Risk assessment of heavy metals in soil previously irrig Shenyang, China

Journal of Hazardous Materials 161, 516-521 DOI: 10.1016/j.jhazmat.2008.03.130

Citation Report

#	Article	IF	CITATIONS
1	Effects of Copper, Lead, and Cadmium on the Sorption and Desorption of Atrazine onto and from Carbon Nanotubes. Environmental Science & amp; Technology, 2008, 42, 8297-8302.	10.0	106
2	Effects of Copper, Lead, and Cadmium on the Sorption of 2,4,6-Trichlorophenol Onto and Desorption from Wheat Ash and Two Commercial Humic Acids. Environmental Science & Technology, 2009, 43, 5726-5731.	10.0	31
3	An investigation on magnetic susceptibility of hazardous saline-alkaline soils from the contaminated Hai River Basin, China. Journal of Hazardous Materials, 2009, 172, 494-497.	12.4	15
4	Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite. Journal of Hazardous Materials, 2009, 170, 1-6.	12.4	237
5	Investigation of the transport and fate of Pb, Cd, Cr(VI) and As(V) in soil zones derived from moderately contaminated farmland in Northeast, China. Journal of Hazardous Materials, 2009, 170, 570-577.	12.4	54
6	Chelator-enhanced phytoextraction of heavy metals from contaminated soil irrigated by industrial wastewater with the hyperaccumulator plant (Sedum alfredii Hance). Geoderma, 2009, 150, 106-112.	5.1	119
7	Environmental availability and profile characteristics of arsenic, cadmium, lead and zinc in metal-contaminated vegetable soils. Transactions of Nonferrous Metals Society of China, 2009, 19, 765-772.	4.2	22
8	Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil. Environmental Science and Pollution Research, 2010, 17, 1331-1338.	5.3	29
9	Adsorption and desorption of Cu(II) and Pb(II) in paddy soils cultivated for various years in the subtropical China. Journal of Environmental Sciences, 2010, 22, 689-695.	6.1	97
10	Variations in cadmium accumulation among Chinese cabbage cultivars and screening for Cd-safe cultivars. Journal of Hazardous Materials, 2010, 173, 737-743.	12.4	182
11	Impact of long-term reclaimed wastewater irrigation on agricultural soils: A preliminary assessment. Journal of Hazardous Materials, 2010, 183, 780-786.	12.4	174
12	Changes in soil characteristics during landfill leachate irrigation of Populus deltoides. Waste Management, 2010, 30, 2130-2136.	7.4	26
13	A full-scale treatment of freeway toll-gate domestic sewage using ecology filter integrated constructed rapid infiltration. Ecological Engineering, 2010, 36, 827-831.	3.6	50
14	Status and fuzzy comprehensive assessment of metals and arsenic contamination in farmland soils along the Yanghe River, China. Chemistry and Ecology, 2011, 27, 415-426.	1.6	20
15	Utilize Heavy Metal-Contaminated Farmland to Develop Bioenergy. Advanced Materials Research, 2011, 414, 254-261.	0.3	6
16	Integration of environmental and human health risk assessment for industries using hazardous materials: A quantitative multi criteria approach for environmental decision makers. Environment International, 2011, 37, 393-403.	10.0	67
17	Cadmium availability and accumulation by lettuce and rice. Revista Brasileira De Ciencia Do Solo, 2011, 35, 645-654.	1.3	34
18	The risks associated with wastewater reuse and xenobiotics in the agroecological environment. Science of the Total Environment, 2011, 409, 3555-3563	8.0	330

# 19	ARTICLE Distribution and accumulation of endocrine-disrupting chemicals and pharmaceuticals in wastewater irrigated soils in Hebei, China. Environmental Pollution, 2011, 159, 1490-1498.	IF 7.5	CITATIONS 210
20	Characterization of soil heavy metal contamination and potential health risk in metropolitan region of northern China. Environmental Monitoring and Assessment, 2011, 172, 353-365.	2.7	68
21	Spatial dependence and bioavailability of metal fractions in paddy fields on metal concentrations in rice grain at a regional scale. Journal of Soils and Sediments, 2011, 11, 1165-1177.	3.0	65
22	Removal of copper(II) from aqueous solution in fixed-bed column by carboxylic acid functionalized deacetylated konjac glucomannan. Carbohydrate Polymers, 2011, 86, 753-759.	10.2	24
