Engineering alternative butanol production platforms is

Metabolic Engineering 11, 262-273

DOI: 10.1016/j.ymben.2009.05.003

Citation Report

#	Article	IF	Citations
1	A <i>lipA</i> (<i>yutB</i>) Mutant, Encoding Lipoic Acid Synthase, Provides Insight into the Interplay between Branched-Chain and Unsaturated Fatty Acid Biosynthesis in <i>Bacillus subtilis</i> . Journal of Bacteriology, 2009, 191, 7447-7455.	2.2	26
2	Strain Improvement and Process Development for Biobutanol Production. Recent Patents on Biotechnology, 2009, 3, 202-210.	0.8	27
3	Systematic engineering of microorganisms to improve alcohol tolerance. Engineering in Life Sciences, 2010, 10, 422-429.	3.6	38
4	Advanced biofuel production in microbes. Biotechnology Journal, 2010, 5, 147-162.	3.5	331
5	Microbial 1â€butanol production: Identification of nonâ€native production routes and <i>in silico</i> engineering interventions. Biotechnology Journal, 2010, 5, 716-725.	3.5	41
6	Bioengineering of microorganisms for C ₃ to C ₅ alcohols production. Biotechnology Journal, 2010, 5, 1297-1308.	3.5	35
7	Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Applied Microbiology and Biotechnology, 2010, 85, 1697-1712.	3.6	249
8	Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Applied Microbiology and Biotechnology, 2010, 86, 419-434.	3.6	220
9	Reconstructing the clostridial n-butanol metabolic pathway in Lactobacillus brevis. Applied Microbiology and Biotechnology, 2010, 87, 635-646.	3.6	156
10	Assessment of heterologous butyrate and butanol pathway activity by measurement of intracellular pathway intermediates in recombinant Escherichia coli. Applied Microbiology and Biotechnology, 2010, 88, 265-275.	3.6	36
11	The path to next generation biofuels: successes and challenges in the era of synthetic biology. Microbial Cell Factories, 2010, 9, 3.	4.0	154
12	Functional expression of the thiolase gene thl from Clostridium beijerinckii P260 in Lactococcus lactis and Lactobacillus buchneri. New Biotechnology, 2010, 27, 283-288.	4.4	33
13	A comparative view of metabolite and substrate stress and tolerance in microbial bioprocessing: From biofuels and chemicals, to biocatalysis and bioremediation. Metabolic Engineering, 2010, 12, 307-331.	7.0	478
14	Screening and characterization of butanol-tolerant micro-organisms. Letters in Applied Microbiology, 2010, 50, 373-379.	2.2	47
15	Biology by Design: From Top to Bottom and Back. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-11.	3.0	25
16	Engineered Respiro-Fermentative Metabolism for the Production of Biofuels and Biochemicals from Fatty Acid-Rich Feedstocks. Applied and Environmental Microbiology, 2010, 76, 5067-5078.	3.1	59
17	Synthetic Biology Guides Biofuel Production. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-9.	3.0	59
18	Extremophiles in biofuel synthesis. Environmental Technology (United Kingdom), 2010, 31, 871-888.	2.2	130

#	Article	IF	Citations
19	Construction and optimization of synthetic pathways in metabolic engineering. Current Opinion in Microbiology, 2010, 13, 363-370.	5.1	97
20	Systems biology approaches for the microbial production of biofuels. Biofuels, 2010, 1, 291-310.	2.4	21
21	Metabolic engineering of <i>Escherichia coli </i> for biofuel production. Biofuels, 2010, 1, 493-504.	2.4	33
23	Extending Carbon Chain Length of 1-Butanol Pathway for 1-Hexanol Synthesis from Glucose by Engineered <i>Escherichia coli</i> . Journal of the American Chemical Society, 2011, 133, 11399-11401.	13.7	131
25	Genomic Library Screens for Genes Involved in n-Butanol Tolerance in Escherichia coli. PLoS ONE, 2011, 6, e17678.	2.5	118
26	Transcriptional Analysis of Lactobacillus brevis to N-Butanol and Ferulic Acid Stress Responses. PLoS ONE, 2011, 6, e21438.	2.5	48
27	Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 2011, 7, 222-227.	8.0	319
28	Chimeric synthetic pathways. Nature Chemical Biology, 2011, 7, 195-196.	8.0	9
29	Styrene biosynthesis from glucose by engineered E. coli. Metabolic Engineering, 2011, 13, 544-554.	7.0	222
30	Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metabolic Engineering, 2011, 13, 570-577.	7.0	78
31	Optimization of a heterologous mevalonate pathway through the use of variant HMG-CoA reductases. Metabolic Engineering, 2011, 13, 588-597.	7.0	141
32	Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Current Opinion in Biotechnology, 2011, 22, 634-647.	6.6	326
33	Economical challenges to microbial producers of butanol: Feedstock, butanol ratio and titer. Biotechnology Journal, 2011, 6, 1348-1357.	3.5	108
34	Driving Forces Enable High-Titer Anaerobic 1-Butanol Synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77, 2905-2915.	3.1	572
35	Extension temperature of 60°C required for PCR amplification of large DNA fragments (>5Âkb) from a low GC bacterium Clostridium acetobutylicum. World Journal of Microbiology and Biotechnology, 2011, 27, 449-451.	3.6	3
36	Engineering Bacillus subtilis for isobutanol production by heterologous Ehrlich pathway construction and the biosynthetic 2-ketoisovalerate precursor pathway overexpression. Applied Microbiology and Biotechnology, 2011, 91, 577-589.	3.6	130
37	Fermentative production of butanolâ€"the industrial perspective. Current Opinion in Biotechnology, 2011, 22, 337-343.	6.6	633
38	Engineering strategy of yeast metabolism for higher alcohol production. Microbial Cell Factories, 2011, 10, 70.	4.0	42

