The micro-biota of a sub-surface monument the mediev

International Biodeterioration and Biodegradation 63, 851-859 DOI: 10.1016/j.ibiod.2009.02.004

Citation Report

#	Article	IF	CITATIONS
1	Cultivation and molecular monitoring of halophilic microorganisms inhabiting an extreme environment presented by a salt-attacked monument. International Journal of Astrobiology, 2010, 9, 59-72.	1.6	34
2	Microbially induced deterioration of architectural heritages: routes and mechanisms involved. Environmental Sciences Europe, 2012, 24, .	5.5	119
3	Microbial deterioration of cultural heritage and works of art — tilting at windmills?. Applied Microbiology and Biotechnology, 2013, 97, 9637-9646.	3.6	356
4	Microbial communities adhering to the obverse and reverse sides of an oil painting on canvas: identification and evaluation of their biodegradative potential. Aerobiologia, 2013, 29, 301-314.	1.7	52
5	Microscopic, chemical, and molecular-biological investigation of the decayed medieval stained window glasses of two Catalonian churches. International Biodeterioration and Biodegradation, 2013, 84, 388-400.	3.9	56
6	Microbial survey of the mummies from the Capuchin Catacombs of Palermo, Italy: biodeterioration risk and contamination of the indoor air. FEMS Microbiology Ecology, 2013, 86, 341-356.	2.7	81
7	Halophilic Microorganisms Are Responsible for the Rosy Discolouration of Saline Environments in Three Historical Buildings with Mural Paintings. PLoS ONE, 2014, 9, e103844.	2.5	45
8	New and old microbial communities colonizing a seventeenth-century wooden church. Folia Microbiologica, 2014, 59, 45-51.	2.3	16
9	Pink! Why not? On the unusual colour of Évora Cathedral. International Biodeterioration and Biodegradation, 2014, 94, 121-127.	3.9	24
10	Halophilic bacteria are colonizing the exhibition areas of the Capuchin Catacombs in Palermo, Italy. Extremophiles, 2014, 18, 677-691.	2.3	40
11	Unmasking the measlesâ€ike parchment discoloration: molecular and microanalytical approach. Environmental Microbiology, 2015, 17, 427-443.	3.8	69
12	Metabolomic and high-throughput sequencing analysis—modern approach for the assessment of biodeterioration of materials from historic buildings. Frontiers in Microbiology, 2015, 6, 979.	3.5	86
13	Halophilic microbial communities in deteriorated buildings. World Journal of Microbiology and Biotechnology, 2015, 31, 1489-1499.	3.6	13
14	Clone-based comparative sequence analysis of 16S rRNA genes retrieved from biodeteriorating brick buildings of the former Auschwitz Il–Birkenau concentration and extermination camp. Systematic and Applied Microbiology, 2015, 38, 48-55.	2.8	14
15	An overview of techniques for the characterization and quantification of microbial colonization on stone monuments. Annals of Microbiology, 2015, 65, 1243-1255.	2.6	44
16	A multiproxy approach to evaluate biocidal treatments on biodeteriorated majolica glazed tiles. Environmental Microbiology, 2016, 18, 4794-4816.	3.8	33
17	Higher diversity and abundance of ammonia-oxidizing archaea than bacteria detected at the Bayon Temple of Angkor Thom in Cambodia. International Biodeterioration and Biodegradation, 2016, 115, 234-243.	3.9	52
18	Profile of microbial communities on carbonate stones of the medieval church of San Leonardo di Siponto (Italy) by Illumina-based deep sequencing. Applied Microbiology and Biotechnology, 2016, 100, 8537-8548.	3.6	47

