High temperature proton exchange membranes based of

Progress in Polymer Science 34, 449-477 DOI: 10.1016/j.progpolymsci.2008.12.003

Citation Report

#	Article	IF	CITATIONS
1	PEM Fuel Cells for Transport Applications: State of the Art and Challenges. , 2009, , .		3
2	Comparison of the Sulfur Poisoning of PBI and Nafion PEMFC Cathodes. Electrochemical and Solid-State Letters, 2009, 12, B138.	2.2	35
3	Fully Aromatic Copolyethers for High Temperature Polymer Electrolyte Membrane Fuel Cells. Fuel Cells, 2010, 10, 35-44.	1.5	6
4	A rapid break-in procedure for PBI fuel cells. International Journal of Hydrogen Energy, 2009, 34, 6452-6456.	3.8	40
5	Overview on the application of direct methanol fuel cell (DMFC) for portable electronic devices. International Journal of Hydrogen Energy, 2009, 34, 6902-6916.	3.8	678
6	Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2009, 34, 9479-9485.	3.8	98
7	Study of different bimetallic anodic catalysts supported on carbon for a high temperature polybenzimidazole-based direct ethanol fuel cell. Applied Catalysis B: Environmental, 2009, 91, 269-274.	10.8	37
8	Degradation of high temperature MEA with PBI-H3PO4 membrane in a life test. Electrochimica Acta, 2009, 54, 7121-7127.	2.6	94
9	Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science, 2010, 357, 143-151.	4.1	130
10	Enhanced proton conductivity of polymer electrolyte membrane doped with titanate nanotubes. Colloid and Polymer Science, 2010, 288, 1369-1374.	1.0	16
11	Modelling of CO Poisoning and its Dynamics in HTPEM Fuel Cells. Fuel Cells, 2010, 10, 278-287.	1.5	48
12	Cathodes for Highâ€Temperature PEM Fuel Cells Based on a Si _{0.97} Al _{0.03} C Promoter and a Sn _{0.95} In _{0.05} P ₂ O ₇ Ionomer. Fuel Cells, 2010, 10, 798-803.	1.5	5
13	Optimisation of the Microporous Layer for a Polybenzimidazoleâ€Based High Temperature PEMFC – Effect of Carbon Content. Fuel Cells, 2010, 10, 770-777.	1.5	44
14	Preparation and Characterisation of Proton Exchange Membranes Based on Crosslinked Polybenzimidazole and Phosphoric Acid. Fuel Cells, 2010, 10, 973-982.	1.5	56
15	1.7 nm Platinum Nanoparticles: Synthesis with Glucose Starch, Characterization and Catalysis. ChemPhysChem, 2010, 11, 2844-2853.	1.0	22
16	Nanostructured Poly(benzimidazole): From Mesoporous Networks to Nanofibers. ChemSusChem, 2010, 3, 181-187.	3.6	29
17	Effects of organically modified nanoclay on the transport properties and electrochemical performance of acidâ€doped polybenzimidazole membranes. Journal of Applied Polymer Science, 2010, 117, 1227-1233.	1.3	20
18	Fluorinated high-performance polymers: Poly(arylene ether)s and aromatic polyimides containing trifluoromethyl groups. Progress in Polymer Science, 2010, 35, 1022-1077.	11.8	471

TATION REDO

	Сітаті	CITATION REPORT	
#	ARTICLE Formation of core (polystyrene)–shell (polybenzimidazole) nanoparticles using sulfonated	IF	CITATIONS
19	polystyrene as template. Journal of Colloid and Interface Science, 2010, 351, 374-383.	5.0	18
20	Covalently cross-linked proton exchange membranes based on sulfonated poly(arylene ether ketone) and polybenzimidazole oligomer. Journal of Membrane Science, 2010, 353, 10-16.	4.1	17
21	Methanol and gas crossover through modified Nafion membranes by incorporation of ionic liquid cations. Journal of Membrane Science, 2010, 360, 363-370.	4.1	42
22	Novel sulfonated poly(arylene ether benzimidazole) Cardo proton conducting membranes for PEMFC. Journal of Membrane Science, 2010, 362, 184-191.	4.1	34
23	Synthesis and characterization of sulfonated poly(arylene ether ketone/ketone phosphine oxide)s as proton exchange membranes. Journal of Membrane Science, 2010, 362, 509-516.	4.1	15
24	New proton conducting polymer blends and their fuel cell performance. Journal of Power Sources, 2010, 195, 170-174.	4.0	24
25	PBI-based composite membranes for polymer fuel cells. Journal of Power Sources, 2010, 195, 7765-7769.	4.0	52
26	Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol–water mixtures. Journal of Power Sources, 2010, 195, 6389-6397.	4.0	19
27	Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell. Journal of Power Sources, 2010, 195, 7152-7159.	4.0	92
28	Molecular simulations of neat, hydrated, and phosphoric acid-doped polybenzimidazoles. Part 1: Poly(2,2′-m-phenylene-5,5′-bibenzimidazole) (PBI), poly(2,5-benzimidazole) (ABPBI), and poly(p-pher	ıylene) Tj ıE8 Qq1	1 0 784314
29	Proton conducting membranes based on semi-interpenetrating polymer network of Nafion® and polybenzimidazole. Polymer, 2010, 51, 5473-5481.	1.8	52
30	Structurally isomeric monomers Directed copolymerization of polybenzimidazoles and their properties. Polymer, 2010, 51, 5929-5941.	1.8	43
31	Electrochemical hydrogen separation and compression using polybenzimidazole (PBI) fuel cell technology. Journal of Natural Gas Science and Engineering, 2010, 2, 229-234.	2.1	45
32	Study of the influence of the amount of PBI–H3PO4 in the catalytic layer of a high temperature PEMFC. International Journal of Hydrogen Energy, 2010, 35, 1347-1355.	3.8	148
33	Synthesis and properties of hexafluoroisopropylidene-containing sulfonated poly(arylene thioether) Tj ETQ 35, 2436-2445.	q0 0 0 rgBT /Ove 3.8	rlock 10 Tf 5 37
34	Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. International Journal of Hydrogen Energy, 2010, 35, 11649-11660.	3.8	73
35	Review of the proton exchange membranes for fuel cell applications. International Journal of Hydrogen Energy, 2010, 35, 9349-9384.	3.8	1,696
36	A dynamic non-isothermal model of a laboratory intermediate temperature fuel cell using PBI doped phosphoric acid membranes. International Journal of Hydrogen Energy, 2010, 35, 12065-12080.	3.8	48

#	Article	IF	CITATIONS
37	Proton conductive membranes based on doped sulfonated polytriazole. International Journal of Hydrogen Energy, 2010, 35, 12054-12064.	3.8	16
38	Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. Journal of Membrane Science, 2010, 347, 260-270.	4.1	199
39	Phosphoric acid doped high temperature proton exchange membranes based on sulfonated polyetheretherketone incorporated with ionic liquids. Electrochemistry Communications, 2010, 12, 647-649.	2.3	82
40	CO tolerance and CO oxidation at Pt and Pt–Ru anode catalysts in fuel cell with polybenzimidazole–H3PO4 membrane. Electrochimica Acta, 2010, 55, 6073-6080.	2.6	58
41	Proton conducting organic–inorganic composite membranes under anhydrous conditions synthesized from tetraethoxysilane/methyltriethoxysilane/trimethyl phosphate and 1-butyl-3 methylimidazolium tetrafluoroborate. Solid State Ionics, 2010, 181, 760-766.	1.3	27
42	Phosphonated fully aromatic polyethers for PEMFCs applications. Journal of Polymer Science Part A, 2010, 48, 2817-2827.	2.5	34
43	A copolymer of poly[2,2′â€(<i>m</i> â€phenylene)â€5,5′―bibenzimidazole] and poly(2,5â€benzimidazole) highâ€ŧemperature protonâ€conducting membranes. Polymer International, 2010, 59, 1695-1700.) for 1.6	32
44	Preparation of Primary-Amine Functionalized Poly(2,5-benzimidazole) Membrane for Fuel Cells. Advanced Materials Research, 2010, 123-125, 1095-1098.	0.3	1
45	Influence of the Molecular Structure on the Properties and Fuel Cell Performance of High Temperature Polymer Electrolyte Membranes. ECS Transactions, 2010, 33, 811-822.	0.3	1
46	Hydrogen Economy and Polymer Membranes. Macromolecular Symposia, 2010, 295, 23-29.	0.4	1
47	Preparation of gas diffusion electrodes for high temperature PEM-type fuel cells. Desalination and Water Treatment, 2010, 14, 101-105.	1.0	6
48	EIS Characterization of the Poisoning Effects of CO and CO2 on a PBI Based HT-PEM Fuel Cell. , 2010, , .		2
49	Sulfonated Poly(arylene ether sulfone)s with Phosphine Oxide Moieties: A Promising Material for Proton Exchange Membranes. ACS Applied Materials & Interfaces, 2010, 2, 1601-1607.	4.0	52
50	Inorganic–organic composite electrolytes consisting of polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells. Journal of Materials Chemistry, 2010, 20, 6359.	6.7	77
51	Nonhumidified Intermediate Temperature Fuel Cells Using Protic Ionic Liquids. Journal of the American Chemical Society, 2010, 132, 9764-9773.	6.6	426
52	Probing the Acidâ^'Base Equilibrium in Acidâ^'Benzimidazole Complexes by ¹ H NMR Spectra and Density Functional Theory Calculations. Journal of Physical Chemistry B, 2010, 114, 12234-12241.	1.2	35
53	Nuclear magnetic resonance of polymer electrolyte membrane fuel cells. Chemical Record, 2010, 10, 377-393.	2.9	15
54	Modeling Proton Transfer in Imidazole-like Dimers: A Density Functional Theory Study. Journal of Physical Chemistry A, 2011, 115, 2627-2634.	1.1	26

#	Article	IF	CITATIONS
55	Hydrocarbon proton conducting polymers for fuel cell catalyst layers. Energy and Environmental Science, 2011, 4, 1575.	15.6	89
56	Preparation of MEA with the Polybenzimidazole Membrane for High Temperature PEM Fuel Cell. Electrochemical and Solid-State Letters, 2011, 14, B38.	2.2	16
57	Cross-Linking of Side Chain Unsaturated Aromatic Polyethers for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Macromolecules, 2011, 44, 4942-4951.	2.2	62
58	Quantum Wavepacket Ab Initio Molecular Dynamics for Extended Systems. Journal of Physical Chemistry A, 2011, 115, 6269-6284.	1.1	17
59	Modeling Energy Landscapes of Proton Motion in Nonaqueous, Tethered Proton Wires. Journal of Physical Chemistry A, 2011, 115, 5423-5434.	1.1	16
60	A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry, 2011, 21, 11359.	6.7	185
61	Synthesis and properties of poly[2,2′-(4,4′-(2,6-bis(phenoxy) benzonitrile))-5,5′-bibenzimidazole] for proton conducting membranes in fuel cells. Polymer Chemistry, 2011, 2, 1287.	1.9	23
62	Bottom-up design of carbon nanotube-based electrocatalysts and their application in high temperature operating polymer electrolyte fuel cells. Journal of Materials Chemistry, 2011, 21, 1187-1190.	6.7	63
63	Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. Journal of Materials Chemistry, 2011, 21, 2187-2193.	6.7	116
64	6 Materials, Proton Conductivity and Electrocatalysis in High-Temperature PEM Fuel Cells. Modern Aspects of Electrochemistry, 2011, , 301-368.	0.2	4
65	Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells. Journal of Materials Chemistry, 2011, 21, 6014.	6.7	55
66	Role of Binders in High Temperature PEMFC Electrode. Journal of the Electrochemical Society, 2011, 158, B675-B681.	1.3	53
67	Locally Resolved Measurements in a Segmented HTPEM Fuel Cell with Straight Flowâ€Fields. Fuel Cells, 2011, 11, 489-500.	1.5	10
68	Heat and Mass Transfer With Chemical Reactions Producing Hydrogen in Microchannels. , 2011, , .		0
69	Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells. , 2011, , .		0
70	Electrochemical hydrogen separation from mixtures with carbon monoxide using the membrane electrode assembly of a medium-temperature fuel cell. Doklady Physical Chemistry, 2011, 440, 205-208.	0.2	0
71	High-temperature proton exchange membranes based on polybenzimidazole and clay composites for fuel cells. Journal of Membrane Science, 2011, 383, 78-87.	4.1	116
72	Novel hybrid membranes based on polybenzimidazole and ETS-10 titanosilicate type material for high temperature proton exchange membrane fuel cells: A comprehensive study on dense and porous systems. Journal of Power Sources, 2011, 196, 8994-9007.	4.0	47

#	Article	IF	CITATIONS
73	Macromolecular protic ionic liquid-based proton-conducting membranes for anhydrous proton exchange membrane application. Journal of Power Sources, 2011, 196, 7979-7984.	4.0	52
74	Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. Journal of Power Sources, 2011, 196, 8265-8271.	4.0	78
75	High performance polymer electrolytes based on main and side chain pyridine aromatic polyethers for high and medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 9382-9390.	4.0	45
76	Polybenzimidazole gel membrane for the use in fuel cell. Polymer, 2011, 52, 4319-4330.	1.8	58
77	Stable ion-exchange membranes for water desalination by electrodialysis. Desalination, 2011, 282, 2-8.	4.0	69
78	Do not forget the electrochemical characteristics of the membrane electrode assembly when designing a Proton Exchange Membrane Fuel Cell stack. Electrochimica Acta, 2011, 56, 10406-10423.	2.6	21
79	Modelling of start-up time for high temperature polymer electrolyte fuel cells. Energy, 2011, 36, 6081-6089.	4.5	43
80	Synthesis and characterization of novel polybenzimidazoles containing 4-phenyl phthalazinone moiety. European Polymer Journal, 2011, 47, 1852-1860.	2.6	23
81	Quinoxaline-based crosslinked membranes of sulfonated poly(arylene ether sulfone)s for fuel cell applications. International Journal of Hydrogen Energy, 2011, 36, 12406-12416.	3.8	26
82	Solid-phase temperature measurements in a HTPEM fuel cell. International Journal of Hydrogen Energy, 2011, 36, 12977-12990.	3.8	14
83	Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chemical Society Reviews, 2011, 40, 961.	18.7	473
84	Membranes for low and medium temperature fuel cells. State-of-the-art and new trends. Petroleum Chemistry, 2011, 51, 480-491.	0.4	23
85	Gas diffusion electrodes for high temperature PEM-type fuel cells: role of a polymer binder and method of the catalyst layer deposition. Journal of Applied Electrochemistry, 2011, 41, 1013-1019.	1.5	44
86	Synthesis and characterization of partially fluorinated poly(fluorenyl ether ketone)s with different degrees of sulfonation as proton exchange membranes. Polymer Bulletin, 2011, 66, 925-937.	1.7	7
87	New process for high temperature polybenzimidazole membrane production and its impact on the membrane and the membrane electrode assembly. Journal of Power Sources, 2011, 196, 1055-1060.	4.0	13
88	Ammonium based ionic liquids immobilized in large pore zeolites: Encapsulation procedures and proton conduction performance. Journal of Power Sources, 2011, 196, 4314-4323.	4.0	24
89	Pumpless thermal management of water-cooled high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 4671-4679.	4.0	43
90	Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells. Journal of Membrane Science, 2011, 367, 296-305.	4.1	74

#	Article	IF	CITATIONS
91	A novel titanium PBI-based composite membrane for high temperature PEMFCs. Journal of Membrane Science, 2011, 369, 105-111.	4.1	96
92	Benzimidazole effect on the performance of polyelectrolyte membranes based on sulfonated hydrocarbon resin. Journal of Membrane Science, 2011, 374, 12-19.	4.1	8
93	Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications. Journal of Membrane Science, 2011, 379, 19-45.	4.1	217
94	Synthesis of novel protonâ€conducting highly sulfonated polybenzimidazoles for PEMFC and the effect of the type of bisphenyl bridge on polymer and membrane properties. Journal of Polymer Science Part A, 2011, 49, 2107-2117.	2.5	40
95	The effect of structural variations on aromatic polyethers for highâ€ŧemperature PEM fuel cells. Journal of Polymer Science Part A, 2011, 49, 4325-4334.	2.5	26
96	Recent developments in fuelâ€processing and protonâ€exchange membranes for fuel cells. Polymer International, 2011, 60, 26-41.	1.6	29
97	Crosslinking of polybenzimidazole membranes by divinylsulfone postâ€ŧreatment for highâ€ŧemperature proton exchange membrane fuel cell applications. Polymer International, 2011, 60, 1201-1207.	1.6	52
98	Heat Management in a Portable High Temperature PEM Fuel Cell Module with Open Cathode. Fuel Cells, 2011, 11, 518-525.	1.5	21
99	Oxidative Degradation of Polybenzimidazole Membranes as Electrolytes for High Temperature Proton Exchange Membrane Fuel Cells. Fuel Cells, 2011, 11, 745-755.	1.5	84
100	Highâ€Temperature Electrochemical Characterization of Ru Core Pt Shell Fuel Cell Catalyst. Fuel Cells, 2011, 11, 735-744.	1.5	26
101	Sulfonated Aromatic Polyethers Containing Pyridine Units as Electrolytes for High Temperature Fuel Cells. Fuel Cells, 2011, 11, 921-931.	1.5	11
102	A PBIâ€Sb _{0.2} Sn _{0.8} P ₂ O ₇ â€H ₃ PO ₄ Composite Membrane for Intermediate Temperature Fuel Cells. Fuel Cells, 2011, 11, 620-625.	1.5	16
103	Promising TiOSO ₄ Composite Polybenzimidazoleâ€Based Membranes for High Temperature PEMFCs. ChemSusChem, 2011, 4, 1489-1497.	3.6	45
104	Molecular dynamics simulations of triflic acid and triflate ion/water mixtures: A proton conducting electrolytic component in fuel cells. Journal of Computational Chemistry, 2011, 32, 3319-3328.	1.5	25
105	Polybenzimidazoles based on 3,3′â€diaminobenzidine and aliphatic dicarboxylic acids: Synthesis and evaluation of physicochemical properties toward their applicability as proton exchange and gas separation membrane material. Journal of Applied Polymer Science, 2011, 120, 1090-1099.	1.3	17
106	Preparation and properties of crosslinked multiblock sulfonated poly(arylene ether sulfone) membranes for fuel cell applications. Journal of Applied Polymer Science, 2011, 121, 1707-1716.	1.3	20
107	Pb2+ selective and highly cross-linked zirconium phosphonate membrane by sol–gel in aqueous media for electrochemical applications. Desalination, 2011, 276, 175-183.	4.0	19
108	Solid-state mechanochemical synthesis of CsHSO4 and 1,2,4-triazole inorganic–organic composite electrolytes for dry fuel cells. Electrochimica Acta, 2011, 56, 2364-2371.	2.6	12

	CITATION RI	EPORT	
#	Article	IF	Citations
109	Studies of a high temperature proton exchange membrane based on incorporating an ionic liquid cation 1-butyl-3-methylimidazolium into a Nafion matrix. Electrochimica Acta, 2011, 56, 5940-5946.	2.6	77
110	Study on a compact methanol reformer for a miniature fuel cell. International Journal of Hydrogen Energy, 2011, 36, 319-325.	3.8	25
111	Corrosion behaviour of construction materials for high temperature steam electrolysers. International Journal of Hydrogen Energy, 2011, 36, 111-119.	3.8	61
112	Effect of chloride impurities on the performance and durability of polybenzimidazole-based high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2011, 36, 1628-1636.	3.8	32
113	Direct methanol fuel cell performance of sulfonated poly (2,6-dimethyl-1,4-phenylene) Tj ETQq0 0 0 rgBT /Overlo Energy, 2011, 36, 3688-3696.	ock 10 Tf 5 3.8	0 587 Td (oxi 39
114	Preparation and study of IrO2/SiC–Si supported anode catalyst for high temperature PEM steam electrolysers. International Journal of Hydrogen Energy, 2011, 36, 5797-5805.	3.8	59
115	Phosphoric acid doped membranes based on Nafion®, PBI and their blends – Membrane preparation, characterization and steam electrolysis testing. International Journal of Hydrogen Energy, 2011, 36, 6985-6993.	3.8	129
116	Testing PtRu/CNF catalysts for a high temperature polybenzimidazole-based direct ethanol fuel cell. Effect of metal content. Applied Catalysis B: Environmental, 2011, 106, 174-174.	10.8	14
117	Preparation and characterization of Pt on modified multi-wall carbon nanotubes to be used as electrocatalysts for high temperature fuel cell applications. Applied Catalysis B: Environmental, 2011, 106, 379-389.	10.8	56
118	A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research. Applied Energy, 2011, 88, 981-1007.	5.1	2,692
119	Preparation and ion transport properties of NaY zeolite–ionic liquid composites. Journal of Power Sources, 2011, 196, 2202-2210.	4.0	26
120	Systematic characterization of a PBI/H3PO4 sol–gel membrane—Modeling and simulation. Journal of Power Sources, 2011, 196, 2735-2749.	4.0	42
121	CO electrooxidation study on Pt and Pt–Ru in H3PO4 using MEA with PBI–H3PO4 membrane. Journal of Power Sources, 2011, 196, 2994-3002.	4.0	12
122	On-board reforming of biodiesel and bioethanol for high temperature PEM fuel cells: Comparison of autothermal reforming and steam reforming. Journal of Power Sources, 2011, 196, 3163-3171.	4.0	58
123	An H3PO4-doped polybenzimidazole/Sn0.95Al0.05P2O7 composite membrane for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2011, 196, 6042-6047.	4.0	52
124	Synthesis and properties of sulfonated and unsulfonated poly(arylene ether triazine)s with pendant diphenylamine groups for fuel cell applications. Journal of Membrane Science, 2011, 369, 455-465.	4.1	15
125	Preparation and properties of sulfonated poly(phenylene arylene)/sulfonated polyimide (SPA/SPI) blend membranes for polymer electrolyte membrane fuel cell applications. Journal of Membrane Science, 2011, 371, 276-285.	4.1	42
126	Cross-linked poly(2,5-benzimidazole) consisting of wholly aromatic groups for high-temperature PEM fuel cell applications. Journal of Membrane Science, 2011, 373, 80-88.	4.1	53

#	Article	IF	CITATIONS
127	Polymer membranes for high temperature proton exchange membrane fuel cell: Recent advances and challenges. Progress in Polymer Science, 2011, 36, 813-843.	11.8	796
128	Sulfonated hydrocarbon membranes for medium-temperature and low-humidity proton exchange membrane fuel cells (PEMFCs). Progress in Polymer Science, 2011, 36, 1443-1498.	11.8	597
129	Molecular dynamics simulation of microscopic structure and hydrogen bond network of the pristine and phosphoric acid doped polybenzimidazole. Polymer, 2011, 52, 881-892.	1.8	47
130	About the choice of protogenic group for polymer electrolyte membranes: Alkyl or aryl phosphonic acid?. Solid State Ionics, 2011, 190, 8-17.	1.3	15
132	Membrane materials and technology for low temperature fuel cells. , 2012, , 27-56e.		8
133	Synthesis and Characterization of Poly(N-arylenebenzimidazole sulfone). Applied Mechanics and Materials, 0, 174-177, 473-477.	0.2	0
134	A Composite Membrane of Caesium Salt of Heteropolyacids/Quaternary Diazabicyclo-Octane Polysulfone with Poly (Tetrafluoroethylene) for Intermediate Temperature Fuel Cells. Membranes, 2012, 2, 384-394.	1.4	4
135	Novel Blend Membranes Based on Acid-Base Interactions for Fuel Cells. Polymers, 2012, 4, 1627-1644.	2.0	106
136	Improved CO Tolerance With PtRu Anode Catalysts in ABPBI Based High Temperature Proton Exchange Membrane Fuel Cells. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	11
137	Vapor Delivery Systems for the Study of the Effects of Reformate Gas Impurities in HT-PEM Fuel Cells. Journal of Fuel Cell Science and Technology, 2012, 9, .	0.8	2
138	Morphological Tuning of Polymeric Nanoparticles via Microfluidic Platform for Fuel Cell Applications. Journal of the American Chemical Society, 2012, 134, 18904-18907.	6.6	55
139	Titanium composite PBI-based membranes for high temperature polymer electrolyte membrane fuel cells. Effect on titanium dioxide amount. RSC Advances, 2012, 2, 1547-1556.	1.7	94
140	Polymer fuel cells based on polybenzimidazole/H3PO4. Energy and Environmental Science, 2012, 5, 6436.	15.6	155
141	Polybenzimidazole/zwitterion-coated silica nanoparticle hybrid proton conducting membranes for anhydrous proton exchange membrane application. Journal of Materials Chemistry, 2012, 22, 18411.	6.7	51
142	Raman study of the polybenzimidazole–phosphoric acid interactions in membranes for fuel cells. Physical Chemistry Chemical Physics, 2012, 14, 10022.	1.3	50
143	High temperature all solid state supercapacitor based on multi-walled carbon nanotubes and poly[2,5 benzimidazole]. Journal of Solid State Electrochemistry, 2012, 16, 3215-3226.	1.2	44
144	Thermal analysis of sulfonated polymers tested as polymer electrolyte membrane for PEM fuel cells. Journal of Thermal Analysis and Calorimetry, 2012, 110, 335-339.	2.0	15
145	Application of phosphoric acid and phytic acid-doped bacterial cellulose as novel proton-conducting membranes to PEMFC. International Journal of Hydrogen Energy, 2012, 37, 9182-9192.	3.8	167

