanostructured scaffolds for boneâ€tissue engineering: The response of preosteoblasts. Journal of Biomedical Materials Research - Part A, 2012, 100A, 3080-3091.	2.1	32
155	Evaluation of chitosan tripolyphosphate gel beads as bioadsorbents for iron in aqueous solution and in human blood <i>in vitro</i> . Journal of Applied Polymer Science, 2012, 125, 1493-1505.	1.3	13
156	Rapid synthesis and characterization of chitosanâ€ <i>>g</i> à€poly(<scp>D,L</scp> â€lactide) copolymers with hydroxyethyl chitosan as a macroinitiator under microwave irradiation. Journal of Applied Polymer Science, 2012, 125, E125.	1.3	21
157	Chitosan/rice straw nanofibers nanocomposites: Preparation, mechanical, and dynamic thermomechanical properties. Journal of Applied Polymer Science, 2012, 125, E216.	1.3	27
158	Sustained release of an antitumoral drug from alginateâ€chitosan hydrogel beads and its potential use as colonic drug delivery. Journal of Applied Polymer Science, 2012, 126, E409.	1.3	27
159	Preparation of aminoâ€reserved magnetic chitosan microsphere and its application in adsorbing endotoxin. Journal of Applied Polymer Science, 2012, 125, E248.	1.3	9
160	Chitosan Bioâ€Based Organic–Inorganic Hybrid Aerogel Microspheres. Chemistry - A European Journal, 2012, 18, 8264-8277.	1.7	149
162	Chitin Whiskers: An Overview. Biomacromolecules, 2012, 13, 1-11.	2.6	374
163	Hybrid electrospun nonwovens from chitosan/cellulose acetate. Cellulose, 2012, 19, 739-749.	2.4	29
164	Homogeneous synthesis and characterization of quaternized chitin in NaOH/urea aqueous solution. Carbohydrate Polymers, 2012, 87, 422-426.	5.1	63
165	Determination of the parameters affecting electrospun chitosan fiber size distribution and morphology. Carbohydrate Polymers, 2012, 87, 1295-1301.	5.1	90
166	Cobalt (II) imprinted chitosan for selective removal of cobalt during nuclear reactor decontamination. Carbohydrate Polymers, 2012, 87, 2690-2696.	5.1	101
167	Hydrogel sheets of chitosan, honey and gelatin as burn wound dressings. Carbohydrate Polymers, 2012, 88, 75-83.	5.1	271
168	Effects of nanoliposomes based on soya, rapeseed and fish lecithins on chitosan thin films designed for tissue engineering. Carbohydrate Polymers, 2012, 88, 618-627.	5.1	41
169	Controlled delivery of drug from pH sensitive chitosan/poly (vinyl alcohol) blend. Carbohydrate Polymers, 2012, 88, 1055-1060.	5.1	142
170	Synthesis, characterization and slow release properties of O-naphthylacetyl chitosan. Carbohydrate Polymers, 2012, 88, 1189-1194.	5.1	54
171	Electrospun anti-adhesion barrier made of chitosan alginate for reducing peritoneal adhesions. Carbohydrate Polymers, 2012, 88, 1304-1312.	5.1	64

#	ARTICLE	IF	CITATIONS
172	Study on antibacterial activity of O-carboxymethyl chitosan sodium salt and spinnability of O-carboxymethyl chitosan sodium salt/cellulose polyblends in N-methylmorpholine-N-oxide system. Carbohydrate Polymers, 2012, 89, $104-110$.	5.1	15
173	N-hexanoyl, N-octanoyl and N-decanoyl chitosans: Binding affinity, cell uptake, and transfection. Carbohydrate Polymers, 2012, 89, 403-410.	5.1	28
174	Physiochemical properties and prolonged release behaviours of chitosan-denatured \hat{l}^2 -lactoglobulin microcapsules for potential food applications. Food Chemistry, 2012, 134, 992-998.	4.2	49
175	An overview of natural polymers for oral insulin delivery. Drug Discovery Today, 2012, 17, 784-792.	3.2	138
176	Extraction, characterization and in vitro antioxidative potential of chitosan and sulfated chitosan from Cuttlebone of Sepia aculeata Orbigny, 1848. Asian Pacific Journal of Tropical Biomedicine, 2012, 2, S334-S341.	0.5	80
177	Characterisation of physical, chemical and antimicrobial properties of allicin–chitosan complexes. International Journal of Food Science and Technology, 2012, 47, 1339-1347.	1.3	22
178	Antimicrobial activity of chitosanâ€based films against <i>Salmonella typhimurium</i> and <i>Staphylococcus aureus</i> International Journal of Food Science and Technology, 2012, 47, 2127-2133.	1.3	34
179	A critical review of modern and emerging absorbent dressings used to treat exuding wounds. International Wound Journal, 2012, 9, 601-612.	1.3	116
180	Chitosanâ€based Edible Coatings for Quality Preservation of Postharvest Whiteleg Shrimp (<i>Litopenaeus vannamei</i>). Journal of Food Science, 2012, 77, C491-6.	1.5	94
181	Effect of Molecular Weight, Acid, and Plasticizer on the Physicochemical and Antibacterial Properties of βâ€Chitosan Based Films. Journal of Food Science, 2012, 77, E127-36.	1.5	66
182	Novel chitosan/poly(vinyl) alcohol thin adsorptive membranes modified with amino functionalized multi-walled carbon nanotubes for Cu(II) removal from water: Preparation, characterization, adsorption kinetics and thermodynamics. Separation and Purification Technology, 2012, 89, 309-319.	3.9	188
183	Chitosan enhances the stability and targeting of immuno-nanovehicles to cerebro-vascular deposits of Alzheimer's disease amyloid protein. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 250-260.	1.7	67
184	PEGylated chitosan derivatives: Synthesis, characterizations and pharmaceutical applications. Progress in Polymer Science, 2012, 37, 659-685.	11.8	204
185	The effect of chitosan hydrogen bonding on lactose crystallinity during spray drying. Journal of Food Engineering, 2012, 108, 541-548.	2.7	26
186	Grafting polymerization of acrylonitrile and methyl acrylate on chitosan in the presence of cobalt(III) complexes. Polymer Science - Series B, 2012, 54, 167-174.	0.3	7
187	Efficient wheat germ agglutinin purification with a chitosanâ€based affinity chromatographic matrix. Journal of Separation Science, 2012, 35, 231-238.	1.3	13
188	Enterovirus 71 adsorption on metal ionâ€composite chitosan beads. Biotechnology Progress, 2012, 28, 206-214.	1.3	8
189	Deoxycholateâ€chitosan nanospheres fabricated by γâ€irradiation and chemical modification: Nanoscale synthesis and controlled studies. Journal of Applied Polymer Science, 2012, 123, 3309-3320.	1.3	11

#	Article	IF	CITATIONS
190	Non-isothermal kinetics of thermal degradation of chitin. Journal of Thermal Analysis and Calorimetry, 2013, 111, 763-771.	2.0	67
191	Preparation, water absorbency, and enzyme degradability of novel chitinâ€and cellulose/chitinâ€based superabsorbent hydrogels. Journal of Applied Polymer Science, 2013, 128, 572-581.	1.3	39
192	Effects of dietary chitosan oligosaccharide complex with rare earth on growth performance and innate immune response of turbot, <i>Scophthalmus maximus </i> L Aquaculture Research, 2013, 44, 683-690.	0.9	24
193	Synthesis and characterization of chitosanâ€ <i>graft</i> â€poly(acrylic acid)/nontronite hydrogel composites based on a design of experiments. Journal of Applied Polymer Science, 2013, 128, 3480-3489.	1.3	22
194	Preparation of Chitin/Cellulose Films Compatibilized with Polymeric Ionic Liquids. Journal of Polymers and the Environment, 2013, 21, 795-801.	2.4	22
195	The effect of bone morphogenic protein-2 (BMP-2)-immobilizing heparinized-chitosan scaffolds for enhanced osteoblast activity. Tissue Engineering and Regenerative Medicine, 2013, 10, 122-130.	1.6	23
196	Short chain chitosan solutions: self-assembly and aggregates disruption effects. Journal of Polymer Research, 2013, 20, 1.	1.2	31
197	The sensing mechanism and detection of low concentration acetone using chitosan-based sensors. Sensors and Actuators B: Chemical, 2013, 177, 522-528.	4.0	111
198	Chemical modification of chitin by grafting with polystyrene using ammonium persulfate initiator. Carbohydrate Polymers, 2013, 98, 1618-1623.	5.1	37
199	Bioinspired Chitinous Material Solutions for Environmental Sustainability and Medicine. Advanced Functional Materials, 2013, 23, 4454-4466.	7.8	50
200	Biomedical applications and colloidal properties of amphiphilically modified chitosan hybrids. Progress in Polymer Science, 2013, 38, 1307-1328.	11.8	91
201	In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids and Surfaces B: Biointerfaces, 2013, 104, 245-253.	2.5	65
202	Polysaccharide Based Graft Copolymers. , 2013, , .		37
203	Physicochemical, pharmaceutical and biological approaches toward designing optimized and efficient hydrophobically modified chitosan-based polymeric micelles as a nanocarrier system for targeted delivery of anticancer drugs. Journal of Drug Targeting, 2013, 21, 693-709.	2.1	35
204	Aniline-Catalyzed Reductive Amination as a Powerful Method for the Preparation of Reducing End-"Clickable―Chitooligosaccharides. Bioconjugate Chemistry, 2013, 24, 544-549.	1.8	34
205	Utilization of chitosan biopolymer to enhance fly ash-based geopolymer. Journal of Materials Science, 2013, 48, 7986-7993.	1.7	42
206	Chitosans for delivery of nucleic acids. Advanced Drug Delivery Reviews, 2013, 65, 1234-1270.	6.6	185
207	Effect of crosslinking in chitosan/aloe vera-based membranes for biomedical applications. Carbohydrate Polymers, 2013, 98, 581-588.	5.1	98

#	Article	IF	CITATIONS
208	Antibacterial hydrogel coating by electrophoretic co-deposition of chitosan/alkynyl chitosan. Carbohydrate Polymers, 2013, 98, 1547-1552.	5.1	74
209	Preparation and characterization of bacterial cellulose/hydroxypropyl chitosan blend as-spun fibers. Fibers and Polymers, 2013, 14, 935-940.	1.1	18
210	Development and characterization of MWNTs/Chitosan biocomposite fiber. Fibers and Polymers, 2013, 14, 236-242.	1.1	5
211	Design, Characterization, and In Vitro Evaluation of Antifungal Polymeric Films. AAPS PharmSciTech, 2013, 14, 64-73.	1.5	15
212	Electrospun chitosan/PEDOT nanofibers. Materials Science and Engineering C, 2013, 33, 3845-3850.	3.8	37
213	Synthesis and characterization of a novel methoxy poly(ethylene glycol)-Tat peptide-chitosan copolymers. Colloid and Polymer Science, 2013, 291, 1319-1327.	1.0	9
214	Synthesis of a novel fluorescent amphiphilic chitosan biopolymer: photophysical and electrochemical behavior. Photochemical and Photobiological Sciences, 2013, 12, 1927-1938.	1.6	7
215	Chemistry and Applications of Polysaccharide Solutions in Strong Electrolytes/Dipolar Aprotic Solvents: An Overview. Molecules, 2013, 18, 1270-1313.	1.7	56
216	The preparation, swelling characteristics, and albumin adsorption and release behaviors of a novel chitosan-based polyampholyte hydrogel. Reactive and Functional Polymers, 2013, 73, 97-107.	2.0	42
217	Organically modified montmorillonite and chitosan–phosphotungstic acid complex nanocomposites as high performance membranes for fuel cell applications. Journal of Solid State Electrochemistry, 2013, 17, 2123-2137.	1.2	27
218	Polymeric Scaffold Aided Stem Cell Therapeutics for Cardiac Muscle Repair and Regeneration. Macromolecular Bioscience, 2013, 13, 1119-1134.	2.1	35
219	Hydrogen bond detachment in polymer complexes. Polymer, 2013, 54, 5382-5390.	1.8	31
220	Hydrophobic Polymers from Food Waste: Resources and Synthesis. Polymer Reviews, 2013, 53, 627-694.	5.3	74
221	High tenacity regenerated chitosan fibers prepared by using the binary ionic liquid solvent (Gly·HCl)-[Bmim]Cl. Carbohydrate Polymers, 2013, 97, 300-305.	5.1	32
222	Engineering of Polysaccharides via Nanotechnology. Advances in Polymer Science, 2013, , 87-134.	0.4	4
223	Dopamine-Mediated Sclerotization of Regenerated Chitin in Ionic Liquid. Materials, 2013, 6, 3826-3839.	1.3	41
224	A Review of the Applications of Chitin and Its Derivatives in Agriculture to Modify Plant-Microbial Interactions and Improve Crop Yields. Agronomy, 2013, 3, 757-793.	1.3	274
225	Application of magnetic chitosan composites for the removal of toxic metal and dyes from aqueous solutions. Advances in Colloid and Interface Science, 2013, 201-202, 68-93.	7.0	543

#	Article	IF	CITATIONS
226	Preparation of highly flexible chitin nanofiber-graft-poly (\hat{l}^3 -l-glutamic acid) network film. Polymer Bulletin, 2013, 70, 3279-3289.	1.7	29
227	Homogeneous synthesis of chitin-based acrylate superabsorbents in NaOH/urea solution. Carbohydrate Polymers, 2013, 94, 261-271.	5.1	29
228	Chitin extraction and characterization from Daphnia magna resting eggs. International Journal of Biological Macromolecules, 2013, 61, 459-464.	3.6	59
229	Molecular mobility of chitosan and its interaction with montmorillonite in composite films: Dielectric spectroscopy and FTIR studies. Polymer Science - Series A, 2013, 55, 738-748.	0.4	15
230	Fabrication of distilled water-soluble chitosan/alginate functional multilayer composite microspheres. Carbohydrate Polymers, 2013, 98, 1366-1370.	5.1	19
231	Catechol-Functionalized Chitosan/Iron Oxide Nanoparticle Composite Inspired by Mussel Thread Coating and Squid Beak Interfacial Chemistry. Langmuir, 2013, 29, 10899-10906.	1.6	69
232	Review: Preparation and Application of Magnetic Chitosan Derivatives in Separation Processes. Analytical Letters, 2013, 46, 2635-2656.	1.0	28
233	Determining the Colloidal Behavior of Ionically Cross-Linked Polyelectrolytes with Isothermal Titration Calorimetry. Journal of Physical Chemistry B, 2013, 117, 9548-9557.	1.2	47
234	Rapid harvesting of freshwater microalgae using chitosan. Process Biochemistry, 2013, 48, 1107-1110.	1.8	120
235	Organic Semiconductors in Organic Thin-Film Transistor-Based Chemical and Biological Sensors. Polymer Reviews, 2013, 53, 352-406.	5.3	128
236	Preparation and Research of Electrospinning Chitosan Nanofiber Sustained-Release Carrier. Integrated Ferroelectrics, 2013, 144, 48-55.	0.3	1
237	The Effect of Different Plasticizers on Lactose Crystallization During Spray Drying. Drying Technology, 2013, 31, 1856-1862.	1.7	1
238	High strength films with gas-barrier fabricated from chitin solution dissolved at low temperature. Journal of Materials Chemistry A, 2013, 1, 1867-1874.	5.2	144
239	Triphenylamine coupled chitosan with high buffering capacity and low viscosity for enhanced transfection in mammalian cells, in vitro and in vivo. Journal of Materials Chemistry B, 2013, 1, 6053.	2.9	40
240	Miscibility of eudragit/chitosan polymer blend in water determined by physical property measurements. International Journal of Pharmaceutics, 2013, 441, 648-653.	2.6	11
241	Chitin and Chitosan Based Blends, Composites and Nanocomposites. Advanced Structured Materials, 2013, , 55-119.	0.3	19
242	Chitosan biopolymer for fuel cell applications. Carbohydrate Polymers, 2013, 92, 955-975.	5.1	311
243	Ultrathin chitosan–poly(ethylene glycol) hydrogel films for corneal tissue engineering. Acta Biomaterialia, 2013, 9, 6594-6605.	4.1	115

#	Article	IF	Citations
244	Progress in Renewable Polymers from Natural Terpenes, Terpenoids, and Rosin. Macromolecular Rapid Communications, 2013, 34, 8-37.	2.0	553
245	Structural and mechanical properties of the arthropod cuticle: Comparison between the fang of the spider Cupiennius salei and the carapace of American lobster Homarus americanus. Journal of Structural Biology, 2013, 183, 172-179.	1.3	40
247	Cyclodextrin Mediated Controlled Release of Naproxen from pH-Sensitive Chitosan/Poly(Vinyl) Tj ETQq0 0 0 rgB7 2013, 52, 14192-14200.	Γ/Overlock 1.8	10 Tf 50 66 80
248	Bubble template fabrication of chitosan/poly(vinyl alcohol) sponges for wound dressing applications. International Journal of Biological Macromolecules, 2013, 62, 188-193.	3.6	68
249	Physicochemical and antibacterial properties of surfactant mixtures with quaternized chitosan microgels. Carbohydrate Polymers, 2013, 93, 709-717.	5.1	25
250	Mucoadhesive 4-carboxybenzenesulfonamide-chitosan with antibacterial properties. Carbohydrate Polymers, 2013, 94, 244-252.	5.1	20
251	In situ activated nanostructured platform for oxidized glutathione biosensing. Electrochimica Acta, 2013, 90, 309-316.	2.6	10
252	Chitin butyrate coated electrospun nylon-6 fibers for biomedical applications. Applied Surface Science, 2013, 285, 538-544.	3.1	39
253	Gd complexes of diethylenetriaminepentaacetic acid conjugates of low-molecular-weight chitosan oligosaccharide as a new liver-specific MRI contrast agent. Magnetic Resonance Imaging, 2013, 31, 604-609.	1.0	19
254	Chitosan-based biomaterials for tissue engineering. European Polymer Journal, 2013, 49, 780-792.	2.6	1,742
255	Bacterial cellulose and bacterial cellulose–chitosan membranes for wound dressing applications. Carbohydrate Polymers, 2013, 94, 603-611.	5.1	518
256	Application of cryomilling to enhance material properties of carbon nanotube reinforced chitosan nanocomposites. Composites Part B: Engineering, 2013, 50, 127-134.	5.9	33
257	A Facile Approach for Controlled Modification of Chitosan under \hat{l}^3 -Ray Irradiation for Drug Delivery. Macromolecules, 2013, 46, 814-818.	2.2	41
258	Chitosan–hydroxyapatite composites. Carbohydrate Polymers, 2013, 93, 256-262.	5.1	164
259	Silver-carboxymethyl chitin nanocomposites. Polymer Science - Series A, 2013, 55, 107-114.	0.4	6
260	Controlled Polymerization of Next-Generation Renewable Monomers and Beyond. Macromolecules, 2013, 46, 1689-1712.	2.2	437
261	Characterization and antimicrobial analysis of chitosan-based films. Journal of Food Engineering, 2013, 116, 889-899.	2.7	262
262	Chondroitin Sulfate, Hyaluronic Acid and Chitin/Chitosan Production Using Marine Waste Sources: Characteristics, Applications and Eco-Friendly Processes: A Review. Marine Drugs, 2013, 11, 747-774.	2.2	198

#	Article	IF	CITATIONS
263	Chitin-natural clay nanotubes hybrid hydrogel. International Journal of Biological Macromolecules, 2013, 58, 23-30.	3.6	62
264	Sulfur-Containing Chitin and Chitosan Derivatives as Trace Metal Adsorbents: A Review. Critical Reviews in Environmental Science and Technology, 2013, 43, 1741-1794.	6.6	42
265	Preparation of lead-ion imprinted crosslinked electro-spun chitosan nanofiber mats and application in lead ions removal from aqueous solutions. European Polymer Journal, 2013, 49, 1487-1494.	2.6	66
266	Thiopyrazole preactivated chitosan: Combining mucoadhesion and drug delivery. Acta Biomaterialia, 2013, 9, 6585-6593.	4.1	21
267	Homogeneous acetylation of chitosan in ionic liquids. Journal of Applied Polymer Science, 2013, 129, 28-35.	1.3	22
268	Electrospun Chitosan Microspheres for Complete Encapsulation of Anionic Proteins: Controlling Particle Size and Encapsulation Efficiency. AAPS PharmSciTech, 2013, 14, 794-801.	1.5	10
269	Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chemical Engineering Journal, 2013, 215-216, 791-801.	6.6	108
270	Polymer Grafting: A Versatile Means to Modify the Polysaccharides. , 2013, , 1-14.		9
271	Chitosan-g-Copolymers: Synthesis, Properties, and Applications. , 2013, , 111-147.		0
272	Electrospun Antibacterial Chitosan-Based Fibers. Macromolecular Bioscience, 2013, 13, 860-872.	2.1	115
272 273	Electrospun Antibacterial Chitosan-Based Fibers. Macromolecular Bioscience, 2013, 13, 860-872. Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772.	2.1	115 74
	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue		
273	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceramics International,	11.8	74
273 274	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceramics International, 2013, 39, 5393-5402. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. Journal of	11.8 2.3	74 42
273 274 275	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosan–hydroxyapatite–carbon nanotube composite coatings. Ceramics International, 2013, 39, 5393-5402. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. Journal of Materials Chemistry B, 2013, 1, 1729. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: Structure–function property relationship. Acta Biomaterialia,	11.8 2.3 2.9	74 42 74
273 274 275 277	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosanâ€"hydroxyapatiteâ€"carbon nanotube composite coatings. Ceramics International, 2013, 39, 5393-5402. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. Journal of Materials Chemistry B, 2013, 1, 1729. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: Structureã€"function property relationship. Acta Biomaterialia, 2013, 9, 6084-6094. Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical	11.8 2.3 2.9	74 42 74 108
273 274 275 277 278	Role of nanostructured biopolymers and bioceramics in enamel, dentin and periodontal tissue regeneration. Progress in Polymer Science, 2013, 38, 1748-1772. Effect of pH and carbon nanotube content on the corrosion behavior of electrophoretically deposited chitosanâ∈"hydroxyapatiteâ∈"carbon nanotube composite coatings. Ceramics International, 2013, 39, 5393-5402. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. Journal of Materials Chemistry B, 2013, 1, 1729. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: Structureâ∈"function property relationship. Acta Biomaterialia, 2013, 9, 6084-6094. Degradable natural polymer hydrogels for articular cartilage tissue engineering. Journal of Chemical Technology and Biotechnology, 2013, 88, 327-339. A Biomimetic Composite from Solution Selfâ∈Assembly of Chitin Nanofibers in a Silk Fibroin Matrix.	11.8 2.3 2.9 4.1	74 42 74 108 326

#	Article	IF	CITATIONS
282	A comparative study on the chitosan membranes prepared from glycine hydrochloride and acetic acid. Carbohydrate Polymers, 2013, 91, 477-482.	5.1	32
283	Biopolymer capped silver nanoparticles as fluorophore for ultrasensitive and selective determination of malathion. Talanta, 2013, 115, 24-31.	2.9	42
284	Biobased Chitosan/Polybenzoxazine Cross-Linked Films: Preparation in Aqueous Media and Synergistic Improvements in Thermal and Mechanical Properties. Biomacromolecules, 2013, 14, 1806-1815.	2.6	92
285	Current and emerging analytical technologies for analyzing chitin-protein binding interactions. Reviews in Analytical Chemistry, 2013, 32, 35-53.	1.5	0
286	Functional properties of chitosan-based films. Carbohydrate Polymers, 2013, 93, 339-346.	5.1	356
287	Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydrate Polymers, 2013, 95, 241-251.	5.1	122
288	Design of novel sheet-shaped chitosan hydrogel for wound healing: A hybrid biomaterial consisting of both PEC-grafted chitosan and crosslinkable polymeric micelles acting as drug containers. Materials Science and Engineering C, 2013, 33, 3697-3703.	3.8	51
289	Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. International Journal of Biological Macromolecules, 2013, 52, 333-339.	3.6	126
290	Facile and direct synthesis of long-chain chitin from chitobiose via proton-assisted nonaqueous biocatalysis. Journal of Molecular Catalysis B: Enzymatic, 2013, 87, 69-74.	1.8	0
291	Silver sulfadiazine loaded chitosan/chondroitin sulfate films for a potential wound dressing application. Materials Science and Engineering C, 2013, 33, 588-595.	3.8	92
292	The Use of Nanoscaled Fibers or Tubes to Improve Biocompatibility and Bioactivity of Biomedical Materials. Journal of Nanomaterials, 2013, 2013, 1-16.	1.5	30
293	The toxic effect of chitosan/metalâ€impregnated textile to synanthropic mites. Pest Management Science, 2013, 69, 722-726.	1.7	12
294	Study of the removal of residual aluminum through the biopolymers carboxymethylcellulose, chitin, and chitosan. Desalination and Water Treatment, 2013, 51, 1735-1743.	1.0	13
295	The Invasive Chytrid Fungus of Amphibians Paralyzes Lymphocyte Responses. Science, 2013, 342, 366-369.	6.0	154
296	Synthesis and optimization of soy protein fiber based graft copolymer through response surface methodology for removal of oil spillage. Polymer Bulletin, 2013, 70, 3155-3169.	1.7	13
297	Incorporation of theophylline in a chitosan/chondroitin sulfate hydrogel matrix: <i>In vitro</i> release studies and mechanical properties according to pH changes. Journal of Applied Polymer Science, 2013, 128, 3417-3424.	1.3	8
298	Sodium Carboxymethyl Chitosan as a Fixative for Eau de Cologne. Tropical Journal of Pharmaceutical Research, 2013, 12, .	0.2	2
299	Self-standing chitosan films as dielectrics in organic thin-film transistors. EXPRESS Polymer Letters, 2013, 7, 960-965.	1.1	22

#	Article	IF	CITATIONS
300	Cholesterol-Imprinted Receptor Using Chitosan Derivative as the Precursor. Advanced Materials Research, 0, 699, 712-717.	0.3	0
301	Electrochemical Property of Single well Carbon Nanotubes/Chitosan Nanocomposite in Electrochemical Sensor. Advanced Materials Research, 2013, 753-755, 2087-2090.	0.3	0
302	Synthesis and Physicochemical Characterization of Chitin Derivatives. Journal of Chemistry, 2013, 2013, 1-8.	0.9	15
303	A "green―industrial revolution: Using chitin towards transformative technologies. Pure and Applied Chemistry, 2013, 85, 1693-1701.	0.9	23
304	Chitin in the Silk Gland Ducts of the Spider Nephila edulis and the Silkworm Bombyx mori. PLoS ONE, 2013, 8, e73225.	1.1	34
305	Chitin Amendment Increases Soil Suppressiveness toward Plant Pathogens and Modulates the Actinobacterial and Oxalobacteraceal Communities in an Experimental Agricultural Field. Applied and Environmental Microbiology, 2013, 79, 5291-5301.	1.4	138
306	Ionic Liquid as Useful Media for Dissolution, Derivatization, and Nanomaterial Processing of Chitin. Green and Sustainable Chemistry, 2013, 03, 19-25.	0.8	65
307	Corn Cob Filled Chitosan Biocomposite Films. Advanced Materials Research, 2013, 747, 649-652.	0.3	15
308	Chitosan – a promising biomaterial in veterinary medicine. Polish Journal of Veterinary Sciences, 2013, 16, 843-848.	0.2	15
309	Chitin, Chitosan, and Glycated Chitosan Regulate Immune Responses: The Novel Adjuvants for Cancer Vaccine. Clinical and Developmental Immunology, 2013, 2013, 1-8.	3.3	114
310	Effect of carp (<i>Cyprinus carpio</i>) oil incorporation on water vapour permeability, mechanical properties and transparency of chitosan films. International Journal of Food Science and Technology, 2013, 48, 1309-1317.	1.3	9
311	Synthesis and Characterization of Cyclodextrin-containing Hydrogel for Ophthalmic Drugs Delivery. Journal of Macromolecular Science - Pure and Applied Chemistry, 2013, 50, 983-990.	1.2	15
312	Modified Corn Cob Filled Chitosan Biocomposite Films. Polymer-Plastics Technology and Engineering, 2013, 52, 1496-1502.	1.9	41
315	Nonionic polymer cross-linked chitosan hydrogel: preparation and bioevaluation. Journal of Biomaterials Science, Polymer Edition, 2013, 24, 1564-1574.	1.9	26
316	Marine Natural Antihypertensive Peptides from Styela clava Having Multifunctions of ACE Inhibition and NO Production in Endothelial Cells � � � � � � � � � �		0
317	Antioxidant, Antimicrobial Properties of Chitin, Chitosan, and Their Derivatives., 2013,, 217-228.		0
318	Pure chitosan microfibres for biomedical applications. Autex Research Journal, 2013, 13, 134-140.	0.6	26
319	Pre-Concentration Procedure Based on Chitosan Combined with Ionic Liquid for the Determination of Cobalt, Nickel, and Copper in Water Samples. Applied Spectroscopy, 2013, 67, 536-541.	1.2	4

#	Article	IF	CITATIONS
320	Enhancement of Cunninghamella elegans UCP/WFCC 0542 Biomass and Chitosan with Amino Acid Supply. Molecules, 2013, 18, 10095-10107.	1.7	5
321	Biotechnological processes for chitin recovery out of crustacean waste: A mini-review. Electronic Journal of Biotechnology, 2013, 16, .	1.2	39
322	Preparation of New Polysaccharide-Based Materials Using Ionic Liquids. Kobunshi Ronbunshu, 2013, 70, 520-528.	0.2	3
323	Chitosan/Corn Cob Biocomposite Films by Cross-linking with Glutaraldehyde. BioResources, 2013, 8, .	0.5	22
324	Microbiological Chitosan: Potential Application as Anticariogenic Agent. , 0, , .		2
326	Innate Sensing of Chitin and Chitosan. PLoS Pathogens, 2013, 9, e1003080.	2.1	157
327	Inhibition of Fungal Plant Pathogens by Synergistic Action of Chito-Oligosaccharides and Commercially Available Fungicides. PLoS ONE, 2014, 9, e93192.	1.1	49
328	Comparison of Extraction Methods of Chitin from <i>Ganoderma lucidum</i> Mushroom Obtained in Submerged Culture. BioMed Research International, 2014, 2014, 1-7.	0.9	7 5
329	Actividad antibacteriana de soluciones acidas de quitosano obtenido de exoesqueleto de camarón. Revista Colombiana De BiotecnologÃa, 2014, 16, 104.	0.5	3
330	Drug Carrier Systems Using Chitosan for Non Parenteral Routes. , 0, , .		8
331	Zeta Potential and Turbidimetry Analyzes for the Evaluation of Chitosan/Phytic Acid Complex Formation. Journal of Food Research, 2014, 3, 71.	0.1	31
332	Chitosan Extrusion at High Solids Content: An Orthogonal Experimental Design Study. Polymers From Renewable Resources, 2014, 5, 1-11.	0.8	0
333	Cationic Nanostructures for Vaccines. , 2014, , .		5
334	Coated Cotton Gauze with Ag/ZnO/chitosan Nanocomposite as a Modern Wound Dressing. Journal of Engineered Fibers and Fabrics, 2014, 9, 155892501400900.	0.5	27
337	The Study of Ethanol/Water Vapors Permeation through Sulfuric Acid Cross-Linked Chitosan Magnetic Membranes. Separation Science and Technology, 2014, 49, 1761-1767.	1.3	10
338	Chemical Modifications of Chitosan and Its Applications. Polymer-Plastics Technology and Engineering, 2014, 53, 1494-1505.	1.9	64
339	Structure and properties of films fabricated from chitin solution by coagulating with heating. Journal of Applied Polymer Science, 2014, 131, .	1.3	13
340	Synthesis and surface modification of chitosan containing hydrogel for ophthalmic drug delivery. Materials Technology, 2014, 29, 144-151.	1.5	15

#	Article	IF	CITATIONS
341	Polymers in oral insulin delivery. , 2014, , 257-310.		10
342	Adsorption of congo red by cross-linked chitosan resins. Desalination and Water Treatment, 2014, 52, 7733-7742.	1.0	11
343	Surface functionalisation of contact lenses by CS/HA multilayer film to improve its properties and deliver drugs. Materials Technology, 2014, 29, 8-13.	1.5	20
344	Application of Biopolymer-Based Adsorbents in Removal of Heavy Metals. Advanced Materials Research, 2014, 1048, 373-377.	0.3	6
345	What Can We Learn from the Saga of Chitosan Gums in Hyperphosphatemia Therapy?. Clinical Journal of the American Society of Nephrology: CJASN, 2014, 9, 967-970.	2.2	8
346	Highly selective removal of organic dyes from aqueous solutions with chitin beads entrapping rectorite. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
347	Modification of the chitosan structure and properties using high-energy chemistry methods. High Energy Chemistry, 2014, 48, 293-302.	0.2	11
348	Preparation of quaternary ammonium salt of chitosan nanoparticles and their textile properties on <i>Antheraea pernyi</i> silk modification. Textile Reseach Journal, 2014, 84, 2115-2124.	1.1	28
349	Cationic Polysaccharides in Regenerative Medicine: Challenges and Perspectives. RSC Polymer Chemistry Series, 2014, , 178-196.	0.1	0
350	Facile Route to Produce Chitin Nanofibers as Precursors for Flexible and Transparent Gas Barrier Materials. Biomacromolecules, 2014, 15, 4614-4620.	2.6	70
351	Spent Mushroom Compost as Biosorbent for Dye Biosorption. Clean - Soil, Air, Water, 2014, 42, 1721-1728.	0.7	26
352	Use of Chitosan with Different Deacetylation Degrees for the Adsorption of Food Dyes in a Binary System. Clean - Soil, Air, Water, 2014, 42, 767-774.	0.7	21
353	Use of an Acylated Chitosan Schiff Base as an Ecofriendly Multifunctional Biolubricant Additive. Industrial & Engineering Chemistry Research, 2014, 53, 18370-18379.	1.8	44
354	Biodegradable biomedical foam scaffolds. , 2014, , 163-187.		17
355	Degradability of extruded polyethylene/chitosan blends compatibilized with polyethyleneâ€ <i>graft</i> â€maleic anhydride under natural weathering. Journal of Applied Polymer Science, 2014, 131, .	1.3	14
356	Dissolution and stability of chitosan in a sodium hydroxide/urea aqueous solution. Journal of Applied Polymer Science, 2014, 131, .	1.3	8
357	Self-assembly of mucoadhesive nanofibers. RSC Advances, 2014, 4, 58664-58673.	1.7	14
358	Chitin and Its Beneficial Activity as an Immunomodulator in Allergic Reactions. , 2014, , 361-369.		3

#	Article	IF	CITATIONS
359	Fabrication and Characterization of Macroporous Chitosan/PVA Composite Sponges for Wound Dressing. Materials Research Society Symposia Proceedings, 2014, 1626, 1.	0.1	1
360	Isolation of lactoferrin from whey by dye-affinity chromatography with Yellow HE-4R attached to chitosan mini-spheres. International Dairy Journal, 2014, 39, 53-59.	1.5	15
361	Internal plasticization of chitosan with oligo(dl-lactic acid) branches. Polymer, 2014, 55, 2645-2651.	1.8	6
362	Wet spinning of fibers made of chitosan and chitin nanofibrils. Carbohydrate Polymers, 2014, 108, 176-182.	5.1	114
363	Characterization of dielectrophoresis-aligned nanofibrous silk fibroin–chitosan scaffold and its interactions with endothelial cells for tissue engineering applications. Acta Biomaterialia, 2014, 10, 3630-3640.	4.1	36
364	Dynamic removal of n-hexane from water using nanocomposite membranes: Serial coating of para-aminobenzoate alumoxane, boehmite-epoxide and chitosan on Kevlar fabrics. Journal of Industrial and Engineering Chemistry, 2014, 20, 4491-4498.	2.9	15
365	Synthesis and characterization of a novel chitosan-N-acetyl-homocysteine thiolactone polymer using MES buffer. Carbohydrate Polymers, 2014, 111, 125-132.	5.1	25
366	Chitin/graphene oxide composite films with enhanced mechanical properties prepared in NaOH/urea aqueous solution. Cellulose, 2014, 21, 1781-1791.	2.4	20
367	Synthesis and characterization of chitosan grafted with polystyrene using ammonium persulfate initiator. Materials Letters, 2014, 124, 12-14.	1.3	27
368	Preparation and application of chitin and its derivatives: a review. Iranian Polymer Journal (English) Tj ETQq1 1 0.	784314 rg 1.3	:BT ₁ Qverlock
368 369	Preparation and application of chitin and its derivatives: a review. Iranian Polymer Journal (English) Tj ETQq1 1 0. DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Open Chemistry, 2014, 12, 604-611.	784314 rg 1.3	BT ₁ Qverlock
	DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the	1.0	140
369	DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Open Chemistry, 2014, 12, 604-611. Protein Engineering of Chit42 Towards Improvement of Chitinase and Antifungal Activities. Current	1.0	27
369 370	DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Open Chemistry, 2014, 12, 604-611. Protein Engineering of Chit42 Towards Improvement of Chitinase and Antifungal Activities. Current Microbiology, 2014, 68, 495-502. Synthesis of waterâ€soluble allylâ€functionalized oligochitosan and its modification by thiol–ene	1.0	27
369 370 371	DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Open Chemistry, 2014, 12, 604-611. Protein Engineering of Chit42 Towards Improvement of Chitinase and Antifungal Activities. Current Microbiology, 2014, 68, 495-502. Synthesis of waterâ€soluble allylâ€functionalized oligochitosan and its modification by thiol–ene addition in water. Journal of Polymer Science Part A, 2014, 52, 39-48. Insight into Polycation Chain Length Affecting Transfection Efficiency by O-Methyl-Free	1.0	27 35 29
369 370 371 372	DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Open Chemistry, 2014, 12, 604-611. Protein Engineering of Chit42 Towards Improvement of Chitinase and Antifungal Activities. Current Microbiology, 2014, 68, 495-502. Synthesis of waterâ€soluble allylâ€functionalized oligochitosan and its modification by thiol–ene addition in water. Journal of Polymer Science Part A, 2014, 52, 39-48. Insight into Polycation Chain Length Affecting Transfection Efficiency by O-Methyl-Free N,N,N-Trimethyl Chitosans as Gene Carriers. Pharmaceutical Research, 2014, 31, 895-907. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids and	1.0 1.0 2.5	27 35 29
369 370 371 372 373	DNA-based biosensors with external Nafion and chitosan membranes for the evaluation of the antioxidant activity of beer, coffee, and tea. Open Chemistry, 2014, 12, 604-611. Protein Engineering of Chit42 Towards Improvement of Chitinase and Antifungal Activities. Current Microbiology, 2014, 68, 495-502. Synthesis of waterâ€soluble allylâ€functionalized oligochitosan and its modification by thiol–ene addition in water. Journal of Polymer Science Part A, 2014, 52, 39-48. Insight into Polycation Chain Length Affecting Transfection Efficiency by O-Methyl-Free N,N,N-Trimethyl Chitosans as Gene Carriers. Pharmaceutical Research, 2014, 31, 895-907. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 446, 224-232. Self-assembled chitin nanofibers and applications. Advances in Colloid and Interface Science, 2014, 207,	1.0 1.0 2.5 1.7	27 35 29 6 48

#	Article	IF	CITATIONS
377	Mechanical behavior of transparent nanofibrillar cellulose–chitosan nanocomposite films in dry and wet conditions. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 32, 279-286.	1.5	86
378	Effect of sustained heparin release from PCL/chitosan hybrid small-diameter vascular grafts on anti-thrombogenic property and endothelialization. Acta Biomaterialia, 2014, 10, 2739-2749.	4.1	196
379	Removal of 2,4-D from aqueous solutions by adsorption processes using two biopolymers: chitin and chitosan and their optical properties. Optical Materials, 2014, 36, 1471-1477.	1.7	81
380	Biocompatible core–shell electrospun nanofibers as potential application for chemotherapy against ovary cancer. Materials Science and Engineering C, 2014, 41, 217-223.	3.8	82
381	High Internal Phase Emulsion Templating with Self-Emulsifying and Thermoresponsive Chitosan- <i>graft</i> -PNIPAM- <i>graft</i> -Oligoproline. Biomacromolecules, 2014, 15, 1777-1787.	2.6	57
382	Chitosan biobased and intelligent films: Monitoring pH variations. LWT - Food Science and Technology, 2014, 55, 83-89.	2.5	221
383	Direct conversion of chitin into a N-containing furan derivative. Green Chemistry, 2014, 16, 2204-2212.	4.6	220
384	High-performance nanocomposite films: reinforced with chitosan nanofiber extracted from prawn shells. Journal of Materials Science, 2014, 49, 1215-1221.	1.7	35
385	Structural differences between chitin and chitosan extracted from three different marine sources. International Journal of Biological Macromolecules, 2014, 65, 298-306.	3.6	298
386	Preparation of extruded polyethylene/chitosan blends compatibilized with polyethylene-graft-maleic anhydride. Carbohydrate Polymers, 2014, 101, 1094-1100.	5.1	56
387	Structure and properties of chitin whisker reinforced chitosan membranes. International Journal of Biological Macromolecules, 2014, 64, 341-346.	3.6	71
388	Chitosan-based biosorbents: Modification and application for biosorption of heavy metals and radionuclides. Bioresource Technology, 2014, 160, 129-141.	4.8	482
389	Molecular mobility, composition and structure analysis in glycerol plasticised chitosan films. Food Chemistry, 2014, 144, 2-8.	4.2	29
390	Synthesis and antifungal properties of (4-tolyloxy)-pyrimidyl-α-aminophosphonates chitosan derivatives. International Journal of Biological Macromolecules, 2014, 63, 83-91.	3.6	27
391	Marine Carbohydrates of Wastewater Treatment. Advances in Food and Nutrition Research, 2014, 73, 103-143.	1.5	18
392	Novel Catalytic Systems to Convert Chitin and Lignin into Valuable Chemicals. Catalysis Surveys From Asia, 2014, 18, 164-176.	1.0	42
393	Adsorption Mechanism Study of Magnetic EDTA-Chitosan on Cu (II) Ions of Solution. Advanced Materials Research, 2014, 937, 218-223.	0.3	0
394	Investigation of acetylated chitosan microspheres as potential chemoembolic agents. Colloids and Surfaces B: Biointerfaces, 2014, 123, 387-394.	2.5	32