#	Article	IF	Citations
39	Development of butanol-tolerant Bacillus subtilis strain GRSW2-B1 as a potential bioproduction host. AMB Express, 2011, 1, 10.	3.0	37
40	Advances and opportunities at the interface between microbial bioenergy and nanotechnology. Canadian Journal of Chemical Engineering, 2011, 89, 2-12.	1.7	16
41	Study of <i>in situ</i> 1â€butanol pervaporation from Aâ€Bâ€E fermentation using a PDMS composite membrane: Validity of solutionâ€diffusion model for pervaporative Aâ€Bâ€E fermentation. Biotechnology Progress, 2011, 27, 111-120.	2.6	44
42	Engineering butanolâ€tolerance in <i>escherichia coli</i> with artificial transcription factor libraries. Biotechnology and Bioengineering, 2011, 108, 742-749.	3.3	63
43	Autoignition of n-butanol at elevated pressure and low-to-intermediate temperature. Combustion and Flame, 2011, 158, 809-819.	5.2	149
44	Developments in biobutanol production: New insights. Applied Energy, 2011, 88, 1999-2012.	10.1	421
45	Challenges in biobutanol production: How to improve the efficiency?. Renewable and Sustainable Energy Reviews, 2011, 15, 964-980.	16.4	391
46	Reducing the allowable kinetic space by constructing ensemble of dynamic models with the same steady-state flux. Metabolic Engineering, 2011, 13, 60-75.	7.0	52
47	Elucidating acetate tolerance in E. coli using a genome-wide approach. Metabolic Engineering, 2011, 13, 214-224.	7.0	60
48	Engineering the robustness of Clostridium acetobutylicum by introducing glutathione biosynthetic capability. Metabolic Engineering, 2011, 13, 426-434.	7.0	71
49	Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering, 2011, 13, 373-382.	7.0	190
50	One-step production of lactate from cellulose as the sole carbon source without any other organic nutrient by recombinant cellulolytic Bacillus subtilis. Metabolic Engineering, 2011, 13, 364-372.	7.0	84
51	Metabolic engineering of cyanobacteria for 1-butanol production from carbon dioxide. Metabolic Engineering, 2011, 13, 353-363.	7.0	352
52	Biochemical production of biobutanol. , 2011, , 221-257.		11
53	Controlled biosynthesis of odd-chain fuels and chemicals via engineered modular metabolic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 17925-17930.	7.1	105
54	Recent progress in synthetic biology for microbial production of C3–C10 alcohols. Frontiers in Microbiology, 2012, 3, 196.	3.5	51
55	Synthetic Biology Approaches to Produce C3-C6 Alcohols from Microorganisms. Current Chemical Biology, 2012, 6, 32-41.	0.5	2
56	Bridging Omics Technologies with Synthetic Biology in Yeast Industrial Biotechnology. , 2012, , 271-327.		2

#	Article	IF	CITATIONS
57	Cyanobacterial biofuel production. Journal of Biotechnology, 2012, 162, 50-56.	3.8	243
58	From Fields to Fuels: Recent Advances in the Microbial Production of Biofuels. ACS Synthetic Biology, 2012, 1, 498-513.	3.8	77
59	Novel high butanol production from lactic acid and pentose by Clostridium saccharoperbutylacetonicum. Journal of Bioscience and Bioengineering, 2012, 114, 526-530.	2.2	30
60	A selection platform for carbon chain elongation using the CoA-dependent pathway to produce linear higher alcohols. Metabolic Engineering, 2012, 14, 504-511.	7.0	126
61	Metabolic engineering of Escherichia coli for the production of 1-propanol. Metabolic Engineering, 2012, 14, 477-486.	7.0	94
62	ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6018-6023.	7.1	327
63	Kinetic Modeling and Isotopic Investigation of Isobutanol Fermentation by Two Engineered Escherichia coli Strains. Industrial & Engineering Chemistry Research, 2012, 51, 15855-15863.	3.7	15
64	DEVELOPMENT OF MICROORGANISMS FOR CELLULOSE-BIOFUEL CONSOLIDATED BIOPROCESSINGS: METABOLIC ENGINEERS' TRICKS. Computational and Structural Biotechnology Journal, 2012, 3, e201210007.	4.1	38
65	METABOLIC MODELLING IN THE DEVELOPMENT OF CELL FACTORIES BY SYNTHETIC BIOLOGY. Computational and Structural Biotechnology Journal, 2012, 3, e201210009.	4.1	19
66	Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Applied Microbiology and Biotechnology, 2012, 96, 283-297.	3.6	123
67	Engineering a Metabolic Pathway for Isobutanol Biosynthesis in Bacillus subtilis. Applied Biochemistry and Biotechnology, 2012, 168, 1-9.	2.9	22
68	ePathBrick: A Synthetic Biology Platform for Engineering Metabolic Pathways in <i>E. coli</i> ACS Synthetic Biology, 2012, 1, 256-266.	3.8	230
69	Butanol production from lignocellulosics. Biotechnology Letters, 2012, 34, 1415-1434.	2.2	98
70	Microbial producers of butanol. Applied Biochemistry and Microbiology, 2012, 48, 625-638.	0.9	27
71	Manipulation of the carbon storage regulator system for metabolite remodeling and biofuel production in Escherichia coli. Microbial Cell Factories, 2012, 11, 79.	4.0	53
72	Microbial engineering for the production of advanced biofuels. Nature, 2012, 488, 320-328.	27.8	951
73	Theoretical Studies on the Unimolecular Decomposition of Ethylene Glycol. Journal of Physical Chemistry A, 2012, 116, 55-63.	2.5	30
74	Towards sustainable production of clean energy carriers from biomass resources. Applied Energy, 2012, 100, 172-186.	10.1	383

#	Article	IF	Citations
75	Solvent tolerance in Gram-negative bacteria. Current Opinion in Biotechnology, 2012, 23, 415-421.	6.6	169
76	Alternative biofuel production in non-natural hosts. Current Opinion in Biotechnology, 2012, 23, 744-750.	6.6	31
77	Systems Metabolic Engineering. , 2012, , .		11
78	Synthetic Biology Approaches to Produce C3-C6 Alcohols from Microorganisms. Current Chemical Biology, 2012, 6, 32-41.	0.5	6
79	Improved n-butanol production by solvent tolerant Clostridium beijerinckii. Biomass and Bioenergy, 2012, 37, 9-15.	5.7	59
80	Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production. Applied Microbiology and Biotechnology, 2012, 95, 1083-1094.	3.6	42
81	Butanol production from renewable biomass: Rediscovery of metabolic pathways and metabolic engineering. Biotechnology Journal, 2012, 7, 186-198.	3.5	138
82	Bioâ€based production of C2–C6 platform chemicals. Biotechnology and Bioengineering, 2012, 109, 2437-2459.	3.3	329
83	Metabolic engineering of Saccharomyces cerevisiae: a key cell factory platform for future biorefineries. Cellular and Molecular Life Sciences, 2012, 69, 2671-2690.	5.4	367
84	Improvements in Biobutanol Fermentation and Their Impacts on Distillation Energy Consumption and Wastewater Generation. Bioenergy Research, 2012, 5, 504-514.	3.9	65
85	Modifying the product pattern of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 2012, 94, 743-754.	3.6	75
86	Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance. Applied Microbiology and Biotechnology, 2012, 94, 1107-1117.	3.6	64
87	The glycerophospholipid inventory of <i>Pseudomonas putida</i> is conserved between strains and enables growth conditionâ€related alterations. Microbial Biotechnology, 2012, 5, 45-58.	4.2	42
88	1-Butanol synthesis by Escherichia coli cells through butyryl-CoA formation by heterologous enzymes of clostridia and native enzymes of fatty acid \hat{l}^2 -oxidation. Applied Biochemistry and Microbiology, 2012, 48, 344-349.	0.9	10
89	Evaluating expression and catalytic activity of anaerobic fungal fibrolytic enzymes native to <i>piromyces sp E2</i> in <i>Saccharomyces cerevisiae</i> Environmental Progress and Sustainable Energy, 2012, 31, 37-46.	2.3	27
90	Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid \hat{l}^2 -oxidation pathway. Biotechnology Letters, 2012, 34, 463-469.	2.2	35
91	Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation. Biotechnology for Biofuels, 2013, 6, 48.	6.2	68
92	Microbial production of the aromatic buildingâ€blocks (<i>S</i>)â€styrene oxide and (<i>R</i>)â€1,2â€phenylethanediol from renewable resources. Biotechnology Journal, 2013, 8, 1465-1475.	3.5	40

