New prospects in flame retardant polymer materials: Finanocomposites

Materials Science and Engineering Reports

63, 100-125

DOI: 10.1016/j.mser.2008.09.002

Citation Report

#	Article	IF	CITATIONS
1	A novel intumescent flameâ€retardant system for flameâ€retarded LLDPE/EVA composites. Journal of Applied Polymer Science, 2009, 114, 3626-3635.	2.6	71
2	The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders. Journal of Materials Science, 2009, 44, 6100-6109.	3.7	32
3	A review on flame retardant technology in China. Part I: development of flame retardants. Polymers for Advanced Technologies, 2010, 21, 1-26.	3.2	123
4	Fatty acid derived phosphorusâ€containing polyesters via acyclic diene metathesis polymerization. Journal of Polymer Science Part A, 2009, 47, 5760-5771.	2.3	64
5	Thermal stability and flame retardancy of polyurethanes. Progress in Polymer Science, 2009, 34, 1068-1133.	24.7	1,366
6	Combination of Carbon Nanotubes with Ni ₂ O ₃ for Simultaneously Improving the Flame Retardancy and Mechanical Properties of Polyethylene. Journal of Physical Chemistry C, 2009, 113, 13092-13097.	3.1	35
7	Recent Developments in the Chemistry of Cubic Polyhedral Oligosilsesquioxanes. Chemical Reviews, 2010, 110, 2081-2173.	47.7	1,422
8	Evaluation of sample preparation methods for elastomer digestion for further halogens determination. Analytical and Bioanalytical Chemistry, 2010, 397, 563-570.	3.7	41
9	Effect of expanded graphite/layered-silicate clay on thermal, mechanical and fire retardant properties of poly(lactic acid). Polymer Degradation and Stability, 2010, 95, 1063-1076.	5.8	151
10	Nanoclay and carbon nanotubes as potential synergists of an organophosphorus flame-retardant in poly(methyl methacrylate). Polymer Degradation and Stability, 2010, 95, 1523-1532.	5.8	132
11	Synthesis and thermal properties of spiro phosphorus compounds. Journal of Thermal Analysis and Calorimetry, 2010, 101, 281-287.	3.6	6
12	Grafted 2â€chloroethylphosphonic acid on inorganic supports used as flame retardant for unsaturated polyester resins. Fire and Materials, 2010, 34, 271-283.	2.0	10
13	Synergistic effects of ZrO ₂ or B ₂ O ₃ on flameâ€retarded poly (butyl) Tj ET	Qq000r	gBT_/Overloc 22
14	Extrusion Foaming of Poly(styrene <i> oâ€</i> acrylonitrile)/Clay Nanocomposites Using Supercritical CO ₂ . Macromolecular Materials and Engineering, 2010, 295, 915-922.	3.6	15
15	Processing, Structure, and Properties of PAN/MWNT Composite Fibers. Macromolecular Materials and Engineering, 2010, 295, 742-749.	3.6	38
16	Polymer/layered silicate (clay) nanocomposites: An overview of flame retardancy. Progress in Polymer Science, 2010, 35, 902-958.	24.7	956
17	Improved flame retardant properties of epoxy resin by fluorinated MMT/MWCNT additives. Journal of Analytical and Applied Pyrolysis, 2010, 89, 225-232.	5.5	59
18	Flame retardant epoxy complex produced by addition of montmorillonite and carbon nanotube. Journal of Industrial and Engineering Chemistry, 2010, 16, 891-895.	5.8	58

.

#	Article	IF	CITATIONS
19	Fire response of polyamide 6 with layered and fibrillar nanofillers. Polymer Degradation and Stability, 2010, 95, 845-851.	5.8	24
20	Tailored flame retardancy via nanofiller dispersion state: Synergistic action between a conventional flame-retardant and nanoclay in high-impact polystyrene. Polymer Degradation and Stability, 2010, 95, 1759-1768.	5.8	25
21	Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polymer Degradation and Stability, 2010, 95, 2093-2100.	5.8	112
22	Flame retardancy and thermal properties of solid bisphenol A bis(diphenyl phosphate) combined with montmorillonite in polycarbonate. Polymer Degradation and Stability, 2010, 95, 2041-2048.	5.8	54
23	Gas transport properties of polyacrylate/clay nanocomposites prepared via emulsion polymerization. Journal of Membrane Science, 2010, 363, 48-56.	8.2	38
24	Poly(hexamethylene terephthalate)–layered silicate nanocomposites. European Polymer Journal, 2010, 46, 156-164.	5.4	15
25	Nanoclay assisted strengthening of the fiber/matrix interface in functionally filled polyamide 6 composites. Composite Structures, 2010, 92, 2181-2186.	5.8	32
26	Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber reinforced epoxy composites. Carbon, 2010, 48, 1799-1806.	10.3	140
27	Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide. Energy, 2010, 35, 2179-2183.	8.8	153
28	Polypropylene multifilament yarn filled with clay and/or graphite: Study of a potential synergy. Journal of Polymer Science, Part B: Polymer Physics, 2010, 48, 1185-1195.	2.1	11
29	Biopolymers for Military Use: Opportunities and Environment Implications - a Review. , 2010, , .		3
30	Flame retardancy of polymer–clay nanocomposites. , 2010, , 347-403.		0
31	Carbon nanotube buckypaper to improve fire retardancy of high-temperature/high-performance polymer composites. Nanotechnology, 2010, 21, 235701.	2.6	45
32	Aryl Polyphosphonates: Useful Halogen-Free Flame Retardants for Polymers. Materials, 2010, 3, 4746-4760.	2.9	79
33	The Utility of Nanocomposites in Fire Retardancy. Materials, 2010, 3, 4580-4606.	2.9	68
34	HALOGEN-FREE FLAME RETARDANTS FOR WIRE AND CABLE APPLICATIONS. Rubber Chemistry and Technology, 2010, 83, 282-302.	1.2	9
35	Phosphorus-31 NMR Spectroscopy of Condensed Matter. Annual Reports on NMR Spectroscopy, 2010, 70, 35-114.	1.5	20
36	Single-layer graphene nanosheets with controlled grafting of polymer chains. Journal of Materials Chemistry, 2010, 20, 1982.	6.7	446

#	Article	IF	CITATIONS
37	Halogen free flame retardants for Epoxy substrate in electronic applications. , 2010, , .		0
38	Preparation of fire-resistant poly(styrene-co-acrylonitrile) foams using supercritical CO2 technology. Journal of Materials Chemistry, 2010, 20, 1567.	6.7	17
40	Synthetic Dye - Inorganic Salt Hybrid Colorants for Application in Thermoplastics. Molecules, 2011, 16, 5035-5053.	3.8	4
41	Use of Natural and Modified Natural Nanostructured Materials. , 2011, , 157-172.		3
42	Synthesis of polyphosphorinanes Part II. Preparation, characterization and thermal properties of novel flame retardants. Polymer Chemistry, 2011, 2, 236-243.	3.9	11
43	Advanced Materials and New Applications of Sepiolite and Palygorskite. Developments in Clay Science, 2011, 3, 393-452.	0.5	57
45	Nanostructured Materials for Engineering Applications. , 2011, , .		22
47	Diffusion of Polyphosphates into (Poly(allylamine)-montmorillonite) Multilayer Films: Flame Retardant-Intumescent Films with Improved Oxygen Barrier. Langmuir, 2011, 27, 13879-13887.	3.5	104
48	One-Pot Synthesis and Physicochemical Properties of an Organo-Modified Saponite Clay. Langmuir, 2011, 27, 7250-7257.	3.5	30
49	A Study of Nanoclay Reinforcement of Biocomposites Made by Liquid Composite Molding. International Journal of Polymer Science, 2011, 2011, 1-10.	2.7	30
51	Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polymer Degradation and Stability, 2011, 96, 2104-2111.	5.8	20
52	Improved anti-oxidation properties of electrospun polyurethane nanofibers achieved by oxyfluorinated multi-walled carbon nanotubes and aluminum hydroxide. Materials Chemistry and Physics, 2011, 126, 685-692.	4.0	21
53	Synthesis of polysiloxaneâ€ŧype multifunctional flame retardant and its application in epoxy systems. Journal of Applied Polymer Science, 2012, 124, 4915-4919.	2.6	9
54	Polymer nanocomposites based on epoxy resin and ATH as a new flame retardant for CFRP: preparation and thermal characterisation. Journal of Materials Science, 2011, 46, 7046-7055.	3.7	40
55	Effect of zinc oxide on flame retardant finishing of plasma pre-treated cotton fabric. Cellulose, 2011, 18, 151-165.	4.9	54
56	The effect of thermal stability of carbon nanotubes on the flame retardancy of epoxy and bismaleimide/carbon fiber/buckypaper composites. Journal of Thermal Analysis and Calorimetry, 2011, 103, 237-242.	3.6	33
57	Synergistic flame retarded poly(methyl methacrylate) by nano-ZrO2 and triphenylphosphate. Journal of Thermal Analysis and Calorimetry, 2011, 103, 741-746.	3.6	26
58	Thermal properties of epoxy resin nanocomposites based on hydrotalcites. Polymer Degradation and Stability, 2011, 96, 164-169.	5.8	28

#	Article	IF	CITATIONS
59	Synthesis of a novel hybrid synergistic flame retardant and its application in PP/IFR. Polymer Degradation and Stability, 2011, 96, 1134-1140.	5.8	84
60	Thermal Characterization and Flammability of Polyester Fiber Coated with Nonionic and Cationic Softeners. Journal of Surfactants and Detergents, 2011, 14, 595-603.	2.1	34
61	Effect of magnesium dihydroxide nanoparticles on thermal degradation and flame resistance of PMMA nanocomposites. Polymers for Advanced Technologies, 2011, 22, 1713-1719.	3.2	19
62	Effect of polysiloxane and silaneâ€modified SiO ₂ on a novel intumescent flame retardant polypropylene system. Polymers for Advanced Technologies, 2011, 22, 2609-2616.	3.2	43
63	The synthesis of a novel flame retardant and its synergistic efficiency in polypropylene/ammonium polyphosphate system. Polymers for Advanced Technologies, 2011, 22, 1108-1114.	3.2	9
64	Combining cone calorimeter and PCFC to determine the mode of action of flameâ€retardant additives. Polymers for Advanced Technologies, 2011, 22, 1091-1099.	3.2	58
65	Polyamide 6 Composites with Melamine Polyphosphate and Layered Silicates: Evaluation of Flame Retardancy and Physical Properties. Macromolecular Materials and Engineering, 2011, 296, 617-629.	3.6	11
66	Study on the flameâ€retarded poly(methyl methacrylate) by triphenylphosphate and nanoâ€poly(phenylsilsesquioxane) spheres. Advances in Polymer Technology, 2011, 30, 33-40.	1.7	13
67	Compatibilised LDPE/LLDPE/nanoclay nanocomposites: I. Structural, mechanical, and thermal properties. Canadian Journal of Chemical Engineering, 2011, 89, 187-196.	1.7	46
68	Effect of a nanoclay/triphenyl phosphate hybrid system on the fire retardancy of polycarbonate/acrylonitrile–butadiene–styrene blend. Journal of Applied Polymer Science, 2011, 120, 3435-3442.	2.6	26
69	Effect of titanium dioxide on the flameâ€retardant finishing of cotton fabric. Journal of Applied Polymer Science, 2011, 121, 267-278.	2.6	33
70	Flameâ€retardant synergism of sepiolite and magnesium hydroxide in a linear lowâ€density polyethylene composite. Journal of Applied Polymer Science, 2011, 121, 2772-2777.	2.6	44
71	Enhanced thermal stability in graphene oxide covalently functionalized with 2-amino-4,6-didodecylamino-1,3,5-triazine. Carbon, 2011, 49, 1258-1265.	10.3	206
72	Effect of stearic acid, zinc stearate coating on the properties of synthetic hydromagnesite. Applied Surface Science, 2011, 257, 2677-2682.	6.1	16
73	Synergistic effect between expandable graphite and ammonium polyphosphate on flame retarded polylactide. Polymer Degradation and Stability, 2011, 96, 183-189.	5.8	144
74	The influence of KH-550 on properties of ammonium polyphosphate and polypropylene flame retardant composites. Polymer Degradation and Stability, 2011, 96, 1382-1388.	5.8	148
75	Synthesis, application and flame retardancy mechanism of a novel flame retardant containing silicon and caged bicyclic phosphate for polyamide 6. Polymer Degradation and Stability, 2011, 96, 1508-1515.	5.8	86
76	Novel PS Composites by Using Artificial Lamellar Hybrid from Octa(γ-chloroaminopropyl) POSS and Surfactant. Polymer-Plastics Technology and Engineering, 2011, 50, 73-79.	1.9	10

#	Article	IF	CITATIONS
77	Preparation and Flame Retardancy Properties of Novel PA12 and PE/Layered Titanoniobates Nanocomposites. Macromolecular Symposia, 2011, 301, 40-45.	0.7	5
78	Experiment Research of Halogen-Free Flame Retardant System for Oil-Extended SEBS. Advanced Materials Research, 2011, 239-242, 1317-1321.	0.3	1
79	A Study on the Performance of Intumescent Flame-retarded Polypropylene with Nano-ZrO ₂ . Journal of Fire Sciences, 2011, 29, 227-242.	2.0	12
80	Fire-retardant applications of polymer–carbon nanotubes composites: improved barrier effect and synergism. , 2011, , 718-745.		8
81	Research on the Mechanism of a Novel Si/P Flame Retardant. Advanced Materials Research, 0, 441, 436-441.	0.3	1
82	Thermal Effect of Ceramic Nanofiller Aluminium Nitride on Polyethylene Properties. Journal of Nanomaterials, 2012, 2012, 1-7.	2.7	12
83	Synthesis and Characterization of Caged Phosphate Microparticles Coated with Melamine Resin Based on Composite Properties of Materials. Advanced Materials Research, 2012, 583, 236-239.	0.3	0
84	The use of thermosets in the building and construction industry. , 2012, , 165-188.		5
85	The Effect of the Addition of Mgâ€Al LDH Intercalated with Dodecyl Sulfate on the Fire Retardancy Properties of Epoxy. Macromolecular Symposia, 2012, 319, 129-135.	0.7	5
86	Types of risk transformation: a case study. Journal of Risk Research, 2012, 15, 67-84.	2.6	5
87	Nylon-based polymer nanocomposites. , 2012, , 238-276.		3
88	Pyro-Synthesis of Functional Nanocrystals. Scientific Reports, 2012, 2, 946.	3.3	42
89	Thermal and flame properties of calcium borate and intumescent ammonium polyphosphate in epoxy/glass fiber composites. Journal of Fire Sciences, 2012, 30, 428-436.	2.0	10
90	High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter. Fire Safety Journal, 2012, 54, 24-35.	3.1	39
91	Thermal Degradation and Fire Behaviors of Glass Fiber Reinforced PA6 Flame Retarded by Combination of Aluminum Hypophosphite with Melamine Derivatives. ACS Symposium Series, 2012, , 167-182.	0.5	3
92	Simultaneous reduction and surface functionalization of graphene oxide with POSS for reducing fire hazards in epoxy composites. Journal of Materials Chemistry, 2012, 22, 22037.	6.7	227
93	The effect of Na+ montmorillonite (NaMMT) nanoclay on thermal properties of medium density fiberboard (MDF). European Journal of Wood and Wood Products, 2012, 70, 565-571.	2.9	23
94	Thermal stability of styrene–(ethylene butylene)–styrene-based elastomer composites modified by liquid crystalline polymer, clay, and carbon nanotube. Journal of Thermal Analysis and Calorimetry, 2012, 110, 1395-1406.	3.6	20

#	Article	IF	CITATIONS
95	Synthesis of amorphous acid iron phosphate nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	14
96	Structural similarities in 1D coordination polymers of alkaline earth diphosphinates. Inorganica Chimica Acta, 2012, 391, 150-157.	2.4	5
97	A novel flame-retardant-free copolyester: cross-linking towards self extinguishing and non-dripping. Journal of Materials Chemistry, 2012, 22, 19849.	6.7	78
98	Study on the properties of polyamide 6 blended with melamine polyphosphate and layered silicates. Polymer Degradation and Stability, 2012, 97, 1215-1222.	5.8	32
99	On the use of magnesium hydroxide towards halogen-free flame-retarded polyamide-6/polypropylene blends. Polymer Degradation and Stability, 2012, 97, 1447-1457.	5.8	72
100	Intumescence: An effect way to flame retardance and smoke suppression for polystryene. Polymer Degradation and Stability, 2012, 97, 1423-1431.	5.8	151
101	The role of nanoparticle geometry in flame retardancy of polylactide nanocomposites containing aluminium phosphinate. Polymer Degradation and Stability, 2012, 97, 1285-1296.	5.8	74
102	Functionalized graphene oxide for fire safety applications of polymers: a combination of condensed phase flame retardant strategies. Journal of Materials Chemistry, 2012, 22, 23057.	6.7	154
103	Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending. Nanoscale Research Letters, 2012, 7, 355.	5.7	32
104	Effects of multi-walled carbon nanotubes on flame retardation and thermal stabilization performance of phosphorus-containing flame retardants in polypropylene. International Nano Letters, 2012, 2, 1.	5.0	4
105	Processing and Performance Additives for Plastics. , 2012, , 369-381.		7
106	Novel Spirocyclic Phosphazene-Based Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Curing Behaviors, and Flammability Characteristics. ACS Applied Materials & Interfaces, 2012, 4, 4047-4061.	8.0	131
107	Developments in functional finishing of cotton fibres – wrinkle-resistant, flame-retardant and antimicrobial treatments. Textile Progress, 2012, 44, 175-249.	2.0	51
108	Preparation of electromagnetic reflective wool using nano-ZrO2/citric acid as inorganic/organic hybrid coating. Sensors and Actuators A: Physical, 2012, 187, 1-9.	4.1	59
109	ATR investigation of the mass residue from the pyrolysis of fire retarded lignocellulosic materials. Thermochimica Acta, 2012, 550, 48-52.	2.7	8
110	Fire retardancy of emulsion polymerized poly (methyl methacrylate)/cerium(IV) dioxide and polystyrene/cerium(IV) dioxide nanocomposites. Thermochimica Acta, 2012, 549, 124-131.	2.7	10
111	Flammability properties of PEEK and carbon nanotube composites. Polymer Degradation and Stability, 2012, 97, 2492-2502.	5.8	39
112	Preparation and Characterization of Flame-Retardant Aluminum Hypophosphite/Poly(Vinyl Alcohol) Composite. Industrial & Engineering Chemistry Research, 2012, 51, 14065-14075.	3.7	50

#	Article	IF	CITATIONS
113	Novel Cyclolinear Cyclotriphosphazene-Linked Epoxy Resin for Halogen-Free Fire Resistance: Synthesis, Characterization, and Flammability Characteristics. Industrial & Engineering Chemistry Research, 2012, 51, 15064-15074.	3.7	77
114	Flame retardancy, smoke suppression effect and mechanism of aryl phosphates in combination with magnesium hydroxide in polyamide 6. Journal Wuhan University of Technology, Materials Science Edition, 2012, 27, 916-923.	1.0	11
115	Preparation and properties of flame-retardant viscose fiber containing phosphazene derivative. Fibers and Polymers, 2012, 13, 718-723.	2.1	28
117	Synthesis, characterization and curing properties of a novel cyclolinear phosphazene-based epoxy resin for halogen-free flame retardancy and high performance. RSC Advances, 2012, 2, 5789.	3.6	79
118	Thermal properties and flame retardancy of novel epoxy based on phosphorusâ€modified Schiffâ€base. Polymers for Advanced Technologies, 2012, 23, 114-121.	3.2	39
119	Flame retardancy of polyamide 66 nanocomposites with thermally stable organoclay. Polymers for Advanced Technologies, 2012, 23, 137-142.	3.2	14
120	Phosphaâ€Michael addition to enoneâ€containing triglyceride derivatives as an efficient route to flame retardant renewable thermosets. Journal of Polymer Science Part A, 2012, 50, 3206-3213.	2.3	17
121	Nanomorphology and fire behavior of polystyrene/organoclay nanocomposites containing brominated epoxy and antimony oxide. Polymers for Advanced Technologies, 2012, 23, 984-991.	3.2	12
122	Influence of poly(<i>n</i> â€octadecyl acrylate) on mechanical properties, melting behavior, and morphology of polypropylene/aluminum trihydroxide composites. Fire and Materials, 2012, 36, 614-622.	2.0	4
123	Coating of macroemulsion and microemulsion silicones on poly(ethylene terephthalate) fibers: Evaluation of the thermal properties and flammability. Journal of Applied Polymer Science, 2012, 125, 1430-1438.	2.6	24
124	Thermal, magnetic, and optical characteristics of ABSâ€Fe ₂ O ₃ nanocomposites. Journal of Applied Polymer Science, 2012, 125, 3268-3274.	2.6	43
125	Acid/Vanadium ontaining Saponite for the Conversion of Propene into Coke: Potential Flameâ€Retardant Filler for Nanocomposite Materials. Chemistry - an Asian Journal, 2012, 7, 2394-2402.	3.3	8
126	Synthesis, characterization and thermal decomposition behaviour of triphenylphosphine-linked multiwalled carbon nanotubes. Carbon, 2012, 50, 2741-2751.	10.3	30
127	Effect of intumescent ammonium polyphosphate (APP) and melamine cyanurate (MC) on the properties of epoxy/glass fiber composites. Composites Part B: Engineering, 2012, 43, 124-128.	12.0	81
128	Effect of gamma irradiation on linear low density polyethylene/magnesium hydroxide/sepiolite composite. Radiation Physics and Chemistry, 2012, 81, 52-56.	2.8	22
129	Semi-crystalline polymer/carbon nanotube nanocomposites: Effect of nanotube surface-functionalization and polymer coating on electrical and thermal properties. Reactive and Functional Polymers, 2012, 72, 383-392.	4.1	15
130	Fire-retardant solid polymer electrolyte films prepared from oxetane derivative with dimethyl phosphate ester group. Journal of Power Sources, 2012, 202, 369-373.	7.8	24
131	Novel tetrapotassium azo diphosphonate (INAZO) as flame retardant for polyurethane adhesives. Polymer Degradation and Stability, 2012, 97, 375-382.	5.8	27

#	Article	IF	CITATIONS
132	Thermal degradation of organophosphorus flame-retardant poly(methyl methacrylate) nanocomposites containing nanoclay and carbon nanotubes. Polymer Degradation and Stability, 2012, 97, 273-280.	5.8	29
133	Fire retardancy behavior of PLA based nanocomposites. Polymer Degradation and Stability, 2012, 97, 248-256.	5.8	79
134	Effect of phosphorus based flame retardants on UL94 and Comparative Tracking Index properties of poly(butylene terephthalate). Polymer Degradation and Stability, 2012, 97, 566-572.	5.8	33
135	Novel low phosphorus-content bismaleimide resin system with outstanding flame retardancy and low dielectric loss. Polymer Degradation and Stability, 2012, 97, 698-706.	5.8	60
136	Synergetic effect of LDH and glass fiber on the properties of two- and three-component epoxy composites. Polymer Testing, 2012, 31, 741-747.	4.8	27
137	A study of the thermal and mechanical properties of electron beam irradiated HDPE/EPDM blends in the presence of triallyl cyanurate. Journal of Industrial and Engineering Chemistry, 2012, 18, 526-531.	5.8	19
138	Synthesis and characterization of chlorineâ€containing flameâ€retardant polyurethane nanocomposites via <i>in situ</i> polymerization. Journal of Applied Polymer Science, 2012, 123, 437-447.	2.6	16
139	Thermal properties and combustion behavior of POSS―and bohemiteâ€finished cotton fabrics. Journal of Applied Polymer Science, 2012, 123, 426-436.	2.6	32
140	Flameâ€retardant polycarbonate/acrylonitrileâ€butadieneâ€styrene based on red phosphorus encapsulated by polysiloxane: Flame retardance, thermal stability, and water resistance. Journal of Applied Polymer Science, 2012, 123, 2867-2874.	2.6	16
141	Performance of epoxy filled with nano- and micro-sized Magnesium hydroxide. Journal of Materials Science, 2012, 47, 1480-1488.	3.7	43
142	Flame retardancy and thermal stability of polyhedral oligomeric silsesquioxane nanocomposites. Fire and Materials, 2013, 37, 1-16.	2.0	38
143	A highly efficient fireâ€retardant nanomaterial based on carbon nanotubes and magnesium hydroxide. Fire and Materials, 2013, 37, 91-99.	2.0	24
144	Vertical flame spread on charring materials at different ambient temperatures. Fire and Materials, 2013, 37, 230-245.	2.0	8
145	Preparation and characterization of new flame retardant polyurethane composite and nanocomposite. Journal of Applied Polymer Science, 2013, 127, 1683-1690.	2.6	24
146	Synthesis optimization, structural evolution and optical properties of hierarchical nanoporous alumina microspheres prepared by continuous soft chemistry method. Journal of Porous Materials, 2013, 20, 1075-1086.	2.6	12
147	Thermal stability and flame retardancy of polyester fabrics sol–gel treated in the presence of boehmite nanoparticles. Polymer Degradation and Stability, 2013, 98, 1609-1616.	5.8	51
148	Thermal and fire behavior of natural fibers/PBS biocomposites. Polymer Degradation and Stability, 2013, 98, 87-95.	5.8	153
149	Investigation of the synergy in intumescent polyurethane byÂ3DÂcomputed tomography. Polymer Degradation and Stability, 2013, 98, 1638-1647.	5.8	35