#	ARTICLE	IF	CITATIONS
395	Sustainable DNA Release from Chitosan/Protein Based-DNA Gel Particles. Biomacromolecules, 2014, 15, 3953-3964.	2.6	9
396	Hernia-repair prosthetic devices functionalised with chitosan and ciprofloxacin coating: controlled release and antibacterial activity. Journal of Materials Chemistry B, 2014, 2, 5287.	2.9	62
397	Silk/chitosan biohybrid hydrogels and scaffolds via green technology. RSC Advances, 2014, 4, 53547-53556.	1.7	35
398	A novel fixed-bed reactor design incorporating an electrospun PVA/chitosan nanofiber membrane. Journal of Hazardous Materials, 2014, 280, 788-796.	6.5	83
399	Efficient one-pot synthesis of deoxyfructosazine and fructosazine from <scp>d-</scp> glucosamine hydrochloride using a basic ionic liquid as a dual solvent-catalyst. RSC Advances, 2014, 4, 44253-44260.	1.7	41
400	Resorbable Fiber-Forming Polymers for Biotextile Applications. SpringerBriefs in Materials, 2014, , .	0.1	13
401	Polysaccharide films at an air/liquid and a liquid/silicon interface: effect of the polysaccharide and liquid type on their physical properties. Soft Matter, 2014, 10, 8558-8572.	1.2	7
402	Stabilization of Chitosan Aggregates at the Nanoscale in Solutions in Carbonic Acid. Macromolecules, 2014, 47, 5749-5758.	2.2	46
403	Chitin nanocrystals and nanofibers as nano-sized fillers into thermoplastic starch-based biocomposites processed by melt-mixing. Chemical Engineering Journal, 2014, 256, 356-364.	6.6	142
404	Immobilization of Pectinesterase in Genipin-Crosslinked Chitosan Membrane for Low Methoxyl Pectin Production. Applied Biochemistry and Biotechnology, 2014, 174, 2941-2950.	1.4	7
405	Chitosan improves stability of carbon nanotube biocathodes for glucose biofuel cells. Chemical Communications, 2014, 50, 14535-14538.	2.2	40
406	Recent advances in biodegradable polymeric materials. Materials Science and Technology, 2014, 30, 558-566.	0.8	22
407	Emerging chitin and chitosan nanofibrous materials for biomedical applications. Nanoscale, 2014, 6, 9477-9493.	2.8	305
408	Current status, issues and developments in microalgae derived biodiesel production. Renewable and Sustainable Energy Reviews, 2014, 40, 760-778.	8.2	144
409	Facile nanofibrillation of chitin derivatives by gas bubbling and ultrasonic treatments in water. Carbohydrate Research, 2014, 398, 25-30.	1.1	26
410	Acidic ionic liquid catalyzed crosslinking of oxycellulose with chitosan for advanced biocomposites. Carbohydrate Polymers, 2014, 113, 108-114.	5.1	13
411	Preparation and characterization of self-assembled chitosan nanoparticles for the sustained delivery of streptokinase: an <i>in vivo</i> study. Pharmaceutical Development and Technology, 2014, 19, 593-597.	1.1	20
412	The Effect of Chitin Alkaline Deacetylation at Different Condition on Particle Properties. Procedia Chemistry, 2014, 9, 220-225.	0.7	37

#	Article	IF	CITATIONS
413	Chitosan nanoparticles as non-viral gene delivery systems: Determination of loading efficiency. Biomedicine and Pharmacotherapy, 2014, 68, 775-783.	2.5	31
414	Functionalized Graphene Sheets Embedded in Chitosan Nanocomposite Membranes for Ethanol and Isopropanol Dehydration via Pervaporation. Industrial & Engineering Chemistry Research, 2014, 53, 14474-14484.	1.8	166
415	Overview of Chitin and Chitosan Research. , 2014, , 1-19.		2
416	Interface behavior of quaternized chitosan on cellulosic substrates. Fibers and Polymers, 2014, 15, 1450-1455.	1.1	8
417	Synthesis and Characterization of ETS-10/Chitosan Nanocomposite Membranes for Pervaporation. Separation Science and Technology, 2014, 49, 1903-1909.	1.3	23
418	Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 314-324.	1.5	60
419	Chitosan as an adhesive. European Polymer Journal, 2014, 60, 198-212.	2.6	193
420	Nanoreinforced hemicellulose-based hydrogels prepared by freeze–thaw treatment. Cellulose, 2014, 21, 1709-1721.	2.4	39
421	Effect of neutralization and cross-linking on the thermal degradation of chitosan electrospun membranes. Journal of Thermal Analysis and Calorimetry, 2014, 117, 123-130.	2.0	14
422	Facile preparation of chitin gels with calcium bromide dihydrate/methanol media and their efficient conversion into porous chitins. RSC Advances, 2014, 4, 5542.	1.7	14
423	Novel fibers fabricated directly from chitin solution and their application as wound dressing. Journal of Materials Chemistry B, 2014, 2, 3427.	2.9	91
424	Tunable thermosensitive behavior of multiple responsive chitin. Journal of Materials Chemistry B, 2014, 2, 3050.	2.9	20
425	Ag–Fe ₃ O ₄ nanocomposites@chitin microspheres constructed by in situ one-pot synthesis for rapid hydrogenation catalysis. Green Chemistry, 2014, 16, 2835-2845.	4.6	120
426	Guanidination of Soluble Lysine-Rich Cyanophycin Yields a Homoarginine-Containing Polyamide. Applied and Environmental Microbiology, 2014, 80, 2381-2389.	1.4	18
427	T7 bacteriophage induced changes of gold nanoparticle morphology: biopolymer capped gold nanoparticles as versatile probes for sensitive plasmonic biosensors. Analyst, The, 2014, 139, 3563-3571.	1.7	30
428	Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on <i>îµ</i> à€polylysine and chitosan. Journal of the Science of Food and Agriculture, 2014, 94, 2986-2991.	1.7	22
429	Mechanical Performance of Macrofibers of Cellulose and Chitin Nanofibrils Aligned by Wet-Stretching: A Critical Comparison. Biomacromolecules, 2014, 15, 2709-2717.	2.6	154
430	Polymeric hydrogel thin film synthesis via diffusion through a porous membrane. Materials Letters, 2014, 133, 171-174.	1.3	5

#	Article	IF	CITATIONS
431	Fabrication and characterization of chitosan/poly(vinyl alcohol) electrospun nanofibrous membranes containing silver nanoparticles for antibacterial water filtration. Iranian Polymer Journal (English Edition), 2014, 23, 645-654.	1.3	47
432	Thermodynamic properties of chitosan dodecahydro-closo-dodecaborate. Russian Journal of Physical Chemistry A, 2014, 88, 377-380.	0.1	2
433	Chitosan-based scaffolds for bone tissue engineering. Journal of Materials Chemistry B, 2014, 2, 3161.	2.9	487
434	Non-classical crystal growth of inorganic and organic materials. Materials Science and Technology, 2014, 30, 611-626.	0.8	38
435	Effect of Solvent on Physico-Chemical Properties and Antibacterial Activity of Chitosan Membranes. International Journal of Polymeric Materials and Polymeric Biomaterials, 2014, 63, 708-715.	1.8	14
436	Preparation and Molecular Characterization of Chitosans Obtained from Shrimp (<i>Litopenaeus) Tj ETQq1 1 0.7</i>	84314 rgt 1.5	3T _g Overloc <mark>k</mark> i
437	Hydroxyapatite-Chitosan and Gelatin Based Scaffold for Bone Tissue Engineering. Transactions of the Indian Ceramic Society, 2014, 73, 110-114.	0.4	31
438	Assembly of Chitin Nanofibers into Porous Biomimetic Structures via Freeze Drying. ACS Macro Letters, 2014, 3, 185-190.	2.3	75
439	Chitin-based fast responsive pH sensitive microspheres for controlled drug release. Carbohydrate Polymers, 2014, 102, 413-418.	5.1	51
440	Influence of chitosan and carboxymethylchitosan on the polymorphism and solubilisation of diflunisal. International Journal of Pharmaceutics, 2014, 467, 19-26.	2.6	9
441	A novel method to directionally stabilize enzymes together with redox mediators by electrodeposition. Biosensors and Bioelectronics, 2014, 51, 244-248.	5. 3	10
442	Chitosan-modified porous silicon microparticles for enhanced permeability of insulin across intestinal cell monolayers. Biomaterials, 2014, 35, 7172-7179.	5.7	105
443	Glycan-Functionalized Fluorescent Chitin Nanocrystals for Biorecognition Applications. Bioconjugate Chemistry, 2014, 25, 640-643.	1.8	41
445	Kidney-specific drug delivery system for renal fibrosis based on coordination-driven assembly of catechol-derived chitosan. Biomaterials, 2014, 35, 7157-7171.	5.7	103
446	Surface-initiated atom transfer radical polymerization from chitin nanofiber macroinitiator film. Carbohydrate Polymers, 2014, 112, 119-124.	5.1	21
447	Preparation of chitin nanofiber-reinforced carboxymethyl cellulose films. International Journal of Biological Macromolecules, 2014, 69, 35-38.	3 . 6	41
448	Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl) Tj ETQq0 0 0	rgBT/Over	rlock 10 Tf 50 473
449	Biopolymer–Zeolite Composites as Biosorbents for Separation Processes. , 2014, , 166-197.		O

#	Article	IF	CITATIONS
451	Removal of phosphorus and residual aluminium with the simultaneous use of chitosan and alum on the effluent of an MBBR biological system during start-up. International Journal of Environment and Waste Management, 2014, 14, 358.	0.2	2
452	Chitosan an eco-friendly biomaterial from marine invertebrates. , 2015, , .		2
453	High strength chitosan rod prepared via LiOH/urea solvent through centrifugation induced orientation processing. RSC Advances, 2015, 5, 68243-68250.	1.7	12
456	Synthesis and characterization of composites filtration membranes based on chitosan-poly(ethylene) Tj ${\sf ETQq1\ 1}$	0.784314	frgBT/Overl
457	Suture materials affect peri-implant bone healing and implant osseointegration. Journal of Oral Science, 2015, 57, 219-227.	0.7	5
458	In situ microscopic observation of chitin and fungal cells with chitinous cell walls in hydrothermal conditions. Scientific Reports, 2015, 5, 11907.	1.6	27
459	Chitosan leads to downregulation of YKLâ€40 and inflammasome activation in human macrophages. Journal of Biomedical Materials Research - Part A, 2015, 103, 2778-2785.	2.1	32
460	Extensive $\langle i \rangle N \langle i \rangle$ -methylation of chitosan: evaluating the effects of the reaction conditions by using response surface methodology. Polymer International, 2015, 64, 1617-1626.	1.6	11
462	Improvements of Tensile Properties and Durability of Chitosan Fiber Using Methanol Drying Treatment. Macromolecular Symposia, 2015, 353, 147-153.	0.4	6
463	Morphological and mechanical characterization of chitosan-calcium phosphate composites for potential application as bone-graft substitutes. Research on Biomedical Engineering, 2015, 31, 334-342.	1.5	10
464	Green and energy-efficient methods for the production of metallic nanoparticles. Beilstein Journal of Nanotechnology, 2015, 6, 2354-2376.	1.5	48
465	Surface-Initiated Graft Atom Transfer Radical Polymerization of Methyl Methacrylate from Chitin Nanofiber Macroinitiator under Dispersion Conditions. Fibers, 2015, 3, 338-347.	1.8	12
466	Parametric Study for Adsorption of Sodium Rhodizonate on Chitosan. Journal of Environmental Analytical Chemistry, 2015, 02, .	0.3	0
467	Chitosan as a Natural Polymer for Heterogeneous Catalysts Support: A Short Review on Its Applications. Applied Sciences (Switzerland), 2015, 5, 1272-1283.	1.3	112
468	Chitosan as a Biomaterial â€" Structure, Properties, and Electrospun Nanofibers. , 0, , .		53
469	Effects of Surface-Deacetylated Chitin Nanofibers in an Experimental Model of Hypercholesterolemia. International Journal of Molecular Sciences, 2015, 16, 17445-17455.	1.8	22
470	Chitin Nanofiber Elucidates the Elicitor Activity of Polymeric Chitin in Plants. Frontiers in Plant Science, 2015, 6, 1098.	1.7	55
471	Development of dual-sensitive smart polymers by grafting chitosan with poly (<italic>N</italic> -isopropylacrylamide): an overview. Polimeros, 2015, 25, 237-246.	0.2	21

#	Article	IF	CITATIONS
472	Characterization of Chitosan Nanofiber Sheets for Antifungal Application. International Journal of Molecular Sciences, 2015, 16, 26202-26210.	1.8	19
473	Anticancer and Anti-Inflammatory Properties of Chitin and Chitosan Oligosaccharides. Journal of Functional Biomaterials, 2015, 6, 33-49.	1.8	224
474	Chitin and Chitosan as Direct Compression Excipients in Pharmaceutical Applications. Marine Drugs, 2015, 13, 1519-1547.	2.2	84
475	Use of Cellulose and Oxidized Cellulose Nanocrystals from Olive Stones in Chitosan Bionanocomposites. Journal of Nanomaterials, 2015, 2015, 1-11.	1.5	42
476	Biopolymer Deuteration for Neutron Scattering and Other Isotope-Sensitive Techniques. Methods in Enzymology, 2015, 565, 97-121.	0.4	11
477	Evaluation of Microcrystalline Chitosan and Fibrin Membranes as Platelet-Derived Growth Factor-BB Carriers with Amoxicillin. International Journal of Polymer Science, 2015, 2015, 1-13.	1.2	3
478	Effects of Chitosan Concentration on the Protein Release Behaviour of Electrospun Poly(<mml:math) 0="" 1-11.<="" 2015,="" etqq0="" journal="" nanomaterials,="" of="" td="" tj=""><td>0 rgBT /Ov 1.5</td><td>verlock 10 Tf 17</td></mml:math)>	0 rgBT /Ov 1.5	verlock 10 Tf 17
479	Genipin Cross-Linked Chitosan-Polyvinylpyrrolidone Hydrogels: Influence of Composition and Postsynthesis Treatment on pH Responsive Behaviour. Advances in Materials Science and Engineering, 2015, 2015, 1-10.	1.0	20
481	Enhanced chitosan–DNA interaction by 2-acrylamido-2-methylpropane coupling for an efficient transfection in cancer cells. Journal of Materials Chemistry B, 2015, 3, 3465-3475.	2.9	50
482	Chitin, Chitosan, and Its Derivatives for Wound Healing: Old and New Materials. Journal of Functional Biomaterials, 2015, 6, 104-142.	1.8	279
483	Innovative method to avoid the reduction of silver ions to silver nanoparticles $f(m A)_{m} = 100000000000000000000000000000000000$	T /Overloo 1.2	ck 10 Tf 50 3 69
484	Fabrication and Characterization of Polysaccharide Ion Gels with Ionic Liquids and Their Further Conversion into Value-Added Sustainable Materials. Biomolecules, 2015, 5, 244-262.	1.8	67
485	Bacterial cellulose in the field of wound healing and regenerative medicine of skin: recent trends and future prospectives. Polymer Bulletin, 2015, 72, 2399-2419.	1.7	122
486	Three-dimensional fabrics as medical textiles. , 2015, , 305-340.		3
487	Chitin dipentanoate as the new technologically usable biomaterial. Materials Science and Engineering C, 2015, 55, 50-60.	3.8	11
488	A Late Holocene environmental history of a bat guano deposit from Romania: an isotopic, pollen and microcharcoal study. Quaternary Science Reviews, 2015, 127, 141-154.	1.4	34
489	Dual catalysis with magnetic chitosan: direct synthesis of cyclic carbonates from olefins with carbon dioxide using isobutyraldehyde as the sacrificial reductant. Dalton Transactions, 2015, 44, 11860-11866.	1.6	51
490	Carboxyl-modified poly(vinyl alcohol)-crosslinked chitosan hydrogel films for potential wound dressing. Carbohydrate Polymers, 2015, 125, 189-199.	5.1	228

#	Article	IF	CITATIONS
491	Chitosan molecular weight effect on starch-composite film properties. Food Hydrocolloids, 2015, 51, 281-294.	5.6	110
492	Safety evaluation of chitosan and chitosan acid salts from Panurilus argus lobster. International Journal of Biological Macromolecules, 2015, 72, 1343-1350.	3.6	10
493	Preparation of chitosan- graft -polyacrylamide magnetic composite microspheres for enhanced selective removal of mercury ions from water. Journal of Colloid and Interface Science, 2015, 455, 261-270.	5.0	102
494	Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites. Acta Parasitologica, 2015, 60, 337-44.	0.4	12
495	Construction of chitin/graphene oxide hybrid hydrogels. Cellulose, 2015, 22, 2035-2043.	2.4	41
496	Environmental Applications of Chitosan and Its Derivatives. Reviews of Environmental Contamination and Toxicology, 2015, 233, 1-43.	0.7	60
497	Poriferan Chitin as a Versatile Template for Extreme Biomimetics. Polymers, 2015, 7, 235-265.	2.0	176
498	Chitosan membranes in a rat model of full-thickness cutaneous wounds: healing and IL-4 levels. Journal of Wound Care, 2015, 24, 245-251.	0.5	9
499	Chitin in Aqueous Alkaline Solutions with Urea and Thiourea Additives and the Structures of Films Obtained from Them. Fibre Chemistry, 2015, 47, 247-250.	0.0	3
500	Preparation and Characterization of Polymer Blends from $\langle i \rangle$ Nang noi srisaket $1 \langle i \rangle$ Silk Fibroin, Gelatin and Chitosan Nanofiber Mats Using Formic Acid Solution. Key Engineering Materials, 2015, 659, 28-34.	0.4	3
501	A facile method for synthesizing water-soluble and superior sustained release anti-HIV prodrug SCs–d4T. Materials Science and Engineering C, 2015, 49, 84-92.	3.8	2
502	Orientation in multi-layer chitosan hydrogel: morphology, mechanism and design principle. Scientific Reports, 2015, 5, 7635.	1.6	90
503	Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polymer Degradation and Stability, 2015, 112, 1-9.	2.7	365
504	Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids, 2015, 46, 93-102.	5.6	139
505	Electrochemically induced reversible formation of carboxymethyl chitin hydrogel and tunable protein release. New Journal of Chemistry, 2015, 39, 1253-1259.	1.4	23
506	Synthesis and characterization of ceramic/carbon nanotubes composite adsorptive membrane for copper ion removal from water. Korean Journal of Chemical Engineering, 2015, 32, 292-298.	1.2	33
507	Chitin-Prussian blue sponges for Cs(I) recovery: From synthesis to application in the treatment of accidental dumping of metal-bearing solutions. Journal of Hazardous Materials, 2015, 287, 171-179.	6.5	58
508	Boric acid-mediated B,N-codoped chitosan-derived porous carbons with a high surface area and greatly improved supercapacitor performance. Nanoscale, 2015, 7, 5120-5125.	2.8	151

#	Article	IF	CITATIONS
509	Effects of chitosan treatment on strength and thickening properties of oil well cement. Construction and Building Materials, 2015, 75, 404-414.	3.2	26
510	Engineered Therapeutic-Releasing Nanoporous Anodic Alumina-Aluminum Wires with Extended Release of Therapeutics. ACS Applied Materials & Samp; Interfaces, 2015, 7, 3846-3853.	4.0	17
511	Homogeneous synthesis of linoleic acidâ€grafted chitosan oligosaccharide in ionic liquid and its selfâ€assembly performance in aqueous solution. Journal of Applied Polymer Science, 2015, 132, .	1.3	9
512	Nutraceuticals and Bioactive Compounds from Seafood Processing Waste., 2015, , 1405-1425.		13
513	Structure and morphology of fractions separated from mechanical-assisted enzyme hydrolyzed chitin microfibrils. Cellulose, 2015, 22, 1-8.	2.4	15
514	Chitosan/Chitin nanowhiskers composites: effect of plasticisers on the mechanical behaviour. Journal of Polymer Research, 2015, 22, 1.	1.2	11
515	Chitosan/organic rectorite composite for the magnetic uptake of methylene blue and methyl orange. Carbohydrate Polymers, 2015, 123, 89-98.	5.1	125
516	Review on synthesis of ferrocene-based redox polymers and derivatives and their application in glucose sensing. Analytica Chimica Acta, 2015, 876, 9-25.	2.6	125
517	Excited-State Proton Transfer of Weak Photoacids Adsorbed on Biomaterials: Proton Transfer to Glucosamine of Chitosan. Journal of Physical Chemistry A, 2015, 119, 641-651.	1.1	15
518	Supramolecular structure of chitin nanofibrils. Polymer Science - Series A, 2015, 57, 52-57.	0.4	14
519	Carbon quantum dots hydrothermally synthesized from chitin. Polymer Science - Series B, 2015, 57, 16-22.	0.3	18
520	Highly Biocompatible Nanofibrous Microspheres Selfâ€Assembled from Chitin in NaOH/Urea Aqueous Solution as Cell Carriers. Angewandte Chemie - International Edition, 2015, 54, 5152-5156.	7.2	174
521	Cell Encapsulation in Polymeric Self-Assembled Hydrogels. , 2015, , 149-171.		4
522	Removal of Patulin from Aqueous Solution Using Cross‣inked Chitosan Beads. Journal of Food Safety, 2015, 35, 248-256.	1.1	19
523	Quaternised chitosan in conjunction with ultrafiltration membranes to remove arsenate and chromate ions. Polymer Bulletin, 2015, 72, 1365-1377.	1.7	16
524	Controlled Release of Ibuprofen From Electrospun Biocompatible Nanofibers WithIn SituQCM Measurements. Journal of Macromolecular Science - Pure and Applied Chemistry, 2015, 52, 76-83.	1.2	14
525	Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites. Journal of Colloid and Interface Science, 2015, 448, 389-397.	5.0	233
526	Current understanding of synergistic interplay of chitosan nanoparticles and anticancer drugs: merits and challenges. Applied Microbiology and Biotechnology, 2015, 99, 2055-2064.	1.7	26

#	Article	IF	Citations
527	Tuning polyelectrolyte multilayer structure by exploiting natural variation in fucoidan chemistry. Soft Matter, 2015, 11, 2110-2124.	1.2	39
528	Biodegradable Chitosan Nanoparticle Coatings on Titanium for the Delivery of BMP-2. Biomolecules, 2015, 5, 3-19.	1.8	74
529	Multifilament cellulose/chitin blend yarn spun from ionic liquids. Carbohydrate Polymers, 2015, 131, 34-40.	5.1	59
530	Synthesis and thermal gelation of hydroxypropyl chitin. RSC Advances, 2015, 5, 39677-39685.	1.7	13
531	Structure and properties of innovative silica hybrid materials synthesized for environmental applications. Biotechnology and Biotechnological Equipment, 2015, 29, S44-S51.	0.5	6
532	Characterization of antibacterial and adhesion properties of chitosan-modified glass ionomer cement. Journal of Biomaterials Applications, 2015, 30, 409-419.	1.2	36
533	Freeze gelated porous membranes for periodontal tissue regeneration. Acta Biomaterialia, 2015, 23, 317-328.	4.1	95
534	Chitin–glucan complex production by Komagataella pastoris : Downstream optimization and product characterization. Carbohydrate Polymers, 2015, 130, 455-464.	5.1	55
535	A dye-incorporated chitosan-based CO2 indicator for monitoring of food quality focusing on makgeolli quality during storage. Food Science and Biotechnology, 2015, 24, 905-912.	1.2	8
536	One step physically adsorbed coating of silica capillary with excellent stability for the separation of basic proteins by capillary zone electrophoresis. Talanta, 2015, 144, 110-114.	2.9	15
537	Fabrication of porous chitin with continuous substructure by regeneration from gel with CaBr 2 \hat{A} -2H 2 O/methanol. International Journal of Biological Macromolecules, 2015, 78, 313-317.	3.6	10
538	Unusual effects of monocarboxylic acids on the structure and on the transport and mechanical properties of chitosan films. Carbohydrate Polymers, 2015, 132, 419-429.	5.1	9
539	Coloration of cotton fibers using nano chitosan. Carbohydrate Polymers, 2015, 134, 182-189.	5.1	21
540	Role of Counterions in Controlling the Properties of Ultrasonically Generated Chitosan-Stabilized Oil-in-Water Emulsions. ACS Applied Materials & Samp; Interfaces, 2015, 7, 12972-12980.	4.0	16
541	Squalenoylation of Chitosan: A Platform for Drug Delivery?. Biomacromolecules, 2015, 16, 2930-2939.	2.6	28
542	Ultrafast Spreading Effect Induced Rapid Cell Trapping into Porous Scaffold with Superhydrophilic Surface. ACS Applied Materials & Interfaces, 2015, 7, 17545-17551.	4.0	13
543	Glucosamine condensation catalyzed by 1-ethyl-3-methylimidazolium acetate: mechanistic insight from NMR spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 23173-23182.	1.3	32
544	The Cooperative Effect in Dendronized Chitosan Microbeads. Australian Journal of Chemistry, 2015, 68, 1918.	0.5	9

#	ARTICLE	IF	CITATIONS
545	Porous, Water-Resistant Multifilament Yarn Spun from Gelatin. Biomacromolecules, 2015, 16, 1997-2005.	2.6	15
546	Functionalization of marine materials for drug delivery systems. , 2015, , 109-121.		1
547	Characterization and In Vitro Evaluation of Cytotoxicity, Antimicrobial and Antioxidant Activities of Chitosans Extracted from Three Different Marine Sources. Applied Biochemistry and Biotechnology, 2015, 177, 18-35.	1.4	45
548	Fabrication of nanostructured and microstructured chitin materials through gelation with suitable dispersion media. RSC Advances, 2015, 5, 12736-12746.	1.7	56
549	A rational approach towards the design of chitosan-based nanoparticles obtained by ionotropic gelation. Colloids and Surfaces B: Biointerfaces, 2015, 135, 99-108.	2.5	27
550	Cellulose aerogels based on a green NaOH/PEG solution: Preparation, characterization and influence of molecular weight of PEG. Fibers and Polymers, 2015, 16, 1230-1236.	1.1	3
551	Preparation, physicochemical and pharmaceutical characterization of chitosan from Catharsius molossus residue. International Journal of Biological Macromolecules, 2015, 80, 547-556.	3.6	69
552	Pcl/Chitosan Blended Nanofibrous Tubes Made by Dual Syringe Electrospinning. Autex Research Journal, 2015, 15, 54-59.	0.6	7
553	Preparation and Characterization of Films Extruded of Polyethylene/Chitosan Modified with Poly(lactic acid). Materials, 2015, 8, 137-148.	1.3	22
554	Versatile particles from water-soluble chitosan and sodium alginate for loading toxic or bioactive substance. International Journal of Biological Macromolecules, 2015, 79, 498-503.	3.6	19
555	Synthesis and adsorption behavior of magnetic microspheres based on chitosan/organic rectorite for low-concentration heavy metal removal. Journal of Alloys and Compounds, 2015, 647, 892-905.	2.8	91
556	Factors affecting the stability of chitosan/tripolyphosphate micro- and nanogels: resolving the opposing findings. Journal of Materials Chemistry B, 2015, 3, 5957-5970.	2.9	60
557	Stimuli-Responsive Injectable <i>In situ </i> Forming Hydrogels for Regenerative Medicines. Polymer Reviews, 2015, 55, 407-452.	5.3	66
558	Selective Recognition of 5-Hydroxytryptamine and Dopamine on a Multi-Walled Carbon Nanotube-Chitosan Hybrid Film-Modiï¬ed Microelectrode Array. Sensors, 2015, 15, 1008-1021.	2.1	22
559	Production of chitosan microparticles cross-linked with genipin $\hat{a} \in$ Identification of factors influencing size and shape properties. Biochemical Engineering Journal, 2015, 104, 82-90.	1.8	21
560	Sensitive Hydrazine Electrochemical Biosensor Based on a Porous Chitosan–Carbon Nanofiber Nanocomposite Modified Electrode. Analytical Letters, 2015, 48, 1551-1569.	1.0	16
561	Michael reaction of chitosan with acrylamides in an aqueous alkali–urea solution. Polymer Bulletin, 2015, 72, 2075-2087.	1.7	8
562	Copper ions removal from water using functionalized carbon nanotubes–mullite composite as adsorbent. Materials Research Bulletin, 2015, 68, 54-59.	2.7	29

#	Article	IF	CITATIONS
563	Intermolecular Interaction and the Extended Wormlike Chain Conformation of Chitin in NaOH/Urea Aqueous Solution. Biomacromolecules, 2015, 16, 1410-1417.	2.6	164
564	Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Applied Microbiology and Biotechnology, 2015, 99, 4107-4116.	1.7	58
565	The Effect of Polymer/ Plasticiser Ratio in Film Forming Solutions on the Properties of Chitosan Films. Food Biophysics, 2015, 10, 324-333.	1.4	28
566	Excited-State Proton Transfer of Weak Photoacids Adsorbed on Biomaterials: 8-Hydroxy-1,3,6-pyrenetrisulfonate on Chitin and Cellulose. Journal of Physical Chemistry A, 2015, 119, 1973-1982.	1.1	29
567	Recent Developments in Green Composites based on Plant Fibers-Preparation, Structure Property Studies. Journal of Bioprocessing & Biotechniques, 2015, 05, .	0.2	6
568	Effect of in situ formed hydroxyapatite on microstructure of freeze-gelled chitosan-based biocomposite scaffolds. European Polymer Journal, 2015, 68, 278-287.	2.6	34
569	Progress in bioextraction processes of chitin from crustacean biowastes. Journal of the Korean Society for Applied Biological Chemistry, 2015, 58, 545-554.	0.9	21
570	Effects of chitosan, gallic acid, and algicide on the physiological and biochemical properties of Microcystis flos-aquae. Environmental Science and Pollution Research, 2015, 22, 13514-13521.	2.7	19
571	Synthesis of chitin and chitosan stereoisomers by thermostable $\hat{l}\pm$ -glucan phosphorylase-catalyzed enzymatic polymerization of $\hat{l}\pm$ - <scp>d</scp> -glucosamine 1-phosphate. Organic and Biomolecular Chemistry, 2015, 13, 4336-4343.	1.5	41
572	Poly(ethylene glycol) grafted chitosan as new copolymer material for oral delivery of insulin. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2015, 6, 035004.	0.7	9
573	Î ² -Cyclodextrin Modified Natural Chitosan as a Green Inhibitor for Carbon Steel in Acid Solutions. Industrial & Description of the Carbon Steel in Acid Solutions. Industrial & Description of the Carbon Steel in Acid Solutions.	1.8	78
574	Preparation of Chitin Nanofiber-Reinforced Cellulose Films Through Stepwise Regenerations from Individually Prepared Ion Gels. Journal of Polymers and the Environment, 2015, 23, 348-355.	2.4	21
575	Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Marine Drugs, 2015, 13, 1133-1174.	2.2	1,640
576	Chitosan surface modification of fully interconnected 3D porous poly($\hat{l}\mu$ -caprolactone) by the LbL approach. Polymer, 2015, 64, 112-121.	1.8	18
577	Biomimetic multi-layered hollow chitosan–tripolyphosphate rod with excellent mechanical performance. RSC Advances, 2015, 5, 37346-37352.	1.7	21
578	Electron beam assisted synthesis of silver nanoparticle in chitosan stabilizer: Preparation, stability and inhibition of building fungi studies. Radiation Physics and Chemistry, 2015, 112, 177-188.	1.4	19
579	A dendrimer-like hyper branched chitosan beads toward fluoride adsorption from water. International Journal of Biological Macromolecules, 2015, 78, 280-286.	3.6	33
580	New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers and Polymers, 2015, 16, 1742-1750.	1.1	101

#	ARTICLE	IF	Citations
581	Pyrolysis of chitin biomass: TG–MS analysis and solid char residue characterization. Carbohydrate Polymers, 2015, 133, 163-170.	5.1	61
582	Towards sustainable power sources: chitin-bound carbon electrodes for electrochemical capacitors. Journal of Materials Chemistry A, 2015, 3, 22923-22930.	5.2	22
583	Synthesis and characterization of chitosan-g-N-methyl piperazinium chloride: A hybrid flocculant. International Journal of Biological Macromolecules, 2015, 81, 778-784.	3.6	11
584	Anti-corrosion behavior of layer by layer coatings of cross-linked chitosan and poly(vinyl butyral) on carbon steel. Cellulose, 2015, 22, 3275-3290.	2.4	40
585	Effect of the alkyl chain length of the ionic liquid anion on polymer electrolytes properties. Electrochimica Acta, 2015, 184, 171-178.	2.6	16
586	Kinetic-based long-time correlations for dialysis permeation through thin nanocomposite membrane adsorbents. Journal of the Iranian Chemical Society, 2015, 12, 2125-2132.	1.2	1
587	Pharmacokinetics and biodegradation performance of a hydroxypropyl chitosan derivative. Journal of Ocean University of China, 2015, 14, 888-896.	0.6	24
588	Elucidation of Molecular Mechanisms Behind the Self-Assembly Behavior of Chitosan Amphiphilic Derivatives Through Experiment and Molecular Modeling. Pharmaceutical Research, 2015, 32, 3899-3915.	1.7	7
589	Drug Delivery Applications of Chitosan and its Derivatives. , 2015, , 637-678.		2
590	Dissolution and utilization of chitosan in a $1\hat{a}\in c$ arboxymethyl $\hat{a}\in 3\hat{a}\in m$ ethylimidazolium hydrochloride ionic salt aqueous solution. Journal of Applied Polymer Science, 2015, 132, .	1.3	6
591	Chitosan/organic rectorite nanocomposites rapidly synthesized by microwave irradiation: effects of chitosan molecular weight. RSC Advances, 2015, 5, 85272-85279.	1.7	5
592	Isolation, Purification, and Nanotechnological Applications of Chitosan. , 2015, , 1029-1063.		3
593	Super water-absorbing new material from chitosan, EDTA and urea. Carbohydrate Polymers, 2015, 134, 337-343.	5.1	53
594	Preparation and characteristics of nanosilver composite based on chitosan-graft-acrylic acid copolymer. Journal of Polymer Research, 2015, 22, 1.	1.2	28
595	A Review on Bionanocomposites Based on Chitosan and Its Derivatives for Biomedical Applications. Advanced Structured Materials, 2015, , 173-208.	0.3	20
596	Kinetic studies and grafting mechanism for methyl aniline derivatives onto chitosan: Highly adsorptive copolymers for dye removal from aqueous solutions. Reactive and Functional Polymers, 2015, 96, 50-60.	2.0	13
597	Hydrogels Nanocomposites Based on Crystals, Whiskers and Fibrils Derived from Biopolymers. Advanced Structured Materials, 2015, , 43-71.	0.3	14
598	Developing chitosan-based composite nanofibers for supporting metal catalysts. Polymer, 2015, 75, 168-177.	1.8	28

#	Article	IF	CITATIONS
599	Bio-inspired adhesive catechol-conjugated chitosan for biomedical applications: A mini review. Acta Biomaterialia, 2015, 27, 101-115.	4.1	332
600	Eco-Friendly Chitosan-Based Nanocomposites: Chemistry and Applications. Advanced Structured Materials, 2015, , 341-386.	0.3	11
601	Facile fabrication of bactericidal and antifouling switchable chitosan wound dressing through a â€~click'-type interfacial reaction. Colloids and Surfaces B: Biointerfaces, 2015, 136, 7-13.	2.5	36
602	Synthesis and implementation of nano-chitosan and its acetophenone derivative for enhanced removal of metals. International Journal of Biological Macromolecules, 2015, 81, 672-680.	3.6	54
603	N-succinyl chitosan preparation, characterization, properties and biomedical applications: a state of the art review. Reviews in Chemical Engineering, 2015, 31, .	2.3	51
604	A review of bioactive plant polysaccharides: Biological activities, functionalization, and biomedical applications. Bioactive Carbohydrates and Dietary Fibre, 2015, 5, 31-61.	1.5	461
605	The multi-chitinolytic enzyme system of the compost-dwelling thermophilic fungus Thermomyces lanuginosus. Process Biochemistry, 2015, 50, 237-244.	1.8	25
606	Biological adhesive based on carboxymethyl chitin derivatives and chitin nanofibers. Biomaterials, 2015, 42, 20-29.	5.7	94
607	Chitosan as a Sustainable Organocatalyst: A Concise Overview. ChemSusChem, 2015, 8, 217-244.	3.6	193
608	Mesoporous materials with enhanced porosity and acidity to obtain clean fuels from low-density polyethylene (LDPE) cracking. Journal of Porous Materials, 2015, 22, 269-281.	1.3	12
609	Antimicrobial Polymers for Anti-biofilm Medical Devices: State-of-Art and Perspectives. Advances in Experimental Medicine and Biology, 2015, 831, 93-117.	0.8	51
610	Nitricâ€oxideâ€mediated cell death is triggered by chitosan in <i>Fusarium eumartii</i> spores. Pest Management Science, 2015, 71, 668-674.	1.7	27
611	A method for top down preparation of chitosan nanoparticles and nanofibers. Carbohydrate Polymers, 2015, 117, 731-738.	5.1	74
612	Morphology and Stability of Edible Lycopene-Containing Micro- and Nanocapsules Produced Through Electrospraying and Spray Drying. Food and Bioprocess Technology, 2015, 8, 459-470.	2.6	108
613	Chitosan antimicrobial and eliciting properties for pest control in agriculture: a review. Agronomy for Sustainable Development, 2015, 35, 569-588.	2.2	251
614	Modification of wool fabric using prepared chitosan-cyanuric chloride hybrid. Journal of the Textile Institute, 2015, 106, 80-89.	1.0	32
615	Spray drying formulation of albendazole microspheres by experimental design. ⟨i⟩In vitro–in vivo⟨ i⟩studies. Drug Development and Industrial Pharmacy, 2015, 41, 244-252.	0.9	24
616	A critical review on cellulose: From fundamental to an approach on sensor technology. Renewable and Sustainable Energy Reviews, 2015, 41, 402-412.	8.2	240

#	Article	IF	CITATIONS
617	Effect of the initial pH on the performance characteristics of the deproteinization process of galactose supplemented shrimp shells by Aspergillus niger in a solid state drum bioreactor. International Journal for Biotechnology and Molecular Biology Research, 2016, 7, 1-19.	0.3	1
619	Novel Improvements in Thermal and Hydrophobic Properties of Chitosan Reinforced by Rice Husk Ash. Polymers From Renewable Resources, 2016, 7, 115-133.	0.8	3
620	Bio-inspired antimicrobial polymers. , 2016, , 87-127.		1
621	Artificial Neural Network and Response Surface Methodology Modeling in Ionic Conductivity Predictions of Phthaloylchitosan-Based Gel Polymer Electrolyte. Polymers, 2016, 8, 22.	2.0	19
622	Endoglycosidases for the Synthesis of Polysaccharides and Glycoconjugates. Advances in Carbohydrate Chemistry and Biochemistry, 2016, 73, 73-116.	0.4	13
623	Towards More Sustainable Chemical Engineering Processes. , 2016, , 1-34.		4
624	Role of Dielectric Constant on Ion Transport: Reformulated Arrhenius Equation. Advances in Materials Science and Engineering, 2016, 2016, 1-11.	1.0	88
625	Physicochemical and Antibacterial Properties of Chitosan Extracted from Waste Shrimp Shells. International Journal of Microbiology, 2016, 2016, 1-7.	0.9	37
626	Chitosan-Alginate Nanoparticle System Efficiently Delivers Doxorubicin to MCF-7 Cells. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	47
627	Polysaccharides as Composite Biomaterials. , 0, , .		7
628	Preparation and Grafting Functionalization of Self-Assembled Chitin Nanofiber Film. Coatings, 2016, 6, 27.	1.2	15
629	Chitosan and its derivatives-based nano-formulations in drug delivery., 2016,, 515-572.		1
630	Tissue Regeneration: A Silk Road. Journal of Functional Biomaterials, 2016, 7, 22.	1.8	88
631	A Label-Free Microelectrode Array Based on One-Step Synthesis of Chitosan–Multi-Walled Carbon Nanotube–Thionine for Ultrasensitive Detection of Carcinoembryonic Antigen. Nanomaterials, 2016, 6, 132.	1.9	18
632	Modification of chitosan to deliver grapes proanthocyanidins: Physicochemical and biological evaluation. LWT - Food Science and Technology, 2016, 73, 640-648.	2.5	19
633	An evolutionary comparative analysis of the medusozoan (Cnidaria) exoskeleton. Zoological Journal of the Linnean Society, 2016, 178, 206-225.	1.0	21
634	Effects of graphene oxide on the formation, structure and properties of bionanocomposite films made from wheat gluten with chitosan. Polymer International, 2016, 65, 1039-1045.	1.6	11
635	Composite membranes of chitosan and titaniaâ€coated carbon nanotubes as promising materials for new protonâ€exchange membranes. Journal of Applied Polymer Science, 2016, 133, .	1.3	7