#	Article	IF	CITATIONS
146	Alternatives toward proton conductive anhydrous membranes for fuel cells: Heterocyclic protogenic solvents comprising polymer electrolytes. Progress in Polymer Science, 2012, 37, 1265-1291.	11.8	155
147	Roll-to-roll coated PBI membranes for high temperature PEM fuel cells. Energy and Environmental Science, 2012, 5, 6076.	15.6	72
148	Durable cross-linked copolymer membranes based on poly(benzoxazine) and poly(2,5-benzimidazole) for use in fuel cells at elevated temperatures. Journal of Materials Chemistry, 2012, 22, 7194.	6.7	54
149	Solvent-assisted thermal annealing of disulfonated poly(arylene ether sulfone) random copolymers for low humidity polymer electrolyte membrane fuel cells. RSC Advances, 2012, 2, 1025-1032.	1.7	16
150	High performance sulfonated poly(arylene ether phosphine oxide) membranes by self-protected cross-linking for fuel cells. Journal of Materials Chemistry, 2012, 22, 13714.	6.7	41
151	Synthesis and characterization of a novel poly(arylene ether sulfone) containing pendent imidazole groups for high temperature proton exchange membranes. Journal of Materials Chemistry, 2012, 22, 22706.	6.7	36
152	Protic ionic liquids: an alternative proton-conducting electrolyte for high temperature proton exchange membrane fuel cells. RSC Advances, 2012, 2, 8953.	1.7	48
153	Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. Journal of Materials Chemistry, 2012, 22, 11185.	6.7	72
154	Zwitterionic silica copolymer based crosslinked organic–inorganic hybrid polymer electrolyte membranes for fuel cell applications. RSC Advances, 2012, 2, 1949.	1.7	38
155	Transport of inorganic acids through polybenzimidazole (PBI) based membranes by chemo-dialysis. Desalination and Water Treatment, 2012, 38, 96-103.	1.0	4
156	Synthesis and preparation of sulfonated hyperbranched poly(arylene ether sulfone)/poly(ether) Tj ETQq0 0 0 rgB1	/Qyerlock	2 10 Tf 50 34
157	Influence of LbL surface modification on oxygen cross-over in self-assembled thin composite membranes. Applied Surface Science, 2012, 258, 3139-3146.	3.1	9
158	Thermal crosslinking of aromatic polyethers bearing pyridine groups for use as high temperature polymer electrolytes. Journal of Membrane Science, 2012, 415-416, 42-50.	4.1	21
159	PEM steam electrolysis at 130°C using a phosphoric acid doped short side chain PFSA membrane. International Journal of Hydrogen Energy, 2012, 37, 10992-11000.	3.8	59
160	Investigation of degradation mechanisms of a high-temperature polymer-electrolyte-membrane fuel cell stack by electrochemical impedance spectroscopy. Journal of Power Sources, 2012, 220, 54-64.	4.0	58
161	Synthesis of pyridine-based poly(N-arylenebenzimidazole sulfone). Chinese Chemical Letters, 2012, 23, 871-874.	4.8	13
162	Cost effective cation exchange membranes: A review. Chemical Engineering Research and Design, 2012, 90, 950-959.	2.7	129

163	Metal organic frameworks for electrochemical applications. Energy and Environmental Science, 2012, 5, 9269.	15.6	767
-----	---	------	-----

#	Article	IF	Citations
164	Chemical modification of cardo poly(benzimidazole) using "click―reaction for membranes of high-temperature hydrogen fuel cells. Doklady Chemistry, 2012, 447, 227-232.	0.2	7
165	Chemical modification of cardo poly(benzimidazole) with 10-azidoheptadecafluorodecane using "click―reaction. Doklady Chemistry, 2012, 447, 249-253.	0.2	6
166	Preparation of silica nanospheres and porous polymer membranes with controlled morphologies via nanophase separation. Nanoscale Research Letters, 2012, 7, 440.	3.1	9
168	Experimental Characterization of the Poisoning Effects of Methanol-Based Reformate Impurities on a PBI-Based High Temperature PEM Fuel Cell. Energies, 2012, 5, 4251-4267.	1.6	40
169	Principles of Step-Growth Polymerization (Polycondensation and Polyaddition). , 2012, , 7-47.		13
170	Recent Development of Polymer Electrolyte Membranes for Fuel Cells. Chemical Reviews, 2012, 112, 2780-2832.	23.0	1,218
171	The mechanism of proton conduction in phosphoric acid. Nature Chemistry, 2012, 4, 461-466.	6.6	428
172	High-temperature proton exchange membranes from ionic liquid absorbed/doped superabsorbents. Journal of Materials Chemistry, 2012, 22, 15836.	6.7	33
173	Sulfonated polybenzimidazole/zirconium phosphate composite membranes for high temperature applications. International Journal of Hydrogen Energy, 2012, 37, 12919-12924.	3.8	42
174	Modeling and simulation of a 100ÂkWe HT-PEMFC subsystem integrated with an absorption chiller subsystem. International Journal of Hydrogen Energy, 2012, 37, 13484-13490.	3.8	49
175	Investigating the effects of methanol-water vapor mixture on a PBI-based high temperature PEM fuel cell. International Journal of Hydrogen Energy, 2012, 37, 18231-18242.	3.8	41
176	Novel Heat Integration in a Methane Reformer and High Temperature PEM Fuel Cell-based mCHP System. APCBEE Procedia, 2012, 3, 17-22.	0.5	13
177	Synthesis and characterization of PWA based inorganic ion-exchange membrane. Separation and Purification Technology, 2012, 98, 193-198.	3.9	7
178	Acid doped polybenzimidazoles containing 4-phenyl phthalazinone moieties for high-temperature PEMFC. Journal of Membrane Science, 2012, 423-424, 128-135.	4.1	23
179	End-group cross-linked polybenzimidazole blend membranes for high temperature proton exchange membrane. Journal of Membrane Science, 2012, 423-424, 495-502.	4.1	25
180	Synthesis and Characterization of Poly(N-Arylenebenzimidazole Ketone). Applied Mechanics and Materials, 0, 204-208, 4211-4214.	0.2	1
181	Multinuclear NMR Study of the Effect of Acid Concentration on Ion Transport in Phosphoric Acid Doped Poly(benzimidazole) Membranes. Journal of Physical Chemistry B, 2012, 116, 12545-12551.	1.2	22
182	Proton Exchange Membrane Developed from Novel Blends of Polybenzimidazole and Poly(vinyl-1,2,4-triazole). ACS Applied Materials & Interfaces, 2012, 4, 5256-5265.	4.0	87

#	Article	IF	CITATIONS
183	Parametric study of manufacturing ultrafine polybenzimidazole fibers by electrospinning. International Journal of Plastics Technology, 2012, 16, 101-116.	2.9	24
184	Preparation and characterization of triptycene-based microporous poly(benzimidazole) networks. Journal of Materials Chemistry, 2012, 22, 11509.	6.7	78
185	Poly(2,5-bibenzimidazole) Membranes: Physico-Chemical Characterization Focused on Fuel Cell Applications. Journal of the Electrochemical Society, 2012, 159, F194-F202.	1.3	16
186	Correlation of Synchrotron X-ray Radiography and Electrochemical Impedance Spectroscopy for the Investigation of HT-PEFCs. Journal of the Electrochemical Society, 2012, 159, F398-F404.	1.3	56
187	Thermal curing of PBI membranes for high temperature PEM fuel cells. Journal of Materials Chemistry, 2012, 22, 5444.	6.7	146
188	H3PO4-imbibed three-dimensional polyacrylamide/polyacrylamide hydrogel as a high-temperature proton exchange membrane with excellent acid retention. RSC Advances, 2012, 2, 10238.	1.7	24
190	Advanced Construction Materials for High Temperature Steam PEM Electrolysers. , 2012, , .		3
191	Synthesis and Properties of High Temperature Proton Exchange Membranes Based on Polybenzimidazoles Containing Hydroxypyridine. ECS Meeting Abstracts, 2012, , .	0.0	0
192	A Direct DME High Temperature PEM Fuel Cell. ECS Meeting Abstracts, 2012, , .	0.0	0
193	Side chain crosslinking of aromatic polyethers for high temperature polymer electrolyte membrane fuel cell applications. Journal of Polymer Science Part A, 2012, 50, 207-216.	2.5	19
194	Polybenzimidazoleâ€decorated carbon nanotube: A highâ€performance proton conductor. Physica Status Solidi - Rapid Research Letters, 2012, 6, 318-320.	1.2	16
195	A H2SO4 Loaded Polybenzimidazole (PBI) Membrane for High Temperature PEMFC. Fuel Cells, 2012, 12, 583-588.	1.5	24
196	Symmetric and Asymmetric Zeolitic Imidazolate Frameworks (ZIFs)/Polybenzimidazole (PBI) Nanocomposite Membranes for Hydrogen Purification at High Temperatures. Advanced Energy Materials, 2012, 2, 1358-1367.	10.2	138
197	Dualâ€layer PBI/P84 hollow fibers for pervaporation dehydration of acetone. AICHE Journal, 2012, 58, 1133-1145.	1.8	51
198	Crosslinking benzotriazolylimides and polymeric materials on base of them. Journal of Applied Polymer Science, 2012, 126, 1797-1807.	1.3	6
199	Highâ€Temperature Protonâ€Exchangeâ€Membrane Fuel Cells Using an Etherâ€Containing Polybenzimidazole Membrane as Electrolyte. ChemSusChem, 2012, 5, 896-900.	3.6	55
200	Advances in the high performance polymer electrolyte membranes for fuel cells. Chemical Society Reviews, 2012, 41, 2382.	18.7	344
201	Cross-Linked Benzoxazine–Benzimidazole Copolymer Electrolyte Membranes for Fuel Cells at Elevated Temperature. Macromolecules, 2012, 45, 1438-1446.	2.2	122

ARTICLE IF CITATIONS Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane 202 3.8 70 fuel cells. International Journal of Hydrogen Energy, 2012, 37, 383-392. Solid acids as electrolyte materials for proton exchange membrane (PEM) electrolysis: Review. 3.8 International Journal of Hydrogen Energy, 2012, 37, 3358-3372. Experimental study of water transport in a polybenzimidazole-based high temperature PEMFC. 204 3.8 51 International Journal of Hydrogen Energy, 2012, 37, 2462-2469. Nanostructured electrolyte membranes based on zeotypes, protic ionic liquids and porous PBI membranes: Preparation, characterization and MEA testing. International Journal of Hydrogen Energy, 2012, 37, 7221-7234. Performance of a poly(2,5-benzimidazole)-based polymer electrolyte membrane fuel cell. International 206 3.8 19 Journal of Hydrogen Énergy, 2012, 37, 7212-7220. Perovskites based on La(Sr)-Mn-O system as electrocatalyst in PEM fuel cell of high temperature. International Journal of Hydrogen Energy, 2012, 37, 7161-7170. 3.8 Maximizing the efficiency of a HT-PEMFC system integrated with glycerol reformer. International 208 3.8 40 Journal of Hydrogen Energy, 2012, 37, 6808-6817. Water and charge transport models in proton exchange membranes: An overview. Desalination, 2012, 209 4.0 26 287, 238-246. 210 Performance analysis of HT-PEFC stacks. International Journal of Hydrogen Energy, 2012, 37, 9171-9181. 3.8 45 All solid supercapacitor based on activated carbon and poly [2,5-benzimidazole] for high temperature application. Electrochimica Acta, 2012, 59, 296-303. Poly(benzimidazole)/silica-ethyl-phosphoric acid hybrid membranes for proton exchange membrane 212 4.039 fuel cells. Journal of Power Sources, 2012, 201, 72-80. Phosphoric acid doped imidazolium polysulfone membranes for high temperature proton exchange 4.0 membrane fuel cells. Journal of Power Sources, 2012, 205, 114-121. Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. 214 4.0 107 Journal of Power Sources, 2012, 210, 366-373. Direct dimethyl ether fueling of a high temperature polymer fuel cell. Journal of Power Sources, 2012, 211, 173-176. Polybenzimidazole and butylsulfonate grafted polybenzimidazole blends for proton exchange 216 4.1 41 membrane fuel cells. Journal of Membrane Science, 2012, 389, 399-406. Polymer blends based on copolymers bearing both side and main chain pyridine units as proton exchange membranes for high temperature fuel cells. Journal of Membrane Science, 2012, 396, 57-66. Methanol sorption and permeability in Nafion and acid-doped PBI and ABPBI membranes. Journal of 218 4.1 58 Membrane Science, 2012, 411-412, 35-44. Proton conductivity and diffusion in molten phosphinic acid (H3PO2): The last member of the 219 1.3 19 phosphorus oxoacid proton conductor family. Solid State Ionics, 2012, 212, 6-9.

#	Article	IF	CITATIONS
220	Silicate-based polymer-nanocomposite membranes for polymer electrolyte membrane fuel cells. Progress in Polymer Science, 2012, 37, 842-869.	11.8	186
221	Green nanotechnology of trends in future energy: a review. International Journal of Energy Research, 2012, 36, 1-17.	2.2	100
222	Performance analysis of polymer electrolyte membranes for direct methanol fuel cells. Journal of Power Sources, 2013, 243, 519-534.	4.0	118
223	Covalent cross-linking in phosphoric acid of pyridine based aromatic polyethers bearing side double bonds for use in high temperature polymer electrolyte membrane fuelcells. Journal of Membrane Science, 2013, 433, 1-9.	4.1	36
224	N-alkyl polybenzimidazole: Effect of alkyl chain length. European Polymer Journal, 2013, 49, 2280-2292.	2.6	46
225	Design of a reference electrode for high-temperature PEM fuel cells. Journal of Applied Electrochemistry, 2013, 43, 1069-1078.	1.5	24
226	Synthesis and characterization of novel thiophene-based polybenzimidazole membrane for high-temperature fuel cells. Journal of Applied Electrochemistry, 2013, 43, 749-754.	1.5	3
227	Soluble Polybenzimidazoles for PEM: Synthesized from Efficient, Inexpensive, Readily Accessible Alternative Tetraamine Monomer. Macromolecules, 2013, 46, 6814-6823.	2.2	89
228	One-pot acylation/benzimidazolization copolymerization approach to side-chain-type proton conductive membranes. Journal of Membrane Science, 2013, 446, 121-124.	4.1	10
229	Kinetics and mechanism of oxygen reduction in a protic ionic liquid. Physical Chemistry Chemical Physics, 2013, 15, 7548.	1.3	43
230	Global Change, Energy Issues and Regulation Policies. Issues in Agroecology, 2013, , .	0.1	3
231	Hydroxyl pyridine containing polybenzimidazole membranes for proton exchange membrane fuel cells. Journal of Membrane Science, 2013, 446, 318-325.	4.1	82
232	Phosphoric acid-imbibed three-dimensional polyacrylamide/poly(vinyl alcohol) hydrogel as a new class of high-temperature proton exchange membrane. Journal of Power Sources, 2013, 229, 36-41.	4.0	52
233	Synthesis and characterization of some new aromatic polytriazoles as proton conductive membranes. Polymer Bulletin, 2013, 70, 2411-2422.	1.7	0
234	Benzimidazole grafted polybenzimidazoles for proton exchange membrane fuel cells. Polymer Chemistry, 2013, 4, 4768.	1.9	104
235	Heterogeneous anion conducting membranes based on linear and crosslinked KOH doped polybenzimidazole for alkaline water electrolysis. Journal of Membrane Science, 2013, 447, 424-432.	4.1	86
236	Influence of catalyst layer polybenzimidazole molecular weight on the polybenzimidazole-based proton exchange membrane fuel cell performance. International Journal of Hydrogen Energy, 2013, 38, 13742-13753.	3.8	14
237	Temperature distribution in a liquid-cooled HT-PEFC stack. International Journal of Hydrogen Energy, 2013, 38, 1943-1951.	3.8	26

CITATION	REPORT
CHAILON	REFORT

#	Article	IF	CITATIONS
238	Sectional electrochemical impedance analysis of a high temperature polymer electrolyte membrane fuel cell with three types of flow-fields. Electrochimica Acta, 2013, 112, 342-355.	2.6	8
239	Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. Journal of Power Sources, 2013, 238, 516-522.	4.0	44
240	Dynamic modeling of compressed gas energy storage toÂcomplement renewable wind power intermittency. International Journal of Hydrogen Energy, 2013, 38, 7867-7880.	3.8	48
241	First principles molecular dynamics study of proton dynamics and transport in phosphoric acid/imidazole (2:1) system. Solid State Ionics, 2013, 252, 34-39.	1.3	43
242	Ab Initio Study of Proton Transfer and Interfacial Properties in Phosphoric Acidâ€ <scp>D</scp> oped Polybenzimidazole. Macromolecular Theory and Simulations, 2013, 22, 410-425.	0.6	7
243	Sorption, swelling, and free volume of polybenzimidazole (PBI) and PBI/zeolitic imidazolate framework (ZIF-8) nano-composite membranes for pervaporation. Polymer, 2013, 54, 774-783.	1.8	85
244	Anhydrous Proton Conducting Materials Based on Sulfonated Dimethylphenethylchlorosilane Grafted Mesoporous Silica/Ionic Liquid Composite. ACS Applied Materials & Interfaces, 2013, 5, 11535-11543.	4.0	22
245	A microfluidic approach to synthesizing high-performance microfibers with tunable anhydrous proton conductivity. Lab on A Chip, 2013, 13, 4549.	3.1	17
246	Novel polyolefin/silicon dioxide/H3PO4 composite membranes with spatially heterogeneous structure for phosphoric acid fuel cell. International Journal of Hydrogen Energy, 2013, 38, 4132-4143.	3.8	19
247	The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. Journal of Applied Electrochemistry, 2013, 43, 1101-1116.	1.5	29
248	Polybenzimidazole containing ether units as electrolyte for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 6494-6502.	3.8	51
249	Carbon NMR investigation of the polybenzimidazole–dimethylacetamide interactions in membranes for fuel cells. New Journal of Chemistry, 2013, 37, 152-156.	1.4	19
250	Graft-type polymer electrolyte membranes for fuel cells prepared through radiation-induced graft polymerization into alicyclic polybenzimidazoles. Polymer, 2013, 54, 4570-4577.	1.8	5
251	Control and experimental characterization of a methanol reformer for a 350ÂW high temperature polymer electrolyte membrane fuel cell system. International Journal of Hydrogen Energy, 2013, 38, 1676-1684.	3.8	49
252	Sulfonated hydrocarbon graft architectures for cation exchange membranes. European Polymer Journal, 2013, 49, 3601-3609.	2.6	8
253	Synthesis and characterization of poly(N-arylenebenzimidazole ketone ketone)s. Macromolecular Research, 2013, 21, 681-686.	1.0	14
254	Design of electrodes based on a carbon nanofiber nonwoven material for the membrane electrode assembly of a polybenzimidazole-membrane fuel cell. Doklady Physical Chemistry, 2013, 448, 23-27.	0.2	20
255	An intermediate-temperature alkaline fuel cell using an Sn _{0.92} Sb _{0.08} P ₂ O ₇ -based hydroxide-ion-conducting electrolyte and electrodes. Journal of Materials Chemistry A, 2013, 1, 1134-1140.	5.2	14

#	Article	IF	CITATIONS
256	Highly conductive, crosslinked ionomers based on poly(styrene-co-maleic anhydride) for water electrolysis. Journal of Materials Chemistry A, 2013, 1, 8093.	5.2	2
257	Cross-linked high temperature polymer electrolytes through oxadiazole bond formation and their applications in HT PEMfuel cells. Journal of Materials Chemistry A, 2013, 1, 1613-1622.	5.2	34
258	Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications. Journal of Power Sources, 2013, 222, 202-209.	4.0	131
259	Highly durable polymer electrolyte membranes at elevated temperature: Cross-linked copolymer structure consisting of poly(benzoxazine) and poly(benzimidazole). Journal of Power Sources, 2013, 226, 346-353.	4.0	43
260	Rigid-Rod Poly(phenylenesulfonic acid) Proton Exchange Membranes with Cross-Linkable Biphenyl Groups for Fuel Cell Applications. Macromolecules, 2013, 46, 422-433.	2.2	85
261	Sulfonated MWNT and imidazole functionalized MWNT/polybenzimidazole composite membranes for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 1524-1534.	3.8	55
262	Enhanced proton conductivity from phosphoric acid-imbibed crosslinked 3D polyacrylamide frameworks for high-temperature proton exchange membranes. International Journal of Hydrogen Energy, 2013, 38, 1016-1026.	3.8	36
263	Ionic liquid polymer electrolytes. Journal of Materials Chemistry A, 2013, 1, 2719-2743.	5.2	441
264	Effects of heat treatment time on electrochemical properties and electrode structure of polytetrafluoroethylene-bonded membrane electrode assemblies for polybenzimidazole-based high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2013, 38, 12335-12342.	3.8	12
265	Development of HT-PEFC stacks in the kW range. International Journal of Hydrogen Energy, 2013, 38, 4705-4713.	3.8	26
266	Phosphoric acid doped composite membranes from poly (2,5-benzimidazole) (ABPBI) and CsxH3â^'xPW12O40/CeO2 for the high temperature PEMFC. International Journal of Hydrogen Energy, 2013, 38, 11053-11059.	3.8	13
267	Prolongation of lifetime of high temperature proton exchange membrane fuelÂcells. Journal of Power Sources, 2013, 241, 87-93.	4.0	45
268	Functionalized 4-phenyl phthalazinone-based polybenzimidazoles for high-temperature PEMFC. Journal of Membrane Science, 2013, 442, 160-167.	4.1	25
269	Indium doped niobium phosphates as intermediate temperature proton conductors. International Journal of Hydrogen Energy, 2013, 38, 2464-2470.	3.8	10
270	High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC) – A review. Journal of Power Sources, 2013, 231, 264-278.	4.0	756
271	Covalently Crossâ€Linked Sulfone Polybenzimidazole Membranes with Poly(Vinylbenzyl Chloride) for Fuel Cell Applications. ChemSusChem, 2013, 6, 275-282.	3.6	95
272	Chitosan modified by nitrogen-containing heterocycle and its excellent performance for anhydrous proton conduction. RSC Advances, 2013, 3, 4341.	1.7	11
273	A Quaternary Polybenzimidazole Membrane for Intermediate Temperature Polymer Electrolyte Membrane Fuel Cells. Fuel Cells, 2013, 13, 118-125.	1.5	6

#	Article	IF	CITATIONS
274	Ionic Liquid Confined in Nafion: Toward Molecular‣evel Understanding. AICHE Journal, 2013, 59, 2630-2639.	1.8	27
275	PEM Fuel Cell Materials: Costs, Performance and Durability. , 2013, , 249-303.		17
276	Fuel Cell Electrocatalyst Using Polybenzimidazoleâ€Modified Carbon Nanotubes As Support Materials. Advanced Materials, 2013, 25, 1666-1681.	11.1	160
277	A molecular investigation of the nanostructure and dynamics of phosphoric–triflic acid blends of hydrated ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membranes. Soft Matter, 2013, 9, 1122-1132.	1.2	9
278	Zirconium tri-ethylene tetra-amine ligand-chelator complex based cross-linked membrane for selective recovery of Cu2+ by electrodialysis. Journal of Membrane Science, 2013, 428, 462-469.	4.1	15
279	Enhanced performance of polybenzimidazole-based high temperature proton exchange membrane fuel cell with gas diffusion electrodes prepared by automatic catalyst spraying under irradiation technique. Journal of Power Sources, 2013, 242, 510-519.	4.0	36
280	Degradation aspects of water formation and transport in Proton Exchange Membrane Fuel Cell: A review. Journal of Power Sources, 2013, 240, 558-582.	4.0	123
281	Synthesis of novel cross-linked polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2013, 443, 138-143.	4.1	55
282	Preparation and proton conductivity of phosphoric acidâ€doped blend membranes composed of sulfonated block copolyimides and polybenzimidazole. Polymer International, 2013, 62, 703-708.	1.6	24
283	Enhancing the phase segregation and connectivity of hydrophilic channels by blending highly sulfonated graft copolymers with fluorous homopolymers. Journal of Materials Chemistry A, 2013, 1, 8118.	5.2	15
284	Intermolecular interactions of polyimides containing benzimidazole and benzoxazole moieties. Polymer, 2013, 54, 2335-2340.	1.8	59
285	Crosslinked Hexafluoropropylidene Polybenzimidazole Membranes with Chloromethyl Polysulfone for Fuel Cell Applications. Advanced Energy Materials, 2013, 3, 622-630.	10.2	146
286	Remarkably Durable High Temperature Polymer Electrolyte Fuel Cell Based on Poly(vinylphosphonic) Tj ETQqO 0 () rgBT /Ov 1.6	erlock 10 Tf : 98
287	High-Temperature PEM Fuel Cells. , 2013, , 243-282.		599
288	Polybenzimidazoleâ€graftâ€polyvinylphosphonic acid—proton conducting fuel cell membranes. Journal of Applied Polymer Science, 2013, 129, 1223-1231.	1.3	14
289	Optimisation of electrophoretic deposition parameters for gas diffusion electrodes in high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2013, 243, 40-47.	4.0	23
290	Fabrication of novel (acrylonitrile butadiene styrene/activated carbon/silver nanoparticles) heterogeneous anion exchange membrane: Physico-chemical and antibacterial characteristics. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44, 670-677.	2.7	16
291	Different anode catalyst for high temperature polybenzimidazole-based direct ethanol fuel cells. International Journal of Hydrogen Energy, 2013, 38, 620-630.	3.8	30