23	Fixed-bed column study for Cu2+ removal from solution using expanding rice husk. Journal of Hazardous Materials, 2011, 187, 182-189.	12.4	76
24	Adsorption of diuron and dichlobenil on multiwalled carbon nanotubes as affected by lead. Journal of Hazardous Materials, 2011, 188, 156-163.	12.4	94
25	Notice of Retraction: Potential Risks of Heavy Metal Pollution in Greenhouse Soils Cultivated for Different Periods. , 2011, , .		0
26	Concentration Level of Heavy Metals in Wheat Grains and the Health Risk Assessment to Local Inhabitants from Baiyin, Gansu, China. Advanced Materials Research, 0, 518-523, 951-956.	0.3	25
27	Immobilization of some metals in contaminated sludge by zeolite prepared from local materials. Toxicological and Environmental Chemistry, 2012, 94, 1657-1669.	1.2	17
28	Characterization of heavy metal pollution in the paddy soils of Xiangyin County, Dongting lake drainage basin, central south China. Environmental Earth Sciences, 2012, 67, 2261-2268.	2.7	45
29	In situ stabilization remediation of cadmium contaminated soils of wastewater irrigation region using sepiolite. Journal of Environmental Sciences, 2012, 24, 1799-1805.	6.1	63
30	Cadmium Tolerance and Bioaccumulation of 18 Hemp Accessions. Applied Biochemistry and Biotechnology, 2012, 168, 163-173.	2.9	70
31	Would Aluminum and Nickel Content of Apricot Pose Health Risk to Human?. Notulae Scientia Biologicae, 2012, 4, 91-94.	0.4	1
32	Magnetic Susceptibility and Heavy Metals Distribution from Riskâ€cultivated Soil around the Iron–Steel Plant, China. Clean - Soil, Air, Water, 2012, 40, 615-618.	1.1	12
33	Spatial Distribution and Risk Assessment of As, Cd, Cu, Pb, and Zn in Topsoil at Rayong Province, Thailand. Water, Air, and Soil Pollution, 2012, 223, 1931-1943.	2.4	23
34	Health risk assessment of heavy metals for edible parts of vegetables grown in sewage-irrigated soils in suburbs of Baoding City, China. Environmental Monitoring and Assessment, 2012, 184, 3503-3513.	2.7	83
35	Identification of cadmium-excluding welsh onion (Allium fistulosum L.) cultivars and their mechanisms of low cadmium accumulation. Environmental Science and Pollution Research, 2012, 19, 1773-1780.	5.3	25
36	Wastewater irrigation and environmental health: Implications for water governance and public policy. International Journal of Hygiene and Environmental Health, 2012, 215, 255-269.	4.3	241

# 37	ARTICLE Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. Journal of Environmental Sciences, 2012, 24, 690-698.	IF 6.1	CITATIONS
38	A critical review on sustainability assessment of recycled water schemes. Science of the Total Environment, 2012, 426, 13-31.	8.0	121
39	Effects of different conditions on Pb2+ adsorption from soil by irrigation of sewage in South China. Journal of Central South University, 2012, 19, 213-221.	3.0	7
40	Effect of long-term irrigation with sewage effluent on the metal content of soils, Berlin, Germany. Environmental Geochemistry and Health, 2012, 34, 67-76.	3.4	24
41	Peanut as a potential crop for bioenergy production via Cd-phytoextraction: A life-cycle pot experiment. Plant and Soil, 2013, 365, 337-345.	3.7	27
42	Effect of treated municipal wastewater on bean growth, soil chemical properties, and chemical fractions of zinc and copper. Arabian Journal of Geosciences, 2013, 6, 4475-4485.	1.3	13
43	Current status of heavy metal contamination in Asia's rice lands. Reviews in Environmental Science and Biotechnology, 2013, 12, 355-377.	8.1	99
44	All the Lead in China. Critical Reviews in Environmental Science and Technology, 2013, 43, 1869-1944.	12.8	60
45	Pozzolanic-based materials for stabilization/solidification of contaminated sludge with hazardous heavy metal: case study. Desalination and Water Treatment, 2013, 51, 2644-2655.	1.0	16
46	Adsorption characteristics of 1,2,4-trichlorobenzene, 2,4,6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon, 2013, 51, 156-163.	10.3	311