#	Article	IF	CITATIONS
636	Effect of Monomer Sequence and Degree of Acetylation on the Self-Assembly and Porosity of Chitosan Networks in Solution. Macromolecules, 2016, 49, 5281-5290.	2.2	11
637	Chitosan-alginate nanoparticles (CANPs) as potential nanosorbent for removal of Hg (II) ions. Environmental Nanotechnology, Monitoring and Management, 2016, 6, 32-44.	1.7	71
638	A comparative study on the chitosan membranes prepared from acetic acid and glycine hydrochloride for removal of copper. Russian Journal of Applied Chemistry, 2016, 89, 1991-2000.	0.1	5
639	Low molecular weight chitosan–protamine conjugate for siRNA delivery with enhanced stability and transfection efficiency. RSC Advances, 2016, 6, 110951-110963.	1.7	35
640	Novel multiphase systems based on thermoplastic chitosan: Analysis of the structure-properties relationships. AIP Conference Proceedings, 2016, , .	0.3	3
641	Synthesis and physicochemical characterization of chitin dihexanoate — A new biocompatible chitin derivative — In comparison to chitin dibutyrate. Materials Science and Engineering C, 2016, 60, 489-502.	3.8	14
642	Chitin Extraction and Synthesis of Chitin-Based Polymer Films from Philippine Blue Swimming Crab (Portunus pelagicus) Shells. Procedia Chemistry, 2016, 19, 462-468.	0.7	41
643	Recent progress on synthesis, property and application of modified chitosan: An overview. International Journal of Biological Macromolecules, 2016, 88, 333-344.	3.6	131
644	A review on chitosan-cellulose blends and nanocellulose reinforced chitosan biocomposites: Properties and their applications. Carbohydrate Polymers, 2016, 150, 216-226.	5.1	394
645	Extended adsorption transport models for permeation of copper ions through nanocomposite chitosan/polyvinyl alcohol thin affinity membranes. Chinese Journal of Chemical Engineering, 2016, 24, 1527-1532.	1.7	7
646	Strategies for development and implementation of bio-based materials as effective renewable resources of energy: A comprehensive review on adsorbent technology. Renewable and Sustainable Energy Reviews, 2016, 62, 654-664.	8.2	60
647	A comparative study of 5-Fluorouracil release from chitosan/silver and chitosan/silver/MWCNT nanocomposites and their cytotoxicity towards MCF-7. Materials Science and Engineering C, 2016, 66, 244-250.	3.8	40
648	Investigation of <i>In Vitro</i> Release of Cisplatin from Electrostatically Crosslinked Chitosan-Alginate Nanoparticles. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2016, 46, 1532-1540.	0.6	9
649	Formation, characterization and release kinetics of chitosan/ \hat{l}^3 -PGA encapsulated nisin nanoparticles. RSC Advances, 2016, 6, 46686-46695.	1.7	43
650	Nature, Strength, and Cooperativity of the Hydrogen-Bonding Network in α-Chitin. Biomacromolecules, 2016, 17, 996-1003.	2.6	57
651	Molecular Dynamics of a Water-Absorbent Nanoscale Material Based on Chitosan. Journal of Physical Chemistry B, 2016, 120, 3754-3764.	1.2	11
652	Enzymatic modification of polysaccharides: Mechanisms, properties, and potential applications: A review. Enzyme and Microbial Technology, 2016, 90, 1-18.	1.6	149
653	Green synthesis of iron oxide nanoparticles. Development of magnetic hybrid materials for efficient As(V) removal. Chemical Engineering Journal, 2016, 301, 83-91.	6.6	204

#	Article	IF	Citations
654	Homogeneous synthesis of quaternized chitin in NaOH/urea aqueous solution as a potential gene vector. Carbohydrate Polymers, 2016, 150, 180-186.	5.1	33
655	Targeted silencing of <i>Survivin</i> in cancer cells by siRNA loaded chitosan magnetic nanoparticles. Expert Review of Anticancer Therapy, 2016, 16, 789-797.	1.1	8
656	Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro. RSC Advances, 2016, 6, 35267-35279.	1.7	26
657	Poly-ε-caprolactone/Chitosan and Chitosan Particles: Two Recombinant Antigen Delivery Systems for Intranasal Vaccination. Methods in Molecular Biology, 2016, 1404, 697-713.	0.4	11
658	Biodegradable polymers as wall materials to the synthesis of bioactive compound nanocapsules. Trends in Food Science and Technology, 2016, 53, 23-33.	7.8	51
659	Physicochemical Aspects of Chitosan Dispersibility in Acidic Aqueous Media: Effects of the Food Acid Counter-Anion. Food Biophysics, 2016, 11, 388-399.	1.4	17
660	One-pot synthesis of MnO 2 –chitin hybrids for effective removal of methylene blue. International Journal of Biological Macromolecules, 2016, 93, 350-358.	3.6	43
661	Use of non-treated shrimp-shells for textile dye removal from wastewater. Journal of Environmental Chemical Engineering, 2016, 4, 4100-4106.	3.3	33
662	Polysaccharide-based natural and synthetic nanocomposites. Polymer Science - Series A, 2016, 58, 629-658.	0.4	18
663	Spherical nanocomposite particles prepared from mixed cellulose–chitosan solutions. Cellulose, 2016, 23, 3105-3115.	2.4	40
665	Photoinduced Metal-Free Atom Transfer Radical Polymerization of Biomass-Based Monomers. Macromolecules, 2016, 49, 7709-7717.	2.2	63
666	Light weight, mechanically strong and biocompatible \hat{l}_{\pm} -chitin aerogels from different aqueous alkali hydroxide/urea solutions. Science China Chemistry, 2016, 59, 1405-1414.	4.2	27
667	Effect of Chitosan as an Antifungal and Preservative Agent on Postharvest Blueberry. Journal of Food Quality, 2016, 39, 516-523.	1.4	33
668	Marine Polysaccharides Based Nano-Materials and Its Applications. , 2016, , 185-225.		5
669	Natural Polymer Drug Delivery Systems. , 2016, , .		114
670	Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids and Surfaces B: Biointerfaces, 2016, 147, 81-89.	2.5	70
671	Unique elastic N-doped carbon nanofibrous microspheres with hierarchical porosity derived from renewable chitin for high rate supercapacitors. Nano Energy, 2016, 27, 482-491.	8.2	299
673	Chitosan-Based Gels for the Drug Delivery System. , 2016, , 273-324.		2

#	Article	IF	CITATIONS
674	Design of Heterogeneous Nuclei for Lateral Crystallization via Uniaxial Assembly of Cellulose Nanocrystals. Crystal Growth and Design, 2016, 16, 4620-4626.	1.4	9
675	Characterisation of composite films fabricated from collagen/chitosan and collagen/soy protein isolate for food packaging applications. RSC Advances, 2016, 6, 82191-82204.	1.7	74
677	Towards a less biased dissolution of chitosan. Analytica Chimica Acta, 2016, 935, 258-268.	2.6	12
678	Chitin Foils and Coatings Prepared from Ionic Liquids. Macromolecular Materials and Engineering, 2016, 301, 1337-1344.	1.7	23
680	Nanofibers based on chitin: a new functional food. Pure and Applied Chemistry, 2016, 88, 605-619.	0.9	8
681	Effective tumor-targeted delivery of etoposide using chitosan nanoparticles conjugated with folic acid and sulfobetaine methacrylate. RSC Advances, 2016, 6, 91192-91200.	1.7	8
682	Dissolution, gelation, functionalization, and material preparation of chitin using ionic liquids. Pure and Applied Chemistry, 2016, 88, 621-629.	0.9	20
683	Regenerated cellulose/wool blend enhanced biomimetic hydroxyapatite mineralization. International Journal of Biological Macromolecules, 2016, 92, 920-925.	3.6	46
684	Synthesis and physicochemical properties of a new biocompatible chitosan grafted with 5-hydroxymethylfurfural. Journal of Molecular Liquids, 2016, 222, 268-271.	2.3	16
685	A review on chitosan-based adsorptive membranes. Carbohydrate Polymers, 2016, 152, 419-432.	5.1	291
686	Synthesis and characterization of low molecular weight chitosan decorated Fe3O4 nanoparticles as T2 contrast agent. Materials Chemistry and Physics, 2016, 180, 122-127.	2.0	5
687	Tough and Cell-Compatible Chitosan Physical Hydrogels for Mouse Bone Mesenchymal Stem Cells in Vitro. ACS Applied Materials & Samp; Interfaces, 2016, 8, 19739-19746.	4.0	70
688	Liquid crystalline nanoparticles encapsulating cisplatin and docetaxel combination for targeted therapy of breast cancer. Biomaterials Science, 2016, 4, 1340-1350.	2.6	41
689	Liquid Exfoliated Natural Silk Nanofibrils: Applications in Optical and Electrical Devices. Advanced Materials, 2016, 28, 7783-7790.	11.1	134
690	A novel strategy for low level laser-induced plasmonic photothermal therapy: the efficient bactericidal effect of biocompatible AuNPs@(PNIPAAM-co-PDMAEMA, PLGA and chitosan). RSC Advances, 2016, 6, 110499-110510.	1.7	16
691	Enhanced adsorption of crystal violet by synthesized and characterized chitin nano whiskers from shrimp shell. Journal of Water Process Engineering, 2016, 14, 1-8.	2.6	89
692	The preparation of Chitin Whisker by two-steps of acid-alkali. , 2016, , .		0
693	Wound Care: Natural BioPolymer Applications. , 0, , 8245-8257.		1

#	Article	IF	CITATIONS
694	Marine Polysaccharides as Biostimulants of Plant Growth., 2016,, 313-330.		0
695	Eco-friendly nitrogen-containing carbon encapsulated LiMn2O4 cathodes to enhance the electrochemical properties in rechargeable Li-ion batteries. Scientific Reports, 2016, 6, 29826.	1.6	54
696	Biopolymers Directly Developed from Biomasses from Agrowaste Sources. , 2016, , 485-514.		0
697	Artificial synapses based on biopolymer electrolyte-coupled SnO ₂ nanowire transistors. Journal of Materials Chemistry C, 2016, 4, 11110-11117.	2.7	52
698	Highâ€Flexibility, Highâ€Toughness Doubleâ€Crossâ€Linked Chitin Hydrogels by Sequential Chemical and Physical Crossâ€Linkings. Advanced Materials, 2016, 28, 5844-5849.	11.1	240
699	Electrophoretic deposition of chitosan/Bioglass \hat{A}^{\otimes} and chitosan/Bioglass \hat{A}^{\otimes} /TiO2 composite coatings for bioimplants. Ceramics International, 2016, 42, 14206-14213.	2.3	43
700	Hydrothermally treated chitosan spontaneously forms water-soluble spherical particles stable at a wide pH range. International Journal of Polymeric Materials and Polymeric Biomaterials, 2016, 65, 751-758.	1.8	10
701	Fabrication of cationic chitin nanofiber/alginate composite materials. International Journal of Biological Macromolecules, 2016, 91, 724-729.	3.6	13
702	Injectable osteogenic and angiogenic nanocomposite hydrogels for irregular bone defects. Biomedical Materials (Bristol), 2016, 11, 035017.	1.7	51
703	Fabrication and feasibility study of an absorbable diacetyl chitin surgical suture for wound healing. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2016, 104, 116-125.	1.6	37
704	Suitability of Different Food Grade Materials for the Encapsulation of Some Functional Foods Well Reported for Their Advantages and Susceptibility. Critical Reviews in Food Science and Nutrition, 2016, 56, 2431-2454.	5 . 4	66
705	Ectopic osteogenic tissue formation by MC3T3-E1 cell-laden chitosan/hydroxyapatite composite scaffold. Artificial Cells, Nanomedicine and Biotechnology, 2016, 44, 1440-1447.	1.9	16
706	New multivariate image analysis method for detection of differences in chemical and structural composition of chitin structures in tardigrade feeding apparatuses. Zoomorphology, 2016, 135, 43-50.	0.4	8
707	Chitosan-tripolyphosphate nanoparticles: Optimization of formulation parameters for improving process yield at a novel pH using artificial neural networks. International Journal of Biological Macromolecules, 2016, 86, 50-58.	3.6	96
708	Adsorption of emulsified oil from metalworking fluid on activated bleaching earth-chitosan-SDS composites: Optimization, kinetics, isotherms. Journal of Environmental Management, 2016, 169, 103-115.	3.8	10
709	Poly(ethylene oxide) bionanocomposites reinforced with chitin nanofiber networks. Polymer, 2016, 84, 267-274.	1.8	30
710	Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology, 2016, 48, 40-50.	7.8	780
711	Chitosan/silica coated carbon nanotubes composite proton exchange membranes for fuel cell applications. Carbohydrate Polymers, 2016, 136, 1379-1385.	5.1	122

#	Article	IF	Citations
712	Synthesis, optimization and structural characterization of a chitosan–glucose derivative obtained by the Maillard reaction. Carbohydrate Polymers, 2016, 137, 382-389.	5.1	66
713	Synthesis of carboxymethyl chitin in aqueous solution and its thermo- and pH-sensitive behaviors. Carbohydrate Polymers, 2016, 137, 600-607.	5.1	75
714	Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydrate Polymers, 2016, 138, 156-165.	5.1	38
715	Simultaneous removal of acid green 25 and mercury ions from aqueous solutions using glutamine modified chitosan magnetic composite microspheres. Environmental Pollution, 2016, 209, 21-29.	3.7	53
716	The formation of web-like connection among electrospun chitosan/PVA fiber network by the reinforcement of ellipsoidal calcium carbonate. Materials Science and Engineering C, 2016, 60, 518-525.	3.8	25
717	Chitosan and Starch-Based Hydrogels Via Graft Copolymerization. Springer Series on Polymer and Composite Materials, 2016, , 189-234.	0.5	4
718	Fly ash-based geopolymer: clean production, properties and applications. Journal of Cleaner Production, 2016, 125, 253-267.	4.6	629
719	Squid beak inspired water processable chitosan composites with tunable mechanical properties. Journal of Materials Chemistry B, 2016, 4, 2273-2279.	2.9	18
720	Antibacterial effects of electrospun chitosan/poly(ethylene oxide) nanofibrous membranes loaded with chlorhexidine and silver. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1357-1364.	1.7	47
721	Chitosan based films as supports for dual antimicrobial release. Carbohydrate Polymers, 2016, 146, 402-410.	5.1	43
722	In Situ Transformation of Chitosan Films into Microtubular Structures on the Surface of Nanoengineered Titanium Implants. Biomacromolecules, 2016, 17, 1261-1271.	2.6	15
723	Bionanocomposite from self-assembled building blocks of nacre-like crystalline polymorph of chitosan with clay nanoplatelets. RSC Advances, 2016, 6, 33501-33509.	1.7	12
724	Insightful understanding of the role of clay topology on the stability of biomimetic hybrid chitosan-clay thin films and CO2-dried porous aerogel microspheres. Carbohydrate Polymers, 2016, 146, 353-361.	5.1	49
725	Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. International Journal of Biological Macromolecules, 2016, 87, 141-154.	3.6	174
726	Surface modification of sulfonated polyvinylchloride cation-exchange membranes by using chitosan polymer containing Fe3O4 nanoparticles. Journal of Solid State Electrochemistry, 2016, 20, 371-377.	1.2	24
727	Bio-based epoxy/chitin nanofiber composites cured with amine-type hardeners containing chitosan. Carbohydrate Polymers, 2016, 144, 89-97.	5.1	23
728	Dendrimers, mesoporous silicas and chitosan-based nanosorbents for the removal of heavy-metal ions: A review. International Journal of Biological Macromolecules, 2016, 86, 570-586.	3.6	241
729	Chemical Characteristics and Functional Properties of Chitosan. , 2016, , 3-31.		43

#	Article	IF	Citations
730	Tweaking the mechanical and structural properties of colloidal chitosans by sonication. Food Hydrocolloids, 2016, 56, 29-40.	5.6	17
731	Chitosan based biocomposite scaffolds for bone tissue engineering. International Journal of Biological Macromolecules, 2016, 93, 1354-1365.	3.6	301
732	Tunable functional hydrogels formed from a versatile water-soluble chitosan. International Journal of Biological Macromolecules, 2016, 85, 386-390.	3.6	33
733	Evaluation of structural and functional properties of chitosanâ¿chlorogenic acid complexes. International Journal of Biological Macromolecules, 2016, 86, 376-382.	3.6	52
734	Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. International Journal of Biological Macromolecules, 2016, 86, 630-645.	3.6	157
735	Novel nanofibrillated cellulose/chitosan nanoparticles nanocomposites films and their use for paper coating. Industrial Crops and Products, 2016, 93, 219-226.	2.5	99
736	Crosslinking of chitosan fiber by a water-soluble diepoxy crosslinker for enhanced acid resistance and its impact on fiber structures and properties. Reactive and Functional Polymers, 2016, 100, 116-122.	2.0	23
737	Thermoresponsive polymers with tunable cloud point temperatures grafted from chitosan via nitroxide mediated polymerization. Polymer, 2016, 86, 69-82.	1.8	25
738	Thermosensitive injectable in-situ forming carboxymethyl chitin hydrogel for three-dimensional cell culture. Acta Biomaterialia, 2016, 35, 228-237.	4.1	109
739	Ultrastrong and flexible hybrid hydrogels based on solution self-assembly of chitin nanofibers in gelatin methacryloyl (GelMA). Journal of Materials Chemistry B, 2016, 4, 2539-2543.	2.9	62
740	Influence of internal composition on physicochemical properties of alginate aqueous-core capsules. Journal of Colloid and Interface Science, 2016, 469, 120-128.	5.0	23
741	Controllable Heparin-Based Comb Copolymers and Their Self-assembled Nanoparticles for Gene Delivery. ACS Applied Materials & Samp; Interfaces, 2016, 8, 8376-8385.	4.0	28
742	Pharmaceutical Applications of Natural Polymers. , 2016, , 263-313.		3
743	Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(<scp> </scp> actide- <i>co</i> -caprolactone) Nanocomposites. Biomacromolecules, 2016, 17, 1506-1515.	2.6	32
744	Formulation and characterization of a plasma sterilized, pharmaceutical grade chitosan powder. Carbohydrate Polymers, 2016, 146, 420-426.	5.1	14
745	Chitosan and Poly (Vinyl Alcohol) microparticles produced by membrane emulsification for encapsulation and pH controlled release. Chemical Engineering Journal, 2016, 288, 451-460.	6.6	38
746	Preparation and characterization of crosslinked chitosan/gelatin scaffolds by ice segregation induced self-assembly. Carbohydrate Polymers, 2016, 141, 175-183.	5.1	136
747	New antimicrobial chitosan derivatives for wound dressing applications. Carbohydrate Polymers, 2016, 141, 28-40.	5.1	143

#	Article	IF	Citations
748	Effect of nanocellulose/chitosan composite coatings on cucumber quality and shelf life. Toxicological and Environmental Chemistry, 2016, 98, 450-461.	0.6	14
749	Computational study of polymorphic structures of \hat{l}_{\pm} - and \hat{l}^2 - chitin and chitosan in aqueous solution. Journal of Molecular Graphics and Modelling, 2016, 63, 78-84.	1.3	29
750	Enhanced interfacial interaction for effective reinforcement of chitosan nanocomposites at different loading of modified multiwalled carbon nanotubes with vitamin C. Journal of Elastomers and Plastics, 2016, 48, 600-613.	0.7	7
751	Mucoadhesive vs. mucopenetrating particulate drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 98, 76-89.	2.0	227
752	Copper ions removal from aqueous solutions using acid-chitosan functionalized carbon nanotubes sheets. Desalination and Water Treatment, 2016, 57, 15384-15396.	1.0	34
753	Physicochemical properties of β-carotene bilayer emulsions coated by milk proteins and chitosan–EGCG conjugates. Food Hydrocolloids, 2016, 52, 590-599.	5.6	79
754	Colloidal chitin nanogels: A plethora of applications under one shell. Carbohydrate Polymers, 2016, 136, 609-617.	5.1	29
755	Chitosan Hydrogels for Regenerative Engineering. Springer Series on Polymer and Composite Materials, 2016, , 3-40.	0.5	3
756	Chitin, Chitosan, and Silk Fibroin Electrospun Nanofibrous Scaffolds: A Prospective Approach for Regenerative Medicine. Springer Series on Polymer and Composite Materials, 2016, , 151-189.	0.5	8
757	Recent Advances in Chitosan-Based Nanomedicines for Cancer Chemotherapy. Springer Series on Polymer and Composite Materials, 2016, , 229-259.	0.5	11
758	Marine polysaccharide-based nanomaterials as a novel source of nanobiotechnological applications. International Journal of Biological Macromolecules, 2016, 82, 315-327.	3.6	158
7 59	The effect of glycerol on properties of chitosan/poly(vinyl alcohol) films with AlCl 3 ·6H 2 O aqueous solution as the solvent for chitosan. Carbohydrate Polymers, 2016, 135, 191-198.	5.1	33
761	Porous and nanofiber α-chitosan obtained from blue crab (Callinectes sapidus) tested for antimicrobial and antioxidant activities. LWT - Food Science and Technology, 2016, 65, 1109-1117.	2.5	26
762	Effect of glutaraldehyde cross-linking degree of chitosan/sporopollenin microcapsules on removal of copper(II) from aqueous solution. Desalination and Water Treatment, 2016, 57, 10664-10676.	1.0	21
763	Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System. AAPS PharmSciTech, 2017, 18, 671-685.	1.5	3
764	A new bioprocess for the production of prebiotic lactosucrose by an immobilized \hat{l}^2 -galactosidase. Process Biochemistry, 2017, 55, 96-103.	1.8	53
765	Chitosan-modified Pd(II)-d-penicillamine: preparation, characterization, and catalyst application. Cellulose, 2017, 24, 1455-1462.	2.4	20
766	Effect of Chitosan Physical Form on Its Antibacterial Activity Against Pathogenic Bacteria. Journal of Food Science, 2017, 82, 679-686.	1.5	21

#	Article	IF	CITATIONS
767	Rheological properties of HDPE/chitosan composites modified with PE- $\langle i \rangle g \langle i \rangle$ -MA. Journal of Materials Research, 2017, 32, 775-787.	1.2	12
768	A facile ion imprinted synthesis of selective biosorbent for Cu ²⁺ via microfluidic technology. Journal of Chemical Technology and Biotechnology, 2017, 92, 2009-2022.	1.6	27
769	Scaffolds containing chitosan, gelatin and graphene oxide for bone tissue regeneration in vitro and in vivo. International Journal of Biological Macromolecules, 2017, 104, 1975-1985.	3.6	164
770	Synergistic effects of crosslinking and chitosan molecular weight on the microstructure, molecular mobility, thermal and sorption properties of porous chitosan/gelatin/hyaluronic acid scaffolds. Journal of Applied Polymer Science, 2017, 134, .	1.3	22
771	Analysis of chitosan/tripolyphosphate micro- and nanogel yields is key to understanding their protein uptake performance. Journal of Colloid and Interface Science, 2017, 494, 242-254.	5.0	28
772	The construction of electrochemical chiral interfaces using hydroxypropyl chitosan. RSC Advances, 2017, 7, 8542-8549.	1.7	23
773	Biodegradable Spray Mulching and Nursery Pots: New Frontiers for Research. Green Chemistry and Sustainable Technology, 2017, , 105-137.	0.4	3
774	Preparation and biocompatibility of a chitin nanofiber/gelatin composite film. International Journal of Biological Macromolecules, 2017, 104, 1882-1889.	3.6	41
775	Surfactant-modified chitosan beads for cadmium ion adsorption. International Journal of Biological Macromolecules, 2017, 104, 1548-1555.	3 . 6	98
776	Development of Water-Triggered Chitosan Film Containing Glucamylase for Sustained Release of Resveratrol. Journal of Agricultural and Food Chemistry, 2017, 65, 2503-2512.	2.4	11
777	In situ forming chitosan hydrogels: Preliminary evaluation of the in vivo inflammatory response. Materials Science and Engineering C, 2017, 75, 279-285.	3.8	15
778	Engineering strategies for chitin nanofibers. Journal of Materials Chemistry B, 2017, 5, 2547-2559.	2.9	78
779	Core–shell drug carrier from folate conjugated chitosan obtained from prawn shell for targeted doxorubicin delivery. Journal of Materials Science: Materials in Medicine, 2017, 28, 55.	1.7	36
780	Chitin nanowhisker (ChNW)-functionalized electrospun PVDF membrane for enhanced removal of Indigo carmine. Carbohydrate Polymers, 2017, 165, 115-122.	5.1	72
781	Effect of storage time on the ionic conductivity of chitosan-solid polymer electrolytes incorporating cyano-based ionic liquids. Electrochimica Acta, 2017, 232, 22-29.	2.6	42
782	Functional poly(ε-caprolactone)/chitosan dressings with nitric oxide-releasing property improve wound healing. Acta Biomaterialia, 2017, 54, 128-137.	4.1	119
783	Kinetic study of thermal degradation of chitosan as a function of deacetylation degree. Carbohydrate Polymers, 2017, 167, 52-58.	5.1	58
784	Comparison of process technologies for chitosan production from shrimp shell waste: A techno-economic approach using Aspen Plus \hat{A}^{\otimes} . Food and Bioproducts Processing, 2017, 103, 49-57.	1.8	71

#	ARTICLE	IF	CITATIONS
785	Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose. Polymer Chemistry, 2017, 8, 2913-2921.	1.9	165
787	Biosynthesis of Nanoparticles by Fungi: Large-Scale Production. , 2017, , 395-414.		5
788	Preparation of chitinâ€CdTe quantum dots films and antibacterial effect on <i>Staphylococcus aureus</i> and <i>Pseudomonas aeruginosa</i> Journal of Applied Polymer Science, 2017, 134, .	1,3	17
789	Recyclable Universal Solvents for Chitin to Chitosan with Various Degrees of Acetylation and Construction of Robust Hydrogels. ACS Sustainable Chemistry and Engineering, 2017, 5, 2725-2733.	3.2	87
790	Biomaterials in light amplification. Journal of Optics (United Kingdom), 2017, 19, 033003.	1.0	34
791	Characterization of Chitosan/TiO ₂ Nanoâ€Powder Modified Glassâ€lonomer Cement for Restorative Dental Applications. Journal of Esthetic and Restorative Dentistry, 2017, 29, 146-156.	1.8	37
792	Highly Efficient One-Step Purification of Sulfated Polysaccharides via Chitosan Microspheres Adsorbents. ACS Sustainable Chemistry and Engineering, 2017, 5, 3195-3203.	3.2	39
793	Systematic evaluation of pH and thermoresponsive poly(n-isopropylacrylamide-chitosan-fluorescein) microgel. E-Polymers, 2017, 17, 399-408.	1.3	8
794	A Sustainable Bioeconomy. , 2017, , .		31
795	Preparation and characterization of polyethersulfone/N-phthaloyl-chitosan ultrafiltration membrane with antifouling property. European Polymer Journal, 2017, 92, 61-70.	2.6	63
796	Templated fabrication of pH-responsive poly(<scp>I</scp> -glutamic acid) based nanogels via surface-grafting and macromolecular crosslinking. RSC Advances, 2017, 7, 14888-14901.	1.7	16
797	A luminescent europium ionic liquid to improve the performance of chitosan polymer electrolytes. Electrochimica Acta, 2017, 240, 474-485.	2.6	11
798	Biochemicals., 2017,, 141-183.		0
799	Acetolysis Resistance of Modern Fungi: Testing Attributions of Enigmatic Proterozoic and Early Paleozoic Fossils. International Journal of Plant Sciences, 2017, 178, 330-339.	0.6	8
800	Improving stability and reusability of Rhodococcus pyridinivorans NIT-36 nitrilase by whole cell immobilization using chitosan. International Journal of Biological Macromolecules, 2017, 103, 8-15.	3.6	22
801	Alginate/chitosan polyelectrolyte complexes: A comparative study of the influence of the drying step on physicochemical properties. Carbohydrate Polymers, 2017, 172, 142-151.	5.1	60
802	Extremely Strong and Transparent Chitin Films: A Highâ€Efficiency, Energyâ€Saving, and "Green―Route Using an Aqueous KOH/Urea Solution. Advanced Functional Materials, 2017, 27, 1701100.	7.8	121
803	Controlling the threshold voltage of SnO ₂ nanowire transistors with dual in-plane-gate structures gated by chitosan proton conductors. Japanese Journal of Applied Physics, 2017, 56, 055201.	0.8	1

#	Article	IF	CITATIONS
804	Polymer Brush-Functionalized Chitosan Hydrogels as Antifouling Implant Coatings. Biomacromolecules, 2017, 18, 1983-1992.	2.6	61
805	Enzymatic grafting of amylose on chitin nanofibers for hierarchical construction of controlled microstructures. Polymer Chemistry, 2017, 8, 3279-3285.	1.9	8
806	Facile synthesis of cellulose derivatives based on cellulose acetoacetate. Carbohydrate Polymers, 2017, 170, 117-123.	5.1	32
807	Injectable and 3D Bioprinted Polysaccharide Hydrogels: From Cartilage to Osteochondral Tissue Engineering. Biomacromolecules, 2017, 18, 1-26.	2.6	185
808	Oxidation-mediated chitosan as additives for creation of chitosan aerogels with diverse three-dimensional interconnected skeletons. Applied Surface Science, 2017, 396, 1220-1225.	3.1	16
809	Original method for synthesis of chitosan-based antimicrobial agent by quaternary ammonium grafting. Carbohydrate Polymers, 2017, 157, 1922-1932.	5.1	64
810	<i>In vitro</i> and <i>in vivo</i> evaluations of a novel post-electrospinning treatment to improve the fibrous structure of chitosan membranes for guided bone regeneration. Biomedical Materials (Bristol), 2017, 12, 015003.	1.7	28
811	Playing with ionic liquids to uncover novel polymer electrolytes. Solid State Ionics, 2017, 300, 46-52.	1.3	15
812	Hierarchical Microspheres Constructed from Chitin Nanofibers Penetrated Hydroxyapatite Crystals for Bone Regeneration. Biomacromolecules, 2017, 18, 2080-2089.	2.6	42
813	Electrochemical indirect competitive immunoassay for ultrasensitive detection of zearalenone based on a glassy carbon electrode modified with carboxylated multi-walled carbon nanotubes and chitosan. Mikrochimica Acta, 2017, 184, 3339-3347.	2.5	42
814	Preparation, characterization, and <i>in vitro</i> cytotoxicity of chitosan hydrogels containing silver nanoparticles. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1665-1676.	1.9	3
815	Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regenerative Medicine, 2017, 12, 431-457.	0.8	22
816	2.13 Chitosan ☆. , 2017, , 279-305.		7
817	Calcium and chitosan-mediated clustering of whey protein particles for tuning their colloidal stability and flow behaviour. International Dairy Journal, 2017, 73, 136-143.	1.5	10
818	Comparison of glutaraldehyde and procyanidin cross-linked scaffolds for soft tissue engineering. Materials Science and Engineering C, 2017, 80, 263-273.	3.8	38
819	Sorption isotherms of metal ions onto an N-(2-sulfoethyl)chitosan-based material from single- and multi-component solutions. Separation Science and Technology, 2017, 52, 2385-2394.	1.3	1
820	A one-pot method for lipase-catalyzed synthesis of chitosan palmitate in mixed lonic liquids and its characterization. Biochemical Engineering Journal, 2017, 126, 24-29.	1.8	5
821	Continuous microfiber drawing by interfacial charge complexation between anionic cellulose nanofibers and cationic chitosan. Journal of Materials Chemistry A, 2017, 5, 13098-13103.	5.2	61

#	Article	IF	CITATIONS
822	Chitosan stabilized camptothecin nanoemulsions: Development, evaluation and biodistribution in preclinical breast cancer animal mode. International Journal of Biological Macromolecules, 2017, 104, 1846-1852.	3.6	45
823	Polyelectrolytes with sulfonate groups obtained by chemical modification of chitosan useful in green synthesis of <scp>A</scp> u and <scp>A</scp> g nanoparticles. Journal of Applied Polymer Science, 2017, 134, 45240.	1.3	9
824	In-situ formation of supramolecular aggregates between chitin nanofibers and silver nanoparticles. Carbohydrate Polymers, 2017, 173, 295-304.	5.1	20
825	Can natural polymers assist in delivering insulin orally?. International Journal of Biological Macromolecules, 2017, 103, 889-901.	3.6	48
826	Optical and Electrical Characteristics of Silver Ion Conducting Nanocomposite Solid Polymer Electrolytes Based on Chitosan. Journal of Electronic Materials, 2017, 46, 6119-6130.	1.0	58
827	Effects of diffusion and mixing pattern on microfluidic-assisted synthesis of chitosan/ATP nanoparticles. Lab on A Chip, 2017, 17, 2281-2293.	3.1	39
830	Carbohydrate based polymeric materials as slow release electron donors for sulphate removal from wastewater. Journal of Environmental Management, 2017, 200, 407-415.	3.8	13
831	Electricity production from human urine in ceramic microbial fuel cells with alternative non-fluorinated polymer binders for cathode construction. Separation and Purification Technology, 2017, 187, 436-442.	3.9	20
832	Chitosan nanoparticles based nanovaccines for cancer immunotherapy. Pure and Applied Chemistry, 2017, 89, 931-939.	0.9	21
833	Structural effect of quaternary ammonium chitin derivatives on their bactericidal activity and specificity. International Journal of Biological Macromolecules, 2017, 101, 719-728.	3.6	16
834	Innovative Methods and Applications in Mucoadhesion Research. Macromolecular Bioscience, 2017, 17, 1600534.	2.1	77
835	An overview of carboxymethyl derivatives of chitosan: Their use as biomaterials and drug delivery systems. Materials Science and Engineering C, 2017, 77, 1349-1362.	3.8	182
836	Physicochemical characterization of water-soluble chitosan derivatives with singlet oxygen quenching and antibacterial capabilities. International Journal of Biological Macromolecules, 2017, 102, 200-207.	3.6	35
837	Different Molecular Weight Chitosans Prepared via the Ionic Liquid Hydrolysis and their Antibacterial Activity. Key Engineering Materials, 2017, 730, 127-134.	0.4	2
838	Construction of blood compatible lysine-immobilized chitin/carbon nanotube microspheres and potential applications for blood purified therapy. Journal of Materials Chemistry B, 2017, 5, 2952-2963.	2.9	70
839	Rubber Based Bionanocomposites. Advanced Structured Materials, 2017, , .	0.3	2
840	Homology modeling, molecular docking and molecular dynamics studies of the catalytic domain of chitin deacetylase from Cryptococcus laurentii strain RY1. International Journal of Biological Macromolecules, 2017, 104, 1682-1691.	3.6	23
841	Chitin in Rubber Based Blends and Micro Composites. Advanced Structured Materials, 2017, , 71-107.	0.3	5

#	Article	IF	Citations
842	Microfluidic synthesis of renewable biosorbent with highly comprehensive adsorption performance for copper (II). Frontiers of Chemical Science and Engineering, 2017, 11, 238-251.	2.3	11
843	Chitosan-doped-hybrid/TiO2 nanocomposite based sol-gel coating for the corrosion resistance of aluminum metal in 3.5% NaCl medium. International Journal of Biological Macromolecules, 2017, 104, 1730-1739.	3.6	54
844	A comparison study on non-isothermal decomposition kinetics of chitosan with different analysis methods. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1077-1091.	2.0	28
845	Synthesis of chitin nanofibers, MWCNTs and MnO2 nanoflakes 3D porous network flexible gel-film for high supercapacitive performance electrodes. Applied Surface Science, 2017, 398, 33-42.	3.1	11
846	Benchmarking Cellulose Nanocrystals: From the Laboratory to Industrial Production. Langmuir, 2017, 33, 1583-1598.	1.6	382
847	Chitosan nanofibers for transbuccal insulin delivery. Journal of Biomedical Materials Research - Part A, 2017, 105, 1252-1259.	2.1	50
848	Synthesis, characterization and antifungal efficacy of C-coordinated O-carboxymethyl chitosan Cu(II) complexes. Carbohydrate Polymers, 2017, 160, 97-105.	5.1	29
849	Synthesis and characterization of magnetic chitosan microspheres as low-density and low-biotoxicity adsorbents for lake restoration. Chemosphere, 2017, 171, 571-579.	4.2	22
850	Characterization of chitosan/montmorillonite bionanocomposites by inverse gas chromatography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 516, 336-344.	2.3	48
851	Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Chemical Engineering Research and Design, 2017, 106, 1-10.	2.7	118
852	Magnetic iron oxide nanoparticles grafted $i>Ni>$ -isopropylacrylamide/chitosan copolymer for the extraction and determination of letrozole in human biological samples. Journal of Separation Science, 2017, 40, 1125-1132.	1.3	28
853	Nano-/Microfibrous Cotton-Wool-Like 3D Scaffold with Core–Shell Architecture by Emulsion Electrospinning for Skin Tissue Regeneration. ACS Biomaterials Science and Engineering, 2017, 3, 3563-3575.	2.6	50
854	Remediation of Solutions Containing Oxyanions of Selenium by Ultrafiltration: Study of Rejection Performances with and without Chitosan Addition. Industrial & Engineering Chemistry Research, 2017, 56, 10461-10471.	1.8	16
855	Magnetic chitosan/anaerobic granular sludge composite: Synthesis, characterization and application in heavy metal ions removal. Journal of Colloid and Interface Science, 2017, 508, 405-414.	5.0	83
856	Hydrogel film loaded with new formula from manuka honey for treatment of chronic wound infections. Journal of Global Antimicrobial Resistance, 2017, 11, 171-176.	0.9	32
857	Guided bone regeneration: materials and biological mechanisms revisited. European Journal of Oral Sciences, 2017, 125, 315-337.	0.7	468
858	Chitin and Chitosan: History, Composition and Properties., 2017,, 1-24.		7
860	Formation of protein induced micro-pores in Chitosan membranes. AIP Conference Proceedings, 2017, ,	0.3	О

#	Article	IF	CITATIONS
862	Modification of chitosan-based biodegradable polymer by irradiation with MeV ions for electrolyte applications. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 225, 150-159.	1.7	24
863	lonically Crosslinked Thermoresponsive Chitosan Hydrogels formed In Situ: A Conceptual Basis for Deeper Understanding. Macromolecular Materials and Engineering, 2017, 302, 1700227.	1.7	33
864	Solid-phase extraction of Cu ²⁺ and Pb ²⁺ from waters using new thermally treated chitosan/polyacrylamide thin films; adsorption kinetics and thermodynamics. International Journal of Environmental Analytical Chemistry, 2017, 97, 965-982.	1.8	10
865	Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat process in shrimp feeding. Materials Today: Proceedings, 2017, 4, 6166-6172.	0.9	30
866	Large osmotic energy harvesting from functionalized conical nanopore suitable for membrane applications. Journal of Membrane Science, 2017, 544, 18-24.	4.1	83
867	Adsorption of galloyl catechin aggregates significantly modulates membrane mechanics in the absence of biochemical cues. Physical Chemistry Chemical Physics, 2017, 19, 19937-19947.	1.3	18
869	Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance. Frontiers of Chemical Science and Engineering, 2017, 11, 575-585.	2.3	20
872	Supercritical CO ₂ dried chitosan nanoparticles: production and characterization. RSC Advances, 2017, 7, 30879-30885.	1.7	24
873	Ferritin glycosylated by chitosan as a novel EGCG nano-carrier: Structure, stability, and absorption analysis. International Journal of Biological Macromolecules, 2017, 105, 252-261.	3.6	33
875	Chitosan/phospholipid coated polyethylene terephthalate (PET) polymer surfaces activated by air plasma. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 155-164.	2.3	32
877	Purification assay to prepared ultrapure carboxymethyl-chitosan. Journal of Macromolecular Science - Pure and Applied Chemistry, 2017, 54, 605-611.	1.2	3
878	An "Onâ€Site Transformation―Strategy for Treatment of Bacterial Infection. Advanced Materials, 2017, 29, 1703461.	11.1	140
879	Flexible Polysaccharide Hydrogel with pHâ€Regulated Recovery of Selfâ€Healing and Mechanical Properties. Macromolecular Materials and Engineering, 2017, 302, 1700221.	1.7	59
880	Ag3PO4/chitosan/CdS nanocomposites exhibiting high photocatalytic activities under visible-light illumination. Powder Technology, 2017, 321, 1-8.	2.1	21
881	Carbon Papers and Aerogels Based on Graphene Layers and Chitosan: Direct Preparation from High Surface Area Graphite. Biomacromolecules, 2017, 18, 3978-3991.	2.6	19
882	Sorption of Pb(II), Cu(II), Fe(II) and Cr(VI) metal ions onto cross-linked graft copolymers of chitosan with binary vinyl monomer mixtures. Reactive and Functional Polymers, 2017, 121, 32-44.	2.0	21
883	Pectinate nanofiber mat with high absorbency and antibacterial activity: A potential superior wound dressing to alginate and chitosan nanofiber mats. Carbohydrate Polymers, 2017, 174, 591-600.	5.1	59
884	Preparation and properties of plasticized chitosan/starch cast films using AlCl3Â-6H2O aqueous solution as the solvent. Polymer Bulletin, 2017, 74, 1817-1830.	1.7	3