#	Article	IF	Citations
150	Mechanism of action of different <i>d</i> â€spacings clays on the intumescent fire retardance of polymers. Journal of Applied Polymer Science, 2013, 130, 1759-1771.	2.6	11
151	Improved Thermal Conductivity and Flame Retardancy in Polystyrene/Poly(vinylidene fluoride) Blends by Controlling Selective Localization and Surface Modification of SiC Nanoparticles. ACS Applied Materials & Amp; Interfaces, 2013, 5, 6915-6924.	8.0	153
152	Recent developments in flame retardant polymeric coatings. Progress in Organic Coatings, 2013, 76, 1642-1665.	3.9	294
153	Flame retardant treatments of insulating agro-materials from flax short fibres. Polymer Degradation and Stability, 2013, 98, 1043-1051.	5.8	42
154	Nanomaterial disposal by incineration. Environmental Sciences: Processes and Impacts, 2013, 15, 1652-1664.	3.5	60
155	Dynamics and Mechanism of Flame Retardants in Polymer Matrixes: Experiment and Simulation. Journal of Physical Chemistry B, 2013, 117, 8571-8578.	2.6	10
156	Facile synthesis of lanthanum hypophosphite and its application in glass-fiber reinforced polyamide 6 as a novel flame retardant. Composites Part A: Applied Science and Manufacturing, 2013, 54, 1-9.	7.6	20
157	Effect of boron phosphate on the mechanical, thermal and fire retardant properties of polypropylene and polyamide-6 fibers. Fibers and Polymers, 2013, 14, 1595-1601.	2.1	16
158	Comprehensive use of dolomite-talc ore to prepare talc, nano-MgO and lightweight CaCO3 using an acid leaching method. Applied Clay Science, 2013, 86, 145-152.	5.2	14
159	A comprehensive study of the synergistic flame retardant mechanisms of halloysite in intumescent polypropylene. Polymer Degradation and Stability, 2013, 98, 2268-2281.	5.8	106
160	Determination and correlation of solubilities of 1,2-bis (2-oxo-5,5-dimethyl-1,3,2-dioxyphosphacyclohexyl-2-imino) ethane in selected solvents. Fluid Phase Equilibria, 2013, 360, 343-350.	2.5	9
161	A novel inorganic–organic hybridized intumescent flame retardant and its super flame retarding cyanate ester resins. Journal of Materials Chemistry A, 2013, 1, 2169-2182.	10.3	95
162	Synergistic Effect of Layered Nanofillers in Intumescent Flame-Retardant EPDM: Montmorillonite versus Layered Double Hydroxides. Industrial & Engineering Chemistry Research, 2013, 52, 8454-8463.	3.7	67
163	Comparative study on the thermal stability, flame retardancy and smoke suppression properties of polystyrene composites containing molybdenum disulfide and graphene. RSC Advances, 2013, 3, 25030.	3.6	84
164	Mechanical Properties of Flame-Retardant Huntite and Hydromagnesite-Reinforced Polymer Composites. Polymer-Plastics Technology and Engineering, 2013, 52, 182-188.	1.9	22
165	Preparation of shape-stabilized co-crystallized poly (ethylene glycol) composites as thermal energy storage materials. Energy Conversion and Management, 2013, 76, 101-108.	9.2	16
166	Properties of flame-retardant fillers in polypropylene/ethylene propylene diene monomer composites. Journal of Thermoplastic Composite Materials, 2013, 26, 1223-1236.	4.2	16
167	Mechanical, thermal and flame-retardant properties of epoxy–nylon fabric–clay hybrid laminates. High Performance Polymers, 2013, 25, 559-565.	1.8	9

#	Article	IF	CITATIONS
168	Strength-strain, barrier, thermal, and fire-resistance properties of nanocomposites based on linear polyethylene with montmorillonite. Russian Journal of Applied Chemistry, 2013, 86, 1885-1896.	0.5	1
169	Flammability behaviour of wood and a review of the methods for its reduction. Fire Science Reviews, 2013, 2, 4.	0.9	246
170	Preparation and evaluation of activated carbons from lotus stalk with trimethyl phosphate and tributyl phosphate activation for lead removal. Chemical Engineering Journal, 2013, 228, 425-434.	12.7	73
171	Flame retardant polypropylene through the joint action of sepiolite and polyamide 6. Polymer Degradation and Stability, 2013, 98, 1972-1980.	5.8	36
172	Influence of the pH and ageing time on the acid aluminum phosphate synthesized by precipitation. CrystEngComm, 2013, 15, 3359.	2.6	21
173	Combustion behavior of polypropylene-based composites used in industrial plasticollar. Composite Interfaces, 2013, 20, 241-253.	2.3	1
174	A high voltage LiMnPO4–LiMn2O4 nanocomposite cathode synthesized by a one-pot pyro synthesis for Li-ion batteries. RSC Advances, 2013, 3, 25640.	3.6	15
175	Understanding the durability of advanced fibre-reinforced polymer (FRP) composites for structural applications. , 2013, , 361-439.		14
176	Epoxy clay nanocomposites – processing, properties and applications: A review. Composites Part B: Engineering, 2013, 45, 308-320.	12.0	548
177	A DFT study on the initial stage of thermal degradation of Poly(methyl methacrylate)/carbon nanotube system. Journal of Molecular Modeling, 2013, 19, 623-629.	1.8	2
178	Hydration-induced reinforcement of rigid polyurethane–cement foams: The effect of the co-continuous morphology on the thermal-oxidative stability. Polymer Degradation and Stability, 2013, 98, 64-72.	5.8	55
179	Flame-Retardant Electrical Conductive Nanopolymers Based on Bisphenol F Epoxy Resin Reinforced with Nano Polyanilines. ACS Applied Materials & Interfaces, 2013, 5, 898-910.	8.0	179
180	Effects of inorganic fillers on the shear viscosity and fire retardant performance of waterborne intumescent coatings. Progress in Organic Coatings, 2013, 76, 844-851.	3.9	70
181	Molecular dynamics simulations of PMMA slabs: role of annealing conditions. Modelling and Simulation in Materials Science and Engineering, 2013, 21, 065010.	2.0	4
182	Production of micro-crystalline boehmite from hydrothermal processing of Bayer plant alumina tri-hydrate. Powder Technology, 2013, 235, 556-562.	4.2	18
183	A flame retarding separator with improved thermal stability for safe lithium-ion batteries. Electrochemistry Communications, 2013, 35, 68-71.	4.7	35
184	Phosphorous-filled nanobrick wall multilayer thin film eliminates polyurethane melt dripping and reduces heat release associated with fire. Polymer Degradation and Stability, 2013, 98, 2645-2652.	5.8	70
185	Immobilization of flame-retardant onto silica nanoparticle surface and properties of epoxy resin filled with the flame-retardant-immobilized silica (2). Reactive and Functional Polymers, 2013, 73, 613-618.	4.1	31

#	Article	IF	CITATIONS
186	Improving the flame retardancy and mechanical properties of high-density polyethylene-g-maleic anhydride with a novel organic metal phosphonate. Journal of Analytical and Applied Pyrolysis, 2013, 102, 154-160.	5.5	16
187	Calcium-based hydrated minerals: Promising halogen-free flame retardant and fire resistant additives for polyethylene and ethylene vinyl acetate copolymers. Polymer Degradation and Stability, 2013, 98, 1617-1625.	5.8	33
188	Synthesis of a phosphorus/silicon hybrid and its synergistic effect with melamine polyphosphates on flame retardant polypropylene system. Journal of Applied Polymer Science, 2013, 129, 316-323.	2.6	16
189	Modeling the thermal degradation of poly(methyl methacrylate)/carbon nanotube nanocomposites. Polymer Degradation and Stability, 2013, 98, 266-275.	5.8	17
190	Polyaniline stabilized barium titanate nanoparticles reinforced epoxy nanocomposites with high dielectric permittivity and reduced flammability. Journal of Materials Chemistry C, 2013, 1, 2886.	5.5	102
192	Novel phosphorus-containing hyperbranched polysiloxane and its high performance flame retardant cyanate ester resins. Polymer Degradation and Stability, 2013, 98, 597-608.	5.8	86
193	Polymer concrete with recycled PET: The influence of the addition of industrial waste on flammability. Construction and Building Materials, 2013, 40, 378-389.	7.2	18
194	Effect of triphenyl phosphate flame retardant on properties of arylamineâ€based polybenzoxazines. Journal of Applied Polymer Science, 2013, 130, 1074-1083.	2.6	28
196	Effect of a phosphorus-containing oligomer on flame-retardant, rheological and mechanical properties of poly (lactic acid). Polymer Degradation and Stability, 2013, 98, 1389-1396.	5.8	52
197	Recent developments in the fire retardancy of polymeric materials. Progress in Polymer Science, 2013, 38, 1357-1387.	24.7	517
198	Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 2013, 38, 1504-1542.	24.7	992
199	UV radiation induced flame retardant cellulose fiber by using polyvinylphosphonic acid/carbon nanotube composite coating. Composites Part B: Engineering, 2013, 45, 282-289.	12.0	87
200	Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol. Composites Part B: Engineering, 2013, 45, 550-555.	12.0	118
201	Preparation of hybrid phosphamide containing polysilsesquioxane and its effect on flame retardancy and mechanical properties of polypropylene composites. Composites Part B: Engineering, 2013, 45, 1541-1547.	12.0	40
202	Syntheses of Metallic Cyclodextrins and Their Use as Synergists in a Poly(Vinyl Alcohol)/Intumescent Flame Retardant System. Industrial & Engineering Chemistry Research, 2013, 52, 2784-2792.	3.7	47
203	Thermally Conductive Aluminum Nitride–Multiwalled Carbon Nanotube/Cyanate Ester Composites with High Flame Retardancy and Low Dielectric Loss. Industrial & Engineering Chemistry Research, 2013, 52, 3342-3353.	3.7	51
204	Flame Retardancy and Mechanism of Bismaleimide Resins Based on a Unique Inorganic–Organic Hybridized Intumescent Flame Retardant. Industrial & Engineering Chemistry Research, 2013, 52, 15075-15087.	3.7	42
205	Influences of properties and heating characteristics on the thermal decomposition of polymer/carbon nanotube nanocomposites. Fire Safety Journal, 2013, 59, 166-177.	3.1	9

_			_
C_1	TAT	ON	Report
\sim			KLFOKI

#	Article	IF	CITATIONS
206	Highâ€Mechanical‧trength Flameâ€Retardant Nanocomposites Based on Novel Al(III)―and Zr(IV)â€Melamine Phosphates and Sulfates. Macromolecular Materials and Engineering, 2013, 298, 690-698.	3.6	4
207	Flame retardancy and charring behavior of polystyreneâ€organic montmorillonite nanocomposites. Polymers for Advanced Technologies, 2013, 24, 273-281.	3.2	37
208	Toughness and Thermal Properties of MWCNTs/EP Composites. Advanced Materials Research, 2013, 763, 130-134.	0.3	0
209	Flame Retardancy of Polypropelene/LDHs Composites: An Influence of Organo-LDH Types. Advanced Materials Research, 2013, 815, 478-483.	0.3	5
210	Prospects of Using Nanopowders as Flame Retardant Additives. Advanced Materials Research, 2013, 872, 123-127.	0.3	6
211	Comparison on the Properties of Glass Fiber/MWCNT/Epoxy and Carbon Fiber/MWCNT/Epoxy Composites. Advanced Materials Research, 2013, 858, 32-39.	0.3	2
212	INFLUENCE OF FIRE RETARDANT ADDITIVES ON FIRE PROPERTIES OF MATERIALS BASED ON POLYESTER RESIN POLIMAL 1033 APY. Journal of Civil Engineering and Management, 2013, 19, 456-464.	3.5	3
213	Effects of coating of nano―and microemulsion silicones on thermal properties and flammability of polyethylene terephthalate textile. Pigment and Resin Technology, 2013, 42, 34-44.	0.9	14
214	Characterization of meltâ€compounded and masterbatchâ€diluted polypropylene composites filled with several fillers. Polymer Composites, 2013, 34, 554-569.	4.6	11
215	Fire properties of silylated αâ€zirconium phosphate composites based on polystyrene. Polymers for Advanced Technologies, 2013, 24, 646-652.	3.2	10
216	Synthesis and Characterization of a Novel Flame Retardant 1,2-Bis (dimelaminium of) Tj ETQq0 0 0 rgBT /Overlock Materials Research, 2013, 750-752, 1164-1167.	10 Tf 50 3 0.3	347 Td (1-ni 1
217	Thermal and mechanical behavior of cotton/vinyl ester composites: Effects of some flame retardants and fiber treatment. Journal of Reinforced Plastics and Composites, 2013, 32, 681-688.	3.1	31
218	INVESTIGATION INTO THE INFLUENCE OF FLAME RETARDANT ADDITIVES ON SOME FIRE PROPERTIES OF POLYESTER MATERIALS APPLYING SMALL-SCALE TESTING TECHNIQUES. Journal of Civil Engineering and Management, 2013, 19, 561-572.	3.5	3
219	In situ polymerized wood polymer composite: effect of additives and nanoclay on the thermal, mechanical properties. Materials Research, 2013, 16, 954-963.	1.3	25
220	Thermal Degradation and Flammability Behaviour of Hdpe/Eva/Eg Composites. Polymers and Polymer Composites, 2013, 21, 307-314.	1.9	4
221	Production of a Polymeric Composite Material Filled with Halogen-Free Flame Retardant. Polymers and Polymer Composites, 2013, 21, 133-138.	1.9	4
222	Effects of Boron Compounds on the Mechanical and Fire Properties of Wood-chitosan and High-density Polyethylene Composites. BioResources, 2014, 9, .	1.0	10
223	Thermal stability and combustion behavior of flame-retardant polypropylene with thermoplastic polyurethane-microencapsulated ammonium polyphosphate. High Performance Polymers, 2014, 26, 445-454.	1.8	35

CITATION	
CHAILON	REFORT

#	Article	IF	CITATIONS
224	The Thermal Stability and Flammability of Expandable Graphite-Filled Polypropylene/Thermoplastic Polyurethane Blends. Journal of Macromolecular Science - Physics, 2014, 53, 756-768.	1.0	4
225	Pathways to Biodegradable Flame Retardant Polymer (Nano)Composites. , 2014, , 709-773.		10
227	Boron/Phosphorus-Containing Flame-Retardant Photocurable Coatings. RSC Smart Materials, 2014, , 150-187.	0.1	1
228	Effect of Nanometric Metallic Hydroxides on the Flame Retardant Properties of HDPE Composites. Journal of Nanomaterials, 2014, 2014, 1-11.	2.7	18
229	Epoxy Resin Composite Based on Functional Hybrid Fillers. Materials, 2014, 7, 6064-6091.	2.9	39
230	Syntheses and Characterization of Four Phosphaphenanthrene and Phosphazene-based Flame Retardants. Phosphorus, Sulfur and Silicon and the Related Elements, 2014, 189, 1811-1822.	1.6	22
231	Towards scalable production of polyamide 12/halloysite nanocomposites via water-assisted extrusion: mechanical modeling, thermal and fire properties. Polymers for Advanced Technologies, 2014, 25, 137-151.	3.2	36
232	Expanding the application field of post onsumer poly(ethylene terephthalate) through structural modification by reactive blending. Journal of Applied Polymer Science, 2014, 131, .	2.6	27
233	Water resistance, thermal stability, and flame retardation of polypropylene composites containing a novel ammonium polyphosphate microencapsulated by UV-curable epoxy acrylate resin. Polymers for Advanced Technologies, 2014, 25, 861-871.	3.2	31
234	Effects of irradiation on the mechanical, electrical, and flammability properties of (lowâ€density) Tj ETQq1 1 0.78 Vinyl and Additive Technology, 2014, 20, 91-98.	4314 rgBT 3.4	/Overlock 17
235	Mechanical and thermal analysis of injection molded poly(methyl methacrylate) modified with 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) fire retarder. Polymer Engineering and Science, 2014, 54, 1030-1037.	3.1	13
236	Effects of melamine polyphosphate and halloysite nanotubes on the flammability and thermal behavior of polyamide 6. Polymers for Advanced Technologies, 2014, 25, 1552-1559.	3.2	24
237	Synthesis of Nanoâ€structured Poly(2,6â€dimethylâ€1,4â€phenyleneâ€oxide)/Polystyrene in Water. Journal of th Chinese Chemical Society, 2014, 61, 731-736.	¹⁰ 1.4	0
238	Roles of organic intercalation agent with flame retardant groups in montmorillonite (MMT) in properties of polypropylene composites. Polymers for Advanced Technologies, 2014, 25, 872-880.	3.2	17
239	Thermal stability and fire retardancy of polyurea and epoxy nanocomposites using organically modified magadiite. Journal of Fire Sciences, 2014, 32, 346-361.	2.0	12
240	Combination of fumed silica with carbon black for simultaneously improving the thermal stability, flame retardancy and mechanical properties of polyethylene. Polymer, 2014, 55, 2998-3007.	3.8	40
241	Synergistic effect of activated carbon and Ni2O3 in promoting the thermal stability and flame retardancy of polypropylene. Polymer Degradation and Stability, 2014, 99, 18-26.	5.8	38
242	Flame retarded poly(lactic acid) using POSS-modified cellulose. 2. Effects of intumescing flame retardant formulations on polymer degradation and composite physical properties. Polymer Degradation and Stability, 2014, 106, 54-62.	5.8	67

		15	C
#		IF	CITATIONS
243	Properties of B4C–PbO–Al(OH)3-epoxy nanocomposite prepared by ultrasonic dispersion approach for high temperature neutron shields. Journal of Nuclear Materials, 2014, 445, 63-71.	2.7	41
244	Flame retardancy and synergistic flame retardant mechanisms of acrylonitrile-butadiene-styrene composites based on aluminum hypophosphite. Polymer Degradation and Stability, 2014, 105, 265-276.	5.8	64
245	Flame retardancy and thermal stability of ethylene-vinyl acetate copolymer nanocomposites with alumina trihydrate and montmorillonite. Journal of Industrial and Engineering Chemistry, 2014, 20, 1596-1601.	5.8	26
246	Influences of coupling agent on thermal properties, flammability and mechanical properties of polypropylene/thermoplastic polyurethanes composites filled with expanded graphite. Journal of Thermal Analysis and Calorimetry, 2014, 115, 689-695.	3.6	34
247	Effect of ammonium polyphosphate on flame retardancy, thermal stability and mechanical properties of alkali treated kenaf fiber filled PLA biocomposites. Materials & Design, 2014, 54, 425-429.	5.1	179
248	A rapid polyol combustion strategy towards scalable synthesis of nanostructured LiFePO4/C cathodes for Li-ion batteries. Journal of Solid State Electrochemistry, 2014, 18, 1557-1567.	2.5	23
249	Effect of Plasma Pretreatment Followed by Nanoclay Loading on Flame Retardant Properties of Cotton Fabric. Journal of Fusion Energy, 2014, 33, 88-95.	1.2	29
250	Flame retardant effect of boron compounds on red phosphorus containing epoxy resins. Polymer Degradation and Stability, 2014, 99, 12-17.	5.8	120
251	Development of low density polyethylene nanocomposites films for packaging. Polymer Bulletin, 2014, 71, 705-717.	3.3	20
252	A Facile Room Temperature Synthesis of Zinc Oxide Nanostructure and Its Influence on the Flame Retardancy of Poly Vinyl Alcohol. Journal of Cluster Science, 2014, 25, 397-408.	3.3	44
253	The Effect of Aminated Carbon Nanotube and Phosphorus Pentoxide on the Thermal Stability and Flame Retardant Properties of the Acrylonitrile–Butadiene–Styrene. Journal of Cluster Science, 2014, 25, 541-548.	3.3	13
254	Usability of three boron compounds for enhancement of flame retardancy in polyethylene-based cable insulation materials. Journal of Fire Sciences, 2014, 32, 99-120.	2.0	18
255	Flammability and thermal properties of epoxy/glass/MWNT Composites. Journal of Applied Polymer Science, 2014, 131, .	2.6	13
256	Furan resin as a replacement of phenolics: influence of the clay addition on its thermal degradation and fire behaviour. Fire and Materials, 2014, 38, 683-694.	2.0	9
257	Review on flammability of biofibres and biocomposites. Carbohydrate Polymers, 2014, 111, 149-182.	10.2	161
258	Investigation of enhancing effect of nano-montmorillonite on fire-retardant added low-density polyethylene–ethylene vinyl acetate hybrid system. Journal of Thermoplastic Composite Materials, 2014, 27, 1515-1529.	4.2	10
259	Interactions of montmorillonite and electron beam irradiation in enhancing the properties of alumina trihydrate–added polyethylene and ethylene vinyl acetate blends. Journal of Composite Materials, 2014, 48, 1155-1171.	2.4	11
260	Synthesis and characterization of novel phosphorousâ€siliconeâ€nitrogen flame retardant and evaluation of its flame retardancy for epoxy thermosets. Journal of Applied Polymer Science, 2014, 131,	2.6	7

		CITATION REPORT		
# 261	ARTICLE Thermal degradation, flammability, and potential toxicity of polymer nanocomposites.	, 2014, , 278-310.	IF	Citations 3
262	Fine dispersion of phosphazene-amines and silicate platelets in epoxy nanocomposites synergistic fire-retarding effect. Journal of Polymer Research, 2014, 21, 1.	and the	2.4	7
263	Synergistic effect of fumed silica with Ni2O3 on improving flame retardancy of poly(lad Polymer Degradation and Stability, 2014, 104, 18-27.	ctic acid).	5.8	39
264	Flame retardation of polypropylene via a novel intumescent flame retardant: Ethylened ammonium polyphosphate. Polymer Degradation and Stability, 2014, 106, 88-96.	iamine-modified	5.8	160
265	Novel cyclotriphosphazene-based epoxy compound and its application in halogen-free thermosetting systems: Synthesis, curing behaviors, and flame retardancy. Polymer De Stability, 2014, 103, 96-112.	epoxy gradation and	5.8	100
266	Curing behavior and thermal properties of TGDDM copolymerized with a new pyridine- diamine and with DDM or DDS. Thermochimica Acta, 2014, 575, 21-28.	containing	2.7	33
267	A sonochemical method for synthesis of Fe3O4 nanoparticles and thermal stable PVA- nanocomposite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3970-3974		5.8	174
268	Comparative study of boron compounds and aluminum trihydroxide as flame retardant epoxy resin. Polymers for Advanced Technologies, 2014, 25, 769-776.	t additives in	3.2	60
269	Particle Size Distribution of Halogenated Flame Retardants and Implications for Atmos Deposition and Transport. Environmental Science & Technology, 2014, 48, 14426	pheric 5-14434.	10.0	71
270	Synergetic effect of ferrocene and MoS2 in polystyrene composites with enhanced the flame retardant and smoke suppression properties. RSC Advances, 2014, 4, 13205.	rmal stability,	3.6	66
271	Reticulated three-dimensional network ablative composites for heat shields in thermal systems. RSC Advances, 2014, 4, 43708-43719.	protection	3.6	33
272	A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropylene. RSC Advances 48285-48292.	, 2014, 4,	3.6	81
273	A straightforward, eco-friendly and cost-effective approach towards flame retardant ep Journal of Materials Chemistry A, 2014, 2, 16230-16241.	oxy resins.	10.3	153
274	Reverse atom transfer radical polymerization of methyl methacrylate in the presence o Azo-functionalized carbon nanotubes: a grafting from approach. Colloid and Polymer S 292, 2971-2981.	f cience, 2014,	2.1	62
275	Multi-functional ladderlike polysiloxane: synthesis, characterization and its high perform retarding bismaleimide resins with simultaneously improved thermal resistance, dimen and dielectric properties. Journal of Materials Chemistry A, 2014, 2, 7491-7501.		10.3	62
276	Ammonium polyphosphate chemically-modified with ethanolamine as an efficient intur retardant for polypropylene. Journal of Materials Chemistry A, 2014, 2, 13955.	nescent flame	10.3	220
277	Iron-containing, high aspect ratio clay as nanoarmor that imparts substantial thermal/f protection to polyurethane with a single electrostatically-deposited bilayer. Journal of N Chemistry A, 2014, 2, 17609-17617.		10.3	74
278	Optimum loading level of nanoclay in PLA nanocomposites. Journal of Thermoplastic C Materials, 2014, 27, 1461-1478.	omposite	4.2	21