#	Article	IF	CITATIONS
292	Mechanism of Proton Transport in Ionic-Liquid-Doped Perfluorosulfonic Acid Membranes. Journal of Physical Chemistry B, 2013, 117, 14449-14456.	1.2	23
293	Interval Sorption of Alkyl Acetates and Benzenes in Poly(methyl acrylate). Industrial & Engineering Chemistry Research, 2013, 52, 8765-8773.	1.8	7
294	Synthesis and preparation of sulfonated hyperbranched poly(aryl ether ketone)–sulfonated linear poly(aryl ether ketone) blend membranes for proton exchange membranes. High Performance Polymers, 2013, 25, 759-768.	0.8	11
295	Novel sulfonated poly(ether ether ketone)/ polybenzimidazole blends for proton exchange membranes. High Performance Polymers, 2013, 25, 697-704.	0.8	15
297	Gas composition modeling in a reformed Methanol Fuel Cell system using adaptive Neuro-Fuzzy Inference Systems. International Journal of Hydrogen Energy, 2013, 38, 10577-10584.	3.8	13
298	Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs). Journal of Power Sources, 2013, 243, 796-804.	4.0	80
299	Poly(arylene benzimidazole)s as novel high-performance polymers. Polymer Journal, 2013, 45, 1188-1194.	1.3	11
300	Hydrogen Bond and Proton Transport in Acid–Base Complexes and Amphoteric Molecules by Density Functional Theory Calculations and 1H and 31P Nuclear Magnetic Resonance Spectroscopy. Journal of Physical Chemistry B, 2013, 117, 16345-16355.	1.2	18
301	Analyzing the Influence of H ₃ PO ₄ as Catalyst Poison in High Temperature PEM Fuel Cells Using <i>in-operando</i> X-ray Absorption Spectroscopy. Journal of Physical Chemistry C, 2013, 117, 6210-6217.	1.5	97
302	Molecular simulations of poly(2,5â€benzimidazole): Effect of water concentration, phosphoric acid doping, and temperature on hydrogen bonding and vehicular diffusion. Polymer Engineering and Science, 2013, 53, 597-608.	1.5	12
303	Design and Experimental Investigation of a Heat Pipe Supported External Cooling System for HT-PEFC Stacks. Journal of Fuel Cell Science and Technology, 2013, 10, .	0.8	21
304	Anhydrous Novel Acid-Base Binary and Ternary Systems for Fuel Cell Applications. ECS Transactions, 2013, 50, 1199-1211.	0.3	3
305	Performance of the HT-PEM Membrane Electrode Assembly. ECS Transactions, 2013, 50, 1127-1135.	0.3	5
306	Design and Synthesis of Cross-Linked Copolymer Membranes Based on Poly(benzoxazine) and Polybenzimidazole and Their Application to an Electrolyte Membrane for a High-Temperature PEM Fuel Cell. Polymers, 2013, 5, 77-111.	2.0	38
307	Corrosion Behavior of Construction Materials for Intermediate Temperature Steam Electrolysers. Advanced Materials Research, 2013, 699, 596-605.	0.3	4
308	Polybenzimidazole Membranes Containing Benzimidazole Side Groups for High Temprature Polymer Electrolyte Membrane Fuel Cells. Advanced Materials Research, 0, 716, 310-313.	0.3	О
309	Characterization of PBI Membranes for High Temperature PEM Fuel Cells. ECS Transactions, 2013, 58, 705-711.	0.3	5
310	Electrochemical devices for energy: fuel cells and electrolytic cells. , 2013, , 553-606.		9

ARTICLE IF CITATIONS # Catalyst Degradation in High Temperature Proton Exchange Membrane Fuel Cells Based on Acid Doped 311 1.5 17 Polybenzimidazole Membranes. Fuel Cells, 2013, 13, 822-831. Crossâ€Linked High Temperature Polymer Electrolytes. Macromolecular Symposia, 2013, 331-332, 58-64. 0.4 313 New Sulfonated PBIs for PEMFC Application. Fuel Cells, 2013, 13, 98-103. 17 1.5 Carbon nanotubes in emulsion-templated porous polymers: Polymer nanoparticles, sulfonation, and 314 conductivity. Journal of Polymer Science Part A, 2013, 51, 4369-4377. Nickel and Its Alloys as Perspective Materials for Intermediate Temperature Steam Electrolysers 315 0.3 1 Operating on Proton Conducting Solid Acids as Electrolyte. ECS Transactions, 2013, 50, 53-61. Synthesis and properties of fluorine―and siloxane containing polybenzimidazoles for high temperature proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2013, 130, 4107-4112. 1.3 Design and Experimental Investigation of a Heat Pipe Supported External Cooling System for HT-PEFC 317 2 Fuel Cell Stacks., 2013, , . Dynamic Modeling of a Reformed Methanol Fuel Cell System Using Empirical Data and Adaptive 318 Neuro-Fuzzy Inference System Models., 2013,,. BaCO3 nanoparticles embedded retentive and cation selective membrane for separation/recovery of 319 4.0 13 Mg2+ from natural water sources. Desalination, 2014, 352, 142-149. Phosphosilicate gel-polybenzimidazole nanocomposite novel membrane for fuel cell application. International Journal of Plastics Technology, 2014, 18, 403-408. Synthesis of novel poly(N-arylenebenzimidazole)s containing biphenyl groups via N-C coupling 321 3 0.3 réaction. Polymer Science - Series B, 2014, 56, 799-806. Effect of membrane electrode assembly fabrication method on the single cell performances of polybenzimidazole-based high temperature polymer electrolyte membrane fuel cells. Macromolecular 1.0 Research, 2014, 22, 1214-1220. Preparation of aromatic polyamidines and their transformation in polybenzimidazoles. EXPRESS 323 1.1 9 Polymer Letters, 2014, 8, 635-646. Performance Degradation Tests of Phosphoric Acid Doped PBI Membrane Based High Temperature PEM 324 Fuel Cells. , 2014, , . Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on 325 2.2 9 Phosphonic Acid Group. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2014, 30, 8-21. Sulfonated aromatic copoly(ether–amide) membranes: preparation and characterization for possible application in polymer electrolyte membrane fuel cells. High Performance Polymers, 2014, 26, 997-1006. Investigation of the chemical and morphological structure of thermally rearranged polymers. 328 1.8 32 Polymer, 2014, 55, 6649-6657. 329 Polymers for Fuel Cells., 2014, , 1-13.

#	Article	IF	Citations
330	The Electrochemical Behavior of Phosphoricâ€Acidâ€Doped Poly(perfluorosulfonic Acid) Membranes. ChemElectroChem, 2014, 1, 1471-1475.	1.7	15
331	Poly(benzimidazole)s. , 2014, , 373-380.		1
332	Gas-phase electrocatalytic reduction of carbon dioxide using electrolytic cell based on phosphoric acid-doped polybenzimidazole membrane. Journal of Energy Chemistry, 2014, 23, 694-700.	7.1	27
333	Direct Alcohol Fuel Cells. , 2014, , .		41
334	Membranes for Direct Alcohol Fuel Cells. , 2014, , 121-230.		2
335	Dynamic Modeling of a Reformed Methanol Fuel Cell System Using Empirical Data and Adaptive Neuro-Fuzzy Inference System Models. Journal of Fuel Cell Science and Technology, 2014, 11, .	0.8	7
336	Liquid Water Scavenging of PEMFC Contaminants. Journal of the Electrochemical Society, 2014, 161, E3357-E3364.	1.3	14
337	Composite ionic liquid and polymer membranes for gas separation at elevated temperatures. Journal of Membrane Science, 2014, 450, 407-417.	4.1	103
338	Transport of organic acids through polybenzimidazole based membranes by â€~Chemodialysis'. Journal of Membrane Science, 2014, 451, 243-251.	4.1	6
339	Protonic conductivity and viscoelastic behaviour of Nafion® membranes with periodic mesoporous organosilica fillers. International Journal of Hydrogen Energy, 2014, 39, 5338-5349.	3.8	20
340	Design and test of a 5 kW high-temperature polymer electrolyte fuel cell system operated with diesel and kerosene. Applied Energy, 2014, 114, 238-249.	5.1	87
341	Modelling of the vapour–liquid equilibrium of water and the in situ concentration of H3PO4 in a high temperature proton exchange membrane fuel cell. Journal of Power Sources, 2014, 249, 446-456.	4.0	20
342	Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperature polymer electrolyte membrane. Journal of Membrane Science, 2014, 454, 12-19.	4.1	49
343	Characteristic studies of a PBI/H3PO4 high temperature membrane PEMFC under simulated reformate gases. International Journal of Hydrogen Energy, 2014, 39, 13757-13762.	3.8	28
344	Energy recovery of biogas from juice wastewater through a short high temperature PEMFC stack. International Journal of Hydrogen Energy, 2014, 39, 6937-6943.	3.8	13
345	H3PO4 imbibed polyacrylamide-graft-chitosan frameworks for high-temperature proton exchange membranes. Journal of Power Sources, 2014, 249, 277-284.	4.0	20
346	Preparation and characterization of polybenzimidzaole/diethylamine hydrogen sulphate for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2014, 245, 915-926.	4.0	55
347	Tetrazoleâ€based, Anhydrous Proton Exchange Membranes for Fuel Cells. Advanced Materials, 2014, 26, 1277-1282.	11.1	51

	CHATION REL	PORT	
#	Article	IF	Citations
348	Preparation of ion-exchange materials and membranes. Desalination, 2014, 342, 156-174.	4.0	76
349	Silica sol–gel chemistry: creating materials and architectures for energy generation and storage. Journal of Sol-Gel Science and Technology, 2014, 70, 203-215.	1.1	16
350	Improving proton conductivity of sulfonated poly (ether ether ketone) proton exchange membranes at low humidity by semi-interpenetrating polymer networks preparation. Journal of Power Sources, 2014, 246, 482-490.	4.0	39
351	Effect of different fuel options on performance of high-temperature PEMFC (proton exchange) Tj ETQq1 1 0.7843	14 rgBT / 4.5	Oyerlock 10
352	Preparation and characterization of crosslinked PVAL membranes loaded with boehmite nanoparticles for fuel cell applications. Journal of Applied Polymer Science, 2014, 131, .	1.3	14
353	A comparative study of phosphoric acidâ€doped <i>m</i> â€PBI membranes. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 26-35.	2.4	65
354	Recent advances in polybenzimidazole/phosphoric acid membranes for highâ€ŧemperature fuel cells. Polymer International, 2014, 63, 1134-1144.	1.6	107
355	Stabilization of immiscible polymer blends using structure directing metal organic frameworks (MOFs). Polymer, 2014, 55, 2028-2034.	1.8	61
356	Nanostructured Bacterial Cellulose–Poly(4-styrene sulfonic acid) Composite Membranes with High Storage Modulus and Protonic Conductivity. ACS Applied Materials & Interfaces, 2014, 6, 7864-7875.	4.0	81
358	Gas permeation properties of poly(2,5â€benzimidazole) derivative membranes. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
359	Synthesis and characterization of <i>para</i> - and <i>meta</i> -polybenzimidazoles for high-temperature proton exchange membrane fuel cells. High Performance Polymers, 2014, 26, 436-444.	0.8	8
360	Diffusion coefficients and VLE data of aqueous phosphoric acid. Journal of Chemical Thermodynamics, 2014, 68, 75-81.	1.0	26
361	Polysulfonation of PBI-based membranes for HT-PEMFCs: a possible way to maintain high proton transport at a low H ₃ PO ₄ doping level. Journal of Materials Chemistry A, 2014, 2, 663-671.	5.2	55
362	Highâ€Temperature Polymer Electrolyte Fuel Cell Using Poly(vinylphosphonic acid) as an Electrolyte Shows a Remarkable Durability. ChemCatChem, 2014, 6, 567-571.	1.8	38
363	Investigation of sequence isomer effects in AB-polybenzimidazole polymers. Journal of Polymer Science Part A, 2014, 52, 619-628.	2.5	12
364	Study of different designs of methanol steam reformers: Experiment and modeling. International Journal of Hydrogen Energy, 2014, 39, 19970-19981.	3.8	26
365	meta-PBI/methylated PBI-OO blend membranes for acid doped HT PEMFC. European Polymer Journal, 2014, 58, 135-143.	2.6	30
366	Investigation of gas permeation properties of film forming polymeric ionic liquids (PILs) based on polybenzimidazoles. Journal of Membrane Science, 2014, 470, 494-503.	4.1	42

#	Article	IF	CITATIONS
367	Quaternized poly (ether ether ketone)s doped with phosphoric acid for high-temperature polymer electrolyte membrane fuel cells. Journal of Materials Chemistry A, 2014, 2, 13996-14003.	5.2	50
368	Surface proton transport of fully protonated poly(aspartic acid) thin films on quartz substrates. Applied Surface Science, 2014, 323, 19-24.	3.1	8
369	The interaction of H ₃ PO ₄ and steam with PBI and TPS polymeric membranes. A TGA and Raman study. Journal of Materials Chemistry A, 2014, 2, 1117-1127.	5.2	36
370	New approach of blending polymeric ionic liquid with polybenzimidazole (PBI) for enhancing physical and electrochemical properties. Journal of Materials Chemistry A, 2014, 2, 14449.	5.2	49
371	Review of Advanced Materials for Proton Exchange Membrane Fuel Cells. Energy & Fuels, 2014, 28, 7303-7330.	2.5	559
372	Phosphoric acid distribution and its impact on the performance of polybenzimidazole membranes. Journal of Power Sources, 2014, 270, 627-633.	4.0	44
373	Mechanically reinforced phosphoric acid doped quaternized poly(ether ether ketone) membranes via cross-linking with functionalized graphene oxide. Chemical Communications, 2014, 50, 15381-15384.	2.2	47
374	A novel poly(2,6-dimethyl-1,4-phenylene oxide) with pendant imidazolium groups for high-temperature proton exchange membrane. Polymer Chemistry, 2014, 5, 2425.	1.9	27
375	Hydrogen fuel cell technology. , 2014, , 451-498.		15
376	Polysulfonated Fluoroâ€oxyPBI Membranes for PEMFCs: An Efficient Strategy to Achieve Good Fuel Cell Performances with Low H ₃ PO ₄ Doping Levels. Advanced Energy Materials, 2014, 4, 1301949.	10.2	46
377	Water Free Operated Phosphoric Acid Doped Radiationâ€Grafted Proton Conducting Membranes for High Temperature Polymer Electrolyte Membrane Fuel Cells. Fuel Cells, 2014, 14, 914-925.	1.5	16
378	ZIF-8@PBI-Bul composite membranes: elegant effects of PBI structural variations on gas permeation performance. Journal of Materials Chemistry A, 2014, 2, 12962.	5.2	39
379	Composite ionic liquid–polymer–catalyst membranes for reactive separation of hydrogen from carbon monoxide. Journal of Membrane Science, 2014, 472, 222-231.	4.1	8
380	Synthesis and Characterization of Poly(2-alkylbenzimidazole- <i>alt</i> -9,9-dihexylfluorene)s: A Dually Dopable Polymer System. Macromolecules, 2014, 47, 2915-2920.	2.2	11
381	Macromolecular covalently cross-linked quaternary ammonium poly(ether ether ketone) with polybenzimidazole for anhydrous high temperature proton exchange membranes. Polymer Chemistry, 2014, 5, 4939-4947.	1.9	46
382	High Molecular Weight Polybenzimidazole Membranes for High Temperature PEMFC. Fuel Cells, 2014, 14, 7-15.	1.5	135
383	Solid state 31P MAS NMR spectroscopy and conductivity measurements on NbOPO4 and H3PO4 composite materials. Journal of Solid State Chemistry, 2014, 219, 80-86.	1.4	14
384	Protonated montmorillonite as a highly effective proton-conductivity enhancer in p-PBI membranes for PEM fuel cells. Materials Letters, 2014, 135, 5-7.	1.3	23

#	Article	IF	CITATIONS
385	Determining the platinum loading and distribution of industrial scale polymer electrolyte membrane fuel cell electrodes using low energy X-ray imaging. Journal of Power Sources, 2014, 270, 208-212.	4.0	4
386	One-Step Deposition of Catalyst Layers for High Temperature Proton Exchange Membrane Fuel Cells (PEMFC). Journal of the Electrochemical Society, 2014, 161, F622-F627.	1.3	16
387	Humidity based proton conductivity of calcium-l-tartrate tetrahydrate: An environmentally benign coordination polymer as a solid electrolyte. Synthetic Metals, 2014, 196, 76-82.	2.1	9
388	Characterization of high temperature polymer blends for specific applications: fuel cells and aerospace applications. , 2014, , 70-129.		4
389	Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2014, 272, 559-566.	4.0	36
390	Polymer chain length, phosphoric acid doping and temperature dependence on structure and dynamics of an ABPBI [poly(2,5-benzimidazole)] polymer electrolyte membrane. RSC Advances, 2014, 4, 19746-19755.	1.7	5
391	Ion Transport by Nanochannels in Ion-Containing Aromatic Copolymers. Macromolecules, 2014, 47, 2175-2198.	2.2	388
392	A novel asymmetric polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2014, 2, 4225.	5.2	74
393	Film forming polymeric ionic liquids (PILs) based on polybenzimidazoles for CO ₂ separation. RSC Advances, 2014, 4, 4500-4503.	1.7	42
394	Overview on the developments of vapor-feed direct methanol fuel cells. International Journal of Hydrogen Energy, 2014, 39, 6689-6704.	3.8	43
395	Polybenzimidazole Block Copolymers for Fuel Cell: Synthesis and Studies of Block Length Effects on Nanophase Separation, Mechanical Properties, and Proton Conductivity of PEM. ACS Applied Materials & Interfaces, 2014, 6, 6851-6864.	4.0	68
396	Porous polybenzimidazole membranes doped with phosphoric acid: Preparation and application in high-temperature proton-exchange-membrane fuel cells. Energy Conversion and Management, 2014, 85, 323-327.	4.4	42
397	Thermal Stability and Ionic Conductivity of High-Temperature Proton Conducting Ionic Liquidâ^'Polymer Composite Electrolyte Membranes for Fuel Cell Applications. ACS Symposium Series, 2014, , 111-126.	0.5	4
398	High-Performance and Durable Membrane Electrode Assemblies for High-Temperature Polymer Electrolyte Membrane Fuel Cells. Electrocatalysis, 2014, 5, 361-371.	1.5	11
399	Ion Conducting Membranes for Fuel Cells and other Electrochemical Devices. Chemistry of Materials, 2014, 26, 361-380.	3.2	403
400	Polybenzimidazole based film forming polymeric ionic liquids: synthesis and effects of cation–anion variation on their physical properties. Polymer Chemistry, 2014, 5, 4083.	1.9	44
401	Hydrogen evolution activity and electrochemical stability of selected transition metal carbides in concentrated phosphoric acid. Electrochimica Acta, 2014, 137, 639-646.	2.6	26
402	High Proton Conductivity and Spectroscopic Investigations of Metal–Organic Framework Materials Impregnated by Strong Acids. ACS Applied Materials & Interfaces, 2014, 6, 5161-5167.	4.0	92

#	Article	IF	CITATIONS
403	Hydrogen bonding controlled catalysis of a porous organic framework containing benzimidazole moieties. New Journal of Chemistry, 2014, 38, 2292.	1.4	23
404	Analysis of thermal balance in high-temperature proton exchange membrane fuel cells with short stacks via in situ monitoring with a flexible micro sensor. International Journal of Hydrogen Energy, 2014, 39, 13681-13686.	3.8	15
405	Heat-resistant polybenzoxazole nanofibers made by electrospinning. European Polymer Journal, 2014, 50, 61-68.	2.6	28
406	Three-dimensional multiphase modeling of alkaline anion exchange membrane fuel cell. International Journal of Hydrogen Energy, 2014, 39, 5981-5995.	3.8	67
407	Fabrication of gas diffusion electrodes via electrophoretic deposition for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2014, 258, 238-245.	4.0	9
408	Mechanical Stability of H3PO4-Doped PBI/Hydrophilic-Pretreated PTFE Membranes for High Temperature PEMFCs. Electrochimica Acta, 2014, 120, 30-38.	2.6	28
409	Membrane electrode assembly with enhanced platinum utilization for high temperature proton exchange membrane fuel cell prepared by catalyst coating membrane method. Journal of Power Sources, 2014, 266, 107-113.	4.0	60
410	High temperature polybenzimidazole membrane electrode assemblies using pyridine-polybenzimizazole as catalyst layer binder. Journal of Power Sources, 2014, 260, 131-139.	4.0	12
411	Polybenzimidazole and sulfonated polyhedral oligosilsesquioxane composite membranes for high temperature polymer electrolyte membrane fuel cells. Electrochimica Acta, 2014, 140, 182-190.	2.6	53
412	Highly proton-conductive thermally rearranged polybenzoxazole for medium-temperature and low-humidity polymer electrolyte fuel cells. Journal of Power Sources, 2014, 247, 286-293.	4.0	13
413	Sensitivity analysis of a polybenzimidazole-based polymer fuel cell and insight into the effect of humidification. International Journal of Energy Research, 2014, 38, 780-790.	2.2	4
414	Low platinum loading for high temperature proton exchange membrane fuel cell developed by ultrasonic spray coating technique. Journal of Power Sources, 2014, 267, 155-159.	4.0	69
415	Water transport study in a high temperature proton exchange membrane fuel cell stack. International Journal of Hydrogen Energy, 2014, 39, 10627-10640.	3.8	26
416	Proton exchange membrane fuel cell of polybenzimidazole electrolyte doped with phosphoric acid and antimony chloride. International Journal of Hydrogen Energy, 2014, 39, 10245-10252.	3.8	6
417	Synthesis and characterization of sulfonated polybenzimidazoles containing 4-phenyl phthalazinone groups for proton exchange membrane. Solid State Ionics, 2014, 261, 67-73.	1.3	18
418	Polybenzimidazole and benzyl-methyl-phosphoric acid grafted polybenzimidazole blend crosslinked membrane for proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2014, 39, 11145-11156.	3.8	22
419	Influence of thermal post-curing on the degradation of a cross-linked polybenzimidazole-based membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2014, 267, 323-328.	4.0	31
420	Nanoporous PBI membranes by track etching for high temperature PEMs. Journal of Membrane Science, 2014, 454, 243-252.	4.1	30

#	ARTICLE	IF	CITATIONS
421	Contact resistance between bipolar plate and gas diffusion layer in high temperature polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2014, 39, 987-995.	3.8	41
422	A vibrational spectroscopic and modeling study of poly(2,5-benzimidazole) (ABPBI) – Phosphoric acid interactions in high temperature PEFC membranes. International Journal of Hydrogen Energy, 2014, 39, 2776-2784.	3.8	27
423	Thermally stable polybenzimidazole/carbon nano-tube composites for alkaline direct methanol fuel cell applications. Journal of Power Sources, 2014, 246, 39-48.	4.0	61
424	Fuel Cell Catalyst Layers: A Polymer Science Perspective. Chemistry of Materials, 2014, 26, 381-393.	3.2	382
425	Intermediate temperature protonâ€conducting membrane electrolytes for fuel cells. Wiley Interdisciplinary Reviews: Energy and Environment, 2014, 3, 24-41.	1.9	61
426	A Quasi 2D Model of a High Temperature Polymer Fuel Cell for the Interpretation of Impedance Spectra. Fuel Cells, 2014, 14, 926-937.	1.5	32
427	Estimating Important Electrode Parameters of High Temperature PEM Fuel Cells by Fitting a Model to Polarisation Curves and Impedance Spectra. ECS Transactions, 2015, 68, 13-34.	0.3	10
428	Overview of Electrochemical Polymer Electrolyte Membranes. Electrochemical Energy Storage and Conversion, 2015, , 1-60.	0.0	0
430	Preparation and Characterization of Phosphoric Acid-doped Blend Membrane Composed of Sulfonated Poly(arylene ether sulfone) and Polybenzimidazole for Fuel Cell Application. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2015, 28, 181-186.	0.1	6
431	Recent Developments on Alternative Proton Exchange Membranes: Strategies for Systematic Performance Improvement. Energy Technology, 2015, 3, 675-691.	1.8	80
432	Nafionâ€115/aromatic poly(etherimide) with isopropylidene groups/imidazole membranes for polymer fuel cells. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
433	High temperature creep behavior of phosphoric acid-polybenzimidazole gel membranes. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 1527-1538.	2.4	27
434	Three–Dimensional Polyacrylamide–Poly(Ethylene Glycol)/ Phosphoric Acid for High–Temperature Proton Exchange Membranes. Polymers and Polymer Composites, 2015, 23, 151-158.	1.0	1
435	Materials and characterization techniques for high-temperature polymer electrolyte membrane fuel cells. Beilstein Journal of Nanotechnology, 2015, 6, 68-83.	1.5	159
436	Durable Pt Electrocatalyst Supported on a 3D Nanoporous Carbon Shows High Performance in a High-Temperature Polymer Electrolyte Fuel Cell. ACS Applied Materials & Interfaces, 2015, 7, 9800-9806.	4.0	54
437	Effect of Benzimidazole Configuration in Polybenzimidazole Chain on Interaction with Phosphoric Acid: A DFT Study. Journal of Physical Chemistry B, 2015, 119, 592-603.	1.2	14
438	Lowering the platinum loading of high temperature polymer electrolyte membrane fuel cells with acid doped polybenzimidazole membranes. Journal of Power Sources, 2015, 293, 51-56.	4.0	32
439	KOH-doped polybenzimidazole for alkaline direct glycerol fuel cells. Journal of Membrane Science, 2015, 486, 239-247.	4.1	36