#	Article	IF	CITATIONS
93	Tuning Primary Metabolism for Heterologous Pathway Productivity. ACS Synthetic Biology, 2013, 2, 126-135.	3.8	27
94	Improving biobutanol production in engineered <i>Saccharomyces cerevisiae</i> by manipulation of acetyl-CoA metabolism. Journal of Industrial Microbiology and Biotechnology, 2013, 40, 1051-1056.	3.0	96
95	Prospective and development of butanol as an advanced biofuel. Biotechnology Advances, 2013, 31, 1575-1584.	11.7	225
96	Butanol fermentation. Environmental Technology (United Kingdom), 2013, 34, 1691-1710.	2.2	78
97	In vitro production of n-butanol from glucose. Metabolic Engineering, 2013, 20, 84-91.	7.0	89
99	Global Metabolomic and Network analysis of <i>Escherichia coli</i> Responses to Exogenous Biofuels. Journal of Proteome Research, 2013, 12, 5302-5312.	3.7	53
100	Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends in Biotechnology, 2013, 31, 643-653.	9.3	36
101	Characterization of a highly thermostable ß-hydroxybutyryl CoA dehydrogenase from Clostridium acetobutylicum ATCC 824. Journal of Molecular Catalysis B: Enzymatic, 2013, 98, 138-144.	1.8	9
102	Pathway and protein engineering approaches to produce novel and commodity small molecules. Current Opinion in Biotechnology, 2013, 24, 1137-1143.	6.6	59
103	Biobutanol: the outlook of an academic and industrialist. RSC Advances, 2013, 3, 24734.	3.6	153
104	Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20, 56-62.	7.0	60
106	Challenges and opportunities in synthetic biology for chemical engineers. Chemical Engineering Science, 2013, 103, 115-119.	3.8	14
107	Cellulosic Butanol Production from Agricultural Biomass and Residues: Recent Advances in Technology., 2013,, 247-265.		26
108	Synthetic Biology and Metabolic Engineering Approaches To Produce Biofuels. Chemical Reviews, 2013, 113, 4611-4632.	47.7	155
109	Metabolic engineering of 2â€pentanone synthesis in <i>Escherichia coli</i> . AICHE Journal, 2013, 59, 3167-3175.	3.6	25
110	Microbial ElectroCatalytic (MEC) Biofuel Production. , 2013, , 1091-1099.		2
111	Development of microbial cell factories for bio-refinery through synthetic bioengineering. Journal of Biotechnology, 2013, 163, 204-216.	3.8	55
112	A modified pathway for the production of acetone in Escherichia coli. Metabolic Engineering, 2013, 15, 218-225.	7.0	24

#	Article	IF	CITATIONS
113	In silico metabolic engineering of Bacillus subtilis for improved production of riboflavin, Egl-237, (R,R)-2,3-butanediol and isobutanol. Molecular BioSystems, 2013, 9, 2034.	2.9	42
114	Production of advanced biofuels in engineered E. coli. Current Opinion in Chemical Biology, 2013, 17, 472-479.	6.1	49
115	Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresource Technology, 2013, 135, 339-349.	9.6	171
116	Transcription Factor-Based Screens and Synthetic Selections for Microbial Small-Molecule Biosynthesis. ACS Synthetic Biology, 2013, 2, 47-58.	3.8	176
117	Effect of an Oxygen-Tolerant Bifurcating Butyryl Coenzyme A Dehydrogenase/Electron-Transferring Flavoprotein Complex from Clostridium difficile on Butyrate Production in Escherichia coli. Journal of Bacteriology, 2013, 195, 3704-3713.	2.2	66
118	Genetic Determinants for <i>n</i> -Butanol Tolerance in Evolved Escherichia coli Mutants: Cross Adaptation and Antagonistic Pleiotropy between <i>n</i> -Butanol and Other Stressors. Applied and Environmental Microbiology, 2013, 79, 5313-5320.	3.1	53
119	Metabolic engineering: Use of system-level approaches and application to fuel production in Escherichia coli. Electronic Journal of Biotechnology, 2013, 16, .	2.2	4
120	Lignocellulosic Biomass Utilization Toward Biorefinery Using Meshophilic Clostridial Species., 0, , .		0
122	Design and development of synthetic microbial platform cells for bioenergy. Frontiers in Microbiology, 2013, 4, 92.	3.5	37
123	The Promising Fuel-Biobutanol., 0,,.		15
124	Model-Driven Redox Pathway Manipulation for Improved Isobutanol Production in Bacillus subtilis Complemented with Experimental Validation and Metabolic Profiling Analysis. PLoS ONE, 2014, 9, e93815.	2.5	28
126	Metabolic engineering of Methylobacterium extorquens AM1 for 1-butanol production. Biotechnology for Biofuels, 2014, 7, 156.	6.2	61
127	1-Butanol production from glycerol by engineered Klebsiella pneumoniae. RSC Advances, 2014, 4, 57791-57798.	3.6	25
128	An Overview of Existing Individual Unit Operations. , 2014, , 3-36.		23
129	In situ butanol recovery from <i>Clostridium acetobutylicum</i> fermentations by expanded bed adsorption. Biotechnology Progress, 2014, 30, 68-78.	2.6	57
130	Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum. Microbial Cell Factories, 2014, 13, 139.	4.0	14
131	Metabolic engineering of a Saccharomyces cerevisiae strain capable of simultaneously utilizing glucose and galactose to produce enantiopure (2R,3R)-butanediol. Metabolic Engineering, 2014, 23, 92-99.	7.0	91
132	Crystal structure and biochemical properties of the (S)-3-hydroxybutyryl-CoA dehydrogenase PaaH1 from Ralstonia eutropha. Biochemical and Biophysical Research Communications, 2014, 448, 163-168.	2.1	12

