Genetic variability in Musa fruit provitamin A caroteno micronutrient contents

Food Chemistry 115, 806-813

DOI: 10.1016/j.foodchem.2008.12.088

Citation Report

#	Article	IF	CITATIONS
1	Considerations to prevent the breakdown and loss of fruit carotenoids during extraction and analysis in Musa. Journal of Chromatography A, 2009, 1216, 5759-5762.	1.8	15
2	Carotenoid and riboflavin content of banana cultivars from Makira, Solomon Islands. Journal of Food Composition and Analysis, 2010, 23, 624-632.	1.9	48
3	Agronomic, physical and chemical characterization of banana fruits. Crop Breeding and Applied Biotechnology, 2010, 10, 225-231.	0.1	11
4	Influence of Pre- and Postharvest Factors on \hat{I}^2 -Carotene Content, Its in Vitro Bioaccessibility, and Antioxidant Capacity in Melons. Journal of Agricultural and Food Chemistry, 2010, 58, 1732-1740.	2.4	8
5	Carotenoid, flavonoid profiles and dietary fiber contents of fruits commonly consumed in Thailand. International Journal of Food Sciences and Nutrition, 2010, 61, 536-548.	1.3	34
7	Nutrition indicator for biodiversity on food compositionâ€"A report on the progress of data availability. Journal of Food Composition and Analysis, 2011, 24, 692-698.	1.9	22
8	VALIDATION OF RAPID (COLOUR-BASED) PRESCREENING TECHNIQUES FOR ANALYSIS OF FRUIT PROVITAMIN A CONTENTS IN BANANA (MUSA SPP.). Acta Horticulturae, 2011, , 161-168.	0.1	4
9	The Role of Food and Nutrition System Approaches in Tackling Hidden Hunger. International Journal of Environmental Research and Public Health, 2011, 8, 358-373.	1.2	188
10	VITAMIN A BIOFORTIFICATION IN MUSA: STATUS, BOTTLENECKS AND PROSPECTS. Acta Horticulturae, 2011, , 169-177.	0.1	6
11	A Systematic Review on the Contributions of Edible Plant and Animal Biodiversity to Human Diets. EcoHealth, 2011, 8, 381-399.	0.9	63
12	Study on Modification of the Banana Peel in the Extrusion. Advanced Materials Research, 0, 236-238, 2172-2178.	0.3	3
13	Diversity in nutritional composition of Swiss chard (<i>Beta vulgaris</i> subsp. L. var. <i>cicla</i>) accessions revealed by multivariate analysis. Plant Genetic Resources: Characterisation and Utilisation, 2011, 9, 557-566.	0.4	14
14	Content and Retention of Provitamin A Carotenoids Following Ripening and Local Processing of Four Popular Musa Cultivars from Eastern Democratic Republic of Congo. Sustainable Agriculture Research, 2012, 2, 60.	0.2	9
15	Bioaccessibility of provitamin A carotenoids in bananas (Musa spp.) and derived dishes in African countries. Food Chemistry, 2012, 133, 1471-1477.	4.2	47
16	"A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids― BMC Genomics, 2013, 14, 683.	1.2	159
17	Diversifying Food and Diets. , 0, , .		106
18	Teores de minerais em polpas e cascas de frutos de cultivares de bananeira. Pesquisa Agropecuaria Brasileira, 2014, 49, 546-553.	0.9	9
19	Biochemical Profile of Leaf, Silk and Grain Samples of Eight Maize Landraces (⟨i⟩Z⟨ i⟩ ⟨i⟩ea mays⟨ i⟩ â€L.) Cultivated in Two Low-Input Agricultural Systems. Journal of Food Biochemistry, 2014, 38, 551-562.	1.2	7