#	Article	IF	CITATIONS
440	3-D model of a radial flow sub-watt methanol fuel processor. Chemical Engineering Science, 2015, 135, 393-402.	1.9	3
441	Numerical modeling of the degradation rate for membrane electrode assemblies in high temperature proton exchange membrane fuel cells and analyzing operational effects of the degradation. International Journal of Hydrogen Energy, 2015, 40, 5444-5455.	3.8	12
442	Enhanced water retention and low-humidity proton conductivity of sulfonated poly(ether ether) Tj ETQq0 0 0 rgE Hydrogen Energy, 2015, 40, 8398-8406.	ST /Overloo 3.8	k 10 Tf 50 6 15
443	Enhanced performance and stability of high temperature proton exchange membrane fuel cell by incorporating zirconium hydrogen phosphate in catalyst layer. Journal of Power Sources, 2015, 278, 718-724.	4.0	21
444	Polymer fuel cell components modified by graphene: Electrodes, electrolytes and bipolar plates. Renewable and Sustainable Energy Reviews, 2015, 49, 954-967.	8.2	77
445	Synthesis of N-substituted poly(benzimidazole ketone ketone)s containing pyridine rings. High Performance Polymers, 2015, 27, 326-331.	0.8	8
446	Investigation of proton conductivity of PVDF based anhydrous proton exchange membranes (PEMs) obtained via a facile "Grafting Through―strategy. Journal of Polymer Research, 2015, 22, 1.	1.2	11
447	Imaging heterogeneity and transport of degraded Nafion membranes. RSC Advances, 2015, 5, 99284-99290.	1.7	30
448	H3PO4 incorporated microporous hydrogel frameworks for intermediate temperature proton exchange membrane fuel cells. Materials Research Innovations, 2015, 19, 310-317.	1.0	1
449	Lifetime and degradation of high temperature PEM membrane electrode assemblies. International Journal of Hydrogen Energy, 2015, 40, 16860-16866.	3.8	33
450	Performance of a High Temperature Proton Exchange Membrane Fuel Cell (HT-PEMFC) Operating on Simulated Reformate. , 2015, , .		1
451	Study on a Vapor-Feed Air-Breathing Direct Methanol Fuel Cell Assisted by a Catalytic Combustor. Journal of Fuel Cell Science and Technology, 2015, 12, .	0.8	3
452	Performance Degradation Tests of Phosphoric Acid Doped Polybenzimidazole Membrane Based High Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of Fuel Cell Science and Technology, 2015, 12, .	0.8	21
453	Dual cross-linked organic-inorganic hybrid polymer electrolyte membranes based on quaternized poly(ether ether ketone) and (3-aminopropyl)triethoxysilane. Journal of Power Sources, 2015, 275, 815-822.	4.0	32
454	Fabrication and characterization of phosphoric acid doped imidazolium ionic liquid polymer composite membranes. Journal of Molecular Liquids, 2015, 206, 10-18.	2.3	49
455	Fuels From Biomass: An Interdisciplinary Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2015, , .	0.2	0
456	Analysis of accelerated degradation of a HT-PEM fuel cell caused by cell reversal in fuel starvation condition. International Journal of Hydrogen Energy, 2015, 40, 2833-2839.	3.8	71
457	Epoxides cross-linked hexafluoropropylidene polybenzimidazole membranes for application as high temperature proton exchange membranes. Electrochimica Acta, 2015, 160, 281-287.	2.6	66

#	Article	IF	CITATIONS
458	Methyl phosphate formation as a major degradation mode of direct methanol fuel cells with phosphoric acid based electrolytes. Journal of Power Sources, 2015, 279, 517-521.	4.0	18
459	Quantum Chemistry Study of Proton Transport in Imidazole Chains. Journal of Physical Chemistry B, 2015, 119, 3213-3222.	1.2	24
460	Interplay between Composition, Structure, and Properties of New H ₃ PO ₄ -Doped PBI ₄ N–HfO ₂ Nanocomposite Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Macromolecules, 2015, 48, 15-27.	2.2	56
461	Gas-dynamic and electro-chemical optimization of catalyst layers in high temperature polymeric electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2015, 40, 5425-5431.	3.8	14
462	Performance of a high-temperature PEM fuel cell operated with oxygen enriched cathode air and hydrogen from synthetic reformate. International Journal of Hydrogen Energy, 2015, 40, 5432-5438.	3.8	21
463	1,2,4-Triazolium perfluorobutanesulfonate as an archetypal pure protic organic ionic plastic crystal electrolyte for all-solid-state fuel cells. Energy and Environmental Science, 2015, 8, 1276-1291.	15.6	134
464	Dynamic Operation of HT-PEFC: In-Operando Imaging of Phosphoric Acid Profiles and (Re)distribution. Journal of the Electrochemical Society, 2015, 162, F310-F316.	1.3	92
465	Proton-conducting Microcrystalline Cellulose Doped with Imidazole. Thermal and Electrical Properties. Electrochimica Acta, 2015, 155, 38-44.	2.6	43
466	Enhancement of Anhydrous Proton Conductivity of Poly(vinylphosphonic) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50 4 Physics, 2015, 216, 106-112.	127 Td (ac 1.1	id)–Poly(2 18
467	Relationship between electrical conductivities and structure of hybrid materials derived from mixtures of zinc phosphate glasses with different phosphate-chain lengths and benzimidazole. Journal of Solid State Electrochemistry, 2015, 19, 907-912.	1.2	3
468	Pervaporation Dehydration of Ethyl Acetate via PBI/PEI Hollow Fiber Membranes. Industrial & Engineering Chemistry Research, 2015, 54, 3082-3089.	1.8	27
469	Novel polyimides containing benzimidazole for temperature proton exchange membrane fuel. Journal of Membrane Science, 2015, 483, 144-154.	4.1	37
470	Tetrazole substituted polymers for high temperature polymer electrolyte fuel cells. Journal of Materials Chemistry A, 2015, 3, 14389-14400.	5.2	28
471	Properties and fuel cell applications of polybenzimidazole and ethyl phosphoric acid grafted polybenzimidazole blend membranes. Journal of Membrane Science, 2015, 491, 10-21.	4.1	43
472	Poly(vinylimidazole) radiografted PVDF nanospheres as alternative binder for high temperature PEMFC electrodes. Journal of Power Sources, 2015, 296, 117-121.	4.0	17
473	Brennstoffzellensysteme in der Luftfahrt. , 2015, , .		6
474	Fluorinated Polyazoles. , 2015, , 227-269.		1
475	Radel-based membranes with pyridine and imidazole side groups for high temperature polymer electrolyte fuel cells. Solid State Ionics, 2015, 275, 80-85.	1.3	18

#	Article	IF	Citations
476	The Use of Per-Fluorinated Sulfonic Acid (PFSA) Membrane as Electrolyte in Fuel Cells. , 2015, , 325-374.		3
477	Evaluation of covalently and ionically cross-linked PBI-excess blends for application in SO2 electrolysis. International Journal of Hydrogen Energy, 2015, 40, 8788-8796.	3.8	6
478	Influences of the structure of imidazolium pendants on the properties of polysulfone-based high temperature proton conducting membranes. Journal of Membrane Science, 2015, 493, 80-87.	4.1	82
479	A phosphoric acid-doped electrocatalyst supported on poly(para-pyridine benzimidazole)-wrapped carbon nanotubes shows a high durability and performance. Journal of Materials Chemistry A, 2015, 3, 14318-14324.	5.2	31
480	Novel reverse-selective poly(2,5-benzimidazole) derivatives for membrane-based gas separation. High Performance Polymers, 2015, 27, 135-144.	0.8	3
481	Hierarchical polybenzimidazole-grafted graphene hybrids as supports for Pt nanoparticle catalysts with excellent PEMFC performance. Nano Energy, 2015, 16, 281-292.	8.2	50
482	In Situ Synthesis of Silver Nanoparticles in Novel L-Phenylalanine Based Poly(Amide-Benzimidazole-imide) Matrix Through Metal Complexation Method Using <i>N,N</i> â€2-Dimethylformamide as a Reaction Medium and Reducing Agent. Polymer-Plastics Technology and Engineering, 2015, 54, 1002-1008.	1.9	2
483	Hydrocarbon-based polymer electrolyte cerium composite membranes for improved proton exchange membrane fuel cell durability. Journal of Power Sources, 2015, 295, 221-227.	4.0	63
484	A polytetrafluoroethylene porous membrane and dimethylhexadecylamine quaternized poly (vinyl) Tj ETQq0 0 0 Sources, 2015, 294, 691-695.	rgBT /Over 4.0	lock 10 Tf 50 18
485	Extremely Durable, Flexible Supercapacitors with Greatly Improved Performance at High Temperatures. ACS Nano, 2015, 9, 8569-8577.	7.3	113
486	Recent Advances on Quasianhydrous Fuel Cell Membranes. , 2015, , 289-323.		0
487	Uptake of protic electrolytes by polybenzimidazole-type polymers: absorption isotherms and electrolyte/polymer interactions. Journal of Applied Electrochemistry, 2015, 45, 857-871.	1.5	19
488	Pickering Emulsion Polymerization. , 2015, , 1634-1639.		0
489	Influence of variously functionalized SBA-15 fillers on conductivity and electrochemical properties of PBI composite membranes for high temperature polymer fuel cells. Journal of Power Sources, 2015, 294, 347-353.	4.0	19
490	Polymer Flocculants. , 2015, , 1884-1892.		0
491	Experimental study of cell reversal of a high temperature polymer electrolyte membrane fuel cell call caused by H2 starvation. International Journal of Hydrogen Energy, 2015, 40, 6672-6680.	3.8	32
492	Development of membrane electrode assembly for high temperature proton exchange membrane fuel cell by catalyst coating membrane method. Journal of Power Sources, 2015, 288, 121-127.	4.0	44
493	Polybenzimidazole membranes for direct methanol fuel cell: Acid-doped or alkali-doped?. Journal of Power Sources, 2015, 287, 386-395.	4.0	26

#	Article	IF	CITATIONS
494	Studies of bibenzimidazole and imidazole influence on electrochemical properties of polymer fuel cells. Electrochimica Acta, 2015, 164, 143-153.	2.6	8
495	A boron phosphate-phosphoric acid composite membrane for medium temperature proton exchange membrane fuel cells. Journal of Power Sources, 2015, 286, 290-298.	4.0	34
496	Poly(amide-imide) bearing imidazole groups/sulfonated polyimide blends for low humidity and medium temperature proton exchange membranes. Journal of Polymer Research, 2015, 22, 1.	1.2	10
497	A review of the development of high temperature proton exchange membrane fuel cells. Chinese Journal of Catalysis, 2015, 36, 473-483.	6.9	111
498	Durability of high temperature polymer electrolyte membrane fuel cells in daily based start/stop operation mode using reformed gas. International Journal of Hydrogen Energy, 2015, 40, 7769-7776.	3.8	30
499	Nanocomposite Membranes based on Polybenzimidazole and ZrO ₂ for Highâ€Temperature Proton Exchange Membrane Fuel Cells. ChemSusChem, 2015, 8, 1381-1393.	3.6	64
500	Design of Polymer-Coated Multi-Walled Carbon Nanotube/Carbon Black-based Fuel Cell Catalysts with High Durability and Performance Under Non-humidified Condition. Electrochimica Acta, 2015, 170, 1-8.	2.6	18
501	Ion Dynamics and Mechanical Properties of Sulfonated Polybenzimidazole Membranes for High-Temperature Proton Exchange Membrane Fuel Cells. Journal of Physical Chemistry C, 2015, 119, 9745-9753.	1.5	28
502	CsH ₂ PO ₄ /NdPO ₄ Composites as Proton Conducting Electrolytes for Intermediate Temperature Fuel Cells. Journal of the Electrochemical Society, 2015, 162, F436-F441.	1.3	25
503	Novel phosphoric acid-doped PBI-blends as membranes for high-temperature PEM fuel cells. Journal of Materials Chemistry A, 2015, 3, 10864-10874.	5.2	89
504	Polyhedral Oligomeric Silsesquioxanes (POSS). , 2015, , 1835-1841.		0
505	Effect of LiCl content on pore structure of catalyst layer and cell performance in high temperature polymer electrolyte membrane fuel cell. Energy, 2015, 90, 2038-2046.	4.5	7
506	Polymer-Based Sensors. , 2015, , 1938-1944.		0
507	The stability of poly(2,2′-(m-phenylene)-5,5′-bibenzimidazole) membranes in aqueous potassium hydroxide. Journal of Membrane Science, 2015, 492, 422-429.	4.1	40
508	Structure and Interactions in Polybenzimidazole Composite Membranes for High-Temperature Polymer Fuel Cells: A Full Multinuclear Solid-State NMR Study. Journal of Physical Chemistry C, 2015, 119, 18935-18944.	1.5	13
509	Poly(Arylene Ethynylene)s. , 2015, , 1658-1664.		124
510	Colorimetric determination of phosphoric acid leakage for phosphoric acid-doped polybenzimidazole membrane fuel cell applications. Journal of Power Sources, 2015, 299, 480-484.	4.0	7
511	Poly(vinylpyrrolidone)–wrapped carbon nanotube-based fuel cell electrocatalyst shows high durability and performance under non-humidified operation. Journal of Materials Chemistry A, 2015, 3, 23316-23322.	5.2	36

#	Article	IF	CITATIONS
512	Random and Block Sulfonated Polyaramides as Advanced Proton Exchange Membranes. Journal of Physical Chemistry C, 2015, 119, 24724-24732.	1.5	8
513	Polyacrylonitrile (PAN). , 2015, , 1745-1750.		8
514	Zwitterion-coated graphene-oxide-doped composite membranes for proton exchange membrane applications. Journal of Membrane Science, 2015, 496, 31-38.	4.1	52
515	Novel concept of polymer electrolyte membranes for high-temperature fuel cells based on ETFE grafted with neutral acrylic monomers. Journal of Membrane Science, 2015, 495, 20-28.	4.1	14
516	Synthesis of an aminated poly(vinylidene fluride-g-4-vinyl benzyl chloride) anion exchange membrane for membrane capacitive deionization(MCDI). Journal of Membrane Science, 2015, 495, 316-321.	4.1	35
517	Behavior of ionic species in sulfonated PEI using DFT simulations: A study to determine ionic conductivity. International Journal of Hydrogen Energy, 2015, 40, 17332-17337.	3.8	4
518	Methylimidazolium group – Modified polyvinyl chloride (PVC) doped with phosphoric acid for high temperature proton exchange membranes. Materials and Design, 2015, 87, 1047-1055.	3.3	48
519	Facile and green assembly of nanocomposite membranes for fuel cells. Chemical Communications, 2015, 51, 1983-1986.	2.2	10
520	System model development for a methanol reformed 5ÂkW high temperature PEM fuel cell system. International Journal of Hydrogen Energy, 2015, 40, 13080-13089.	3.8	25
521	Phosphoric acid doped polysulfone membranes with aminopyridine pendant groups and imidazole cross-links. European Polymer Journal, 2015, 72, 102-113.	2.6	13
522	Polymer Catalysts. , 2015, , 1864-1871.		2
523	Novel composite membranes of triazole modified graphene oxide and polybenzimidazole for high temperature polymer electrolyte membrane fuel cell applications. RSC Advances, 2015, 5, 101049-101054.	1.7	63
524	A study of new anhydrous, conducting membranes based on composites of aprotic ionic liquid and cross-linked SPEEK for fuel cell application. Electrochimica Acta, 2015, 152, 352-359.	2.6	68
525	Experimental investigation and numerical simulation of the electrolyte loss in a HT-PEM fuel cell. International Journal of Hydrogen Energy, 2015, 40, 1163-1172.	3.8	38
526	Pt based catalytic coatings on poly(benzimidazole) micromonoliths for indoor quality control. Catalysis Today, 2015, 241, 114-124.	2.2	3
527	Electrochemical properties of PEM fuel cells based on Nafion–polybenzimidazole–imidazole hybrid membranes. International Journal of Hydrogen Energy, 2015, 40, 833-840.	3.8	26
528	Synthesis and characterization of sulfonated block copolyimides derived from 4,4'â€sulfideâ€bis(naphthalic anhydride) for proton exchange membranes. Journal of Applied Polymer Science, 2015, 132, .	1.3	4
529	Polycondensation of structurally divergent tetraamine monomers with dicarboxylic acids to synthesize polybenzimidazole copolymers for polymer electrolyte membranes. Polymer International, 2015, 64, 530-540.	1.6	11

#	Article	IF	CITATIONS
530	Long-term testing of a high-temperature proton exchange membrane fuel cell short stack operated with improved polybenzimidazole-based composite membranes. Journal of Power Sources, 2015, 274, 177-185.	4.0	74
531	Oxygen reduction reaction on electrodeposited PtAu alloy catalysts in the presence of phosphoric acid. Applied Catalysis B: Environmental, 2015, 165, 495-502.	10.8	26
532	A polybenzimidazole/ionic-liquid-graphite-oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2015, 274, 922-927.	4.0	93
533	Rigid and microporous polymers for gas separation membranes. Progress in Polymer Science, 2015, 43, 1-32.	11.8	377
534	High-temperature passive direct methanol fuel cells operating with concentrated fuels. Journal of Power Sources, 2015, 273, 517-521.	4.0	32
535	Electrochemical Studies of Corrosion in Liquid Electrolytes for Energy Conversion Applications at Elevated Temperatures. , 0, , .		0
536	Thermal Imaging of Electrochemical Power Systems: A Review. Journal of Imaging, 2016, 2, 2.	1.7	29
537	Preparation of Modified Sulfonated Poly(styrene divinylbenzene) with Polyaniline as a New Polymer Electrolyte Membrane for Direct Methanol Fuel Cell. International Journal of Electrochemical Science, 2016, , 5302-5317.	0.5	11
538	Spectrophotometric Analysis of Phosphoric Acid Leakage in High-Temperature Phosphoric Acid-Doped Polybenzimidazole Membrane Fuel Cell Application. Journal of Sensors, 2016, 2016, 1-8.	0.6	6
539	Principles of Step-Growth Polymerization (Polycondensation and Polyaddition). , 2016, , .		2
540	Critical Filler Concentration in Sulfated Titania-Added Nafionâ,,¢ Membranes for Fuel Cell Applications. Energies, 2016, 9, 272.	1.6	9
541	In-Situ Measurement of High-Temperature Proton Exchange Membrane Fuel Cell Stack Using Flexible Five-in-One Micro-Sensor. Sensors, 2016, 16, 1731.	2.1	23
542	Poly(vinyl alcohol) modified by KE reactive dyes as a novel protonâ€exchange membrane for potential fuelâ€cell applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	4
543	Composite Titanium Silicon Carbide as a Promising Catalyst Support for Highâ€Temperature Protonâ€Exchange Membrane Fuel Cell Electrodes. ChemCatChem, 2016, 8, 848-854.	1.8	24
544	Enhancement of high temperature PEMFC stability using catalysts based on Pt supported on SiC based materials. Applied Catalysis B: Environmental, 2016, 198, 516-524.	10.8	42
545	NaOHâ€Aided Platinum Nanoparticle Size Regulation on Polybenzimidazoleâ€Wrapped Carbon Nanotubes for Use as Nonâ€Humidified Polymer Electrolyte Fuel Cell Catalyst. ChemCatChem, 2016, 8, 268-275.	1.8	10
546	Structure and Proton Dynamics in Catalytic Layer of HTâ€₽EFC. Fuel Cells, 2016, 16, 406-413.	1.5	12
547	Aminoâ€Functional Polybenzimidazole Blends with Enhanced Phosphoric Acid Mediated Proton Conductivity as Fuel Cell Electrolytes. Macromolecular Chemistry and Physics. 2016. 217. 1161-1168.	1.1	14

#	Article	IF	CITATIONS
548	Polymerized Paired Ions as Polymeric Ionic Liquid–Proton Conductivity. Macromolecular Rapid Communications, 2016, 37, 1218-1225.	2.0	17
549	Inâ€Situ FTIR Spectroscopy: Probing the Electrochemical Interface during the Oxygen Reduction Reaction on a Commercial Platinum Highâ€&urfaceâ€Area Catalyst. ChemCatChem, 2016, 8, 1125-1131.	1.8	19
550	Constructing Straight Polyionic Liquid Microchannels for Fast Anhydrous Proton Transport. ACS Applied Materials & Interfaces, 2016, 8, 35377-35389.	4.0	29
551	Preparation of high-temperature proton exchange membranes based on aminopropyltriethoxysilane and amino trimethylene phosphonic acid. Materials Research Innovations, 2016, 20, 524-529.	1.0	6
552	Enhancement of performance of pyridine modified polybenzimidazole fuel cell membranes using zirconium oxide nanoclusters and optimized phosphoric acid doping level. International Journal of Hydrogen Energy, 2016, 41, 6842-6854.	3.8	24
553	Mesoporous Materials for Fuel Cells. Nanoscience and Technology, 2016, , 313-369.	1.5	3
554	Synthesis of soluble polybenzimidazoles for high-temperature proton exchange membrane fuel cell (PEMFC) applications. Reactive and Functional Polymers, 2016, 108, 122-129.	2.0	25
555	High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2016, 323, 142-146.	4.0	49
556	Durability of symmetrically and asymmetrically porous polybenzimidazole membranes for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2016, 323, 57-66.	4.0	52
557	Porous proton exchange membranes based on sulfonated poly (arylene ether ketone)/polylactide block copolymers for enhanced proton conductivity and dimensional stability. Solid State Ionics, 2016, 290, 62-70.	1.3	17
558	Graphite oxide-incorporated CeP2O7/BPO4 solid composite electrolyte for high-temperature proton exchange membrane fuel cells. Fuel, 2016, 179, 299-304.	3.4	21
559	Novel composite membranes based on dicationic ionic liquid and polybenzimidazole mixtures as strategy for enhancing thermal and electrochemical properties of proton exchange membrane fuel cells applications at high temperature. International Journal of Hydrogen Energy, 2016, 41, 10870-10883.	3.8	56
560	Numerical degradation studies of high-temperature proton exchange membrane fuel cells with phosphoric acid-doped PBI membranes. International Journal of Hydrogen Energy, 2016, 41, 8296-8306.	3.8	22
561	Radiation-grafted materials for energy conversion and energy storage applications. Progress in Polymer Science, 2016, 63, 1-41.	11.8	64
562	Proton conductivity of new type medium-temperature proton exchange membranes. Ionics, 2016, 22, 1873-1880.	1.2	1
563	Mechanical property enhancement of ultra-thin PBI membrane by electron beam irradiation for PEM fuel cell. International Journal of Hydrogen Energy, 2016, 41, 9556-9562.	3.8	17
564	Three-dimensional modeling of a high temperature polymer electrolyte membrane fuel cell at different operation temperatures. International Journal of Hydrogen Energy, 2016, 41, 10060-10070.	3.8	46
565	Sulfonated dendrimer―and hyperbranched polyglycerolâ€< scp>PBIOO [®] blend membranes for fuel cells. Journal of Polymer Science Part A, 2016, 54, 69-80.	2.5	3

#	Article	IF	CITATIONS
566	Sulfonated poly(ether ether) ketone/polyurethane composites doped with phosphoric acids for proton exchange membranes. Solid State Ionics, 2016, 289, 199-206.	1.3	31
567	Polybenzimidazoles containing bulky substituents and ether linkages for high-temperature proton exchange membrane fuel cell applications. Journal of Membrane Science, 2016, 513, 270-279.	4.1	55
568	Novel composite membranes based on PBI and dicationic ionic liquids for high temperature polymer electrolyte membrane fuel cells. Electrochimica Acta, 2016, 205, 142-152.	2.6	57
569	Cracks help membranes to stay hydrated. Nature, 2016, 532, 445-446.	13.7	6
570	Nanocrack-regulated self-humidifying membranes. Nature, 2016, 532, 480-483.	13.7	362
571	On the oxygen reduction reaction in phosphoric acid electrolyte: Evidence of significantly increased inhibition at steady state conditions. Electrochimica Acta, 2016, 204, 78-83.	2.6	21
572	A H ₃ PO ₄ preswelling strategy to enhance the proton conductivity of a H ₂ SO ₄ -doped polybenzimidazole membrane for vanadium flow batteries. RSC Advances, 2016, 6, 23479-23488.	1.7	78
573	Anhydrous proton conducting poly(vinyl alcohol) (PVA)/ poly(2-acrylamido-2-methylpropane sulfonic) Tj ETQq1 1 11321-11330.	0.784314 3.8	4 rgBT /Over 28
575	Amino-functionalized mesoporous silica based polyethersulfone–polyvinylpyrrolidone composite membranes for elevated temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6, 86575-86585.	1.7	34
576	Effect of idling temperature on high temperature polymer electrolyte membrane fuel cell degradation under simulated start/stop cycling conditions. International Journal of Hydrogen Energy, 2016, 41, 19463-19474.	3.8	20
577	A comprehensive review of PBI-based high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2016, 41, 21310-21344.	3.8	320
578	Highly proton conductive, dense polybenzimidazole membranes with low permeability to vanadium and enhanced H ₂ SO ₄ absorption capability for use in vanadium redox flow batteries. Journal of Materials Chemistry A, 2016, 4, 14342-14355.	5.2	108
579	Iridium-Catalyzed Continuous Hydrogen Generation from Formic Acid and Its Subsequent Utilization in a Fuel Cell: Toward a Carbon Neutral Chemical Energy Storage. ACS Catalysis, 2016, 6, 7475-7484.	5.5	75
580	Non-planar backbone structure polybenzimidazole membranes with excellent solubility, high proton conductivity, and better anti-oxidative for HT-PEMFCs. RSC Advances, 2016, 6, 91068-91076.	1.7	23
581	A selective hybrid stochastic strategy for fuel-cell multi-parameter identification. Journal of Power Sources, 2016, 332, 249-264.	4.0	35
583	Synthesis and Characterization of Ultrahigh Ion-Exchange Capacity Polymeric Membranes. Industrial & Engineering Chemistry Research, 2016, 55, 9667-9675.	1.8	14
584	Molecular dynamics simulation to investigate anhydrous phosphoric acid-doped polybenzimidazole. Molecular Simulation, 2016, 42, 1444-1451.	0.9	7
585	Remarkably durable platinum cluster supported on multi-walled carbon nanotubes with high performance in an anhydrous polymer electrolyte fuel cell. RSC Advances, 2016, 6, 108158-108163.	1.7	14