#	Article	IF	CITATIONS
133	Butanol production from glycerol by recombinant Escherichia coli. Annals of Microbiology, 2014, 64, 219-227.	2.6	12
134	Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microbial Cell Factories, 2014, 13, 3.	4.0	78
135	Engineering of a butyraldehyde dehydrogenase of <i>Clostridium saccharoperbutylacetonicum</i> to fit an engineered 1,4â€butanediol pathway in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2014, 111, 1374-1384.	3.3	28
136	Microbial <i>n</i>)â€butanol production from <scp>C</scp> lostridia to nonâ€Clostridial hosts. Engineering in Life Sciences, 2014, 14, 16-26.	3.6	37
137	Metabolic Engineering of Biosynthetic Pathway for Production of Renewable Biofuels. Applied Biochemistry and Biotechnology, 2014, 172, 1158-1171.	2.9	19
138	Metabolic engineering of Pseudomonas sp. strain VLB120 as platform biocatalyst for the production of isobutyric acid and other secondary metabolites. Microbial Cell Factories, 2014, 13, 2.	4.0	60
139	Acetone–butanol–ethanol fermentation of corn stover by Clostridium species: present status and future perspectives. World Journal of Microbiology and Biotechnology, 2014, 30, 1145-1157.	3.6	34
140	Metabolic engineering of Thermoanaerobacterium saccharolyticum for n-butanol production. Metabolic Engineering, 2014, 21, 17-25.	7.0	62
141	Biotechnological domestication of pseudomonads using synthetic biology. Nature Reviews Microbiology, 2014, 12, 368-379.	28.6	332
143	Feasibility of producing butanol from industrial starchy food wastes. Applied Energy, 2014, 136, 590-598.	10.1	76
144	Metabolic engineering for higher alcohol production. Metabolic Engineering, 2014, 25, 174-182.	7.0	42
145	Retro-biosynthetic screening of a modular pathway design achieves selective route for microbial synthesis of 4-methyl-pentanol. Nature Communications, 2014, 5, 5031.	12.8	52
146	Evaluation of industrial dairy waste (milk dust powder) for acetone-butanol-ethanol production by solventogenic Clostridium species. SpringerPlus, 2014, 3, 387.	1.2	23
147	Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Current Opinion in Chemical Engineering, 2014, 6, 43-54.	7.8	63
148	Meiothermus ruber thiolase – A new process stable enzyme for improved butanol synthesis. Biochimie, 2014, 103, 16-22.	2.6	4
150	Engineering modular ester fermentative pathways in Escherichia coli. Metabolic Engineering, 2014, 26, 77-88.	7.0	87
151	Structural insights into substrate specificity of crotonase from the n-butanol producing bacterium Clostridium acetobutylicum. Biochemical and Biophysical Research Communications, 2014, 451, 431-435.	2.1	12
152	Lignocellulosic biobutanol production: Gridlocks and potential remedies. Renewable and Sustainable Energy Reviews, 2014, 37, 21-35.	16.4	79

#	Article	IF	CITATIONS
153	Design and construction of acetyl-CoA overproducing Saccharomyces cerevisiae strains. Metabolic Engineering, 2014, 24, 139-149.	7.0	199
154	Designer Microorganisms for Optimized Redox Cascade Reactions – Challenges and Future Perspectives. Advanced Synthesis and Catalysis, 2015, 357, 1587-1618.	4.3	51
155	Activity of Lactobacillus brevis Alcohol Dehydrogenase on Primary and Secondary Alcohol Biofuel Precursors. Fermentation, 2015, 1, 24-37.	3.0	6
156	Mechanisms of solvent resistance mediated by interplay of cellular factors in <i>Pseudomonas putida</i> . FEMS Microbiology Reviews, 2015, 39, 555-566.	8.6	143
157	Microbial Research in High-Value Biofuels. Microbiology Monographs, 2015, , 105-156.	0.6	3
158	Tolerance engineering in bacteria for the production of advanced biofuels and chemicals. Trends in Microbiology, 2015, 23, 498-508.	7.7	207
159	Recent Advances in Biobutanol Production. Industrial Biotechnology, 2015, 11, 316-321.	0.8	15
160	Development of a plasmid addicted system that is independent of co-inducers, antibiotics and specific carbon source additions for bioproduct (1-butanol) synthesis in Escherichia coli. Metabolic Engineering Communications, 2015, 2, 6-12.	3.6	2
161	Engineering Escherichia coli Cell Factories for n-Butanol Production. Advances in Biochemical Engineering/Biotechnology, 2015, 155, 141-163.	1.1	7
162	Going beyond E. coli: autotransporter based surface display on alternative host organisms. New Biotechnology, 2015, 32, 644-650.	4.4	24
163	Integration of biocatalyst and process engineering for sustainable and efficient ⟨i⟩n⟨/i⟩â€butanol production. Engineering in Life Sciences, 2015, 15, 4-19.	3.6	18
164	Genetic improvement of n-butanol tolerance in Escherichia coli by heterologous overexpression of groESL operon from Clostridium acetobutylicum. 3 Biotech, 2015, 5, 401-410.	2.2	21
165	Outlook for the Production of Butanol from Cellulolytic Strains of Clostridia., 2015,, 291-306.		1
166	Improving n-butanol production in batch and semi-continuous processes through integrated product recovery. Process Biochemistry, 2015, 50, 1487-1498.	3.7	49
167	Biofuel Productionâ´—â´—This chapter was written with contributions from:Arash Mollahoseini, Biofuel Research Team (BRTeam), Karaj, Iran; Meisam Tabatabaei, Biofuel Research Team (BRTeam), Karaj, Iran and Agricultural Biotechnology Research Institute of Iran (ABRII), Karaj, Iran, 2015, , 597-630.		3
168	Overexpression of the phosphofructokinase encoding gene is crucial for achieving high production of D-lactate in Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2015, 99, 4679-4689.	3.6	49
169	pH-induced change in cell susceptibility to butanol in a high butanol-tolerant bacterium, Enterococcus faecalis strain CM4A. Biotechnology for Biofuels, 2015, 8, 69.	6.2	9
170	Biobutanol from cheese whey. Microbial Cell Factories, 2015, 14, 27.	4.0	35