#	Article	IF	CITATIONS
885	Biodegradable polycaprolactone nanofibres with \hat{l}^2 -chitosan and calcium carbonate produce a hemostatic effect. Polymer, 2017, 123, 194-202.	1.8	34
886	Nanocelluloses obtained by ammonium persulfate (APS) oxidation of bleached kraft pulp (BKP) and bacterial cellulose (BC) and their application in biocomposite films together with chitosan. Holzforschung, 2017, 71, 659-666.	0.9	9
887	Synthesis, characterization, bioactivity and potential application of phenolic acid grafted chitosan: A review. Carbohydrate Polymers, 2017, 174, 999-1017.	5.1	211
888	Molecular dynamics study on the mechanism of polynucleotide encapsulation by chitosan. Scientific Reports, 2017, 7, 5050.	1.6	32
889	Urea free synthesis of chitin-based acrylate superabsorbent polymers under homogeneous conditions: Effects of the degree of deacetylation and the molecular weight. Carbohydrate Polymers, 2017, 174, 464-473.	5.1	31
890	Low-temperature and fast response H2S gas sensor using semiconducting chitosan film. Sensors and Actuators B: Chemical, 2017, 253, 677-684.	4.0	60
891	Antibacterial blend films of cellulose and chitosan prepared from binary ionic liquid system. Fibers and Polymers, 2017, 18, 852-858.	1.1	18
892	Facile Fabrication of Nanofibrillated Chitin/Ag2O Heterostructured Aerogels with High Iodine Capture Efficiency. Scientific Reports, 2017, 7, 4303.	1.6	30
893	Biocompatible chitin/carbon nanotubes composite hydrogels as neuronal growth substrates. Carbohydrate Polymers, 2017, 174, 830-840.	5.1	108
894	Development of carboxymethyl cellulose-chitosan hybrid micro- and macroparticles for encapsulation of probiotic bacteria. Carbohydrate Polymers, 2017, 175, 87-95.	5.1	89
894 895		3.6	23
	encapsulation of probiotic bacteria. Carbohydrate Polymers, 2017, 175, 87-95. Determination of the distributions of degrees of acetylation of chitosan. International Journal of		
895	encapsulation of probiotic bacteria. Carbohydrate Pólymers, 2017, 175, 87-95. Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48.		23
895 896	encapsulation of probiotic bacteria. Carbohydrate Pólymers, 2017, 175, 87-95. Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48. Antimicrobial applications of chitosan., 2017,, 245-274. Comparison of chito-oligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of <i>Bacillus thuringiensis</i> /i> Preparative Biochemistry and	3.6	23 14
895 896 897	encapsulation of probiotic bacteria. Carbohydrate Pólymers, 2017, 175, 87-95. Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48. Antimicrobial applications of chitosan., 2017, 245-274. Comparison of chito-oligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of <i>Bacillus thuringiensis</i> Biotechnology, 2017, 47, 116-122. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural	1.0	23 14 21
895 896 897	encapsulation of probiotic bacteria. Carbohydrate Polymers, 2017, 175, 87-95. Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48. Antimicrobial applications of chitosan., 2017, , 245-274. Comparison of chito-oligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of <i>>Bacillus thuringiensis</i> > Preparative Biochemistry and Biotechnology, 2017, 47, 116-122. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter, 2017, 13, 345-354. Effect of Chitosan on the Formation of Heterocyclic Aromatic Amines and Some Quality Properties of	1.0	23 14 21 144
895 896 897 898	Determination of the distributions of degrees of acetylation of chitosan. International Journal of Biological Macromolecules, 2017, 95, 40-48. Antimicrobial applications of chitosan., 2017, 245-274. Comparison of chito-oligosaccharide production from three different colloidal chitosans using the endochitonsanolytic system of <i>Bacillus thuringiensis</i> Preparative Biochemistry and Biotechnology, 2017, 47, 116-122. Bilayer hydrogel actuators with tight interfacial adhesion fully constructed from natural polysaccharides. Soft Matter, 2017, 13, 345-354. Effect of Chitosan on the Formation of Heterocyclic Aromatic Amines and Some Quality Properties of Meatball. Journal of Food Processing and Preservation, 2017, 41, e13065. Mechanism and kinetics of curing of diglycidyl ether of bisphenol a (DGEBA) resin by chitosan.	1.0 1.2 0.9	23 14 21 144 20

#	Article	IF	CITATIONS
903	Synthesis, characterization, and antimicrobial activities of sulfonated chitosan. Carbohydrate Polymers, 2017, 155, 321-328.	5.1	109
904	Preparation of collagen peptide functionalized chitosan nanoparticles by ionic gelation method: An effective carrier system for encapsulation and release of doxorubicin for cancer drug delivery. Materials Science and Engineering C, 2017, 70, 378-385.	3.8	106
905	Injectable hydrogel-based scaffolds for tissue engineering applications. Reviews in Chemical Engineering, 2017, 33, 91-107.	2.3	37
906	Phosphate uptake studies of cross-linked chitosan bead materials. Journal of Colloid and Interface Science, 2017, 485, 201-212.	5.0	58
907	A platform for more sustainable chitin films from an ionic liquid process. Green Chemistry, 2017, 19, 117-126.	4.6	75
908	Hydrothermal Synthesis of Advanced Chitin-Based Materials. , 2017, , 223-249.		0
909	Improving the encapsulation efficiency and sustained release behaviour of chitosan/ \hat{l}^2 -lactoglobulin double-coated microparticles by palmitic acid grafting. Food Chemistry, 2017, 220, 123-128.	4.2	11
910	Mechanism of the self-condensation of GlcNH2: insights from in situ NMR spectroscopy and DFT study. Applied Catalysis B: Environmental, 2017, 202, 420-429.	10.8	22
911	On the kinetics of chitosan/tripolyphosphate micro- and nanogel aggregation and their effects on particle polydispersity. Journal of Colloid and Interface Science, 2017, 486, 27-37.	5.0	38
912	Extreme Biomimetics., 2017,,.		16
913	Preparation of paclitaxel/chitosan co-assembled core-shell nanofibers for drug-eluting stent. Applied Surface Science, 2017, 393, 299-308.	3.1	43
914	Grafting of aniline derivatives onto chitosan and their applications for removal of reactive dyes from industrial effluents. International Journal of Biological Macromolecules, 2017, 95, 393-403.	3.6	55
915	Prospects of peripheral nerve tissue engineering using nerve guide conduits based on silk fibroin protein and other biopolymers. International Materials Reviews, 2017, 62, 367-391.	9.4	62
916	Synthesis, characterization and anticancer activity of tanshinone I grafted low molecular chitosan. Glycoconjugate Journal, 2017, 34, 3-12.	1.4	5
917	Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Critical Reviews in Environmental Science and Technology, 2017, 47, 2331-2386.	6.6	272
918	Reassessment of chitosanase substrate specificities and classification. Nature Communications, 2017, 8, 1698.	5.8	59
919	Chitin- and Shell-Based Benzoxazines. , 2017, , 499-521.		2
920	Enzymatic production of all fourteen partially acetylated chitosan tetramers using different chitin deacetylases acting in forward or reverse mode. Scientific Reports, 2017, 7, 17692.	1.6	62

#	Article	IF	CITATIONS
921	Chitosan–ammonium acetate–ethylene carbonate membrane for proton batteries. Arabian Journal of Chemistry, 2017, 10, S3687-S3698.	2.3	29
922	Biopolymer in Gene Delivery. , 2017, , .		3
923	Utilization of Shrimp Skin Waste (Sea Lobster) As Raw Material for the Membrane Filtration. Journal of Physics: Conference Series, 2017, 846, 012003.	0.3	4
924	Preparation and Characterization of Extruded Composites Based on Polypropylene and Chitosan Compatibilized with Polypropylene-Graft-Maleic Anhydride. Materials, 2017, 10, 105.	1.3	17
925	Chitosan Gel Sheet Containing Polymeric Micelles: Synthesis and Gelation Properties of PEG-Grafted Chitosan. Materials, 2017, 10, 1075.	1.3	8
926	Antibacterial Activity of Neat Chitosan Powder and Flakes. Molecules, 2017, 22, 100.	1.7	36
927	Electrospun chitosan fibers. , 2017, , 371-398.		9
928	Influence of Polycation Functional Properties on Polyanion Micro/Nanoparticles for NSAIDs Reinforced Via Polyelectrolyte Complexation: Alginate–Chitosan Case Study. , 2017, , 133-160.		4
929	Preparation of Nanocellulose Reinforced Chitosan Films, Cross-Linked by Adipic Acid. International Journal of Molecular Sciences, 2017, 18, 396.	1.8	48
930	Synthesis, Characterization, and Evaluation of Antimicrobial Activities of Chitosan and Carboxymethyl Chitosan Schiff-Base/Silver Nanoparticles. Journal of Chemistry, 2017, 2017, 1-11.	0.9	39
931	Eco-Friendly and Biodegradable Biopolymer Chitosan/Y2O3 Composite Materials in Flexible Organic Thin-Film Transistors. Materials, 2017, 10, 1026.	1.3	40
932	A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. International Journal of Nanomedicine, 2017, Volume 12, 3471-3483.	3.3	32
933	Solubility of Chitin: Solvents, Solution Behaviors and Their Related Mechanisms. , 0, , .		79
934	Biocompatible coated magnetosome minerals with various organization and cellular interaction properties induce cytotoxicity towards RG-2 and GL-261 glioma cells in the presence of an alternating magnetic field. Journal of Nanobiotechnology, 2017, 15, 74.	4.2	46
935	Preparation of Self-Assembled Chitin Nanofiber-Natural Rubber Composite Sheets and Porous Materials. Biomolecules, 2017, 7, 0047.	1.8	20
936	Biopolymers for gene delivery applications. , 2017, , 289-323.		1
937	Effect of chitosan ethers on fresh state properties of lime mortars. IOP Conference Series: Materials Science and Engineering, 2017, 251, 012039.	0.3	12
938	Understanding the properties of chitosan aryl substituted thioureas in their role and potential as antibacterial agents. AIP Conference Proceedings, 2018 , , .	0.3	5

#	Article	IF	CITATIONS
939	Reinforcing Mucus Barrier Properties with Low Molar Mass Chitosans. Biomacromolecules, 2018, 19, 872-882.	2.6	25
940	Aptamer-Patterned Hydrogel Films for Spatiotemporally Programmable Capture and Release of Multiple Proteins. ACS Applied Materials & Samp; Interfaces, 2018, 10, 8546-8554.	4.0	23
941	Double helix formation from non-natural amylose analog polysaccharides. Carbohydrate Polymers, 2018, 189, 184-189.	5.1	11
942	Fluorescence control of chitin and chitosan fabricated <i>via </i> surface functionalization using direct oxidative polymerization. RSC Advances, 2018, 8, 7005-7013.	1.7	41
943	A study of the effects of acid, plasticizer, cross-linker, and extracted chitin nanofibers on the properties of chitosan biofilm. Composites Part A: Applied Science and Manufacturing, 2018, 109, 221-231.	3.8	25
944	Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Food Research International, 2018, 108, 1-7.	2.9	33
945	Novel aminohydrazide cross-linked chitosan filled with multi-walled carbon nanotubes as antimicrobial agents. International Journal of Biological Macromolecules, 2018, 115, 651-662.	3.6	41
946	Termiticidal activity of chitosan against the subterranean termites <scp><i>Reticulitermes flavipes</i></scp> and <scp><i>Reticulitermes virginicus</i></scp> . Pest Management Science, 2018, 74, 1704-1710.	1.7	8
947	Influence of polyelectrolyte chains on surface charge and magnetization of iron oxide nanostructures. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 549, 13-24.	2.3	28
948	Chitosan-Based Structures/Coatings With Antibacterial Properties. , 2018, , 357-389.		6
949	Production of functionalised chitins assisted by fungal lytic polysaccharide monooxygenase. Green Chemistry, 2018, 20, 2091-2100.	4.6	30
950	Trends in Insect Molecular Biology and Biotechnology. , 2018, , .		10
951	One-step fabrication of phytoferritin-chitosan-epigallocatechin shell-core nanoparticles by thermal treatment. Food Hydrocolloids, 2018, 80, 24-32.	5.6	14
952	Lignin/Chitin Films and Their Adsorption Characteristics for Heavy Metal Ions. ACS Sustainable Chemistry and Engineering, 2018, 6, 6965-6973.	3.2	64
953	Structure, Regulation, and Potential Applications of Insect Chitin-Metabolizing Enzymes. , 2018, , 295-316.		5
954	Bioconversion of Chitin to Bioactive Chitooligosaccharides: Amelioration and Coastal Pollution Reduction by Microbial Resources. Marine Biotechnology, 2018, 20, 269-281.	1.1	31
955	Mechanical Reinforcement of Lowâ€Concentration Alginate Fibers by Microfluidic Embedding of Multiple Cores. Macromolecular Materials and Engineering, 2018, 303, 1700516.	1.7	6
956	Cuttlebone as a Marine-Derived Material for Preparing Bone Grafts. Marine Biotechnology, 2018, 20, 363-374.	1.1	12

#	Article	IF	CITATIONS
957	Chitooligosaccharide: An evaluation of physicochemical and biological properties with the proposition for determination of thermal degradation products. Biomedicine and Pharmacotherapy, 2018, 102, 438-451.	2.5	65
958	Controlled release and antioxidant activity of chitosan or its glucosamine water-soluble derivative microcapsules loaded with quercetin. International Journal of Biological Macromolecules, 2018, 112, 399-404.	3.6	32
959	Fabrication of novel nanohybrids by impregnation of CuO nanoparticles into bacterial cellulose and chitosan nanofibers: Characterization, antimicrobial and release properties. Carbohydrate Polymers, 2018, 186, 273-281.	5.1	141
960	Flexible IZO Homojunction TFTs With Graphene Oxide/Chitosan Composite Gate Dielectrics on Paper Substrates. IEEE Electron Device Letters, 2018, 39, 363-366.	2.2	33
961	Immobilization of Carboxypeptidase A into Modified Chitosan Matrixes by Covalent Attachment. Applied Biochemistry and Biotechnology, 2018, 185, 1029-1043.	1.4	14
962	Evaluation of membrane preparation method on the performance of alkaline polymer electrolyte: Comparison between poly(vinyl alcohol)/chitosan blended membrane and poly(vinyl alcohol)/chitosan electrospun nanofiber composite membranes. Electrochimica Acta, 2018, 266, 332-340.	2.6	48
963	The chemo enzymatic functionalization of chitosan zeolite particles provides antioxidant and antimicrobial properties. Engineering in Life Sciences, 2018, 18, 334-340.	2.0	15
964	Preparation and characterization of C-phycocyanin peptide grafted N-succinyl chitosan by enzyme method. International Journal of Biological Macromolecules, 2018, 113, 841-848.	3.6	13
965	Studies on the alcoholysis of poly(3-hydroxybutyrate) and the synthesis of PHB-b-PLA block copolymer for the preparation of PLA/PHB-b-PLA blends. Journal of Polymer Research, 2018, 25, 1.	1.2	13
966	Selfâ€Organized Porous Titaniumâ€Chitosan Hybrid Materials with Tunable Functions. ChemNanoMat, 2018, 4, 353-360.	1.5	7
967	Extraction of bioactive compounds against cardiovascular diseases from <i>Lentinula edodes</i> using a sequential extraction method. Biotechnology Progress, 2018, 34, 746-755.	1.3	47
968	Activated carbon derived from chitin aerogels: preparation and CO2 adsorption. Cellulose, 2018, 25, 1911-1920.	2.4	40
969	Curcumin drug delivery by vanillin-chitosan coated with calcium ferrite hybrid nanoparticles as carrier. European Journal of Pharmaceutical Sciences, 2018, 116, 48-60.	1.9	86
970	High CO2 absorption of O-carboxymethylchitosan synthesised from chitosan. Environmental Chemistry Letters, 2018, 16, 1025-1031.	8.3	18
971	Sequential application of mineralized electroconductive scaffold and electrical stimulation for efficient osteogenesis. Journal of Biomedical Materials Research - Part A, 2018, 106, 1200-1210.	2.1	27
972	One-pot fabrication of chitin-shellac composite microspheres for efficient enzyme immobilization. Journal of Biotechnology, 2018, 266, 1-8.	1.9	28
973	Mechanochemical Amorphization of $\hat{l}\pm$ -Chitin and Conversion into Oligomers of <i>N</i> -Acetyl- <scp>d</scp> -glucosamine. ACS Sustainable Chemistry and Engineering, 2018, 6, 1662-1669.	3.2	79
974	Proteinâ€engineering of chitosanase from <i>Bacillus</i> sp. MN to alter its substrate specificity. Biotechnology and Bioengineering, 2018, 115, 863-873.	1.7	19

#	Article	IF	Citations
975	Hydration of hydrogels studied by nearâ€infrared hyperspectral imaging. Journal of Chemometrics, 2018, 32, e2972.	0.7	6
976	Bioprocesses for Sulphate Removal from Wastewater. Energy, Environment, and Sustainability, 2018, , 35-60.	0.6	4
977	Influence of Glutaraldehyde Crosslinking and Alkaline Post-treatment on the Properties of Chitosan-Based Films. Journal of Polymers and the Environment, 2018, 26, 2748-2757.	2.4	41
978	Extraction of Chitosan from Shrimp Shells: Effect of Deacetylation Time on the Morphological, Thermal Properties and the Value of Deacetylation Degree (DD). Advances in Science, Technology and Innovation, 2018, , 1263-1265.	0.2	2
979	Mucoralean fungi for sustainable production of bioethanol and biologically active molecules. Applied Microbiology and Biotechnology, 2018, 102, 1097-1117.	1.7	34
980	Green multicomponent synthesis of four different classes of six-membered <i>N</i> -containing and <i>O</i> -containing heterocycles catalyzed by an efficient chitosan-based magnetic bionanocomposite. Pure and Applied Chemistry, 2018, 90, 387-394.	0.9	80
981	Bio-inspired redox-cycling antimicrobial film for sustained generation of reactive oxygen species. Biomaterials, 2018, 162, 109-122.	5.7	72
982	Chitosan gel sheet containing drug carriers with controllable drug-release properties. Colloids and Surfaces B: Biointerfaces, 2018, 163, 257-265.	2.5	21
983	Kinetics of chitosan coagulation from aqueous solutions. Journal of Applied Polymer Science, 2018, 135, 46062.	1.3	14
984	Enhanced adsorption of xylenol orange from aqueous solutions by polyethylenimineâ€grafted chitosan microspheres. Canadian Journal of Chemical Engineering, 2018, 96, 2007-2013.	0.9	1
985	Spin coated chitin films for biosensors and its analysis are dependent on chitin-surface interactions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 539, 261-272.	2.3	19
986	Effect of urea addition on chitosan dissolution with [Emim]Ac-Urea solution system. Carbohydrate Polymers, 2018, 195, 288-297.	5.1	17
987	Enzymatic preparation of functional polysaccharide hydrogels by phosphorylase catalysis. Pure and Applied Chemistry, 2018, 90, 1045-1054.	0.9	14
988	Preparation of Cationic/Anionic Chitin Nanofiber Composite Materials. Journal of Polymers and the Environment, 2018, 26, 3540-3549.	2.4	9
989	Self-Assembled Coacervates of Chitosan and an Insect Cuticle Protein Containing a Rebers–Riddiford Motif. Biomacromolecules, 2018, 19, 2391-2400.	2.6	9
990	Fabrication and Testing of Electrospun Polyurethane Blended with Chitosan Nanoparticles for Vascular Graft Applications. Cardiovascular Engineering and Technology, 2018, 9, 503-513.	0.7	17
991	Recent advances in chitin based materials constructed via physical methods. Progress in Polymer Science, 2018, 82, 1-33.	11.8	276
992	Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression. Journal of Pharmaceutical Sciences, 2018, 107, 2152-2159.	1.6	12

#	Article	IF	CITATIONS
993	Surface modification of <scp>PLGA</scp> nanoparticles using chitosan: Effect of molecular weight, concentration, and degree of deacetylation. Advances in Polymer Technology, 2018, 37, 3066-3075.	0.8	26
994	Effects of hydrophilic/hydrophobic surfaces on polymerâ€complexation kinetics. Journal of Applied Polymer Science, 2018, 135, 46493.	1.3	3
995	Textile Dye Removal from Aqueous Solution using Modified Graphite Waste/Lanthanum/Chitosan Composite. IOP Conference Series: Materials Science and Engineering, 2018, 316, 012029.	0.3	1
996	Chitosan binding onto the epigallocatechin-loaded ferritin nanocage enhances its transport across Caco-2 cells. Food and Function, 2018, 9, 2015-2024.	2.1	11
997	Applications of Graft Copolymerization. , 2018, , 1-44.		2
998	Nanopharmaceuticals for wound healing – Lost in translation?. Advanced Drug Delivery Reviews, 2018, 129, 194-218.	6.6	63
999	Cellulose and chitin composite materials from an ionic liquid and a green co-solvent. Carbohydrate Polymers, 2018, 192, 159-165.	5.1	36
1000	Water-stable cellulose fiber foam with antimicrobial properties for bio based low-density materials. Cellulose, 2018, 25, 2599-2613.	2.4	41
1001	Protein adsorption onto polysaccharides: Comparison of chitosan and chitin polymers. Carbohydrate Polymers, 2018, 191, 191-197.	5.1	36
1002	Polyethersulfone nanofiltration membrane embedded by chitosan nanoparticles: Fabrication, characterization and performance in nitrate removal from water. Carbohydrate Polymers, 2018, 191, 142-151.	5.1	60
1003	Ultrasonically synthesized organic liquid-filled chitosan microcapsules: part 1: tuning physical & mp; functional properties. Soft Matter, 2018, 14, 3202-3208.	1.2	4
1004	Multifunctional Graphene Hair Dye. CheM, 2018, 4, 784-794.	5.8	55
1005	Conductivity or rheology? Tradeoff for competing properties in the fabrication of a gel polymer electrolyte based on chitosan-barbiturate derivative. lonics, 2018, 24, 3015-3025.	1.2	5
1006	A comprehensive <i>in vitro</i> study of the carbon nanotube enhanced chitosan scaffolds for cancellous bone regeneration. Biomedical Physics and Engineering Express, 2018, 4, 035027.	0.6	5
1007	Chitosan composites with nanohydroxyapatite prepared by wet chemical reaction along with microwave irradiation: permeability and swelling aspects. Polymer Composites, 2018, 39, 718-729.	2.3	3
1008	A review on present status and future challenges of starch based polymer films and their composites in food packaging applications. Polymer Composites, 2018, 39, 2499-2522.	2.3	141
1009	Preparation of natural chitosan from shrimp shell with different deacetylation degree. Materials Research Innovations, 2018, 22, 177-181.	1.0	18
1010	Preparation and Properties of Chitosan–PVA Fibers Produced by Wet Spinning. Journal of Polymers and the Environment, 2018, 26, 946-958.	2.4	24

#	Article	IF	CITATIONS
1011	Dualâ€drug release from chitinâ€based core–shell microspheres fabricated by coaxial electrospray. Advances in Polymer Technology, 2018, 37, 1366-1373.	0.8	5
1012	Chitosan treatment for skin ulcers associated with diabetes. Saudi Journal of Biological Sciences, 2018, 25, 130-135.	1.8	32
1013	Development of water-soluble chitosan powder and its antimicrobial effect against inoculated Listeria innocua NRRL B-33016 on shrimp. Food Control, 2018, 85, 453-458.	2.8	19
1014	Nitrogen-Enriched Carbon Nanofiber Aerogels Derived from Marine Chitin for Energy Storage and Environmental Remediation. ACS Sustainable Chemistry and Engineering, 2018, 6, 177-185.	3.2	83
1015	A batch and fixed bed column study for fluorescein removal using chitosan modified by epichlorohydrin. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2018, 53, 55-64.	0.9	6
1016	Polymer-enhanced ultrafiltration for heavy metal removal: Influence of chitosan and carboxymethyl cellulose on filtration performances. Journal of Cleaner Production, 2018, 171, 927-933.	4.6	119
1017	Different chemical groups modification on the surface of chitosan nonwoven dressing and the hemostatic properties. International Journal of Biological Macromolecules, 2018, 107, 463-469.	3.6	34
1018	Fabrication of blend polyvinylidene fluoride/chitosan membranes for enhanced flux and fouling resistance. Separation and Purification Technology, 2018, 190, 68-76.	3.9	61
1019	Sodium salt of oleoyl carboxymethyl chitosan: A sustainable adsorbent in the oil spill treatment. Journal of Cleaner Production, 2018, 170, 339-350.	4.6	46
1020	Impact of functional properties and release kinetics on antioxidant activity of biopolymer active films and coatings. Food Chemistry, 2018, 242, 369-377.	4.2	57
1021	Preparation and characteristics of the sulfonated chitosan derivatives electrodeposited onto 316l stainless steel surface. Journal of Biomaterials Science, Polymer Edition, 2018, 29, 236-256.	1.9	7
1022	Composition of black soldier fly prepupae and systematic approaches for extraction and fractionation of proteins, lipids and chitin. Food Research International, 2018, 105, 812-820.	2.9	214
1023	Reaction Mechanisms and Structural and Physicochemical Properties of Caffeic Acid Grafted Chitosan Synthesized in Ascorbic Acid and Hydroxyl Peroxide Redox System. Journal of Agricultural and Food Chemistry, 2018, 66, 279-289.	2.4	64
1024	Alleviation of nickel toxicity and an improvement in zinc bioavailability in sunflower seed with chitosan and biochar application in pH adjusted nickel contaminated soil. Archives of Agronomy and Soil Science, 2018, 64, 1053-1067.	1.3	164
1025	Adsorption Kinetics of Dyes in Single and Binary Systems Using Cyanoguanidine-Crosslinked Chitosan of Different Deacetylation Degrees. Journal of Polymers and the Environment, 2018, 26, 2401-2409.	2.4	5
1026	Advanced Biomassâ€Derived Electrocatalysts for the Oxygen Reduction Reaction. Advanced Materials, 2018, 30, e1703691.	11.1	274
1027	Enhanced anti-microbial, anti-creasing and dye absorption properties of cotton fabric treated with Chitosan–Cyanuric Chloride hybrid. Cellulose, 2018, 25, 883-893.	2.4	40
1028	Biopolymers from Wastes to High-Value Products in Biomedicine. Energy, Environment, and Sustainability, 2018, , 1-44.	0.6	19

#	Article	IF	CITATIONS
1029	A novel approach to 1,2,3-triazole grafted chitosans via modified Wolff's cyclocondensation. European Polymer Journal, 2018, 98, 492-498.	2.6	5
1030	Valorisation of chitinous biomass for antimicrobial applications. Pure and Applied Chemistry, 2018, 90, 293-304.	0.9	21
1031	Preparation of aerochitinâ€TiO ₂ composite for efficient photocatalytic degradation of methylene blue. Journal of Applied Polymer Science, 2018, 135, 45908.	1.3	27
1032	A chitin deacetylase of Podospora anserina has two functional chitin binding domains and a unique mode of action. Carbohydrate Polymers, 2018, 183, 1-10.	5.1	37
1033	Amino acid-cured bio-based epoxy resins and their biocomposites with chitin- and chitosan-nanofibers. European Polymer Journal, 2018, 98, 216-225.	2.6	30
1034	Surface modification of chitin and chitosan with poly(3-hexylthiophene) via oxidative polymerization. Applied Surface Science, 2018, 434, 188-197.	3.1	33
1035	A review on carbohydrate embedded polyurethanes: An emerging area in the scope of biomedical applications. Carbohydrate Polymers, 2018, 181, 1003-1016.	5.1	68
1036	A novel ultra″ow energy reverse osmosis membrane modified by chitosan with glutaraldehyde crosslinking. Journal of Applied Polymer Science, 2018, 135, 45971.	1.3	23
1037	Pretreatment in Hot Glycerol for Facile and Green Separation of Chitin from Prawn Shell Waste. ACS Sustainable Chemistry and Engineering, 2018, 6, 846-853.	3.2	61
1038	Graft modification of natural polysaccharides via reversible deactivation radical polymerization. Progress in Polymer Science, 2018, 76, 151-173.	11.8	126
1039	C-coordinated O-carboxymethyl chitosan metal complexes: Synthesis, characterization and antifungal efficacy. International Journal of Biological Macromolecules, 2018, 106, 68-77.	3.6	41
1040	Properties of Aerial Lime-Based Mortars with Chitosan Ethers. Solid State Phenomena, 2018, 276, 75-82.	0.3	5
1041	Comparative Antibacterial Effects of a Novel Copper and Silver- Based Core/Shell Nanostructure by Sonochemical Method., 0,,.		0
1042	The Study of Dielectric Properties and Conductivity Relaxation of Ion Conducting Chitosan:NaTf Based Solid Electrolyte. International Journal of Electrochemical Science, 2018, 13, 10274-10288.	0.5	38
1043	The effect of ferredoxin in enhancing the sensing properties of chitosan based acetone sensors. Journal of Physics: Conference Series, 2018, 1116, 042023.	0.3	1
1044	Chitosan as a Coupling Agent for Phosphate Glass Fibre/Polycaprolactone Composites. Fibers, 2018, 6, 97.	1.8	6
1045	A review on environmental applications of chitosan biopolymeric hydrogel based composites. Journal of Macromolecular Science - Pure and Applied Chemistry, 2018, 55, 747-763.	1.2	37
1046	Structural and Optical Studies of Cadmium Sulfide Quantum Dot-Graphene Oxide-Chitosan Nanocomposite Thin Film as a Novel SPR Spectroscopy Active Layer. Journal of Nanomaterials, 2018, 2018, 1-8.	1.5	22

#	Article	IF	CITATIONS
1047	Anticancer Activity of Chitosan, Chitosan Derivatives, and Their Mechanism of Action. International Journal of Biomaterials, 2018, 2018, 1-29.	1.1	203
1048	Tensile properties of chitosan filled recycled low density polyethylene composites. AIP Conference Proceedings, 2018, , .	0.3	1
1049	A Review of Chitosan-Based Materials for the Removal of Organic Pollution from Water and Bioaugmentation. , 0, , .		14
1050	PREPARATION OF CHITOSAN-TPP NANOPARTICLES: THE INFLUENCE OF CHITOSAN POLYMERIC PROPERTIES AND FORMULATION VARIABLES. International Journal of Applied Pharmaceutics, 2018, 10, 60.	0.3	39
1051	Optimization of Laccase Adsorption-Desorption Behaviors on Multi-Walled Carbon Nanotubes for Enzymatic Biocathodes. Makara Journal of Science, 2018, 22, .	1.1	3
1052	Surface Modification of Poly(vinylidene fluoride) Ultrafiltration Membranes with Chitosan for Anti-Fouling and Antibacterial Performance. Macromolecular Research, 2018, 26, 1225-1232.	1.0	18
1053	Chitosan Isolated from Horseshoe Crab Tachypleus gigas from the Malay Peninsula. Oriental Journal of Chemistry, 2018, 34, 928-933.	0.1	4
1054	Preparation And Characterization of Bio-Polymeric Nano Feed Incorporating Silage-Derived Organic -Acids And The Polar Fraction of Papaya Leaf Extract. Journal of Physics: Conference Series, 2018, 1095, 012024.	0.3	0
1055	Chitin and Chitosan from Green Shell (Perna Viridis): Utilization Fisheries Wastes from Traditional Market in Jakarta. MATEC Web of Conferences, 2018, 248, 04002.	0.1	1
1056	Production and characterization of chitosan and glycerol-chitosan films. MRS Advances, 2018, 3, 3601-3610.	0.5	8
1057	Calorimetric study of chitosan-graft-poly(2-ethylhexyl acrylate) copolymer. Thermochimica Acta, 2018, 670, 136-141.	1.2	1
1058	Adsorption of metals by crosslinked chitosan beads in sugarcane contaminated streams. Biomass and Bioenergy, 2018, 119, 128-134.	2.9	11
1059	Nanoparticulate-based drug delivery systems for small molecule anti-diabetic drugs: An emerging paradigm for effective therapy. Acta Biomaterialia, 2018, 81, 20-42.	4.1	48
1060	Functionalization of chitosan with carboxylic acids and derivatives of them: Synthesis issues and prospects of practical use: A review. EXPRESS Polymer Letters, 2018, 12, 1081-1105.	1.1	25
1061	Lipophilization of chitin as novel polymeric stabilizer for improved oil-in-water emulsions. Colloid and Polymer Science, 2018, 296, 1841-1848.	1.0	5
1062	Carbon Nanofibrous Microspheres Promote the Oxidative Double Carbonylation of Alkanes with CO. CheM, 2018, 4, 2861-2871.	5.8	24
1063	From Nature to Energy Storage: A Novel Sustainable 3D Cross-Linked Chitosan–PEGGE-Based Gel Polymer Electrolyte with Excellent Lithium-Ion Transport Properties for Lithium Batteries. ACS Applied Materials & Diterfaces, 2018, 10, 38526-38537.	4.0	77
1064	Facile Preparation of Nanofibrillar Networks of "Ureido hitin―Containing Ureido and Amine as Chelating Functional Groups. Chemistry - A European Journal, 2018, 24, 19332-19340.	1.7	21

#	Article	IF	CITATIONS
1065	From a Natural Polymer to Relevant NAGâ€NAM Precursors. Asian Journal of Organic Chemistry, 2018, 7, 2544-2551.	1.3	5
1066	Chitin extraction from Allopetrolisthes punctatus crab using lactic fermentation. Biotechnology Reports (Amsterdam, Netherlands), 2018, 20, e00287.	2.1	40
1067	The Conformation of Chitosan Molecules in Aqueous Solutions. Biophysics (Russian Federation), 2018, 63, 501-511.	0.2	15
1068	Novel protein-repellent and antimicrobial polysaccharide multilayer thin films. Holzforschung, 2018, 73, 93-103.	0.9	10
1069	In Search of Stronger/Cheaper Chitin Nanofibers through Electrospinning of Chitin–Cellulose Composites Using an Ionic Liquid Platform. ACS Sustainable Chemistry and Engineering, 2018, 6, 14713-14722.	3.2	36
1070	Biopolymeric In Situ Hydrogels for Tissue Engineering and Bioimaging Applications. Tissue Engineering and Regenerative Medicine, 2018, 15, 575-590.	1.6	35
1071	Optimization of process conditions for chitosan-manuka honey film as wound contact layer for wound dressings. Wound Medicine, 2018, 23, 11-21.	2.7	18
1072	Synthesis of cationic alkylated chitosans and an investigation of their rheological properties and interaction with anionic surfactant. Carbohydrate Polymers, 2018, 201, 615-623.	5.1	18
1073	Preparation and Evaluation of Coal Fly Ash/Chitosan Composites as Magnetic Supports for Highly Efficient Cellulase Immobilization and Cellulose Bioconversion. Polymers, 2018, 10, 523.	2.0	16
1074	Establishing Gene Delivery Systems Based on Small-Sized Chitosan Nanoparticles. Journal of Ocean University of China, 2018, 17, 1253-1260.	0.6	3
1075	Al2O3/chitosan nanocomposite: Preparation, characterization and kinetic study of its thermal degradation. Thermochimica Acta, 2018, 668, 169-177.	1.2	15
1076	Biocompatible Porous Scaffolds of Chitosan/Poly(EG- <i>ran</i> -PG) Blends with Tailored Pore Size and Nontoxic to <i>Mesenchymal</i> Stem Cells: Preparation by Controlled Evaporation from Aqueous Acetic Acid Solution. ACS Omega, 2018, 3, 10286-10295.	1.6	12
1077	Chitosan-based coatings for corrosion protection of copper-based alloys: A promising more sustainable approach for cultural heritage applications. Progress in Organic Coatings, 2018, 122, 138-146.	1.9	65
1078	Design of alpha mangostin-loaded chitosan/alginate controlled-release nanoparticles using genipin as crosslinker. Journal of Drug Delivery Science and Technology, 2018, 46, 312-321.	1.4	25
1079	Preparation and physico-chemical characterization of $\langle i \rangle \hat{l}^2 \langle i \rangle$ -cyclodextrin incorporated chitosan biosorbent beads with potential environmental applications. Materials Research Express, 2018, 5, 065503.	0.8	8
1080	Experimental analysis of biocomposite Raphia fiber/Chitosan influence of weaving process on mechanical properties. Procedia Manufacturing, 2018, 22, 180-185.	1.9	9
1081	Chitin and chitin-related compounds in plant–fungal interactions. Mycology, 2018, 9, 189-201.	2.0	128
1082	Use of succinyl chitosan as fat replacer on cake formulations. LWT - Food Science and Technology, 2018, 96, 260-265.	2.5	28

#	Article	IF	Citations
1083	Green Fabrication of Amphiphilic Quaternized β hitin Derivatives with Excellent Biocompatibility and Antibacterial Activities for Wound Healing. Advanced Materials, 2018, 30, e1801100.	11.1	242
1084	Synthesis and characterization of novel copper oxide-chitosan nanocomposites for non-enzymatic glucose sensing. Sensors and Actuators B: Chemical, 2018, 272, 296-307.	4.0	82
1085	Solid-state synthesis of silver nanowires using biopolymer thin films. Materials Today Nano, 2018, 1, 22-28.	2.3	10
1086	Palladium immobilized on <i>in situ</i> cross-linked chitosan superfine fibers for catalytic application in an aqueous medium. New Journal of Chemistry, 2018, 42, 11023-11030.	1.4	21
1087	Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review. Carbohydrate Polymers, 2018, 199, 445-460.	5.1	553
1088	Stability, adsorption and electrokinetic properties of the chitosan/silica system. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 554, 245-252.	2.3	20
1089	Natural Antimicrobial Materials for Use in Food Packaging. , 2018, , 181-233.		2
1090	Chitosan based copolymer-drug conjugate and its protein targeted polyelectrolyte complex nanoparticles to enhance the efficiency and specificity of low potency anticancer agent. Materials Science and Engineering C, 2018, 92, 393-406.	3.8	18
1091	Properties evaluation of polyelectrolyte complex based on iota carrageenan and chitosan in acidic and basic media. Materials Letters, 2018, 229, 142-147.	1.3	9
1092	Complex coacervation of natural sophorolipid bolaamphiphile micelles with cationic polyelectrolytes. Green Chemistry, 2018, 20, 3371-3385.	4.6	27
1093	An industrialâ€scale synthesis of biodegradable soluble in organic solvents butyric–acetic chitin ⟨i⟩co⟨ i⟩polyesters. Advances in Polymer Technology, 2018, 37, 3210-3221.	0.8	5
1094	Understanding dissolution process of chitin crystal in ionic liquids: theoretical study. Physical Chemistry Chemical Physics, 2018, 20, 20669-20677.	1.3	36
1095	Incorporation and selective removal of space-forming nanofibers to enhance the permeability of cytocompatible nanofiber membranes for better cell growth. Journal of the Taiwan Institute of Chemical Engineers, 2018, 91, 146-154.	2.7	4
1096	Injectable hydrogels: a new paradigm for osteochondral tissue engineering. Journal of Materials Chemistry B, 2018, 6, 5499-5529.	2.9	78
1097	Electrochemical Biosensor for Polycyclic Organic Compounds Screening Based on a Methylene Blue-incorporated DNA Polyion Complex Modified Electrode. Analytical Sciences, 2018, 34, 1131-1135.	0.8	5
1098	Extraction of high thermally stable and nanofibrous chitin from <i>Cicada</i> (Cicadoidea). Entomological Research, 2018, 48, 480-489.	0.6	10
1099	Bioactive glasses 2: Composite bone void fillers. , 2018, , 365-380.		3
1100	Optimization of nanofibrillation degree of chitin for induction of plant disease resistance: Elicitor activity and systemic resistance induced by chitin nanofiber in cabbage and strawberry. International Journal of Biological Macromolecules, 2018, 118, 2185-2192.	3.6	32