#	Article	IF	CITATIONS
279	Organic–inorganic hybrid flame retardant: preparation, characterization and application in EVA. RSC Advances, 2014, 4, 17812.	3.6	61
280	Phosphorus-containing thermotropic liquid crystalline polymers: a class of efficient polymeric flame retardants. Polymer Chemistry, 2014, 5, 3737.	3.9	56
281	Materials engineering for surface-confined flame retardancy. Materials Science and Engineering Reports, 2014, 84, 1-20.	31.8	139
282	Influence of Particle Size and Crystalline Level on the Efficiency of Dust Explosion Inhibitors. Industrial & Engineering Chemistry Research, 2014, 53, 11527-11537.	3.7	19
283	Dielectric and thermal properties of flame retardant fillers in polypropylene/ethylene propylene diene monomer composites. Journal of Reinforced Plastics and Composites, 2014, 33, 1931-1940.	3.1	10
284	Polymers on Fire. , 2014, , 1-43.		15
285	Organosilicon Compounds as Polymer Fire Retardants. , 2014, , 389-418.		9
286	Multigram-scale fabrication of organic modified MoS ₂ nanosheets dispersed in polystyrene with improved thermal stability, fire resistance, and smoke suppression properties. RSC Advances, 2014, 4, 40170-40180.	3.6	46
287	Influence of Valence and Structure of Phosphorus-Containing Melamine Salts on the Decomposition and Fire Behaviors of Flexible Polyurethane Foams. Industrial & Engineering Chemistry Research, 2014, 53, 8773-8783.	3.7	49
288	Inherently Flame-Retardant Flexible Polyurethane Foam with Low Content of Phosphorus-Containing Cross-Linking Agent. Industrial & Engineering Chemistry Research, 2014, 53, 1160-1171.	3.7	123
289	An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polymer Degradation and Stability, 2014, 108, 97-107.	5.8	87
290	Obtaining Monodisperse Melamine Phosphate Grains by a Continuous Reaction Crystallization Process. Industrial & Engineering Chemistry Research, 2014, 53, 6593-6599.	3.7	3
291	Investigation on Thermal Degradation of Poly(1,4-butylene terephthalate) Filled with Aluminum Hypophosphite and Trimer by Thermogravimetric Analysis–Fourier Transform Infrared Spectroscopy and Thermogravimetric Analysis–Mass Spectrometry. Industrial & Engineering Chemistry Research, 2014, 53, 8476-8483.	3.7	32
292	Flame Retardancy of Fiber-Reinforced Polymer Composites Based on Nanoclays and Carbon Nanotubes. , 2014, , 551-595.		13
293	A novel flame-retardant acrylonitrile-butadiene-styrene system based on aluminum isobutylphosphinate and red phosphorus: Flame retardance, thermal degradation and pyrolysis behavior. Polymer Degradation and Stability, 2014, 109, 184-193.	5.8	38
294	Effect of ceramic nanofiller silicon nitride on polyethylene productivity and properties. Polymer Engineering and Science, 2014, 54, 1941-1946.	3.1	5
295	Electrical insulation characteristics of alumina, titania, and organoclay nanoparticles filled PP/EPDM nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	21
296	Acrylonitrile–Butadiene–Styrene Terpolymer with Metal Hypophosphites: Flame Retardance and Mechanism Research. Industrial & Engineering Chemistry Research, 2014, 53, 2299-2307.	3.7	30

#	Article	IF	CITATIONS
297	Processing of nanostructured polymers and advanced polymeric based nanocomposites. Materials Science and Engineering Reports, 2014, 85, 1-46.	31.8	190
298	Synergistic Effect Between Sb2O3 Nanoparticles–Trichloromelamine and Carbon Nanotube on the Flame Retardancy and Thermal Stability of the Cellulose Acetate. Journal of Cluster Science, 2014, 25, 925-936.	3.3	14
299	Synthesis and characterization of poly(pentabromostyrene) micrometer-sized particles of narrow size distribution for flame-retardant applications. Colloid and Polymer Science, 2014, 292, 1181-1189.	2.1	9
300	Solidification of non-halogen fire-retardant liquids by encapsulation within porous uniform PDVB microspheres for preparation of fire-retardant polymeric blends. Colloid and Polymer Science, 2014, 292, 2241-2248.	2.1	4
301	Mechanically robust, flame-retardant and anti-bacterial nanocomposite films comprised of cellulose nanofibrils and magnesium hydroxide nanoplatelets in a regenerated cellulose matrix. Cellulose, 2014, 21, 1859-1872.	4.9	49
302	Preparation and Flammability of Poly(vinyl alcohol) Composite Aerogels. ACS Applied Materials & Interfaces, 2014, 6, 6790-6796.	8.0	125
303	Nanostructured flame retardants: performance, toxicity, and environmental impact. , 2014, , 251-277.		4
304	Synthesis and formation mechanism of micro/nano flower-like MgCO3·5H2O. International Journal of Minerals, Metallurgy and Materials, 2014, 21, 304-310.	4.9	11
305	Fabrication and Properties of Irradiation-Cross-Linked Poly(vinyl alcohol)/Clay Aerogel Composites. ACS Applied Materials & Interfaces, 2014, 6, 16227-16236.	8.0	74
306	Intumescent flame retardant polyurethane/starch composites: Thermal, mechanical, and rheological properties. Journal of Applied Polymer Science, 2014, 131, .	2.6	46
307	Study of the synergistic effect of polyhedral oligomeric octadiphenylsulfonylsilsesquioxane and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide on flame-retarded epoxy resins. Polymer Degradation and Stability, 2014, 109, 233-239.	5.8	42
308	Thermal degradation kinetics, mechanical, and flame retardant properties of epoxyâ€HDPE fabricâ€clay composite laminates. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
309	The potential of metal oxalates as novel flame retardants and synergists for engineering polymers. Polymer Degradation and Stability, 2014, 110, 290-297.	5.8	30
310	Development of biochars from pyrolysis of lotus stalks for Ni(II) sorption: Using zinc borate as flame retardant. Journal of Analytical and Applied Pyrolysis, 2014, 107, 336-341.	5.5	29
311	The multilayered distribution of intumescent flame retardants and its influence on the fire and mechanical properties of polypropylene. Composites Science and Technology, 2014, 93, 54-60.	7.8	48
312	Sonochemical synthesis of La(OH)3 nanoparticle and its influence on the flame retardancy of cellulose acetate nanocomposite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3507-3512.	5.8	61
313	Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite. Journal of Industrial and Engineering Chemistry, 2014, 20, 3709-3713.	5.8	49
314	Towards development of a rapid and effective non-destructive testing strategy to identify brominated flame retardants in the plastics of consumer products. Science of the Total Environment, 2014, 491-492, 255-265.	8.0	81

#	Article	IF	CITATIONS
315	Improvement of carbon nanotube stability by high temperature oxygen/chlorine gas treatment. Carbon, 2014, 76, 275-284.	10.3	10
316	Flame retardant and mechanical properties of polyethylene/magnesium hydroxide/montmorillonite nanocomposites. Journal of Industrial and Engineering Chemistry, 2014, 20, 2401-2408.	5.8	73
317	Synthesis of Highly Efficient Flame Retardant High-Density Polyethylene Nanocomposites with Inorgano-Layered Double Hydroxides As Nanofiller Using Solvent Mixing Method. ACS Applied Materials & Interfaces, 2014, 6, 5094-5104.	8.0	110
318	Aging of the flameâ€retardant properties of polycarbonate and polypropylene protected by an intumescent coating. Journal of Applied Polymer Science, 2014, 131, .	2.6	20
319	Layered silicate-polymer nanocomposite coatings via radiation curing process for flame retardant applications. Progress in Organic Coatings, 2014, 77, 1443-1451.	3.9	27
320	Aging of EVA/organically modified clay: Effect on dispersion, distribution and combustion behavior. Polymer Degradation and Stability, 2014, 107, 184-187.	5.8	10
321	Synthesis of new flame-retardants by radical chain transfer copolymerization of glycidyl methacrylate and dimethoxy-phosphorylmethyl methacrylate. European Polymer Journal, 2014, 57, 109-120.	5.4	21
322	Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Composites Part B: Engineering, 2014, 56, 602-610.	12.0	59
323	Treatment of natural wood veneers with nano-oxides to improve their fire behaviour. IOP Conference Series: Materials Science and Engineering, 2014, 64, 012021.	0.6	8
324	Improve the mechanical property and flame retardant efficiency of the composites of poly(lactic acid) and resorcinol di(phenyl phosphate) (RDP) with ZnOâ€coated kenaf. Fire and Materials, 2016, 40, 129-140.	2.0	8
325	Flame retardant and mechanical properties of epoxy composites containing APPâ^'PSt coreâ^'shell microspheres. Journal of Applied Polymer Science, 2014, 131, .	2.6	15
326	Thermal degradation behavior and gas phase flameâ€retardant mechanism of polylactide/PCPP blends. Journal of Applied Polymer Science, 2014, 131, .	2.6	19
327	Thermal and flammability performance of polypropylene composites containing melamine and melamine phosphateâ€modified αâ€ŧype zirconium phosphates. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
328	Preparation and characterization of bisâ€{1,3,5]triazinyl diazenes and their utilization as flame retardants in polypropylene films. Journal of Applied Polymer Science, 2014, 131, .	2.6	9
329	Fabrication and characterization of waterborne polyurethane (WPU) with aluminum trihydroxide (ATH) and mica as flame retardants. Journal of Polymer Research, 2015, 22, 1.	2.4	13
330	Synthesis of self-setting Al(OH) ₃ foams by direct foaming technique. Journal of the Ceramic Society of Japan, 2015, 123, 383-388.	1.1	2
332	Flame retardancy and mechanical properties of petâ€based composites containing phosphorus and boronâ€based additives. Journal of Applied Polymer Science, 2015, 132, .	2.6	29
333	Assessment of the impact of fire retardants on the combustion of natural polymers employing DTG and LOI. Fire and Materials, 2015, 39, 109-118.	2.0	4

#	Article	IF	CITATIONS
334	Flame retarding effect of graphite in rotationally molded polyethylene/graphite composites. Journal of Applied Polymer Science, 2015, 132, .	2.6	18
335	Effect of Red Phosphorus Masterbatch on Flame Retardancy and Thermal Stability of Polypropylene/Thermoplastic Polyurethane Blends. Polymers and Polymer Composites, 2015, 23, 113-120.	1.9	7
336	A Review on Materials Derived from Polystyrene and Different Types of Nanoparticles. Polymer-Plastics Technology and Engineering, 2015, 54, 1819-1849.	1.9	10
337	Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Polymer Degradation and Stability, 2015, 119, 217-227.	5.8	97
338	Flame Retardant Finishing for Textiles. Engineering Materials, 2015, , 209-246.	0.6	18
339	Influence of organophosphorous silica precursor on the thermal and fire behaviour of a PA66/PA6 copolymer. Polymer Degradation and Stability, 2015, 115, 117-128.	5.8	15
340	Influences of organic montmorillonite on the combustion behaviors and thermal stability of polyamide 6/polystyrene blends. High Performance Polymers, 2015, 27, 392-401.	1.8	10
341	A Study of Fire Retardant Effect in Natural Fiber Composite Panels with Magnesium Hydroxide and Zinc Borate as Additives. Applied Mechanics and Materials, 0, 815, 148-152.	0.2	4
342	The thermo-mechanical response of PP nanocomposites at high graphene loading. Nanocomposites, 2015, 1, 126-137.	4.2	23
343	The effect of magnesium hydroxide, hydromagnesite and layered double hydroxide on the heat stability and fire performance of plasticized poly(vinyl chloride). Journal of Fire Sciences, 2015, 33, 493-510.	2.0	20
344	Structure and thermal properties of phosphorus-containing polyol synthesized from cardanol. RSC Advances, 2015, 5, 106651-106660.	3.6	25
345	Intumescing multilayer thin film deposited on clay-based nanobrick wall to produce self-extinguishing flame retardant polyurethane. Journal of Materials Science, 2015, 50, 2451-2458.	3.7	58
346	Application of functionalized graphene oxide in flameâ€retardant polypropylene. Journal of Vinyl and Additive Technology, 2015, 21, 278-284.	3.4	28
348	Synthesis and surface modification of nanophosphorous-based flame retardant agent by continuous flow hydrothermal synthesis. Particuology, 2015, 22, 82-88.	3.6	41
349	Preparation of Solution-Processable Reduced Graphene Oxide/Polybenzoxazole Nanocomposites with Improved Dielectric Properties. Macromolecules, 2015, 48, 365-372.	4.8	68
350	Flame Retarding Cyanate Ester Resin with Low Curing Temperature, High Thermal Resistance, Outstanding Dielectric Property, and Low Water Absorption for High Frequency and High Speed Printed Circuit Broads. Industrial & Engineering Chemistry Research, 2015, 54, 1806-1815.	3.7	44
351	Morphology development of PP/POE blends with high loading of magnesium hydroxide. RSC Advances, 2015, 5, 17967-17975.	3.6	9
352	Effect of incorporation of POSS compounds and phosphorous hardeners on thermal and fire resistance of nanofilled aeronautic resins. RSC Advances, 2015, 5, 10974-10986.	3.6	72

	СПАНОГ	NREPORT	
#	Article	IF	CITATIONS
353	Correlations of the Antioxidant Properties of Softwood Kraft Lignin Fractions with the Thermal Stability of Its Blends with Polyethylene. ACS Sustainable Chemistry and Engineering, 2015, 3, 349-356.	6.7	141
354	Properties and applications of nanoclay composites. , 2015, , 127-155.		14
355	Simultaneous improvement in the flame retardancy and water resistance of PP/APP through coating UV-curable pentaerythritol triacrylate onto APP. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0 rg	;BT /Ovædock	10 2 7 50 657
356	Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Scientific Reports, 2014, 4, 4047.	3.3	57
357	Cost-effective, low density, carbon soot doped resorcinol formaldehyde composite for ablative applications. RSC Advances, 2015, 5, 23622-23634.	3.6	25
358	Surface engineering of layered double hydroxide (LDH) nanoparticles for polymer flame retardancy. Powder Technology, 2015, 277, 63-73.	4.2	95
359	Flame retardant polymer composites. Fibers and Polymers, 2015, 16, 705-717.	2.1	164
360	Decomposable double-walled hybrid nanorods: formation mechanism and their effect on flame retardancy of epoxy resin composites. Journal of Materials Chemistry A, 2015, 3, 15935-15943.	10.3	29
361	The Effects of Coupling Agent on the Flame Retardant Properties of PP/ATH Nanocomposites. Advanced Materials Research, 0, 1115, 406-409.	0.3	1
362	Novel flame retardant flexible polyurethane foam: plasma induced graft-polymerization of phosphonates. RSC Advances, 2015, 5, 63853-63865.	3.6	42
363	Effect of phosphorous-modified silica on the flame retardancy of polypropylene based nanocomposites. Polymer Degradation and Stability, 2015, 119, 260-274.	5.8	24
364	Synthesis of dialkyl 2-(Methacryloyloxyethyl) phosphonates, their characterization and polymerization. Polymer Science - Series B, 2015, 57, 408-416.	0.8	2
365	Sol–gel microencapsulation of oil phase with Pickering and nonionic surfactant based emulsions. Powder Technology, 2015, 284, 237-244.	4.2	9
366	Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. Journal of Nuclear Materials, 2015, 464, 210-215.	2.7	52
367	Electro-spinning of cellulose acetate nanofibers: microwave synthesize of calcium ferrite nanoparticles and CA–Ag–CaFe2O4 nanocomposites. Journal of Materials Science: Materials in Electronics, 2015, 26, 8358-8366.	2.2	19
368	Effect of cellulose whisker and ammonium polyphosphate on thermal properties and flammability performance of rigid polyurethane foam. Journal of Thermal Analysis and Calorimetry, 2015, 122, 717-723.	3.6	28
369	Modification of poly(styrene-block-butadiene-block-styrene) [SBS] with phosphorus containing fire retardants. European Polymer Journal, 2015, 70, 136-146.	5.4	18
370	Intumescence: Tradition versus novelty. A comprehensive review. Progress in Polymer Science, 2015, 51, 28-73.	24.7	410

#	Article	IF	CITATIONS
371	Electrophoretic deposition of flame retardant polymer–huntite coatings. Materials Letters, 2015, 159, 106-109.	2.6	9
372	An Overview of Mode of Action and Analytical Methods for Evaluation of Gas Phase Activities of Flame Retardants. Polymers, 2015, 7, 504-526.	4.5	110
373	Electrophoretic deposition of a memory-type flame retardant material. Materials Letters, 2015, 153, 106-109.	2.6	5
374	Smoke composition using MLC/FTIR/ELPI: Application to flame retarded ethylene vinyl acetate. Polymer Degradation and Stability, 2015, 115, 89-109.	5.8	17
375	Continuous flow formulation and functionalization of magnesium di-hydroxide nanorods as a clean nano-fire extinguisher. Powder Technology, 2015, 278, 72-83.	4.2	39
376	UV resistance and fire retardant property enhancement of unsaturated polyester composite. Polymer Bulletin, 2015, 72, 1433-1447.	3.3	10
377	Nanoparticles as Effective Flame Retardants for Natural and Synthetic Textile Polymers: Application, Mechanism, and Optimization. Polymer Reviews, 2015, 55, 531-560.	10.9	116
378	Thermal stability and degradation kinetics of polyphenols and polyphenylenediamines enzymatically synthesized by horseradish peroxidase. Korean Journal of Chemical Engineering, 2015, 32, 1847-1852.	2.7	6
379	Solid acid-reduced graphene oxide nanohybrid for enhancing thermal stability, mechanical property and flame retardancy of polypropylene. RSC Advances, 2015, 5, 41307-41316.	3.6	40
380	Flame-Retardant Polymer Nanocomposites and Their Heat-Release Rates. Journal of Hazardous, Toxic, and Radioactive Waste, 2015, 19, .	2.0	18
381	Thermal Degradation of Polymer Blends, Composites and Nanocomposites. Engineering Materials, 2015, , 1-16.	0.6	8
382	Recent Developments in Different Techniques Used for the Flame Retardancy. Engineering Materials, 2015, , 45-77.	0.6	1
383	Flame Retardancy of Polymer Nanocomposite. Engineering Materials, 2015, , 15-44.	0.6	19
384	Kinetic study of styrene atom transfer radical polymerization from hydroxyl groups of graphene nanoplatelets: Heterogeneities in chains and graft densities. Polymer Engineering and Science, 2015, 55, 1720-1732.	3.1	40
385	Effect of content of organophosphorus on flame retardancy mode of thermoplastic polyurethane. Polymer, 2015, 67, 1-11.	3.8	36
386	Synthesis and characterisation of the flame retardant properties and corrosion resistance of Schiff's base compounds incorporated into organic coating. Pigment and Resin Technology, 2015, 44, 101-108.	0.9	20
387	Synthesis of a novel flame retardant phosphorus/nitrogen/siloxane and its application on cotton fabrics. Textile Reseach Journal, 2015, 85, 701-708.	2.2	22
388	Continuous hydrothermal synthesis of AlO(OH) nanorods as a clean flame retardant agent. Particuology, 2015, 22, 66-71.	3.6	43

#	Article	IF	CITATIONS
389	A novel nanosilica/graphene oxide hybrid and its flame retarding epoxy resin with simultaneously improved mechanical, thermal conductivity, and dielectric properties. Journal of Materials Chemistry A, 2015, 3, 9826-9836.	10.3	193
390	Thermal and combustion behavior of furan resin/silica nanocomposites. European Polymer Journal, 2015, 67, 561-569.	5.4	25
391	Flammability, thermal and physical-mechanical properties of cationic polymer/montmorillonite composite on cotton fabric. Composites Part B: Engineering, 2015, 77, 329-337.	12.0	45
392	Synergistic effects of BHDB-IPC with AlPi/MCA on flame retarding TPEE. RSC Advances, 2015, 5, 87609-87615.	3.6	8
393	An intensification and integration process of preparing thermal stable polylactide end-capped by phosphate ester. Polymer, 2015, 80, 104-108.	3.8	6
394	Effects of Gamma Irradiation on Clay Membrane with Poly(vinyl alcohol) for Fire Retardancy. Industrial & Engineering Chemistry Research, 2015, 54, 10740-10746.	3.7	8
395	Studying the effect of organo-modified nanoclay loading on the thermal stability, flame retardant, anti-corrosive and mechanical properties of polyurethane nanocomposite for surface coating. Progress in Organic Coatings, 2015, 89, 212-219.	3.9	54
396	A salt-free synthesis of 1,2-bisphosphorylethanes via an efficient PMe3-catalyzed addition of >P(O)H to vinylphosphoryl compounds. Tetrahedron Letters, 2015, 56, 5303-5305.	1.4	21
397	Fire property and charring behavior of high impact polystyrene containing expandable graphite and microencapsulated red phosphorus. Polymer Degradation and Stability, 2015, 121, 261-270.	5.8	47
398	Combining product engineering and inherent safety to improve the powder impregnation process. Journal of Loss Prevention in the Process Industries, 2015, 38, 1-10.	3.3	4
399	From a bio-based phosphorus-containing epoxy monomer to fully bio-based flame-retardant thermosets. RSC Advances, 2015, 5, 70856-70867.	3.6	87
400	Synthesis of biobased phosphorus-containing flame retardants for epoxy thermosets comparison of additive and reactive approaches. Polymer Degradation and Stability, 2015, 120, 300-312.	5.8	45
401	Study of Mechanical and Flammability Properties of Polypropylene/Microcrystalline Cellulose Composites Filled with Nano-sized Aluminium Hydroxide (ATH) Particles. Advanced Materials Research, 2015, 1115, 402-405.	0.3	1
402	A novel biobased epoxy resin with high mechanical stiffness and low flammability: synthesis, characterization and properties. Journal of Materials Chemistry A, 2015, 3, 21907-21921.	10.3	209
403	Influence of microencapsulated red phosphorus on the flame retardancy of high impact polystyrene/magnesium hydroxide composite and its mode of action. Polymer Degradation and Stability, 2015, 121, 208-221.	5.8	35
404	The preparation and catalytic performance of graphene-reinforced ion-exchange resins. RSC Advances, 2015, 5, 2550-2561.	3.6	13
405	Fabrication of self-setting Al(OH)3 foams for potential fire-retarding applications. Materials Letters, 2015, 139, 252-254.	2.6	12
406	Flammability properties of paper coated with poly (methylenephosphine), an organophosphorus polymer. Fire and Materials, 2015, 39, 647-657.	2.0	25

#	Article	IF	CITATIONS
407	Grafting poly (methyl methacrylate) from azo-functionalized graphene nanolayers via reverse atom transfer radical polymerization. Colloid and Polymer Science, 2015, 293, 735-750.	2.1	45
408	Comparative performance of carbon nanotube and organo montmorillonite as a thermo-oxidative-stabilizing modifier for polypropylene- and polyethylene-based thermoplastic composites. Journal of Thermoplastic Composite Materials, 2015, 28, 1423-1444.	4.2	4
409	Effects of ageing on the fire behaviour of flame-retarded polymers: a review. Polymer International, 2015, 64, 313-328.	3.1	59
410	Carbon nanomaterialâ€based copolymer of styrene–divinylbenzene resins: Efficient interaction through graphene/CNTs polymer network. Journal of Applied Polymer Science, 2015, 132, .	2.6	3
411	Synthesis and performance of new modified reactive flame-retardant alkyd resin based on tetrabromophthalic anhydride as varnish for surface coatings. Journal of Coatings Technology Research, 2015, 12, 97-105.	2.5	10
412	Effects of thermal aging on degradation mechanism of flame retardantâ€filled ethylene–propylene–diene termonomer compounds. Journal of Applied Polymer Science, 2015, 132, .	2.6	5
413	Well-Defined Polypropylene/Polypropylene-Grafted Silica Nanocomposites: Roles of Number and Molecular Weight of Grafted Chains on Mechanistic Reinforcement. Polymers, 2016, 8, 300.	4.5	28
414	Flame Retardancy of Sorbitol Based Bioepoxy via Combined Solid and Gas Phase Action. Polymers, 2016, 8, 322.	4.5	17
415	New Flexible Flame Retardant Coatings Based on Siloxane Resin and Ethylene-Vinyl Chloride Copolymer. Polymers, 2016, 8, 419.	4.5	6
416	Ethylene-VInyl acetate/LDH nanocomposites with enhanced thermal stability, flame retardancy, and rheological property. Polymer Composites, 2016, 37, 3449-3459.	4.6	10
417	A review on flammability of epoxy polymer, cellulosic and non-cellulosic fiber reinforced epoxy composites. Polymers for Advanced Technologies, 2016, 27, 577-590.	3.2	86
418	Nanomaterials for Sustainable Society. , 2016, , 975-993.		1
419	Joint flameâ€retardant effect of triazineâ€rich and triazine/phosphaphenanthrene compounds on epoxy resin thermoset. Journal of Applied Polymer Science, 2016, 133, .	2.6	12
420	Flame retardancy and thermal and mechanical performance of intercalated, layered double hydroxide composites of polyamide 11, aluminum phosphinate, and sulfamic acid. Journal of Applied Polymer Science, 2016, 133, .	2.6	4
421	Smoke suppression properties of carbon black on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1821-1830.	3.6	29
422	Preparation of Polyvinyl Acetate (PVAc) and PVAc–Ag–Fe3O4 Composite Nanofibers by Electro-spinning Method. Journal of Cluster Science, 2016, 27, 1317-1333.	3.3	12
423	RAFT copolymerization of a phosphorus-containing monomer with α-hydroxy phosphonate and methyl methacrylate. RSC Advances, 2016, 6, 34659-34665.	3.6	15
424	Application of magnesium hydroxide nanocoatings on cellulose fibers with different refining degrees. RSC Advances, 2016, 6, 51583-51590.	3.6	7