#	Article	IF	CITATIONS
587	Guanidinium nonaflate as a solid-state proton conductor. Journal of Materials Chemistry A, 2016, 4, 12241-12252.	5.2	43
589	A polybenzimidazole/graphite oxide based three layer membrane for intermediate temperature polymer electrolyte membrane fuel cells. RSC Advances, 2016, 6, 72224-72229.	1.7	13
590	Highly dispersed palladium nanoparticles on poly(N1,N3-dimethylbenzimidazolium)iodide-functionalized multiwalled carbon nanotubes for ethanol oxidation in alkaline solution. RSC Advances, 2016, 6, 102582-102594.	1.7	7
591	Improved performance of poly(vinyl pyrrolidone)/phosphonated poly(2,6-dimethyl-1,4-phenylene) Tj ETQq1 1 membrane fuel cells. RSC Advances, 2016, 6, 106237-106247.	0.784314 rgE 1.7	3T /Overlock 25
592	High Performance Palladium Supported on Nanoporous Carbon under Anhydrous Condition. Scientific Reports, 2016, 6, 36521.	1.6	14
593	Dimensionally-stable phosphoric acid–doped polybenzimidazoles for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2016, 336, 391-400.	4.0	71
594	Side-chain-type quaternized naphthalene-based poly(arylene ether ketone)s for anhydrous high temperature proton exchange membranes. RSC Advances, 2016, 6, 98854-98860.	1.7	6
595	Phase Diagram Approach to Study Acid and Water Uptake of Polybenzimidazole-Type Membranes for Fuel Cells. ECS Transactions, 2016, 72, 157-167.	0.3	5
596	Copolymerization of 4-(3,4-diamino-phenoxy)-benzoic acid and 3,4-diaminobenzoic acid towards H3PO4-doped PBI membranes for proton conductor with better processability. European Polymer Journal, 2016, 85, 175-186.	2.6	13
597	Operando X-ray Tomographic Microscopy Imaging of HT-PEFC: A Comparative Study of Phosphoric Acid Electrolyte Migration. Journal of the Electrochemical Society, 2016, 163, F842-F847.	1.3	45
598	Improved Electrodes for High Temperature Proton Exchange Membrane Fuel Cells using Carbon Nanospheres. ChemSusChem, 2016, 9, 1187-1193.	3.6	23
599	Phosphoric acid doped imidazolium silane crosslinked poly(epichlorihydrin)/PTFE as high temperature proton exchange membranes. RSC Advances, 2016, 6, 61029-61036.	1.7	24
600	Achieving Continuous Anion Transport Domains Using Block Copolymers Containing Phosphonium Cations. Macromolecules, 2016, 49, 4714-4722.	2.2	60
601	Synthesis and properties of highly branched polybenzimidazoles as proton exchange membranes for high-temperature fuel cells. Journal of Materials Chemistry C, 2016, 4, 4814-4821.	2.7	58
602	Blended polybenzimidazole and melamine-co-formaldehyde thermosets. Journal of Membrane Science, 2016, 515, 1-6.	4.1	14
603	Conductivity of composite membrane-based poly(ether-ether-ketone) sulfonated (SPEEK) nanofiber mats of varying thickness. RSC Advances, 2016, 6, 56986-56999.	1.7	18
604	Synthesis and characterization of novel imidazolium-functionalized polyimides for high temperature proton exchange membrane fuel cells. RSC Advances, 2016, 6, 33959-33970.	1.7	15
605	Phosphonated polyimides: Enhancement of proton conductivity at high temperatures and low humidity. Journal of Membrane Science, 2016, 516, 74-82.	4.1	48

	CITATION N		
#	ARTICLE Solution polymerization of polybenzimidazole. Journal of Polymer Science Part A, 2016, 54, 1795-1802.	IF 2.5	Citations 21
607	Novel cross-linked partially fluorinated and non-fluorinated polyaromatic PBI-containing blendÂmembranes for SO2 electrolysis. International Journal of Hydrogen Energy, 2016, 41, 11868-11883.	3.8	5
608	Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renewable Energy, 2016, 91, 75-82.	4.3	45
609	Performance of high temperature PEM fuel cell materials. Part 1: Effects of temperature, pressure and anode dilution. International Journal of Hydrogen Energy, 2016, 41, 2944-2954.	3.8	29
610	Water distribution in high temperature polymer electrolyte fuel cells. International Journal of Hydrogen Energy, 2016, 41, 1837-1845.	3.8	28
611	Crosslinked ethyl phosphoric acid grafted polybenzimidazole and polybenzimidazole blend membranes for high-temperature proton exchange membrane fuel cells. Journal of Polymer Research, 2016, 23, 1.	1.2	28
612	Understanding ternary poly(potassium benzimidazolide)-based polymer electrolytes. Polymer, 2016, 84, 304-310.	1.8	39
613	Phosphoric acid-doped cross-linked sulfonated poly(imide-benzimidazole) for proton exchange membrane fuel cell applications. Journal of Membrane Science, 2016, 501, 220-227.	4.1	45
614	Novel anti-oxidative membranes based on sulfide-containing polybenzimidazole for high temperature proton exchange membrane fuel cells. European Polymer Journal, 2016, 74, 168-179.	2.6	28
615	Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2016, 41, 10044-10052.	3.8	130
616	Effect of surface coating of microcrystalline cellulose by imidazole molecules on proton conductivity. European Polymer Journal, 2016, 78, 186-194.	2.6	16
617	<i>Operando</i> Near Ambient Pressure XPS (NAP-XPS) Study of the Pt Electrochemical Oxidation in H ₂ O and H ₂ O/O ₂ Ambients. Journal of Physical Chemistry C, 2016, 120, 15930-15940.	1.5	77
618	Preparation and characterization of phosphonic acid functionalized siloxane/polyimide composite proton exchange membranes. Solid State Ionics, 2016, 287, 1-7.	1.3	16
619	A review of high-temperature polymer electrolyte membrane fuel-cell (HT-PEMFC)-based auxiliary power units for diesel-powered road vehicles. Journal of Power Sources, 2016, 311, 91-102.	4.0	127
620	Dynamic modeling and experimental investigation of a high temperature PEM fuel cell stack. International Journal of Hydrogen Energy, 2016, 41, 4729-4739.	3.8	24
621	Sulfonated poly(arylene thioether phosphine oxide)s (sPTPO) and sPTPO/sulfonated polybenzothiazole blends as proton exchange membranes. RSC Advances, 2016, 6, 21367-21375.	1.7	9
622	Low-swelling proton-conducting multi-layer composite membranes containing polyarylene ether nitrile and sulfonated carbon nanotubes for fuel cells. International Journal of Hydrogen Energy, 2016, 41, 5113-5122.	3.8	29
623	Modeling of high temperature proton exchange membrane fuel cell start-up processes. International Journal of Hydrogen Energy, 2016, 41, 3113-3127.	3.8	14

#	ARTICLE	IF	CITATIONS
624	A Highly-Durable CO-Tolerant Poly(vinylphosphonic acid)-Coated Electrocatalyst Supported on a Nanoporous Carbon. ACS Applied Materials & Interfaces, 2016, 8, 9030-9036.	4.0	28
625	Trisulfonation approach: To improve the properties of poly(arylene thioether phosphine oxide)s based proton exchange membranes. Journal of Membrane Science, 2016, 508, 32-39.	4.1	16
626	Influence of membrane type and molecular weight distribution on the degradation of PBI-based HTPEM fuel cells. Journal of Membrane Science, 2016, 509, 27-35.	4.1	29
627	Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 200 °C. Journal of Materials Chemistry A, 2016, 4, 4019-4024.	5.2	93
628	Preparation and characterization of novel pyridine-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2016, 502, 29-36.	4.1	74
629	Structural and conformational properties of polybenzimidazoles in melt and phosphoric acid solution: a polyelectrolyte membrane for fuel cells. RSC Advances, 2016, 6, 8211-8221.	1.7	6
630	One-pot synthesis of inorganic/organic hybrid membranes from organoalkoxysilane, hydroimidazole derivative, and cyclic sulfonic acid ester. Journal of Materials Science, 2016, 51, 3398-3407.	1.7	7
631	Mixed matrix proton exchange membranes for fuel cells: State of the art and perspectives. Progress in Polymer Science, 2016, 57, 103-152.	11.8	262
632	A flexible all-inorganic fuel cell membrane with conductivity above Nafion, and durable operation at 150°C. Journal of Power Sources, 2016, 303, 142-149.	4.0	22
633	Molecular simulation of mass transport in phosphoric acid doped poly(2,5-benzimidazole) polymer electrolyte membranes. International Journal of Hydrogen Energy, 2016, 41, 7614-7621.	3.8	12
634	Development of ion conductive nanofibers for polymer electrolyte fuel cells. Polymer Journal, 2016, 48, 51-58.	1.3	42
635	Characterization of HT-PEM Membrane-Electrode-Assemblies. , 2016, , 353-386.		3
636	Microbial and enzymatic fuel cells. , 2016, , 147-173.		2
637	Acid doped polybenzimidazoles based membrane electrode assembly for high temperature proton exchange membrane fuel cell: A review. International Journal of Hydrogen Energy, 2017, 42, 9156-9179.	3.8	116
638	Crosslinked composite membrane by radiation grafting of 4-vinylpyridine/triallyl-cyanurate mixtures onto poly(ethylene- co -tetrafluoroethylene) and phosphoric acid doping. International Journal of Hydrogen Energy, 2017, 42, 9333-9341.	3.8	12
639	Polybenzimidazole/inorganic composite membrane with advanced performance for high temperature polymer electrolyte membrane fuel cells. Polymer Composites, 2017, 38, 87-95.	2.3	36
640	Thin skinned asymmetric polybenzimidazole membranes with readily tunable morphologies for high-performance vanadium flow batteries. RSC Advances, 2017, 7, 1852-1862.	1.7	50
641	Effect of accelerated ageing tests on PBI HTPEM fuel cells performance degradation. International Journal of Hydrogen Energy, 2017, 42, 1875-1883.	3.8	17

#	Article	IF	CITATIONS
642	Experimental study to distinguish the effects of methanol slip and water vapour on a high temperature PEM fuel cell at different operating conditions. Applied Energy, 2017, 192, 422-436.	5.1	35
643	Influence of Different Side-groups and Cross-links on Phosphoric Acid Doped Radel-based Polysulfone Membranes for High Temperature Polymer Electrolyte Fuel Cells. Electrochimica Acta, 2017, 224, 306-313.	2.6	32
644	Materials with high proton conductivity above 200°C based on a nanoporous metal–organic framework and non-aqueous ionic media. RSC Advances, 2017, 7, 403-407.	1.7	10
645	Novel cross-linked membranes based on polybenzoxazine and polybenzimidazole containing 4-phenyl phthalazinone moiety for high-temperature proton exchange membrane. Journal of Polymer Research, 2017, 24, 1.	1.2	8
646	High temperature proton exchange membranes based on cerium sulfophenyl phosphate doped polybenzimidazole by end-group protection and hot-pressing method. International Journal of Hydrogen Energy, 2017, 42, 486-495.	3.8	39
647	Nitrile functionalized graphene oxide for highly selective sulfonated poly(arylene ether nitrile)-based proton-conducting membranes. RSC Advances, 2017, 7, 2971-2978.	1.7	17
648	A water durable resistive humidity sensor based on rigid sulfonated polybenzimidazole and their properties. Sensors and Actuators B: Chemical, 2017, 246, 53-60.	4.0	47
649	Electrospun nanofiber enhanced sulfonated poly(arylene ether nitriles)-based proton conducting membrane. AIP Conference Proceedings, 2017, , .	0.3	0
650	Synergetic integration of a methanol steam reforming cell with a high temperature polymer electrolyte fuel cell. International Journal of Hydrogen Energy, 2017, 42, 13902-13912.	3.8	38
651	A novel polybenzimidazole composite modified by sulfonated graphene oxide for high temperature proton exchange membrane fuel cells in anhydrous atmosphere. Journal of Applied Polymer Science, 2017, 134, .	1.3	50
652	Phosphonic acid functionalized siloxane crosslinked with 3â€glycidoxyproyltrimethoxysilane grafted polybenzimidazole high temperature proton exchange membranes. Journal of Applied Polymer Science, 2017, 134, .	1.3	15
653	Influence of carbon monoxide on the cathode in high-temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 3309-3315.	3.8	12
654	Hydrocarbon-Based Polymer Electrolyte Membranes: Importance of Morphology on Ion Transport and Membrane Stability. Chemical Reviews, 2017, 117, 4759-4805.	23.0	732
655	Dielectric relaxations in phosphoric acidâ€doped poly(2,5â€benzimidazole) and its composite membranes. Journal of Applied Polymer Science, 2017, 134, .	1.3	2
656	High performance direct methanol fuel cell with thin electrolyte membrane. Journal of Power Sources, 2017, 354, 167-171.	4.0	21
657	Interplay between structure and properties in acid-base blend PBI-based membranes for HT-PEM fuel cells. Journal of Membrane Science, 2017, 535, 122-131.	4.1	54
658	Construction of proton channels and reinforcement of physicochemical properties of oPBI/FeSPP/GF high temperature PEM via building hydrogen bonding network. International Journal of Hydrogen Energy, 2017, 42, 14572-14582.	3.8	39
659	Hierarchical Porous Polybenzimidazole Microsieves: An Efficient Architecture for Anhydrous Proton Transport via Polyionic Liquids. ACS Applied Materials & Interfaces, 2017, 9, 14844-14857.	4.0	24

#	Article	IF	CITATIONS
660	Proton conduction mechanisms in the phosphoric acid–water system (H ₄ P ₂ O ₇ –H ₃ PO ₄ ·2H ₂ O): a ¹ H, ³¹ P and ¹⁷ O PFG-NMR and conductivity study. Physical Chemistry Chemical Physics, 2017, 19, 587-600.	1.3	62
661	Thermal crosslinking of PBI/sulfonated polysulfone based blend membranes. Journal of Materials Chemistry A, 2017, 5, 409-417.	5.2	78
662	Synthesis and characterization of sulfonated PEEK-WC-PES copolymers for fuel cell proton exchange membrane application. European Polymer Journal, 2017, 93, 390-402.	2.6	22
663	Phosphate-Modified TiO ₂ /ZrO ₂ Nanofibrous Web Composite Membrane for Enhanced Performance and Durability of High-Temperature Proton Exchange Membrane Fuel Cells. Energy & Fuels, 2017, 31, 7645-7652.	2.5	48
664	Composite Membranes Based on Heteropolyacids and Their Applications in Fuel Cells. , 2017, , 99-131.		3
665	Graphene oxide influence on selected properties of polymer fuel cells based on Nafion. International Journal of Hydrogen Energy, 2017, 42, 15359-15369.	3.8	14
666	Highly effective oxygen reduction reaction electrocatalysis: Nitrogen-doped hierarchically mesoporous carbon derived from interpenetrated nonporous metal-organic frameworks. Applied Catalysis B: Environmental, 2017, 218, 260-266.	10.8	70
668	Fabrication and Characterization of Cross-linked Polybenzimidazole Based Membranes for High Temperature PEM Fuel Cells. Electrochimica Acta, 2017, 245, 1-13.	2.6	85
669	Spray-Casting ABPBI Membranes for High Temperature PEM Fuel Cells. Journal of the Electrochemical Society, 2017, 164, F866-F872.	1.3	12
670	Electrochemical Hydrogen Production from SO2and Water in a SDE Electrolyzer. , 2017, , 277-303.		1
671	Acid-base chemistry and proton conductivity of CsHSO4, CsH2PO4 and their mixtures with N-heterocycles. Solid State Ionics, 2017, 306, 13-19.	1.3	23
672	Polybenzimidazoleâ€based block copolymers: From monomers to membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A, 2017, 55, 1831-1843.	2.5	17
673	Charge inversion and external salt effect in semi-permeable membrane electrostatics. Journal of Membrane Science, 2017, 533, 364-377.	4.1	13
674	12-Silicotungstic Acid Doped Phosphoric Acid Imbibed Polybenzimidazole for Enhanced Protonic Conductivity for High Temperature Fuel Cell Applications. Journal of the Electrochemical Society, 2017, 164, F504-F513.	1.3	20
675	Nitrogen-rich two-dimensional porous polybenzimidazole network as a durable metal-free electrocatalyst for a cobalt reduction reaction in organic dye-sensitized solar cells. Nano Energy, 2017, 34, 533-540.	8.2	11
676	Influence of morphology on physical properties of poly(2,5-benzimidazole) membranes. Journal of Membrane Science, 2017, 533, 342-350.	4.1	13
677	Cobaltocenium-containing polybenzimidazole polymers for alkaline anion exchange membrane applications. Polymer Chemistry, 2017, 8, 1381-1392.	1.9	95
678	Long-term durability of HT-PEM fuel cells based on thermally cross-linked polybenzimidazole. Journal of Power Sources, 2017, 342, 570-578.	4.0	83

	CITATION R	EPORT	
#	Article	IF	CITATIONS
679	Why do proton conducting polybenzimidazole phosphoric acid membranes perform well in high-temperature PEM fuel cells?. Physical Chemistry Chemical Physics, 2017, 19, 601-612.	1.3	124
680	Eliminating micro-porous layer from gas diffusion electrode for use in high temperature polymer electrolyte membrane fuel cell. Journal of Power Sources, 2017, 341, 302-308.	4.0	42
681	Pore- and macro-scale simulations of high temperature proton exchange fuel cells – HTPEMFC – and possible strategies for enhancing durability. International Journal of Hydrogen Energy, 2017, 42, 26730-26743.	3.8	13
682	Adsorption of phosphoric acid anions on platinum (111). Adsorption, 2017, 23, 971-981.	1.4	3
683	Phosphoric acid doped crosslinked polybenzimidazole (PBI-OO) blend membranes for high temperature polymer electrolyte fuel cells. Journal of Membrane Science, 2017, 544, 416-424.	4.1	80
684	High‣tability Electrodes for Highâ€Temperature Proton Exchange Membrane Fuel Cells by Using Advanced Nanocarbonaceous Materials. ChemElectroChem, 2017, 4, 3288-3295.	1.7	8
685	Effect of Methylimidazole Groups on the Performance of Poly(phenylene oxide) Based Membrane for High-Temperature Proton Exchange Membrane Fuel Cells. Industrial & Engineering Chemistry Research, 2017, 56, 10227-10234.	1.8	27
686	Polybenzimidazole-based mixed membranes with exceptionally high water vapor permeability and selectivity. Journal of Materials Chemistry A, 2017, 5, 21807-21819.	5.2	33
687	Fuel Cell Power Systems and Applications. Proceedings of the IEEE, 2017, 105, 2166-2190.	16.4	79
688	Synthesis of highly proton-conductive poly(arylene ether sulfone) bearing perfluoroalkyl sulfonic acids via polymer post-modification. Polymer, 2017, 123, 345-354.	1.8	9
689	Probing phosphoric acid redistribution and anion migration in polybenzimidazole membranes. Electrochemistry Communications, 2017, 82, 21-24.	2.3	33
691	Polyacrylonitrileâ€based proton conducting membranes containing sulfonic acid and tetrazole moieties. Journal of Applied Polymer Science, 2017, 134, 45411.	1.3	5
692	Preparation and characterization of layerâ€byâ€layer selfâ€assembly membrane based on sulfonated polyetheretherketone and polyurethane for highâ€temperature proton exchange membrane. Journal of Polymer Science Part A, 2017, 55, 3446-3454.	2.5	19
693	Carbon nanofiber paper cathode modification for higher performance of phosphoric acid fuel cells on polybenzimidazole membrane. Russian Journal of Electrochemistry, 2017, 53, 728-733.	0.3	21
694	In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures. Journal of the Electrochemical Society, 2017, 164, F1615-F1625.	1.3	45
695	On the nanosecond proton dynamics in phosphoric acid–benzimidazole and phosphoric acid–water mixtures. Physical Chemistry Chemical Physics, 2017, 19, 28540-28554.	1.3	12
696	Gel Electrolytes of Covalent Network Polybenzimidazole and Phosphoric Acid by Direct Casting. Macromolecular Materials and Engineering, 2017, 302, 1700347.	1.7	10
697	Bottom-Up Fabrication of Nanostructured Bicontinuous and Hexagonal Ion-Conducting Polymer Membranes. Macromolecules, 2017, 50, 5392-5401.	2.2	12

#	Article	IF	CITATIONS
698	A review on modelling of high temperature proton exchange membrane fuel cells (HT-PEMFCs). International Journal of Hydrogen Energy, 2017, 42, 3142-3165.	3.8	117
699	Enhanced physical stability and chemical durability of sulfonated poly(arylene ether sulfone) composite membranes having antioxidant grafted graphene oxide for polymer electrolyte membrane fuel cell applications. Journal of Membrane Science, 2017, 525, 125-134.	4.1	98
700	Development of polybenzimidazole/graphene oxide composite membranes for high temperature PEM fuel cells. International Journal of Hydrogen Energy, 2017, 42, 2636-2647.	3.8	150
701	Graphite oxide-incorporated SnP2O7 solid composite electrolyte for high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 1113-1119.	3.8	10
702	Synthesis and performance study of a novel sulfonated polytriazole proton exchange membrane. Journal of Solid State Electrochemistry, 2017, 21, 725-734.	1.2	24
703	A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system. International Journal of Hydrogen Energy, 2017, 42, 9293-9314.	3.8	463
704	The influence of methanol on the chemical state of PtRu anodes in a high-temperature direct methanol fuel cell studiedin situby synchrotron-based near-ambient pressure x-ray photoelectron spectroscopy. Journal Physics D: Applied Physics, 2017, 50, 014001.	1.3	6
705	Characterizing membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells using design of experiments. International Journal of Hydrogen Energy, 2017, 42, 1189-1202.	3.8	16
706	Accelerated testing of polymer electrolyte membranes under open-circuit voltage conditions for durable proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2017, 42, 30787-30791.	3.8	23
707	Benzoxazines in Proton Exchange Membrane Fuel Cells. , 2017, , 935-944.		1
708	Polymer and Composite Membranes for Proton-Conducting, High-Temperature Fuel Cells: A Critical Review. Materials, 2017, 10, 687.	1.3	150
709	Life Cycle Assessment of Solid Oxide Fuel Cells and Polymer Electrolyte Membrane Fuel Cells. , 2017, , 139-169.		10
710	Catalyst, Membrane, Free Electrolyte Challenges, and Pathways to Resolutions in High Temperature Polymer Electrolyte Membrane Fuel Cells. Catalysts, 2017, 7, 16.	1.6	36
711	Ce3+ doped CeP2O7 Ceramic Electrolyte for high temperature Proton Exchange Membrane Fuel Cell. International Journal of Electrochemical Science, 2017, 12, 2731-2740.	0.5	2
712	Stable nanofibrous poly(aryl sulfone ether benzimidazole) membrane with high conductivity for high temperature PEM fuel cells. Solid State Ionics, 2018, 317, 201-209.	1.3	19
713	Longâ€ŧerm Operation of High Temperature Polymer Electrolyte Membrane Fuel Cells with Fuel Composition Switching and Oxygen Enrichment. Fuel Cells, 2018, 18, 260-269.	1.5	7
714	Benzimidazole-based dendritic nanofiltration membranes. Iranian Polymer Journal (English Edition), 2018, 27, 225-237.	1.3	6
715	Effect of Catalyst Pore Size on the Performance of Nonâ€Precious Fe/N/Câ€Based Electrocatalysts for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem, 2018, 5, 1805-1810.	1.7	19

		CITATION REPORT	Г	
#	Article	IF	Сітаті	ONS
716	A technological, economical and efficiency review of direct methanol fuel cell. , 2018, , .		5	
717	Crosslinked polybenzimidazoles containing branching structure as membrane materials with excellent cell performance and durability for fuel cell applications. Journal of Power Sources, 20 389, 222-229.	18, 4.0	75	
718	Synthesis and characterization of new fluorinated copolymers based on azole groups for fuel ce membranes. Solid State Ionics, 2018, 317, 108-114.	ell 1.3	7	
719	New anhydrous proton exchange membranes based on fluoropolymers blend imidazolium poly (aromatic ether ketone)s for high temperature polymer electrolyte fuel cells. International Journ of Hydrogen Energy, 2018, 43, 8464-8473.	nal 3.8	55	
720	High Temperature Polymer Electrolyte Membrane Fuel Cells for Integrated Fuel Cell – Methan Reformer Power Systems: A Critical Review. Advanced Sustainable Systems, 2018, 2, 1700184.		44	
721	Eaton's reagent in polybenzimidazole synthesis. High Performance Polymers, 2018, 30, 699	9-709. 0.8	7	
723	Poly(2,5-benzimidazole)/trisilanolphenyl POSS composite membranes for intermediate tempera fuel cells. Journal Wuhan University of Technology, Materials Science Edition, 2018, 33, 212-22		10	
724	Extremophiles for microbial-electrochemistry applications: A critical review. Bioresource Technology, 2018, 255, 318-330.	4.8	79	
725	Effects of mesoporous fillers on properties of polybenzimidazole composite membranes for high-temperature polymer fuel cells. International Journal of Hydrogen Energy, 2018, 43, 4448-	4457. 3.8	26	
726	High-performance layered double hydroxide/poly(2,6-dimethyl-1,4-phenylene oxide) membrane porous sandwich structure for anion exchange membrane fuel cell applications. Journal of Mem Science, 2018, 552, 51-60.	with brane 4.1	79	
727	Crosslinked wholly aromatic polyether membranes based on quinoline derivatives and their application in high temperature polymer electrolyte membrane fuel cells. Journal of Power Sourd 2018, 379, 144-154.	ces, 4.0	32	
728	Novel perovskite structured calcium titanate-PBI composite membranes for high-temperature P cells: Synthesis and characterizations. International Journal of Hydrogen Energy, 2018, 43, 476.		31	
729	Imidazole-doped nanocrystalline cellulose solid proton conductor: synthesis, thermal properties and conductivity. Cellulose, 2018, 25, 281-291.	5, 2.4	39	
730	In Situ Measurement of Deformation Under Tension of ABPBI and Its Composites. , 2018, , 481	-492.	0	
731	Ternary proton exchange membranes with low ost raw materials: Solvent type influence on microstructure development, high ionic conductivity, and ionic liquid lixiviation protection. Jour of Applied Polymer Science, 2018, 135, 46012.	nal 1.3	2	
732	Investigation of thermal and tensile properties of poly(benzimidazole-imide) composites incorp salicylic acid–functionalized multiwalled carbon nanotubes. High Performance Polymers, 201 139-152.	orating 8, 30, 0.8	2	
733	Porous-Nafion/PBI composite membranes and Nafion/PBI blend membranes for vanadium redox batteries. Applied Surface Science, 2018, 450, 301-311.	flow 3.1	85	
734	Polybenzimidazole-nanocomposite membranes: Enhanced proton conductivity with low conten amine-functionalized nanoparticles. Polymer, 2018, 145, 434-446.	nt of 1.8	16	