#	Article	IF	CITATIONS
1101	Nanopatterned protein-polysaccharide thin films by humidity regulated phase separation. Journal of Colloid and Interface Science, 2018, 532, 171-181.	5.0	9
1102	Smart Biopolymer Hydrogels Developments for Biotechnological Applications. Polymers and Polymeric Composites, 2018, , 1-21.	0.6	0
1103	Biodegradable Polymers Grafted onto Multifunctional Mesoporous Silica Nanoparticles for Gene Delivery. ChemEngineering, 2018, 2, 24.	1.0	23
1104	Chitosan Based Regenerated Cellulose Fibers Functionalized with Plasma and Ultrasound. Coatings, 2018, 8, 133.	1.2	11
1105	Size-controllable ultrafine palladium nanoparticles immobilized on calcined chitin microspheres as efficient and recyclable catalysts for hydrogenation. Nanoscale, 2018, 10, 14719-14725.	2.8	42
1106	Probiotic Incorporation in Edible Films and Coatings: Bioactive Solution for Functional Foods. International Journal of Molecular Sciences, 2018, 19, 150.	1.8	103
1107	Advances in Degradable Embolic Microspheres: A State of the Art Review. Journal of Functional Biomaterials, 2018, 9, 14.	1.8	39
1108	Facile Preparation of Metal-Organic Framework (MIL-125)/Chitosan Beads for Adsorption of Pb(II) from Aqueous Solutions. Molecules, 2018, 23, 1524.	1.7	47
1109	Chitosan and Its Derivatives for Application in Mucoadhesive Drug Delivery Systems. Polymers, 2018, 10, 267.	2.0	481
1110	Thermo-thickening behavior and its mechanism in a chitosan- <i>graft</i> -polyacrylamide aqueous solution. Soft Matter, 2018, 14, 6667-6677.	1.2	8
1111	Preparation of proanthocyanidin–chitosan complex and its antioxidant and antibacterial properties. Iranian Polymer Journal (English Edition), 2018, 27, 653-661.	1.3	5
1112	Optimization of antioxidant, mechanical and chemical physical properties of chitosan-sorbitol-gallic acid films by response surface methodology. Polymer Testing, 2018, 70, 180-187.	2.3	12
1113	Chitosan-grafted-poly(methacrylic acid)/graphene oxide nanocomposite as a pH-responsive de novo cancer chemotherapy nanosystem. International Journal of Biological Macromolecules, 2018, 118, 1871-1879.	3.6	70
1114	Influence of Chitosan Molecular Weight and Poly(ethylene oxide): Chitosan Proportion on Fabrication of Chitosan Based Electrospun Nanofibers. Polymer Science - Series A, 2018, 60, 471-482.	0.4	9
1115	Effect of inorganic and organic bioactive signals decoration on the biological performance of chitosan scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2018, 29, 62.	1.7	8
1116	Characterization and antibacterial mechanism of poly(aminoethyl) modified chitin synthesized via a facile one-step pathway. Carbohydrate Polymers, 2018, 195, 275-287.	5.1	40
1117	Nanofiber technology in the ex vivo expansion of cord blood-derived hematopoietic stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1707-1718.	1.7	18
1118	Chitosan coatings on lecithin stabilized emulsions inhibit mycotoxin production by Fusarium pathogens. Food Control, 2018, 92, 276-285.	2.8	13

#	Article	IF	CITATIONS
1119	Direct synthesis of nitrogen and phosphorus co-doped hierarchical porous carbon networks with biological materials as efficient electrocatalysts for oxygen reduction reaction. International Journal of Hydrogen Energy, 2018, 43, 10341-10350.	3.8	25
1120	State of the Art in the Targeted Modification of Chitosan. Polymer Science - Series B, 2018, 60, 131-161.	0.3	15
1121	Kinetic and mechanism studies of the isothermal degradation of local chitin, chitosan and its biocomposite bentonite/chitosan. Cellulose, 2018, 25, 5593-5609.	2.4	7
1122	Novel phytochemical <i>Cissus quadrangularis</i> extract–loaded chitosan/Na-carboxymethyl cellulose–based scaffolds for bone regeneration. Journal of Bioactive and Compatible Polymers, 2018, 33, 629-646.	0.8	23
1123	Polycaprolactone/chitosan blend nanofibers loaded by 5â€fluorouracil: An approach to anticancer drug delivery system. Polymers for Advanced Technologies, 2018, 29, 2972-2981.	1.6	59
1124	Facile acylation of α-chitin in ionic liquid. Carbohydrate Polymers, 2018, 200, 567-571.	5.1	24
1125	Effect of sorbitol content on microstructure and thermal properties of chitosan films. International Journal of Biological Macromolecules, 2018, 119, 1294-1297.	3.6	34
1126	Materials Functionalization with Multicomponent Reactions: State of the Art. ACS Combinatorial Science, 2018, 20, 499-528.	3.8	89
1127	Preparation and Characterization of Florfenicol/Chitosan-stearic Acid Polymer Nanomicelle and Its Antibiotic Properties. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 1007-1013.	0.4	2
1128	Mechanics for the Adhesion and Aggregation of Red Blood Cells on Chitosan. Journal of Mechanics, 2018, 34, 725-732.	0.7	13
1129	Chitosan-Based Composite Materials for Prospective Hemostatic Applications. Marine Drugs, 2018, 16, 273.	2.2	181
1130	Gel Formation from Self-assembled Chitin Nanofiber Film by Grafting of Poly(2-methyl-2-oxazoline). Chemistry Letters, 2018, 47, 949-952.	0.7	9
1131	Chemoenzymatic Preparation of Amylose-Grafted Chitin Nanofiber Network Materials. Biomacromolecules, 2018, 19, 3013-3019.	2.6	14
1132	Chitosan Hydrogels and Bionanocomposites Formed through the Mineralization and Regulated Charging. Chemical Record, 2018, 18, 1247-1260.	2.9	15
1133	The Influence of Additives on the Interfacial Bonding Mechanisms Between Natural Fibre and Biopolymer Composites. Macromolecular Research, 2018, 26, 851-863.	1.0	29
1134	Hybrid Composite Biomaterials. , 2019, , 695-714.		9
1135	Functionalized polyaniline and composites. , 2019, , 177-201.		2
1136	Bile acids adsorption by chitoan-fumed silica enterosorbent. Colloids and Interface Science Communications, 2019, 32, 100194.	2.0	18

#	Article	IF	CITATIONS
1137	Chitosan dissolution with sulfopropyl imidazolium Br $\tilde{A}\P$ nsted acidic ionic liquids. Journal of Molecular Liquids, 2019, 293, 111533.	2.3	13
1138	Toxicity and Subcellular Fractionation of Yttrium in Three Freshwater Organisms: <i>Daphnia magna</i> , <i>Chironomus riparius,</i> and <i>Oncorhynchus mykiss</i> . ACS Omega, 2019, 4, 13747-13755.	1.6	32
1139	Probing Lead Ion Contamination in Aqueous Solution Through Bio-Inspired Surface Modification of Gold Nanoparticles on D-Shaped Fiber. IEEE Nanotechnology Magazine, 2019, 18, 770-775.	1.1	9
1140	Application of multiple regression analysis in optimization of metronidazole-chitosan nanoparticles. Journal of Polymer Research, 2019, 26, 1.	1.2	16
1141	Flexible, microstructured surfaces using chitin-derived biopolymers. Journal of Materials Chemistry B, 2019, 7, 5328-5335.	2.9	8
1142	Tumor-targeting glycol chitosan nanocarriers: overcoming the challenges posed by chemotherapeutics. Expert Opinion on Drug Delivery, 2019, 16, 835-846.	2.4	6
1143	Au and Ag nanoparticle-embedded calcium alginate fibers with laminated structure fabricated by molecule-directed self-assembly and cation exchange. Japanese Journal of Applied Physics, 2019, 58, SDDC02.	0.8	0
1144	Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environmental Chemistry Letters, 2019, 17, 1667-1692.	8.3	401
1145	Synthesis, molecular characteristics, and stimulus-sensitivity of graft copolymer of chitosan and poly(N,N-diethylacrylamide). Journal of Molecular Liquids, 2019, 292, 111355.	2.3	13
1146	Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environmental Chemistry Letters, 2019, 17, 1645-1666.	8.3	94
1147	Fabrication of polysaccharide-based materials using ionic liquids and scope for biomedical use. , 2019, , 131-171.		6
1148	Impact of acid type for chitosan dissolution on the characteristics and biodegradability of cornstarch/chitosan based films. International Journal of Biological Macromolecules, 2019, 138, 693-703.	3.6	65
1149	Two dimensional carbon based nanocomposites as multimodal therapeutic and diagnostic platform: A biomedical and toxicological perspective. Journal of Controlled Release, 2019, 308, 130-161.	4.8	30
1150	Effect of Chitosan- and Alginate-Based Coatings Enriched with Cinnamon Essential Oil Microcapsules to Improve the Postharvest Quality of Mangoes. Materials, 2019, 12, 2039.	1.3	73
1151	Solvent-free synthesis and characterization of allyl chitosan derivatives. RSC Advances, 2019, 9, 20968-20975.	1.7	17
1152	Application of Chitosan Based Scaffolds for Drug Delivery and Tissue Engineering in Dentistry. Springer Series in Biomaterials Science and Engineering, 2019, , 157-178.	0.7	6
1153	Hydrophilic modification of PTFE microfiltration flat membrane by crosslinking OCMCS-PEI to enhance anti-fouling property. Progress in Organic Coatings, 2019, 135, 565-573.	1.9	20
1154	An investigation on polycaprolactone/chitosan/Fe ₃ O ₄ nanofibrous composite used for hyperthermia. Polymers for Advanced Technologies, 2019, 30, 2729-2741.	1.6	11

#	Article	IF	CITATIONS
1155	Chitosan-Based Biocomposite Scaffolds and Hydrogels for Bone Tissue Regeneration. Springer Series in Biomaterials Science and Engineering, 2019, , 413-442.	0.7	4
1156	A novel core-shell nanofiber drug delivery system intended for the synergistic treatment of melanoma. European Journal of Pharmaceutical Sciences, 2019, 137, 105002.	1.9	56
1157	Preparation and characterization of electrospun poly(lactic acid)-chitosan core-shell nanofibers with a new solvent system. International Journal of Biological Macromolecules, 2019, 138, 1130-1137.	3.6	59
1158	Self-healable and pH-sensitive high-strength water-soluble chitosan/chemically cross-linked polyvinyl alcohol semi-IPN hydrogel. International Journal of Biological Macromolecules, 2019, 138, 667-672.	3.6	24
1159	A top-down chemo-enzymatic approach towards N-acetylglucosamine-N-acetylmuramic oligosaccharides: Chitosan as a reliable template. Carbohydrate Polymers, 2019, 224, 115133.	5.1	7
1160	Dissolution of cellulose in ionic liquids and their mixed cosolvents: A review. Sustainable Chemistry and Pharmacy, 2019, 13, 100162.	1.6	76
1161	Fabrication, structure, and function evaluation of the ferritin based nano-carrier for food bioactive compounds. Food Chemistry, 2019, 299, 125097.	4.2	36
1162	Properties of biobased packaging material. , 2019, , 25-111.		2
1163	Chitosan for gene, DNA vaccines, and drug delivery. , 2019, , 515-550.		9
1164	Nanoparticles for ocular drug delivery: modified and non-modified chitosan as a promising biocompatible carrier. Nanomedicine, 2019, 14, 1889-1909.	1.7	28
1165	Microstructure and characteristic properties of gelatin/chitosan scaffold prepared by the freeze-gelation method. Materials Research Express, 2019, 6, 115404.	0.8	8
1166	Tunable Thermo―and pHâ€Responsive Hydrogels and MWCNTs/Hydrogel Containing 2â€Aminobenzamide Units in Their Crosslink Chains. ChemistrySelect, 2019, 4, 11378-11384.	0.7	4
1167	Natural rubber bio-nanocomposites reinforced with self-assembled chitin nanofibers from aqueous KOH/urea solution. Carbohydrate Polymers, 2019, 225, 115230.	5.1	33
1168	Toxicity Evaluation of One-Dimensional Nanoparticles Using <i>Caenorhabditis elegans</i> Comparative Study of Halloysite Nanotubes and Chitin Nanocrystals. ACS Sustainable Chemistry and Engineering, 2019, 7, 18965-18975.	3.2	38
1169	Ecofriendly Method to Dissolve Chitosan in Plain Water. ACS Biomaterials Science and Engineering, 2019, 5, 6355-6360.	2.6	21
1170	The Effect of PEGDE Concentration and Temperature on Physicochemical and Biological Properties of Chitosan. Polymers, 2019, 11, 1830.	2.0	19
1171	Cooperatively Catalyzed Henry Reaction through Directed Metalâ€Chitosan Interactions. ChemNanoMat, 2019, 5, 1498-1505.	1.5	5
1172	Preparation of chitosanâ€based molecularly imprinted material for enantioseparation of racemic mandelic acid in aqueous medium by solid phase extraction. Journal of Separation Science, 2019, 42, 3544-3552.	1.3	22

#	Article	IF	CITATIONS
1173	Physico-Mechanical and Thermodynamic Properties of Mycelium-Based Biocomposites: A Review. Sustainability, 2019, 11, 281.	1.6	126
1174	Waste-to-wealth: biowaste valorization into valuable bio(nano)materials. Chemical Society Reviews, 2019, 48, 4791-4822.	18.7	244
1175	Formation of extracellular \hat{l}^2 -chitin nanofibers during batch cultivation of marine diatom Cyclotella sp. at silicon limitation. Journal of Applied Phycology, 2019, 31, 3479-3490.	1.5	10
1176	Editable and bidirectional shape memory chitin hydrogels based on physical/chemical crosslinking. Cellulose, 2019, 26, 9085-9094.	2.4	7
1177	Decanoic acid functionalized chitosan: Synthesis, characterization, and evaluation as potential wound dressing material. International Journal of Biological Macromolecules, 2019, 139, 1046-1053.	3.6	24
1178	Electrically conductive biomaterials based on natural polysaccharides: Challenges and applications in tissue engineering. International Journal of Biological Macromolecules, 2019, 141, 636-662.	3.6	63
1179	Peptide-Based Assemblies on Electrospun Polyamide-6/Chitosan Nanofibers for Detecting Visceral Leishmaniasis Antibodies. ACS Applied Electronic Materials, 2019, 1, 2086-2095.	2.0	20
1180	Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 2019, 8, 5124-5132.	2.6	45
1181	Production of beta-chitin aqueous stable suspensions by ultrasound process: a green chemistry way. Materials Today: Proceedings, 2019, 14, 708-715.	0.9	2
1182	Influence of the process parameters on \hat{l}^2 -chitin and \hat{l}_\pm -chitin extraction: probing about the grinding and particles size. Materials Today: Proceedings, 2019, 14, 722-732.	0.9	4
1183	Oligosaccharides of Chitin and Chitosan. , 2019, , .		13
1184	Biomaterials Based on Marine Resources for 3D Bioprinting Applications. Marine Drugs, 2019, 17, 555.	2.2	49
1185	Application of Immobilized Enzymes in Food Industry. Journal of Agricultural and Food Chemistry, 2019, 67, 11553-11567.	2.4	114
1186	Hybrid scaffold comprising of nanofibers and extrusion printed PCL for tissue engineering. Materials Today: Proceedings, 2019, 11, 804-812.	0.9	5
1187	Hierarchical layered double hydroxide coated carbon nanotube modified quaternized chitosan/polyvinyl alcohol for alkaline direct methanol fuel cells. Journal of Power Sources, 2019, 441, 227176.	4.0	52
1188	Stability of Suspensions of α-Chitin Nanocrystals Obtained by TEMPO Oxidation. Polymer Science - Series A, 2019, 61, 589-597.	0.4	4
1189	Fabrication of Semiâ€crystalline Film by Hexanoylation on Selfâ€assembled Chitin Nanofibers. ChemistrySelect, 2019, 4, 797-801.	0.7	12
1190	Marine shell industrial wastes–an abundant source of chitin and its derivatives: constituents, pretreatment, fermentation, and pleiotropic applications-a revisit. International Journal of Environmental Science and Technology, 2019, 16, 3877-3898.	1.8	55

#	Article	IF	CITATIONS
1191	Gamma radiation degradation of chitosan for application in growth promotion and induction of stress tolerance in potato (Solanum tuberosum L.). Carbohydrate Polymers, 2019, 210, 289-301.	5.1	104
1192	Nanofibrillation enhances the protective effect of crab shells against Fusarium wilt disease in tomato. International Journal of Biological Macromolecules, 2019, 128, 22-27.	3.6	19
1193	The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir. European Journal of Pharmaceutics and Biopharmaceutics, 2019, 136, 147-155.	2.0	14
1194	Preparation of Chitin Nanofiber-Reinforced Xanthan Gum Hydrogels. Journal of Polymers and the Environment, 2019, 27, 671-677.	2.4	6
1195	DDA (degree of deacetylation) and pH-dependent antibacterial properties of chitin nanofibers against Escherichia coli. Cellulose, 2019, 26, 2279-2290.	2.4	29
1196	Facile fabrication of quaternary water soluble chitosan-sodium alginate gel and its affinity characteristic toward multivalent metal ion. Environmental Technology and Innovation, 2019, 13, 340-345.	3.0	11
1197	Nanosilica-chitosan hybrid materials: Preparation, characterization and application in aqueous drilling fluids. Journal of Molecular Liquids, 2019, 279, 279-288.	2.3	25
1198	Chitosan oligosaccharide (COS): An overview. International Journal of Biological Macromolecules, 2019, 129, 827-843.	3.6	313
1199	Low-Voltage Oxide-Based Synaptic Transistors for Spiking Humidity Detection. IEEE Electron Device Letters, 2019, 40, 459-462.	2.2	26
1201	Bioactive and drug-delivery potentials of polysaccharides and their derivatives. , 2019, , 19-48.		6
1202	Crosslinked palygorskite-chitosan beads as diclofenac carriers. Applied Clay Science, 2019, 180, 105169.	2.6	32
1203	Fabrication of robust silk fibroin film by controlling the content of \hat{l}^2 -sheet via the synergism of Uv-light and ionic liquids. Applied Surface Science, 2019, 492, 55-65.	3.1	21
1204	Chitin in ionic liquids: historical insights into the polymer's dissolution and isolation. A review. Green Chemistry, 2019, 21, 3974-3993.	4.6	104
1205	Physical nanochitin/microemulsion composite hydrogels for hydrophobic Nile Red release under in vitro physiological conditions. Cellulose, 2019, 26, 1221-1230.	2.4	8
1206	Synthesis of chitosan-mimicking cationic glycopolymers by Cu(0)-LRP for efficient capture and killing of bacteria. Polymer Chemistry, 2019, 10, 4059-4066.	1.9	11
1207	Fundamentals and Applications of Chitosan. Sustainable Agriculture Reviews, 2019, , 49-123.	0.6	60
1208	Sustainable Agriculture Reviews 36. Sustainable Agriculture Reviews, 2019, , .	0.6	12
1209	Cross-Linked Chitosan-Based Hydrogels for Dye Removal. Sustainable Agriculture Reviews, 2019, , 381-425.	0.6	12

#	Article	IF	CITATIONS
1210	Applications of Chitin in Agriculture. Sustainable Agriculture Reviews, 2019, , 125-146.	0.6	15
1211	Smart Hydrogel for the pHâ€Selective Drug Delivery of Antimicrobial Compounds. Macromolecular Symposia, 2019, 385, 1800182.	0.4	8
1212	Scavenging of reactive oxygen species by phenolic compound-modified maghemite nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1073-1088.	1.5	23
1213	Preparation and characterization of insulin chitosan-nanoparticles loaded in buccal films. Pharmaceutical Development and Technology, 2019, 24, 967-974.	1.1	40
1214	Facile preparation of biocompatible macroporous chitosan hydrogel by hydrothermal reaction of a mixture of chitosan-succinic acid-urea. Materials Science and Engineering C, 2019, 104, 109845.	3.8	18
1215	Robust amphiprotic konjac glucomannan cross-linked chitosan aerogels for efficient water remediation. Cellulose, 2019, 26, 6785-6796.	2.4	16
1216	Sustainable Agriculture Reviews 35. Sustainable Agriculture Reviews, 2019, , .	0.6	15
1217	A de novo formulation of metformin using chitosanâ€based nanomicelles for potential diabetes therapy. Journal of Applied Polymer Science, 2019, 136, 48037.	1.3	8
1218	Bioprocess-inspired fabrication of materials with new structures and functions. Progress in Materials Science, 2019, 105, 100571.	16.0	76
1219	Solubility of chitosan in aqueous acetic acid and pressurized carbon dioxide-water: Experimental equilibrium and solubilization kinetics. Journal of Supercritical Fluids, 2019, 151, 63-74.	1.6	29
1220	Immobilized fungal laccase as "green catalyst" for the decolourization process – State of the art. Process Biochemistry, 2019, 84, 112-123.	1.8	61
1221	Acid-Treated Water-Soluble Chitosan Suitable for Microneedle-Assisted Intracutaneous Drug Delivery. Pharmaceutics, 2019, 11, 209.	2.0	37
1222	Technological performance of formaldehyde-free adhesive alternatives for particleboard industry. International Journal of Adhesion and Adhesives, 2019, 94, 99-131.	1.4	159
1223	Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering. ACS Applied Materials & Description (2019), 11, 20437-20452.	4.0	46
1224	Biocompatible hydrogel for cartilage repair with adjustable properties. Polymers for Advanced Technologies, 2019, 30, 2026-2033.	1.6	10
1225	Adsorption characteristics and mechanisms of O-Carboxymethyl chitosan on chalcopyrite and molybdenite. Journal of Colloid and Interface Science, 2019, 552, 659-670.	5.0	65
1226	Progress in the Development of Intrinsically Conducting Polymer Composites as Biosensors. Macromolecular Chemistry and Physics, 2019, 220, 1800561.	1.1	86
1227	Water soluble chitosan-caffeic acid conjugates as a dual functional polymeric surfactant. Food Bioscience, 2019, 29, 118-125.	2.0	28

#	Article	IF	Citations
1228	Improving stability of zinc nanoparticles in chitosan solution with a nanosecond pulsed laser. Laser Physics Letters, 2019, 16, 055603.	0.6	4
1229	Photo-crosslinking of chitosan/poly(ethylene oxide) electrospun nanofibers. Carbohydrate Polymers, 2019, 217, 144-151.	5.1	63
1230	Characterization of a chitin-glucan complex from the fruiting body of Termitomyces albuminosus (Berk.) Heim. International Journal of Biological Macromolecules, 2019, 134, 131-138.	3.6	24
1231	Surface modification by deposition of IPA plasma and gellan gum/chitosan hybrid hydrogel onto thermoplastic polyurethane for controlled release of Nâ€acetylcysteine. Journal of the Chinese Chemical Society, 2019, 66, 691-697.	0.8	2
1232	Structural and optical properties of chitosan–poly(amidoamine) dendrimer composite thin film for potential sensing Pb2+ using an optical spectroscopy. Optik, 2019, 185, 351-358.	1.4	20
1233	Insect Cuticle-Mimetic Hydrogels with High Mechanical Properties Achieved via the Combination of Chitin Nanofiber and Gelatin. Journal of Agricultural and Food Chemistry, 2019, 67, 5571-5578.	2.4	47
1234	Production of bioplastic through food waste valorization. Environment International, 2019, 127, 625-644.	4.8	328
1235	Chitosan-based nanoparticles: promising biomedical applications in specific drug delivery and targeting., 2019,, 215-257.		2
1236	Pesticide removal from drinking water sources by adsorption: a review. Environmental Technology Reviews, 2019, 8, 1-24.	2.1	87
1237	Possibilities and perspectives of chitosan scaffolds and composites for tissue engineering. , 2019, , 167-203.		4
1238	The Current-Voltage Properties of Ch/AgNP Composite Membranes: A Study on the Effect of AgNP Content. IOP Conference Series: Materials Science and Engineering, 2019, 515, 012064.	0.3	3
1239	Effect of Tea Polyphenols on Curdlan/Chitosan Blending Film Properties and Its Application to Chilled Meat Preservation. Coatings, 2019, 9, 262.	1.2	32
1240	Self-assembled amphiphilic chitosan: A time-dependent nanostructural evolution and associated drug encapsulation/elution mechanism. Carbohydrate Polymers, 2019, 215, 246-252.	5.1	11
1241	Co-encapsulation of imidacloprid and lambda-cyhalothrin using biocompatible nanocarriers: Characterization and application. Ecotoxicology and Environmental Safety, 2019, 175, 155-163.	2.9	33
1242	Chitosan-based nanocomposites: Promising materials for drug delivery applications., 2019,, 375-407.		6
1243	Polymers for subunit vaccine delivery. European Polymer Journal, 2019, 114, 397-410.	2.6	64
1244	EDCâ€Mediated Grafting of Quaternary Ammonium Salts onto Chitosan for Antibacterial and Thermal Properties Improvement. Macromolecular Chemistry and Physics, 2019, 220, 1800530.	1.1	12
1245	Chitosan–Glycerol Gel as Barrier Formulation for Metal Allergy. ACS Omega, 2019, 4, 5900-5903.	1.6	6

#	Article	IF	CITATIONS
1246	Acid Hydrolysis of Chitosan to Oligomers Using Hydrochloric Acid. Chemical Engineering and Technology, 2019, 42, 1741-1746.	0.9	28
1247	Functionalization of chitosan polymer and their applications. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 450-475.	1.2	65
1248	Supramolecular Strategy Effects on Chitosan Bead Stability in Acidic Media: A Comparative Study. Gels, 2019, 5, 11.	2.1	14
1249	Transglutaminase induced oligochitosan glycosylation of ferritin as a novel nanocarrier for food bioactive molecules. Food Hydrocolloids, 2019, 94, 500-509.	5.6	28
1250	Preparation of hybrid chitosan membranes by selective laser sintering for adsorption and catalysis. Materials and Design, 2019, 173, 107780.	3.3	25
1251	Preparation of glycerol plasticized chitosan films using AlCl3·6H2O as the solvent: optical, crystalline, mechanical and barrier properties. International Journal of Polymer Analysis and Characterization, 2019, 24, 295-303.	0.9	3
1252	Two-Step Separation of Chitin from Shrimp Shells Using Citric Acid and Deep Eutectic Solvents with the Assistance of Microwave. Polymers, 2019, 11, 409.	2.0	83
1253	Solubility of lignin and chitin in ionic liquids and their biomedical applications. International Journal of Biological Macromolecules, 2019, 132, 265-277.	3.6	81
1254	Modification of Chitosan for the Generation of Functional Derivatives. Applied Sciences (Switzerland), 2019, 9, 1321.	1.3	102
1255	Optically transparent chitosan hydrogels for selective sorption and fluorometric determination of dibenzothiophenes. Carbohydrate Polymers, 2019, 216, 260-269.	5.1	14
1256	Potential ecotoxicological effects of antimicrobial surface coatings: a literature survey backed up by analysis of market reports. Peerl, 2019, 7, e6315.	0.9	42
1258	Recent Developments in Chitosan-Based Nanocomposites. , 2019, , 183-215.		7
1259	Miscibility and flexibility of poly(lactic acid) blends with octadecenylsuccinic anhydride. Polymer Degradation and Stability, 2019, 162, 55-65.	2.7	5
1260	Immobilized Enzymes and Their Applications. , 2019, , 169-200.		18
1261	Advances in Functional Chitin Materials: A Review. ACS Sustainable Chemistry and Engineering, 2019, 7, 6444-6457.	3.2	185
1262	3D Printing of Mechanically Stable Calciumâ€Free Alginateâ€Based Scaffolds with Tunable Surface Charge to Enable Cell Adhesion and Facile Biofunctionalization. Advanced Functional Materials, 2019, 29, 1808439.	7.8	62
1263	Formulation and Characterization of New Polymeric Systems Based on Chitosan and Xanthine Derivatives with Thiazolidin-4-One Scaffold. Materials, 2019, 12, 558.	1.3	8
1264	Chitosan as a Widely Used Coagulant to Reduce Turbidity and Color of Model Textile Wastewater Containing an Anionic Dye (Acid Blue). IOP Conference Series: Materials Science and Engineering, 2019, 584, 012036.	0.3	2

#	Article	IF	CITATIONS
1265	Instrumentation and Development of Grating Coupler Sensor for Cost-effective and Precision Measurement of Biomolecules. , 2019, , .		0
1266	Green Production and Biotechnological Applications of Cell Wall Lytic Enzymes. Applied Sciences (Switzerland), 2019, 9, 5012.	1.3	17
1268	Advanced Recombinant and Regenerated Silk Materials for Medicine and Tissue Engineering. Nanotechnologies in Russia, 2019, 14, 290-310.	0.7	2
1269	Chitosan as A Preservative for Fruits and Vegetables: A Review on Chemistry and Antimicrobial Properties. Journal of Bioresources and Bioproducts, 2019, 4, 11-21.	11.8	193
1270	Synthesis and characterization of thymol-loaded lauryl glycol chitosan for pesticide formulation. Journal of Physics: Conference Series, 2019, 1397, 012026.	0.3	2
1271	Single-Step Methylation of Chitosan Using Dimethyl Carbonate as a Green Methylating Agent. Molecules, 2019, 24, 3986.	1.7	11
1272	Physicochemical and Colligative Investigation of \hat{l}_{\pm} (Shrimp Shell)- and \hat{l}_{\pm} (Squid Pen)-Chitosan Membranes: Concentration-Gradient-Driven Water Flux and Ion Transport for Salinity Gradient Power and Separation Process Operations. ACS Omega, 2019, 4, 21027-21040.	1.6	8
1273	Microbial Cellulases: An Overview and Applications. , 0, , .		86
1274	Adhesion, proliferation and differentiation of human mesenchymal stem cell on chitosan/collagen composite scaffold. Journal of Materials Science: Materials in Medicine, 2019, 30, 131.	1.7	30
1275	Mechanical and Surface Properties of Resilient Denture Liners Modified with Chitosan Salts. Materials, 2019, 12, 3518.	1.3	4
1276	A Novel pH- and Salt-Responsive N-Succinyl-Chitosan Hydrogel via a One-Step Hydrothermal Process. Molecules, 2019, 24, 4211.	1.7	19
1277	Kinetics, isotherm, thermodynamic and bioperformance of defluoridation of water using praseodymium-modified chitosan. Journal of Environmental Chemical Engineering, 2019, 7, 103498.	3.3	13
1278	Characterization and efficacy of chitosan membranes in the treatment of skin ulcers. Egyptian Journal of Basic and Applied Sciences, 2019, 6, 195-205.	0.2	5
1280	Nanomaterials for Regenerative Medicine. Pancreatic Islet Biology, 2019, , .	0.1	1
1281	An Experimental Application of Four Types of Chitosan Bead for Removal of Cationic and Anionic Pollutants. Water, Air, and Soil Pollution, 2019, 230, 1.	1.1	6
1284	Impact of Crystalline Structural Differences Between \hat{l}_{\pm} - and \hat{l}^2 -Chitosan on Their Nanoparticle Formation Via Ionic Gelation and Superoxide Radical Scavenging Activities. Polymers, 2019, 11, 2010.	2.0	49
1285	Preparation of Chitosan-based nanocomposites and biomedical investigations in bone tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 701-713.	1.8	17
1286	Fabrication of methyl acrylate and tetraethylenepentamine grafted magnetic chitosan microparticles for capture of Cd(II) from aqueous solutions. Journal of Hazardous Materials, 2019, 366, 346-357.	6.5	83

#	Article	IF	CITATIONS
1287	Dissolution of chitosan nanocrystals in aqueous media of different acidity. Molecular dynamic study. Carbohydrate Polymers, 2019, 207, 619-627.	5.1	7
1288	An injectable enzymatically crosslinked tyramine-modified carboxymethyl chitin hydrogel for biomedical applications. Colloids and Surfaces B: Biointerfaces, 2019, 175, 614-624.	2.5	42
1289	Preparation of composite and hollow particles from self-assembled chitin nanofibers by Pickering emulsion polymerization. International Journal of Biological Macromolecules, 2019, 126, 187-192.	3.6	22
1290	Î ² -Chitin samples with similar microfibril arrangement change mechanical properties varying the degree of acetylation. Carbohydrate Polymers, 2019, 207, 26-33.	5.1	26
1291	Chitosan microparticles embedded with multi-responsive poly(N-vinylcaprolactam-co-itaconic) Tj ETQq0 0 0 rgBT / hydrophobic drugs. Colloids and Surfaces B: Biointerfaces, 2019, 175, 73-83.	Overlock 2.5	10 Tf 50 58 22
1292	Crustacean shell-based biosorption water remediation platforms: Status and perspectives. Journal of Environmental Management, 2019, 231, 757-762.	3.8	18
1293	Chitosan-functionalized nanofibers: A comprehensive review on challenges and prospects for food applications. International Journal of Biological Macromolecules, 2019, 123, 210-220.	3.6	77
1294	Biomaterials, Definition, Overview., 2019, , 85-98.		20
1295	Dissolution, derivatization, and functionalization of chitin in ionic liquid. International Journal of Biological Macromolecules, 2019, 123, 732-737.	3.6	43
1296	Mechanism and Factors Influencing Formation and Stability of Chitosan/Lignosulfonate Nanoparticles. Macromolecular Chemistry and Physics, 2019, 220, 1800338.	1.1	14
1297	Removal of aqueous copper(II) by using crosslinked chitosan films. Reactive and Functional Polymers, 2019, 134, 31-39.	2.0	23
1298	Processing of Cellulose Using Ionic Liquids. Macromolecular Materials and Engineering, 2019, 304, 1800450.	1.7	73
1299	Characteristics of Local Delivery Agents for Treating Peri-Implantitis on Dental Implant Surfaces: A Preclinical Study. Journal of Oral Implantology, 2019, 45, 116-126.	0.4	8
1300	Smart Biopolymer Hydrogels Developments for Biotechnological Applications. Polymers and Polymeric Composites, 2019, , 1515-1535.	0.6	0
1301	Electrophoretic deposition of chitosan-based composite coatings for biomedical applications: A review. Progress in Materials Science, 2019, 103, 69-108.	16.0	237
1302	Study of chitosan with different degrees of acetylation as cardboard paper coating. Carbohydrate Polymers, 2019, 210, 56-63.	5.1	52
1303	Sustainable selfâ€healing elastomers with thermoreversible network derived from biomass via emulsion polymerization. Journal of Polymer Science Part A, 2019, 57, 738-751.	2.5	21
1304	Applications of cellulose and chitin/chitosan derivatives and composites as antibacterial materials: current state and perspectives. Applied Microbiology and Biotechnology, 2019, 103, 1989-2006.	1.7	97

#	Article	IF	CITATIONS
1305	Chitinâ€halloysite nanoclay hydrogel composite adsorbent to aqueous heavy metal ions. Journal of Applied Polymer Science, 2019, 136, 47207.	1.3	25
1306	Synthesis, characterization and antimicrobial activity of novel aminosalicylhydrazide cross linked chitosan modified with multi-walled carbon nanotubes. Cellulose, 2019, 26, 1141-1156.	2.4	29
1307	Removal of organic pollutants from wastewater using chitosan: a literature review. International Journal of Environmental Science and Technology, 2019, 16, 1741-1754.	1.8	74
1308	Recent Advances in Artificially Sulfated Polysaccharides for Applications in Cell Growth and Differentiation, Drug Delivery, and Tissue Engineering. ChemBioChem, 2019, 20, 737-746.	1.3	28
1309	Facile and green synthesis of 3D honeycomb-like N/S-codoped hierarchically porous carbon materials from bio-protic salt for flexible, temperature-resistant supercapacitors. Applied Surface Science, 2019, 467-468, 382-390.	3.1	61
1310	Construction of ordered structure in polysaccharide hydrogel: A review. Carbohydrate Polymers, 2019, 205, 225-235.	5.1	121
1311	Preparation of water soluble hydrochloric chitosan from low molecular weight chitosan in the solid state. International Journal of Biological Macromolecules, 2019, 121, 718-726.	3.6	21
1312	Recent advances in chitosan polysaccharide and its derivatives in antimicrobial modification of textile materials. International Journal of Biological Macromolecules, 2019, 121, 905-912.	3.6	125
1313	Chitosan-Based Extrafibrillar Demineralization for Dentin Bonding. Journal of Dental Research, 2019, 98, 186-193.	2.5	48
1314	Antibacterial properties of chitosan chloride-graphene oxide composites modified quartz sand filter media in water treatment. International Journal of Biological Macromolecules, 2019, 121, 760-773.	3.6	44
1315	Bioinspired hydrogels: Quinone crosslinking reaction for chitin nanofibers with enhanced mechanical strength via surface deacetylation. Carbohydrate Polymers, 2019, 207, 411-417.	5.1	43
1316	Biomedical applications of chitosan electrospun nanofibers as a green polymer – Review. Carbohydrate Polymers, 2019, 207, 588-600.	5.1	286
1317	Gelatinâ€polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioengineering and Translational Medicine, 2019, 4, 96-115.	3.9	249
1318	Electrospinning production of nanofibrous membranes. Environmental Chemistry Letters, 2019, 17, 767-800.	8.3	103
1319	Development of a mass spectrometry method for the characterization of a series of chitosan. International Journal of Biological Macromolecules, 2019, 121, 89-96.	3.6	13
1320	Chitosan. , 2019, , 485-493.		11
1321	Bioactive Delivery Systems Based on Stimuli-Sensitive Biopolymer Stacks: Chitosan-Alginate Systems. , 2019, , 661-668.		1
1322	Suppressing the growth of HL-60 acute myeloid leukemia cells by chitosan coated anthraquinone nanoparticles in vitro. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 819-826.	1.8	2

#	Article	IF	Citations
1323	Effect of surfaceâ€modified montmorillonite incorporated biopolymer membranes for PEM fuel cell applications. Polymer Composites, 2019, 40, E301.	2.3	23
1324	"Safe―Chitosan/Zinc Oxide Nanocomposite Has Minimal Organ-Specific Toxicity in Early Stages of Zebrafish Development. ACS Biomaterials Science and Engineering, 2020, 6, 38-47.	2.6	23
1325	Clinical evaluation of an oral mucoadhesive film containing chitosan for the treatment of recurrent aphthous stomatitis: a randomized, double-blind study. Journal of Dermatological Treatment, 2020, 31, 739-743.	1.1	23
1326	Development of highly porous, Electrostatic force assisted nanofiber fabrication for biological applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020, 69, 477-504.	1.8	15
1327	Influence of the surface modification of titanium dioxide nanoparticles TiO2 under efficiency of silver nanodots deposition and its effect under the properties of starch–chitosan (SC) films. Polymer Bulletin, 2020, 77, 107-133.	1.7	14
1328	Fabrication of cationized chitin nanofiber-reinforced xanthan gum hydrogels. Polymer Bulletin, 2020, 77, 4095-4103.	1.7	3
1329	Agricultural uses of chitin polymers. Environmental Chemistry Letters, 2020, 18, 53-60.	8.3	46
1330	Simultaneous deacetylation and degradation of chitin hydrogel by electrical discharge plasma using low sodium hydroxide concentrations. Carbohydrate Polymers, 2020, 228, 115377.	5.1	7
1331	A Comparative Study of Chitosan Gel and Soframycin in the Management of Wounds. International Journal of Lower Extremity Wounds, 2020, 19, 148-157.	0.6	5
1332	Rheological characteristics of chitin/ionic liquid gels and electrochemical properties of regenerated chitin hydrogels. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124220.	2.3	22
1333	Versatile bioactive and antibacterial coating system based on silica, gentamicin, and chitosan: Improving early stage performance of titanium implants. Surface and Coatings Technology, 2020, 381, 125138.	2.2	70
1334	Synthesis of chitosan iodoacetamides via carbodiimide coupling reaction: Effect of degree of substitution on the hemostatic properties. Carbohydrate Polymers, 2020, 229, 115522.	5.1	20
1335	Hierarchical porous nanofibers of carbon@nickel oxide nanoparticles derived from polymer/block copolymer system. Chinese Chemical Letters, 2020, 31, 2202-2206.	4.8	2
1336	Marine waste to a functional biomaterial: Green facile synthesis of modified- \hat{l}^2 -chitin from Uroteuthis duvauceli pens (gladius). International Journal of Biological Macromolecules, 2020, 154, 1565-1575.	3.6	20
1337	Thermodynamic insight into the thermoresponsive behavior of chitosan in aqueous solutions: A differential scanning calorimetry study. Carbohydrate Polymers, 2020, 229, 115558.	5.1	15
1338	Anti-depressant effect of curcumin-loaded guanidine-chitosan thermo-sensitive hydrogel by nasal delivery. Pharmaceutical Development and Technology, 2020, 25, 316-325.	1.1	28
1339	Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids and Surfaces B: Biointerfaces, 2020, 185, 110627.	2.5	139
1340	Effect of pH on Molecular Structures and Network of Glycol Chitosan. ACS Biomaterials Science and Engineering, 2020, 6, 298-307.	2.6	21