ARTICLE

IF CITATIONS

Organo-phosphorus flame retardants for unsaturated polyester derived from recycled poly(ethylene) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5

426	Eco-friendly functionalized superhydrophobic recycled paper with enhanced flame-retardancy. Journal of Colloid and Interface Science, 2016, 477, 74-82.	9.4	46
427	UV-curable behavior of phosphorus- and nitrogen-based reactive diluent for epoxy acrylate oligomer used for flame-retardant wood coating. Journal of Coatings Technology Research, 2016, 13, 703-714.	2.5	15
428	Thermal degradation of polystyrene composites. Part II. The effect of nanoclay. Journal of Analytical and Applied Pyrolysis, 2016, 120, 194-199.	5.5	7
430	Cellulosic polyelectrolytes: synthetic pathways to regioselectively substituted ammonium and phosphonium derivatives. Cellulose, 2016, 23, 1687-1704.	4.9	10
431	Analysis of Flame Retardancy in Polymer Blends by Synchrotron X-ray K-edge Tomography and Interferometric Phase Contrast Movies. Journal of Physical Chemistry B, 2016, 120, 2612-2624.	2.6	8
432	PLA composites: From production to properties. Advanced Drug Delivery Reviews, 2016, 107, 17-46.	13.7	651
433	Synergistic Flame Retardant Effects between Aluminum Hydroxide and Halogen-free Flame Retardants in High Density Polyethylene Composites. Procedia Engineering, 2016, 135, 631-636.	1.2	43
434	Layer-by-Layer Assembly of Multifunctional Flame Retardant Based on Brucite, 3-Aminopropyltriethoxysilane, and Alginate and Its Applications in Ethylene-Vinyl Acetate Resin. ACS Applied Materials & Interfaces, 2016, 8, 9925-9935.	8.0	96
435	Recent Developments in Different Types of Flame Retardants and Effect on Fire Retardancy of Epoxy Composite. Polymer-Plastics Technology and Engineering, 2016, 55, 1512-1535.	1.9	61
436	Enhancement of flame-retardant performance of thermoplastic polyurethane with the incorporation of aluminum hypophosphite and iron-graphene. Polymer Degradation and Stability, 2016, 129, 275-285.	5.8	85
437	Preparation of flame retardant epoxyacrylate-based adhesive formulations for textile applications. Journal of Adhesion Science and Technology, 2016, , 1-14.	2.6	3
438	Self-extinguishing bio-based polyamides. Polymer Degradation and Stability, 2016, 134, 10-18.	5.8	23
439	Phosphorus and nitrogen derivatization as efficient route for improvement of lignin flame retardant action in PLA. European Polymer Journal, 2016, 84, 652-667.	5.4	139
440	Preparation of flame retarded epoxy resins containing DOPO group. Thermochimica Acta, 2016, 643, 33-40.	2.7	34
441	Design of New Complexes of Inorganic Salts Based on Lithium and Magnesium Hydroxides and Carbonates for Usage as Propellants and Flame Retardants. Journal of Physical Chemistry A, 2016, 120, 7764-7770.	2.5	5
442	High throughput preparation of magnesium hydroxide flame retardant via microreaction technology. RSC Advances, 2016, 6, 92670-92681.	3.6	15
443	Synergistic effects in the pyrolysis of phosphorus-based flame-retardants: The role of Si- and N-based compounds. Polymer Degradation and Stability, 2016, 130, 155-164.	5.8	26

#	Article	IF	CITATIONS
444	Nanotechnology in food science: Functionality, applicability, and safety assessment. Journal of Food and Drug Analysis, 2016, 24, 671-681.	1.9	353
446	Flame Retardancy of Bio-base Plastics. Energy Procedia, 2016, 89, 38-44.	1.8	2
447	Synergistic effects between [Emim]PF ₆ and aluminum hypophosphite on flame retardant thermoplastic polyurethane. RSC Advances, 2016, 6, 67409-67417.	3.6	28
448	Flame Retardancy. Engineering Materials and Processes, 2016, , 185-206.	0.4	0
450	A novel flame retardant UV urable vinyl ester resin monomer based on industrial dipentene: Preparation, characterization, and properties. Journal of Applied Polymer Science, 2016, 133, .	2.6	13
451	Fire behavior of polyamide 12 nanocomposites containing POSS and CNT. Polymer Degradation and Stability, 2016, 134, 151-156.	5.8	13
452	Kinetics of melamine phosphate thermal decomposition in DSC studies. Journal of Thermal Analysis and Calorimetry, 2016, 126, 277-285.	3.6	8
453	Synthesis of a novel triazine-based polymeric flame retardant and its application in polypropylene. Polymer Degradation and Stability, 2016, 134, 202-210.	5.8	46
454	Biomass as the Carbon Source in Intumescent Coatings for Steel Protection against Fire. Industrial & amp; Engineering Chemistry Research, 2016, 55, 11961-11969.	3.7	25
455	Poly(vinyl alcohol)/clay aerogel composites with enhanced flame retardancy. RSC Advances, 2016, 6, 109809-109814.	3.6	18
456	Thermal degradation of polyesters filled with magnesium dihydroxide and magnesium oxide. Fire and Materials, 2016, 40, 445-463.	2.0	9
457	Impact of halogen-free flame retardant with varied phosphorus chemical surrounding on the properties of diglycidyl ether of bisphenol-A type epoxy resin: synthesis, fire behaviour, flame-retardant mechanism and mechanical properties. RSC Advances, 2016, 6, 59226-59236.	3.6	89
458	Fire Retardancy of \$\${{m Cloisite}^{extregistered}}\$\$ Cloisite ® 20 Organoclay Modified Dehydrated Castor Oil-Based Alkyd Resin. Arabian Journal for Science and Engineering, 2016, 41, 4753-4761.	1.1	0
459	Polystyrene-based composites and nanocomposites with reduced brominated-flame retardant. Iranian Polymer Journal (English Edition), 2016, 25, 607-614.	2.4	8
460	Enhanced thermal conductivity and satisfactory flame retardancy of epoxy/alumina composites by combination with graphene nanoplatelets and magnesium hydroxide. Composites Part B: Engineering, 2016, 98, 134-140.	12.0	117
461	Buckypapers of 4,4′-oxydianiline-modified polyvinylchloride and functional nano-filler obtained by resin infusion method. Iranian Polymer Journal (English Edition), 2016, 25, 213-228.	2.4	3
462	Synergistic effect of Ni-based bimetallic catalyst with intumescent flame retardant on flame retardancy and thermal stability of polypropylene. Polymer Degradation and Stability, 2016, 129, 114-124.	5.8	30
463	DNA as a flame retardant additive for low-density polyethylene. Polymer, 2016, 97, 504-514.	3.8	46

#	ARTICLE	IF	Citations
464	Synergistic effects between iron-graphene and ammonium polyphosphate in flame-retardant	3.6	50
	thermoplastic polyurethane. Journal of Thermal Analysis and Calorimetry, 2016, 126, 633-642.		
465	Evaluating the heat resistance of thermal insulated sandwich composites subjected to a turbulent fire. Fire and Materials, 2016, 40, 586-598.	2.0	10
466	Preparation, thermal, and flammability of halogenâ€free flame retarding thermoplastic poly(etherâ€ester) elastomer/montmorillonite nanocomposites. Polymer Composites, 2016, 37, 700-708.	4.6	12
467	Influence of Al(OH) ₃ nanoparticles on the mechanical and fire resistance properties of poly(methyl methacrylate) nanocomposites. Polymer Composites, 2016, 37, 1659-1666.	4.6	14
468	Neutron irradiation tests on B4C/epoxy composite for neutron shielding application and the parameters assay. Radiation Physics and Chemistry, 2016, 127, 140-146.	2.8	77
469	Graphene-based flame retardants: a review. Journal of Materials Science, 2016, 51, 8271-8295.	3.7	169
470	The thermal, optical, flame retardant, and morphological consequence of embedding diacid•apped ZnO into the recycled PET matrix. Journal of Applied Polymer Science, 2016, 133, .	2.6	3
471	One‣tep Pyro‣ynthesis of a Nanostructured Mn ₃ O ₄ /C Electrode with Long Cycle Stability for Rechargeable Lithiumâ€ion Batteries. Chemistry - A European Journal, 2016, 22, 2039-2045.	3.3	40
472	Different effects of process conditions on PA6/nanoclay composites at nanoclay contents above and below percolation threshold: Rheological, thermoâ€dynamical, and thermal properties. Journal of Vinyl and Additive Technology, 2016, 22, 259-266.	3.4	1
473	The influence of carbon fillers on the thermal properties of polyurethane foam. Journal of Thermal Analysis and Calorimetry, 2016, 123, 283-291.	3.6	54
474	Photo-degradation of methylene blue: photocatalyst and magnetic investigation of Fe2O3–TiO2 nanoparticles and nanocomposites. Journal of Materials Science: Materials in Electronics, 2016, 27, 4800-4809.	2.2	125
475	Investigation of thermal stability and flammability of poly(methyl methacrylate) composites by combination of APP with ZrO 2 , sepiolite or MMT. Polymer Degradation and Stability, 2016, 124, 60-67.	5.8	30
476	Composite Polymer–Metal Hydroxide Coatings with Flame-Retardant Properties. Materials and Manufacturing Processes, 2016, 31, 1201-1205.	4.7	7
477	Kinetic analysis of the process of melamine pyrophosphate synthesis. Journal of Thermal Analysis and Calorimetry, 2016, 124, 329-339.	3.6	3
478	Smart environmentally friendly composite coatings for wood protection. , 2016, , 293-325.		3
479	Cellulose/phosphorus combinations for sustainable fire retarded polylactide. European Polymer Journal, 2016, 74, 218-228.	5.4	69
480	Preparation and properties of halogen-free flame-retardant layered silicate-polyamide 66 nanocomposites. Applied Clay Science, 2016, 126, 107-112.	5.2	28
481	Poly(piperazinyl phosphamide): a novel highly-efficient charring agent for an EVA/APP intumescent flame retardant system. RSC Advances, 2016, 6, 30436-30444.	3.6	51

#	Article	IF	CITATIONS
482	Self-Forming 3D Core–Shell Ceramic Nanostructures for Halogen-Free Flame Retardant Materials. ACS Applied Materials & Interfaces, 2016, 8, 9462-9471.	8.0	21
483	In situ and ex situ synthesis of poly(vinyl alcohol)–Fe3O4 nanocomposite flame retardants. Particuology, 2016, 26, 87-94.	3.6	21
484	Green Flame Retardants for Textiles. Environmental Footprints and Eco-design of Products and Processes, 2016, , 171-227.	1.1	6
485	Synthesis and spectroscopic characterizations of copper ions doped zinc borate nanoparticles. Optik, 2016, 127, 4536-4540.	2.9	4
486	Effects of carbon fibers on the flammability and smoke emission characteristics of halogen-free thermoplastic polyurethane/ammonium polyphosphate. Journal of Materials Science, 2016, 51, 3762-3771.	3.7	34
487	The structure of microencapsulated carbon microspheres and its flame retardancy in poly(ethylene) Tj ETQq1 1 0	.784314 r	gBT_/Overloc
488	Photo-catalyst CoFe2O4–TiO2: application in photo-degradation of organic dyes and magnetic nanocomposite preparation. Journal of Materials Science: Materials in Electronics, 2016, 27, 4879-4886.	2.2	13
489	Synthesis and characterization of cardo-based phosphorous–containing flame-retardant aromatic polyesters. High Performance Polymers, 2016, 28, 1218-1227.	1.8	4
490	Flame-retarded biocomposites of poly(lactic acid), distiller's dried grains with solubles and resorcinol di(phenyl phosphate). Composites Part A: Applied Science and Manufacturing, 2016, 81, 52-60.	7.6	18
491	Physiological comfort and flame retardancy of fabrics with electrostatic self-assembled coatings. Materials and Design, 2016, 89, 413-420.	7.0	16
492	ls MWCNT a good synergistic candidate in APP–PER–MEL intumescent coating for steel structure?. Progress in Organic Coatings, 2016, 90, 252-257.	3.9	31
493	Trace Analysis of Selected Organic Compounds. , 2016, , 155-180.		0
494	A sustainable, eugenol-derived epoxy resin with high biobased content, modulus, hardness and low flammability: Synthesis, curing kinetics and structure–property relationship. Chemical Engineering Journal, 2016, 284, 1080-1093.	12.7	218
495	A review of application of ammonium polyphosphate as intumescent flame retardant in thermoplastic composites. Composites Part B: Engineering, 2016, 84, 155-174.	12.0	233
496	Sugar and Surfactant-Assisted Synthesis of Mg(OH)2 Nano-flower and PVA Nanocomposites. Journal of Cluster Science, 2016, 27, 299-314.	3.3	11
497	Flame retardancy and conductive properties of polyester fabrics coated with polyaniline. Textile Reseach Journal, 2016, 86, 1171-1179.	2.2	24
498	Synthesis and Characterization of Al(OH)3, Al2O3 Nanoparticles and Polymeric Nanocomposites. Journal of Cluster Science, 2016, 27, 25-38.	3.3	57
499	Aluminum hydroxide multilayer assembly capable of extinguishing flame on polyurethane foam. Journal of Materials Science, 2016, 51, 375-381.	3.7	55

#	Article	IF	CITATIONS
500	The synergism between melamine and expandable graphite on improving the flame retardancy of polyamide 11. High Performance Polymers, 2017, 29, 77-86.	1.8	23
501	Improved thermal conductivity of epoxy composites prepared with a mixed filler of multiwalled carbon nanotubes and aluminum nitride particles. High Performance Polymers, 2017, 29, 484-492.	1.8	16
502	New insight into the preparation of flame-retardant thermoplastic polyether ester utilizing <i>β</i> -cyclodextrin as a charring agent. High Performance Polymers, 2017, 29, 422-430.	1.8	12
503	Preparation and characterization of solution spinning of protein/cellulose fiber: A new flame-retardant grade. Journal of Industrial Textiles, 2017, 47, 233-251.	2.4	10
504	Synthesis of B/P/N Containing Flameâ€Retardant Additives and UV Curable Hybrid Coating Applications. Advances in Polymer Technology, 2017, 36, 517-524.	1.7	5
505	The effect of traditional flame retardants, nanoclays and carbon nanotubes in the fire performance of epoxy resin composites. Fire and Materials, 2017, 41, 111-130.	2.0	40
506	Flame retardancy, mechanical, and thermal properties of waterborne polyurethane conjugated with a novel phosphorous-nitrogen intumescent flame retardant. Polymer Composites, 2017, 38, 452-462.	4.6	31
507	Cone calorimeter analysis of flame retardant poly (methyl methacrylate)-silica nanocomposites. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1443-1451.	3.6	48
508	Effect of montmorillonite on the flame-resistant and mechanical properties of intumescent flame-retardant poly(butylene succinate) composites. Journal of Thermal Analysis and Calorimetry, 2017, 128, 1417-1427.	3.6	36
509	Modification of organo-montmorillonite with disodium H-phosphonate to develop flame retarded polyamide 6 nanocomposites. Applied Clay Science, 2017, 139, 28-39.	5.2	31
510	Free radical induced grafting of acrylonitrile on pre-treated rice straw for enhancing its durability and flame retardancy. Journal of Advanced Research, 2017, 8, 73-83.	9.5	12
511	Evaluation of Waste from Aluminum Industry as Filler in Polypropylene Composites. Jom, 2017, 69, 790-795.	1.9	9
512	Fire retardant behaviour of halogen-free calcium-based hydrated minerals. Polymer Degradation and Stability, 2017, 136, 89-97.	5.8	20
513	Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles. Scientific Reports, 2017, 7, 39910.	3.3	36
514	Chemical alternatives assessment of different flame retardants – A case study including multi-walled carbon nanotubes as synergist. Environment International, 2017, 101, 27-45.	10.0	41
516	The mechanism study on the cooperative flame resistance effect between HMP and NP in ABS by TG–FTIR. Journal of Thermal Analysis and Calorimetry, 2017, 129, 303-314.	3.6	4
517	Carbon-family materials for flame retardant polymeric materials. Progress in Polymer Science, 2017, 69, 22-46.	24.7	406
518	Heavily aluminated graphene nanoplatelets as an efficient flame-retardant. Carbon, 2017, 116, 77-83.	10.3	43

#	Article	IF	CITATIONS
519	Engineering flame retardant biodegradable polymer nanocomposites and their application in 3D printing. Polymer Degradation and Stability, 2017, 137, 205-215.	5.8	82
520	Polymerization of polyhedral oligomeric silsequioxane (POSS) with perfluoro-monomers and a kinetic study. RSC Advances, 2017, 7, 10700-10706.	3.6	5
521	The combination of expandable graphite, organic montmorillonite, and magnesium hydrate as fireâ€retardant additives for ethylene–propylene–diene monomer/chloroprene rubber foams. Journal of Applied Polymer Science, 2017, 134, .	2.6	17
522	Carbon nanomaterials as potential substitutes for scarce metals. Journal of Cleaner Production, 2017, 156, 253-261.	9.3	55
523	Thermal behaviour and flame retardancy of polyurethane high-solid coatings modified with hexakis(2,3-epoxypropyl)cyclotriphosphazene. Progress in Organic Coatings, 2017, 108, 51-58.	3.9	23
524	Vinylphosphonic acid/methacrylamide system as a durable intumescent flame retardant for cotton fabric. Cellulose, 2017, 24, 3095-3108.	4.9	43
525	Bio-based flame retardants: When nature meets fire protection. Materials Science and Engineering Reports, 2017, 117, 1-25.	31.8	429
526	Natural halloysite nanotube based functionalized nanohybrid assembled via phosphorus-containing slow release method: A highly efficient way to impart flame retardancy to polylactide. European Polymer Journal, 2017, 93, 458-470.	5.4	51
527	Phosphorus-functionalized multi-wall carbon nanotubes as flame-retardant additives for polystyrene and poly (methyl methacrylate). Journal of Thermal Analysis and Calorimetry, 2017, 130, 735-753.	3.6	25
528	Effect of intumescent compositions on flammable properties of ethylene vinyl acetate and polypropylene. Fire and Materials, 2017, 41, 857-863.	2.0	1
529	The effects of graphene on the flammability and fire behavior of intumescent flame retardant polypropylene composites at different flame scenarios. Polymer Degradation and Stability, 2017, 143, 42-56.	5.8	202
530	Simultaneous improvement in the flame resistance and thermal conductivity of epoxy/Al ₂ O ₃ composites by incorporating polymeric flame retardant-functionalized graphene. Journal of Materials Chemistry A, 2017, 5, 13544-13556.	10.3	148
531	Bromine in plastic consumer products – Evidence for the widespread recycling of electronic waste. Science of the Total Environment, 2017, 601-602, 374-379.	8.0	67
532	Preparation of a Novel Intumescent Flame Retardant Based on Supramolecular Interactions and Its Application in Polyamide 11. ACS Applied Materials & amp; Interfaces, 2017, 9, 24964-24975.	8.0	117
533	A novel hyperbranched poly(phosphorodiamidate) with high expansion degree and carbonization efficiency used for improving flame retardancy of APP/PP composites. Polymer Degradation and Stability, 2017, 142, 29-41.	5.8	37
534	Flame retardancy of glucofuranoside based bioepoxy and carbon fibre reinforced composites made thereof. Polymer Degradation and Stability, 2017, 142, 62-68.	5.8	23
535	Unique synergism in flame retardancy in ABS based composites through blending PVDF and halloysite nanotubes. Materials Research Express, 2017, 4, 065301.	1.6	5
536	Parametric investigation of Î ³ -alumina granule preparation via the oil-drop route. Advanced Powder Technology, 2017, 28, 1356-1371.	4.1	12

#	Article	IF	CITATIONS
537	Thermal characterization and flammability of polypropylene containing sepiolite-APP combinations. E-Polymers, 2017, 17, 341-348.	3.0	8
538	New nitrogenâ€rich heterocycles for organoâ€modified bentonites as flame retardant fillers in epoxy resin nanocomposites. Polymer Engineering and Science, 2017, 57, 621-630.	3.1	31
539	Flame-retardant carbon nanotube films. Applied Surface Science, 2017, 411, 177-181.	6.1	22
540	Degradable Poly(lactic acid)/Metal–Organic Framework Nanocomposites Exhibiting Good Mechanical, Flame Retardant, and Dielectric Properties for the Fabrication of Disposable Electronics. Industrial & Engineering Chemistry Research, 2017, 56, 3887-3894.	3.7	103
541	Synthesis and properties of phosphate-based diacrylate reactive diluent applied to UV-curable flame-retardant wood coating. Journal of Coatings Technology Research, 2017, 14, 255-266.	2.5	20
542	Intrinsically flame retarded foams based on melamine â~ formaldehyde condensates: thermal and mechanical properties. Polymer International, 2017, 66, 779-786.	3.1	21
543	Novel nanocomposites based on poly(ethylene- co -vinyl acetate) for coating applications: The complementary actions of hydroxyapatite, MWCNTs and ammonium polyphosphate on flame retardancy. Progress in Organic Coatings, 2017, 113, 207-217.	3.9	31
544	Use of laser-induced breakdown spectroscopy for the determination of polycarbonate (PC) and acrylonitrile-butadiene-styrene (ABS) concentrations in PC/ABS plastics from e-waste. Waste Management, 2017, 70, 212-221.	7.4	31
545	Highly transparent and flame-retardant epoxy composites based on a hybrid multi-element containing POSS derivative. RSC Advances, 2017, 7, 46139-46147.	3.6	32
546	Preparation, thermal conductivity, and thermal stability of flame retardant polyethylene with exfoliated MoS2/MxOy. New Journal of Chemistry, 2017, 41, 13287-13292.	2.8	19
547	Improving thermal and flame retardant properties of epoxy resin by functionalized graphene containing phosphorous, nitrogen and silicon elements. Composites Part A: Applied Science and Manufacturing, 2017, 103, 74-83.	7.6	158
548	Wet Spinning of Flame-Retardant Cellulosic Fibers Supported by Interfacial Complexation of Cellulose Nanofibrils with Silica Nanoparticles. ACS Applied Materials & Interfaces, 2017, 9, 39069-39077.	8.0	74
549	Synergistic flame-retardant effect between calcium hydroxide and zinc borate in ethylene-vinyl acetate copolymer (EVA). Polymer Degradation and Stability, 2017, 144, 315-324.	5.8	26
550	Influence of colemanite on the fire retardancy of ethylene-vinyl acetate and ethylene-methyl acrylate copolymers. Polymer Degradation and Stability, 2017, 144, 401-410.	5.8	8
551	3D-map modelling for the melting points prediction of intumescent flame-retardant coatings. SAR and QSAR in Environmental Research, 2017, 28, 677-689.	2.2	5
552	Functionalized allylamine polyphosphate as a novel multifunctional highly efficient fire retardant for polypropylene. Polymer Chemistry, 2017, 8, 6309-6318.	3.9	30
553	Synthesis and thermal analytical screening of metal complexes as potential novel fire retardants in polyamide 6.6. Polymer Degradation and Stability, 2017, 144, 420-433.	5.8	14
554	Nonhalogen flame retarded poly(butylene terephthalate) composite using aluminum phosphinate and phosphorusâ€containing deoxybenzoin polymer. Journal of Applied Polymer Science, 2017, 134, 455370.	2.6	7