#	Article	IF	CITATIONS
735	Anion Resistant Oxygen Reduction Electrocatalyst in Phosphoric Acid Fuel Cell. ACS Catalysis, 2018, 8, 3833-3843.	5.5	53
736	New proton conducting membrane based on bacterial cellulose/polyaniline nanocomposite film impregnated with guanidinium-based ionic liquid. Polymer, 2018, 142, 183-195.	1.8	36
737	Immunity of the Fe-N-C catalysts to electrolyte adsorption: Phosphate but not perchloric anions. Applied Catalysis B: Environmental, 2018, 234, 357-364.	10.8	49
738	Modified silicon carbide whisker reinforced polybenzimidazole used for high temperature proton exchange membrane. Journal of Energy Chemistry, 2018, 27, 820-825.	7.1	39
739	Protic ionic liquid-containing silica-based ionogels for nonhumidified PEMFC applications. Ionics, 2018, 24, 469-481.	1.2	11
740	Fabrication and optimization of proton conductive polybenzimidazole electrospun nanofiber membranes. Polymers for Advanced Technologies, 2018, 29, 594-602.	1.6	22
741	Imidazole microcapsules toward enhanced phosphoric acid loading of polymer electrolyte membrane for anhydrous proton conduction. Journal of Membrane Science, 2018, 545, 88-98.	4.1	56
742	Saltâ€leaching technique for the synthesis of porous poly(2,5â€benzimidazole) (ABPBI) membranes for fuel cell application. Journal of Applied Polymer Science, 2018, 135, 45773.	1.3	15
743	Catalyst evaluation for oxygen reduction reaction in concentrated phosphoric acid at elevated temperatures. Journal of Power Sources, 2018, 375, 77-81.	4.0	31
744	Unprecedented size-sieving ability in polybenzimidazole doped with polyprotic acids for membrane H ₂ /CO ₂ separation. Energy and Environmental Science, 2018, 11, 94-100.	15.6	115
745	Phosphoric acid-doped poly(ether sulfone benzotriazole) for high-temperature proton exchange membrane fuel cell applications. Journal of Membrane Science, 2018, 549, 23-27.	4.1	79
746	Thermally stable polymers for advanced high-performance gas separation membranes. Progress in Energy and Combustion Science, 2018, 66, 1-41.	15.8	252
747	A synthesis study of phosphonated PSEBS for high temperature proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2018, 135, 45954.	1.3	24
748	Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells. Nanotechnology, 2018, 29, 035403.	1.3	46
749	Redox Flow Batteries for Energy Storage: A Technology Review. Journal of Electrochemical Energy Conversion and Storage, 2018, 15, .	1.1	123
750	Fuel Cell Power System Integration with Grid using Finite Set Model Predictive Control Technique. , 2018, , .		1
751	Formation and investigation of dual cross-linked high temperature proton exchange membranes based on vinylimidazolium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) and polystyrene. Polymer Chemistry, 2018, 9, 5462-5469.	1.9	32
752	Study on electrode carbon corrosion of high temperature proton exchange membrane fuel cell. Materials Today: Proceedings, 2018, 5, 10602-10610.	0.9	17

#	Article	IF	Citations
753	Novel cross-linked PBI-blended membranes evaluated for high temperature fuel cell application and SO 2 electrolysis. Materials Today: Proceedings, 2018, 5, 10524-10532.	0.9	3
754	Fuel Cell Electrolytes of Polybenzimidazole Membranes Crossâ€linked with Bis(chloromethyl) Arenes. Fuel Cells, 2018, 18, 688-697.	1.5	9
755	Hydrogen Production by Membrane Water Splitting Technologies. , 0, , .		4
756	Preparation and Investigation of Reinforced PVP Blend Membranes for High Temperature Polymer Electrolyte Membranes. Fibers and Polymers, 2018, 19, 2449-2457.	1.1	32
757	Proton Conductions. Polymers and Polymeric Composites, 2018, , 1-34.	0.6	0
758	Effect of Phosphorylation of Polybenzimidazole on Its Conductive Properties. Petroleum Chemistry, 2018, 58, 958-964.	0.4	7
759	In-situ diagnosis on performance degradation of high temperature polymer electrolyte membrane fuel cell by examining its electrochemical properties under operation. International Journal of Hydrogen Energy, 2018, 43, 21006-21016.	3.8	33
760	Infrared Spectroscopy of Polybenzimidazole in the Dry and Hydrate Forms: A Combined Experimental and Computational Study. ACS Omega, 2018, 3, 11592-11607.	1.6	13
761	Recent Advancements in Biofuels and Bioenergy Utilization. , 2018, , .		16
762	Current Advances and Applications of Fuel Cell Technologies. , 2018, , 303-337.		13
763	Embedding phosphoric acid-doped cellulose nanofibers into sulfonated poly (ether sulfone) for proton exchange membrane. Polymer, 2018, 156, 179-185.	1.8	26
764	High CO tolerance of new SiO2 doped phosphoric acid/polybenzimidazole polymer electrolyte membrane fuel cells at high temperatures of 200–250°C. International Journal of Hydrogen Energy, 2018, 43, 22487-22499.	3.8	47
765	Fabrication of Stable and Wellâ€connected Proton Path in Catalyst Layer for High Temperature Polymer Electrolyte Fuel Cells. ChemCatChem, 2018, 10, 5314-5322.	1.8	11
766	Cross-Linkable Polymeric Ionic Liquid Improve Phosphoric Acid Retention and Long-Term Conductivity Stability in Polybenzimidazole Based PEMs. ACS Sustainable Chemistry and Engineering, 2018, 6, 16352-16362.	3.2	63
767	In Operando Neutron Radiography Analysis of a High-Temperature Polymer Electrolyte Fuel Cell Based on a Phosphoric Acid-Doped Polybenzimidazole Membrane Using the Hydrogen-Deuterium Contrast Method. Energies, 2018, 11, 2214.	1.6	4
768	Application of Novel Anion-Exchange Blend Membranes (AEBMs) to Vanadium Redox Flow Batteries. Membranes, 2018, 8, 33.	1.4	14
769	Reaction of ozone with polybenzimidazole (PBI). Ozone: Science and Engineering, 2018, 40, 392-398.	1.4	4
770	A facile method of asymmetric ether-containing polybenzimidazole membrane for high temperature proton exchange membrane fuel cell. International Journal of Hydrogen Energy, 2018, 43, 12337-12345.	3.8	12

#	Article	IF	Citations
#	Arylether-type polybenzimidazoles bearing benzimidazolyl pendants for high-temperature proton		
771	exchange membrane fuel cells. Journal of Power Sources, 2018, 393, 99-107.	4.0	73
772	Quaternized poly(aromatic ether sulfone) with siloxane crosslinking networks as high temperature proton exchange membranes. Applied Surface Science, 2018, 452, 473-480.	3.1	42
773	Investigating different break-in procedures for reformed methanol high temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2018, 43, 14691-14700.	3.8	11
774	Solvent and pH-stable poly(2,5-benzimidazole) (ABPBI) based UF membranes: Preparation and characterizations. Journal of Membrane Science, 2018, 563, 743-751.	4.1	6
775	Cage-like cross-linked membranes with excellent ionic liquid retention and elevated proton conductivity for HT-PEMFCs. Electrochimica Acta, 2018, 283, 691-698.	2.6	36
776	Molecular Dynamics Simulation to Reveal Effects of Binder Content on Pt/C Catalyst Coverage in a High-Temperature Polymer Electrolyte Membrane Fuel Cell. ACS Applied Nano Materials, 2018, 1, 3251-3258.	2.4	24
777	PEM fuel cells of poly(2,5-benzimidazole) ABPBI membrane electrolytes doped with phosphoric acid and metal phosphates. Materials Chemistry and Physics, 2018, 216, 485-490.	2.0	17
778	Fractal diffusion in high temperature polymer electrolyte fuel cell membranes. Journal of Chemical Physics, 2018, 148, 204906.	1.2	8
779	The influence of phosphoric acid migration on the performance of high temperature polymer electrolyte fuel cells. Journal of Power Sources, 2018, 399, 151-156.	4.0	15
780	Polymer Capacitor Dielectrics for High Temperature Applications. ACS Applied Materials & Interfaces, 2018, 10, 29189-29218.	4.0	220
781	Preparation and investigations of ABPBI membrane for HT-PEMFC by immersion precipitation method. Journal of Membrane Science, 2018, 564, 211-217.	4.1	22
782	PVDF-g-poly (styrene-co-vinylbenzyl chloride) based anion exchange membrane: High salt removal efficiency and stability. Desalination, 2018, 444, 35-43.	4.0	23
783	Poly (vinyl alcohol) and poly (benzimidazole) blend membranes for high performance alkaline direct ethanol fuel cells. Renewable Energy, 2018, 127, 883-895.	4.3	47
784	Polybenzimidazole (PBI-OO) based composite membranes using sulfophenylated TiO2 as both filler and crosslinker, and their use in the HT-PEM fuel cell. Journal of Membrane Science, 2018, 560, 11-20.	4.1	109
785	Determination of Anion Transference Number and Phosphoric Acid Diffusion Coefficient in High Temperature Polymer Electrolyte Membranes. Journal of the Electrochemical Society, 2018, 165, F863-F869.	1.3	29
786	Layer by layer self-assembly fabrication of high temperature proton exchange membrane based on ionic liquids and polymers. Journal of Molecular Liquids, 2018, 269, 666-674.	2.3	37
787	Metal-organic framework anchored sulfonated poly(ether sulfone) as a high temperature proton exchange membrane for fuel cells. Journal of Membrane Science, 2018, 565, 281-292.	4.1	94
788	Polylaminate TaN/Ta coating modified ferritic stainless steel bipolar plate for high temperature proton exchange membrane fuel cell. Journal of Power Sources, 2018, 399, 343-349.	4.0	37

	Сітаті	on Report	
#	Article	IF	CITATIONS
789	Experimental characterization of high-temperature proton exchange membrane fuel cells under CO- and methane-containing hydrogen-rich gases. Journal of Applied Electrochemistry, 2018, 48, 911-921.	1.5	5
790	Heating of Low and High Temperature PEM Fuel Cells with Alternating Current. Fuel Cells, 2018, 18, 326-334.	1.5	4
791	Pd core-shell alloy catalysts for high-temperature polymer electrolyte membrane fuel cells: Effect of the core composition on the activity towards oxygen reduction reactions. Applied Catalysis A: General, 2018, 562, 250-257.	2.2	30
792	Novel cross-linked membranes based on polybenzimidazole and polymeric ionic liquid with improved proton conductivity for HT-PEMFC applications. Journal of the Taiwan Institute of Chemical Engineers, 2019, 95, 185-194.	2.7	40
793	Recent advances in multi-scale design and construction of materials for direct methanol fuel cells. Nano Energy, 2019, 65, 104048.	8.2	187
794	Composite Membranes for High Temperature PEM Fuel Cells and Electrolysers: A Critical Review. Membranes, 2019, 9, 83.	1.4	114
795	Sub-1 μm Free-Standing Symmetric Membrane for Osmotic Separations. Environmental Science and Technology Letters, 2019, 6, 492-498.	3.9	20
796	Theoretical insights into inorganic–organic intercalation products of the layered perovskite HLaNb ₂ O ₇ : perspectives for hybrid proton conductors. Physical Chemistry Chemical Physics, 2019, 21, 16647-16657.	1.3	3
798	Benzimidazole as Solid Electrolyte Material for Fuel Cells. , 0, , .		0
799	Poly(arylene piperidine)s with phosphoric acid doping as high temperature polymer electrolyte membrane for durable, high-performance fuel cells. Journal of Power Sources, 2019, 443, 227219.	4.0	87
800	Experimental investigation of steam reforming of methanol over La2CuO4/CuZnAl-oxides nanocatalysts. Applied Energy, 2019, 254, 113022.	5.1	24
801	High temperature proton exchange porous membranes based on polybenzimidazole/ lignosulfonate blends: Preparation, morphology and physical and proton conductivity properties. International Journal of Hydrogen Energy, 2019, 44, 30440-30453.	3.8	22
802	Tailoring Different Molecular Weight Phenylene–Polybenzimidazole Membranes with Remarkable Oxidative Stability and Conductive Properties for High-Temperature Polymer Electrolyte Fuel Cells. ACS Applied Materials & Interfaces, 2019, 11, 46269-46277.	4.0	23
804	Degradation Studies of Single Cell and Short Stack for High Temperature Proton Exchange Membrane Fuel Cells Based on PBI/H 3 PO 4 Membrane. ChemistrySelect, 2019, 4, 12313-12319.	0.7	3
805	Novel crosslinked ABâ€ŧype polyphenylquinoxaline membranes for highâ€ŧemperature proton exchange membrane fuel cells. Polymer Engineering and Science, 2019, 59, 2169-2173.	1.5	9
806	Influence of operating conditions on the degradation mechanism in high-temperature polymer electrolyte fuel cells. Journal of Power Sources, 2019, 439, 227090.	4.0	25
807	α-ZrP Nanoreinforcement Overcomes the Trade-Off between Phosphoric Acid Dopability and Thermomechanical Properties: Nanocomposite HTPEM with Stable Fuel Cell Performance. ACS Applied Materials & Interfaces, 2019, 11, 37013-37025.	4.0	26
808	Polybenzimidazole nanofibers for neural stem cell culture. Materials Today Chemistry, 2019, 14, 100185.	1.7	20

#	Article	IF	Citations
809	Polybenzimidazoles containing heterocyclic benzo[c]cinnoline structure prepared by sol-gel process and acid doping level adjustment for high temperature PEMFC application. Polymer, 2019, 182, 121814.	1.8	7
810	Fabrication of layered membrane electrolytes with spin coating technique as anhydrous proton exchange membranes. Journal of Colloid and Interface Science, 2019, 555, 722-730.	5.0	29
811	N-Boronated polybenzimidazole for composite electrolyte design of highly ion conducting pseudo solid-state ion gel electrolytes with a high Li-transference number. Journal of Materials Chemistry A, 2019, 7, 4459-4468.	5.2	33
812	Numerical Modeling of Polymer Electrolyte Fuel Cells With Analytical and Experimental Validation. Journal of Electrochemical Energy Conversion and Storage, 2019, 16, .	1.1	7
813	A novel polybenzimidazole membrane containing bulky naphthalene group for vanadium flow battery. Journal of Membrane Science, 2019, 586, 231-239.	4.1	63
814	Durability and degradation of vapor-fed direct dimethyl ether high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2019, 432, 30-37.	4.0	7
815	Polybenzimidazole as proton conducting filler in polydimethylsiloxane: Enhanced oxidative stability and membrane properties. Journal of Applied Polymer Science, 2019, 136, 48151.	1.3	3
816	Influence of oxygen on the cathode in HT-PEM fuel cells. International Journal of Hydrogen Energy, 2019, 44, 20379-20388.	3.8	6
817	Various hydrophilic carbon dots doped high temperature proton exchange composite membranes based on polyvinylpyrrolidone and polyethersulfone. Journal of Colloid and Interface Science, 2019, 553, 503-511.	5.0	47
818	Design of sepiolite-supported ionogel-embedded composite membranes without proton carrier wastage for wide-temperature-range operation of proton exchange membrane fuel cells. Journal of Materials Chemistry A, 2019, 7, 15288-15301.	5.2	54
819	Research trends in proton exchange membrane fuel cells during 2008–2018: A bibliometric analysis. Heliyon, 2019, 5, e01724.	1.4	46
820	Electrolyte Membranes Based on Molten KH ₅ (PO ₄) ₂ for Intermediate Temperature Fuel Cells. Fuel Cells, 2019, 19, 280-288.	1.5	9
821	Poly(ether ketone) composite membranes by electrospinning for fuel cell applications. Journal of Power Sources, 2019, 434, 226733.	4.0	13
822	The Nature of Proton Shuttling in Protic Ionic Liquid Fuel Cells. Advanced Energy Materials, 2019, 9, 1900744.	10.2	42
823	Degradation kinetics of Pt during high-temperature PEM fuel cell operation part I: Kinetics of Pt surface oxidation and dissolution in concentrated H3PO4 electrolyte at elevated temperatures. Electrochimica Acta, 2019, 313, 352-366.	2.6	14
824	Fabrication and characterization of sulfonated polybenzimidazole/sulfonated imidized graphene oxide hybrid membranes for high temperature proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2019, 136, 47892.	1.3	29
825	Toward enhanced conductivity of high-temperature proton exchange membranes: development of novel PIM-1 reinforced PBI alloy membranes. Chemical Communications, 2019, 55, 6491-6494.	2.2	62
826	Fabrication and investigation of phosphoric acid doped imidazolium siloxane crosslinked poly(2,6â€dimethylâ€1,4â€phenylene oxide) for high temperature polymer electrolyte membranes. Polymer International, 2019, 68, 1509-1515.	1.6	7

#	Article	IF	CITATIONS
827	Organic Additives to Improve Catalyst Performance for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. ChemElectroChem, 2019, 6, 3892-3900.	1.7	5
828	Phosphonated mesoporous silica based composite membranes for high temperature proton exchange membrane fuel cells. Journal of Solid State Electrochemistry, 2019, 23, 1837-1850.	1.2	6
829	Sulfonated PBI Gel Membranes for Redox Flow Batteries. Journal of the Electrochemical Society, 2019, 166, A1449-A1455.	1.3	38
830	High-Temperature and All-Solid-State Flexible Supercapacitors with Excellent Long-Term Stability Based on Porous Polybenzimidazole/Functional Ionic Liquid Electrolyte. ACS Applied Materials & Interfaces, 2019, 11, 17742-17750.	4.0	31
831	Achieving high Pt utilization and superior performance of high temperature polymer electrolyte membrane fuel cell by employing low-Pt-content catalyst and microporous layer free electrode design. Journal of Power Sources, 2019, 426, 124-133.	4.0	33
832	Synthesis and Properties of Poly(imides) and Poly(imides)/Ionic Liquid Composites Bearing a Benzimidazole Moiety. Polymers, 2019, 11, 759.	2.0	3
833	Acidic liquid-swollen polymer membranes exhibiting anhydrous proton conductivity higher than 100 mSÂcm ^{â^1} at around 100 °C. Journal of Materials Chemistry A, 2019, 7, 15585-15592.	5.2	17
834	Ionic Liquid Composite Polybenzimidazol Membranes for High Temperature PEMFC Applications. Polymers, 2019, 11, 732.	2.0	42
835	Crosslinked polybenzimidazole containing branching structure with no sacrifice of effective N-H sites: Towards high-performance high-temperature proton exchange membranes for fuel cells. Journal of Membrane Science, 2019, 583, 110-117.	4.1	82
836	Proton conducting porous membranes based on poly(benzimidazole) and poly(acrylic acid) blends for high temperature proton exchange membranes. Solid State Ionics, 2019, 337, 122-131.	1.3	19
837	The energetics of phosphoric acid interactions reveals a new acid loss mechanism. Journal of Materials Chemistry A, 2019, 7, 9867-9876.	5.2	83
838	Multilayered Membrane Electrolytes Based on Aramid Nanofibers for High-Temperature Proton Exchange Membrane Fuel Cells. ACS Applied Nano Materials, 2019, 2, 2160-2168.	2.4	51
839	Effect of phosphonated triazine monomer additive in disulfonated poly (arylene ether sulfone) composite membranes for proton exchange membrane fuel cells. Polymer, 2019, 171, 34-44.	1.8	8
840	Prospects and challenges of graphene based fuel cells. Journal of Energy Chemistry, 2019, 39, 217-234.	7.1	63
841	Synthesis and Physical Properties of Proton Conducting Polymer Electrolytes Comprising PAM Cross-Linked Flexible Spacers. Macromolecular Research, 2019, 27, 713-719.	1.0	5
842	Blending polybenzimidazole with an anion exchange polymer increases the efficiency of vanadium redox flow batteries. Journal of Membrane Science, 2019, 580, 110-116.	4.1	59
843	Physical properties measurement and performance comparison of membranes for planar membrane humidifiers. International Journal of Heat and Mass Transfer, 2019, 136, 393-403.	2.5	26
844	Some aspects of polybenzimidazoles' synthesis in Eaton reagent under different temperatures and microwave irradiation. Journal of Macromolecular Science - Pure and Applied Chemistry, 2019, 56, 609-617.	1.2	2

#	Article	IF	CITATIONS
845	Performances of Anion-Exchange Blend Membranes on Vanadium Redox Flow Batteries. Membranes, 2019, 9, 31.	1.4	30
846	Investigation of the Effect of Humidity Level of H ₂ on Cell Performance of a HTâ€PEM Fuel Cell. Fuel Cells, 2019, 19, 2-9.	1.5	28
847	Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. International Journal of Hydrogen Energy, 2019, 44, 6116-6135.	3.8	207
848	Physiochemical Characteristics of Solid Electrolyte Membranes for High-Temperature PEM Fuel Cell. International Journal of Electrochemical Science, 2019, 14, 371-386.	0.5	21
849	Arsenate removal from aqueous solutions using micellar-enhanced ultrafiltration. Journal of Environmental Health Science & Engineering, 2019, 17, 115-127.	1.4	8
850	The design of a multifunctional separator regulating the lithium ion flux for advanced lithium-ion batteries. RSC Advances, 2019, 9, 40084-40091.	1.7	16
851	Carbon Nanotube-Based Fuel Cell Catalysts-Comparison with Carbon Black. Nanostructure Science and Technology, 2019, , 1-28.	0.1	1
852	Nanofiber-Based Proton Exchange Membranes: Development of Aligned Electrospun Nanofibers for Polymer Electrolyte Fuel Cell Applications. ACS Sustainable Chemistry and Engineering, 2019, 7, 1808-1825.	3.2	72
853	High-performance and low-leakage phosphoric acid fuel cell with synergic composite membrane stacking of micro glass microfiber and nano PTFE. Renewable Energy, 2019, 134, 982-988.	4.3	22
854	A new high temperature polymer electrolyte membrane based on tri-functional group grafted polysulfone for fuel cell application. Journal of Membrane Science, 2019, 572, 496-503.	4.1	48
855	Recent advances in additiveâ€enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. International Journal of Energy Research, 2019, 43, 2756-2794.	2.2	116
856	Poly(2,5-benzimidazole)/sulfonated sepiolite composite membranes with low phosphoric acid doping levels for PEMFC applications in a wide temperature range. Journal of Membrane Science, 2019, 574, 282-298.	4.1	57
857	Fuel cell membranes – Pros and cons. Energy, 2019, 172, 155-172.	4.5	163
858	Review of Anodic Catalysts for SO2 Depolarized Electrolysis for "Green Hydrogen―Production. Catalysts, 2019, 9, 63.	1.6	44
859	High proton conductivity polybenzimidazole proton exchange membrane based on phosphotungstic acid-anchored nano-Kevlar fibers. Journal of Materials Science, 2019, 54, 1640-1653.	1.7	22
860	Nano-ordered aromatic/alicyclic polybenzimidazole blend membranes. Reactive and Functional Polymers, 2020, 146, 104312.	2.0	2
861	Phosphoric acid doped triazole-containing cross-linked polymer electrolytes with enhanced stability for high-temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2020, 595, 117508.	4.1	45
862	Current Scenario of Poly (2,5-Benzimidazole) (ABPBI) as Prospective PEM for Application in HT-PEMFC. Polymer Reviews, 2020, 60, 267-317.	5.3	38