#	Article	IF	CITATIONS
1342	Interfacial polyelectrolyte complexation spinning of graphene/cellulose nanofibrils for fiber-shaped electrodes. Journal of Materials Research, 2020, 35, 122-131.	1.2	8
1343	Urea removal strategies for dialysate regeneration in a wearable artificial kidney. Biomaterials, 2020, 234, 119735.	5.7	67
1344	Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review. Carbohydrate Polymers, 2020, 233, 115839.	5.1	425
1345	Salicylaldehyde derivative of nano-chitosan as an efficient adsorbent for lead(II), copper(II), and cadmium(II) ions. International Journal of Biological Macromolecules, 2020, 147, 643-652.	3.6	65
1346	Polymeric nanocomposites reinforced with nanowhiskers: Design, development, and emerging applications. Journal of Plastic Film and Sheeting, 2020, 36, 312-333.	1.3	9
1347	Insights into Novel Antimicrobial Based on Chitosan Nanoparticles: From a Computational and Experimental Perspective. Engineering Materials, 2020, , 107-143.	0.3	1
1348	Density functional theory calculations on the grafting copolymerization of 2-substituted aniline onto chitosan. Polymer Bulletin, 2020, 77, 6391-6407.	1.7	3
1350	Dissolution and deacetylation of chitin in ionic liquid tetrabutylammonium hydroxide and its cascade reaction in enzyme treatment for chitin recycling. Carbohydrate Polymers, 2020, 230, 115605.	5.1	29
1351	Preparation and characterization of chitosan from crab shell (Portunus trituberculatus) by NaOH/urea solution freeze-thaw pretreatment procedure. International Journal of Biological Macromolecules, 2020, 147, 931-936.	3.6	31
1352	Development of a chitosan hydrogel containing flavonoids extracted from <i>Passiflora edulis</i> leaves and the evaluation of its antioxidant and wound healing properties for the treatment of skin lesions in diabetic mice. Journal of Biomedical Materials Research - Part A, 2020, 108, 654-662.	2.1	38
1353	Chitosan-based nanomedicine for brain delivery: Where are we heading?. Reactive and Functional Polymers, 2020, 146, 104430.	2.0	25
1354	Prospect of Polysaccharide-Based Materials as Advanced Food Packaging. Molecules, 2020, 25, 135.	1.7	167
1355	Sustainable and Effective Chitosan Production by Dimorphic Fungus Mucor rouxii via Replacing Yeast Extract with Fungal Extract. Applied Biochemistry and Biotechnology, 2020, 191, 666-678.	1.4	12
1356	Methods for extraction and ex-vivo experimentation with the most complex human commensal, Demodex spp Experimental and Applied Acarology, 2020, 80, 59-70.	0.7	4
1357	Antibacterial effects and ibuprofen release potential using chitosan microspheres loaded with silver nanoparticles. Carbohydrate Research, 2020, 488, 107891.	1.1	33
1358	A brief overview of renewable plastics. Materials Today Sustainability, 2020, 7-8, 100031.	1.9	57
1359	Novel environmental-friendly nano-composite magnetic attapulgite functionalized by chitosan and EDTA for cadmium (II) removal. Journal of Alloys and Compounds, 2020, 817, 153286.	2.8	78
1360	Preparation of chitin-based fluorescent hollow particles by Pickering emulsion polymerization using functional chitin nanofibers. International Journal of Biological Macromolecules, 2020, 157, 680-686.	3.6	13

#	Article	IF	CITATIONS
1361	Ultrasound-assisted catalyst-free thiol-yne click reaction in chitosan chemistry: Antibacterial and transfection activity of novel cationic chitosan derivatives and their based nanoparticles. International Journal of Biological Macromolecules, 2020, 143, 143-152.	3.6	30
1362	TiO2 doped chitosan/poly (vinyl alcohol) nanocomposite film with enhanced mechanical properties for application in bone tissue regeneration. International Journal of Biological Macromolecules, 2020, 143, 285-296.	3.6	19
1363	Propionylation-modified chitin with improved solubility in green ethanol/water binary solvents for sustainable film and coating applications. Journal of Cleaner Production, 2020, 250, 119458.	4.6	13
1364	Improving nitrogen uptake efficiency by chitin nanofiber promotes growth in tomato. International Journal of Biological Macromolecules, 2020, 151, 1322-1331.	3.6	24
1365	Chemically Modified Natural Polymer-Based Theranostic Nanomedicines: Are They the Golden Gate toward a <i>de Novo</i> Clinical Approach against Cancer?. ACS Biomaterials Science and Engineering, 2020, 6, 134-166.	2.6	32
1366	PI3K/Akt pathway is involved in the activation of RAW 264.7 cells induced by hydroxypropyltrimethyl ammonium chloride chitosan. Journal of Oceanology and Limnology, 2020, 38, 834-840.	0.6	0
1367	New series of metal complexes by amphiphilic biopolymeric Schiff bases from modified chitosans: Preparation, characterization and effect of molecular weight on its biological applications. International Journal of Biological Macromolecules, 2020, 145, 417-428.	3.6	31
1368	Quaternary ammonium salts of chitosan. A critical overview on the synthesis and properties generated by quaternization. European Polymer Journal, 2020, 139, 110016.	2.6	98
1369	Secretory production in Escherichia coli of a GH46 chitosanase from Chromobacterium violaceum, suitable to generate antifungal chitooligosaccharides. International Journal of Biological Macromolecules, 2020, 165, 1482-1495.	3.6	9
1370	Single-step purification of equine chorionic gonadotrophin directly from plasma using affinity chromatography. Journal of Biotechnology, 2020, 323, 174-179.	1.9	0
1371	Chitosan: Structural modification, biological activity and application. International Journal of Biological Macromolecules, 2020, 164, 4532-4546.	3.6	266
1372	Recent advancement and development of chitin and chitosan-based nanocomposite for drug delivery: Critical approach to clinical research. Arabian Journal of Chemistry, 2020, 13, 8935-8964.	2.3	59
1373	Application status and technical analysis of chitosan-based medical dressings: a review. RSC Advances, 2020, 10, 34308-34322.	1.7	37
1374	Reactive and Functional Polymers Volume Two. , 2020, , .		4
1375	Efficient green approaches for the preparation of physically crosslinked chitin gel materials by freeze-induced self-assembly. Journal of Molecular Liquids, 2020, 320, 114392.	2.3	7
1376	Grafting Polymers. , 2020, , 199-243.		5
1377	Fabrication of PVA-chitosan-based nanofibers for phytase immobilization to enhance enzymatic activity. International Journal of Biological Macromolecules, 2020, 164, 3315-3322.	3.6	33
1378	The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. International Journal of Molecular Sciences, 2020, 21, 4978.	1.8	72

#	Article	IF	CITATIONS
1379	Chitosan used as a specific coupling agent to modify starch in preparation of adhesive film. Journal of Cleaner Production, 2020, 277, 123210.	4.6	31
1380	Advances in chitosan-based hydrogels: Evolution from covalently crosslinked systems to ionotropically crosslinked superabsorbents. Reactive and Functional Polymers, 2020, 149, 104517.	2.0	65
1381	Processing techniques of chitin-based gels, blends, and composites using ionic liquids. , 2020, , 47-60.		2
1382	Microscopic studies on chitin and chitosan-based interpenetrating polymer networks, gels, blends, composites, and nanocomposites. , 2020, , 95-138.		4
1383	Chitin and chitosan-based polyurethanes. , 2020, , 229-245.		0
1384	Chitin and chitosan: origin, properties, and applications. , 2020, , 1-33.		19
1385	Solubility, degree of acetylation, and distribution of acetyl groups in chitosan. , 2020, , 131-164.		6
1386	Chitin nanomaterials: preparation and surface modifications. , 2020, , 165-194.		3
1387	Chitin, chitosan, marine to market., 2020,, 335-376.		4
1388	Chitin, chitosan, marine to market., 2020, , 341-381.		2
1389	Biorefinery Approach for Aerogels. Polymers, 2020, 12, 2779.	2.0	31
1390	Chitosan Composite Biomaterials for Bone Tissue Engineeringâ€"a Review. Regenerative Engineering and Translational Medicine, 2022, 8, 1-21.	1.6	15
1391	Arsenate Adsorption on Fly Ash, Chitosan and Their Composites and Its Relations with Surface, Charge and Pore Properties of the Sorbents. Materials, 2020, 13, 5381.	1.3	6
1392	Green Fabrication of High-Performance Chitin Nanowhiskers/PVA Composite Films with a "Brick-and-Mortar―Structure. ACS Sustainable Chemistry and Engineering, 2020, 8, 17807-17815.	3.2	18
1393	Characterization of the cell wall of a mushroom forming fungus at atomic resolution using solid-state NMR spectroscopy. Cell Surface, 2020, 6, 100046.	1.5	30
1394	Dependence of Water-Permeable Chitosan Membranes on Chitosan Molecular Weight and Alkali Treatment. Membranes, 2020, 10, 351.	1.4	11
1395	Silane Coupling Agent Modifies the Mechanical Properties of a Chitosan Microfiber. Molecules, 2020, 25, 5292.	1.7	2
1396	Adhesive, Self-Healing, and Antibacterial Chitosan Hydrogels with Tunable Two-Layer Structures. ACS Sustainable Chemistry and Engineering, 2020, 8, 18006-18014.	3.2	47

#	Article	IF	CITATIONS
1397	Biomedical exploitation of chitin and chitosan-based matrices via ionic liquid processing. , 2020, , 471-497.		0
1398	A chitosan based scaffold with enhanced mechanical and biocompatible performance for biomedical applications. Polymer Degradation and Stability, 2020, 181, 109322.	2.7	21
1399	Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Advances, 2020, 10, 29450-29459.	1.7	19
1400	Preparation and Characterization of Cinnamomum Essential Oil–Chitosan Nanocomposites: Physical, Structural, and Antioxidant Activities. Processes, 2020, 8, 834.	1.3	21
1401	Polysaccharides as the Sensing Material for Metal Ion Detection-Based Optical Sensor Applications. Sensors, 2020, 20, 3924.	2.1	28
1402	Nanofibrillation is an Effective Method to Produce Chitin Derivatives for Induction of Plant Responses in Soybean. Plants, 2020, 9, 810.	1.6	5
1403	Preparation and characterization of hydrophobic and hydrophilic amidated derivatives of carboxymethyl chitosan and carboxymethyl \hat{l}^2 -glucan. International Journal of Biological Macromolecules, 2020, 163, 1433-1443.	3.6	28
1404	Wet Spinning of Chitosan Fibers: Effect of Sodium Dodecyl Sulfate Adsorption and Enhanced Dope Temperature. ACS Applied Polymer Materials, 2020, 2, 3867-3875.	2.0	23
1405	Research status of self-healing hydrogel for wound management: A review. International Journal of Biological Macromolecules, 2020, 164, 2108-2123.	3.6	151
1406	Molecular dynamics study on the adsorption and release of doxorubicin by chitosan-decorated graphene. Carbohydrate Polymers, 2020, 248, 116809.	5.1	20
1407	Field pea protein isolate/chitosan complex coacervates: Formation and characterization. Carbohydrate Polymers, 2020, 250, 116925.	5.1	30
1408	Nonspecific enzymatic hydrolysis of a highly ordered chitopolysaccharide substrate. Carbohydrate Research, 2020, 498, 108191.	1.1	7
1409	Formation of self-healable fire-retardant water-soluble chitosan/chemically cross-linked polyvinyl alcohol/Cu(II) gel. Environmental Technology and Innovation, 2020, 20, 101087.	3.0	5
1410	Economic Evaluation and Techno-Economic Sensitivity Analysis of a Mass Integrated Shrimp Biorefinery in North Colombia. Polymers, 2020, 12, 2397.	2.0	16
1411	Novel zinc(II)/chitosan-based composite: ultrasound-assisted synthesis, catalytic and antibacterial activity. Mendeleev Communications, 2020, 30, 642-644.	0.6	6
1414	Close Packing of Cellulose and Chitosan in Regenerated Cellulose Fibers Improves Carbon Yield and Structural Properties of Respective Carbon Fibers. Biomacromolecules, 2020, 21, 4326-4335.	2.6	30
1415	Environmental Microbiology and Biotechnology. , 2020, , .		2
1416	Accurate Control of All-Polymer Hollow Multishelled Spheres by One-Step Reaction–Diffusion. Chemistry of Materials, 2020, 32, 8442-8449.	3.2	13

#	Article	IF	CITATIONS
1417	Sustainable and eco-friendly strategies for shrimp shell valorization. Environmental Pollution, 2020, 267, 115656.	3.7	70
1418	Green and Sustainable Layered Chitin–Vitrimer Composite with Enhanced Modulus, Reprocessability, and Smart Actuator Function. ACS Sustainable Chemistry and Engineering, 2020, 8, 15168-15178.	3.2	15
1419	New Approach of Metals Removal from Acid Mine Drainage. Applied Sciences (Switzerland), 2020, 10, 5925.	1.3	12
1420	Electrochemical behaviour of chloroplast, thylakoid, and PSII on the chitosan modified glassy carbon electrode. International Journal of Electrochemical Science, 2020, , 10499-10508.	0.5	0
1421	Combined chitosan and Cympobogon citratus (D.C. ex Nees) Stapf. essential oil to inhibit the fungal phytopathogen Paramyrothecium roridum and control crater rot in melon (Cucumis melo L.). Brazilian Journal of Microbiology, 2020, 51, 2057-2065.	0.8	5
1422	Efficient tribological properties of azomethine-functionalized chitosan as a bio-lubricant additive in paraffin oil: experimental and theoretical analysis. RSC Advances, 2020, 10, 33401-33416.	1.7	32
1423	Use of Ionic Liquids and Deep Eutectic Solvents in Polysaccharides Dissolution and Extraction Processes towards Sustainable Biomass Valorization. Molecules, 2020, 25, 3652.	1.7	99
1424	Review on the preparation, biological activities and applications of curdlan and its derivatives. European Polymer Journal, 2020, 141, 110096.	2.6	37
1425	A multiscale coarse-grained model to predict the molecular architecture and drug transport properties of modified chitosan hydrogels. Soft Matter, 2020, 16, 10591-10610.	1.2	13
1426	Synthesis Mechanism of an Environment-Friendly Sodium Lignosulfonate/Chitosan Medium-Density Fiberboard Adhesive and Response of Bonding Performance to Synthesis Mechanism. Materials, 2020, 13, 5697.	1.3	13
1427	Squid pen chitosan nanoparticles: small size and high antibacterial activity. Polymer Bulletin, 2021, 78, 7313-7324.	1.7	7
1428	A study of the diffusion behaviour of reactive dyes in cellulose fibres using confocal Raman microscopy. Coloration Technology, 2020, 136, 503-511.	0.7	5
1429	The Role of Chitosan and Graphene Oxide in Bioactive and Antibacterial Properties of Acrylic Bone Cements. Biomolecules, 2020, 10, 1616.	1.8	15
1430	Extraction, characterization and bioactivity of chitosan from farms shrimps of Basra province by chemical method. Journal of Physics: Conference Series, 2020, 1660, 012023.	0.3	2
1431	Incorporation of FGF-2 into Pharmaceutical Grade Fucoidan/Chitosan Polyelectrolyte Multilayers. Marine Drugs, 2020, 18, 531.	2.2	8
1432	Optical properties and biointerface interactions of chitin. Polymer Bulletin, 2021, 78, 6535-6548.	1.7	7
1433	Modular Chitosan-Based Adsorbents for Tunable Uptake of Sulfate from Water. International Journal of Molecular Sciences, 2020, 21, 7130.	1.8	22
1434	Hemostatic Enhancement via Chitosan Is Independent of Classical Clotting Pathways—A Quantitative Study. Polymers, 2020, 12, 2391.	2.0	8

#	Article	IF	Citations
1435	Draft Genome Sequence of Andreprevotia sp. Strain IGB-42, a Chitinolytic Bacterium Isolated from a Soil Sample of an Anthill in Stuttgart, Germany. Microbiology Resource Announcements, 2020, 9, .	0.3	1
1436	Marine-Derived Polymeric Materials and Biomimetics: An Overview. Polymers, 2020, 12, 1002.	2.0	54
1437	Antimicrobial biodegradable chitosan-based composite Nano-layers for food packaging. International Journal of Biological Macromolecules, 2020, 157, 212-219.	3.6	71
1438	Mega macromolecules as single molecule lubricants for hard and soft surfaces. Nature Communications, 2020, 11, 2139.	5.8	25
1439	Synthesis and electrochemical properties of chitosan-polyphenol composites. Reactive and Functional Polymers, 2020, 154, 104667.	2.0	2
1440	A systematic review on carbohydrate biopolymers for adsorptive remediation of copper ions from aqueous environments-part A: Classification and modification strategies. Science of the Total Environment, 2020, 738, 139829.	3.9	84
1441	The influence of pre-fibrillation via planetary ball milling on the extraction and properties of chitin nanofibers. Cellulose, 2020, 27, 6205-6216.	2.4	12
1443	Fabricating Chitin Paper from Self-Assembled Nanochitins. ACS Sustainable Chemistry and Engineering, 2020, 8, 8402-8408.	3.2	8
1444	Extraction of chitosan from squid pen waste by high hydrostatic pressure: Effects on physicochemical properties and antioxidant activities of chitosan. International Journal of Biological Macromolecules, 2020, 160, 677-687.	3.6	36
1445	Identification of low molecular weight degradation products from chitin and chitosan by electrospray ionization time-of-flight mass spectrometry. Carbohydrate Research, 2020, 493, 108046.	1.1	10
1446	Bio-Inspired Localized Surface Plasmon Resonance Enhanced Sensing of Mercury Through Green Synthesized Silver Nanoparticle. Journal of Lightwave Technology, 2020, 38, 2086-2091.	2.7	17
1447	Phosphate removal using nanoscale zerovalent iron: Impact of chitosan and humic acid. Journal of Environmental Chemical Engineering, 2020, 8, 104131.	3.3	12
1448	Characterization of fish collagen from blue shark skin and its application for chitosan―collagen composite coating to preserve red porgy (<i>Pagrus major</i>) meat. Journal of Food Biochemistry, 2020, 44, e13265.	1.2	22
1449	Controlled delivery of a protein tyrosine phosphatase inhibitor, SHP099, using cyclodextrin-mediated host–guest interactions in polyelectrolyte multilayer films for cancer therapy. RSC Advances, 2020, 10, 20073-20082.	1.7	6
1450	Selection of Water-Soluble Chitosan by Microwave-Assisted Degradation and pH-Controlled Precipitation. Polymers, 2020, 12, 1274.	2.0	10
1451	The preparation of multifunction chitosan adhesive hydrogel by "one- step―method. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1925-1940.	1.9	5
1452	Ultrasensitive Trace Determination of Cadmium Through a Green Synthesized Hybrid PVA-Chitosan Nanocomposite. Plasmonics, 2020, 15, 1903-1912.	1.8	6
1453	Upgrading of marine (fish and crustaceans) biowaste for high added-value molecules and bio(nano)-materials. Chemical Society Reviews, 2020, 49, 4527-4563.	18.7	93

#	Article	IF	CITATIONS
1454	Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymer. Bioengineering, 2020, 7, 28.	1.6	4
1455	Molecular dynamics study on the encapsulation and release of anti-cancer drug doxorubicin by chitosan. International Journal of Pharmaceutics, 2020, 580, 119241.	2.6	41
1456	Shape-stabilization of polyethylene glycol phase change materials with chitin nanofibers for applications in "smart―windows. Carbohydrate Polymers, 2020, 237, 116132.	5.1	26
1457	Determination of Chitin Content in Insects: An Alternate Method Based on Calcofluor Staining. Frontiers in Physiology, 2020, 11, 117.	1.3	32
1458	Recovery of chitosan from natural biotic waste. , 2020, , 115-133.		6
1459	Techno-functional characterization of chitosan nanoparticles prepared through planetary ball milling. International Journal of Biological Macromolecules, 2020, 154, 166-172.	3.6	13
1460	Removal of Cadmium (II) from aqueous solution using tripolyphosphate cross-linked chitosan. Journal of Environmental Chemical Engineering, 2020, 8, 103842.	3.3	30
1461	Efficient and Simultaneous Chitosan-Mediated Removal of 11 Mycotoxins from Palm Kernel Cake. Toxins, 2020, 12, 115.	1.5	17
1462	Yeast engineered translucent cell wall to provide its endosymbiont cyanobacteria with light. Archives of Microbiology, 2020, 202, 1317-1325.	1.0	2
1463	Applications of chitosan (CHI)-reduced graphene oxide (rGO)-polyaniline (PAni) conducting composite electrode for energy generation in glucose biofuel cell. Scientific Reports, 2020, 10, 10428.	1.6	61
1464	Multi-layer dressing made of laminated electrospun nanowebs and cellulose-based adhesive for comprehensive wound care. International Journal of Biological Macromolecules, 2020, 162, 629-644.	3.6	25
1465	Marine-Derived Polymers in Ionic Liquids: Architectures Development and Biomedical Applications. Marine Drugs, 2020, 18, 346.	2.2	20
1466	Effect of Chitosan Electrospun Fiber Mesh as Template on the Crystallization of Calcium Oxalate. Crystals, 2020, 10, 453.	1.0	5
1467	Chitosan biomaterials application in dentistry. International Journal of Biological Macromolecules, 2020, 162, 956-974.	3.6	143
1468	Biomimetic Amyloid-like Protein/Laponite Nanocomposite Thin Film through Regulating Protein Conformation. ACS Applied Materials & Samp; Interfaces, 2020, 12, 35435-35444.	4.0	16
1469	Wet-spinning of magneto-responsive helical chitosan microfibers. Beilstein Journal of Nanotechnology, 2020, 11, 991-999.	1.5	5
1470	Theoretical investigation into the cooperativity effect of 1,4-dimethoxy-d-glucosamine complex with Na+ and H2O. Journal of Molecular Modeling, 2020, 26, 203.	0.8	1
1471	Miscibility, properties, and biodegradability of chitin and chitosan. , 2020, , 377-399.		1

#	Article	IF	CITATIONS
1472	Processing techniques of chitosan-based interpenetrating polymer networks, gels, blends, composites and nanocomposites. , 2020, , 61-93.		4
1473	Chitin and chitosan: current status and future opportunities. , 2020, , 401-417.		4
1474	Enhanced antibacterial potential of berberine via synergism with chitosan nanoparticles. Materials Today: Proceedings, 2020, 31, 640-645.	0.9	13
1475	Controlling the Emulsion Type Using Adjustable Polyelectrolyte–Surfactant Complexes. Langmuir, 2020, 36, 8617-8625.	1.6	2
1476	Preparation of CTS/MFA Composite and its Adsorption Property of Direct Dyes. Materials Science Forum, 2020, 993, 1432-1437.	0.3	0
1477	Polycaprolactone Electrospun Fiber Mats Prepared Using Benign Solvents: Blending with Copper(II)â€Chitosan Increases the Secretion of Vascular Endothelial Growth Factor in a Bone Marrow Stromal Cell Line. Macromolecular Bioscience, 2020, 20, e1900355.	2.1	12
1478	Biodegradable Chitosan-graft-Poly(l-lactide) Copolymers For Bone Tissue Engineering. Polymers, 2020, 12, 316.	2.0	21
1479	Chitosan polymer electrolytes doped with a dysprosium ionic liquid. Journal of Polymer Research, 2020, 27, 1.	1.2	10
1481	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	2.0	69
1482	Chelator-mediated biomimetic degradation of cellulose and chitin. International Journal of Biological Macromolecules, 2020, 153, 433-440.	3.6	11
1483	Novel Poly(vinyl alcohol)/Chitosan/Modified Graphene Oxide Biocomposite for Wound Dressing Application. Macromolecular Bioscience, 2020, 20, e1900385.	2.1	65
1484	Ultrasonic assisted water-in-oil emulsions encapsulating macro-molecular polysaccharide chitosan: Influence of molecular properties, emulsion viscosity and their stability. Ultrasonics Sonochemistry, 2020, 64, 105018.	3.8	39
1485	3D printing of hydrogels: Rational design strategies and emerging biomedical applications. Materials Science and Engineering Reports, 2020, 140, 100543.	14.8	494
1486	Evaluation of amygdalin-loaded alginate-chitosan nanoparticles as biocompatible drug delivery carriers for anticancerous efficacy. International Journal of Biological Macromolecules, 2020, 153, 36-45.	3.6	58
1487	Permeability improvement of polyethersulfone-polietylene glycol (PEG-PES) flat sheet type membranes by tripolyphosphate-crosslinked chitosan (TPP-CS) coating. International Journal of Biological Macromolecules, 2020, 152, 633-644.	3.6	42
1488	Cationic chitosan derivatives as potential antifungals: A review of structural optimization and applications. Carbohydrate Polymers, 2020, 236, 116002.	5.1	106
1489	Extraction and characterization of chitin and chitosan from Termitomyces titanicus. SN Applied Sciences, 2020, 2, 1.	1.5	17
1490	Biopolymeric photonic structures: design, fabrication, and emerging applications. Chemical Society Reviews, 2020, 49, 983-1031.	18.7	138

#	Article	IF	CITATIONS
1491	Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice. International Journal of Biological Macromolecules, 2020, 148, 777-784.	3.6	38
1492	Bio-Inspired Finger like Cu-Electrodes as an Effective Sensing Tool for Heavy Metal Ion in Aqueous Solution. Journal of the Electrochemical Society, 2020, 167, 027526.	1.3	9
1493	Antimicrobial Chitosan Conjugates: Current Synthetic Strategies and Potential Applications. International Journal of Molecular Sciences, 2020, 21, 499.	1.8	65
1494	Crab vs. Mushroom: A Review of Crustacean and Fungal Chitin in Wound Treatment. Marine Drugs, 2020, 18, 64.	2.2	106
1495	Degradation of phenols by heterogeneous electro-Fenton with a Fe3O4-chitosan composite and a boron-doped diamond anode. Electrochimica Acta, 2020, 337, 135784.	2.6	23
1496	Membranes based on non-synthetic (natural) polymers for wastewater treatment. Polymer Testing, 2020, 84, 106381.	2.3	72
1497	Industrial Use of Cell Wall Degrading Enzymes: The Fine Line Between Production Strategy and Economic Feasibility. Frontiers in Bioengineering and Biotechnology, 2020, 8, 356.	2.0	49
1498	Biomolecular uptake effects on chitosan/tripolyphosphate micro- and nanoparticle stability. Colloids and Surfaces B: Biointerfaces, 2020, 193, 111081.	2.5	13
1499	Recent Progress in Preparation and Application of Nano hitin Materials. Energy and Environmental Materials, 2020, 3, 492-515.	7.3	55
1500	Superior strength and toughness of graphene/chitosan fibers reinforced by interfacial complexation. Composites Science and Technology, 2020, 194, 108174.	3.8	21
1501	Chitosan-based biodegradable functional films for food packaging applications. Innovative Food Science and Emerging Technologies, 2020, 62, 102346.	2.7	318
1502	Development of a Simple Reversible-Flow Method for Preparation of Micron-Size Chitosan-Cu(II) Catalyst Particles and Their Testing of Activity. Molecules, 2020, 25, 1798.	1.7	4
1503	Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components. Sustainability, 2020, 12, 3358.	1.6	12
1504	Dynamics and Rheological Behavior of Chitosan-Grafted-Polyacrylamide in Aqueous Solution upon Heating. Polymers, 2020, 12, 916.	2.0	4
1505	Sugar-Based Aggregation-Induced Emission Luminogens: Design, Structures, and Applications. Chemical Reviews, 2020, 120, 4534-4577.	23.0	158
1506	Synergistic antioxidant effect of glutathione and edible phenolic acids and improvement of the activity protection by coencapsulation into chitosan-coated liposomes. LWT - Food Science and Technology, 2020, 127, 109409.	2.5	26
1507	Superfine grinding induced amorphization and increased solubility of α-chitin. Carbohydrate Polymers, 2020, 237, 116145.	5.1	26
1508	Hypoxia/pH dual-responsive nitroimidazole-modified chitosan/rose bengal derivative nanoparticles for enhanced photodynamic anticancer therapy. Dyes and Pigments, 2020, 179, 108395.	2.0	16

#	Article	IF	CITATIONS
1509	Biobased plastics. , 2020, , 67-96.		11
1510	Rheumatoid arthritis: basic pathophysiology and role of chitosan nanoparticles in therapy. , 2020, , 481-507.		6
1511	Ternary deep eutectic solvents catalyzed d-glucosamine self-condensation to deoxyfructosazine: NMR study. Green Energy and Environment, 2021, 6, 261-270.	4.7	18
1512	Direct ionization and solubility of chitosan in aqueous solutions with acetic acid. Polymer Bulletin, 2021, 78, 1465-1488.	1.7	15
1513	Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polymer Bulletin, 2021, 78, 981-1000.	1.7	42
1514	Progress in green nanocomposites for high-performance applications. Materials Research Innovations, 2021, 25, 53-65.	1.0	27
1515	Fungal chitin-glucan nanopapers with heavy metal adsorption properties for ultrafiltration of organic solvents and water. Carbohydrate Polymers, 2021, 253, 117273.	5.1	43
1516	Pristine and modified chitosan as solid catalysts for catalysis and biodiesel production: A minireview. International Journal of Biological Macromolecules, 2021, 167, 807-833.	3.6	27
1517	Structure and properties of chitosan films: Effect of the type of solvent acid. LWT - Food Science and Technology, 2021, 135, 109984.	2.5	76
1518	The impact of pH and biopolymer ratio on the complex coacervation of Spirulina platensis protein concentrate with chitosan. Journal of Food Science and Technology, 2021, 58, 1274-1285.	1.4	11
1519	Precise magnetic resonance imaging-guided sonodynamic therapy for drug-resistant bacterial deep infection. Biomaterials, 2021, 264, 120386.	5.7	75
1520	Hierarchical chitinous matrices byssus-inspired with mechanical properties tunable by Fe(III) and oxidation. Carbohydrate Polymers, 2021, 251, 116984.	5.1	5
1521	Fabrication and Investigation of the Suitability of Chitosan-Silver Composite Scaffolds for Bone Tissue Engineering Applications. Process Biochemistry, 2021, 100, 178-187.	1.8	39
1522	Applications of chitosan in environmental remediation: A review. Chemosphere, 2021, 266, 128934.	4.2	131
1523	Chitosan: A review of sources and preparation methods. International Journal of Biological Macromolecules, 2021, 169, 85-94.	3.6	297
1525	A graft-modification of chitosan with twin-tail hydrophobic association polymer for enhance oil recovery. Chemical Physics Letters, 2021, 763, 138164.	1.2	9
1526	Perchlorate adsorption onto epichlorohydrin crosslinked chitosan hydrogel beads. Science of the Total Environment, 2021, 761, 143236.	3.9	27
1527	Fabrication of graphene/gelatin/chitosan/tricalcium phosphate 3D printed scaffolds for bone tissue regeneration applications. Applied Nanoscience (Switzerland), 2021, 11, 335-346.	1.6	15

#	Article	IF	CITATIONS
1528	The effects of chitosan-vitamin C nanocomposite supplementation on the growth performance, antioxidant status, immune response, and disease resistance of Nile tilapia (Oreochromis niloticus) fingerlings. Aquaculture, 2021, 534, 736269.	1.7	33
1529	Polysaccharide-Based Biomaterials in Tissue Engineering: A Review. Tissue Engineering - Part B: Reviews, 2021, 27, 604-626.	2.5	81
1530	Synthesis and characterization of chitosan mini-spheres with immobilized dye as affinity ligand for the purification of lactoperoxidase and lactoferrin from dairy whey. Separation and Purification Technology, 2021, 255, 117700.	3.9	4
1531	Novel highâ€strength montmorillonite/polyvinyl alcohol composite film enhanced by chitin nanowhiskers. Journal of Applied Polymer Science, 2021, 138, app50344.	1.3	4
1532	Preparation and characterization of various chitin-glucan complexes derived from white button mushroom using a deep eutectic solvent-based ecofriendly method. International Journal of Biological Macromolecules, 2021, 169, 122-129.	3.6	22
1533	Chitin–clay composite gels with enhanced thermal stability prepared in a green and facile approach. Journal of Materials Science, 2021, 56, 3600-3611.	1.7	2
1534	Synergetic Subnano Ni―and Mnâ€⊙xo Clusters Anchored by Chitosan Oligomers on 2D g 3 N 4 Boost Photocatalytic CO 2 Reduction. Solar Rrl, 2021, 5, 2000472.	3.1	20
1535	Chitin microsphere supported Pd nanoparticles as an efficient and recoverable catalyst for CO oxidation and Heck coupling reaction. Carbohydrate Polymers, 2021, 251, 117020.	5.1	20
1536	Stomach contents of the Early Jurassic fish â€Lepidotes Agassiz, 1832 (Actinopterygii, Lepisosteiformes) and their palaeoecological implications. Historical Biology, 2021, 33, 868-879.	0.7	6
1537	Green Fabrication of Chitin/Chitosan Composite Hydrogels and Their Potential Applications. Macromolecular Bioscience, 2021, 21, e2000389.	2.1	13
1538	Chitosan-based polyelectrolyte complexes in biomedical applications., 2021,, 115-154.		1
1539	Advances in Bio-Based Polymers for Colorectal Cancer Treatment: Hydrogels and Nanoplatforms. Gels, 2021, 7, 6.	2.1	15
1540	Biopolymers in textile industries. , 2021, , 193-218.		18
1541	Sources and industrial applications of polysaccharides. , 2021, , 511-530.		0
1542	Electrospinning of Polysaccharides for Tissue Engineering Applications. Reviews and Advances in Chemistry, 2021, 11, 112-133.	0.2	4
1543	Bioplastics from agricultural waste. , 2021, , 141-169.		11
1544	Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chemical Reviews, 2021, 121, 2109-2146.	23.0	199
1545	Chemical modifications of polysaccharides. , 2021, , 47-77.		1

#	Article	IF	CITATIONS
1546	Investigation of the influence of natural deep eutectic solvents (NaDES) in the properties of chitosan-stabilised films. Materials Advances, 2021, 2, 3954-3964.	2.6	12
1547	Polyphenol-mediated chitin self-assembly for constructing a fully naturally resourced hydrogel with high strength and toughness. Materials Horizons, 2021, 8, 2503-2512.	6.4	57
1548	Self-assembling Properties., 2021,, 307-333.		1
1549	3D Printing of Cellulose and Chitin from Ionic Liquids for Drug Delivery: A Mini-Review. , 2021, , 71-90.		0
1550	Chitosan-based green sorbents for toxic cations removal. , 2021, , 323-352.		3
1551	Chitosan oligosaccharide modified liposomes enhance lung cancer delivery of paclitaxel. Acta Pharmacologica Sinica, 2021, 42, 1714-1722.	2.8	31
1552	Fluorescent chitosan nanoparticles as a carrier system for trackable drug delivery. Polymer-Plastics Technology and Materials, 2021, 60, 862-871.	0.6	1
1553	Alkyl glycol chitosan derivatives for encapsulation and controlled release of rotenone. AIP Conference Proceedings, 2021, , .	0.3	1
1554	Sustainable green approaches in sorption-based defluoridation: Recent progress., 2021,, 141-174.		1
1555	Biostimulants: Promising probiotics for plant health. , 2021, , 469-481.		0
1556	Chitosan-based nanomaterials in drug delivery applications. , 2021, , 185-219.		1
1557	Carbon Nanostructures and Polysaccharides for Biomedical Materials. RSC Nanoscience and Nanotechnology, 2021, , 98-152.	0.2	0
1558	Reusable Ruthenium Microspheres Derived from Chitin for Highly Efficient and Selective Hydroboration of Imines. ACS Sustainable Chemistry and Engineering, 2021, 9, 1568-1575.	3.2	8
1559	Cellulose nanocrystals from ionic liquids: a critical review. Green Chemistry, 2021, 23, 6205-6222.	4.6	14
1560	Recent Developments in Chitosan-Based Adsorbents for the Removal of Pollutants from Aqueous Environments. Molecules, 2021, 26, 594.	1.7	153
1561	Microbial cellulases: An approach toward recent advances in research, their application, and future perspectives., 2021,, 295-311.		1
1562	Evaluation of Adhesive Bond Strength, and the Sustained Release of Fluoride by Chitosan-infused Resin-modified Glass Ionomer Cement: An In Vitro Study. International Journal of Clinical Pediatric Dentistry, 2021, 14, 254-257.	0.3	4
1563	Chitosan-based membranes preparation and applications: Challenges and opportunities. Journal of the Indian Chemical Society, 2021, 98, 100017.	1.3	42

#	Article	IF	CITATIONS
1564	An On-Demand Dissoluble Chitosan Hydrogel Containing Dynamic Diselenide Bond. Gels, 2021, 7, 21.	2.1	9
1565	Crustacean Waste-Derived Chitosan: Antioxidant Properties and Future Perspective. Antioxidants, 2021, 10, 228.	2.2	56
1566	Development and Characterization of Weft-Knitted Fabrics of Naturally Occurring Polymer Fibers for Sustainable and Functional Textiles. Polymers, 2021, 13, 665.	2.0	11
1567	Chitosan and Hydroxyapatite Based Biomaterials to Circumvent Periprosthetic Joint Infections. Materials, 2021, 14, 804.	1.3	50
1568	Supramolecular effect of acetate on chitin gelling medium: Structural properties and protein interaction. International Journal of Biological Macromolecules, 2021, 170, 317-325.	3.6	2
1569	Modulating the Physicochemical Properties of Chitin and Chitosan as a Method of Obtaining New Biological Properties of Biodegradable Materials. , 0, , .		2
1570	Isolation and characterization of chitosan from Ugandan edible mushrooms, Nile perch scales and banana weevils for biomedical applications. Scientific Reports, 2021, 11, 4116.	1.6	36
1571	Amino Acid Ionic Liquids Catalyzed <scp>d</scp> -Glucosamine into Pyrazine Derivatives: Insight from NMR Spectroscopy. Journal of Agricultural and Food Chemistry, 2021, 69, 2403-2411.	2.4	11
1572	Fabrication of flexible blend films using a chitosan derivative and poly(trimethylene carbonate). Polymer Journal, 2021, 53, 823-833.	1.3	5
1573	Mechanical, Structural, and Biological Properties of Chitosan/Hydroxyapatite/Silica Composites for Bone Tissue Engineering. Molecules, 2021, 26, 1976.	1.7	11
1574	A Comparative Study on Aqueous Chitosan Solution and Various Submucosal Injection Fluids Using a Three-Dimensional Sensor. Gut and Liver, 2021, 15, 217-224.	1.4	2
1575	Electro-deposition synthesis of tube-like collagen–chitosan hydrogels and their biological performance. Biomedical Materials (Bristol), 2021, 16, 035019.	1.7	5
1576	Physicochemical properties and film formation of the chitin hydrocolloid fabricated by a novel green process. Journal of Applied Polymer Science, 2021, 138, 50762.	1.3	3
1577	A Review on Bio-Polymers Derived from Animal Sources with Special Reference to their Potential Applications. Journal of Drug Delivery and Therapeutics, 2021, 11, 209-223.	0.2	9
1578	Improving the Tensile Properties of Curcuma Mangga Val Extract (CMVE)/PVA Nanofiber Mats by Using a Type of Non-Commercial CMVE. Key Engineering Materials, 0, 880, 117-124.	0.4	1
1579	The Effects of Crosslinking on the Rheology and Cellular Behavior of Polymer-Based 3D-Multilayered Scaffolds for Restoring Articular Cartilage. Polymers, 2021, 13, 907.	2.0	5
1580	Super water-absorbing hydrogel based on chitosan, itaconic acid and urea: preparation, characterization and reversible water absorption. Polymer Bulletin, 2022, 79, 3013-3030.	1.7	10
1581	Chitosan-Based Nanoparticles Against Viral Infections. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643953.	1.8	87

#	Article	IF	CITATIONS
1582	Experimental study on performance and influencing factors of chitosan-based nonwoven on gaseous HCHO removal. Building and Environment, 2021, 190, 107565.	3.0	7
1583	Natural cuticle-inspired chitin/silk fibroin/cellulose nanocrystal biocomposite films: fabrication and characterization. Materials Research Express, 2021, 8, 036402.	0.8	3
1584	Nanocomposite Membranes Based on Imidazole-Functionalized Chitin Nanowhiskers for Direct Methanol Fuel Cell Applications. Journal of Macromolecular Science - Physics, 2021, 60, 663-685.	0.4	3
1585	Influence of Materials Properties on Bio-Physical Features and Effectiveness of 3D-Scaffolds for Periodontal Regeneration. Molecules, 2021, 26, 1643.	1.7	22
1587	A nano chitosan membrane barrier prepared via Nanospider technology with non-toxic solvent for peritoneal adhesions' prevention. Journal of Biomaterials Applications, 2021, 36, 321-331.	1.2	6
1588	Prospects of Delivering Natural Compounds by Polymer-Drug Conjugates in Cancer Therapeutics. Anti-Cancer Agents in Medicinal Chemistry, 2022, 22, 1699-1713.	0.9	4
1589	Natural and Sustainable Superhydrophobic Nanochitin Aerogels for Collecting Methane Bubbles from Underwater. ACS Sustainable Chemistry and Engineering, 2021, 9, 5000-5009.	3.2	13
1590	The Kinetics of Chitosan Degradation in Organic Acid Solutions. Marine Drugs, 2021, 19, 236.	2.2	24
1591	Preparation of 6-carboxyl chitin and its effects on cell proliferation in vitro. Carbohydrate Polymers, 2021, 257, 117638.	5.1	4
1592	Influence of strain rate on the mechanical behavior of dry and hydrated chitosan-based dense materials for bioabsorbable implant applications. Journal of the Mechanical Behavior of Biomedical Materials, 2021, 116, 104337.	1.5	1
1593	Simultaneously improved chitin gel formation and thermal stability promoted by TiO2. Journal of Molecular Liquids, 2021, 328, 115332.	2.3	5
1594	Insight on Solution Plasma in Aqueous Solution and Their Application in Modification of Chitin and Chitosan. International Journal of Molecular Sciences, 2021, 22, 4308.	1.8	12
1595	Chitosan nanoparticles based on their derivatives as antioxidant and antibacterial additives for active bioplastic packaging. Carbohydrate Polymers, 2021, 257, 117610.	5.1	41
1596	Promising In Vitro Anti-Toxoplasma gondii Effects of Commercial Chitosan. Infectious Disorders - Drug Targets, 2021, 21, 151-155.	0.4	0
1597	Current Film Coating Designs for Colon-Targeted Oral Delivery. Current Medicinal Chemistry, 2021, 28, 1957-1969.	1.2	5
1598	Biocoatings and additives as promising candidates for ultralow friction systems. Green Chemistry Letters and Reviews, 2021, 14, 358-381.	2.1	8
1599	ZnFe2O4-chitosan magnetic beads for the removal of chlordimeform by photo-Fenton process under UVC irradiation. Journal of Environmental Management, 2021, 283, 111987.	3.8	23
1600	Green and chemically synthesized magnetic iron oxide nanoparticles-based chitosan composites: preparation, characterization, and future perspectives. Journal of Materials Science: Materials in Electronics, 2021, 32, 10587-10599.	1.1	5