#	Article	IF	CITATIONS
555	Effect of char sulfonic acid and ammonium polyphosphate on flame retardancy and thermal properties of epoxy resin and polyamide composites. Journal of Fire Sciences, 2017, 35, 521-534.	2.0	7
556	Modeling the ignition of poly(methyl methacrylate)/carbon nanotube nanocomposites. Polymer Degradation and Stability, 2017, 144, 344-353.	5.8	8
557	Enhanced mechanical properties of Nylon6 nanocomposites containing pristine α-zirconium phosphate nanoplatelets of various sizes by melt-compounding. RSC Advances, 2017, 7, 32682-32691.	3.6	12
558	Robust and fire retardant borate-crosslinked poly (vinyl alcohol)/montmorillonite aerogel via melt-crosslink. Polymer, 2017, 131, 111-119.	3.8	55
559	Phytic acid–lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide. European Polymer Journal, 2017, 94, 270-285.	5.4	98
560	Effects of ammonium polyphosphate content on mechanical, thermal and flammability properties of kenaf/polypropylene and rice husk/polypropylene composites. Construction and Building Materials, 2017, 152, 484-493.	7.2	38
561	Vertically Aligned Nickel 2-Methylimidazole Metal–Organic Framework Fabricated from Graphene Oxides for Enhancing Fire Safety of Polystyrene. Industrial & Engineering Chemistry Research, 2017, 56, 8778-8786.	3.7	81
562	Study of thermal and mechanical behaviors of flame retardant polystyrene-based nanocomposites prepared via in-situ polymerization method. Journal of Loss Prevention in the Process Industries, 2017, 49, 228-239.	3.3	28
563	Influence of dehydration on the dielectric and structural properties of organically modified montmorillonite and halloysite nanotubes. Applied Clay Science, 2017, 147, 19-27.	5.2	33
564	Self-assembly of hydroxyapatite with polyelectrolyte as a green flame retardant for poly(vinyl) Tj ETQq1 1 0.7843	14 rgBT /(2.0	Dverlock 10 T
565	Carbon Nanotubesâ€Polyurethane Vitrimer Nanocomposites with the Ability of Surface Welding Controlled by Heat and Nearâ€Infrared Light. Macromolecular Chemistry and Physics, 2017, 218, 1700265.	2.2	26
566	Influence of nanoparticle geometry on the thermal stability and flame retardancy of high-impact polystyrene nanocomposites. Journal of Thermal Analysis and Calorimetry, 2017, 130, 1987-1996.	3.6	24
567	Synergistic effect of expandable graphite and melamine phosphate on flameâ€retardant polystyrene. Journal of Applied Polymer Science, 2017, 134, 45474.	2.6	45
568	Fire-Retardant, Self-Extinguishing Inorganic/Polymer Composite Memory Foams. ACS Applied Materials & Interfaces, 2017, 9, 44864-44872.	8.0	51
569	Research on both the encapsulation process and the dynamical behaviors of the H ₈ Si ₈ O ₁₂ molecule inside single-walled carbon nanotubes. Materials Research Express, 2017, 4, 105035.	1.6	0
570	Effect of Organic Nano Carboncapsule Incorporated Modified Clay on Fireâ€Retardancy of PMMA Nanocomposites. Journal of the Chinese Chemical Society, 2017, 64, 1399-1407.	1.4	6
571	Synthesis and mechanical properties of flame retardant vinyl ester resin for structural composites. Polymer, 2017, 133, 20-29.	3.8	18
572	Thermally healable and remendable lignin-based materials through Diels – Alder click polymerization. Polymer, 2017, 133, 78-88.	3.8	54

#	Article	IF	CITATIONS
573	Nanoscale considerations responsible for diverse macroscopic phase behavior in monosubstituted isobutyl-POSS/poly(ethylene oxide) blends. Soft Matter, 2017, 13, 8672-8677.	2.7	6
574	Methods and materials for reducing flammability behaviour of coir fibre based Composite Boards: A Review. Materials Today: Proceedings, 2017, 4, 9399-9407.	1.8	15
575	Preparation and characterization of fire resistant PLA fibers with phosphorus flame retardant. Fibers and Polymers, 2017, 18, 1098-1105.	2.1	10
576	Novel fire-retardant coatings. , 2017, , 53-91.		8
577	High-performance fire-retardant polyamide materials. , 2017, , 147-170.		4
578	Development of flame retardant high loft polyester nonwovens. Journal of the Textile Institute, 2017, 108, 1357-1364.	1.9	5
579	Adhesion, morphology, and heat resistance properties of polyurethane coated poly(methyl) Tj ETQq0 0 0 rgBT /(Overlgck 10 2.3	0 Tf 50 502 T
580	Effect of aluminum trihydrate as flame retardant on properties of a thermoplastic rubber nanocomposite. Fire and Materials, 2017, 41, 688-699.	2.0	3
581	Influence of organically modified montmorillonite and sepiolite claysÂon the physical properties of bio-based poly(ethylene 2,5-furandicarboxylate). Composites Part B: Engineering, 2017, 110, 96-105.	12.0	75
582	Significance of Carbon Nanotube in Flame-Retardant Polymer/CNT Composite: A Review. Polymer-Plastics Technology and Engineering, 2017, 56, 470-487.	1.9	34
583	Overview of Nonflammability Characteristics of Graphene and Graphene Oxide-Based Polymeric Composite and Essential Flame Retardancy Techniques. Polymer-Plastics Technology and Engineering, 2017, 56, 488-505.	1.9	17
584	Novel multi-component flame retardant system based on nanoscopic aluminium-trihydroxide (ATH). Powder Technology, 2017, 305, 538-545.	4.2	80
585	Improving the flame retardance and melt dripping of poly(lactic acid) with a novel polymeric flame retardant of high thermal stability. Fire and Materials, 2017, 41, 362-374.	2.0	12
586	Modification of glass reinforced epoxy composites by ammonium polyphosphate (APP) and melamine polyphosphate (PNA) during the resin powder molding process. Composites Part B: Engineering, 2017, 108, 224-231.	12.0	32
587	Rheological and fire properties of a composite of unsaturated polyester resin and halogenâ€free flame retardants. Journal of Applied Polymer Science, 2017, 134, .	2.6	15
588	Correlations Between Measurements of Flame-Retarded High-Density Polyethylene Composites Subjected to Three Conventional Fire Tests. , 2017, , 599-607.		1
589	Fire-retardant high-performance epoxy-based materials. , 2017, , 3-51.		25
590	Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews, 2017, 67, 581-596.	16.4	240

#		IE	CITATIONS
#	ARTICLE Impact of fiber treatment on the fire reaction and thermal degradation of building insulation straw	IF	CITATIONS
591	composite. Energy Procedia, 2017, 139, 544-549.	1.8	22
592	Unsaturated polyester/expanded polystyrene composite : thermal characteristics and flame retardancy effects. IOP Conference Series: Materials Science and Engineering, 2017, 223, 012035.	0.6	2
593	Preparation of metalâ€phosphorus hybridized nanomaterials and the action of metal centers on the flame retardancy of epoxy resin. Journal of Applied Polymer Science, 2017, 134, 45445.	2.6	13
594	Design, preparation and properties of novel flame retardant thermosetting vinyl ester copolymers based on castor oil and industrial dipentene. Polish Journal of Chemical Technology, 2017, 19, 1-8.	0.5	6
595	Lignin-Modified Carbon Nanotube/Graphene Hybrid Coating as Efficient Flame Retardant. International Journal of Molecular Sciences, 2017, 18, 2368.	4.1	36
596	Improvement in Char Strength with an Open Cage Silsesquioxane Flame Retardant. Materials, 2017, 10, 567.	2.9	8
597	Selective Laser Sintering of Nano Al2O3 Infused Polyamide. Materials, 2017, 10, 864.	2.9	15
598	Optimization of Ionic Liquid-Assisted Extraction of Biflavonoids from Selaginella doederleinii and Evaluation of Its Antioxidant and Antitumor Activity. Molecules, 2017, 22, 586.	3.8	42
599	Thermal and flame retardancy properties of thermoplastics/natural fiber biocomposites. , 2017, , 479-508.		22
600	Flame Retardancy of Composites and Nanocomposites Based on PU Polymers. , 2017, , 499-524.		5
601	Flame Retardancy Properties of Clay–Polymer Nanocomposites. , 2017, , 443-473.		6
602	Investigating the influence of conduit residues on polyurethane plates. Polimeros, 2017, 27, 141-150.	0.7	9
603	Influence of Carbon Fillers on Thermal Properties and Flammability of Polymeric Nanocomposites. International Polymer Processing, 2017, 32, 270-289.	0.5	5
604	Design of reduced graphene oxide decorated with DOPO-phosphanomidate for enhanced fire safety of epoxy resin. Journal of Colloid and Interface Science, 2018, 521, 160-171.	9.4	157
605	Self-Extinguishing and Non-Drip Flame Retardant Polyamide 6 Nanocomposite: Mechanical, Thermal, and Combustion Behavior. Flame Retardancy and Thermal Stability of Materials, 2018, 1, 1-13.	1.1	10
606	Preparation of ferric phosphonate/phosphinate and their special action on flame retardancy of epoxy resin. Journal of Applied Polymer Science, 2018, 135, 46206.	2.6	13
607	Three in one: <i>β</i> â€cyclodextrin, nanohydroxyapatite, and a nitrogenâ€rich polymer integrated into a new flame retardant for poly (lactic acid). Fire and Materials, 2018, 42, 593-602.	2.0	35
608	Fire reaction properties of polystyrene-based nanocomposites using nanosilica and nanoclay as additives in cone calorimeter test. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1853-1865.	3.6	54

#	Article	IF	CITATIONS
609	Spray-Drying-Assisted Layer-by-Layer Assembly of Alginate, 3-Aminopropyltriethoxysilane, and Magnesium Hydroxide Flame Retardant and Its Catalytic Graphitization in Ethylene–Vinyl Acetate Resin. ACS Applied Materials & Interfaces, 2018, 10, 10490-10500.	8.0	77
610	Carbon nanotube and its applications in textile industry – A review. Journal of the Textile Institute, 2018, 109, 1653-1666.	1.9	48
611	Recycled polyethylene terephthalate-based boards for thermal-acoustic insulation. Journal of Cleaner Production, 2018, 189, 251-262.	9.3	33
612	Flame retardancy for cotton cellulose treated with <scp>H</scp> ₃ <scp>PO</scp> ₃ . Journal of Applied Polymer Science, 2018, 135, 46497.	2.6	11
613	Preparation of modified fly ash hollow glass microspheres using ionic liquids and its flame retardancy in thermoplastic polyurethane. Journal of Thermal Analysis and Calorimetry, 2018, 133, 1471-1480.	3.6	18
614	Preparation and characterization of tung oil-based flame retardant polyols. Chinese Journal of Chemical Engineering, 2018, 26, 2664-2671.	3.5	14
615	Evaluation of spectral, thermal, flame retardant, dielectric, solvent diffusion, and transport behavior of novel nanocomposite derived from chlorinated styrene butadiene rubber and manganous tungstate. Polymer Composites, 2018, 39, E1880.	4.6	19
616	Nanoclay-Based PVA Aerogels: Synthesis and Characterization. Industrial & Engineering Chemistry Research, 2018, 57, 6218-6225.	3.7	21
617	Multi-functional hydroxyapatite/polyvinyl alcohol composite aerogels with self-cleaning, superior fire resistance and low thermal conductivity. Composites Science and Technology, 2018, 158, 128-136.	7.8	84
618	New formulation and characterization of enhanced bulk-organic phase change materials. Energy and Buildings, 2018, 167, 38-48.	6.7	21
619	Synthesis of amino trimethylene phosphonic acid melamine salt and its application in flameâ€retarded polypropylene. Journal of Applied Polymer Science, 2018, 135, 46274.	2.6	22
620	Thermal degradation kinetic study of polystyrene/organophosphate composite. Thermochimica Acta, 2018, 662, 8-15.	2.7	14
621	The novel application of chitosan: Effects of cross-linked chitosan on the fire performance of thermoplastic polyurethane. Carbohydrate Polymers, 2018, 189, 313-321.	10.2	109
622	Preparation of a novel polysiloxane and its synergistic effect with ammonium polyphosphate on the flame retardancy of polypropylene. Polymer Degradation and Stability, 2018, 150, 73-85.	5.8	50
623	A pre-constructed graphene–ammonium polyphosphate aerogel (GAPPA) for efficiently enhancing the mechanical and fire-safety performances of polymers. Journal of Materials Chemistry A, 2018, 6, 4449-4457.	10.3	31
624	Improving the crystallization and fire resistance of poly(lactic acid) with nano-ZIF-8@GO. Journal of Materials Science, 2018, 53, 7083-7093.	3.7	34
625	Highly efficient flame-retardant glass-fiber-reinforced polyamide 6T system based on a novel DOPO-based derivative: Flame retardancy, thermal decomposition, and pyrolysis behavior. Polymer Degradation and Stability, 2018, 148, 26-41.	5.8	64
626	Fire safety of thermoplastic polyurethane based on pyromellitic dianhydride. Fire and Materials, 2018, 42, 454-462.	2.0	6

#	Article	IF	CITATIONS
627	Highly flameâ€retardant polyurethane foam based on reactive phosphorus polyol and limoneneâ€based polyol. Journal of Applied Polymer Science, 2018, 135, 46224.	2.6	48
628	Melamine-formaldehyde microcapsules filled sappan dye modified polypropylene composites: encapsulation and thermal properties. Materials Research Express, 2018, 5, 015505.	1.6	3
629	Enzymatic Recycling of High-Value Phosphor Flame-Retardant Pigment and Glucose from Rayon Fibers. ACS Sustainable Chemistry and Engineering, 2018, 6, 2386-2394.	6.7	25
630	Superior flame retardancy and smoke suppression of epoxy-based composites with phosphorus/nitrogen co-doped graphene. Journal of Hazardous Materials, 2018, 346, 140-151.	12.4	173
631	The effect of aluminum phosphinate on char formation of phosphorus-containing deoxybenzoin polymer. High Performance Polymers, 2018, 30, 1019-1026.	1.8	1
632	Molekulare Brandbekäpfung – wie moderne Phosphorchemie zur Lösung der Flammschutzaufgabe beitragen kann. Angewandte Chemie, 2018, 130, 10608-10626.	2.0	22
633	Occurrence and distribution of old and new halogenated flame retardants in mosses and lichens from the South Shetland Islands, Antarctica. Environmental Pollution, 2018, 235, 302-311.	7.5	19
634	Molecular Firefighting—How Modern Phosphorus Chemistry Can Help Solve the Challenge of Flame Retardancy. Angewandte Chemie - International Edition, 2018, 57, 10450-10467.	13.8	500
635	Improving Fire Resistance of Cotton Fabric through Layer-by-Layer Assembled Graphene Multilayer Nanocoating. Journal of the Korean Physical Society, 2018, 72, 1052-1057.	0.7	10
636	Synergistic effects of synthetic phosphonium sulfonates with expandable graphite on flame retardancy for EVA rubber blends. Polymer Degradation and Stability, 2018, 153, 155-164.	5.8	13
637	Halloysite nanotubes loaded with liquid organophosphate for enhanced flame retardancy and mechanical properties of polyamide 6. Journal of Materials Science, 2018, 53, 10181-10193.	3.7	33
638	Functionalized MWCNTs modified flame retardant PLA nanocomposites and cold rolling process for improving mechanical properties. Composites Science and Technology, 2018, 161, 39-49.	7.8	69
639	Poorly-/well-dispersed graphene: Abnormal influence on flammability and fire behavior of intumescent flame retardant. Composites Part A: Applied Science and Manufacturing, 2018, 109, 345-354.	7.6	172
640	Self-assembled 3D zinc borate florets via surfactant assisted synthesis under moderate pressures: Process temperature dependent morphology study. Materials Research Express, 2018, 5, 045002.	1.6	2
641	Organoâ€Phosphorus Flame Retardants for Poly(vinyl chloride)/Wood Flour Composite. Polymer Composites, 2018, 39, 961-970.	4.6	18
642	Effect of carbon black on the thermal degradation and flammability properties of flameâ€retarded high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite. Polymer Composites, 2018, 39, 770-782.	4.6	14
643	Effect of montmorillonite on flame spread characteristics and smoke toxicity of acrylonitrile butadiene styrene copolymer composite. Polymer Composites, 2018, 39, 1234-1241.	4.6	2
644	Influence of carbon nanotubes on thermal response and reaction to fire properties of carbon fibre-reinforced plastic material. Journal of Composite Materials, 2018, 52, 567-579.	2.4	15

#	Article	IF	CITATIONS
645	SiO ₂ films as heat resistant layers for protection of expandable polystyrene foam from flame torch–induced heat. Journal of Thermoplastic Composite Materials, 2018, 31, 657-667.	4.2	3
646	Simultaneously improving flame retardancy and dynamic mechanical properties of epoxy resin nanocomposites through layered copper phenylphosphate. Composites Science and Technology, 2018, 154, 136-144.	7.8	146
647	Biobased Flame Retardants. Springer Briefs in Molecular Science, 2018, , 33-72.	0.1	7
648	Thermally stable and flame-retardant poly(vinyl alcohol)/montmorillonite aerogel via a facile heat treatment. Chinese Chemical Letters, 2018, 29, 433-436.	9.0	31
649	Ultrathin Beta-Nickel hydroxide nanosheets grown along multi-walled carbon nanotubes: A novel nanohybrid for enhancing flame retardancy and smoke toxicity suppression of unsaturated polyester resin. Journal of Colloid and Interface Science, 2018, 509, 285-297.	9.4	23
650	Thermal stability, fire behavior, and fumes emission of polyethylene nanocomposites with halogenâ€free firee fire retardants. Advances in Polymer Technology, 2018, 37, 2394-2410.	1.7	19
651	Effect of ammonium polyphosphate and melamine pyrophosphate on fire behavior and thermal stability of unsaturated polyester synthesized from poly(ethylene terephthalate) waste. Macromolecular Research, 2018, 26, 22-28.	2.4	21
652	Development of biodegradable celluloseâ€∢i>gâ€poly(butyl acrylate)/kaolin nanocomposite with improved fire retardancy and mechanical properties. Journal of Applied Polymer Science, 2018, 135, 45968.	2.6	6
653	Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings. Reactive and Functional Polymers, 2018, 123, 1-9.	4.1	33
654	Efficient Flame Detection and Early Warning Sensors on Combustible Materials Using Hierarchical Graphene Oxide/Silicone Coatings. ACS Nano, 2018, 12, 416-424.	14.6	227
655	Synthesis of phosphorus―and phenylâ€based ROMP polymers and investigation of their effects on the thermomechanical and flammability properties of a polypropylene–IFR system. Journal of Applied Polymer Science, 2018, 135, 45998.	2.6	12
656	Synthesis of a deoxybenzoin derivative and its use as a flame retardant in poly(trimethylene) Tj ETQq1 1 0.7843	14 rgBT /O	verlock 10
657	Highly flameâ€retardant bioâ€based polyurethanes using novel reactive polyols. Journal of Applied Polymer Science, 2018, 135, 46027.	2.6	40
658	Thermal and Flame Retardancy Behavior of Oil Palm Based Epoxy Nanocomposites. Journal of Polymers and the Environment, 2018, 26, 1844-1853.	5.0	17
659	Rubber toughened flame retardant (FR) polyamide 11 nanocomposites Part 1: the effect of SEBS-g-MA elastomer and nanoclay. Flame Retardancy and Thermal Stability of Materials, 2018, 1, 25-38.	1.1	4
660	Epoxy Composites Filled with Sodium Bicarbonate: Thermal and Mechanical Properties. Key Engineering Materials, 0, 781, 159-164.	0.4	1
661	Cotton in the new millennium: advances, economics, perceptions and problems. Textile Progress, 2018, 50, 1-66.	2.0	32
662	Effect of Multiwalled Carbon Nanotubes (MWNT) on the Properties of High Impact Polystyrene (HIPS). Journal of Nanomaterials, 2018, 2018, 1-5.	2.7	3

#	Article	IF	CITATIONS
663	Renewable vanillin based flame retardant for poly(lactic acid): a way to enhance flame retardancy and toughness simultaneously. RSC Advances, 2018, 8, 42189-42199.	3.6	48
664	Thermal behaviors and flame retardancy of novel flameâ€retardant, oilâ€filled styrene–ethylene–butadiene–styrene block copolymer–polypropylene materials. Journal of Applied Polymer Science, 2018, 135, 46888.	2.6	6
665	Fabrication of Fullerene Anchored Reduced Graphene Oxide Hybrids and Their Synergistic Reinforcement on the Flame Retardancy of Epoxy Resin. Nanoscale Research Letters, 2018, 13, 351.	5.7	23
666	Effect of Nanoadditives on Bitumen Aging Resistance: A Critical Review. Journal of Nanomaterials, 2018, 2018, 1-17.	2.7	28
667	Halogen-Free Flame Retardant Plastics. , 2018, , 1-23.		0
668	POSS as Fire Retardant. Springer Series on Polymer and Composite Materials, 2018, , 337-372.	0.7	2
669	Effects of post cure treatment in the glass transformation range on the structure and fire behavior of in situ generated silica/epoxy hybrids. Journal of Sol-Gel Science and Technology, 2018, 87, 156-169.	2.4	21
671	Bio-inspired engineering of boron nitride with iron-derived nanocatalyst toward enhanced fire retardancy of epoxy resin. Polymer Degradation and Stability, 2018, 157, 119-130.	5.8	47
672	Interactive effect of ammonium polyphosphate and montmorillonite on enhancing flame retardancy of polycarbonate/acrylonitrile butadiene styrene composites. Iranian Polymer Journal (English) Tj ETQq0 0 0 rgBT	/Oxerlock	a 10127f 50 417
673	Multi-functional ULTEMâ,,¢1010 composite filaments for additive manufacturing using Fused Filament Fabrication (FFF). Additive Manufacturing, 2018, 24, 298-306.	3.0	47
674	Cellulosic-Based Composite Fibers. , 2018, , 277-301.		1
675	Keratinous Fiber Based Intumescent Flame Retardant with Controllable Functional Compound Loading. ACS Sustainable Chemistry and Engineering, 2018, 6, 13177-13184.	6.7	25
676	Inherently flame-retardant rigid polyurethane foams with excellent thermal insulation and mechanical properties. Polymer, 2018, 153, 616-625.	3.8	113
677	Boron-containing UV-curable oligomer-based linseed oil as flame-retardant coatings: synthesis and characterization. Iranian Polymer Journal (English Edition), 2018, 27, 795-806.	2.4	7
678	Mechanisms of reinforcement in polymer nanocomposites. Physical Chemistry Chemical Physics, 2018, 20, 23085-23094.	2.8	22
679	Thermal decomposition of phosphonate-containing methacrylate-based copolymers. Polymer Degradation and Stability, 2018, 152, 235-243.	5.8	10
680	Fire resistance of additively manufactured water filled polymer parts. Additive Manufacturing, 2018, 22, 138-145.	3.0	7
681	A novel stiffener skeleton strategy in catalytic carbonization system with enhanced carbon layer structure and improved fire retardancy. Composites Science and Technology, 2018, 164, 82-91.	7.8	37

#	Article	IF	CITATIONS
682	Flameâ€retarded polyethylene terephthalate with carbon microspheres/magnesium hydroxide compound flame retardant. Fire and Materials, 2018, 42, 794-804.	2.0	20
683	Microencapsulating inorganic and organic flame retardants for the safety improvement of lithium-ion batteries. Solid State Ionics, 2018, 323, 56-63.	2.7	19
684	Chlorinated styrene butadiene rubber/ zinc sulfide: novel nanocomposites with unique properties- structural, flame retardant, transport and dielectric properties. Journal of Polymer Research, 2018, 25, 1.	2.4	17
685	Clicking Biobased Polyphenols: A Sustainable Platform for Aromatic Polymeric Materials. ChemSusChem, 2018, 11, 2472-2491.	6.8	23
686	Prospects of using nanotechnology for food preservation, safety, and security. Journal of Food and Drug Analysis, 2018, 26, 1201-1214.	1.9	300
687	Effects of intumescent flame retardant system consisting of tris (2-hydroxyethyl) isocyanurate and ammonium polyphosphate on the flame retardant properties of high-density polyethylene composites. Composites Part A: Applied Science and Manufacturing, 2018, 112, 444-451.	7.6	69
688	Comparative Study on Flame Retardancy, Thermal, and Mechanical Properties of Glass Fiber Reinforced Polyester Composites with Ammonium Polyphosphate, Expandable Graphite, and Aluminum Tri-hydroxide. Arabian Journal for Science and Engineering, 2018, 43, 6211-6218.	3.0	10
689	Structure-property relationships of thermoset nanocomposites. , 2018, , 231-276.		6
690	The use of thermosets in the building and construction industry. , 2018, , 279-302.		6
691	Core–Shell Nanofibrous Materials with High Particulate Matter Removal Efficiencies and Thermally Triggered Flame Retardant Properties. ACS Central Science, 2018, 4, 894-898.	11.3	73
692	Thermal degradation and pyrolysis analysis of zinc borate reinforced intumescent fire retardant coatings. Progress in Organic Coatings, 2018, 123, 82-98.	3.9	61
693	Highly electrically conductive and smart fire-resistant coating. Journal of Materials Science: Materials in Electronics, 2018, 29, 16378-16387.	2.2	1
694	Flame retardancy effect of combined ammonium polyphosphate and aluminium diethyl phosphinate in acrylonitrile-butadiene-styrene. Polymer Degradation and Stability, 2018, 155, 208-219.	5.8	31
695	Polydopamineâ€Graphene Oxide Flame Retardant Nanocoatings Applied via an Aqueous Liquid Crystalline Scaffold. Advanced Functional Materials, 2018, 28, 1803172.	14.9	124
696	Application of polymer nanocomposites in the flame retardancy study. Journal of Loss Prevention in the Process Industries, 2018, 55, 381-391.	3.3	47
697	A new direction in design of bioâ€based flame retardants for poly(lactic acid). Fire and Materials, 2018, 42, 914-924.	2.0	45
698	Thermal Degradation Mechanism of a Thermostable Polyester Stabilized with an Open-Cage Oligomeric Silsesquioxane. Materials, 2018, 11, 22.	2.9	29
699	Structure and Properties Study of PA6 Nanocomposites Flame Retarded by Aluminium Salt of Diisobutylphosphinic Acid and Different Organic Montmorillonites. Polymers, 2018, 10, 312.	4.5	28