#	Article	IF	CITATIONS
863	Recent advances in membrane technologies for hydrogen purification. International Journal of Hydrogen Energy, 2020, 45, 7313-7338.	3.8	202
864	Cross-linked polybenzimidazoles containing hyperbranched cross-linkers and quaternary ammoniums as high-temperature proton exchange membranes: Enhanced stability and conductivity. Journal of Membrane Science, 2020, 593, 117435.	4.1	65
865	A composite membrane based on PTFE and solid poly (mixed acid (PMo12O40)X-(PO-OH)Y) for high-temperature fuel cells. Ionics, 2020, 26, 1003-1009.	1.2	0
866	Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polymer Chemistry, 2020, 11, 1043-1054.	1.9	32
867	Influence of residual water and cation acidity on the ionic transport mechanism in proton-conducting ionic liquids. Physical Chemistry Chemical Physics, 2020, 22, 1145-1153.	1.3	12
868	Cost-effective porous-organic-polymer-based electrolyte membranes with superprotonic conductivity and low activation energy. Journal of Materials Chemistry A, 2020, 8, 1147-1153.	5.2	28
869	Stability of ionic-covalently cross-linked PBI-blended membranes for SO2 electrolysis at elevated temperatures. International Journal of Hydrogen Energy, 2020, 45, 2447-2459.	3.8	1
870	Significantly enhanced performance of direct methanol fuel cells at elevated temperatures. Journal of Power Sources, 2020, 450, 227620.	4.0	25
871	Mechanical properties and creep behavior of fluoroelastomer under hydrochloric acid environments. Polymer Bulletin, 2020, 77, 5967-5983.	1.7	6
872	Hybrid membranes based on polybenzimidazoles and silica with imidazoline-functionalized surface, candidates for fuel cells applications. Ionics, 2020, 26, 1853-1860.	1.2	9
873	Three-layered electrolyte membranes with acidÂreservoir for prolonged lifetime of high-temperature polymer electrolyte membrane fuel cells. International Journal of Hydrogen Energy, 2020, 45, 1008-1017.	3.8	17
874	Investigation on carbon nanotube oxide for anhydrous proton exchange membranes application. Journal of Applied Polymer Science, 2020, 137, 48833.	1.3	8
875	How Hydrogen Bond Interactions Affect the Flame Retardancy and Antiâ€Dripping Performances of PET. Macromolecular Materials and Engineering, 2020, 305, 1900661.	1.7	24
876	Phosphoric acid-loaded covalent triazine framework for enhanced the proton conductivity of the proton exchange membrane. Electrochimica Acta, 2020, 331, 135235.	2.6	18
877	Ethyl phosphoric acid grafted amino-modified polybenzimidazole with improved long-term stability for high-temperature proton exchange membrane applications. International Journal of Hydrogen Energy, 2020, 45, 3176-3185.	3.8	36
878	Preparation and investigation of 1-(3-aminopropyl)imidazole functionalized polyvinyl chloride/poly(ether ketone cardo) membranes for HT-PEMFCs. Sustainable Energy and Fuels, 2020, 4, 6066-6074.	2.5	9
879	Polybenzimidazole-Based High-Temperature Polymer Electrolyte Membrane Fuel Cells: New Insights and Recent Progress. Electrochemical Energy Reviews, 2020, 3, 793-845.	13.1	92
880	A high-temperature anion-exchange membrane fuel cell. Journal of Power Sources Advances, 2020, 5, 100023.	2.6	76

ARTICLE A comparative experimental study of the hygroscopic and mechanical behaviors of electrospun nanofiber membranes and solutionâ€east films of polybenzimidazole. Journal of Applied Polymer		Citations
Science, 2020, 137, 49639. Crosslinked polymer electrolytes of high pyridine contents for HT-PEM fuel cells. International Journal of Hydrogen Energy, 2020, 45, 35053-35063.	3.8	17
Molecular engineering of hydrocarbon membrane to substitute perfluorinated sulfonic acid membrane for proton exchange membrane fuel cell operation. Materials Today Energy, 2020, 17, 100483.	2.5	20
Spectroscopic Study of Reinforced Cross-Linked Polymeric Membranes for Fuel Cell Application. ACS Omega, 2020, 5, 15901-15910.	1.6	4
Synthesis and characterization of poly <scp> 2―<i>N</i> </scp> â€acrylamidoâ€2â€methylâ^1â€propane sulfon acid functionalized graphene oxide embedded electrolyte membrane using <scp>DOE</scp> for <scp>PEMFC</scp> . International Journal of Energy Research, 2020, 44, 10354-10377.	lic 2.2	3
SPEEK/CMABPBI Ionic and Self-Covalent Cross-Linked Composite Membrane: A Method to Comprehensively Enhance the Properties of High-Temperature Proton Exchange Membranes. ACS Applied Energy Materials, 2020, 3, 12115-12126.	2.5	27
The source of conductivity and proton dynamics study in TEMPO-oxidized cellulose doped with various heterocyclic molecules. Cellulose, 2020, 27, 8585-8604.	2.4	11
Energetics of Base–Acid Pairs for the Design of High-Temperature Fuel Cell Polymer Electrolytes. Journal of Physical Chemistry B, 2020, 124, 7725-7734.	1.2	23
Role of phosphate source in improving the proton conductivity of tin pyrophosphate and its composite electrolytes. Journal of Materials Chemistry A, 2020, 8, 16345-16354.	5.2	15
Sulfonated graphene oxide as an inorganic filler in promoting the properties of a polybenzimidazole membrane as a high temperature proton exchange membrane. International Journal of Hydrogen Energy, 2020, 45, 27510-27526.	3.8	49
Effect of metallacarborane salt H[COSANE] doping on the performance properties of polybenzimidazole membranes for high temperature PEMFCs. Soft Matter, 2020, 16, 7624-7635.	1.2	9
The effect of dodecylbenzenesulfonic acid molecules on poly(4,4-diphenylether-5,5-dibenzimidazole) films. Journal of Polymer Research, 2020, 27, 1.	1.2	0
Anion exchange membranes based on ionic polybenzimidazoles crosslinked by thiol-ene reaction. Reactive and Functional Polymers, 2020, 156, 104719.	2.0	16
Properties and stability of quaternary ammonium-biphosphate ion-pair poly(sulfone)s high temperature proton exchange membranes for H2/O2 fuel cells. Journal of Power Sources, 2020, 475, 228521.	4.0	33
Dual cross-linked polymer electrolyte membranes based on poly(aryl ether ketone) and poly(styrene-vinylimidazole-divinylbenzene) for high temperature proton exchange membrane fuel cells. Journal of Power Sources, 2020, 480, 228859.	4.0	28
PBlâ€ŧype Polymers and Acidic Proton Conducting Ionic Liquids – Conductivity and Molecular Interactions. Fuel Cells, 2020, 20, 461-468.	1.5	13
Highly Conductive Polybenzimidazole Membranes at Low Phosphoric Acid Uptake with Excellent Fuel Cell Performances by Constructing Long-Range Continuous Proton Transport Channels Using a Metal–Organic Framework (UIO-66). ACS Applied Materials & Interfaces, 2020, 12, 41350-41358.	4.0	78

898Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers, 2020, 12, 1861.2.0	84
---	----

.

#

# 899	ARTICLE On the role of local heating in cathode degradation during the oxygen reduction reaction in solid acid fuel cells. Sustainable Energy and Fuels, 2020, 4, 5284-5293.	lF 2.5	Citations 5
900	Influence of the acid–base stoichiometry and residual water on the transport mechanism in a highly-BrÃ,nsted-acidic proton-conducting ionic liquid. RSC Advances, 2020, 10, 42596-42604.	1.7	6
901	Assessing the influence of various imidazolium groups on the properties of poly(vinyl chloride) based high temperature proton exchange membranes. European Polymer Journal, 2020, 137, 109948.	2.6	23
902	UV Photo-Oxidation of Polybenzimidazole (PBI). Technologies, 2020, 8, 52.	3.0	2
903	Ultrathin PtCo nanorod assemblies with self-optimized surface for oxygen reduction reaction. Journal of Electroanalytical Chemistry, 2020, 870, 114194.	1.9	19
904	A Solid-State and Flexible Supercapacitor That Operates across a Wide Temperature Range. ACS Applied Energy Materials, 2020, 3, 5693-5704.	2.5	45
905	In situ synthesis of star copolymers consisting of a <scp>polyhedral oligomeric silsesquioxane</scp> core and poly(2,5â€benzimidazole) arms for highâ€ŧemperature proton exchange membrane fuel cells. International Journal of Energy Research, 2020, 44, 8769-8780.	2.2	6
906	Investigation of Porous Metal-Based 3D-Printed Anode GDLs for Tubular High Temperature Proton Exchange Membrane Fuel Cells. Materials, 2020, 13, 2096.	1.3	10
907	Porous polybenzimidazole membranes with high ion selectivity for the vanadium redox flow battery. Journal of Membrane Science, 2020, 611, 118359.	4.1	52
908	From polybenzimidazoles to polybenzimidazoliums and polybenzimidazolides. Journal of Materials Chemistry A, 2020, 8, 12854-12886.	5.2	133
909	Sulfonated polyoxadiazole synthesis and processing into ion onducting films. Polymer International, 2020, 69, 1243-1255.	1.6	15
910	Tuning proton dissociation energy in proton carrier doped 2D covalent organic frameworks for anhydrous proton conduction at elevated temperature. Journal of Materials Chemistry A, 2020, 8, 13702-13709.	5.2	61
911	A simple and effective method of enhancing the proton conductivity of polybenzimidazole proton exchange membranes through protonated polymer during solvation. Journal of Power Sources, 2020, 455, 227965.	4.0	25
912	Hyperbranched polyamidoamine modified high temperature proton exchange membranes based on PTFE reinforced blended polymers. Journal of Membrane Science, 2020, 604, 118004.	4.1	34
913	Thermally crosslinked and quaternized polybenzimidazole ionomer binders for solid alkaline fuel cells. International Journal of Hydrogen Energy, 2020, 45, 11773-11783.	3.8	9
914	Preparation of Covalent-Ionically Cross-Linked UiO-66-NH2/Sulfonated Aromatic Composite Proton Exchange Membranes With Excellent Performance. Frontiers in Chemistry, 2020, 8, 56.	1.8	17
915	Understanding the role of the anode on the polarization losses in high-temperature polymer electrolyte membrane fuel cells using the distribution of relaxation times analysis. Journal of Power Sources, 2020, 471, 228469.	4.0	35
916	Cross-Linked Polybenzimidazole Membrane for PEM Fuel Cells. ACS Applied Polymer Materials, 2020, 2, 3161-3170.	2.0	50

#	Article	IF	CITATIONS
917	Fabricating a MOF Material with Polybenzimidazole into an Efficient Proton Exchange Membrane. ACS Applied Energy Materials, 2020, 3, 7964-7977.	2.5	98
918	Biopolymer membranes in fuel cell applications. , 2020, , 423-476.		7
919	Influence of silica nanoparticles on the desalination performance of forward osmosis polybenzimidazole membranes. Desalination, 2020, 491, 114441.	4.0	19
920	Modeling and Design of a Multi-Tubular Packed-Bed Reactor for Methanol Steam Reforming over a Cu/ZnO/Al2O3 Catalyst. Energies, 2020, 13, 610.	1.6	24
921	Constructing anhydrous proton exchange membranes based on cadmium telluride nanocrystal-doped sulfonated poly(ether ether ketone)/polyurethane composites. Nanotechnology, 2020, 31, 205707.	1.3	8
922	Fabrication of Ultrahighâ€&trength Polybenzimidazole Fibers via a Novel and Green Integrated Liquid Crystal Spinning Process. Macromolecular Materials and Engineering, 2020, 305, 1900717.	1.7	5
923	Synthesis and preparation of branched block polybenzimidazole membranes with high proton conductivity and single-cell performance for use in high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2020, 602, 117981.	4.1	67
924	Proton exchange membrane prepared by blending polybenzimidazole with poly (aminophosphonate) Tj ETQq1 \Im	l 0.784314	rgBT /Overlo
925	Synthesis and Characterization of New Phosphorus Containing Sulfonated Polytriazoles for Proton Exchange Membrane Application. Journal of Polymer Science, 2020, 58, 263-279.	2.0	15
926	Performance deterioration and recovery in high-temperature polymer electrolyte membrane fuel cells: Effects of deliquescence of phosphoric acid. International Journal of Hydrogen Energy, 2020, 45, 32844-32855.	3.8	8
927	Quaternary ammonium groups grafted polybenzimidazole membranes for vanadium redox flow battery applications. Journal of Power Sources, 2020, 457, 228037.	4.0	55
928	Azole structures influence fuel cell performance of phosphoric acid-doped poly(phenylene oxide) with azoles on side chains. Journal of Membrane Science, 2020, 605, 118096.	4.1	22
929	Synthesis and properties of phosphonated polysulfones for durable high-temperature proton exchange membranes fuel cell. Journal of Membrane Science, 2020, 605, 118107.	4.1	27
930	Polybenzimidazole composite membranes containing imidazole functionalized graphene oxide showing high proton conductivity and improved physicochemical properties. International Journal of Hydrogen Energy, 2021, 46, 12254-12262.	3.8	33
931	1-(3-Aminopropyl)imidazole functionalized poly(vinyl chloride) for high temperature proton exchange membrane fuel cell applications. Journal of Membrane Science, 2021, 620, 118873.	4.1	40
932	An overview of amphoteric ion exchange membranes for vanadium redox flow batteries. Journal of Materials Science and Technology, 2021, 69, 212-227.	5.6	41
933	Effects of phosphotungstic acid on performance of phosphoric acid doped polyethersulfone-polyvinylpyrrolidone membranes for high temperature fuel cells. International Journal of Hydrogen Energy, 2021, 46, 11104-11114.	3.8	22
934	The impact of poly (ionic liquid) on the phosphoric acid stability of polybenzimidazole-base HT-PEMs. Renewable Energy, 2021, 163, 1692-1700.	4.3	31

#	Article	IF	CITATIONS
935	First demonstration of phosphate enhanced atomically dispersed bimetallic FeCu catalysts as Pt-free cathodes for high temperature phosphoric acid doped polybenzimidazole fuel cells. Applied Catalysis B: Environmental, 2021, 284, 119717.	10.8	28
936	Effect of phosphoric acid-doped polybenzimidazole membranes on the performance of H+-ion concentration cell. International Journal of Hydrogen Energy, 2021, 46, 4354-4364.	3.8	5
937	A review of proton exchange membranes based on protic ionic liquid/polymer blends for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2021, 484, 229197.	4.0	117
938	Symmetric sponge-like porous polybenzimidazole membrane for high temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2021, 620, 118981.	4.1	56
939	A new molecular design platform for high-performance polymers from versatile bio-based tyramine: a case study of tyramine-derived phthalonitrile resin. Polymer Chemistry, 2021, 12, 408-422.	1.9	17
940	Decoupled Redox Catalytic Hydrogen Production with a Robust Electrolyte-Borne Electron and Proton Carrier. Journal of the American Chemical Society, 2021, 143, 223-231.	6.6	48
941	An in-situ RAFT polymerization technique for the preparation of poly(N-vinyl imidazole) modified Cloisite nanoclay to develop nanocomposite PEM. Polymer, 2021, 212, 123175.	1.8	14
942	Preparation and molecular simulation of grafted polybenzimidazoles containing benzimidazole type side pendant as high-temperature proton exchange membranes. Journal of Membrane Science, 2021, 620, 118858.	4.1	44
943	A template-free method to synthesis high density iron single atoms anchored on carbon nanotubes for high temperature polymer electrolyte membrane fuel cells. Nano Energy, 2021, 80, 105534.	8.2	35
944	Preparation and properties of sulfonated poly (2, 6-dimethyl-1, 4- phenylene oxide) / ionic liquid /phosphoric acid high temperature proton exchange composite membrane. Polymer-Plastics Technology and Materials, 2021, 60, 650-658.	0.6	3
945	Grafting free radical scavengers onto polyarylethersulfone backbones for superior chemical stability of high temperature polymer membrane electrolytes. Chemical Engineering Journal, 2021, 413, 127541.	6.6	43
946	Dielectric polymers for high-temperature capacitive energy storage. Chemical Society Reviews, 2021, 50, 6369-6400.	18.7	262
947	Membranes based on polybenzimidazole and protic ionic liquid: preparation and properties. Russian Chemical Bulletin, 2021, 70, 56-61.	0.4	7
948	Catalysts for high-temperature fuel cells operated by alcohol fuels. , 2021, , 173-186.		3
949	Bridging a bi-directional connection between electricity and fuels in hybrid multienergy systems. , 2021, , 41-84.		12
950	Nanocomposite membranes of polybenzimidazole and amine-functionalized carbon nanofibers for high temperature proton exchange membrane fuel cells. RSC Advances, 2021, 11, 9964-9976.	1.7	14
951	Impact of N-Substituent and p <i>K</i> _a of Azole Rings on Fuel Cell Performance and Phosphoric Acid Loss. ACS Applied Materials & Interfaces, 2021, 13, 531-540.	4.0	9
952	Construction of Novel Proton Transport Channels by Triphosphonic Acid Proton Conductor-Doped Crosslinked mPBI-Based High-Temperature and Low-Humidity Proton Exchange Membranes. ACS Sustainable Chemistry and Engineering, 2021, 9, 2861-2871.	3.2	39

#	Article	IF	CITATIONS
953	Development of structurally modified OER catalysts with enhanced performance and longevity for PEM-based electrolytic air dehumidification. International Journal of Hydrogen Energy, 2021, 46, 9267-9279.	3.8	5
954	Machine learning for guiding high-temperature PEM fuel cells with greater power density. Patterns, 2021, 2, 100187.	3.1	14
955	Crosslinked Proton Exchange Membranes with a Wider Working Temperature Based on Phosphonic Acid Functionalized Siloxane and PPO. Macromolecular Research, 2021, 29, 199-210.	1.0	11
956	Polybenzimidazole and ionic liquid composite membranes for high temperature polymer electrolyte fuel cells. Solid State Ionics, 2021, 361, 115569.	1.3	20
957	Constructing Anhydrous Proton Conductive Aramid Membranes through Grafting Kevlar Micro-fibrils with Phosphoric Acid. Fibers and Polymers, 2021, 22, 1502-1510.	1.1	7
958	Factors Influencing the Voltage Decay Rates of High-Temperature Polymer Electrolyte Membrane Fuel Cells. Journal of the Electrochemical Society, 2021, 168, 034514.	1.3	2
959	Solid electrolyte Sm0.2Ce0.8O2â~δ reinforced polymer composite membranes for high temperature proton exchange membrane fuel cells. Materials Letters, 2021, 286, 129241.	1.3	1
960	Impact of PVA modified sulfonated poly (arylene ether ketone) copolymers as proton exchange membranes on fuel cell parameters. Journal of Chemical Sciences, 2021, 133, 1.	0.7	2
961	Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angewandte Chemie, 2021, 133, 13028-13033.	1.6	8
962	Ultrafast and Stable Proton Conduction in Polybenzimidazole Covalent Organic Frameworks via Confinement and Activation. Angewandte Chemie - International Edition, 2021, 60, 12918-12923.	7.2	58
963	Integration and optimization for a PEMFC and PSA oxygen production combined system. Energy Conversion and Management, 2021, 236, 114062.	4.4	18
964	Effects of Impurities on Pre-Doped and Post-Doped Membranes for High Temperature PEM Fuel Cell Stacks. Energies, 2021, 14, 2994.	1.6	9
965	New High Temperature Polymer Electrolyte Membranes Based on Poly(ethylene imine) Crosslinked Poly(ether ketone cardo). Journal of the Electrochemical Society, 2021, 168, 054524.	1.3	10
966	Multifunctional poly(ionic liquid)s cross-linked polybenzimidazole membrane with excellent long-term stability for high temperature-proton exchange membranes fuel cells. Journal of Power Sources, 2021, 494, 229732.	4.0	53
967	Elucidation of durability of carbon-supported PdIr alloy catalyst by experimental and theoretical approaches in polymer electrolyte membrane fuel cell. Journal of Industrial and Engineering Chemistry, 2021, 97, 280-286.	2.9	4
968	Distribution characteristics of phosphoric acid and PTFE binder on Pt/C surfaces in high-temperature polymer electrolyte membrane fuel cells: Molecular dynamics simulation approach. International Journal of Hydrogen Energy, 2021, 46, 17295-17305.	3.8	9
969	Assessment of fuel cell studies with particle image velocimetry applications: A key review. International Journal of Hydrogen Energy, 2021, 46, 29568-29568.	3.8	7
970	Poly(benzimidazole)/poly(vinylphosphonic acid) blend membranes with enhanced performance for high temperature polymer electrolyte membrane fuel cells. Solid State Ionics, 2021, 364, 115635.	1.3	5

#	Article	IF	CITATIONS
971	New polymer electrolyte membrane for medium-temperature fuel cell applications based on cross-linked polyimide MatrimidÂand hydrophobic protic ionic liquid. Materials Today Chemistry, 2021, 20, 100453.	1.7	12
972	Facile Chemical Modification of Aquivion® Membranes for Anionic Fuel Cells. ChemElectroChem, 2021, 8, 2231-2237.	1.7	12
973	Efficiently Trained Deep Learning Potential for Graphane. Journal of Physical Chemistry C, 2021, 125, 14874-14882.	1.5	18
974	A Chemistry and Microstructure Perspective on Ionâ€Conducting Membranes for Redox Flow Batteries. Angewandte Chemie - International Edition, 2021, 60, 24770-24798.	7.2	76
975	A Chemistry and Microstructure Perspective on Ionâ€Conducting Membranes for Redox Flow Batteries. Angewandte Chemie, 2021, 133, 24974.	1.6	2
976	Ionic (Proton) transport and molecular interaction of ionic Liquid–PBI blends for the use as electrolyte membranes. Journal of Molecular Liquids, 2021, 342, 116964.	2.3	6
977	Bipolar Membrane and Interface Materials for Electrochemical Energy Systems. ACS Applied Energy Materials, 2021, 4, 7419-7439.	2.5	21
978	Recent advances in phosphoric acid–based membranes for high–temperature proton exchange membrane fuel cells. Journal of Energy Chemistry, 2021, 63, 393-429.	7.1	52
979	Hollow Mesoporous Silica by Ion Exchange-Induced Etching Strategy for High Temperature Proton Exchange Membrane. Frontiers in Energy Research, 2021, 9, .	1.2	0
980	Branched Polymer Materials as Proton Exchange Membranes for Fuel Cell Applications. Polymer Reviews, 2022, 62, 261-295.	5.3	28
981	Engineering Catalyst Layers for Nextâ€Generation Polymer Electrolyte Fuel Cells: A Review of Design, Materials, and Methods. Advanced Energy Materials, 2021, 11, 2101025.	10.2	85
982	Synergistic effect of MOF-Directed acid-base pairs for enhanced proton conduction. Microporous and Mesoporous Materials, 2021, 323, 111199.	2.2	15
983	Macromolecule sulfonated Poly(ether ether ketone) crosslinked poly(4,4′-diphenylether-5,5′-bibenzimidazole) proton exchange membranes: Broaden the temperature application range and enhanced mechanical properties. International Journal of Hydrogen Energy, 2021, 46, 28246-28257.	3.8	13
984	Interfacial and Internal Proton Conduction of Weak-acid Functionalized Styrene-based Copolymer with Various Carboxylic Acid Concentrations. Electrochemistry, 2021, 89, 401-408.	0.6	2
985	Simultaneously enhancing proton conductivity and mechanical stability of the membrane electrolytes by crosslinking of poly(aromatic ether sulfone) with octa-amino polyhedral oligomeric silsesquioxane. Journal of Power Sources, 2021, 506, 230217.	4.0	12
986	Surface Modification of Polybenzimidazole (PBI) with Microwave Generated Vacuum Ultraviolet (VUV) Photo-oxidation. Current Microwave Chemistry, 2021, 08, .	0.2	2
987	4D Printing of Shapeâ€Memory Semiâ€Interpenetrating Polymer Networks Based On Aromatic Heterochain Polymers. Advanced Materials Technologies, 2022, 7, 2100790.	3.0	10
988	Constructing High-Performance Proton Transport Channels in High-Temperature Proton Exchange Membranes by Introducing Triazole Groups. ACS Applied Energy Materials, 2021, 4, 10263-10272.	2.5	22

#	Article	IF	CITATIONS
989	A Review of Recent Developments and Advanced Applications of High-Temperature Polymer Electrolyte Membranes for PEM Fuel Cells. Energies, 2021, 14, 5440.	1.6	18
990	The Charge Transport Mechanism in BrÃ,nsted-Acidic Protic Ionic Liquid/Water Systems – An NMR and QENS Study. Journal of Molecular Liquids, 2021, , 117712.	2.3	2
991	Effect of catalyst layer microstructures on performance and stability for high temperature polymer electrolyte membrane fuel cells. Journal of Power Sources, 2021, 505, 230059.	4.0	28
992	Proton Exchange Membrane Fuel Cells (PEMFCs): Advances and Challenges. Polymers, 2021, 13, 3064.	2.0	90
993	Influence of Counteranion on the Properties of Polymerized Ionic Liquids/Ionic Liquids Proton-Exchange Membranes. ACS Applied Energy Materials, 2021, 4, 10593-10602.	2.5	9
994	Lab-based X-ray micro-computed tomography coupled with machine-learning segmentation to investigate phosphoric acid leaching in high-temperature polymer electrolyte fuel cells. Journal of Power Sources, 2021, 509, 230347.	4.0	14
995	Applications of poly ionic liquids in proton exchange membrane fuel cells: A review. Journal of Power Sources, 2021, 510, 230371.	4.0	36
996	Facile synthesis and properties of poly(ether ketone cardo)s bearing heterocycle groups for high temperature polymer electrolyte membrane fuel cells. Journal of Membrane Science, 2021, 636, 119584.	4.1	10
997	HT-PEMs based on carbazole grafted polybenzimidazole with high proton conductivity and excellent tolerance of phosphoric acid. Journal of Membrane Science, 2021, 637, 119610.	4.1	33
998	Novel phosphonated polymer without anhydride formation for proton exchange membrane fuel cells. Journal of Energy Chemistry, 2022, 65, 469-471.	7.1	4
999	Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high–temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2022, 641, 119868.	4.1	32
1000	New high-performance bulky N-heterocyclic group functionalized poly(terphenyl piperidinium) membranes for HT-PEMFC applications. Journal of Membrane Science, 2022, 641, 119884.	4.1	49
1001	High-performance polymer electrolyte membranes incorporated with 2D silica nanosheets in high-temperature proton exchange membrane fuel cells. Journal of Energy Chemistry, 2022, 64, 323-334.	7.1	36
1002	Acidity effects of medium fluids on anhydrous proton conductivity of acid-swollen block polymer electrolyte membranes. RSC Advances, 2021, 11, 19012-19020.	1.7	5
1003	Polymer electrolyte membranes in fuel cell applications. , 2021, , 311-352.		1
1004	Modeling and Simulation of a Proton Exchange Membrane Fuel Cell Alongside a Waste Heat Recovery System Based on the Organic Rankine Cycle in MATLAB/SIMULINK Environment. Sustainability, 2021, 13, 1218.	1.6	19
1005	Polymers for Electrolyte Membrane Fuel Cells. , 2021, , .		0
1006	Insights into the hydrogen bond network topology of phosphoric acid and water systems. Physical Chemistry Chemical Physics, 2021, 23, 6213-6224.	1.3	9