47	Sorbed metals fractionation and risk assessment of release in river sediment and particulate matter. Environmental Monitoring and Assessment, 2013, 185, 1737-1754.	2.7	59
48	CHAPTER 7. Heavy Metal Pollution in Water Resources in China—Occurrences and Public Health Implications. , 2014, , 141-167.		5
49	Extractability and phytoavailability of cadmium in Cd-rich pedogenic soils. Turk Tarim Ve Ormancilik Dergisi/Turkish Journal of Agriculture and Forestry, 2014, 38, 70-79.	2.1	6
50	Impact assessment of the reuse of two discrete treated wastewaters for the irrigation of tomato crop on the soil geochemical properties, fruit safety and crop productivity. Agriculture, Ecosystems and Environment, 2014, 192, 105-114.	5.3	46
51	Ecological risks and potential sources of heavy metals in agricultural soils from Huanghuai Plain, China. Environmental Science and Pollution Research, 2014, 21, 1360-1369.	5.3	74
52	Dissipation of available benzo[a]pyrene in aging soil co-contaminated with cadmium and pyrene. Environmental Science and Pollution Research, 2014, 21, 962-971.	5.3	15
53	Spatial variations of concentrations of copper and its speciation in the soil-rice system in Wenling of southeastern China. Environmental Science and Pollution Research, 2014, 21, 7165-7176.	5.3	41
54	Assessment of long-term wastewater irrigation impacts on the soil geochemical properties and the bioaccumulation of heavy metals to the agricultural products. Environmental Monitoring and Assessment, 2014, 186, 4857-4870.	2.7	39

#	Article	IF	CITATIONS
55	Evaluation of Lead in Arable Soils, China. Clean - Soil, Air, Water, 2015, 43, 1232-1240.	1.1	13
56	Heavy Metal Residues in Soil and Accumulation in Maize at Long-Term Wastewater Irrigation Area in Tongliao, China. Journal of Chemistry, 2015, 2015, 1-9.	1.9	43
57	Phytoextraction of Heavy Metals from Contaminated Soil by Co-CroppingSolanum nigrumL. with Ryegrass Associated with Endophytic Bacterium. Separation Science and Technology, 2015, 50, 1806-1813.	2.5	11
58	Cadmium contamination of rice from various polluted areas of China and its potential risks to human health. Environmental Monitoring and Assessment, 2015, 187, 408.	2.7	73
59	Change of water sources reduces health risks from heavy metals via ingestion of water, soil, and rice in a riverine area, South China. Science of the Total Environment, 2015, 530-531, 163-170.	8.0	60
60	Metals Uptake by Wastewater Irrigated Vegetables and their Daily Dietary Intake in Peshawar, Pakistan / Pobieranie Metali Przez Warzywa Nawadniane Ściekami I Ich Dzienne Stężenie W Diecie Ludności Peszawa Pakistan. Ecological Chemistry and Engineering S, 2015, 22, 125-139.	ar u ,5	10
61	Accumulation and risk assessment of sedimentary trace metalsÂin response to industrialization fromÂthe tributaries of Fuyang River System. Environmental Earth Sciences, 2015, 73, 1975-1982.	2.7	12
62	Assessment of cadmium (Cd) concentration in arable soil in China. Environmental Science and Pollution Research, 2015, 22, 4932-4941.	5.3	125
63	Body burden of cadmium and its related factors: A large-scale survey in China. Science of the Total Environment, 2015, 511, 649-654.	8.0	9
64	Soil Biogeochemistry, Plant Physiology, and Phytoremediation of Cadmium-Contaminated Soils. Advances in Agronomy, 2015, , 135-225.	5.2	137
65	Managing change and building resilience: A multi-stressor analysis of urban and peri-urban agriculture in Africa and Asia. Urban Climate, 2015, 12, 183-204.	5.7	70
66	Assessing the Finance and Economics of Resource Recovery and Reuse Solutions Across Scales. , 2015, , 113-136.		7
67	Remediation of Cr(VI) contaminated soil using long-duration sodium thiosulfate supported by micro–nano networks. Journal of Hazardous Materials, 2015, 294, 64-69.	12.4	39
68	A review of soil cadmium contamination in China including a health risk assessment. Environmental Science and Pollution Research, 2015, 22, 16441-16452.	5.3	206
69	Health risk assessment of heavy metals via dietary intake of wheat grown in Tianjin sewage irrigation area. Ecotoxicology, 2015, 24, 2115-2124.	2.4	64