#	Article	IF	CITATIONS
700	Synthesis of an Efficient S/N-Based Flame Retardant and Its Application in Polycarbonate. Polymers, 2018, 10, 441.	4.5	12
701	Study of the Thermal Properties and the Fire Performance of Flame Retardant-Organic PCM in Bulk Form. Materials, 2018, 11, 117.	2.9	25
702	Combined effect of fumed silica and metal hydroxides as fire retardants in PE single-polymer composites. AIP Conference Proceedings, 2018, , .	0.4	1
703	Parametric optimization of delignification of rice straw through central composite design approach towards application in grafting. Journal of Advanced Research, 2018, 14, 11-23.	9.5	52
704	Promising effect of combining [60]Fullerene nanoparticles and calcium hydroxide on thermal stability and flammability of Poly(ethylene-co-vinyl acetate). Thermochimica Acta, 2018, 668, 73-79.	2.7	11
705	Effect of POSS Particles and Synergism Action of POSS and Poly-(Melamine Phosphate) on the Thermal Properties and Flame Retardance of Silicone Rubber Composites. Materials, 2018, 11, 1298.	2.9	20
706	Simultaneous sorption of dyes and toxic metals from waters using synthesized titania-incorporated polyamide. Journal of Molecular Liquids, 2018, 269, 564-571.	4.9	59
707	Highly Flame Retardant Melamineâ€Formaldehyde Crossâ€Linked Cellulose Nanofibrils/Sodium Montmorillonite Aerogels with Improved Mechanical Properties. Macromolecular Materials and Engineering, 2018, 303, 1800379.	3.6	14
708	Recent Progress in Applications of the Cold Sintering Process for Ceramic–Polymer Composites. Advanced Functional Materials, 2018, 28, 1801724.	14.9	110
709	Flame retardancy and curing characteristic determination for different flame retardant incorporated with unsaturated polyester composites. AIP Conference Proceedings, 2018, , .	0.4	0
709 710		0.4	0
	with unsaturated polyester composites. AIP Conference Proceedings, 2018, , .		
710	with unsaturated polyester composites. AIP Conference Proceedings, 2018, , . Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules, 2018, 51, 4532-4540.	4.8	22
710	 with unsaturated polyester composites. AIP Conference Proceedings, 2018, , . Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules, 2018, 51, 4532-4540. ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 2018, 3, 6330-6338. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based 	4.8 3.5	22 33
710 711 712	 with unsaturated polyester composites. AIP Conference Proceedings, 2018, , . Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules, 2018, 51, 4532-4540. ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 2018, 3, 6330-6338. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid). Thermochimica Acta, 2018, 666, 51-59. Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical 	4.8 3.5 2.7	22 33 52
710711712713	 with unsaturated polyester composites. AIP Conference Proceedings, 2018, , . Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules, 2018, 51, 4532-4540. ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 2018, 3, 6330-6338. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid). Thermochimica Acta, 2018, 666, 51-59. Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1385-1393. Novel phosphorus-containing epoxy resin from renewable resource for flame-retardant coating 	4.8 3.5 2.7 3.8	22 33 52 17
 710 711 712 713 714 	 with unsaturated polyester composites. AIP Conference Proceedings, 2018, , . Synthesis of Polyphosphazenes by a Fast Perfluoroaryl Azide-Mediated Staudinger Reaction. Macromolecules, 2018, 51, 4532-4540. ZnO Microstructures as Flame-Retardant Coatings on Cotton Fabrics. ACS Omega, 2018, 3, 6330-6338. Inclusion of modified lignocellulose and nano-hydroxyapatite in development of new bio-based adjuvant flame retardant for poly(lactic acid). Thermochimica Acta, 2018, 666, 51-59. Preparation of Polylactide Composite with Excellent Flame Retardance and Improved Mechanical Properties. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1385-1393. Novel phosphorus-containing epoxy resin from renewable resource for flame-retardant coating applications. Journal of Coatings Technology Research, 2019, 16, 531-542. Synthesis and characterisation of rice-straw-based grafted polymer composite by free radical 	4.8 3.5 2.7 3.8 2.5	22 33 52 17 15

#	Article	IF	CITATIONS
718	EG/TPU composites with enhanced flame retardancy and mechanical properties prepared by microlayer coextrusion technology. RSC Advances, 2019, 9, 23944-23956.	3.6	20
719	Failure behavior of nylon products for red phosphorus flame retardant electrical connectors. RSC Advances, 2019, 9, 24935-24941.	3.6	4
720	Flame Retardant Polymer Nanocomposites and Interfaces. , 2019, , .		3
721	Thermal and Rheological Properties of Unsaturated Polyester Resins-Based Composites. , 2019, , 367-406.		7
722	Lignin Nanoparticles as A Promising Way for Enhancing Lignin Flame Retardant Effect in Polylactide. Materials, 2019, 12, 2132.	2.9	47
723	The effect of intumescent mat on post-fire performance of carbon fibre reinforced composites. Journal of Fire Sciences, 2019, 37, 257-272.	2.0	9
724	PVA/nanoclay/graphene oxide aerogels with enhanced sound absorption properties. Applied Acoustics, 2019, 156, 40-45.	3.3	30
725	Nanotechnology: A Boon for Food Safety and Food Defense. Nanotechnology in the Life Sciences, 2019, , 225-242.	0.6	3
726	Phosphine Oxide Containing Poly(pyridinium salt)s as Fire Retardant Materials. Polymers, 2019, 11, 1141.	4.5	9
727	Synergistic Flame-Retardant Mechanism of Dicyclohexenyl Aluminum Hypophosphite and Nano-Silica. Polymers, 2019, 11, 1211.	4.5	12
728	Designing Branched Deoxybenzoin Polyesters as Polymeric Flame Retardants. Journal of Polymer Science Part A, 2019, 57, 1765-1770.	2.3	7
729	New Reactive Isoeugenol Based Phosphate Flame Retardant: Toward Green Epoxy Resins. ACS Sustainable Chemistry and Engineering, 2019, 7, 14074-14088.	6.7	72
730	Towards a more circular economy for WEEE plastics – Part B: Assessment of the technical feasibility of recycling strategies. Waste Management, 2019, 96, 206-214.	7.4	23
731	Introductory Chapter: Flame Retardants. , 2019, , .		1
732	A Review on the Thermal Hazards of the Lithium-Ion Battery and the Corresponding Countermeasures. Applied Sciences (Switzerland), 2019, 9, 2483.	2.5	161
733	High-temperature extensional rheology of linear, branched, and hyper-branched polycarbonates. Rheologica Acta, 2019, 58, 557-572.	2.4	7
734	Comparative performance of carbon nanotubes and nanoclays as flame retardants for epoxy composites. Results in Physics, 2019, 14, 102481.	4.1	23
735	High flame retardancy of oxidized polyacrylonitrile fibers prepared by effective plasma-assisted thermal stabilization and electron-beam irradiation. Composites Part B: Engineering, 2019, 178, 107458.	12.0	25

#	Article	IF	CITATIONS
736	Flame-retardant cotton fabrics modified with phosphoramidate derivative via electron beam irradiation process. Journal of Industrial Textiles, 2021, 51, 396-408.	2.4	7
737	Modification and Compounding of CaMgAl-Layered Double Hydroxides and Their Application in the Flame Retardance of Acrylonitrile-Butadiene-Styrene Resin. Polymers, 2019, 11, 1623.	4.5	14
739	An efficient approach to improving fire retardancy and smoke suppression for intumescent flameâ€retardant polypropylene composites via incorporating organoâ€modified sepiolite. Fire and Materials, 2019, 43, 961-970.	2.0	17
740	A Green Water-Soluble Cyclophosphazene as a Flame Retardant Finish for Textiles. Molecules, 2019, 24, 3100.	3.8	25
741	Review on soft polyurethane flame retardant. Construction and Building Materials, 2019, 227, 116673.	7.2	62
742	Influence of volcanic ash, rice husk ash, and solid residue of catalytic pyrolysis on the flame-retardant properties of polypropylene composites. Journal of Fire Sciences, 2019, 37, 434-451.	2.0	14
743	Melt Flow Index and Flammability of Alumina, Zinc Oxide and Organoclay Nanoparticles Filled Cross-Linked Polyethyelene Nanocomposites. Materials Today: Proceedings, 2019, 17, 798-802.	1.8	4
744	A Novel Inherently Flame-Retardant Composite Based on Zinc Alginate/Nano-Cu2O. Polymers, 2019, 11, 1575.	4.5	16
745	Flame Retardant Polypropylene Composites with Low Densities. Materials, 2019, 12, 152.	2.9	22
746	Flame retardant properties of polymer composites of urea complex of magnesium and vermiculite. AIP Conference Proceedings, 2019, , .	0.4	1
747	Synthesis of a novel silicon-containing epoxy resin and its effect on flame retardancy, thermal, and mechanical properties of thermosetting resins. Materials Today Communications, 2019, 19, 186-195.	1.9	27
748	Flame-retarding nanoparticles as the compatibilizers for immiscible polymer blends: simultaneously enhanced mechanical performance and flame retardancy. Journal of Materials Chemistry A, 2019, 7, 4903-4912.	10.3	61
749	Thermal Decomposition and Ceramifying Process of Ceramifiable Silicone Rubber Composite with Hydrated Zinc Borate. Materials, 2019, 12, 1591.	2.9	14
750	Description of complementary actions of mineral and organic additives in thermoplastic polymer composites by <i>Flame Retardancy Index</i> . Polymers for Advanced Technologies, 2019, 30, 2056-2066.	3.2	36
751	Superhydrophobic Polyurethane Foam Coated with Polysiloxane-Modified Clay Nanotubes for Efficient and Recyclable Oil Absorption. ACS Applied Materials & Interfaces, 2019, 11, 25445-25456.	8.0	128
752	A Review of a Class of Emerging Contaminants: The Classification, Distribution, Intensity of Consumption, Synthesis Routes, Environmental Effects and Expectation of Pollution Abatement to Organophosphate Flame Retardants (OPFRs). International Journal of Molecular Sciences, 2019, 20, 2874.	4.1	139
753	Mechanical Properties and Flame Retardancy of Epoxy Resin/Nanoclay/Multiwalled Carbon Nanotube Nanocomposites. Journal of Chemistry, 2019, 2019, 1-9.	1.9	24
754	Enhancement of fire retardancy properties of glass fibre–reinforced polyesters composites. Fire and Materials, 2019, 43, 734-746.	2.0	7

#	Article	IF	CITATIONS
755	Novel Approach toward the Synthesis of a Phosphorus-Functionalized Polymer-Based Graphene Composite as an Efficient Flame Retardant. ACS Sustainable Chemistry and Engineering, 2019, 7, 11745-11753.	6.7	78
756	Synergistic Effects of Flame Retardants on the Flammability and Foamability of PS Foams Prepared by Supercritical Carbon Dioxide Foaming. ACS Omega, 2019, 4, 9306-9315.	3.5	25
757	Lightweight, Elastomeric, and Flameâ€Retardant Foams from Expanded Chlorinated Polymers. Macromolecular Materials and Engineering, 2019, 304, 1900145.	3.6	9
758	Super-insulating, flame-retardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel. Composites Part A: Applied Science and Manufacturing, 2019, 123, 108-113.	7.6	48
759	Exploitation of a promising flameâ€retardant engineering plastics by molten composited polyketone and diethyl zinc phosphinate. Polymers for Advanced Technologies, 2019, 30, 1978-1988.	3.2	4
760	Thermal Degradation and Combustion Behaviors of Polyethylene/Alumina Trihydrate/Graphene Nanoplatelets. Polymers, 2019, 11, 772.	4.5	12
761	Boron/nitrogen flame retardant additives crossâ€linked cellulose nanofibril/montmorillonite aerogels toward superâ€low flammability and improved mechanical properties. Polymers for Advanced Technologies, 2019, 30, 1807-1817.	3.2	27
762	Design and preparation of poly(lactic acid) hydroxyapatite nanocomposites reinforced with phosphorusâ€based organic additive: Thermal, combustion, and mechanical properties studies. Polymers for Advanced Technologies, 2019, 30, 2233-2249.	3.2	17
763	A Novel Rigid PU Foam Based on Modified Used Palm Oil as Sound Absorbing Material. Journal of Polymers and the Environment, 2019, 27, 1693-1708.	5.0	19
764	Recycled polyethylene terephthalate and aluminum anodizing sludge-based boards with flame resistance. Waste Management, 2019, 92, 1-14.	7.4	17
765	Phenolic resin/polyhedral oligomeric silsesquioxane (POSS) composites: Mechanical, ablative, thermal, and flame retardant properties. Polymers for Advanced Technologies, 2019, 30, 2075-2085.	3.2	27
766	Estimation of Mechanical Performance, Thermal Stability and Flame Retardancy of High-Impact Polystyrene/Surface-Modified APP/Carboxylic-Functionalized MWCNTs Nanocomposites. Polymers, 2019, 11, 615.	4.5	13
767	Computational study of how inert additives affect the flammability of a polymer. Fire Safety Journal, 2019, 106, 189-196.	3.1	7
768	Synergistic and compatibilizing effect of octavinyl polyhedral oligomeric silsesquioxane nanoparticles in polypropylene/intumescent flame retardant composite system. Composites Part A: Applied Science and Manufacturing, 2019, 123, 46-58.	7.6	52
769	Simultaneous Improvement of Mechanical and Fire-Safety Properties of Polymer Composites with Phosphonate-Loaded MOF Additives. ACS Applied Materials & Interfaces, 2019, 11, 20325-20332.	8.0	71
770	Improving the flame retardancy and water resistance of polylactic acid by introducing polyborosiloxane microencapsulated ammonium polyphosphate. Composites Part B: Engineering, 2019, 173, 106772.	12.0	101
771	Systematically Controlled Decomposition Mechanism in Phosphorus Flame Retardants by Precise Molecular Architecture: P–O vs P–N. ACS Applied Polymer Materials, 2019, 1, 1118-1128.	4.4	61
772	Novel Biobased Polyol Using Corn Oil for Highly Flame-Retardant Polyurethane Foams. Journal of Carbon Research, 2019, 5, 13.	2.7	30

#	Article	IF	CITATIONS
773	Properties of nano-Fe3O4 incorporated epoxy coatings from Cure Index perspective. Progress in Organic Coatings, 2019, 133, 220-228.	3.9	92
774	Thermal stability, swelling and degradation behaviour of natural fibre based hybrid polymer composites. Cellulose, 2019, 26, 4445-4461.	4.9	8
775	Comparative study of the extrinsic properties of poly(lactic acid)-based biocomposites filled with talc <i>versus</i> sustainable biocarbon. RSC Advances, 2019, 9, 6752-6761.	3.6	34
776	Intumescent Coatings Based on Tannins for Fire Protection. Materials Research, 2019, 22, .	1.3	22
777	The Preparation of an Intumescent Flame Retardant by Ion Exchange and Its Application in Polylactic Acid. ACS Applied Polymer Materials, 2019, 1, 755-764.	4.4	53
778	Fabrication of poly(bis-benzimidazole imide) fibers with enhanced mechanical properties and high limit oxygen indexes. Polymer Testing, 2019, 76, 222-231.	4.8	15
779	Effect of Zinc Borate on Flammability of PET Woven Fabrics. Advances in Polymer Technology, 2019, 2019, 1-13.	1.7	12
780	Improving fire retardancy of cellulosic thermal insulating materials by coating with bio-based fire retardants. Nordic Pulp and Paper Research Journal, 2019, 34, 96-106.	0.7	28
781	Multifunctional Gelcoats for Fiber Reinforced Composites. Coatings, 2019, 9, 173.	2.6	23
782	A Novel POSS-Based Copolymer Functionalized Graphene: An Effective Flame Retardant for Reducing the Flammability of Epoxy Resin. Polymers, 2019, 11, 241.	4.5	23
783	Novel Oligo-Ester-Ether-Diol Prepared by Waste Poly(ethylene terephthalate) Glycolysis and Its Use in Preparing Thermally Stable and Flame Retardant Polyurethane Foam. Polymers, 2019, 11, 236.	4.5	25
784	A new approach on improving the fire resistance of polyamide 11 by incorporating sulfurâ€based flame retardant. Polymers for Advanced Technologies, 2019, 30, 1605-1615.	3.2	12
785	An efficient flame-retardant and smoke-suppressant agent by coated hollow glass microspheres with ammonium molybdophosphate for thermoplastic polyurethane. Journal of Thermal Analysis and Calorimetry, 2019, 137, 1579-1589.	3.6	10
786	Engineering Lignocellulose Fibers with Higher Thermal Stability through Natural Fiber Welding. Macromolecular Materials and Engineering, 2019, 304, 1900042.	3.6	8
788	Sustainable bio-based furan epoxy resin with flame retardancy. Polymer Chemistry, 2019, 10, 2370-2375.	3.9	54
789	Flame retardant and its influence on the performance of asphalt – A review. Construction and Building Materials, 2019, 212, 841-861.	7.2	58
790	Production of polyhedral oligomeric silsesquioxane (POSS) containing low density polyethylene (LDPE) based nanocomposite films for minced beef packaging for extension of shelf life. LWT - Food Science and Technology, 2019, 108, 385-391.	5.2	14
791	Development of Flame-Retarded Nanocomposites from Recycled PET Bottles for the Electronics Industry. Polymers, 2019, 11, 233.	4.5	27

#	Article	IF	CITATIONS
792	Use of manufacture residue of fluidized-bed catalyst-cracking catalyzers as flame retardant in recycled high density polyethylene. Journal of Materials Research and Technology, 2019, 8, 2386-2394.	5.8	8
793	Musselâ€inspired decoration of Ni(OH) ₂ nanosheets on 2D MoS ₂ towards enhancing thermal and flame retardancy properties of poly(lactic acid). Polymers for Advanced Technologies, 2019, 30, 879-888.	3.2	19
794	Towards advanced flame retardant organic coatings: Expecting a new function from polyaniline. Progress in Organic Coatings, 2019, 130, 144-148.	3.9	33
795	Electrically Conductive and Flame Retardant Graphene/Brominated Polystyrene/Maleic Anhydride Grafted High Density Polyethylene Nanocomposites with Satisfactory Mechanical Properties. Chinese Journal of Polymer Science (English Edition), 2019, 37, 509-517.	3.8	18
796	Preparation and characterization of a novel transparent flame retardant unsaturated phosphate ester polymer. Polymer Engineering and Science, 2019, 59, E425.	3.1	3
797	Effects of Graphene Oxide Thin Films and Nanocomposite Coatings on Flame Retardancy and Thermal Stability of Aircraft Composites: A Comparative Study. Journal of Engineering Materials and Technology, Transactions of the ASME, 2019, 141, .	1.4	18
798	Optimizing acrylonitrile grafting onto delignified rice straw via response surface methodology towards its flame retardancy and durability intensification. Journal of Environmental Chemical Engineering, 2019, 7, 102923.	6.7	0
799	The flameâ€retardant effect of calcium hypophosphite in various thermoplastic polymers. Fire and Materials, 2019, 43, 294-302.	2.0	18
800	Development of metal hydroxide nanoparticles from eggshell waste and seawater and their application as flame retardants for ethylene-vinyl acetate copolymer (EVA). International Journal of Biological Macromolecules, 2019, 128, 994-1001.	7.5	29
801	Effect of coalescents on properties of protective styrene-acrylate latex coatings of oriented particle chipboards. IOP Conference Series: Materials Science and Engineering, 2019, 687, 022018.	0.6	0
802	Synergistic Effects of Two-Dimensional MXene and Ammonium Polyphosphate on Enhancing the Fire Safety of Polyvinyl Alcohol Composite Aerogels. Polymers, 2019, 11, 1964.	4.5	46
803	Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science, 2019, 102, 109-166.	32.8	162
804	Eco-friendly synthesis of a highly efficient phosphorus flame retardant based on xylitol and application on cotton fabric. Cellulose, 2019, 26, 2123-2138.	4.9	41
805	Conversion of waste polystyrene foam into sulfonated hyper-crosslinked polymeric adsorbents for cadmium removal in a fixed-bed column. Chemical Engineering Research and Design, 2019, 142, 346-354.	5.6	26
806	Composites and hybrid structures. , 2019, , 153-215.		7
807	Structural health monitoring of processes related to composite manufacturing. , 2019, , 295-381.		4
808	Aggregation States of Poly(4-methylpentene-1) at a Solid Interface. Polymer Journal, 2019, 51, 247-255.	2.7	14
809	Smart textiles for monitoring and measurement applications. , 2019, , 1-151.		10

#	Article	IF	CITATIONS
810	Structural health monitoring of composite structures. , 2019, , 217-293.		0
811	Flammability performance ofÂbiocomposites. , 2019, , 43-58.		23
812	High synergistic effects of natural-based tea saponin in intumescent flame-retardant coatings for enhancement of flame retardancy and pyrolysis performance. Progress in Organic Coatings, 2019, 127, 408-418.	3.9	23
813	Effect of oxidized wood flour as functional filler on the mechanical, thermal and flame-retardant properties of polylactide biocomposites. Industrial Crops and Products, 2019, 130, 301-309.	5.2	54
814	Thermal decomposition kinetics of dynamically vulcanized polyamide 6–acrylonitrile butadiene rubber–halloysite nanotube nanocomposites. Journal of Applied Polymer Science, 2019, 136, 47483.	2.6	44
815	Effects of Tung Oil-Based Polyols on the Thermal Stability, Flame Retardancy, and Mechanical Properties of Rigid Polyurethane Foam. Polymers, 2019, 11, 45.	4.5	25
816	Polyethylene-based single polymer laminates: Synergistic effects of nanosilica and metal hydroxides. Journal of Reinforced Plastics and Composites, 2019, 38, 62-73.	3.1	9
817	Characterization of pyrolysis and combustion of rigid poly(vinyl chloride) using two-dimensional modeling. International Journal of Heat and Mass Transfer, 2019, 132, 347-361.	4.8	38
818	A facile slow-gel method for bulk Al-doped carboxymethyl cellulose aerogels with excellent flame retardancy. Carbohydrate Polymers, 2019, 207, 352-361.	10.2	20
819	Modification of Epoxy Resin with a Phosphorus, Nitrogen, and Fluorine Containing Polymer to Improve the Flame Retardant and Hydrophobic Properties. Macromolecular Materials and Engineering, 2019, 304, 1800498.	3.6	25
820	A comparative study on effects of natural and synthesised nano-clays on the fire and mechanical properties of epoxy composites. Composites Part B: Engineering, 2019, 165, 65-74.	12.0	73
821	<i>In situ</i> synthesized and dispersed melamine polyphosphate flame retardant epoxy resin composites. Journal of Applied Polymer Science, 2019, 136, 47194.	2.6	19
822	Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning. Journal of Hazardous Materials, 2019, 363, 286-294.	12.4	111
823	Flame Retardancy of Wood-Polymeric Composites. , 2019, , 285-317.		6
824	Synthesis, characterization and thermal degradation kinetics of azomethine-based halogen-free flame-retardant polyphosphonates. High Performance Polymers, 2019, 31, 86-96.	1.8	6
825	Modelling and optimization of a flexible poly(vinyl chloride) compound formulation for mine cables. Journal of Vinyl and Additive Technology, 2019, 25, E44.	3.4	1
826	Flammability of Polymer/Clay Aerogel Composites: An Overview. Polymer Reviews, 2019, 59, 1-24.	10.9	71
827	Influence of expandable graphite on flame retardancy and thermal stability property of unsaturated polyester resins/organic magnesium hydroxide composites. Journal of Applied Polymer Science, 2020, 137, 47881.	2.6	21