#	ARTICLE	IF	CITATIONS
171	Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol. Journal of Proteomics, 2015, 122, 11-25.	2.4	24
172	Redox-switch regulatory mechanism of thiolase from Clostridium acetobutylicum. Nature Communications, 2015, 6, 8410.	12.8	54
173	Modular design of metabolic network for robust production of n-butanol from galactose–glucose mixtures. Biotechnology for Biofuels, 2015, 8, 137.	6.2	21
174	Engineering the glycolytic pathway: A potential approach for improvement of biocatalyst performance. Bioengineered, 2015, 6, 328-334.	3.2	20
175	Alcohol Selectivity in a Synthetic Thermophilic <i>n</i> -Butanol Pathway Is Driven by Biocatalytic and Thermostability Characteristics of Constituent Enzymes. Applied and Environmental Microbiology, 2015, 81, 7187-7200.	3.1	24
176	Applying systems biology tools to study <i>n</i> â€butanol degradation in <i>Pseudomonas putida</i> KT2440. Engineering in Life Sciences, 2015, 15, 760-771.	3.6	23
177	Isolation and characterisation of non-anaerobic butanol-producing symbiotic system TSH06. Applied Microbiology and Biotechnology, 2015, 99, 8803-8813.	3.6	15
178	Genetic and nutrient modulation of acetyl-CoA levels in Synechocystis for n-butanol production. Microbial Cell Factories, 2015, 14, 167.	4.0	92
179	Identification and characterization of a highly thermostable crotonase from Meiothermus ruber. Journal of Molecular Catalysis B: Enzymatic, 2015, 112, 40-44.	1.8	2
180	Microorganisms in Biorefineries. Microbiology Monographs, 2015, , .	0.6	3
181	Potential production platform of n-butanol in Escherichia coli. Metabolic Engineering, 2015, 27, 76-82.	7.0	82
182	Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering. Biotechnology Advances, 2015, 33, 1455-1466.	11.7	94
183	Metabolic engineering of Saccharomyces cerevisiae for production of butanol isomers. Current Opinion in Biotechnology, 2015, 33, 1-7.	6.6	80
184	Recent advances to improve fermentative butanol production: Genetic engineering and fermentation technology. Journal of Bioscience and Bioengineering, 2015, 119, 1-9.	2.2	175
185	Can Microbially Derived Advanced Biofuels Ever Compete with Conventional Bioethanol? A Critical Review. BioResources, 2016, 11 , .	1.0	3
186	In Vitro Bioconversion of Pyruvate to n-Butanol with Minimized Cofactor Utilization. Frontiers in Bioengineering and Biotechnology, 2016, 4, 74.	4.1	21
187	Rebalancing Redox to Improve Biobutanol Production by Clostridium tyrobutyricum. Bioengineering, 2016, 3, 2.	3.5	11
188	Genetic Engineering In BioButanol Production And Tolerance. Brazilian Archives of Biology and Technology, 2016, 59, .	0.5	10

#	Article	IF	Citations
189	Quest for sustainable bio-production and recovery of butanol as a promising solution to fossil fuel. International Journal of Energy Research, 2016, 40, 411-438.	4.5	16
191	Increasing n-butanol production with Saccharomyces cerevisiae by optimizing acetyl-CoA synthesis, NADH levels and trans-2-enoyl-CoA reductase expression. Biotechnology for Biofuels, 2016, 9, 257.	6.2	43
192	Fuelling the future: microbial engineering for the production of sustainable biofuels. Nature Reviews Microbiology, 2016, 14, 288-304.	28.6	476
193	Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnology for Biofuels, 2016, 9, 69.	6.2	44
194	Understanding butanol tolerance and assimilation in <scp><i>P</i></scp> <i>seudomonas putida</i> à€ <scp>BIRD</scp> â€1: an integrated omics approach. Microbial Biotechnology, 2016, 9, 100-115.	4.2	38
195	Consolidating biofuel platforms through the fermentative bioconversion of crude glycerol to butanol. World Journal of Microbiology and Biotechnology, 2016, 32, 103.	3.6	17
196	A re-look at the biochemical strategies to enhance butanol production. Biomass and Bioenergy, 2016, 94, 187-200.	5.7	53
197	Biobutanol—"A Renewable Green Alternative of Liquid Fuel―from Algae. Green Energy and Technology, 2016, , 445-465.	0.6	7
198	Engineered fatty acid catabolism for fuel and chemical production. Current Opinion in Biotechnology, 2016, 42, 206-215.	6.6	20
199	Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol and ethanol under aerobic conditions. Scientific Reports, 2016, 6, 18408.	3.3	27
200	Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. Biotechnology for Biofuels, 2016, 9, 267.	6.2	18
201	Bioreactors andin situproduct recovery techniques for acetone–butanol–ethanol fermentation. FEMS Microbiology Letters, 2016, 363, fnw107.	1.8	24
202	Metabolic engineering of Clostridium cellulolyticum for the production of n-butanol from crystalline cellulose. Microbial Cell Factories, 2016, 15, 6.	4.0	91
203	Anoxic metabolism and biochemical production in Pseudomonas putida F1 driven by a bioelectrochemical system. Biotechnology for Biofuels, 2016, 9, 39.	6.2	82
204	n-Butanol production in Saccharomyces cerevisiae is limited by the availability of coenzyme A and cytosolic acetyl-CoA. Biotechnology for Biofuels, 2016, 9, 44.	6.2	63
205	Comprehensive molecular characterization of Methylobacterium extorquens AM1 adapted for 1-butanol tolerance. Biotechnology for Biofuels, 2016, 9, 84.	6.2	42
206	Isolation, characterization, and optimization of an aerobic butanolâ€producing bacterium from Singapore. Biotechnology and Applied Biochemistry, 2016, 63, 86-91.	3.1	8
207	Unorthodox methods for enhancing solvent production in solventogenic Clostridium species. Applied Microbiology and Biotechnology, 2016, 100, 1089-1099.	3.6	22