70	Estimation of the benchmark dose of urinary cadmium as the reference level for renal dysfunction: a large sample study in five cadmium polluted areas in China. BMC Public Health, 2015, 15, 656.	2.9	42
71	Biomarker discovery and gene expression responses in Lycopersicon esculentum root exposed to lead. Journal of Hazardous Materials, 2015, 299, 495-503.	12.4	5
72	Antioxidant enzymes and proteins of wetland plants: Their relation to Pb tolerance and accumulation. Environmental Science and Pollution Research, 2015, 22, 1931-1939.	5.3	21

#	Article	IF	CITATIONS
73	Potential sources of and ecological risks from heavy metals in agricultural soils, Daye City, China. Environmental Science and Pollution Research, 2015, 22, 3498-3507.	5.3	64
74	Identification of Potential Sources of Mercury (Hg) in Farmland Soil Using a Decision Tree Method in China. International Journal of Environmental Research and Public Health, 2016, 13, 1111.	2.6	14
75	Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China. International Journal of Environmental Research and Public Health, 2016, 13, 63.	2.6	67
76	Effects of wastewater applied with discrete irrigation techniques on strawberry plants' productivity and the safety, quality characteristics and antioxidant capacity of fruits. Agricultural Water Management, 2016, 173, 48-54.	5.6	11
77	Cadmium accumulation and growth response to cadmium stress of eighteen plant species. Environmental Science and Pollution Research, 2016, 23, 23071-23080.	5.3	22
78	Effect of light-active nanomaterials on the behavior of cadmium(II) in the presence of humic acid: the case of titanium dioxide. Desalination and Water Treatment, 2016, 57, 23975-23986.	1.0	4
79	Arsenic speciation in locally grown rice grains from Hunan Province, China: Spatial distribution and potential health risk. Science of the Total Environment, 2016, 557-558, 438-444.	8.0	114
80	Availability and toxicity of cadmium to forage grasses grown in contaminated soil. International Journal of Phytoremediation, 2016, 18, 847-852.	3.1	18
81	Variations in the accumulation and translocation of cadmium among pak choi cultivars as related to root morphology. Environmental Science and Pollution Research, 2016, 23, 9832-9842.	5.3	39
82	Impact of treated urban wastewater for reuse in agriculture on crop response and soil ecotoxicity. Environmental Science and Pollution Research, 2016, 23, 15877-15887.	5.3	34
83	Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: A greenhouse study. Journal of Hazardous Materials, 2016, 302, 250-261.	12.4	86
84	Toxicity of cadmium and its health risks from leafy vegetable consumption. Food and Function, 2017, 8, 1373-1401.	4.6	159
85	Variations in root morphology among 18 herbaceous species and their relationship with cadmium accumulation. Environmental Science and Pollution Research, 2017, 24, 4731-4740.	5.3	14
86	Economic implications of agricultural reuse of treated wastewater in Israel: A statewide long-term perspective. Ecological Economics, 2017, 135, 222-233.	5.7	77
87	Accumulation of heavy metal in scalp hair of people exposed in Beijing sewage discharge channel sewage irrigation area in Tianjin, China. Environmental Science and Pollution Research, 2017, 24, 13741-13748.	5.3	22
88	Ecological Risk Evaluation of Biological and Geochemical Trace Metals in Okrika Estuary. International Journal of Environmental Research, 2017, 11, 149-173.	2.3	7
89	Effects of drought on the accumulation and redistribution of cadmium in peanuts at different developmental stages. Archives of Agronomy and Soil Science, 2017, 63, 1049-1057.	2.6	25
90	Uptake and translocation of polycyclic aromatic hydrocarbons (PAHs) and heavy metals by maize from soil irrigated with wastewater. Scientific Reports, 2017, 7, 12165.	3.3	49

#	Article	IF	CITATIONS
91	Risk assessment of heavy metals in soil of Tongnan District (Southwest China): evidence from multiple indices with high-spatial-resolution sampling. Environmental Science and Pollution Research, 2017, 24, 20282-20290.	5.3	12