#	Article	IF	CITATIONS
1601	Properties of Low Molecular Weight Chitosan Obtained by Catalytic Degradation Using Lanthanum(III)/Halloysite Nanotube Catalysts. Journal of Polymers and the Environment, 2022, 30, 179-193.	2.4	1
1602	Chitosan performance during Paralytic Shellfish Toxins (PST) depuration of Mytilus chilensis exposed to Alexandrium catenella. Toxicon, 2021, 195, 48-57.	0.8	4
1603	Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules, 2021, 26, 2683.	1.7	36
1604	Characterization, antioxidant activity, and biocompatibility of selenium nanoparticle-loaded thermosensitive chitosan hydrogels. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1370-1385.	1.9	9
1605	Perspective on the controlled polymerâ€modification of chitosan and cellulose nanocrystals: Towards the design of functional materials. Canadian Journal of Chemical Engineering, 2021, 99, 2087-2104.	0.9	3
1606	In vitro and in vivo comparison of microcontainers and microspheres for oral drug delivery. International Journal of Pharmaceutics, 2021, 600, 120516.	2.6	7
1607	Conversion of Electrospun Chitosan into Chitin: A Robust Strategy to Tune the Properties of 2D Biomimetic Nanofiber Scaffolds. Polysaccharides, 2021, 2, 271-286.	2.1	0
1608	Biochemical evidence of epicuticular wax compounds involved in cotton-whitefly interaction. PLoS ONE, 2021, 16, e0250902.	1.1	4
1609	Films Based on Thermoplastic Starch Blended with Pine Resin Derivatives for Food Packaging. Foods, 2021, 10, 1171.	1.9	25
1610	Insect Chitin-Based Nanomaterials for Innovative Cosmetics and Cosmeceuticals. Cosmetics, 2021, 8, 40.	1.5	52
1611	Chitosan beads as a bioanode for simultaneous recovery of nutrients and energy from municipal wastewater using a microbial nutrient recovery cell. Journal of Cleaner Production, 2021, 298, 126756.	4.6	8
1612	Effect of conjugated protein composed of porcine myofibril and Protaetia brevitarsis protein on protein functionality. Journal of Insects As Food and Feed, 2021, 7, 1101-1110.	2.1	6
1613	Agarose, Alginate and Chitosan Nanostructured Aerogels for Pharmaceutical Applications: A Short Review. Frontiers in Bioengineering and Biotechnology, 2021, 9, 688477.	2.0	29
1614	Preparation and gelation behaviors of poly(2-oxazoline)-grafted chitin nanofibers. Carbohydrate Polymers, 2021, 259, 117709.	5.1	4
1615	Intermolecular interactions of chitosan: Degree of acetylation and molecular weight. Carbohydrate Polymers, 2021, 259, 117782.	5.1	62
1616	Chitosan hydrogel derived carbon foam with typical transition-metal catalysts for efficient water splitting. Carbon, 2021, 177, 160-170.	5.4	23
1617	Preparation and Antimicrobial Activity of Chitosan and Its Derivatives: A Concise Review. Molecules, 2021, 26, 3694.	1.7	77
1618	An Overview of the Design of Chitosan-Based Fiber Composite Materials. Journal of Composites Science, 2021, 5, 160.	1.4	14

#	Article	IF	Citations
1619	SUSTAINABLE CELLULOSE NANOCRYSTAL REINFORCED CHITOSAN/HPMC BIO-NANOCOMPOSITE FILMS CONTAINING MENTHOL OIL AS PACKAGING MATERIALS. Cellulose Chemistry and Technology, 2021, 55, 649-658.	0.5	3
1620	Continuous Pilotâ€Scale Wetâ€Spinning of Biocompatible Chitin/Chitosan Multifilaments from an Aqueous KOH/Urea Solution. Macromolecular Rapid Communications, 2021, 42, e2100252.	2.0	8
1621	Fluorescent Amphiphilic Quaternized \hat{l}^2 -Chitin: Antibacterial Mechanism and Cell Imaging. ACS Applied Bio Materials, 2021, 4, 5461-5470.	2.3	7
1622	Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. Materials, 2021, 14, 3655.	1.3	31
1623	Marine Polysaccharides as a Versatile Biomass for the Construction of Nano Drug Delivery Systems. Marine Drugs, 2021, 19, 345.	2.2	53
1624	Factors of influence for functionalised of chitosan with n-heterocyclic salt in aqueous medium. Journal of Physics: Conference Series, 2021, 1960, 012001.	0.3	0
1625	Recent Advances in Polymer-Based Vaginal Drug Delivery Systems. Pharmaceutics, 2021, 13, 884.	2.0	44
1626	Facile and green approach in managing sand crab carapace biowaste for obtention of high deacetylation percentage chitosan. Journal of Environmental Chemical Engineering, 2021, 9, 105229.	3.3	23
1627	Potential applications of polycarbohydrates, lignin, proteins, polyacids, and other renewable materials for the formulation of green elastomers. International Journal of Biological Macromolecules, 2021, 181, 1-29.	3.6	27
1628	Preparation of Nanochitin/Polystyrene Composite Particles by Pickering Emulsion Polymerization Using Scaled-Down Chitin Nanofibers. Coatings, 2021, 11, 672.	1.2	8
1629	Modified Chitosan Forms for Cr (VI) Removal. , 0, , .		1
1630	CaCO3–Chitosan Composites Granules for Instant Hemostasis and Wound Healing. Materials, 2021, 14, 3350.	1.3	10
1631	New Solvent and Coagulating Agent for Development of Chitosan Fibers by Wet Spinning. Polymers, 2021, 13, 2121.	2.0	13
1632	Evaluation of functional and nutritional potential of a protein concentrate from Pleurotus ostreatus mushroom. Food Chemistry, 2021, 346, 128884.	4.2	43
1633	Advances and rational design of chitosan-based autonomic self-healing hydrogels for biomedical applications. Journal of Polymer Research, 2021, 28, 1.	1.2	8
1634	Boron phenyl alanine targeted ionic liquid decorated chitosan nanoparticles for mitoxantrone delivery to glioma cell line. Pharmaceutical Development and Technology, 2021, 26, 899-909.	1.1	12
1635	Chitosan, Chitooligosaccharides and Their Polyphenol Conjugates: Preparation, Bioactivities, Functionalities and Applications in Food Systems. Food Reviews International, 2023, 39, 2297-2319.	4.3	27
1636	Structural Color Materials from Natural Polymers. Advanced Materials Technologies, 2021, 6, .	3.0	52

#	Article	IF	Citations
1637	Design of ophthalmic micelles loaded with diclofenac sodium: effect of chitosan and temperature on the block-copolymer micellization behaviour. Drug Delivery and Translational Research, 2021, , 1.	3.0	1
1638	Functional properties of chitosan derivatives obtained through Maillard reaction: A novel promising food preservative. Food Chemistry, 2021, 349, 129072.	4.2	52
1639	Low-molecular weight chitosan enhances antibacterial effect of antibiotics and permeabilizes cytoplasmic membrane of Staphylococcus epidermidis biofilm cells. Folia Microbiologica, 2021, 66, 983-996.	1.1	6
1640	Fungal textiles: Wet spinning of fungal microfibers to produce monofilament yarns. Sustainable Materials and Technologies, 2021, 28, e00256.	1.7	6
1641	Applications of Chitosan Based Schiff bases and its Complexes – A Review. International Journal of Advanced Research in Science, Communication and Technology, 0, , 157-170.	0.0	0
1642	Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohydrate Polymers, 2021, 264, 118050.	5.1	67
1643	Extraction and Characterization of Chitin and Chitosan from Invasive Alien Swimming Crab Charybdis longicollis. Natural and Engineering Sciences, 2021, 6, 96-101.	0.2	1
1644	Superâ€Strong and Superâ€Stiff Chitosan Filaments with Highly Ordered Hierarchical Structure. Advanced Functional Materials, 2021, 31, 2104368.	7.8	39
1645	A aplica \tilde{A} \tilde{A} \tilde{A} o de pol \tilde{A} meros biodegrad \tilde{A} iveis como uma alternativa sustent \tilde{A} ivel. Research, Society and Development, 2021, 10, e49010918248.	0.0	1
1646	Effect of extraction condition on technological properties of protein from Protaetia brevitarsis larvae. Journal of Insects As Food and Feed, 2022, 8, 147-155.	2.1	3
1647	A novel approach for efficient fabrication of chitosan nanoparticles-embedded bacterial nanocellulose conduits. Carbohydrate Polymers, 2021, 264, 118002.	5.1	9
1648	Materials for Production of High and Ultra-High Performance Concrete: Review and Perspective of Possible Novel Materials. Materials, 2021, 14, 4304.	1.3	86
1649	Biomedical Applications of Quaternized Chitosan. Polymers, 2021, 13, 2514.	2.0	51
1650	Anticancer Effect of Alginate-chitosan Hydrogel Loaded with Curcumin and Chrysin on Lung and Breast Cancer Cell Lines. Current Drug Delivery, 2022, 19, 600-613.	0.8	15
1651	Quantification of energy input required for chitin nanocrystal aggregate size reduction through ultrasound. Scientific Reports, 2021, 11, 17217.	1.6	10
1652	Evaluation of Chitosan Modified Glass Ionomer Cement for Microleakage under Spectrophotometer - An In-Vitro Study. Journal of Evolution of Medical and Dental Sciences, 2021, 10, 2769-2772.	0.1	1
1653	Understanding the structural diversity of chitins as a versatile biomaterial. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2021, 379, 20200331.	1.6	38
1654	Chitosan-based microneedles as a potential platform for drug delivery through the skin: Trends and regulatory aspects. International Journal of Biological Macromolecules, 2021, 184, 438-453.	3.6	44

#	Article	IF	CITATIONS
1655	Structural Polymorphism of Chitin and Chitosan in Fungal Cell Walls From Solid-State NMR and Principal Component Analysis. Frontiers in Molecular Biosciences, 2021, 8, 727053.	1.6	46
1656	Recovery of glucosamine and optimization of chitin extraction with acid and alkali process from shells of sea mussel Mytilus galloprovincialis in Greece. GSC Biological and Pharmaceutical Sciences, 2021, 16, 166-171.	0.1	O
1657	Recent Advances in Vaginal Delivery for the Treatment of Vulvovaginal Candidiasis. Current Molecular Pharmacology, 2021, 14, 281-291.	0.7	3
1658	Counterion Effects in Metal Hybrid Biopolymer Materials for Sulfate Adsorption: An Experimental and Computational Study. ACS Applied Polymer Materials, 2021, 3, 4595-4606.	2.0	10
1659	Corrosion inhibition potential of chitosan based Schiff bases: Design, performance and applications. International Journal of Biological Macromolecules, 2021, 184, 135-143.	3.6	43
1660	Oxygen-generating glycol chitosan-manganese dioxide nanoparticles enhance the photodynamic effects of chlorin e6 on activated macrophages in hypoxic conditions. International Journal of Biological Macromolecules, 2021, 184, 20-28.	3.6	9
1661	Preparation and characterization of chitosan flake and chitosan nanopowder gels: A comparative study of rheological, thermal and morphological perspectives. LWT - Food Science and Technology, 2021, 148, 111771.	2.5	7
1662	PLA Electrospun Fibers Reinforced with Organic and Inorganic Nanoparticles: A Comparative Study. Molecules, 2021, 26, 4925.	1.7	17
1663	Pyrolysis of Complexes of Metallosulphophthalocyanines with Chitosan for Obtaining Graphite-Like Structures. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31, 3991-4000.	1.9	2
1664	Equipment-free quantitative determination of urea based on paper-based sensor via urease-mediated chitosan viscosity change. Enzyme and Microbial Technology, 2021, 148, 109830.	1.6	10
1665	New trends in nanofibers functionalization and recent applications in wastewater treatment. Polymers for Advanced Technologies, 2021, 32, 4587-4597.	1.6	7
1666	The Study of Physicochemical Properties and Blood Compatibility of Sodium Alginate-Based Materials via Tannic Acid Addition. Materials, 2021, 14, 4905.	1.3	2
1667	Natural polymers based triboelectric nanogenerator for harvesting biomechanical energy and monitoring human motion. Nano Research, 2022, 15, 2505-2511.	5.8	59
1668	Hydrophobic Modification of Chitosan via Reactive Solvent-Free Extrusion. Polymers, 2021, 13, 2807.	2.0	7
1669	Deconstruction and Reassembly of Renewable Polymers and Biocolloids into Next Generation Structured Materials. Chemical Reviews, 2021, 121, 14088-14188.	23.0	113
1670	Recent advances of emerging green chitosan-based biomaterials with potential biomedical applications: A review. Carbohydrate Research, 2021, 506, 108368.	1.1	90
1671	Amphotericin B nanohydrogel ocular formulation using alkyl glyceryl hyaluronic acid: Formulation, characterization, and in vitro evaluation. International Journal of Pharmaceutics, 2021, 610, 121061.	2.6	5
1672	Rational formulations of sustainable polyurethane/chitin/rosin composites reinforced with ZnO-doped-SiO2 nanoparticles for green packaging applications. Food Chemistry, 2022, 371, 131193.	4.2	44

#	Article	IF	Citations
1673	Preparation and properties of chitosanâ€based bacteriostatic agents and their application in strawberry bacteriostatic preservation. Journal of Food Science, 2021, 86, 4611-4627.	1.5	10
1674	Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers. Food Research International, 2021, 147, 110564.	2.9	42
1675	Performance, nutrient digestibility and selected gut health parameters of broilers fed with black soldier fly, lesser mealworm and yellow mealworm. Journal of Insects As Food and Feed, 2021, 7, 1011-1022.	2.1	8
1676	Biomacromolecules in recent phosphate-shelled brachiopods: identification and characterization of chitin matrix. Journal of Materials Science, 2021, 56, 19884-19898.	1.7	3
1677	Relaxation Phenomena in Chitosan-Au Nanoparticle Thin Films. Polymers, 2021, 13, 3214.	2.0	5
1678	Statistical optimization, soft computing prediction, mechanistic and empirical evaluation for fundamental appraisal of copper, lead and malachite green adsorption. Journal of Industrial Information Integration, 2021, 23, 100219.	4.3	18
1679	Novel chitosan-poly(vinyl acetate) biomaterial suitable for additive manufacturing and bone tissue engineering applications. Journal of Bioactive and Compatible Polymers, 2021, 36, 394-413.	0.8	3
1680	Chitosan-transition metal coordination biopolymer: a promising heterogeneous catalyst for radical ion polymerization of vinyl acetate at ambient temperature. Journal of Polymer Research, 2021, 28, 1.	1.2	2
1681	Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds. Acta Biomaterialia, 2021, 131, 544-554.	4.1	49
1682	One-Step Preparation of Chitin Nanofiber Dispersion in Full pH Surroundings Using Recyclable Solid Oxalic Acid and Evaluation of Redispersed Performance. Biomacromolecules, 2021, 22, 4373-4382.	2.6	11
1683	Enhancement of hydrothermal carbonization of chitin by combined pretreatment of mechanical activation and FeCl3. International Journal of Biological Macromolecules, 2021, 189, 242-250.	3.6	9
1684	Investigation of adsorption of organic dyes present in wastewater using chitosan beads immobilized with biofabricated CuO nanoparticles. Journal of Molecular Structure, 2021, 1242, 130749.	1.8	33
1685	Electrochemistry of chitosan amino-glycan and BSA protein mixture under seawater conditions. Journal of Electroanalytical Chemistry, 2021, 898, 115630.	1.9	3
1686	Fabrication of highly flexible nanochitin film and its composite film with anionic polysaccharide. Carbohydrate Polymers, 2021, 270, 118369.	5.1	14
1687	Preparation of cellulosic soft and composite materials using ionic liquid media and ion gels. Cellulose, 2022, 29, 2745-2754.	2.4	7
1688	Synthesis of mixed chitin esters with long fatty and bulky acyl substituents in ionic liquid. International Journal of Biological Macromolecules, 2021, 190, 763-768.	3.6	8
1689	Chitosan nanofiltration membranes with gradient cross-linking and improved mechanical performance for the removal of divalent salts and heavy metal ions. Desalination, 2021, 516, 115200.	4.0	32
1690	Biomaterials- and biostructures Inspired high-performance flexible stretchable strain sensors: A review. Chemical Engineering Journal, 2021, 425, 129949.	6.6	65

#	Article	IF	CITATIONS
1691	Fabrication of alginate/chitosan complex fibers via diffusion controlled in-situ polyelectrolyte complexation. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100030.	1.6	3
1692	Sustainable biomaterials based on cellulose, chitin and chitosan composites - A review. Carbohydrate Polymer Technologies and Applications, 2021, 2, 100079.	1.6	35
1693	Effects of degree of deacetylation on hemostatic performance of partially deacetylated chitin sponges. Carbohydrate Polymers, 2021, 273, 118615.	5.1	19
1694	Chitin and derivative chitosan-based structures — Preparation strategies aided by deep eutectic solvents: A review. Carbohydrate Polymers, 2022, 275, 118702.	5.1	123
1695	Electrophoretic deposition of collagen/chitosan films with copper-doped phosphate glasses for orthopaedic implants. Journal of Colloid and Interface Science, 2022, 607, 869-880.	5.0	17
1696	Fabrication of chitin monoliths with controllable morphology by thermally induced phase separation of chemically modified chitin. Carbohydrate Polymers, 2022, 275, 118680.	5.1	10
1697	Fabrication and characterization of carrageenan-based green materials., 2021,, 257-277.		0
1698	Polysaccharides and Applications in Regenerative Medicine. , 2021, , 1-33.		0
1699	Polysaccharide biopolymer chemistry. , 2021, , 45-105.		6
1700	Green synthesis of nano-Al ₂ O ₃ , recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: various technological applications. New Journal of Chemistry, 2021, 45, 4885-4920.	1.4	10
1701	Chitosan Nanoparticles: An Overview on Preparation, Characterization and Biomedical Applications. Environmental and Microbial Biotechnology, 2021, , 393-427.	0.4	1
1702	Biomedical applications of biopolymer-based (nano)materials. , 2021, , 189-332.		1
1703	IN VITRO CYTOTOXIC ASSESSMENT OF CHITOSAN OLIGOSACCHARIDE LACTATE ON HUMAN BLOOD AND LYMPHOCYTE CELLS. EskiÅŸehir Teknik Āœniversitesi Bilim Ve Teknoloji Dergisi - C YaÅŸam Bilimleri Ve Biyoteknoloji, 0, , .	0.1	2
1705	Chapter 7. Injectable Biopolymer Hydrogels for Regenerative Medicine. Biomaterials Science Series, 2021, , 155-200.	0.1	2
1711	Layerâ€byâ€layer selfâ€assembly of collagen and chitosan biomolecules on polyurethane films. Journal of Applied Polymer Science, 2020, 137, 49417.	1.3	6
1712	Synthesis and Characterization and Application of Chitin and Chitosan-Based Eco-friendly Polymer Composites., 2019,, 1365-1405.		7
1713	Nanomaterials for Wound Healing. Pancreatic Islet Biology, 2019, , 81-117.	0.1	3
1714	Development of New Cellulosic Fibers and Composites Using Ionic Liquid Technology. Green Chemistry and Sustainable Technology, 2020, , 227-259.	0.4	5

#	Article	IF	CITATIONS
1715	Biosynthesis of Nanoparticles by Fungi: Large-Scale Production. , 2016, , 1-20.		16
1716	Bioactive Substances of Animal Origin. , 2015, , 1009-1033.		8
1717	Chitin as a Resource for Eco-Friendly Bioplastics. , 2019, , 1-8.		3
1718	Biosynthetic Fibers: Production, Processing, Properties and Their Sustainability Parameters. Textile Science and Clothing Technology, 2014, , 109-138.	0.4	8
1719	Ultrafine and carboxylated \hat{l}^2 -chitin nanofibers prepared from squid pen and its transparent hydrogels. Carbohydrate Polymers, 2019, 211, 118-123.	5.1	27
1720	Chitosan derivatives and their based nanoparticles: ultrasonic approach to the synthesis, antimicrobial and transfection properties. Carbohydrate Polymers, 2020, 242, 116478.	5.1	26
1721	A facile physical approach to make chitosan soluble in acid-free water. International Journal of Biological Macromolecules, 2017, 103, 575-580.	3.6	36
1722	Biosorpion for sustainable recovery of precious metals from wastewater. Journal of Environmental Chemical Engineering, 2020, 8, 103996.	3.3	36
1723	Selective Complex Coacervation of Pea Whey Proteins with Chitosan To Purify Main 2S Albumins. Journal of Agricultural and Food Chemistry, 2020, 68, 1698-1706.	2.4	28
1724	Highly Efficient Multicomponent Gel Biopolymer Binder Enables Ultrafast Cycling and Applicability in Diverse Battery Formats. ACS Applied Materials & Interfaces, 2020, 12, 53827-53840.	4.0	5
1725	NANOSTRUCTURES OVERCOMING THE INTESTINAL BARRIER: DRUG DELIVERY STRATEGIES. RSC Drug Discovery Series, 2012, , 63-90.	0.2	3
1726	Flat sheet membrane composite for desalinisation applications based on Bacterial Nanocellulose (BNC) from banana peel waste, cellulose, and silica. Materials Research Express, 2020, 7, 105004.	0.8	6
1727	Synthesis and Antimicrobial Activity of $\langle i \rangle$ N $\langle i \rangle$ -(6-Carboxyl Cyclohex-3-ene Carbonyl) Chitosan with Different Degrees of Substitution. International Journal of Carbohydrate Chemistry, 2016, 2016, 1-10.	1.5	4
1728	Macromolecules in the Condensed State. , 2014, , 217-236.		1
1729	CURRENT RESEARCH ON CHITOSANHALLOYSITE COMPOSITES. , 2015, , 235-248.		2
1730	Chitosan and Its Roles in Transdermal Drug Delivery. , 2016, , 590-619.		1
1731	Kinetic and Mechanistic Orientation to the Nature of Electron Transfer Process in Oxidation of Biodegradable Water-Soluble Polymers by Chromic Acid in Aqueous Perchlorate Solutions: A Linear Free-Energy Correlation., 2016,, 441-484.		1
1733	An accurate coarse-grained model for chitosan polysaccharides in aqueous solution. PLoS ONE, 2017, 12, e0180938.	1.1	25

#	Article	IF	CITATIONS
1734	Chitin and Chitinases: Biomedical And Environmental Applications of Chitin and its Derivatives. Journal of Enzymes, 2018, 1, 20-43.	0.7	26
1735	NONWOVEN CHITOSAN - PREPARATION AND PROPERTIES. Progress on Chemistry and Application of Chitin and Its Derivatives, 2019, XXIV, 183-191.	0.1	1
1736	Chitosan-Properties and Applications in Dentistry. Advances in Tissue Engineering $\&$ Regenerative Medicine Open Access, 2017, 2, .	0.1	22
1737	Application of Chitosan and Buriti Oil (Mauritia Flexuosa L.) in Skin Wound Healing. Journal of Applied Biotechnology & Bioengineering, 2017, 3, .	0.0	3
1738	Bio-ink Materials for 3D Bio-printing. Journal of International Society for Simulation Surgery, 2016, 3, 49-59.	0.0	6
1739	SYNTHESIS AND CHARACTERIZATION OF CHITIN co-(ACETATE/SUCCINATE) COPOLYMERS. International Journal of Pharmacy and Biological Sciences, 2016, 6, 49-54.	0.0	3
1740	Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Current Medicinal Chemistry, 2019, 26, 2502-2513.	1.2	32
1741	Quaternized Chitosan Nanoparticles in Vaccine Applications. Current Medicinal Chemistry, 2020, 27, 4932-4944.	1.2	17
1742	Functional Chitosan-based Materials for Biological Applications. Current Medicinal Chemistry, 2020, 27, 4660-4672.	1.2	18
1743	Antibacterial Coatings Based on Chitosan for Pharmaceutical and Biomedical Applications. Current Pharmaceutical Design, 2018, 24, 866-885.	0.9	42
1744	Design Polysaccharides of Marine Origin: Chemical Modifications to Reach Advanced Versatile Compounds. Current Organic Chemistry, 2014, 18, 867-895.	0.9	38
1745	Chitosan and Its Derivatives - Biomaterials with Diverse Biological Activity for Manifold Applications. Mini-Reviews in Medicinal Chemistry, 2019, 19, 737-750.	1.1	31
1746	Characterization and Immunological Evaluation of Low-Molecular- Weight Alginate Derivatives. Current Topics in Medicinal Chemistry, 2015, 16, 874-887.	1.0	27
1747	Functionalization of Chitosan with Maleic Anhydride for Proton Exchange Membrane. Indonesian Journal of Chemistry, 2018, 18, 313.	0.3	5
1748	Caracterización mecánica de bioesponjas de residuos de crustáceos como opción al poliestireno expandido en empaques para alimentos. QuÃmica Central, 2016, 4, 13-25.	0.0	1
1749	Preparation, Bioactivities and Applications in Food Industry of Chitosan-Based Maillard Products: A Review. Molecules, 2021, 26, 166.	1.7	18
1750	Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions. Polymers, 2021, 13, 1.	2.0	210
1751	STUDY ON DISSOLUBILITY OF CHITOSAN IN FOUR KINDS OF IMIDAZOLE-BASED IONIC LIQUIDS. Acta Polymerica Sinica, 2011, 011, 1173-1179.	0.0	5

#	Article	IF	CITATIONS
1752	The Study of Purifying Plasma Thrombin Using Chitosan Affinity Magnetic Microspheres. Progress in Biochemistry and Biophysics, 2010, 37, 433-440.	0.3	4
1753	Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2015, 2, 163-182.	0.6	50
1754	Depolymerization of <i> \hat{l} ±</i>-& <i> \hat{l} 2</i>-Chitosan by <i>e</i>-Beam Irradiation. Journal of Biosciences and Medicines, 2019, 07, 72-83.	0.1	1
1755	Recent Strategies for the Development of Biosourced-Monomers, Oligomers and Polymers-Based Materials: A Review with an Innovation and a Bigger Data Focus. Journal of Biomaterials and Nanobiotechnology, 2016, 07, 167-213.	1.0	15
1756	Paving the High-Way to Sustainable, Value Adding Open-Innovation Integrating Bigger-Data Challenges: Three Examples from Bio-Ingredients to Robust Durable Applications of Electrochemical Impacts. Journal of Biomaterials and Nanobiotechnology, 2018, 09, 117-188.	1.0	2
1758	Effect of Aloe vera Gel, Chitosan and Sodium Alginate Based Edible Coatings on Postharvest Quality of Refrigerated Strawberry Fruits of cv. Chandler. Journal of Horticultural Science & Technology, 2018, , 8-16.	0.3	18
1759	Chitosan-gold Nano Composite for Dopamine Analysis using Raman Scattering. Bulletin of the Korean Chemical Society, 2013, 34, 237-242.	1.0	22
1760	Characterization of compisote edible films from aloe vera gel, beeswax and chitosan. Potravinarstvo, 2019, 13, 854-862.	0.5	7
1761	Application of Raman Spectroscopy for Evaluation of Chemical Changes in Dibutyrylchitin Fibres. Fibres and Textiles in Eastern Europe, 2016, 24, 27-38.	0.2	7
1762	Effect of Fe ₃ O ₄ loading on the conductivities of carbon nanotube/chitosan composite films. Carbon Letters, 2012, 13, 126-129.	3.3	19
1763	Chitosan Stimulates Calcium Uptake and Enhances the Capability of Chinese Cabbage Plant to Resist Soft Rot Disease Caused by Pectobacterium carotovorum ssp. carotovorum. Horticultural Science and Technology, 2012, 30, 137-143.	0.9	1
1764	Microwave Irradiation-Assisted Chitosan Hydrolysis Using Cellulase Enzyme. Bulletin of Chemical Reaction Engineering and Catalysis, 2018, 13, 466-474.	0.5	6
1765	Nanocomposite coatings for hatching eggs and table eggs. Open Agriculture, 2021, 6, 573-586.	0.7	4
1766	Biocascading: Platform Molecules, Value Added Chemicals, and Bioactives., 2021,, 169-229.		1
1767	Influence of Newly Organosolv Lignin-Based Interface Modifier on Mechanical and Thermal Properties, and Enzymatic Degradation of Polylactic Acid/Chitosan Biocomposites. Polymers, 2021, 13, 3355.	2.0	1
1768	5FU-loaded PCL/Chitosan/Fe ₃ O ₄ Core-Shell Nanofibers Structure: An Approach to Multi-Mode Anticancer System. Advanced Pharmaceutical Bulletin, 2022, 12, 568-582.	0.6	8
1769	Synthesis and wound healing performance of new <scp>waterâ€soluble</scp> chitosan derivatives. Journal of Applied Polymer Science, 2022, 139, 51770.	1.3	1
1770	Utilization of water-soluble chitosan as a sizing agent incorporated in a paper composite: effects of pulp weight and water-soluble chitosan concentration. Biomass Conversion and Biorefinery, 0 , 1 .	2.9	1

#	Article	IF	CITATIONS
1771	Chitosan as possible inhibitory agents and delivery systems in leukemia. Cancer Cell International, 2021, 21, 544.	1.8	10
1772	Upgrading the preparation of high-quality chitosan from Procambarus clarkii wastes over the traditional isolation of shrimp chitosan. Saudi Journal of Biological Sciences, 2022, 29, 911-919.	1.8	8
1773	Composite Nanoarchitectonics with Polythiophene, MWCNTs-G, CuO and Chitosan as a Voltammetric Sensor for Detection of Cd(II) Ions. Journal of Inorganic and Organometallic Polymers and Materials, 2022, 32, 713-727.	1.9	8
1774	Modelagem da viscosidade em mistura polivinilpirrolidona/quitosana para processamento de membrana adesiva. Research, Society and Development, 2021, 10, e373101321348.	0.0	0
1775	Chitosan propolis nanocomposite alone or in combination with apramycin: an alternative therapy for multidrug-resistant Salmonella Typhimurium in rabbits: in vitro and in vivo study. Journal of Medical Microbiology, 2021, 70, .	0.7	5
1776	Preparation of Composite Materials from Self-Assembled Chitin Nanofibers. Polymers, 2021, 13, 3548.	2.0	5
1777	Molecularly Tailored Interface for Longâ€Term Xenogeneic Cell Transplantation. Advanced Functional Materials, 2022, 32, 2108221.	7.8	1
1778	A review on valorization of chitinous waste. Journal of Polymer Research, 2021, 28, 1.	1.2	9
1779	Biodegradation of Chitin Extracted from <i>Labeo catla</i> Fish Scales and Production of Chitooligosaccharides by Novel Chitinolytic Bacteria <i>Streptomyces chilikensis</i> RC1830. Journal of Aquatic Food Product Technology, 2021, 30, 1235-1248.	0.6	1
1780	Progresses in chitin, chitosan, starch, cellulose, pectin, alginate, gelatin and gum based (nano)catalysts for the Heck coupling reactions: A review. International Journal of Biological Macromolecules, 2021, 192, 771-819.	3.6	74
1781	A high bonding performance and antibacterial soybean meal adhesive with Maillard reaction based cross-linked structure. Composites Part B: Engineering, 2021, 227, 109403.	5.9	35
1782	Development of Doxorubicin – Core Shell O-succinyl Chitosan Graft Pluronic®127 Copolymer Nanoparticles to Treat Human Cancer. International Journal of Bioscience, Biochemistry, Bioinformatics (IJBBB), 2011, , 131-136.	0.2	0
1783	Review: Present Status of Green Chemistry. Journal of the Korea Institute of Military Science and Technology, 2011, 14, 246-263.	0.1	1
1784	Biomimicking the Formation of Nacre/Shell: One Step Forward. Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, 2012, , 56-58.	0.2	0
1785	By-Products From Jumbo Squid (Dosidicus gigas): A New Source of Collagen Bio-Plasticizer?., 0, , .		0
1786	Repair of bone defect using bioglass-chitosan as a pharmaceutical drug: An experimental study in an ovariectomised rat model. African Journal of Pharmacy and Pharmacology, 2012, 6, .	0.2	2
1787	Biopolymers. Contemporary Food Engineering, 2012, , 17-68.	0.2	0
1788	Chitin and Chitosan Derivatives., 2013,, 3-13.		0

#	ARTICLE	IF	CITATIONS
1789	Soft Matter Composites Interfacing with Biomolecules, Cells, and Tissues. , 2014, , 29-76.		0
1790	Chitin and Chitosan. , 2014, , 1-4.		O
1791	Infrared Absorption Characteristics of Culicoides sonorensis in Relation to Insect Age. American Journal of Agricultural Science and Technology, 0, , .	0.0	7
1792	Enzymatically Sensitive Fiber-Forming Bioresorbable Polymers. SpringerBriefs in Materials, 2014, , 49-65.	0.1	O
1793	Isolation, Purification, and Nanotechnological Applications of Chitosan., 2014, , 1-30.		1
1794	Spinning. Seikei-Kakou, 2014, 26, 317-324.	0.0	O
1795	Biological Preservation of Foods. , 2014, , 472-495.		0
1797	Chitosan-Based Supports: Enzyme Immobilization. , 0, , 1593-1634.		O
1798	Carbohydrate Polymers: Colon-Targeted Drug Delivery., 0,, 1285-1318.		0
1799	Scaffolds: Regenerative Medicine. , 0, , 7093-7113.		O
1800	The role of exochitinase type A1 in the fungistatic activity of the rhizosphere bacterium Paenibacillus sp. M4. Archives of Biological Sciences, 2016, 68, 451-459.	0.2	0
1801	Comparative In Situ Microscopic Observation of Cellulose and Chitin in Hydrothermal Conditions. , 2017, , 119-133.		0
1802	Self-healing Anticorrosion Coatings for Gas Pipelines and Storage Tanks. Corrosion Science and Technology, 2016, 15, 209-216.	0.2	0
1803	Chelating effect of silver nitrate by chitosan on its toxicity and growth performance in broiler chickens. Journal of Advanced Veterinary and Animal Research, 2017, 4, 1.	0.5	4
1804	Characterization of Chitin Synthesized from Snail Shell. Minerals, Metals and Materials Series, 2017, , 257-269.	0.3	0
1805	Rheology and Thermal Studies of Stearoyl Chitosan Varying the Degree of Substitution. IOSR Journal of Polymer and Textile Engineering, 2017, 04, 22-28.	0.2	O
1806	Influence of Physico-Chemical Properties on the Potential Application of Marine Biopolymers. , 2017, , 91-115.		0
1807	Biocomposites and Polymer Blends for Wastewater Treatment. , 2017, , 473-499.		O

#	Article	IF	Citations
1808	Chemical Modification of Chitin and Chitosan for Their Potential Applications. , 2017, , 117-175.		0
1809	Introduction to Marine Biopolymers. , 2017, , 3-18.		0
1810	Introduction to Marine Biopolymers. , 2017, , 3-18.		0
1811	Wound Care: Natural Biopolymer Applications. , 2017, , 1607-1619.		0
1812	The State of the Art: Introduction to Spinning. , 2018, , 1-11.		0
1814	Evaluation of Industrial Processes to Obtain Chitin and Chitosan. , 0, , .		0
1815	Preparation and Characterisation of Novel Hybrid Hydrogel Fibres. Springer Theses, 2018, , 57-77.	0.0	0
1816	Gel Formation by Non-covalent Cross-Linking from Amylose Through Enzymatic Polymerization. Gels Horizons: From Science To Smart Materials, 2018, , 247-274.	0.3	0
1817	Influence of Chitosan Treatment on the Fruit Maturation and Shelf-life of Kiwifruits(Actinidia) Tj ETQq0 0 0 rgBT /	Overlock 1	0 ₀ Tf 50 422
1818	Investigation of Chitosan Embedded with Silver Vanadate Nanorods and their Optical Properties. Journal of Textiles Coloration and Polymer Science, 2018, .	0.1	0
1819	Chitosan-Based Systems in Tissue Engineering. , 2019, , 297-320.		0
1820	Modification of Chitosan/Chitin and Its Oligosaccharides. , 2019, , 129-159.		0
1821	Biocompatible and Biodegradable Chitosan Composites in Wound Healing Application: In Situ Novel Photo-Induced Skin Regeneration Approach. , 2019, , 143-183.		1
1822	Preparation of Chitosan and Glycol Chitosan Coated Magnetic Nanoparticles Loaded with Carboplatin as Anticancer Drug. Journal of Polytechnic, 0, , .	0.4	2
1824	Evaluation of Chelating Potential of Chitosan Citrate and Chitosan Acetate on Intraradicular Dentin. Al-Azhar Dental Journal for Girls, 2019, 6, 265-273.	0.1	1
1825	Polypropylene meshes coated with chitosan/polyethylene glycol for the reconstruction of the abdominal wall: an experimental study in rats. Arquivo Brasileiro De Medicina Veterinaria E Zootecnia, 2019, 71, 1198-1206.	0.1	0
1826	Comparison of Extraction Methods of Chitin and Chitosan from Different Sources. European Journal of Natural Sciences and Medicine, 2019, 2, 23.	0.1	1
1827	COORDINATIVE INTERACTION OF CHITOSAN-AZO DYES TOWARDS SELECTED FIRST ROW TRANSITION METALS. Journal of Natural Science, Engineering and Technology, 2019, 17, 1-8.	0.1	O

#	Article	IF	CITATIONS
1828	Diabetic wound healing with engineered biomaterials., 2020,, 335-361.		0
1829	Synergistic antibacterial activity of alpha mangostin and resveratrol loaded polymer-based films against bacteria infected wound. Journal of Drug Delivery Science and Technology, 2020, 57, 101629.	1.4	4
1830	Toward Understanding the Molecular Recognition of Fungal Chitin and Activation of the Plant Defense Mechanism in Horticultural Crops. Molecules, 2021, 26, 6513.	1.7	13
1831	Smart and Biomimetic 3D and 4D Printed Composite Hydrogels: Opportunities for Different Biomedical Applications. Biomedicines, 2021, 9, 1537.	1.4	49
1832	Polymer blends, IPNs, gels, composites, and nanocomposites from chitin and chitosan; manufacturing, and applications. , 2020, , 1-41.		0
1833	Marine-Derived Biologically Active Compounds for the Potential Treatment of Rheumatoid Arthritis. Marine Drugs, 2021, 19, 10.	2.2	7
1834	Chitosan: source, chemistry, and properties., 2022,, 1-22.		8
1835	A Review of Various Sources of Chitin and Chitosan in Nature. Journal of Renewable Materials, 2022, 10, 1097-1123.	1.1	74
1836	Potential Economic Value of Chitin and Its Derivatives as Major Biomaterials of Seafood Waste, with Particular Reference to Southeast Asia. Journal of Renewable Materials, 2022, 10, 909-938.	1.1	6
1837	Efficient production of oligomeric chitin with narrow distributions of degree of polymerization using sonication-assisted phosphoric acid hydrolysis. Carbohydrate Polymers, 2022, 276, 118736.	5.1	9
1838	Biowastes as a source of extracting chitin and chitosan for biomedical applications. Reciklaža I Održivi Razvoj, 2020, 13, 23-48.	0.5	0
1839	ĐĐ¾Đ²Ñ‹Đµ Đ¿ĐµÑ€ÑĐ¿ĐµĐ°Ñ,Đ¸Đ²Đ½Ñ‹Đµ Đ¼Đ°Ñ,ĐµÑ€Đ¸Đ°Đ»Ñ‹ Đ½Đ° Đ¾ÑĐ½Đ¾Đе Ñ€ĐµĐ°Đ¾Đ	⅓ Ð £Ð¸Ð⅓	′2Đ3Đ1/2Ñ,Đ1⁄
1840	Chemically modified chitin, chitosan, and chitinous polymers as biomaterials., 2020,, 43-69.		5
1841	Biotransformation of Chitinous Waste into Value-Added Products. , 2020, , 113-139.		1
1842	Insect Chitin and Chitosan: Structure, Properties, Production, and Implementation Prospective., 2020, , 51-66.		6
1843	Chemical Modification of Polysaccharides and Applications in Strategic Areas. Engineering Materials, 2020, , 433-472.	0.3	2
1845	The Improvement of Hydrophilic Property of Polyethersulfone Membrane with Chitosan as Additive. Jurnal Rekayasa Kimia & Lingkungan, 2020, 15, 53-61.	0.5	6
1846	Development of chitosan/poly (vinyl alcohol)/graphene oxide loaded with vanadium doped titanium dioxide patch for visible light driven antibacterial activity and accelerated wound healing application. International Journal of Biological Macromolecules, 2021, 193, 1430-1448.	3.6	27