#	Article	IF	Citations
208	A <i>Pseudomonas putida</i> double mutant deficient in butanol assimilation: a promising step for engineering a biological biofuel production platform. FEMS Microbiology Letters, 2016, 363, fnw018.	1.8	16
209	Production of biobutanol from cellulose hydrolysate by the <i>Escherichia coli </i> co-culture system. FEMS Microbiology Letters, 2016, 363, fnw008.	1.8	16
210	A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metabolic Engineering, 2016, 36, 116-126.	7.0	204
211	Frontiers in microbial 1-butanol and isobutanol production. FEMS Microbiology Letters, 2016, 363, fnw020.	1.8	77
212	Pervaporation membrane reactors., 2016,, 331-381.		8
214	Modular and selective biosynthesis of gasoline-range alkanes. Metabolic Engineering, 2016, 33, 28-40.	7.0	87
215	Global Transcriptional Responses to Osmotic, Oxidative, and Imipenem Stress Conditions in Pseudomonas putida. Applied and Environmental Microbiology, 2017, 83, .	3.1	55
216	Fermentative production of butanol: Perspectives on synthetic biology. New Biotechnology, 2017, 37, 210-221.	4.4	107
217	Development of a high efficiency integration system and promoter library for rapid modification of Pseudomonas putida KT2440. Metabolic Engineering Communications, 2017, 5, 1-8.	3.6	93
218	Metabolic engineering of Escherichia coli for higher alcohols production: An environmentally friendly alternative to fossil fuels. Renewable and Sustainable Energy Reviews, 2017, 77, 580-589.	16.4	18
219	Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production. Bioresource Technology, 2017, 235, 140-148.	9.6	5
220	Reassessing Escherichia coli as a cell factory for biofuel production. Current Opinion in Biotechnology, 2017, 45, 92-103.	6.6	53
221	Synthetic Consortium of <i>Escherichia coli</i> for <i>n</i> Butanol Production by Fermentation of the Glucoseâ€"Xylose Mixture. Journal of Agricultural and Food Chemistry, 2017, 65, 10040-10047.	5.2	37
222	A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metabolic Engineering, 2017, 44, 284-292.	7.0	54
223	Orthogonal partial least squares/projections to latent structures regression-based metabolomics approach for identification of gene targets for improvement of 1-butanol production in Escherichia coli. Journal of Bioscience and Bioengineering, 2017, 124, 498-505.	2.2	24
224	Towards systems metabolic engineering in Pichia pastoris. Biotechnology Advances, 2017, 35, 681-710.	11.7	105
225	Effective production of n -butanol in Escherichia coli utilizing the glucose–glycerol mixture. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 134-139.	5.3	13
226	The significance of proline and glutamate on butanol chaotropic stress in Bacillus subtilis 168. Biotechnology for Biofuels, 2017, 10, 122.	6.2	20

#	Article	IF	CITATIONS
227	A simple method to control glycolytic flux for the design of an optimal cell factory. Biotechnology for Biofuels, 2017, 10, 160.	6.2	9
228	Biobutanol – An impending biofuel for future: A review on upstream and downstream processing tecniques. Renewable and Sustainable Energy Reviews, 2017, 68, 788-807.	16.4	173
229	Engineering the leucine biosynthetic pathway for isoamyl alcohol overproduction in <i>Saccharomyces cerevisiae</i> . Journal of Industrial Microbiology and Biotechnology, 2017, 44, 107-117.	3.0	30
230	Calculation of anharmonic effect on the dissociation of ethylene glycol. Journal of Theoretical and Computational Chemistry, 2017, 16, 1750077.	1.8	1
231	Development of Synthetic Microbial Platforms to Convert Lignocellulosic Biomass to Biofuels. Advances in Bioenergy, 2017, 2, 233-278.	1.3	6
232	Future Microbial Applications for Bioenergy Production: A Perspective. Frontiers in Microbiology, 2017, 8, 450.	3.5	60
233	Metabolic engineering of Escherichia coli for production of n-butanol from crude glycerol. Biotechnology for Biofuels, 2017, 10, 173.	6.2	44
234	Waste Degradation and Utilization by Lactic Acid Bacteria: Use of Lactic Acid Bacteria in Production of Food Additives, Bioenergy and Biogas. , 0, , .		11
235	DCEO Biotechnology: Tools To Design, Construct, Evaluate, and Optimize the Metabolic Pathway for Biosynthesis of Chemicals. Chemical Reviews, 2018, 118, 4-72.	47.7	141
236	Utilization of Sugarcane Field Residue (SFR) as Renewable Feedstock for Biobutanol Production. Sugar Tech, 2018, 20, 168-174.	1.8	6
237	An oleaginous yeast platform for renewable 1-butanol synthesis based on a heterologous CoA-dependent pathway and an endogenous pathway. Microbial Cell Factories, 2018, 17, 166.	4.0	14
238	Isolation, Development, and Genomic Analysis of Bacillus megaterium SR7 for Growth and Metabolite Production Under Supercritical Carbon Dioxide. Frontiers in Microbiology, 2018, 9, 2152.	3.5	9
239	CRISPR Gene Perturbations Provide Insights for Improving Bacterial Biofuel Tolerance. Frontiers in Bioengineering and Biotechnology, 2018, 6, 122.	4.1	19
240	A bacterial antibiotic resistance accelerator and applications. Methods in Cell Biology, 2018, 147, 41-57.	1.1	4
241	Iterative cycle of widely targeted metabolic profiling for the improvement of 1-butanol titer and productivity in Synechococcus elongatus. Biotechnology for Biofuels, 2018, 11, 188.	6.2	33
243	Biobutanol Production Using Recombinant Microorganisms. , 2018, , 47-62.		1
244	A Pseudomonas putida efflux pump acts on short-chain alcohols. Biotechnology for Biofuels, 2018, 11, 136.	6.2	42
245	The effects of disruption in membrane lipid biosynthetic genes on 1-butanol tolerance of Bacillus subtilis. Applied Microbiology and Biotechnology, 2018, 102, 9279-9289.	3.6	4