#	Article		IF	CITATIONS
1009	PEM Fuel Cell Materials: Costs, Performance and Durability. , 2017, , 1-41.			3
1010	PBI Membranes Via the PPA Process. , 2016, , 217-238.			3
1011	Polybenzimidazole/Porous Poly(tetrafluoro ethylene) Composite Membranes. , 2016, ,	251-273.		1
1012	Design and Optimization of HT-PEMFC MEAs. , 2016, , 331-352.			4
1013	Durability Issues and Status of PBI-Based Fuel Cells. , 2016, , 487-509.			14
1014	Acid–Base Chemistry and Proton Conductivity. , 2016, , 37-57.			4
1015	Pyridine Containing Aromatic Polyether Membranes. , 2016, , 91-126.			3
1016	Synthesis of Polybenzimidazoles. , 2016, , 151-167.			4
1017	Phosphoric Acid and its Interactions with Polybenzimidazole-Type Polymers. , 2016, , 1 $\!\!\!$	169-194.		17
1018	Polybenzimidazole Membranes by Post Acid Doping. , 2016, , 195-215.			6
1020	Sulfonated polybenzimidazole/amine functionalized titanium dioxide (sPBI/AFT) comp membranes for high temperature proton exchange membrane fuel cells usage. Chines Chemical Engineering, 2020, 28, 2425-2437.		1.7	31
1021	Effects of anodic gas conditions on performance and resistance of a PBI/H3PO4 proto membrane fuel cell with metallic bipolar plates. International Journal of Hydrogen Ener 24960-24967.		3.8	3
1022	Trends in High-Temperature Polymer Electrolyte Fuel Cells. RSC Energy and Environme 41-75.	nt Series, 2010, ,	0.2	5
1023	Proton dynamics of phosphoric acid in HT-PEFCs: Towards "operando―experimer Proceedings, 2018, , .	nts. AIP Conference	0.3	2
1024	Sodium p-Styrene Sulfonate–1-Vinylimidazole Copolymers for Acid–Base Proton-E Membranes and Membrane Technologies, 2020, 2, 76-84.	Exchange Membranes.	0.6	4
1025	Phosphoric Acid Dynamics in High Temperature Polymer Electrolyte Membranes. Journ Electrochemical Society, 2020, 167, 134507.	al of the	1.3	13
1026	Polybenzimidazole-Based Polymer Electrolyte Membranes for High-Temperature Fuel C Status and Prospects. Energies, 2021, 14, 135.	Cells: Current	1.6	41
1027	Advancement toward Polymer Electrolyte Membrane Fuel Cells at Elevated Temperatu 2020, 2020, 9089405.	res. Research,	2.8	36

#	Article	IF	CITATIONS
1028	Performance Investigation of Membrane Electrode Assemblies for High Temperature Proton Exchange Membrane Fuel Cell. Journal of Power and Energy Engineering, 2013, 01, 95-100.	0.3	19
1029	Synthesis and Characterization of H3PO4Doped Poly(benzimidazole-co-benzoxazole) Membranes for High Temperature Polymer Electrolyte Fuel Cells. Bulletin of the Korean Chemical Society, 2012, 33, 3279-3284.	1.0	9
1030	Synthesis and Characterization of Phosphoric Acid-doped Poly (2,5-benzimidazole) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cells. Transactions of the Korean Hydrogen and New Energy Society, 2012, 23, 26-33.	0.1	2
1031	Improvement of microbial fuel cell performance using novel kaolin earthenware membrane coated with a polybenzimidazole layer. Energy Science and Engineering, 2021, 9, 2342-2353.	1.9	14
1032	Materials development and prospective for protonic ceramic fuel cells. International Journal of Energy Research, 2022, 46, 2212-2240.	2.2	29
1033	Novel double cross-linked membrane based on poly (ionic liquid) and polybenzimidazole for high-temperature proton exchange membrane fuel cells. Journal of Power Sources, 2021, 515, 230637.	4.0	23
1034	PEM Fuel Cell Materials: Costs, Performance and Durability. , 2012, , 7694-7730.		0
1035	Introduction to Hydrogen and Fuel Cell Technologies and Their Contribution to a Sustainable Energy Future. Issues in Agroecology, 2013, , 161-178.	0.1	2
1036	Proton-Exchange Membranes for Fuel Cells. , 2014, , 1-2.		0
1037	Polibenzimidazol (PBI) Lifleri. Tekstil Ve Muhendis, 2014, , 52-67.	0.3	2
1038	Hochtemperatur-Polymerelektrolyt-Brennstoffzellen. , 2015, , 101-143.		0
1039	Polyphosphazene Membranes. Electrochemical Energy Storage and Conversion, 2015, , 271-314.	0.0	0
1040	Density Functional Theory Study on Polybenzimidazole with Sulfonic Acid Functional Group for PEMFC Applications. Textile Science and Engineering, 2015, 52, 137-142.	0.4	1
1041	Catalyst Support Material and Electrode Fabrication. , 2016, , 315-329.		0
1042	Polybenzimidazoles with Enhanced Basicity: A Chemical Approach for Durable Membranes. , 2016, , 239-250.		1
1043	Hydrocarbon-Organic Composite Membranes for Improved Oxidative Stability for PEMFC Applications. Journal of the Korean Electrochemical Society, 2016, 19, 45-49.	0.1	0
1044	Preparation and characterization of ABPBI/POSS nanocomposites for PEMFCs. , 2016, , .		0
1045	PEM Fuel Cell Materials: Costs, Performance, and Durability. , 2019, , 195-234.		2

#	Article	IF	CITATIONS
1046	Proton Conductions. Polymers and Polymeric Composites, 2019, , 977-1010.	0.6	0
1047	Modifications on Promoting the Proton Conductivity of Polybenzimidazole-Based Polymer Electrolyte Membranes in Fuel Cells. Membranes, 2021, 11, 826.	1.4	10
1048	New crosslinked membranes based on cardo-poly(etherketone) and poly(ethylene imine) for the vanadium redox flow battery. European Polymer Journal, 2021, 161, 110858.	2.6	5
1049	Multiscale Modeling Examples: New Polyelectrolyte Nanocomposite Membranes for Perspective Fuel Cells and Flow Batteries. Springer Series in Materials Science, 2021, , 133-177.	0.4	1
1050	Phosphoric acid-doped polybenzimidazole with a leaf-like three-layer porous structure as a high-temperature proton exchange membrane for fuel cells. Journal of Materials Chemistry A, 2021, 9, 26345-26353.	5.2	50
1051	Investigation of the protolytic equilibrium of a highly BrÃ,nsted acidic ionic liquid and residual water using Raman spectroscopy. Journal of Molecular Liquids, 2022, 345, 117796.	2.3	2
1052	Polybenzimidazole-Based Semi-Interpenetrating Proton Exchange Membrane with Enhanced Stability and Excellent Performance for High-Temperature Proton Exchange Membrane Fuel Cells. ACS Applied Energy Materials, 2021, 4, 13316-13326.	2.5	28
1053	Progress of high temperature polybenzimidazole proton exchange membrane: a systematic review. Journal of Physics: Conference Series, 2021, 2076, 012032.	0.3	3
1054	Cross-Linked PVA/PAA Fibrous Web Composite Membrane for Enhanced Performance of PEM Fuel Cells under High-Temperature and Low-Humidity Conditions. Journal of Chemical Engineering of Japan, 2020, 53, 569-575.	0.3	1
1055	Economic, business, technical, and commercialization hindrances for the polymer electrolyte membrane fuel cell. , 2022, , 407-427.		2
1056	Phosphorylated graphene oxide-reinforced polybenzimidazole composite membrane for high-temperature proton exchange membrane fuel cell. Journal of Polymer Research, 2021, 28, 1.	1.2	6
1057	Preparation of polybenzimidazole/ZIF-8 and polybenzimidazole/UiO-66 composite membranes with enhanced proton conductivity. International Journal of Hydrogen Energy, 2022, 47, 19690-19701.	3.8	20
1058	Comparative study of different activation procedures of high temperature proton exchange membrane fuel cell. Energy Technology, 0, , .	1.8	2
1059	High proton conductivity in a charge carrier-induced Ni(<scp>ii</scp>) metal–organic framework. New Journal of Chemistry, 2022, 46, 1867-1876.	1.4	7
1060	Proton donor/acceptor copolymer brushes on sulfonated poly(ether ether ketone) membrane: An approach to construct efficient proton transfer pathway in polymer electrolyte membrane fuel cell. Polymer, 2022, 240, 124523.	1.8	8
1061	Characterization of PBI/Graphene Oxide Composite Membranes for the SO2 Depolarized Electrolysis at High Temperature. Membranes, 2022, 12, 116.	1.4	9
1062	Advances in Ion Conducting Membranes and Binders for High Temperature Polymer Electrolyte Membrane Fuel Cells. Polymer Reviews, 2022, 62, 789-825.	5.3	12
1063	Fuel cells with an operational range of –20 °C to 200 °C enabled by phosphoric acid-doped intrinsic ultramicroporous membranes. Nature Energy, 2022, 7, 153-162.	ally 19.8	138

ARTICLE IF CITATIONS Polyacrylonitrile/Phosphazene Composite-Based Heat-Resistant and Flame-Retardant Separators for 1064 2.5 18 Safe Lithium-Ion Batteries. ACS Applied Energy Materials, 2022, 5, 2452-2461. Synthesis and Characterization of Poly(mâ€tolyloxyâ€coâ€4â€pyridinoxy phosphazene)s and their Application as Proton Exchange Membranes. ChemistrySelect, 2022, 7, . An Imidazolium Type Ionic Liquid Functionalized Ether-Free Poly(terphenyl piperidinium) Membrane for High Temperature Polymer Electrolyte Membrane Fuel Cell Applications. Journal of the 1066 1.3 8 Electrochemical Society, 2022, 169, 024504. Performance of an Intermediate-Temperature Fuel Cell with a CsH₅(PO₄)₂-Doped Polybenzimidazole Membrane. Journal of the Electrochemical Society, 2022, 169, 024505. Poly(arylene pyridine)s: New alternative materials for high temperature polymer electrolyte fuel 1068 4.0 39 cells. Journal of Power Sources, 2022, 526, 231131. Tröger's Base Polymer Blended with Poly(Ether Ketone Cardo) for High Temperature Proton Exchange Membrane Fuel Cell Applications. SSRN Electronic Journal, 0, , . 0.4 Charge-induced proton penetration across two-dimensional clay materials. Nanoscale, 2022, 14, 1070 2.8 3 6518-6525. Influence of crosslinking in phosphoric acid-doped poly(phenylene oxide) membranes on their proton 1071 2.9 exchange membrane properties. Journal of Industrial and Engineering Chemistry, 2022, 107, 436-443. Preparation and performance of sulfonated poly(ether ether ketone) membranes enhanced with 1072 0.8 2 ammonium ionic liquid and graphene oxide. High Performance Polymers, 2022, 34, 533-544. Multiscale simulation approach to investigate the binder distribution in catalyst layers of 1.6 high-temperature polymer electrolyte membrane fuel cells. Scientific Reports, 2022, 12, 3810. High temperature shape memory aliphatic polybenzimidazole. Polymer, 2022, 245, 124676. 1074 8 1.8 Preparation and Characterization of Phosphoric Acid Doped Polyacrylamide/<i>î²</i>â€Cyclodextrin 1.1 Highâ€Temperature Proton Exchange Membrane. Macromolecular Ćhemistry and Physics, 2022, 223, . Proton exchange membranes for high temperature proton exchange membrane fuel cells: Challenges 1076 4.0 99 and perspectives. Journal of Power Sources, 2022, 533, 231386. Enhancing proton conductivity at subzero temperature through constructing the well-ordered 4.1 structure based on carbon dots. Journal of Membrane Science, 2022, 653, 120536. Structural architectures of polymer proton exchange membranes suitable for high-temperature fuel 1078 3.514 cell applications. Science China Materials, 2022, 65, 273-297. A phosphonated phenol-formaldehyde-based high-temperature proton exchange membrane with intrinsic protonic conductors and proton transport channels. Journal of Materials Chemistry A, 1079 2022, 10, 10916-10925. Materials Formed by Combining Inorganic Glasses and Metalâ€Organic Frameworks. Chemistry - A 1080 1.7 7 European Journal, 2022, 28, . Tröger's base polymer blended with poly(ether ketone cardo) for high temperature proton exchange 4.1 membrane fuel cell applications. Journal of Membrane Science, 2022, 654, 120539.

#	Article	IF	CITATIONS
1084	An overview of proton exchange membranes for fuel cells: Materials and manufacturing. International Journal of Hydrogen Energy, 2022, 47, 19086-19131.	3.8	92
1085	Tuning Polybenzimidazole Membrane by Immobilizing a Novel Ionic Liquid with Superior Oxygen Reduction Reaction Kinetics. Chemistry of Materials, 2022, 34, 4298-4310.	3.2	0
1086	In situ crosslinking of polyoxometalate-polymer nanocomposites for robust high-temperature proton exchange membranes. Chinese Chemical Letters, 2023, 34, 107497.	4.8	7
1087	Comprehensive performance analysis of a high-temperature PEM fuel cell under different operating and design conditions. Sustainable Energy Technologies and Assessments, 2022, 52, 102232.	1.7	6
1088	Modeling and analysis of water vapor dynamics in high-temperature proton exchange membrane fuel cell coupling gas-crossover phenomena. International Journal of Hydrogen Energy, 2022, 47, 18504-18517.	3.8	12
1089	Quaternary Ammonium-Biphosphate Ion-Pair Based Copolymers with Continuous H+ Transport Channels for High-Temperature Proton Exchange Membrane. SSRN Electronic Journal, 0, , .	0.4	0
1090	Molecular dynamics simulation analysis of sulfonated polybenzimidazole/ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si4.svg"><mml:mrow><mml:mtext>[</mml:mtext><mml:msup><mml:mrow><mml:mtext>DEMAA potential polymer electrolyte membrane for high-temperature fuel cells. Journal of Molecular</mml:mtext></mml:mrow></mml:msup></mml:mrow></mml:math 	m zex t> <td>nm2l:mrow><</td>	nm2l:mrow><
1091	Liquids, 2022, 361, 119612. Porous coordination polymer-based composite membranes for high-temperature polymer exchange membrane fuel cells. Matter, 2022, 5, 2031-2053.	5.0	16
1092	Photo crosslinked stilbene-containing sulfonated polyimide membranes as proton exchange membranes in fuel cell. European Polymer Journal, 2022, 176, 111418.	2.6	4
1093	Construction of highly conductive PBI-based alloy membranes by incorporating PIMs with optimized molecular weights for high-temperature proton exchange membrane fuel cells. Journal of Membrane Science, 2022, 659, 120790.	4.1	19
1094	Highâ€Performance Poly(biphenyl acetylpyridine) and Poly(ether ketone cardo) Blend Membranes for Highâ€Temperature Polymer Electrolyte Membrane Fuel Cells. Macromolecular Materials and Engineering, 2022, 307, .	1.7	3
1095	Feasibility of using thin polybenzimidazole electrolytes in high-temperature proton exchange membrane fuel cells. International Journal of Hydrogen Energy, 2022, 47, 28615-28625.	3.8	7
1096	Polybenzimidazole membrane crosslinked with quaternized polyaniline as high-temperature proton exchange membrane: Enhanced proton conductivity and stability. Journal of Membrane Science, 2022, 660, 120795.	4.1	14
1097	Proton conduction and electrochemical enzyme-free glucose sensitive sensing based on a newly constructed Co-MOF and its composite with hydroxyl carbon nanotubes. Polyhedron, 2022, 226, 116095.	1.0	8
1098	Effect of sulfonating agent in the properties of styrene copolymers for PEMFC membranes. International Journal of Hydrogen Energy, 2022, , .	3.8	1
1099	Phosphosilicate nano-network (PPSN)-Polybenzimidazole (PBI) composite electrolyte membrane for enhanced proton conductivity, durability and power generation of HT-PEMFC. International Journal of Hydrogen Energy, 2022, 47, 32287-32302.	3.8	9
1100	Quaternary ammonium-biphosphate ion-pair based copolymers with continuous H+ transport channels for high-temperature proton exchange membrane. Journal of Membrane Science, 2022, 660, 120878.	4.1	18
1101	Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications. Renewable and Sustainable Energy Reviews, 2022, 168, 112836.	8.2	59

#	Article	IF	CITATIONS
1102	Phosphoricâ€Acid Retention in Highâ€Temperature Protonâ€Exchange Membranes. Chemistry - A European Journal, 2022, 28, .	1.7	8
1103	Constructing unique carboxylated proton transport channels <i>via</i> the phosphoric acid etching of a metal–organic framework in a crosslinked branched polybenzimidazole. Journal of Materials Chemistry A, 2022, 10, 23058-23067.	5.2	15
1104	Synthesis of phosphonated graphene oxide by electrochemical exfoliation to enhance the performance and durability of high-temperature proton exchange membrane fuel cells. Journal of Energy Chemistry, 2023, 76, 448-458.	7.1	10
1105	Performance <scp>of CCM</scp> â€type <scp>MEAs</scp> based on a <scp> CsH ₅ </scp> () Tj E <scp>HTâ€PEMFC</scp> . International Journal of Energy Research, 2022, 46, 24148-24157.	TQq1 1 0 2.2	.784314 rgBT 1
1106	Intermediate-Temperature Proton Exchange Membranes Based on Cerium Ultraphosphate Composited with Polybenzimidazole. Journal of the Electrochemical Society, 2022, 169, 094505.	1.3	1
1107	A New Method for Determination of Molecular Weight of Compounds Soluble in Protic Solvents by Electrochemical Impedance Spectroscopy. , 0, , .		Ο
1108	Effect of Organo-Silanes Structure on the Properties of Silane-Crosslinked Membranes Based on Cardo Polybenzimidazole PBI-O-PhT. Membranes, 2022, 12, 1078.	1.4	3
1109	High-Performance and Low-Cost Membranes Based on Poly(vinylpyrrolidone) and Cardo-Poly(etherketone) Blends for Vanadium Redox Flow Battery Applications. Batteries, 2022, 8, 230.	2.1	4
1110	Proton conduction and electrochemical glucose sensing property of a newly constructed Cu(II) coordination polymer. Journal of Molecular Structure, 2023, 1274, 134550.	1.8	2
1111	Superprotonic Conduction of Acidified Benzimidazole-Linked Covalent Organic Framework. , 2022, 4, 2597-2603.		15
1112	Influence of interfacial water and cations on the oxidation of CO at the platinum/ionic liquid interface. Physical Chemistry Chemical Physics, 2023, 25, 1014-1022.	1.3	2
1113	Polybenzimidazole-based thiol-ene photosensitive composition for DLP 3D printing. Mendeleev Communications, 2022, 32, 813-815.	0.6	4
1114	Metal–Organic Framework-Derived N-Doped Porous Carbon for a Superprotonic Conductor at above 100 °C. Inorganic Chemistry, 2022, 61, 20057-20063.	1.9	0
1115	Mixed matrix composite PEM with super proton conductivity developed from ionic liquid modified silica nanoparticle and polybenzimidazole. Journal of Macromolecular Science - Pure and Applied Chemistry, 2023, 60, 38-50.	1.2	11
1116	Numerical validation of direct ethanol fuel cell operating at high temperature. Ionics, 0, , .	1.2	0
1117	High Temperature Polymer Electrolyte Membrane Fuel Cells with High Phosphoric Acid Retention. ACS Energy Letters, 2023, 8, 529-536.	8.8	6
1118	Advances in Selective Electrochemical Oxidation of 5â€Hydroxymethylfurfural to Produce Highâ€Value Chemicals. Advanced Science, 2023, 10, .	5.6	26
1119	Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes. International Journal of Hydrogen Energy, 2023, 48, 9023-9036.	3.8	7

#	Article	IF	CITATIONS
1120	Review on Chitosan and Two-Dimensional MoS ₂ -Based Proton Exchange Membrane for Fuel Cell Application: Advances and Perspectives. Energy & Fuels, 2023, 37, 1699-1730.	2.5	8
1121	Combined experimental and molecular simulation study of arginine/PBI composite membranes for high-temperature fuel cells. Journal of Materials Science, 2023, 58, 1523-1537.	1.7	1
1122	Composite Proton-Conducting Membrane with Enhanced Phosphoric Acid Doping of Basic Films Radiochemically Grafted with Binary Vinyl Heterocyclic Monomer Mixtures. Membranes, 2023, 13, 105.	1.4	2
1123	Influence of the PBI structure on PBI/CsH5(PO4)2 membrane performance for HT-PEMFC application. Journal of Membrane Science, 2023, 674, 121531.	4.1	4
1124	Phosphoric acid resistance PtCu/C oxygen reduction reaction electrocatalyst for HT-PEMFCs: A theoretical and experimental study. Applied Surface Science, 2023, 619, 156663.	3.1	7
1125	Metal organic framework enroutes to mechanically stable and high proton conductive polybenzimidazole membranes. Polymer, 2023, 274, 125904.	1.8	0
1126	Enhanced proton conductivity and power density of HT-PEMFCs using tin pyrophosphate microparticles-dispersed polybenzimidazole composite electrolyte membranes. Solid State Ionics, 2023, 393, 116186.	1.3	3
1127	Power/thermal-to-hydrogen energy storage applied to natural-gas distributed energy system in different climate regions of China. Energy Conversion and Management, 2023, 283, 116924.	4.4	3
1128	Crosslinked polybenzimidazole high temperature-proton exchange membranes with a polymers of intrinsic microporosity (PIM) macromolecular crosslinker. Journal of Membrane Science, 2023, 675, 121528.	4.1	10
1129	Life cycle assessment of solid oxide fuel cells and polymer electrolyte membrane fuel cells: A review. , 2023, , 203-231.		0
1130	Preparation of novel structure polybenzimidazole with thiophene ring for high performance proton conducting membrane in vanadium flow battery. Journal of Power Sources, 2023, 564, 232858.	4.0	6
1131	Construction of Highly Conductive Cross-Linked Polybenzimidazole-Based Networks for High-Temperature Proton Exchange Membrane Fuel Cells. Materials, 2023, 16, 1932.	1.3	3
1132	Revisiting Electrocatalytic CO ₂ Reduction in Nonaqueous Media: Promoting CO ₂ Recycling in Organic Molecules by Controlling H ₂ Evolution. Energy Technology, 2023, 11, .	1.8	2
1133	Proton Conductor Confinement Strategy for Polymer Electrolyte Membrane Assists Fuel Cell Operation in Wideâ€Range Temperature. Advanced Functional Materials, 2023, 33, .	7.8	7
1134	Aliphatic Polybenzimidazoles: Synthesis, Characterization and High-Temperature Shape-Memory Performance. Polymers, 2023, 15, 1399.	2.0	3
1135	A review on polybenzimidazoles blends and nanocomposites for engineering applications. Polymer-Plastics Technology and Materials, 2022, 61, 1411-1438.	0.6	1
1136	Overcoming the Electrode Challenges of High-Temperature Proton Exchange Membrane Fuel Cells. Electrochemical Energy Reviews, 2023, 6, .	13.1	19
1137	Design and Development of Copper Trimesic Acid Anchored sPEEK/Polyimide Composite Membranes for Fuel Cell Applications. ChemistrySelect, 2023, 8, .	0.7	3

		CITATION R	CITATION REPORT		
#	Article		IF	CITATIONS	
1138	Neoteric advancements in polybenzimidazole based polymer electrolytes for high-tempe exchange membrane fuel cells - A versatile review. International Journal of Hydrogen Ene 28103-28118.		3.8	4	
1141	Performance degradation and mitigation of high temperature polybenzimidazole-based electrolyte membrane fuel cells. Chemical Society Reviews, 2023, 52, 4046-4070.	polymer	18.7	7	
1145	A Critical Review of Electrolytes for Advanced Low- and High-Temperature Polymer Elect Membrane Fuel Cells. ACS Applied Materials & Interfaces, 2023, 15, 29674-29699.	rolyte	4.0	10	
1148	Short Communication: In-situ Monitoring of Internal Temperature, Flow Rate and Pressu High-temperature Proton Exchange Membrane Fuel Cell Stack using Flexible Integrated I International Journal of Electrochemical Science, 2015, 10, 9885-9892.	re in the Micro Sensor.	0.5	3	
1158	PAFC: Anodes and high-temperature membranes (also for HT-PEM fuel cells). , 2023, , .			0	
1164	Functional materials for aqueous redox flow batteries: merits and applications. Chemica Reviews, 2023, 52, 8410-8446.	Society	18.7	0	
1169	A phosphate tolerant Pt-based oxygen reduction catalyst enabled by synergistic modula alloying and surface modification. Chemical Communications, 2023, 59, 14277-14280.	tion of	2.2	0	
1174	Electrospun sulfonated polyimide nanofibers for polymer electrolyte composite membra 325-351.	nes. , 2024, ,		0	
1177	Ion-exchange membranes in non-microbial fuel cell systems. , 2024, , 191-227.			0	
1186	Challenges of Methanol Application in the Fuel Cells. , 2024, , .			Ο	