92	Extraction and determination of arsenic species in leafy vegetables: Method development and application. Food Chemistry, 2017, 217, 524-530.	8.2	51
93	Potential Microbiological Approaches for the Remediation of Heavy Metal-Contaminated Soils. , 2017, , 341-366.		1
94	Reclaimed Water Irrigation Effect on Agricultural Soil and Maize (<i>Zea mays L</i> .) in Northern China. Clean - Soil, Air, Water, 2018, 46, 1800037.	1.1	8
95	The effect of simulated acid rain on the stabilization of cadmium in contaminated agricultural soils treated with stabilizing agents. Environmental Science and Pollution Research, 2018, 25, 17499-17508.	5.3	14
96	Heavy Metal Contamination and Ecological Risk Assessment of Swine Manure Irrigated Vegetable Soils in Jiangxi Province, China. Bulletin of Environmental Contamination and Toxicology, 2018, 100, 634-640.	2.7	23
97	Rhizosphere effects of Loliumperenne L. and Beta vulgaris var. cicla L. on the immobilization of Cd by modified nanoscale black carbon in contaminated soil. Journal of Soils and Sediments, 2018, 18, 1-11.	3.0	32
98	Phytoextraction of 55-year-old wastewater-irrigated soil in a Zn–Pb mine district: effect of plant species and chelators. Environmental Technology (United Kingdom), 2018, 39, 2138-2150.	2.2	17
99	Preparation of a novel carboxylate-rich palygorskite as an adsorbent for Ce3+ from aqueous solution. Journal of Colloid and Interface Science, 2018, 512, 657-664.	9.4	19
100	Impact of Long-Term Reclaimed Water Irrigation on Trace Elements Contents in Agricultural Soils in Beijing, China. Water (Switzerland), 2018, 10, 1716.	2.7	8
101	Occurrence and Toxicological Risk Assessment of Polycyclic Aromatic Hydrocarbons and Heavy Metals in Drinking Water Resources of Southern China. International Journal of Environmental Research and Public Health, 2018, 15, 1422.	2.6	17
102	Status of mercury accumulation in agricultural soil across China: Spatial distribution, temporal trend, influencing factor and risk assessment. Environmental Pollution, 2018, 240, 116-124.	7.5	52
103	Development of Sanitation Safety Plans to Implement World Health Organization Guidelines: Jordanian Experience. , 2018, , 101-130.		2
104	Linking the response of soil microbial community structure in soils to long-term wastewater irrigation and soil depth. Science of the Total Environment, 2019, 688, 26-36.	8.0	39
105	Risk assessment of heavy metal contamination of paddy soil and rice (Oryza sativa) from Abakaliki, Nigeria. Environmental Monitoring and Assessment, 2019, 191, 350.	2.7	23
106	Refined assessment of heavy metal-associated health risk due to the consumption of traditional animal medicines in humans. Environmental Monitoring and Assessment, 2019, 191, 171.	2.7	22
107	Characteristics of heavy metals in soils and grains of wheat and maize from farmland irrigated with sewage. Environmental Science and Pollution Research, 2019, 26, 5554-5563.	5.3	42
108	Centennial records of cadmium and lead in NE China lake sediments. Science of the Total Environment, 2019, 657, 548-557.	8.0	21

#	Article	IF	CITATIONS
109	Hydrothermal Carbonization of Argan Nut Shell: Functional Mesoporous Carbon with Excellent Performance in the Adsorption of Bisphenol A and Diuron. Waste and Biomass Valorization, 2020, 11, 1565-1584.	3.4	77
110	Zeolite for Potential Toxic Metal Uptake from Contaminated Soil: A Brief Review. Processes, 2020, 8, 820.	2.8	58
111	Tomato grafting onto Torubamu (Solanum melongena): miR166a and miR395b reduce scion Cd accumulation by regulating sulfur transport. Plant and Soil, 2020, 452, 267-279.	3.7	18
112	Ecology of industrial pollution in China. Ecosystem Health and Sustainability, 2020, 6, .	3.1	54
113	Ecological risk assessment and source identification of heavy metal pollution in vegetable bases of Urumqi, China, using the positive matrix factorization (PMF) method. PLoS ONE, 2020, 15, e0230191.	2.5	34
114	Analysis of physiological and metabolite response of <i>Celosia argentea</i> to copper stress. Plant Biology, 2021, 23, 391-399.	3.8	11