#	Article	IF	CITATIONS
246	Tolerance and metabolic response of Pseudomonas taiwanensis VLB120 towards biomass hydrolysate-derived inhibitors. Biotechnology for Biofuels, 2018, 11, 199.	6.2	15
247	1-Butanol as a Solvent for Efficient Extraction of Polar Compounds from Aqueous Medium: Theoretical and Practical Aspects. Journal of Physical Chemistry B, 2018, 122, 6975-6988.	2.6	24
248	Enhancing butanol tolerance of Escherichia coli reveals hydrophobic interaction of multi-tasking chaperone SecB. Biotechnology for Biofuels, 2019, 12, 164.	6.2	11
249	Recent Advances in Microbial Production of Butanol as a Biofuel. International Journal of Applied Sciences and Biotechnology, 2019, 7, 130-152.	0.8	4
250	Nutrient composition and safety evaluation of simulated isobutanol distillers dried grains with solubles and associated fermentation metabolites when fed to male Ross 708 broiler chickens (Gallus) Tj ETQq0	0 OzusgBT /0	Ov a rlock 10
251	Advances in Microbial Technology for Upscaling Sustainable Biofuel Production., 2019,, 69-76.		12
252	Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. Biotechnology for Biofuels, 2019, 12, 230.	6.2	12
254	Strategies to improve microbial lipid production: Optimization techniques. Biocatalysis and Agricultural Biotechnology, 2019, 22, 101321.	3.1	5
255	Metabolic engineering applications of the Escherichia coli bacterial artificial chromosome. Journal of Biotechnology, 2019, 305, 43-50.	3.8	0
256	Potential of acetone-butanol-ethanol (ABE) as a biofuel. Fuel, 2019, 242, 673-686.	6.4	223
257	Anaerobic butanol production driven by oxygen-evolving photosynthesis using the heterocyst-forming multicellular cyanobacterium Anabaena sp. PCC 7120. Applied Microbiology and Biotechnology, 2019, 103, 2441-2447.	3.6	11
258	Engineering Clostridial Aldehyde/Alcohol Dehydrogenase for Selective Butanol Production. MBio, 2019, 10, .	4.1	18
261	Current challenges and advances in butanol production. , 2019, , 225-256.		5
262	Identifying and engineering the ideal microbial terpenoid production host. Applied Microbiology and Biotechnology, 2019, 103, 5501-5516.	3.6	114
263	Versatility of a Dilute Acid/Butanol Pretreatment Investigated on Various Lignocellulosic Biomasses to Produce Lignin, Monosaccharides and Cellulose in Distinct Phases. ACS Sustainable Chemistry and Engineering, 2019, 7, 11069-11079.	6.7	50
264	Bio-butanol production from rice straw – Recent trends, possibilities, and challenges. Bioresource Technology Reports, 2019, 7, 100224.	2.7	49
265	Biobutanol as a promising liquid fuel for the future - recent updates and perspectives. Fuel, 2019, 253, 637-646.	6.4	110
266	Alkane and wax ester production from ligninâ€related aromatic compounds. Biotechnology and Bioengineering, 2019, 116, 1934-1945.	3.3	22

#	Article	IF	CITATIONS
267	Establishing synthesis pathwayâ€host compatibility via enzyme solubility. Biotechnology and Bioengineering, 2019, 116, 1405-1416.	3.3	6
268	Biochemistry, genetics and biotechnology of glycerol utilization in <i>Pseudomonas</i> species. Microbial Biotechnology, 2020, 13, 32-53.	4.2	76
269	Accumulation of sugars and nucleosides in response to high salt and butanol stress in 1-butanol producing Synechococcus elongatus. Journal of Bioscience and Bioengineering, 2020, 129, 177-183.	2.2	4
270	Bioconversion of lignocellulosic biomass to bioethanol and biobutanol. , 2020, , 67-125.		20
271	Enhancing control of cell-free metabolism through pH modulation. Synthetic Biology, 2020, 5, .	2.2	24
273	Engineering nature for gaseous hydrocarbon production. Microbial Cell Factories, 2020, 19, 209.	4.0	9
274	Optimization of $\langle i \rangle n < i \rangle$ -butanol synthesis in $\langle i \rangle$ Lactobacillus brevis $\langle i \rangle$ via the functional expression of $\langle i \rangle$ thl $\langle i \rangle$, $\langle i \rangle$ crt $\langle i \rangle$ and $\langle i \rangle$ ter $\langle i \rangle$. Journal of Industrial Microbiology and Biotechnology, 2020, 47, 1099-1108.	3.0	5
275	Clostridium thermocellum: A microbial platform for high-value chemical production from lignocellulose. Advances in Applied Microbiology, 2020, 113, 111-161.	2.4	22
276	Metabolic engineering strategies for butanol production in <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2020, 117, 2571-2587.	3.3	17
277	Harnessing Natural Modularity of Metabolism with Goal Attainment Optimization to Design a Modular Chassis Cell for Production of Diverse Chemicals. ACS Synthetic Biology, 2020, 9, 1665-1681.	3.8	14
278	Role of efflux in enhancing butanol tolerance of bacteria. Journal of Biotechnology, 2020, 320, 17-27.	3.8	15
279	Pathway dissection, regulation, engineering and application: lessons learned from biobutanol production by solventogenic clostridia. Biotechnology for Biofuels, 2020, 13, 39.	6.2	65
280	Present status and future prospect of genetic and metabolic engineering for biofuels production from lignocellulosic biomass., 2020,, 171-192.		1
281	Metabolic pathway engineering: Perspectives and applications. Computer Methods and Programs in Biomedicine, 2020, 192, 105436.	4.7	18
282	Genetic engineering of non-native hosts for 1-butanol production and its challenges: a review. Microbial Cell Factories, 2020, 19, 79.	4.0	30
283	Biobutanol as a potential alternative to petroleum fuel: Sustainable bioprocess and cost analysis. Fuel, 2020, 278, 118403.	6.4	12
284	Substrate Analysis for Effective Biofuels Production. Clean Energy Production Technologies, 2020, , .	0.5	3
285	Genetic manipulation of nonâ€solventâ€producing microbial species for effective butanol production. Biofuels, Bioproducts and Biorefining, 2021, 15, 119-130.	3.7	5

#	ARTICLE	IF	CITATIONS
286	How to outwit nature: Omics insight into butanol tolerance. Biotechnology Advances, 2021, 46, 107658.	11.7	12
287	Butanol Tolerance of Lactiplantibacillus plantarum: A Transcriptome Study. Genes, 2021, 12, 181.	2.4	6
288	Microbiological Aspects of Bioenergy Production: Recent Update and Future Directions. Clean Energy Production Technologies, 2021, , 29-52.	0.5	3
289	Proteomic Analysis Identifies Dysregulated Proteins in Butanol-Tolerant Gram-Positive <i>Lactobacillus mucosae</i> BR0713–33. ACS Omega, 2021, 6, 4034-4043.	3.5	5
290	Carotenoids improve bacterial tolerance towards biobutanol through membrane stabilization. Environmental Science: Nano, 2021, 8, 328-341.	4.3	6
291	Comparative transcriptome analysis reveals the key regulatory genes for higher alcohol formation by yeast at different α-amino nitrogen concentrations. Food Microbiology, 2021, 95, 103713.	4.2	15
292	Analysis of metabolic network disruption in engineered microbial hosts due to enzyme promiscuity. Metabolic Engineering Communications, 2021, 12, e00170.	3.6	7
294	Emerging technologies for genetic modification of solventogenic clostridia: From tool to strategy development. Bioresource Technology, 2021, 334, 125222.	9.6	9
295	Metabolic engineering of Escherichia coli for the production of isobutanol: a review. World Journal of Microbiology and Biotechnology, 2021, 37, 168.	3.6	4
296	Assessment of microbial biomass for production of ecofriendly single-cell protein, bioenergy, and other useful products., 2021,, 267-284.		0
297	Biofuel: Types and Process Overview. Clean Energy Production Technologies, 2020, , 1-28.	0.5	2
298	Current Advancements in Microbial Fuel Cell Technologies. , 2020, , 477-494.		8
299	Biofuels Production Using Metabolic Engineering. , 2020, , 231-244.		2
300	Algal Butanol Production. Clean Energy Production Technologies, 2020, , 33-50.	0.5	1
301	Biobutanol Production From Renewable Resources. Advances in Bioenergy, 2016, 1, 1-68.	1.3	8
302	Metabolic engineering for the production of butanol, a potential advanced biofuel, from renewable resources. Biochemical Society Transactions, 2020, 48, 2283-2293.	3.4	7
303	Butanol is cytotoxic to Lactococcus lactis while ethanol and hexanol are cytostatic. Microbiology (United Kingdom), 2017, 163, 453-461.	1.8	6
306	Tuning the transcription and translation of L-amino acid deaminase in Escherichia coli improves α-ketoisocaproate production from L-leucine. PLoS ONE, 2017, 12, e0179229.	2.5	6