#	Article	IF	CITATIONS
20	A systematic evaluation of protocols for a proteomics analysis of (lyophilized) fruit tissues. Electrophoresis, 2014, 35, 1395-1405.	1.3	7
21	Utilization of Banana Peel as a Novel Substrate for Biosurfactant Production by Halobacteriaceae archaeon AS65. Applied Biochemistry and Biotechnology, 2014, 173, 624-645.	1.4	51
22	From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnology Advances, 2014, 32, 158-169.	6.0	135
23	Preparation of HIPEs with controlled droplet size containing lutein. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 442, 111-122.	2.3	33
24	Profiles of carotenoids during post-climacteric ripening of some important cultivars of banana and development of a dry product from a high carotenoid yielding variety. LWT - Food Science and Technology, 2014, 55, 59-66.	2.5	19
25	Characterisation of metabolic profile of banana genotypes, aiming at biofortified Musa spp. cultivars. Food Chemistry, 2014, 145, 496-504.	4.2	47
26	Contribution of Organically Grown Crops to Human Health. International Journal of Environmental Research and Public Health, 2014, 11, 3870-3893.	1.2	85
28	Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern Africa. Journal of Food Composition and Analysis, 2015, 43, 1-6.	1.9	45
29	Characterization, stability and rheology of highly concentrated monodisperse emulsions containing lutein. Food Hydrocolloids, 2015, 49, 156-163.	5 . 6	40
30	Banana (Musa spp) from peel to pulp: Ethnopharmacology, source of bioactive compounds and its relevance for human health. Journal of Ethnopharmacology, 2015, 160, 149-163.	2.0	216
31	Household uses of the banana plant in eastern Democratic Republic of Congo. Journal of Applied Bioscience, 2016, 95, 8915.	0.7	3
32	Nutritional and Biochemical Composition of Banana (Musa spp.) Cultivars. , 2016, , 49-81.		13
33	High-efficiency phenotyping for vitamin A in banana using artificial neural networks and colorimetric data. Bragantia, 2016, 75, 268-274.	1.3	7
34	Contribution of indigenous foods towards nutrient intakes and nutritional status of women in the Santhal tribal community of Jharkhand, India. Public Health Nutrition, 2016, 19, 2256-2267.	1.1	32
35	The Quest for Golden Bananas: Investigating Carotenoid Regulation in a Fe'i Group <i>Musa</i> Cultivar. Journal of Agricultural and Food Chemistry, 2016, 64, 3176-3185.	2.4	34
36	Exploring the Potential of Indigenous Foods to Address Hidden Hunger: Nutritive Value of Indigenous Foods of Santhal Tribal Community of Jharkhand, India. Journal of Hunger and Environmental Nutrition, 2016, 11, 548-568.	1.1	36
37	Bioactive compounds in banana and their associated health benefits – A review. Food Chemistry, 2016, 206, 1-11.	4.2	291
39	Carotenoid Profiling in the Peel and Pulp of 36 Selected <i>Musa</i> Varieties. Food Science and Technology Research, 2017, 23, 603-611.	0.3	14

#	ARTICLE	IF	CITATIONS
40	Rapid and easy carotenoid quantification in Ghanaian starchy staples using RP-HPLC-PDA. Journal of Food Composition and Analysis, 2018, 67, 119-127.	1.9	15
41	Comparative analysis of pigments in red and yellow banana fruit. Food Chemistry, 2018, 239, 1009-1018.	4.2	64
42	Carotenoids in the pulp and peel of bananas from 15 cultivars in two ripening stages. Revista Ceres, 2018, 65, 217-226.	0.1	10
43	Unravelling genetic make-up of some Musa hybrids and selected Musa accessions using molecular and morphological characterization. International Journal of Genetics and Molecular Biology, 2018, 10, 1-13.	1.5	O
44	Estimates of Indigenous Food Consumption and Their Contribution to Nutrient Intake in Oraon Tribal Women of Jharkhand, India. Food and Nutrition Bulletin, 2018, 39, 581-594.	0.5	20
45	Bioactive compounds in banana fruits and their health benefits. Food Quality and Safety, 2018, 2, 183-188.	0.6	101
46	Banana21: From Gene Discovery to Deregulated Golden Bananas. Frontiers in Plant Science, 2018, 9, 558.	1.7	29
47	Ripening and cooking processes influence the carotenoid content in bananas and plantains (Musa) Tj ETQq1	1 0.784314 rg	gBT/Overlac
48	Recent advances in banana (<i>musa</i> spp.) biofortification to alleviate vitamin A deficiency. Critical Reviews in Food Science and Nutrition, 2019, 59, 3498-3510.	5.4	24
49	Banana Ripening. SpringerBriefs in Food, Health and Nutrition, 2019, , .	0.5	7
50	Local traditional foods contribute to diversity and species richness of rural women's diet in Ecuador. Public Health Nutrition, 2019, 22, 2962-2971.	1.1	13
51	Lycopene cyclases determine high \hat{l} ±- \hat{l} 2-carotene ratio and increased carotenoids in bananas ripening at high temperatures. Food Chemistry, 2019, 283, 131-140.	4.2	25
52	Integrated proteomic and metabolomic analysis suggests high rates of glycolysis are likely required to support high carotenoid accumulation in banana pulp. Food Chemistry, 2019, 297, 125016.	4.2	25
53	Variability of carotenoids in a Musa germplasm collection and implications for provitamin A biofortification. Food Chemistry: X, 2019, 2, 100024.	1.8	11
54	Banana peel: is it useful for surgical suturing training?. Journal of Physics: Conference Series, 2019, 1358, 012018.	0.3	0
55	Effects of In Vitro Polyploidization on Agronomic Characteristics and Fruit Carotenoid Content; Implications for Banana Genetic Improvement. Frontiers in Plant Science, 2019, 10, 1450.	1.7	9
56	Exploring the differential mechanisms of carotenoid biosynthesis in the yellow peel and red flesh of papaya. BMC Genomics, 2019, 20, 49.	1.2	32
57	Proâ€vitamin A carotenoid content of 48 plantain (<i>Musa</i> AAB genome) cultivars sourced from eastern Democratic Republic of Congo. Journal of the Science of Food and Agriculture, 2020, 100, 634-647.	1.7	6