#	Article	IF	CITATIONS
828	Controllable layerâ€byâ€layer assembly based on brucite and alginates with the assistance of spray drying and flame retardancy influenced by gradients of alginates. Journal of Applied Polymer Science, 2020, 137, 47570.	2.6	5
829	Flame retardant effect of aluminum hypophosphite in heteroatom-containing polymers. Polymer Bulletin, 2020, 77, 291-306.	3.3	19
830	Thermal stability and flame retardant properties of calcium- and magnesium-hypophosphite-finished cotton fabrics and the evaluation of interaction with clay and POSS nanoparticles. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3415-3425.	3.6	9
831	Effects of phosphorus-containing aromatic polyamide and organo-modified hydroxyapatite nanoparticles on the thermal, combustion and mechanical properties of polyvinyl chloride. Polymer Bulletin, 2020, 77, 4259-4287.	3.3	7
832	Improving the flame retardancy of poly(lactic acid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano MOFs. Journal of Hazardous Materials, 2020, 384, 121260.	12.4	46
833	Soy protein and halloysite nanotubes-assisted preparation of environmentally friendly intumescent flame retardant for poly(butylene succinate). Polymer Testing, 2020, 81, 106174.	4.8	34
834	Flameâ€retardant effects of cyclic phosphonate with HALS and fumed silica in polypropylene. Journal of Applied Polymer Science, 2020, 137, 48308.	2.6	11
835	Production and characterization of the halogen-free and nanostructured flame retardant reinforced composite coatings. Journal of the Australian Ceramic Society, 2020, 56, 683-695.	1.9	2
836	Novel Thermoset Nanocomposite Intumescent Coating Based on Hydroxyapatite Nanoplates for Fireproofing of Steel Structures. Journal of Inorganic and Organometallic Polymers and Materials, 2020, 30, 820-830.	3.7	16
837	Isosorbide-derived boron- and phosphorus-containing precursors for flame-retardant epoxy coating. Journal of Coatings Technology Research, 2020, 17, 231-241.	2.5	16
838	Microscopy as a tool to investigate the influence of ammonium polyphosphate particle size on the flame retardant properties of polymer composites. Microscopy Research and Technique, 2020, 83, 276-286.	2.2	6
839	Synergistic effects of red phosphorus masterbatch with expandable graphite on the flammability and thermal stability of polypropylene/thermoplastic polyurethane blends. Polymers and Polymer Composites, 2020, 28, 209-219.	1.9	9
840	Influence of phosphorousâ€based flame retardants on the mechanical and thermal properties of recycled PC/ABS copolymer blends. Journal of Applied Polymer Science, 2020, 137, 48377.	2.6	6
841	Synergistic effect of zeolite 4A on thermal, mechanical and flame retardant properties of intumescent flame retardant HDPE composites. Polymer Testing, 2020, 81, 106177.	4.8	26
842	Epoxyâ€based multilayers for flame resistant flexible polyurethane foam (FPUF). Journal of Applied Polymer Science, 2020, 137, 48890.	2.6	8
843	Fabrication of diatomiteâ€based microencapsulated flame retardant and its improved fire safety of unsaturated polyester resin. Polymers for Advanced Technologies, 2020, 31, 967-979.	3.2	10
844	Preparation of pillared layered antimony hydroxide and its flame retardancy in thermoplastic polyurethane. Journal of Thermal Analysis and Calorimetry, 2020, 142, 425-435.	3.6	1
845	Benign design of intumescent flame retardant coating incorporated various carbon sources. Construction and Building Materials, 2020, 236, 117433.	7.2	26

#	Article	IF	CITATIONS
846	Flame Retardancy and Mechanical Properties of Bioâ€Based Furan Epoxy Resins with High Crosslink Density. Macromolecular Materials and Engineering, 2020, 305, 1900587.	3.6	23
847	Combined Thermogravimetric Determination of Activity Coefficients and Binary Diffusion Coefficients—A New Approach Applied to Ferrocene/ <i>n</i> -Tetracosane Mixtures. Journal of Chemical & Engineering Data, 2020, 65, 1211-1221.	1.9	2
848	Simultaneously improving flame retardancy, water and acid resistance of ethylene vinyl acetate copolymer by introducing magnesium hydroxide/red phosphorus co-microcapsule and carbon nanotube. Polymer Degradation and Stability, 2020, 171, 109051.	5.8	30
849	Synergistic effects of a highly effective intumescent flame retardant based on tannic acid functionalized graphene on the flame retardancy and smoke suppression properties of natural rubber. Composites Part A: Applied Science and Manufacturing, 2020, 129, 105715.	7.6	61
850	Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire and Materials, 2020, 44, 100-111.	2.0	75
851	Comparative analysis of pyrolysis and combustion of bisphenol A polycarbonate and poly(ether ether) Tj ETQq1 1 structure of the intumescent char. Combustion and Flame, 2020, 212, 469-485.	0.784314 5.2	rgBT /Overlo 21
852	Development of Inherently Flame—Retardant Phosphorylated PLA by Combination of Ring-Opening Polymerization and Reactive Extrusion. Materials, 2020, 13, 13.	2.9	28
853	Design of h-BN@boronate polymer core-shell nanoplates to simultaneously enhance the flame retardancy and mechanical properties of epoxy resin through the interficial regulation. Composites Part A: Applied Science and Manufacturing, 2020, 130, 105751.	7.6	43
854	Investigation of the heterogeneity of bromine in plastic components as an indicator for brominated flame retardants in waste electrical and electronic equipment with regard to recyclability. Journal of Hazardous Materials, 2020, 390, 121899.	12.4	19
855	Organic-inorganic hybrid strategy based on ternary copolymerization to prepare flame retardant poly(methyl methacrylate) with high performance. Composites Part B: Engineering, 2020, 203, 108437.	12.0	27
856	Preparation of pH-Indicative and Flame-Retardant Nanocomposite Films for Smart Packaging Applications. Sensors, 2020, 20, 5462.	3.8	13
857	A Bio-derived Char Forming Flame Retardant Additive for Nylon 6 Based on Crosslinked Tannic Acid. Thermochimica Acta, 2020, 693, 178750.	2.7	16
858	Thermal Behavior and Flammability of Epoxy Composites Based on Multi-Walled Carbon Nanotubes and Expanded Graphite: A Comparative Study. Applied Sciences (Switzerland), 2020, 10, 6928.	2.5	14
859	Recent advances in construction of hybrid nano-structures for flame retardant polymers application. Applied Materials Today, 2020, 20, 100762.	4.3	31
860	Synergistic Effects of Black Phosphorus/Boron Nitride Nanosheets on Enhancing the Flame-Retardant Properties of Waterborne Polyurethane and Its Flame-Retardant Mechanism. Polymers, 2020, 12, 1487.	4.5	50
861	A Review on the Flammability Properties of Carbon-Based Polymeric Composites: State-of-the-Art and Future Trends. Polymers, 2020, 12, 1518.	4.5	53
862	Biodegradable Flame Retardants for Biodegradable Polymer. Biomolecules, 2020, 10, 1038.	4.0	42
863	Mechanical properties, flame retardancy, and thermal stability of basalt fiber reinforced polypropylene composites. Polymer Composites, 2020, 41, 4181-4191.	4.6	31

#	Article	IF	Citations
864	Advanced flame-retardant agents for protective textiles and clothing. , 2020, , 397-414.		3
865	Pyrolysis kinetics of ZrP-containing aliphatic waterborne polyurethane-based intumescent coating for flame-retarding plywood. Progress in Organic Coatings, 2020, 148, 105845.	3.9	11
866	Influence of Antimony Oxide on Epoxy Based Intumescent Flame Retardation Coating System. Polymers, 2020, 12, 2721.	4.5	10
867	Flame Retardancy of Biobased Composites—Research Development. Materials, 2020, 13, 5253.	2.9	31
868	Recent advances in waterborne polyurethanes and their nanoparticle-containing dispersions. , 2020, , 249-302.		9
869	Fire Resistance and Mechanical Properties of Intumescent Coating Using Novel BioAsh for Steel. Coatings, 2020, 10, 1117.	2.6	21
870	Phosphorus-Containing Silsesquioxane Derivatives as Additive or Reactive Components of Epoxy Resins. Materials, 2020, 13, 5373.	2.9	6
871	Facile preparation of uniform polydopamine particles and its application as an environmentally friendly flame retardant for biodegradable polylactic acid. Journal of Fire Sciences, 2020, 38, 485-503.	2.0	6
872	A highly-effective ionic liquid flame retardant towards fire-safety waterborne polyurethane (WPU) with excellent comprehensive performance. Polymer, 2020, 205, 122780.	3.8	29
873	Processing and characterizations: Effect of PPG molecular weight on properties of phosphate based polyurethanes. Progress in Organic Coatings, 2020, 147, 105868.	3.9	3
874	Response surface optimized free radical grafting of methyl methacrylate on de-lignified rice straw for evaluating its application potential as flame retardant roofing material. Chemical Engineering Journal Advances, 2020, 1, 100007.	5.2	12
875	Release kinetics as a key linkage between the occurrence of flame retardants in microplastics and their risk to the environment and ecosystem: A critical review. Water Research, 2020, 185, 116253.	11.3	59
876	Flame Retardant Polypropylenes: A Review. Polymers, 2020, 12, 1701.	4.5	39
877	Improved flame resistance properties of unsaturated polyester resin with TiO2-M O solid superacid. Chinese Journal of Chemical Engineering, 2020, 28, 2474-2482.	3.5	9
878	An overview of fire retardant treatments for synthetic textiles: From traditional approaches to recent applications. European Polymer Journal, 2020, 137, 109911.	5.4	76
879	Allâ€Inorganic Ionic Polymerâ€Based Memristor for Highâ€Performance and Flexible Artificial Synapse. Advanced Functional Materials, 2020, 30, 2004245.	14.9	36
880	Melt-Spinning of an Intrinsically Flame-Retardant Polyacrylonitrile Copolymer. Materials, 2020, 13, 4826.	2.9	11
881	Isothermal pyrolysis investigation of aluminum diethylphosphinate mixed as a flame retardant additive into ultra-high molecular weight polyethylene. Combustion and Flame, 2020, 222, 272-284.	5.2	10

#	Article	IF	Citations
882	Fire performance of sandwich composites with intumescent mat protection: Evolving thermal insulation, post-fire performance and rail industry testing. Fire Safety Journal, 2020, 116, 103205.	3.1	12
883	Magnetic nanoparticles incorporation into different substrates for dyes and heavy metals removal—A Review. Environmental Science and Pollution Research, 2020, 27, 43526-43541.	5.3	82
884	Highly Flame-Retardant Liquid Crystalline Polymers. Polymers and Polymeric Composites, 2020, , 549-575.	0.6	0
885	The Effect of Halloysite Nanotubes on the Fire Retardancy Properties of Partially Biobased Polyamide 610. Polymers, 2020, 12, 3050.	4.5	12
886	Protective Coatings for Bio-Composites – A Review. IOP Conference Series: Materials Science and Engineering, 2020, 925, 012048.	0.6	1
887	Fire-extinguishing characteristics and flame retardant mechanism of polylactide foams: Influence of tricresyl phosphate combined with natural flame retardant. International Journal of Biological Macromolecules, 2020, 158, 1090-1101.	7.5	30
888	Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules, 2020, 53, 4465-4479.	4.8	13
889	The classification and application of cyclodextrin polymers: a review. New Journal of Chemistry, 2020, 44, 9137-9148.	2.8	36
890	Silaneâ€functionalized Al 2 O 3 â€nodified polyurethane powder coatings: Nonisothermal degradation kinetics and mechanistic insights. Journal of Applied Polymer Science, 2020, 137, 49412.	2.6	12
891	Recyclable, flame-retardant and smoke-suppressing tannic acid-based carbon-fiber-reinforced plastic. Composites Part B: Engineering, 2020, 197, 108173.	12.0	26
892	Inhibited combustion of graphene paper by in situ phosphorus doping and its application for fire early-warning sensor. Sensors and Actuators A: Physical, 2020, 312, 112111.	4.1	47
893	Poly (vinyl alcohol)/β-Cyclodextrin Composite Fiber with Good Flame Retardant and Super-Smoke Suppression Properties. Polymers, 2020, 12, 1078.	4.5	13
894	Facile preparation of aluminum triphosphate-containing intumescence flame-retarding coatings using aliphatic waterborne polyurethane as the binder. Progress in Organic Coatings, 2020, 147, 105758.	3.9	8
895	A facile strategy to fabricate intumescent fire-retardant and smoke suppression protective coatings for natural rubber. Polymer Testing, 2020, 90, 106689.	4.8	6
896	Flame retardant polymeric materials for additive manufacturing. Materials Today: Proceedings, 2020, 33, 5720-5724.	1.8	17
897	Influence of Sepiolite and Lignin as Potential Synergists on Flame Retardant Systems in Polylactide (PLA) and Polyurethane Elastomer (PUE). Materials, 2020, 13, 2450.	2.9	25
898	Emerging advancements in flame retardancy of polypropylene nanocomposites. Journal of Thermoplastic Composite Materials, 2022, 35, 2665-2704.	4.2	44
899	Flame Retardation of Natural Rubber: Strategy and Recent Progress. Polymers, 2020, 12, 429.	4.5	35

#	Article	IF	CITATIONS
900	A bio-resourced mannitol phospholipid ammonium reactive flame retardant for cotton with efficient antiflaming and durability. Cellulose, 2020, 27, 4803-4815.	4.9	23
901	Curing Kinetics and Thermal Stability of Epoxy Composites Containing Newly Obtained Nano-Scale Aluminum Hypophosphite (AlPO2). Polymers, 2020, 12, 644.	4.5	47
902	Nonflammable pre-carbonized polyacrylonitrile nanofiber webs. SN Applied Sciences, 2020, 2, 1.	2.9	1
903	New nitrogen-rich flame retardant based on conductive poly(aniline-co-melamine). Reactive and Functional Polymers, 2020, 150, 104548.	4.1	15
904	High temperature extensional rheology of commercially available polycarbonate mixed with flame retardant salts. Korea Australia Rheology Journal, 2020, 32, 47-59.	1.7	3
905	Green Highly Clay-Filled Polyethylene Composites as Coating Materials for Cable Industry—A New Application Route of Non-Organophilised Natural Montmorillonites in Polymeric Materials. Polymers, 2020, 12, 1399.	4.5	1
906	Preparation and Properties of Halogen-Free Flame Retardant Polyurethane for Superfine Fiber Leather. Materials Science Forum, 0, 993, 669-677.	0.3	4
907	Toward an understanding of how red phosphorus and expandable graphite enhance the fire resistance of expandable polystyrene foams. Journal of Applied Polymer Science, 2020, 137, 49045.	2.6	30
908	Thermal stability and flame retardance of EVA containing DNA-modified clays. Thermochimica Acta, 2020, 686, 178546.	2.7	10
909	Enhanced flame retardancy of unsaturated polyester resin composites containing ammonium polyphosphate and metal oxides. Journal of Applied Polymer Science, 2020, 137, 49148.	2.6	28
910	Lignin-derived bio-based flame retardants toward high-performance sustainable polymeric materials. Green Chemistry, 2020, 22, 2129-2161.	9.0	249
911	Structural analysis of α-zirconium phosphate/cerium phosphate/graphene oxide nanocomposites with flame-retardant properties in polyvinyl alcohol. New Journal of Chemistry, 2020, 44, 4568-4577.	2.8	8
912	Effect of natural basalt fiber for EVA composites with nickel alginateâ€brucite based flame retardant on improving fire safety and mechanical properties. Polymers for Advanced Technologies, 2020, 31, 713-721.	3.2	14
913	Ammonium polyphosphate wrapped carbon microspheres: a novel flame retardant with smoke suppression for poly (ethylene terephthalate). Journal of Polymer Research, 2020, 27, 1.	2.4	5
914	Advancement in flame retardancy of natural fibre reinforced composites with macro to nanoscale particulates additives. , 2020, , 311-342.		5
915	A facile and efficient flame-retardant and smoke-suppressant resin coating for expanded polystyrene foams. Composites Part B: Engineering, 2020, 185, 107797.	12.0	70
916	Fire hazards management for polymeric materials via synergy effects of pyrolysates-fixation and aromatized-charring. Journal of Hazardous Materials, 2020, 389, 122040.	12.4	29
917	Flame-retardant surface treatments. Nature Reviews Materials, 2020, 5, 259-275.	48.7	325

#	Article	IF	CITATIONS
	The effect of manufacturing technologies on the flame retardancy of carbon fibre reinforced epoxy		
918	resin composites. Polymer Degradation and Stability, 2020, 174, 109094.	5.8	14
919	Green Approach for the Development of Novel Flame Retardant Waterborne Polyurethanes: Synthesis and its Characterizations. Materials Today: Proceedings, 2020, 23, 389-399.	1.8	8
920	Novel brominated flame retardants - A review of their occurrence in indoor air, dust, consumer goods and food. Chemosphere, 2020, 255, 126816.	8.2	95
921	Green flame-retardant flexible polyurethane foam based on cyclodextrin. Polymer Degradation and Stability, 2020, 178, 109171.	5.8	52
922	Engineered nanomaterials: scope in today's textile industry. , 2020, , 249-263.		7
923	Flame-retardant system for rigid polyurethane foams based on diethyl bis(2-hydroxyethyl)aminomethylphosphonate and in-situ exfoliated clay. Polymer Degradation and Stability, 2020, 177, 109178.	5.8	30
924	Biomolecules as Flame Retardant Additives for Polymers: A Review. Polymers, 2020, 12, 849.	4.5	53
925	Flame and fire retardancy of polymer-based composites. Materials Research Innovations, 2021, 25, 104-132.	2.3	6
926	Phosphorus/phosphorus-nitrogen flame retardants applied to polyurethane/rice husk eco-composites: thermal behavior, flame retardancy, and physico-mechanical properties. Polymer Bulletin, 2021, 78, 2727-2743.	3.3	7
927	Experimental investigation of thermal and physical properties of nanocomposites for power cable insulations. Materials Today: Proceedings, 2021, 38, 823-829.	1.8	1
928	Synergism of nanothermite and nanophosphrous compound for advanced infrared flares with superior spectral performance. Journal of Energetic Materials, 2021, 39, 273-286.	2.0	3
929	Advancements in traditional and nanosized flame retardants for polymers—A review. Journal of Applied Polymer Science, 2021, 138, 50050.	2.6	51
930	Functionalisation of multiwalled carbon nanotubes with melamine phosphate and their influence on morphology, thermal stability, flame retardancy and mechanical properties of ABS. Plastics, Rubber and Composites, 2021, 50, 92-103.	2.0	3
931	Structure Code for Advanced Polymer Electrolyte in Lithiumâ€lon Batteries. Advanced Functional Materials, 2021, 31, 2008208.	14.9	77
932	Valorization of fly ash as a harmless flame retardant via carbonation treatment for enhanced fire-proofing performance and mechanical properties of silicone composites. Journal of Hazardous Materials, 2021, 404, 124202.	12.4	22
933	Investigation of the flammability properties of a cotton and elastane blend denim fabric in the presence of boric acid, borax, and nano-SiO ₂ . Journal of the Textile Institute, 2021, 112, 1080-1092.	1.9	5
934	Alginate/Polymer-Based Materials for Fire Retardancy: Synthesis, Structure, Properties, and Applications. Polymer Reviews, 2021, 61, 357-414.	10.9	38
935	Synthesis and characterization of dicyclic silicon″phosphorusâ€grafted alumina and its application in improving flame retardancy of epoxy resin. Journal of Applied Polymer Science, 2021, 138, 49854.	2.6	6

#	Article	IF	CITATIONS
936	Cotton fabric finishing based on phosphate/clay mineral by direct-coating technique and its influence on the thermal stability of the fibers. Progress in Organic Coatings, 2021, 150, 105949.	3.9	10
937	Fabrication and study of thermal and combustion resistance of <scp>DOPO</scp> â€functionalized polyamide reinforced with organoâ€modified Mg(<scp>OH</scp>) ₂ nanoparticles. Polymer International, 2021, 70, 317-330.	3.1	16
938	Polymethyl methacrylate reinforced with nickel coated multiâ€walled carbon nanotubes: Flame, electrical and mechanical properties. Polymer Composites, 2021, 42, 498-511.	4.6	4
939	UV curable flame retardant coating: a novel synthetic approach of trispiperazido phosphate based reactive diluent. Pigment and Resin Technology, 2021, 50, 271-283.	0.9	11
940	Combining Mechanical Fortification and Ultralow Flammability in Epoxy Networks. Macromolecular Materials and Engineering, 2021, 306, 2000567.	3.6	5
941	Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces, 2021, 22, 100879.	3.0	83
942	Highly Thermal Conductive Separator with Inâ€Built Phosphorus Stabilizer for Superior Niâ€Rich Cathode Based Lithium Metal Batteries. Advanced Energy Materials, 2021, 11, 2003285.	19.5	19
943	Effect of silane treated fly ash on physicoâ€mechanical, morphological, and thermal properties of recycled poly(vinyl chloride) composites. Journal of Applied Polymer Science, 2021, 138, 50387.	2.6	14
944	Review of the past and recent developments in functionalization of graphene derivatives for reinforcement of polypropylene nanocomposites. Polymer Composites, 2021, 42, 1075-1108.	4.6	15
945	Effect of Layered Double Hydroxide on Rheological and Flame-Retardant Properties of Styrene-Butadiene-Styrene–Modified Asphalt. Journal of Materials in Civil Engineering, 2021, 33, .	2.9	13
946	The advancement of bis(2-hydroxyethyl)terephthalate recovered from post-consumer poly(ethylene) Tj ETQq0 0 polyurethane. Journal of Industrial and Engineering Chemistry, 2021, 93, 196-209.	0 rgBT /Ov 5.8	verlock 10 Tf 17
947	Silver nanoparticle modified carbon fiber-reinforced polymer material for resistance against thermal damage induced by irradiation. Journal of Composite Materials, 2021, 55, 1267-1278.	2.4	3
948	The influence of ceramic additives on intumescence and thermal activity of epoxy coatings for steel. Journal of Applied Polymer Science, 2021, 138, 49914.	2.6	7
949	New pivot for investigating flameâ€retarding mechanism: Quantitative analysis of zinc phosphate doped aliphatic waterborne polyurethaneâ€based intumescent coatings for flameâ€retarding plywood. Polymers for Advanced Technologies, 2021, 32, 153-164.	3.2	10
950	Calcium carbonate and ammonium polyphosphate flame retardant additives formulated to protect ethylene vinyl acetate copolymer against fire: Hydrated or carbonated calcium?. Journal of Vinyl and Additive Technology, 2021, 27, 264-274.	3.4	3
951	Effect of graphene filler structure on electrical, thermal, mechanical, and fire retardant properties of epoxy-graphene nanocomposites - a review. Critical Reviews in Solid State and Materials Sciences, 2021, 46, 152-187.	12.3	44
952	A novel flame retardant based on polyhydric alcohols and P–N synergy for treatment of cotton fabrics. Cellulose, 2021, 28, 1781-1793.	4.9	22
953	Excellent role of <scp>Cu₂O</scp> on fire safety of epoxy resin with ammonium polyphosphate based on the construction of selfâ€intumescent flame retardant system. Journal of Applied Polymer Science, 2021, 138, 50503.	2.6	17

ARTICLE IF CITATIONS # Mechanically Strong, Scalable, Mesoporous Xerogels of Nanocellulose Featuring Light Permeability, 954 14.6 59 Thermal Insulation, and Flame Self-Extinction. ACS Nano, 2021, 15, 1436-1444. Thermal degradation, flammability, and potential toxicity of polymer nanocomposites. , 2021, , 343-373. Effect of iron nanopowder on flammability of epoxy composites. IOP Conference Series: Materials 956 0.6 0 Science and Engineering, 0, 1019, 012001. Nonfluoride-modified halloysite nanotube-based hybrid: potential for acquiring super-hydrophobicity and improving flame retardancy of epoxy resin. Journal of Nanostructure in Chemistry, 2021, 11, 9.1 353-366. Nanoparticles as flame retardants in polymer materials: mode of action, synergy effects, and 958 1 health/environmental risks., 2021, , 375-415. Plastic in Flame Resistance Applications., 2021, , . Superamphiphobic coatings with antifouling and nonflammable properties using functionalized 960 2.8 3 hydroxyapatite. New Journal of Chemistry, 2021, 45, 6238-6246. Effect of particle size on flame retardancy and mechanical properties of hydroxyethyl diphosphate modified aluminum hydroxide intrinsic pólyethylene terephthalate. Journal of Applied Polymer 2.6 Science, 2021, 138, 50500. Polyurethane/polyhedral oligomeric silsesquioxane nanocomposite: trends and perspectives. Journal 962 2.2 1 of Macromolecular Science - Pure and Applied Chemistry, 2021, 58, 361-375. A Review of Experimental and Numerical Studies of Lithium Ion Battery Fires. Applied Sciences 2.5 24 (Switzerland), 2021, 11, 1247. Physico–mechanical and thermal stability of wood flour/waste polypropylene nanocomposites: 964 3 3.3 impact of flame retardant fillers and gamma irradiation. Polymer Bulletin, 2022, 79, 1133-1149. New Design Consideration of Polymer Matrix Composite Materials., 2021, , 1029-1037. 965 Progression in Fire Retardant Properties of Polymer Composites – A Review. IOP Conference Series: 966 0.6 3 Materials Science and Engineering, 2021, 1059, 012058. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers, 2021, 13, 540. 4.5 44 PET Foams Surface Treated with Graphene Nanoplatelets: Evaluation of Thermal Resistance and Flame 968 2 4.5 Retardancy. Polymers, 2021, 13, 501. Evaluation of flammability, thermal stability and mechanical behavior of expandable graphite-reinforced acrylonitrile–butadiene–styrene terpolymer. Journal of Thermal Analysis and Čalorimetry, 2022, 147, 2229-2237. Eco-Friendly Fire-Resistant Coatings Containing Dihydrogen Ammonium Phosphate Microcapsules and 970 2.6 10 Tannins. Coatings, 2021, 11, 280. Oxidized regenerated celluloses to fabricate high fire safety for epoxy resin with super expansion 971 19 char layer. Cellulose, 2021, 28, 2995-3015.