#	Article	IF	CITATIONS
19	Biofilm communities survey at the areas of salt crystallization on the walls of a decorated shelter listed at UNESCO World cultural Heritage. International Biodeterioration and Biodegradation, 2017, 122, 116-127.	3.9	19
20	Effects of the halophilic fungi Cladosporium sphaerospermum, Wallemia sebi, Aureobasidium pullulans and Aspergillus nidulans on halite formed on sandstone surface. International Biodeterioration and Biodegradation, 2017, 117, 289-298.	3.9	10
21	More wide occurrence and dominance of ammonia-oxidizing archaea than bacteria at three Angkor sandstone temples of Bayon, Phnom Krom and Wat Athvea in Cambodia. International Biodeterioration and Biodegradation, 2017, 117, 78-88.	3.9	66
22	Untargeted Metabolomics Approach in Halophiles: Understanding the Biodeterioration Process of Building Materials. Frontiers in Microbiology, 2017, 8, 2448.	3.5	23
23	Factors Determining the Biodiversity of Halophilic Microorganisms on Historic Masonry Buildings. Microbes and Environments, 2017, 32, 164-173.	1.6	8
24	Bacterial diversity associated with saline efflorescences damaging the walls of a French decorated prehistoric cave registered as a World Cultural Heritage Site. International Biodeterioration and Biodegradation, 2018, 130, 55-64.	3.9	26
25	Arthrobacter agilis and rosy discoloration in "Terme del Foro―(Pompeii, Italy). International Biodeterioration and Biodegradation, 2018, 130, 48-54.	3.9	16
26	Evaluation of fungal community involved in the bioderioration process of wooden artworks and canvases in Montefeltro area (Marche, Italy). Microbiological Research, 2018, 207, 203-210.	5.3	25
27	Celebrating centuries: Pink-pigmented bacteria from rosy patinas in the House of Bicentenary (Herculaneum, Italy). Journal of Cultural Heritage, 2018, 34, 43-52.	3.3	9
28	First evaluation of the microbiome of built cultural heritage by using the Ion Torrent next generation sequencing platform. International Biodeterioration and Biodegradation, 2018, 131, 11-18.	3.9	61
29	Biofilm biodiversity in French and Swiss show caves using the metabarcoding approach: First data. Science of the Total Environment, 2018, 615, 1207-1217.	8.0	51
30	Limestone biodeterioration: A review on the Portuguese cultural heritage scenario. Journal of Cultural Heritage, 2019, 36, 275-285.	3.3	70
31	Biochemical reactions and mechanisms involved in the biodeterioration of stone world cultural heritage under the tropical climate conditions. International Biodeterioration and Biodegradation, 2019, 143, 104723.	3.9	67
32	Molecular Microbial Biodiversity Assessment in the Mycorrhizosphere. , 2019, , 401-420.		3
33	Micromycetes as colonizers of mineral building materials in historic monuments and museums. Fungal Biology, 2019, 123, 290-306.	2.5	33
34	Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. International Biodeterioration and Biodegradation, 2019, 142, 160-169.	3.9	96
35	A Review on Sampling Techniques and Analytical Methods for Microbiota of Cultural Properties and Historical Architecture. Applied Sciences (Switzerland), 2020, 10, 8099.	2.5	20
36	The use of -omics tools for assessing biodeterioration of cultural heritage: A review. Journal of Cultural Heritage, 2020, 45, 351-361.	3.3	30

#	Article	IF	CITATIONS
37	Microbiota and Biochemical Processes Involved in Biodeterioration of Cultural Heritage and Protection. , 2021, , 37-58.		3
38	Bacterial and Archaeal Structural Diversity in Several Biodeterioration Patterns on the Limestone Walls of the Old Cathedral of Coimbra. Microorganisms, 2021, 9, 709.	3.6	20
39	Microbial interactions with silicate glasses. Npj Materials Degradation, 2021, 5, .	5.8	22
40	Role of Exposure on the Microbial Consortiums on Historical Rural Granite Buildings. Applied Sciences (Switzerland), 2021, 11, 3786.	2.5	12
41	Fungal Deterioration of Cultural Heritage Objects. , 0, , .		8
42	"La vie en roseâ€ \bullet A review of the rosy discoloration of subsurface monuments. , 2014, , 113-124.		10
43	Sunlight-Exposed Biofilm Microbial Communities Are Naturally Resistant to Chernobyl Ionizing-Radiation Levels. PLoS ONE, 2011, 6, e21764.	2.5	63
44	Biodegradative potential of fungal isolates from sacral ambient: In vitro study as risk assessment implication for the conservation of wall paintings. PLoS ONE, 2018, 13, e0190922.	2.5	38
45	Application of molecular techniques for the assessment of microorganism diversity on cultural heritage objects Acta Biochimica Polonica, 2014, 61, .	0.5	46
46	Halophilic microorganisms in deteriorated historic buildings: insights into their characteristics Acta Biochimica Polonica, 2016, 63, 335-41.	0.5	7
47	Comparative analysis of the microbial communities inhabiting halite evaporites of the Atacama Desert. International Microbiology, 2010, 13, 79-89.	2.4	82
48	The capabilities of bacteria and archaea to alter natural building stones – A review. International Biodeterioration and Biodegradation, 2021, 165, 105329.	3.9	14
49	Black Fungi and Stone Heritage Conservation: Ecological and Metabolic Assays for Evaluating Colonization Potential and Responses to Traditional Biocides. Applied Sciences (Switzerland), 2022, 12, 2038.	2.5	25
50	A Novel Comparative Review between Chemical, Natural Essential Oils and Physical (Ozone) Conservation of Archaeological Objects against Microbial Deterioration. Geomicrobiology Journal, 2022, 39, 531-540.	2.0	11
51	A metagenomic analysis of the bacterial microbiome of limestone, and the role of associated biofilms in the biodeterioration of heritage stone surfaces. Scientific Reports, 2022, 12, 4877.	3.3	12
52	Microbial biodeterioration of cultural heritage and identification of the active agents over the last two decades. Journal of Cultural Heritage, 2022, 55, 245-260.	3.3	34
53	Metagenomic and metaproteomic insights into the microbiome and the key geobiochemical potentials on the sandstone of rock-hewn Beishiku Temple in Northwest China. Science of the Total Environment, 2023, 893, 164616.	8.0	3
54	Pretty in pink? Complementary strategies for analysing pink biofilms on historical buildings. Science of the Total Environment, 2023, 904, 166737.	8.0	2

CITATION REPORT

#	Article	IF	CITATIONS
55	Biomineral deposits and coatings on stone monuments as biodeterioration fingerprints. Science of the Total Environment, 2024, 912, 168846.	8.0	0
56	Characterization and decontamination of deposited dust: a management regime at a museum. Aerobiologia, 0, , .	1.7	0