115	Assessment of potentially toxic element pollution in soils and related health risks in 271 cities across China. Environmental Pollution, 2021, 270, 116196.	7.5	46
116	Adsorption and Desorption Characteristics of Cadmium on Different Contaminated Paddy Soil Types: Kinetics, Isotherms, and the Effects of Soil Properties. Sustainability, 2021, 13, 7052.	3.2	3
117	Heavy metal treatment and removal using natural zeolites from sewage sludge, compost, and agricultural soils: a review. Arabian Journal of Geosciences, 2021, 14, 1.	1.3	24
118	Cadmium concentration and its typical input and output fluxes in agricultural soil downstream of a heavy metal sewage irrigation area. Journal of Hazardous Materials, 2021, 412, 125203.	12.4	33
119	A critical review of environmental and public health impacts from the activities of evaporation ponds. Science of the Total Environment, 2021, 796, 149065.	8.0	18
120	Hazardous Agents in Wastewater: Public Health Impacts and Treatment Options for Safe Disposal and Reuse. , 2013, , 165-191.		3
121	Responses of Wheat Yield, Macro- and Micro-Nutrients, and Heavy Metals in Soil and Wheat following the Application of Manure Compost on the North China Plain. PLoS ONE, 2016, 11, e0146453.	2.5	35
122	HEALTH RISK ASSESSMENT OF HEAVY METALS AND POLYCYCLIC AROMATIC HYDROCARBONS IN SOIL AT COKE OVEN GAS PLANTS. Environmental Engineering and Management Journal, 2015, 14, 487-496.	0.6	30
123	Local conditions and the economic feasibility of urban wastewater recycling in irrigated agriculture: Lessons from a stochastic regional analysis in California. Applied Economic Perspectives and Policy, 2022, 44, 2115-2130.	5.6	2
124	Study of Leachability of Heavy Metals from Zinc Flotation Plant Tailings Dam Sediments. , 2012, , 1-15.		0
125	Green Remediation—Use of Fly Ash for Remediation of Metals Polluted Sediment. , 2012, , 1-14.		0
126	Effects of 2-diethylaminoethyl-3,4- dichlorophenylether on cadmium tolerance and accumulation of an energy plant, hemp (Cannabis sativa L.). , 2015, , .		О

#	Article	IF	CITATIONS
127	Consequences of Heavy Metals in Water and Wastewater for the Environment and Human Health. , 2022, , 221-228.		5
128	Dynamic assessment of agro-industrial sector efficiency and productivity changes among G20 nations. Energy and Environment, 0, , 0958305X2110560.	4.6	1
129	The Effect of Short-Term Irrigation of TWW on the State of Soils, Groundwater and Vegetation in the Cebala Borj-Touil Area (Tunisia). Eurasian Soil Science, 2022, 55, 269-281.	1.6	1
130	Surveying the elimination of hazardous heavy metal from the multi-component systems using various sorbents: a review. Journal of Environmental Health Science & Engineering, 2022, 20, 1047-1087.	3.0	4
131	Ecological and health risk assessment of different land uses along with seasonal variation in toxic metal contamination around Varanasi city situated in Indo-Gangetic Plain. Environmental Geochemistry and Health, 2023, 45, 3293-3315.	3.4	2
132	Boron accumulation in soil, sediment, and plant of wastewater-irrigated areas in Tianjin, China. Environmental Monitoring and Assessment, 2023, 195, .	2.7	2
133	High performance self-assembled nano-chlorapatite in the presence of lactonic sophorolipid for the immobilization of cadmium in polluted sediment. Journal of Hazardous Materials, 2023, 445, 130484.	12.4	4
134	Health risk assessment of the heavy metals at wastewater discharge points of textile industries in Tongi, Shitalakkhya, and Dhaleshwari, Bangladesh. Journal of Water and Health, 2023, 21, 586-600.	2.6	2
135	Fractionations of heavy metals and their correlations with magnetic susceptibility in soil from a typical alluvial island in the lower yangtze river, China. Journal of Cleaner Production, 2023, 418, 138060.	9.3	1
137	Soil Deterioration and Risk Assessment of Heavy Metal Contamination. , 2023, , 119-137.		0
138	Factors Affecting Farmers' Perception of Greywater Irrigation in Urban Agriculture in the Colombo District, Sri Lanka. Journal of Water and Environment Technology, 2023, 21, 309-322.	0.7	0