#	Article	IF	Citations
61	Potentials of Musa Species Fruits against Oxidative Stress-Induced and Diet-Linked Chronic Diseases: In Vitro and In Vivo Implications of Micronutritional Factors and Dietary Secondary Metabolite Compounds. Molecules, 2020, 25, 5036.	1.7	10
62	Carbohydrate and bioactive compounds composition of starchy tropical fruits and tubers, in relation to pre and postharvest conditions: A review. Journal of Food Science, 2020, 85, 249-259.	1.5	19
63	Yield and nutritional evaluation of the banana hybrid â€~FHIA-18' as influenced by phosphate fertilization. Journal of Plant Nutrition, 2020, 43, 1331-1342.	0.9	1
64	Proâ€vitamin A carotenoids in East African highland banana and other <i>Musa</i> cultivars grown in Uganda. Food Science and Nutrition, 2020, 8, 311-321.	1.5	8
65	Climate Change Enhanced Carotenoid Pro-Vitamin A Levels of Selected Plantain Cultivars. Plants, 2020, 9, 541.	1.6	7
66	Domestic cooking practices influence the carotenoid and tocopherol content in colored cauliflower. Food Chemistry, 2021, 340, 127901.	4.2	17
67	Zinc and Iron Profiling in Edible Parts of Some Common Vegetable and Fruit Crops: An Exploration of Inter- and Intra-Crop Variation. Agricultural Research, 2022, 11, 421-428.	0.9	5
68	Screening and Characterization of Phenolic Compounds from Australian Grown Bananas and Their Antioxidant Capacity. Antioxidants, 2021, 10, 1521.	2.2	41
69	On-Farm Crop Diversity for Advancing Food Security and Nutrition. , 0, , .		4
70	Genetic diversity in fresh fruit pulp mineral profile of 100 Indian Musa accessions. Food Chemistry, 2021, 361, 130080.	4.2	15
71	Potential for engineering horticultural crops with high antioxidant capacity CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-22.	0.6	8
72	RETENTION OF PROVITAMIN A CAROTENOIDS DURING POSTHARVEST RIPENING AND PROCESSING OF THREE POPULAR MUSA CULTIVARS IN SOUTH-WESTERN UGANDA. Acta Horticulturae, 2013, , 319-330.	0.1	7
73	Sensory evaluation of provitamin A carotenoid-rich banana cultivars on trial for potential adoption in Burundi and Eastern Democratic Republic of Congo. Fruits, 2017, 72, 261-272.	0.3	9
74	Progress update: Crop development of biofortified staple food crops under HarvestPlus. African Journal of Food, Agriculture, Nutrition and Development, 2017, 17, 11905-11935.	0.1	119
75	Fluctuations of Production and Quality of Bananas Under Marginal Tropical Climate. Journal of Agricultural Science, 2019, 11, 108.	0.1	3
76	Agronomic performance of provitamin A-rich banana cultivars in Burundi and the Democratic Republic of Congo. African Journal of Agricultural Research Vol Pp, 2021, 17, 1209-1220.	0.2	2
77	Conclusion and Prospects in Musa Research. , 2012, , 298-319.		0
78	Genetic variability and association pattern among quantitative nutritional traits in Swiss chard (Beta) Tj ETQq $1\ 1$	0.784314	l FrgBT /Overlo

#	ARTICLE	IF	CITATIONS
79	Fruit Ripening. SpringerBriefs in Food, Health and Nutrition, 2019, , 25-55.	0.5	1
80	Fruit Morphological Characteristics and \hat{l}^2 -carotene Content of Three Indonesian Dessert and Cooking Banana Cultivars. Biosaintifika: Journal of Biology & Biology Education, 2019, 11, 171-177.	0.1	0
81	Discrimination of Musa banana genomic and sub-genomic groups based on multi-elemental fingerprints and chemometrics. Journal of Food Composition and Analysis, 2022, 106, 104334.	1.9	5
82	\hat{l}^2 -Carotene and lutein accumulation, and carotenoid biosynthetic gene expression during fruit development and fruit ripening of A genome banana. Scientia Horticulturae, 2023, 307, 111484.	1.7	3
83	Metabolic profiling reveals genotype-associated alterations in carotenoid content during banana postharvest ripening. Food Chemistry, 2023, 403, 134380.	4.2	2
84	Banana MaERF124 negatively modulates carotenoid accumulation during fruit ripening through repression of carotenogenesis genes. Postharvest Biology and Technology, 2023, 195, 112151.	2.9	9
85	Plantain Bioactives: An Underutilised Food Resource in Africa., 2023,, 187-211.		0
86	Comparative analysis of the sensory acceptability of introduced Pro-Vitamin A-rich bananas in Eastern Africa. Fruits, 2022, 77, 1-10.	0.3	0
87	Genome-wide identification, characterization, and evolutionary analysis of NBS genes and their association with disease resistance in Musa spp Functional and Integrative Genomics, 2023, 23, .	1.4	2
88	Citrus improvement for enhanced mineral nutrients in fruit juice through interspecific hybridization. Journal of Food Composition and Analysis, 2023, 119, 105259.	1.9	o