#	Article	IF	CITATIONS
307	Advances in consolidated bioprocessing systems for bioethanol and butanol production from biomass: a comprehensive review. Biofuel Research Journal, 0, , 152-195.	13.3	174
308	Ethanol Production in Actinomycetes after Expression of Synthetic adhB and pdc. Open Biotechnology Journal, 2012, 6, 13-16.	1.2	5
309	Metabolic Engineering of & Dit; Wamp; Br; Thermoanaerobacterium thermosaccharolyticum & Dit; Wamp; Br; For Increased n-Butanol Production. Advances in Microbiology, 2013, 03, 46-51.	0.6	30
310	Evaluation of Carbon and Electron Flow in <i>Lactobacillus brevis</i> as a Potential Host for Heterologous 1-Butanol Biosynthesis. Advances in Microbiology, 2013, 03, 450-461.	0.6	3
311	The Past, Present, and Future of Biofuels – Biobutanol as Promising Alternative. , 0, , .		7
313	Fermentation of oxidized hexose derivatives by Clostridium acetobutylicum. Microbial Cell Factories, 2014, 13, 139.	4.0	0
314	Engineering Central Metabolism for Production of Higher Alcohol-based Biofuels. , 2016, , 1-34.		3
315	Crystal Structure of Thiolase from Clostridium butyricum. Journal of Life Science, 2016, 26, 353-358.	0.2	1
318	Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. Journal of Pure and Applied Microbiology, 2019, 13, 1429-1440.	0.9	1
320	n-Butanol production by Rhodopseudomonas palustris TIE-1. Communications Biology, 2021, 4, 1257.	4.4	20
322	Directed evolution of biofuel-responsive biosensors for automated optimization of branched-chain alcohol biosynthesis. Metabolic Engineering, 2022, 69, 98-111.	7.0	12
323	Applications of Microbes in Fuel Generation. Environmental and Microbial Biotechnology, 2022, , 711-736.	0.7	1
324	Controlling selectivity of modular microbial biosynthesis of butyryl-CoA-derived designer esters. Metabolic Engineering, 2022, 69, 262-274.	7.0	11
325	Hydrogen and alcohols production by Serratia sp. from an inorganic carbon source. Journal of CO2 Utilization, 2022, 58, 101914.	6.8	1
326	Synthetic metabolic pathways for conversion of CO2 into secreted short-to medium-chain hydrocarbons using cyanobacteria. Metabolic Engineering, 2022, 72, 14-23.	7.0	20
327	Engineering <i>E. coli</i> to synthesize butanol. Biochemical Society Transactions, 2022, 50, 867-876.	3.4	7
331	N-Butanol or Isobutanol as a Value-Added Fuel Additive to Inhibit Microbial Degradation of Stored Gasoline. SSRN Electronic Journal, 0, , .	0.4	0
332	Consolidated bioprocessing of hemicellulose to fuels and chemicals through an engineered Bacillus subtilis-Escherichia coli consortium. Renewable Energy, 2022, 193, 288-298.	8.9	6

#	Article	IF	CITATIONS
333	Bioengineering in microbial production of biobutanol from renewable resources. , 2022, , 307-334.		1
334	Volatile compounds from in vitro metabolism of seven Listeria monocytogenes isolates belonging to different clonal complexes. Journal of Medical Microbiology, 2022, 71, .	1.8	2
335	Oxidoreduction potential controlling for increasing the fermentability of enzymatically hydrolyzed steam-exploded corn stover for butanol production. Microbial Cell Factories, 2022, 21, .	4.0	1
336	n-Butanol or isobutanol as a value-added fuel additive to inhibit microbial degradation of stored gasoline. Fuel Communications, 2022, 12, 100072.	5.2	1
337	Current progress on engineering microbial strains and consortia for production of cellulosic butanol through consolidated bioprocessing. Microbial Biotechnology, 2023, 16, 238-261.	4.2	8
338	Alternative Fuels for Agriculture Sustainability: Carbon Footprint and Economic Feasibility. AgriEngineering, 2022, 4, 993-1015.	3.2	14
339	Bio-butanol production: scope, significance, and applications. , 2023, , 1-45.		0
340	Insights into metabolic engineering approaches for enhanced biobutanol production., 2023,, 329-361.		0
341	Microbial Waste Biomass as a Resource of Renewable Energy. Clean Energy Production Technologies, 2023, , 63-78.	0.5	0
342	High yield co-production of isobutanol and ethanol from switchgrass: experiments, and process synthesis and analysis. Sustainable Energy and Fuels, 2023, 7, 3266-3275.	4.9	1
344	Formate Dehydrogenase: From NAD(P)H Regeneration to Targeting Pathogen Biofilms, Composing Highly Efficient Hybrid Biocatalysts and Atmospheric CO2 Fixation. Moscow University Chemistry Bulletin, 2023, 78, 151-169.	0.6	1
345	Higher alcohols: metabolic pathways and engineering strategies for enhanced production. , 2024, , 19-65.		0
346	Assessment of Microbes and Microbial Products for Future Industrialization. , 2023, , 17-22.		0
349	FORMATE DEHYDROGENASE: FROM NAD(P)H REGENERATION TO THE TARGET IN PATHOGENS BIOFILMS, A COMPONENT OF HIGHLY EFFICIENT HYBRID BIOCATALYSTS AND CO2 FIXATION FROM THE ATMOSPHERE. , 2023, 64, 289-311.		0
350	Cell factories for methylerythritol phosphate pathway mediated terpenoid biosynthesis: An application of modern engineering towards sustainability. Process Biochemistry, 2024, 139, 146-164.	3.7	0