#	Article	IF	CITATIONS
1847	Superabsorbent Polymers: From long-established, microplastics generating systems, to sustainable, biodegradable and future proof alternatives. Progress in Polymer Science, 2022, 125, 101475.	11.8	57
1848	Highly Enhanced Triboelectric Performance from Increased Dielectric Constant Induced by Ionic and Interfacial Polarization for Chitosan Based Multiâ€Modal Sensing System. Advanced Functional Materials, 2022, 32, 2109139.	7.8	33
1849	Comprehensive Review on Silicon-enhanced Green Nanocomposites Towards Sustainable Development. Silicon, 0 , 1 .	1.8	1
1850	Characterization of the selective binding of modified chitosan nanoparticles to Gram-negative bacteria strains. International Journal of Biological Macromolecules, 2022, 194, 666-675.	3.6	10
1851	Enhanced Dissolution of Chitin Using Acidic Deep Eutectic Solvents: A Sustainable and Simple Approach to Extract Chitin from Crayfish shell Wastes as Alternative Feedstocks. ACS Sustainable Chemistry and Engineering, 2021, 9, 16073-16081.	3.2	23
1852	Study of double-bonded carboxymethyl chitosan/cysteamine-modified chondroitin sulfate composite dressing for hemostatic application. European Polymer Journal, 2022, 162, 110875.	2.6	18
1853	Support–Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. Materials, 2021, 14, 6796.	1.3	5
1854	Optimization of Chitosan Properties with the Aim of a Water Resistant Adhesive Development. Polymers, 2021, 13, 4031.	2.0	19
1855	An improved osseointegration of metal implants by pitavastatin loaded multilayer films with osteogenic and angiogenic properties. Biomaterials, 2022, 280, 121260.	5.7	29
1856	Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. Materials Today, 2021, 51, 27-38.	8.3	73
1857	Nanostructured and Advanced Designs from Biomass and Mineral Residues: Multifunctional Biopolymer Hydrogels and Hybrid Films Reinforced with Exfoliated Mica Nanosheets. ACS Applied Materials & Samp; Interfaces, 2021, 13, 57841-57850.	4.0	4
1858	Polysaccharideâ€Based Nanoparticles as Pickering Emulsifiers in Emulsion Formulations and Heterogenous Polymerization Systems. Macromolecular Rapid Communications, 2022, 43, e2100493.	2.0	10
1859	Novel Liquid Chitosan-Based Biocoagulant for Treatment Optimization of Fish Processing Wastewater from a Moroccan Plant. Materials, 2021, 14, 7133.	1.3	7
1860	Recent Advancements in Microbial Polysaccharides: Synthesis and Applications. Polymers, 2021, 13, 4136.	2.0	30
1861	Microencapsulation of algae oil by complex coacervation of chitosan and modified starch: Characterization and oxidative stability. International Journal of Biological Macromolecules, 2022, 194, 66-73.	3.6	16
1863	Enhancing rat full-thickness skin wounds with a mixed aloe/chitosan gel. Formosan Journal of Surgery, 2019, 52, 84-91.	0.1	11
1865	<i>N</i> -Acetylglucosamine as a platform chemical produced from renewable resources: opportunity, challenge, and future prospects. Green Chemistry, 2022, 24, 493-509.	4.6	21
1866	Introducing a bio sorbent for removal of methylene blue dye based on flexible poly(glycerol) Tj ETQq1 1 0.78431	4 rgBT /Ov	erlock 10 Tf

#	Article	IF	CITATIONS
1867	Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chemical Engineering Journal, 2022, 431, 134277.	6.6	72
1868	Synthesis of thermoplastic chitin hexanoate-graft-poly(Îμ-caprolactone). Carbohydrate Polymers, 2022, 280, 119024.	5.1	1
1869	Oriented/dual-gradient in structure and mechanics chitosan hydrogel bio-films based on stretching for guiding cell orientation. Composites Part B: Engineering, 2022, 232, 109616.	5.9	8
1870	SYNTHESIS AND CHARACTERIZATION OF CHITOSAN/SODIUM ALGINATE BLEND MEMBRANE FOR APPLICATION IN AN ELECTROCHEMICAL CAPACITOR. Progress on Chemistry and Application of Chitin and Its Derivatives, 2020, XXV, 174-191.	0.1	O
1871	Hydrogelation from Scaled-Down Chitin Nanofibers by Reductive Amination of Monosaccharide Residues. Journal of Fiber Science and Technology, 2022, 78, 10-17.	0.2	2
1872	Chitin-derived fibrous carbon microspheres as support of polyamine for remarkable CO2 capture. Green Chemical Engineering, 2022, 3, 267-279.	3.3	3
1873	Effect of citric acid-modified chitosan on the hydration and microstructure of Portland cement paste. Journal of Sustainable Cement-Based Materials, 2023, 12, 83-96.	1.7	1
1875	Bio-Based (Chitosan-ZnO) Nanocomposite: Synthesis, Characterization, and Its Use as Recyclable, Ecofriendly Biocatalyst for Synthesis of Thiazoles Tethered Azo Groups. Polymers, 2022, 14, 386.	2.0	19
1876	Chitosan nanocomposites for biomedical applications. , 2022, , 111-138.		4
1877	Chitin Nanocrystals: Environmentally Friendly Materials for the Development of Bioactive Films. Coatings, 2022, 12, 144.	1.2	21
1878	Investigation of Surface Properties and Free Volumes of Chitosan-Based Buccal Mucoadhesive Drug Delivery Films Containing Ascorbic Acid. Pharmaceutics, 2022, 14, 345.	2.0	7
1879	Theoretical Investigation of Chitosan-Assisted Controlled Release of Digestive System Antitumor Drug Fluorouracil. Journal of Pharmaceutical Sciences, 2022, 111, 2049-2055.	1.6	1
1880	Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydrate Polymers, 2022, 282, 119132.	5.1	143
1881	Mechanochemical Transformations of Biomass into Functional Materials. ChemSusChem, 2022, 15, .	3.6	25
1882	Tough Gels and Macroporous Foams Based on Chitosan through Hydrothermal Synthesis of Chitosan, Tartaric Acid, and Urea. ACS Applied Polymer Materials, 2022, 4, 1764-1774.	2.0	6
1883	Quaternized Polysaccharideâ€Based Cationic Micelles as a Macromolecular Approach to Eradicate Multidrugâ€Resistant Bacterial Infections while Mitigating Antimicrobial Resistance. Small, 2022, 18, e2104885.	5.2	15
1884	Obtaining Chitosan from Artemia Cysts and Studying its Sorption Properties. Pharmaceutical Chemistry Journal, 2022, 55, 1234.	0.3	0
1886	Application of ionic liquids for the functional materialization of chitin. Materials Advances, 2022, 3, 3355-3364.	2.6	12

#	Article	IF	CITATIONS
1887	Surface derivatization and grafting on self-assembled chitin nanofibers for modification, functionalization, and application. , 2022, , 187-202.		0
1888	Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii). Advances in Biomarker Sciences and Technology, 2022, 4, 12-27.	0.8	18
1889	Synthesis and properties of tetrazole-containing polyelectrolytes based on chitosan, starch, and arabinogalactan. E-Polymers, 2022, 22, 203-213.	1.3	2
1890	Recent Progress in Polysaccharide-Based Hydrogel Beads as Adsorbent for Water Pollution Remediation. Springer Series in Materials Science, 2022, , 55-88.	0.4	3
1891	Chitin and Its Derivatives., 2022,, 205-228.		0
1892	Marine Polysaccharides in Pharmaceutical Uses. , 2022, , 745-779.		2
1893	Chitosan Nano/Microformulations for Antimicrobial Protection of Leather with a Potential Impact in Tanning Industry. Materials, 2022, 15, 1750.	1.3	5
1894	Comparison of polyampholyte derivative of chitosan with bisphthalimides of low molecular weight in the green synthesis of Au nanoparticles. Gold Bulletin, 2022, 55, 41-51.	1.1	0
1895	Cytocompatibility / Antibacterial Activity Trade-off for Knittable Wet-Spun Chitosan Monofilaments Functionalized by the In Situ Incorporation of Cu ²⁺ and Zn ²⁺ . ACS Biomaterials Science and Engineering, 2022, 8, 1735-1748.	2.6	5
1896	Study of the Nanofibers Fabrication Conditions from the Mixture of Poly(vinyl alcohol) and Chitosan by Electrospinning Method. Polymers, 2022, 14, 811.	2.0	14
1897	Microalgae harvesting techniques: updates and recent technological interventions. Critical Reviews in Biotechnology, 2023, 43, 342-368.	5.1	19
1898	A Facile Method for Processing Durable and Sustainable Superhydrophobic Chitosan-Based Coatings Derived from Waste Crab Shell. ACS Sustainable Chemistry and Engineering, 2022, 10, 4694-4704.	3.2	28
1899	Cationization of <i>Eucalyptus</i> Kraft LignoBoost Lignin: Preparation, Properties, and Potential Applications. Industrial & Engineering Chemistry Research, 2022, 61, 3503-3515.	1.8	5
1900	Biotechnological use of dairy by-products for the production and microencapsulation of the food preservative enterocin CRL35. FEMS Microbiology Letters, 2022, 369, .	0.7	3
1901	Excellent effect of lubrication performance of chitosan/polyethylene glycol/palygorskite as waterâ€based lubricating additive on 304 stainless steel and polymer pairs. Polymer Engineering and Science, 2022, 62, 1974-1986.	1.5	1
1902	Mycofabrication of Mycelium-Based Leather from Brown-Rot Fungi. Journal of Fungi (Basel,) Tj ETQq1 1 0.784314	1 rgBT /Ov	erlock 10 Tf
1903	Addition time plays a major role in the inhibitory effect of chitosan on the production of Pseudomonas aeruginosa virulence factors. Brazilian Journal of Microbiology, 2022, , 1.	0.8	1
1904	Design of polymeric nanoparticles for oral delivery of capreomycin peptide using double emulsion technique: Impact of stress conditions. Journal of Drug Delivery Science and Technology, 2022, 71, 103326.	1.4	4

#	Article	IF	CITATIONS
1905	Functional thermosensitive hydrogels based on chitin as RIN-m5F cell carrier for the treatment of diabetes. International Journal of Biological Macromolecules, 2022, 206, 453-466.	3.6	8
1906	Physicochemical characterization, adsorption function and prebiotic effect of chitin-glucan complex from mushroom Coprinus comatus. International Journal of Biological Macromolecules, 2022, 206, 255-263.	3.6	10
1907	Electrospinning of Chitosan for Antibacterial Applicationsâ€"Current Trends. Applied Sciences (Switzerland), 2021, 11, 11937.	1.3	35
1908	Biomedyczne wÅ,aÅ∘ciwoÅ∘ci chitozanu – zastosowanie w inżynierii tkankowej Biomedical properties of chitosan: Application in tissue engineering. Postepy Higieny I Medycyny Doswiadczalnej, 2021, 75, 1020-1037.	0.1	O
1909	Preparation, characterization, and application of hydrogel derived from chitin with lithium chloride for growth and development of rosemary plants. Environmental Quality Management, 0, , .	1.0	1
1910	Preparation and evaluation of polycaprolactone/chitosan/Jaft biocompatible nanofibers as a burn wound dressing. Burns, 2022, 48, 1690-1705.	1.1	11
1911	Chitosan-based materials: Preparation, modification and application. Journal of Cleaner Production, 2022, 355, 131825.	4.6	139
1912	Enhancing Agrichemical Delivery and Plant Development with Biopolymer-Based Stimuli Responsive Core–Shell Nanostructures. ACS Nano, 2022, 16, 6034-6048.	7.3	35
1913	Chitin Nanofibril-Nanolignin Complexes as Carriers of Functional Molecules for Skin Contact Applications. Nanomaterials, 2022, 12, 1295.	1.9	12
1918	Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports, 2022, 12, 6613.	1.6	60
1919	Preparation and potential applications of alginate oligosaccharides. Critical Reviews in Food Science and Nutrition, 2023, 63, 10130-10147.	5.4	17
1920	Characterization of mechanical and thermal properties of esterified lignin modified polypropylene composites filled with chitosan fibers. Polymers and Polymer Composites, 2022, 30, 096739112210824.	1.0	21
1923	Some Well-Known Alginate and Chitosan Modifications Used in Adsorption: A Review. Water (Switzerland), 2022, 14, 1353.	1.2	32
1924	Application of cyclohexene oxide modified chitosan for paper preservation. Nordic Pulp and Paper Research Journal, 2022, 37, 290-299.	0.3	0
1925	Chitosan Film Functionalized with Grape Seed Oilâ€"Preliminary Evaluation of Antimicrobial Activity. Sustainability, 2022, 14, 5410.	1.6	12
1926	Chitosan sulfate-lysozyme hybrid hydrogels as platforms with fine-tuned degradability and sustained inherent antibiotic and antioxidant activities. Carbohydrate Polymers, 2022, 291, 119611.	5.1	15
1927	Biofilm-inspired Amyloid-Polysaccharide Composite Materials. Applied Materials Today, 2022, 27, 101497.	2.3	4
1928	Excellent lubricity of PVA/PEG/CS composite on ceramic surface and stainless steel friction pair. Physica Status Solidi (A) Applications and Materials Science, 0, , .	0.8	0

#	Article	IF	Citations
1929	Antimicrobial properties of chitosan from different developmental stages of the bioconverter insect Hermetia illucens. Scientific Reports, 2022, 12, 8084.	1.6	56
1930	Infrared spectroscopy of extracted and acetylated chitin in versatile deep eutectic solvents (DES). AIP Conference Proceedings, 2022, , .	0.3	0
1931	Nanochitin: An update review on advances in preparation methods and food applications. Carbohydrate Polymers, 2022, 291, 119627.	5.1	25
1932	Raw materials and polymer science for nonwovens. , 2022, , 49-88.		2
1933	Bioactive N and O Donor Atom of Bidentate Schiff Base Ligands from Chitosan Biopolymer and its Ruthenium(Iii) Complexes an Enhanced Antioxidant Activity. SSRN Electronic Journal, 0, , .	0.4	0
1934	Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Marine Drugs, 2022, 20, 335.	2.2	40
1935	Nanochitin: Chemistry, Structure, Assembly, and Applications. Chemical Reviews, 2022, 122, 11604-11674.	23.0	102
1936	Extracellular matrix-mimicking nanofibrous chitosan microspheres as cell micro-ark for tissue engineering. Carbohydrate Polymers, 2022, 292, 119693.	5.1	12
1937	Effects of deacetylation degree, molecular weight, and preparation method on wetâ€adhesive and rheological properties of chitosan as foodâ€grade adhesive. Journal of Food Processing and Preservation, 0, , .	0.9	1
1938	Preparation of Cellulose-Based Soft and Composite Materials through Dissolution and Gelation with Ionic Liquids. ACS Symposium Series, 0, , 35-46.	0.5	1
1939	Conversion of Protein and Polysaccharide Wastes into Value-Added Composite Products. ACS Symposium Series, 0, , 219-260.	0.5	1
1940	Production-based solution for interactive healthcare apparels: biomedical applications for topical wound healing. Textile Reseach Journal, 0, , 004051752211062.	1.1	O
1941	Chitosan: Sources, Processing and Modification Techniques. Gels, 2022, 8, 393.	2.1	91
1942	Emerging polymeric-based material with photocatalytic functionality for sustainable technologies. Journal of Industrial and Engineering Chemistry, 2022, 113, 32-71.	2.9	4
1943	Chitosan: Applications in Drug Delivery System. Mini-Reviews in Medicinal Chemistry, 2023, 23, 187-191.	1.1	5
1944	Chitosan microencapsulation of rhizobacteria for biological control of plant pests and diseases: Recent advances and applications. Rhizosphere, 2022, 23, 100565.	1.4	31
1945	Orally Disintegrating Film: A New Approach to Nutritional Supplementation. Food and Bioprocess Technology, 2022, 15, 2629-2645.	2.6	5
1946	Molecular modifications, biological activities, and applications of chitosan and derivatives: A recent update. Chirality, 2022, 34, 1166-1190.	1.3	15

#	Article	IF	CITATIONS
1947	Insights into setting time, rheological and mechanical properties of chitin nanocrystals- and chitin nanofibers-cement paste. Cement and Concrete Composites, 2022, 132, 104623.	4.6	9
1948	Chitosan. , 2022, , 131-153.		0
1949	Polymer-based green composites and their applications. , 2022, , 123-145.		0
1950	Chitin- and chitosan-based strategies in wound healing. , 2022, , 333-380.		0
1951	A readyâ€toâ€use fast gelation/liquefying hydrogel towards enzyme free threeâ€dimensional cell culture. Journal of Polymer Science, 0, , .	2.0	0
1952	Mushrooms as Functional and Nutritious Food Ingredients for Multiple Applications. ACS Food Science & Technology, 2022, 2, 1184-1195.	1.3	17
1953	Sustainable and Repulpable Barrier Coatings for Fiber-Based Materials for Food Packaging: A Review. Frontiers in Materials, 0, 9, .	1.2	13
1954	Increased production of chitinase by a Paenibacillus illinoisensis isolated from Brazilian coastal soil when immobilized in alginate beads. Folia Microbiologica, 0, , .	1.1	2
1955	Dually Responsive Nanoparticles for Drug Delivery Based on Quaternized Chitosan. International Journal of Molecular Sciences, 2022, 23, 7342.	1.8	4
1956	From biopolymer dissolution to CO2 capture under atmospheric pressure - A molecular view on biopolymer@lonic liquid materials. Journal of Cleaner Production, 2022, 367, 132977.	4.6	4
1957	Influence of glucan on physicochemical and rheology properties of chitin nanofibers prepared from Shiitake stipes. Carbohydrate Polymers, 2022, 294, 119762.	5.1	3
1958	Tailorable antibacterial and cytotoxic chitosan derivatives by introducing quaternary ammonium salt and sulfobetaine. International Journal of Biological Macromolecules, 2022, 218, 992-1001.	3.6	16
1959	Recent progress in multifunctional conjugated polymer nanomaterial-based synergistic combination phototherapy for microbial infection theranostics. Coordination Chemistry Reviews, 2022, 470, 214701.	9.5	21
1960	A facile strategy to construct biocompatible poly(vinyl alcohol)-based self-healing hydrogels. Soft Matter, 0, , .	1.2	3
1961	Effect of the Synthesized Pyramidal Rod and Star-Like Zinc Oxide (ZnO) on the Properties of Polyvinyl Alcohol/Chitosan (PVA/CS) Electrospun Nanofibers. SSRN Electronic Journal, 0, , .	0.4	0
1962	Synthesis, Chemical and Biomedical Aspects of the Use of Sulfated Chitosan. Polymers, 2022, 14, 3431.	2.0	6
1963	Hematological image analysis for segmentation and characterization of erythrocytes using FC-TriSDR. Multimedia Tools and Applications, 2023, 82, 7861-7886.	2.6	9
1964	Polydopamine-based polysaccharide materials for water treatment. Cellulose, 2022, 29, 8025-8064.	2.4	17

#	Article	IF	CITATIONS
1965	αâ€Acetolactate decarboxylase immobilized in chitosan: A highly stable biocatalyst to prevent offâ€flavor in beer. Biotechnology Progress, 2022, 38, .	1.3	7
1967	Chitosan-Based Amphiphilic Compound Synthesis and Its Use as an Asphaltene Dispersant and Viscosity Modifier. Waste and Biomass Valorization, 0, , .	1.8	1
1968	Accurate Determination of the Degree of Deacetylation of Chitosan Using UPLC–MS/MS. International Journal of Molecular Sciences, 2022, 23, 8810.	1.8	4
1969	Chitosan-Based Biomaterials for Bone Tissue Engineering Applications: A Short Review. Polymers, 2022, 14, 3430.	2.0	47
1970	Microencapsulation of Gac Aril Oil. , 2022, , 123-142.		0
1971	Chitosan-Ocimum basilicum nanocomposite as a dietary additive in Oreochromis niloticus: Effects on immune-antioxidant response, head kidney gene expression, intestinal architecture, and growth. Fish and Shellfish Immunology, 2022, 128, 425-435.	1.6	22
1972	Selective sulfate sorption from boric acid factory process liquor: Chitosan-bentonite biocomposite film synthesis as sorbent. Minerals Engineering, 2022, 187, 107777.	1.8	2
1973	Effect of titanium dioxide nanoparticles and \hat{l}^2 -cyclodextrin polymer on physicochemical, antimicrobial, and antibiofilm properties of a novel chitosan-camphor polymer. International Journal of Biological Macromolecules, 2022, 219, 1062-1079.	3.6	12
1974	Castor oil-based transparent and omniphobic polyurethane coatings with high hardness, anti-smudge and anti-corrosive properties. Progress in Organic Coatings, 2022, 172, 107120.	1.9	8
1975	Advances in chitosan-based wound dressings: Modifications, fabrications, applications and prospects. Carbohydrate Polymers, 2022, 297, 120058.	5.1	32
1976	Macroporous silicon-wollastonite scaffold with Sr/Se/Zn/Mg-substituted hydroxyapatite/chitosan hydrogel. Open Ceramics, 2022, 12, 100306.	1.0	7
1977	Comprehensive review on pre-treatment of native, crystalline chitin using non-toxic and mechanical processes in preparation for biomaterial applications. Green Chemistry, 2022, 24, 6790-6809.	4.6	6
1978	Recent progress, synthesis, and application of chitosan-decorated magnetic nanocomposites in remediation of dye-laden wastewaters. New Journal of Chemistry, 2022, 46, 17114-17139.	1.4	4
1979	Effect of the Synthesized Pyramidal Rod and Star-Like Zinc Oxide (ZnO) on the Properties of Polyvinyl Alcohol/Chitosan (PVA/CS) Electrospun Nanofibers. SSRN Electronic Journal, 0, , .	0.4	0
1980	Facile fabrication of chitin/ZnO composite hydrogels for infected wound healing. Biomaterials Science, 2022, 10, 5888-5899.	2.6	10
1981	Effect of the Synthesized Pyramidal Rod and Star-Like Zinc Oxide (ZnO) on the Properties of Polyvinyl Alcohol/Chitosan (PVA/CS) Electrospun Nanofibers. SSRN Electronic Journal, 0, , .	0.4	0
1982	Preparation and Application of Chitosan Derivatives. Engineering Materials and Processes, 2022, , 103-155.	0.2	2
1983	Chitosan Characterization. Engineering Materials and Processes, 2022, , 51-78.	0.2	0

#	Article	IF	CITATIONS
1984	Enzyme immobilization: polymer–solvent–enzyme compatibility. Molecular Systems Design and Engineering, 2022, 7, 1385-1414.	1.7	10
1985	Interfacial interactions and reinforcing mechanisms of cellulose and chitin nanomaterials and starch derivatives for cement and concrete strength and durability enhancement: A review. Nanotechnology Reviews, 2022, 11, 2673-2713.	2.6	3
1986	Using TEMPO oxidation to tailor deacetylation of carboxyl \hat{l}^2 -chitin nanofibers from squid pen. Cellulose, 2022, 29, 8539-8549.	2.4	2
1987	Graft Copolymers of Polysaccharide: Synthesis Methodology and Biomedical Applications in Tissue Engineering. Current Pharmaceutical Biotechnology, 2022, 23, .	0.9	O
1988	Potential of naturally occurring Mucoadhesive polymer in Vaginal infection. Asian Journal of Pharmacy and Technology, 2022, , 251-256.	0.2	1
1989	Chitosan-based electrospun nanofibers mat for the removal of acidic drugs from influent and effluent. Chemical Engineering Communications, 2023, 210, 1485-1507.	1.5	3
1990	Efficient and Eco-Friendly Perspectives for C-H Arylation of Benzothiazole Utilizing Pd Nanoparticle-Decorated Chitosan. Catalysts, 2022, 12, 1000.	1.6	4
1991	Graphene and chitosan innovative materials for water treatment: Review. Materials Today: Proceedings, 2023, 72, 3577-3588.	0.9	1
1992	Polyvinyl alcohol (PVA) as a biodegradable polymeric anticorrosive material: A review on present advancements and future directions. Corrosion Engineering Science and Technology, 2022, 57, 796-812.	0.7	6
1993	Adsorption capacity and mechanism of citric acid-modified chitosan on the cement particle surface. Journal of Sustainable Cement-Based Materials, 2023, 12, 893-906.	1.7	0
1994	Continuous Preparation of Chitosan-Based Self-Powered Sensing Fibers Recycled from Wasted Materials for Smart Home Applications. Advanced Fiber Materials, 2022, 4, 1584-1594.	7.9	18
1995	Structure and expression of Rhodnius prolixus GH18 chitinases and chitinase-like proteins: Characterization of the physiological role of RpCht7, a gene from subgroup VIII, in vector fitness and reproduction. Frontiers in Physiology, $0, 13, .$	1.3	2
1996	Electrospinning and Photocrosslinking of Highly Modified Fungal Chitosan. Macromolecular Materials and Engineering, 0, , 2200430.	1.7	3
1997	Formulation of chitosan and chitosan-nanoHAp bioinks and investigation of printability with optimized bioprinting parameters. International Journal of Biological Macromolecules, 2022, 222, 1453-1464.	3.6	13
1998	Innovation from waste with biomass-derived chitin and chitosan as green and sustainable polymer: A review. Energy Nexus, 2022, 8, 100149.	3.3	14
1999	Fungal Hydrolytic Enzymes Produced byÂPlant Growth-Promoting Rhizobacteria (PGPR)., 2022,, 313-333.		1
2000	SYNTHESIS AND PROPERTIES OF CROSS-LINKED HYDROGELS BASED ON CHITOSAN AND POLYACRYLAMIDE. Polymer Journal, 2022, 44, 214-221.	0.3	1
2001	Antibacterial Porous Systems Based on Polylactide Loaded with Amikacin. Molecules, 2022, 27, 7045.	1.7	2

#	Article	IF	Citations
2002	Texture and rheological features of strain and pH sensitive chitosan-imine graphene-oxide composite hydrogel with fast self-healing nature. International Journal of Biological Macromolecules, 2022, 222, 3129-3141.	3.6	5
2003	Crabs Marine Waste—A Valuable Source of Chitosan: Tuning Chitosan Properties by Chitin Extraction Optimization. Polymers, 2022, 14, 4492.	2.0	9
2004	Chitosan-Hydroxyapatite Bio-Based Composite in Film Form: Synthesis and Application in Wastewater. Polymers, 2022, 14, 4265.	2.0	8
2005	Role of Chitin and Chitosan in Ruminant Diets and Their Impact on Digestibility, Microbiota and Performance of Ruminants. Fermentation, 2022, 8, 549.	1.4	6
2006	A green extraction process of nanocarbon dots from prawn shells, and its reinforcement in epoxy polymers. Journal of Applied Polymer Science, 2023, 140, .	1.3	3
2007	Zwitterionic chitin nanocrystals mediated composite and self-assembly with cellulose nanofibrils. International Journal of Biological Macromolecules, 2022, 223, 108-119.	3.6	4
2008	Chemically reduced graphene oxide/chitosan hybrid; a nanoscale "Fabric Starch― Applied Surface Science, 2023, 609, 155229.	3.1	2
2009	Chitosanâ€"the miracle biomaterial as detection and diminishing mediating agent for heavy metal ions: A mini review. Chemosphere, 2023, 312, 137187.	4.2	11
2010	A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes. Gels, 2022, 8, 742.	2.1	9
2012	Nanochitin preparation and its application in polymer nanocomposites: a review. Emergent Materials, 2022, 5, 2031-2060.	3.2	1
2013	Marine chitin upcycling with immobilized chitinolytic enzymes: current state and prospects. Green Chemistry, 2023, 25, 467-489.	4.6	5
2014	Thermo-responsive and mucoadhesive gels for the treatment of cystinosis. , 2023, 144, 213235.		3
2015	Evaluation of antibacterial property and greywater treatment performance using composite chitosan/graphene oxide membrane. Materials Chemistry and Physics, 2023, 295, 127160.	2.0	1
2016	Synthesis and characterization of thiazolium chitosan derivative with enhanced antimicrobial properties and its use as component of chitosan based films. Carbohydrate Polymers, 2023, 302, 120438.	5.1	15
2017	Quarternized chitosan/quercetin/polyacrylamide semi-interpenetrating network hydrogel with recoverability, toughness and antibacterial properties for wound healing. International Journal of Biological Macromolecules, 2023, 228, 48-58.	3.6	10
2018	Study mechanical properties of polyurethane foam coated by chitosan reinforced calcium carbonate with temperature curing variation. AIP Conference Proceedings, 2022, , .	0.3	0
2019	Chitin-induced systemic disease resistance in rice requires both OsCERK1 and OsCEBiP and is mediated via perturbation of cell-wall biogenesis in leaves. Frontiers in Plant Science, 0, 13, .	1.7	5
2020	Removal of Heavy Metal Ions from Wastewater with Poly-Îμ-Caprolactone-Reinforced Chitosan Composite. Polymers, 2022, 14, 5196.	2.0	4

#	Article	IF	CITATIONS
2021	Humidity-Responsive Guar Gum Fibers by Wet Spinning. Langmuir, 2022, 38, 15327-15339.	1.6	3
2022	Transparent, Ultra-Stretching, Tough, Adhesive Carboxyethyl Chitin/Polyacrylamide Hydrogel Toward High-Performance Soft Electronics. Nano-Micro Letters, 2023, 15, .	14.4	38
2023	Production of Carboxymethylated Xanthan Gum Microemulsions for Eugenol Encapsulation. Macromolecular Symposia, 2022, 406, 2200035.	0.4	0
2024	Animal-Based Bioactive Components: Zoochemicals: A Comprehensive Review., 2023,, 35-51.		1
2025	Physicochemical and antimicrobial properties of Phyllanthus reticulatus fruit extract doped chitosan/poly (vinyl alcohol) blend films for food packaging applications. Journal of Food Measurement and Characterization, 2023, 17, 1548-1561.	1.6	3
2027	Commercialization of Ionic Liquids in Pursuit of Green Chemistry: Must we Each Become an Entrepreneur?. Chemical Record, 2023, 23, .	2.9	1
2028	The Impact of Polyethylene Glycol-Modified Chitosan Scaffolds on the Proliferation and Differentiation of Osteoblasts. International Journal of Biomaterials, 2023, 2023, 1-8.	1.1	3
2029	Advances in the development and optimization strategies of the hemostatic biomaterials. Frontiers in Bioengineering and Biotechnology, 0, 10 , .	2.0	8
2030	Cellulose–Chitosan Functional Biocomposites. Polymers, 2023, 15, 425.	2.0	17
2031	Atomistic simulations of chitosan as a possible carrier system for miRNA transport. Materials Advances, 2023, 4, 1113-1124.	2.6	1
2032	A Comprehensive Review Based on Chitin and Chitosan Composites. Composites Science and Technology, 2023, , 15-66.	0.4	2
2033	INTRANASAL FORMULATION AND CHARACTERIZATION OF CHITOSAN MICROSPHERE FOR IMPROVING IN VITRO MUCOADHESION, RESIDENCE TIME AND ABSORPTION RATE OF PREGABALIN. International Journal of Applied Pharmaceutics, 0, , 156-165.	0.3	O
2034	Chitosan Composites for the Removal of Pollutants in Aqueous Environment. Composites Science and Technology, 2023, , 163-179.	0.4	0
2035	Preparation of Nanochitin Films with Oligochitin Graft Chains. Coatings, 2023, 13, 47.	1.2	O
2036	Marine polymers and their antioxidative perspective. , 2023, , 379-393.		1
2037	Advances in biopolymer based surgical sutures. , 2023, , 1-17.		O
2038	Improving the therapeutic value of sutures. , 2023, , 45-76.		0
2039	Application of nanochitosan in the preservation of meat. , 2023, , 529-560.		0

#	Article	IF	Citations
2040	Chitosan-based nanosuspensions for ocular diagnosis and therapy. , 2023, , 21-49.		О
2041	Natural Polymers and Cosmeceuticals for a Healthy and Circular Life: The Examples of Chitin, Chitosan, and Lignin. Cosmetics, 2023, 10, 42.	1.5	2
2042	Nano-enabled agglomerates and compact: Design aspects of challenges. Asian Journal of Pharmaceutical Sciences, 2023, 18, 100794.	4.3	3
2043	Chitosan nanocarriers containing essential oils as a green strategy to improve the functional properties of chitosan: A review. International Journal of Biological Macromolecules, 2023, 236, 123954.	3.6	11
2044	Extraction, quantification, characterization, and application in food packaging of chitin and chitosan from mushrooms: A review. International Journal of Biological Macromolecules, 2023, 237, 124195.	3.6	14
2045	Recent developments in improving the emulsifying properties of chitosan. International Journal of Biological Macromolecules, 2023, 239, 124210.	3.6	2
2046	Engineering mycelium fungi into an effective char-forming thermal protection material via alkaline deacetylation. Polymer Degradation and Stability, 2023, 212, 110355.	2.7	2
2047	Chitosan-based hemostatic sponges as new generation hemostatic materials for uncontrolled bleeding emergency: Modification, composition, and applications. Carbohydrate Polymers, 2023, 311, 120780.	5.1	12
2048	Chitin nanofiber-coated biodegradable polymer microparticles via one-pot aqueous process. Carbohydrate Polymers, 2023, 312, 120828.	5.1	1
2050	Chitosan as a carbonation catalyst in lime mortars. Results in Engineering, 2023, 17, 100912.	2.2	1
2051	Investigation of Corrosion Behavior of Hydroxyapatite/Zirconia/Chitosan Nanocomposite Coatings Produced by Electrophoretic Deposition. Surface Engineering and Applied Electrochemistry, 2022, 58, 682-692.	0.3	0
2052	Cleanup of oils and organic solvents from contaminated water by biomass-based aerogel with adjustable compression elasticity. Water Research, 2023, 232, 119684.	5.3	14
2053	Biologically Active Supplements Affecting Producer Microorganisms in Food Biotechnology: A Review. Molecules, 2023, 28, 1413.	1.7	5
2054	Chitin as a Resource for Eco-friendly Bioplastics. , 2022, , 203-210.		0
2055	Chitin and Chitosan as Polymers of the Future—Obtaining, Modification, Life Cycle Assessment and Main Directions of Application. Polymers, 2023, 15, 793.	2.0	32
2056	Recent Progress in Chitosan-Containing Composite Materials for Sustainable Approaches to Adsorption and Catalysis. Catalysts, 2023, 13, 367.	1.6	7
2057	Composition and Charge Compensation in Chitosan/Gum Arabic Complex Coacervates in Dependence on pH and Salt Concentration. Biomacromolecules, 2023, 24, 1194-1208.	2.6	4
2058	Chitosan with Natural Additives as a Potential Food Packaging. Materials, 2023, 16, 1579.	1.3	8

#	Article	IF	CITATIONS
2059	Chitosan Based Materials in Cosmetic Applications: A Review. Molecules, 2023, 28, 1817.	1.7	21
2060	Application of functionalized chitosan in food: A review. International Journal of Biological Macromolecules, 2023, 235, 123716.	3.6	40
2061	Chitosan-based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. Drug Delivery and Translational Research, 2023, 13, 1436-1455.	3.0	6
2062	Chitosan-Based Biomaterials: Insights into Chemistry, Properties, Devices, and Their Biomedical Applications. Marine Drugs, 2023, 21, 147.	2.2	20
2063	Evaluation of chitosan salt properties in the production of AgNPs materials with antibacterial activity. International Journal of Biological Macromolecules, 2023, 235, 123849.	3.6	2
2064	Recent advances in sustainable nature-based functional materials for biomedical sensor technologies. Environmental Science and Pollution Research, 0, , .	2.7	4
2065	Rational development of a unique family of renewable polymers. Frontiers of Materials Science, 2023, 17, .	1.1	1
2066	Green biopolysaccharides and its utilisation as biodegradable material in diverse fields: a review. Polymer Bulletin, 2024, 81, 165-187.	1.7	1
2067	Water-resistant free-standing DNA-complexed films with antioxidant and H ₂ O ₂ -responsive activity. Soft Matter, 2023, 19, 2755-2763.	1.2	2
2068	Application of nanochitosan for enhanced milk production. , 2023, , 203-212.		0
2069	Biomimetic biphasic scaffolds in osteochondral tissue engineering: Their composition, structure and consequences. Acta Histochemica, 2023, 125, 152023.	0.9	3
2070	High-tensile chitin films regenerated from cryogenic aqueous phosphoric acid. Carbohydrate Polymers, 2023, 312, 120826.	5.1	2
2071	Strain-induced 3D-oriented crystallites in natural rubber/chitin nanofiber composites. Soft Matter, 2023, 19, 2932-2940.	1.2	3
2072	Pleiotropic Modulation of Chitooligosaccharides on Inflammatory Signaling in LPS-Induced Macrophages. Polymers, 2023, 15, 1613.	2.0	0
2073	Physical, Mechanical and Electrical Properties of Chitosan/Graphene Oxide Composite Films for Copper Ions (Cu2+) Detection. Journal of Polymers and the Environment, 2023, 31, 3565-3572.	2.4	0
2074	Electrophoretic determination of chitin in insects. Journal of Chromatography A, 2023, 1695, 463952.	1.8	5
2075	Double-Network Chitosan-Based Hydrogels with Improved Mechanical, Conductive, Antimicrobial, and Antibiofouling Properties. Gels, 2023, 9, 278.	2.1	8
2076	Influence of Ionic Strength and Specific Ion Effects on Polyelectrolyte Multilayer Films with pH-Responsive Behavior. Langmuir, 2023, 39, 5012-5020.	1.6	4

#	Article	IF	CITATIONS
2077	Chitosan: A Smart Biomaterial. Biological and Medical Physics Series, 2023, , 1-25.	0.3	0
2078	Functionalized Chitosan and Biomedical Devices. Biological and Medical Physics Series, 2023, , 109-133.	0.3	0
2079	Impact of Streptococcus agalactiae Challenge on Immune Response, Antioxidant Status and Hepatorenal Indices of Nile Tilapia: The Palliative Role of Chitosan White Poplar Nanocapsule. Fishes, 2023, 8, 199.	0.7	7
2080	A Chitosan-Based Flocculation Method for Efficient Recovery of High-Purity B-Phycoerythrin from a Low Concentration of Phycobilin in Wastewater. Molecules, 2023, 28, 3600.	1.7	0
2081	Chitosan: A Potential Biopolymer in Drug Delivery and Biomedical Applications. Pharmaceutics, 2023, 15, 1313.	2.0	65
2082	Functionalized nanofibers for tissue engineering and regenerative medicine., 2023,, 135-166.		0
2104	Chitin/Chitosan Based Superabsorbent Polymers. Engineering Materials, 2023, , 77-91.	0.3	0
2112	Anisotropic nanoscale green materials: prior and current status of nanocellulose and nanochitin systems., 2023,, 203-249.		0
2119	Advances in electrospun chitosan nanofiber biomaterials for biomedical applications. Materials Advances, 2023, 4, 3114-3139.	2.6	3
2121	Biowaste valorisation in a circular economy. , 2023, , 245-258.		0
2132	Ultra-high selective recovery of Cu2+ and Ni2+ by a combination of photocatalysis and adsorption from electroless plating wastewater. Journal of the Iranian Chemical Society, 2023, 20, 2665-2678.	1.2	1
2133	Micro- and Nanoparticle of Chitosan for Vitamin Encapsulation: A Nutshell Overview., 2023, , 187-210.		0
2136	Natural biopolymers in tissue engineeringâ€"role, challenges, and clinical applications. , 2023, , 409-434.		0
2140	Influence of partial deacetylation of chitin nanofibers on the adsorption of methyl orange dyes. AIP Conference Proceedings, 2023, , .	0.3	0
2157	Natural biopolymers in drug deliveryâ€"role, challenges and clinical applications. , 2023, , 3-23.		0
2158	Chitosan as potential carrier for drug delivery. , 2023, , 127-156.		0
2159	Chitin biopolymer in tissue engineering. , 2023, , 501-512.		0
2161	Chitosan-based bionanocomposites: Synthesis, properties, and applications. , 2024, , 133-168.		0

#	Article	IF	CITATIONS
2164	Polysaccharide (Non-cellulosic) Aerogels. Springer Handbooks, 2023, , 677-705.	0.3	0
2167	Protein and peptide delivery through chitin, chitosan, and starch. , 2024, , 169-195.		0
2172	A review on heavy metal biosorption utilizing modified chitosan. Environmental Monitoring and Assessment, 2023, 195 , .	1.3	1
2173	Heavy Metal Removal and Recovery: Sustainable and Efficient Approaches. Springer Water, 2023, , 87-124.	0.2	0
2183	Tribological Behavior of Medium Molecular Weight Chitosan in Acid Aqueous Solution., 2023,,.		0
2185	Chitin and Chitosan Based PVC Composites and Nanocomposites. Engineering Materials, 2024, , 117-128.	0.3	0
2186	Bioactive Compounds from Components of Marine Ecosystem. Marine Ecology, 2023, , 206-256.	0.1	0
2189	Natural Hydrogels for Drug Delivery Systems. , 2023, , 149-167.		0
2190	Synthesis and characterization of nanocomposites for tissue engineering., 2023,,.		0
2197	Chitosan and Its Applications as a Sensing Material. , 2024, , 1-28.		0
2205	PGM-Free Biomass-Derived Electrocatalysts for Oxygen Reduction in Energy Conversion Devices: Promising Materials. Electrochemical Energy Reviews, 2024, 7, .	13.1	0
2207	Edible packaging reinforced with nutrients-based nanomaterials. , 2024, , 247-268.		0
2215	Insect processing for chitin production. , 2024, , 129-143.		0
2221	Chitin, Chitosan, and their Derivatives from Seafood Waste and Processing Byproducts. , 2024, , 253-278.		0
2235	Conserving soil microbial population and sustainable agricultural practices—Polymers in aid of safe delivery, protection, population enhancement, and maintenance. , 2024, , 313-358.		0