#	Article	IF	CITATIONS
972	Thermal Stability and Flammability of Epoxy Composites Filled with Multi-Walled Carbon Nanotubes, Boric Acid, and Sodium Bicarbonate. Polymers, 2021, 13, 638.	4.5	14
973	Recycling glass-polishing sludge and aluminum anodising sludge in polyurethane and cement composites: fire performance and mechanical properties. Journal of Material Cycles and Waste Management, 2021, 23, 1126-1140.	3.0	6
974	Effects of Ammonium Polyphosphate on the Flame Retarding, Tensile, Dynamic Mechanical, and Thermal Properties of Kenaf Fiber/Poly(lactic acid) Biocomposites Fabricated by Compression Molding. Fibers and Polymers, 2021, 22, 1388-1396.	2.1	5
975	Abuseâ€Tolerant Electrolytes for Lithiumâ€ion Batteries. Advanced Science, 2021, 8, e2003694.	11.2	16
976	Thermal and flammability properties of polyethylene composites with fibers to replace natural wood. Journal of Reinforced Plastics and Composites, 2021, 40, 726-740.	3.1	4
977	Thermal and flame-retardant properties of intrinsic flame-retardant epoxy resin containing biphenyl structures and phosphorus. European Polymer Journal, 2021, 147, 110319.	5.4	52
979	Flame Retardants and Flame-Retarded Plastics. , 2021, , 53-128.		1
980	Prevention of the formation of respirable fibers in carbon fiber reinforced epoxy resins during combustion by phosphorus or silicon containing flame retardants. Polymer Degradation and Stability, 2021, 185, 109497.	5.8	18
981	Insights into the Crystallization of Polymer Nanocomposite Systems Blended with Grafted and Free Chains Studied by Molecular Simulation. Crystal Growth and Design, 2021, 21, 2243-2254.	3.0	14
983	Poly(Methyl Methacrylate) Coatings Containing Flame Retardant Additives from Suspensions in Water-2-Propanol. Molecules, 2021, 26, 1974.	3.8	6
984	Recent developments in fire retardant glass fibre reinforced epoxy composite and geopolymer as a potential fire-retardant material: A review. Construction and Building Materials, 2021, 277, 122246.	7.2	30
985	Towards Selection Charts for Epoxy Resin, Unsaturated Polyester Resin and Their Fibre-Fabric Composites with Flame Retardants. Materials, 2021, 14, 1181.	2.9	31
986	Flame retardant polymer materials: An update and the future for 3D printing developments. Materials Science and Engineering Reports, 2021, 144, 100604.	31.8	141
987	A bio-derived char-forming strategy for surface fireproofing: Functionalization of UV-curing flame-retardant coating with vinyl-modified tannic acid. European Polymer Journal, 2021, 148, 110358.	5.4	10
988	Dual-Functional Cathodic Prelithiation Reagent of Li ₃ P in Lithium-Ion Battery for Compensating Initial Capacity Loss and Enhancing Safety. ACS Applied Energy Materials, 2021, 4, 5246-5254.	5.1	26
990	Cemental composites with polyurethane and recycled polyvinyl chloride: The influence of industrial waste addition on flammability. Polymer Composites, 2021, 42, 3799-3811.	4.6	4
991	Recent progress in flame-retardant separators for safe lithium-ion batteries. Energy Storage Materials, 2021, 37, 628-647.	18.0	94
992	Preparation of Flame-Retardant Polyurethane and Its Applications in the Leather Industry. Polymers, 2021, 13, 1730.	4.5	26

#	Article	IF	CITATIONS
993	Two-step pyrolysis for waste HDPE valorization. Chemical Engineering Research and Design, 2021, 149, 526-536.	5.6	30
994	Preparation of synergistic silicon, phosphorus and nitrogen flame retardant based on cyclosiloxane and its application to cotton fabric. Cellulose, 2021, 28, 8115-8128.	4.9	18
995	Numerical Simulation of Flame Retardant Polymers Using a Combined Eulerian–Lagrangian Finite Element Formulation. Applied Sciences (Switzerland), 2021, 11, 5952.	2.5	2
996	Enhancement of Flame Retardancy and Mechanical Properties of Polylactic Acid with a Biodegradable Fire-Retardant Filler System Based on Bamboo Charcoal. Polymers, 2021, 13, 2167.	4.5	16
997	Synthesis and characterization of amino-terminated phosphorous polyborosiloxane and its effect on flame retardancy of polymethacrylimide. Materials Today Chemistry, 2021, 20, 100437.	3.5	6
998	Metal organic frameworks enabled rational design of multifunctional PEO-based solid polymer electrolytes. Chemical Engineering Journal, 2021, 414, 128702.	12.7	58
999	The effect of concentration and silica surface modification on the poly(butyl acrylate-co-methyl) Tj ETQq0 0 0 rgB	T /Overloc 0.9	:k 10 Tf 50 5
1000	Chlorine-Functional Silsesquioxanes (POSS-Cl) as Effective Flame Retardants and Reinforcing Additives for Rigid Polyurethane Foams. Molecules, 2021, 26, 3979.	3.8	10
1001	Study on the Synergies of Nanoclay and MWCNTs to the Flame Retardant and Mechanical Properties of Epoxy Nanocomposites. Journal of Nanomaterials, 2021, 2021, 1-8.	2.7	5
1002	Silica-rich regenerated cellulose fibers enabled by delayed dissolution of silica nanoparticles in strong alkali using zinc oxide. Carbohydrate Polymers, 2021, 264, 118032.	10.2	7
1003	Improving thermal and flame retardant properties of sorbitolâ€based bioepoxy systems by <scp>phosphorusâ€based</scp> flame retardants. Fire and Materials, 2022, 46, 605-614.	2.0	5
1004	Advancements in nanotechnology for food science and industry. Food Frontiers, 2022, 3, 56-82.	7.4	40
1005	Synthesis of a novel highly efficient flame-retardant coating for cotton fabrics with low combustion toxicity and antibacterial properties. Cellulose, 2021, 28, 8785-8806.	4.9	20
1006	New Composites from Waste Polypropylene/Eggshell Characterized by High Flame Retardant and Mechanical Properties. Fibers and Polymers, 0, , 1.	2.1	5
1007	Catalyst-free β-hydroxy phosphate ester exchange for robust fire-proof vitrimers. Chemical Engineering Journal, 2021, 417, 129132.	12.7	73
1008	Addition of Al(OH)3 versus AlO(OH) nanoparticles on the optical, thermo-mechanical and heat/oxygen transmission properties of microfibrillated cellulose films. Cellulose, 2021, 28, 9441-9460.	4.9	1
1009	Functionalization of cellulosic fibers with a kaolinite-TiO2 nano-hybrid composite via a solvothermal process for flame retardant applications. Carbohydrate Polymers, 2021, 266, 118108.	10.2	19
1010	Flame behaviour of magnesium and aluminium hydroxide-filled polymer composites used in power and telecom cables. Plastics, Rubber and Composites, 2022, 51, 185-195.	2.0	3

	CITATION R	EPORT	
#	Article	IF	CITATIONS
1011	2D-layered Mg(OH)2 material adsorbing cellobiose via interfacial chemical coupling and its applications in handling toxic Cd2+ and UO22+ ions. Chemosphere, 2021, 279, 130617.	8.2	8
1012	Introductory Chapter: Flame Retardant and Thermally Insulating Polymers. , 0, , .		3
1013	Thermal Characterization of a New Bio-Based Insulation Material Containing Puffed Rice. Energies, 2021, 14, 5700.	3.1	4
1014	Effects of Basalt and Carbon Fillers on Fire Hazard, Thermal, and Mechanical Properties of EPDM Rubber Composites. Materials, 2021, 14, 5245.	2.9	16
1015	Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106539.	7.6	45
1016	Recent advances in graphene sheets as new generation of flame retardant materials. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2021, 274, 115460.	3.5	80
1017	Fabrication and combustion behavior of high volumetric energy density core-shell Si/Ta -based nano-energetic composites. Journal of Alloys and Compounds, 2021, 887, 161443.	5.5	3
1018	Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy. Journal of Materials Science and Technology, 2022, 105, 194-202.	10.7	60
1019	Polymer green chemistry. , 2021, , 3-22.		1
1020	Flame-Retardant Aspects of XLPE. Materials Horizons, 2021, , 211-245.	0.6	4
1021	Development and application of synthetic NP dispersions to prevent and extinguish forest and peat fires (Review). Pozharovzryvobezopasnost/Fire and Explosion Safety, 2021, 29, 5-27.	0.5	0
1022	Wood Fireproofing Coatings Based on Biobased Phenolic Resins. ACS Sustainable Chemistry and Engineering, 2021, 9, 1729-1740.	6.7	25
1023	Multifunctional Polymer Composites: Self-Healing, Shape Memory, 3D Printing, and Flame Retardancy. , 2021, , .		0
1024	Metal–organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. Journal of Materials Chemistry A, 2021, 9, 4348-4378.	10.3	34
1025	Types of Flame Retardants Used for the Synthesis of Flame-Retardant Polymers. Springer Series in Materials Science, 2020, , 15-45.	0.6	1
1026	Thermal Degradation of Thermosetting Nanocomposites. Engineering Materials, 2015, , 51-79.	0.6	3
1027	Flame Retardants: Additives in Plastic Technology. , 2017, , 1-27.		3
1028	Functionalized nanomaterials for the aerospace, vehicle, and sports industries. , 2020, , 795-825.		9

#	Article	IF	Citations
1029	Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Progress in Materials Science, 2020, 114, 100687.	32.8	415
1030	Reinforcing Condensed Phase Flame Retardancy through Surface Migration of Brucite@Zinc Borate-Incorporated Systems. ACS Omega, 2020, 5, 28186-28195.	3.5	7
1031	Synergistic effect of clay and polypropylene short fibers in epoxy based ternary composite hybrids. Advances in Materials Research (South Korea), 2015, 4, 97-111.	0.6	6
1032	Combustibility studies of unsaturated polyester resins modified by nanoparticles. Polimery, 2016, 61, 815-823.	0.7	10
1033	Pyrolysis and Combustion Behavior of Pinewood After the Addition of Flame Retardants. Advances in Civil Engineering Materials, 2019, 8, 20180141.	0.6	2
1034	IMPACTS OF NANOSCALE INCLUSIONS ON FIRE RETARDANCY, THERMAL STABILITY, AND MECHANICAL PROPERTIES OF POLYMERIC PVC NANOCOMPOSITES. Journal of Thermal Engineering, 2017, 3, 1308-1318.	1.6	9
1036	Experimental Study on Fire Characteristics of PC Monitors—Part I: Combustion Properties and Pyrolysis Characteristics. Journal of Applied Fire Science, 2009, 19, 23-39.	0.0	2
1037	Effects of Zinc Borate on the Flame Retardancy Performance of Aluminum Diethylphosphinate in Polyamide-6 and its Composites. International Polymer Processing, 2019, 34, 59-71.	0.5	2
1038	Development of Biodegradable Flame-Retardant Bamboo Charcoal Composites, Part II: Thermal Degradation, Gas Phase, and Elemental Analyses. Polymers, 2020, 12, 2238.	4.5	17
1039	Effect of Cyclotriphosphazene-Based Curing Agents on the Flame Resistance of Epoxy Resins. Polymers, 2021, 13, 8.	4.5	10
1040	Synthesis, Characterization of sym-2,4,6-trisubstituted-s-Triazine Derivatives and Their Effects on Flame Retardancy of Polypropylene Composites. Processes, 2020, 8, 581.	2.8	4
1041	Sandwich Structure Composite with Expandable Graphite Filled or Coated: Evaluation of Flame Retardancy and Mechanical Performances. Open Journal of Safety Science and Technology, 2019, 09, 7-21.	0.3	3
1042	Electrical Behaviors of Flame Retardant Huntite and Hydromagnesite Reinforced Polymer Composites. ISRN Polymer Science, 2012, 2012, 1-9.	0.3	2
1043	Polymer/Clay Nanocomposites. , 0, , .		14
1044	Polymer/Clay Nanocomposites. , 0, , .		17
1045	A Study on Flammability and Mechanical Properties of HDPE/EPDM/Boron Carbide/Triphenyl Phosphate Blends with Compatibilizer. Porrime, 2012, 36, 549-554.	0.2	2
1046	Intumescent-Grafted Bamboo Charcoal: A Natural Nontoxic Fire-Retardant Filler for Polylactic Acid (PLA) Composites. ACS Omega, 2021, 6, 26990-27006.	3.5	17
1047	Zn-Al layered double metal hydroxide anchored reduced graphene oxide for enhancing the fire performance of composite coatings. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127736.	4.7	24

#	Article	IF	CITATIONS
1048	The Preparation and Characterization of Polylactic Acid Composites with Chitin-Based Intumescent Flame Retardants. Polymers, 2021, 13, 3513.	4.5	16
1049	Novel Polyimide-block-poly(dimethyl siloxane) copolymers: Effect of time on the synthesis and thermal properties. High Performance Polymers, 0, , 095400832110404.	1.8	1
1050	Development of PET Flame Retardant Sheets for Industrial Materials by Control of Manufacturing Process. Textile Coloration and Finishing, 2009, 21, 46-56.	0.0	0
1051	Flame Retardant Polymer Nanocomposites. , 2010, , 309-336.		0
1052	Investigation on the Flammability of Diverse Cast PA6 Semi-Finished Products. Journal of Testing and Evaluation, 2012, 40, 1027-1032.	0.7	0
1053	- Nanoparticles and Polymer Nanocomposites. , 2012, , 376-415.		0
1054	Evaluation of Organic-Inorganic Hybrid Insulation Material Using Inorganic Filler and Polyurethane. Korean Journal of Materials Research, 2012, 22, 604~608-604~608.	0.2	1
1055	Evaluation of an Organic-Inorganic Hybrid Insulation Material using an Inorganic Filler and Polyurethane with a Foaming Condition. Journal of the Korean Ceramic Society, 2012, 49, 654-658.	2.3	1
1057	BOR KATKILI STİREN AKRİLİK BOYALARIN ALEV GECİKTİRME, DUMAN BASTIRMA VE ANTİBAKTERİYEL E Journal of the Faculty of Engineering and Architecture of Gazi University, 2015, 30, .	TKİNLİ 0.8	KJERİ.
1058	CHAPTER 9. Flame Retardant Polymer–Halloysite Nanocomposites. RSC Smart Materials, 2016, , 245-270.	0.1	0
1059	Flame Retardancy and Thermal Properties of PVC/ATH Composites Prepared by a Modular Intermeshing Co-rotating Twin Screw Extruder. Elastomers and Composites, 2016, 51, 147-153.	0.1	0
1060	Alüminyum Eloksal Atıklarının Yangın Geciktirici Olarak Değerlendirilmesi. Journal of Polytechnic, 0, , .	0.7	0
1061	ALEV GECİKTİRİCİ MİNERAL DOLGU MADDELERİ. ×mer Halisdemir Üniversitesi Mühendislik Bilimle 0, , 1175-1179.	ri Dergisi, 0.5	3
1062	Highly Flame-Retardant Liquid Crystalline Polymers. , 2019, , 1-27.		0
1063	INFLUENCE OF UV RADIATION ON DIELECTRIC ABSORPTION AND DIELECTRIC STRENGTH OF HALLOYSITE NANOTUBES FILLED POLYETHYLENE COMPOSITES. Acta Electrotechnica Et Informatica, 2019, 18, 32-39.	0.3	0
1064	Halogen-Free Flame Retardant Plastics. , 2019, , 3057-3079.		0
1065	Desarrollo de compuestos XLPE con retardantes de llama de baja toxicidad para aislamiento de cables. Tecno Lógicas, 2019, 22, 73-90.	0.3	0
1066	Novel Environmental Friendly Fire Retardants. Advances in Sciences and Engineering, 2019, 11, 1-8.	0.1	2

ARTICLE IF CITATIONS GÜÇ TUTUÅŽUR POLİPROPİLEN POLİMERİ VE LİF UYGULAMALARINDA SON GELİÅŽMELER VE GELECEK BEKLENTİLERİ. 1067 UludaÄŸ University Journal of the Faculty of Engineering, 0, , 609-632. Mechanical performance of GNP/PLA nanocomposite under varied SPS process parameters. IOP 1068 0.6 Conference Series: Materials Science and Engineering, 2019, 627, 012017. Influence of Flame Retardants on the Whole Process of Wood Combustion. Advances in Analytical 1069 0 0.1 Chemistry, 2020, 10, 80-86. Effects of novel functionalized magnesium phosphate monomers on the flame retardancy and 1070 8.2 mechanical properties of polyethylene terephthalate copolymers. Chemosphere, 2022, 288, 132648. Fire Protective Surface Coating Containing Nanoparticles for Marine Composite Laminates. Journal of 1071 3.0 9 Composites Science, 2021, 5, 6. PA 12/Antimon Trioksit/Sepiyolit veya Bor Kompozitleri: Mekanik Özellikler ve Alev Geciktirme. Çukurova Üniversitesi MA¼hendislik-Mimarlık Fakültesi Dergisi, 0, , 1083-1090. 0.1 Fabrication of polyimide foams with superior mechanical and flame resistance properties utilizing the graft copolymerization between red phosphorus and graphene oxide. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2022, 275, 115498. 1073 3.5 12 Fire-retardant unsaturated polyester thermosets: The state-of-the-art, challenges and opportunities. 1074 12.7 Chemical Engineering Journal, 2022, 430, 132785. Inhibition of Flame Propagation in Nanocomposites with Expanded Polystyrene Recycled Clay, Gypsum, 1075 0.4 0 and Titanium Dioxide. Minerals, Metals and Materials Series, 2020, , 609-618. Improving Flame Retardancy of Pineapple Leaf Fibers. Green Energy and Technology, 2020, , 123-141. Quantitative Analysis of Red Phosphorus in Polypropylene by Evolved Gas Analysis Mass Spectrometry. 1077 1 1.6 Analytical Sciences, 2020, 36, 497-500. High-density polyethylene/carbon nanotubes composites: Investigation on the factors responsible for 2.4 the fracture formation under tensile loading. Journal of Polymer Research, 2021, 28, 1. The influence of hybrid flame retardant and impact modifier on recycled blends formulated from keyboard waste plastics: A study on its flame retardant, mechanical, thermal, and chemical properties. 1079 3.2 0 Polymers for Advanced Technologies, 0, , . Peanut Shell Derived Carbon Combined with Nano Cobalt: An Effective Flame Retardant for Epoxy 1080 3.8 Resin. Molecules, 2021, 26, 6662. In-memory computing with emerging nonvolatile memory devices. Science China Information Sciences, 1081 4.3 31 2021, 64, 1. A method to quantitatively assess the modes-of-action of flame-retardants. Polymer Degradation and 5.8 Stability, 2021, 195, 109767. Development and Characterization of PLA Composites with High Contents of a Brazilian Refractory 1083 1.37 Clay and Improved Fire Performance. Materials Research, 0, 25, . Ammonium polyphosphate/expandable graphite/TiO2 blended silica fume-based geopolymer coating for 1084 synergistically flame-retarding plywood. Construction and Building Materials, 2022, 317, 125941.

# 1085	ARTICLE Thermal decomposition behavior and flame retardancy of bioepoxies, their blends and composites: A comprehensive review. European Polymer Journal, 2022, 162, 110904.	IF 5.4	CITATIONS
1086	Flammability and thermal analysis of thermoplastic polyurethane/DOPO derivative/sepiolite composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 8225-8234.	3.6	6
1087	Ramie fiber reinforced composites with flame retardant structure design: flammability, smoke suppression, and mechanical properties. Journal of Polymer Engineering, 2022, 42, 9-17.	1.4	3
1088	Advanced Flameâ€Retardant Methods for Polymeric Materials. Advanced Materials, 2022, 34, e2107905.	21.0	209
1089	Chemical cellulose-based fibers of decreased flammability. Eastern-European Journal of Enterprise Technologies, 2020, 5, 33-39.	0.5	1
1090	Estudo da incorporação de material laterÃŧico ferroaluminoso na taxa de queima de compósito de matriz termofixa. Revista Materia, 2021, 26, .	0.2	0
1091	Halogenâ€Free Coatings Combined with the Synergistic Effect of Phytic Acid and Montmorillonite for Fire Safety Flexible Polyurethane Foam. Macromolecular Materials and Engineering, 2022, 307, .	3.6	11
1093	Lignin as a flame retardant for biopolymers. , 2022, , 173-202.		3
1094	Facile construction of flameâ€retardant, heatâ€insulating agar/polyvinyl alcohol composite aerogels via in situ formation of magnesium hydroxide and palygorskiteâ€assisted strategy. Journal of Vinyl and Additive Technology, 2022, 28, 502-517.	3.4	5
1095	A Furan-based Phosphaphenanthrene-containing Derivative as a Highly Efficient Flame-retardant Agent for Epoxy Thermosets without Deteriorating Thermomechanical Performances. Chinese Journal of Polymer Science (English Edition), 2022, 40, 233-240.	3.8	16
1096	Tailoring nano-fibrillated polystyrene composite with enhanced fire retarding properties for foam applications. Materials and Design, 2022, 214, 110419.	7.0	13
1097	Flame retardant treatment of jute fabric with chitosan and sodium alginate. Polymer Degradation and Stability, 2022, 196, 109826.	5.8	25
1098	A recent advancement on preparation, characterization and application of nanolignin. International Journal of Biological Macromolecules, 2022, 200, 303-326.	7.5	29
1099	Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: A review. Composites Part B: Engineering, 2022, 233, 109663.	12.0	78
1100	Development of Flame Retardant Stearic Acid Doped Graphite Powder and Magnesium Hydroxide Nanoparticles, Material for Thermal Energy Storage Applications. Journal of Physics: Conference Series, 2022, 2175, 012043.	0.4	2
1101	Toward a New Generation of Fireâ€Safe Energy Storage Devices: Recent Progress on Fireâ€Retardant Materials and Strategies for Energy Storage Devices. Small Methods, 2022, 6, e2101428.	8.6	12
1102	Techno-economic-environmental characteristics of polyurethane composite to thermal insulation for building with flame resistance: corroborative effect recycled of PVC and aluminum oxide. Journal of Material Cycles and Waste Management, 2022, 24, 452-465.	3.0	4
1103	A review of sustainable and environment-friendly flame retardants used in plastics. Polymer Testing, 2022, 108, 107511.	4.8	32

	Сітаті	on Report	
#	Article	IF	CITATIONS
1104	A biobased flame retardant towards improvement of flame retardancy and mechanical property of ethylene vinyl acetate. Chinese Chemical Letters, 2023, 34, 107202.	9.0	17
1105	Fire retardancy in nanocomposites by using nanomaterial additives. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105466.	5.5	19
1106	Aluminum Diethylphosphinate as a Flame Retardant for Polyethylene: Investigation of the Pyrolysis and Combustion Behavior of PE/AlPi-Mixtures. Combustion and Flame, 2022, 240, 112006.	5.2	10
1107	Cellulose and Its Nano-Derivatives as a Water-Repellent and Fire-Resistant Surface: A Review. Materials, 2022, 15, 82.	2.9	5
1108	Evaluation of gas phase: Mechanisms and analyses. , 2022, , 117-159.		0
1110	Fire behavior of sandwich panels with different cores. , 2022, , 137-170.		0
1111	Flexural and Impact Properties of Flax/Kevlar and Jute/Carbon Hybrid Fibers-Reinforced PLA Nanocomposites for Aircraft Interior Applications. , 2022, , 341-366.		0
1112	Synergistic Effects of Expandable Graphite and Ammonium Polyphosphate on Flame-Retardant Property of Composites. SSRN Electronic Journal, 0, , .	0.4	0
1114	Synthesis of PMMA Fibers Incorporated with Mg-Al-LDH with Enhanced Flame Retardant Property via Electrospinning Technology. Fibers and Polymers, 2022, 23, 377-385.	2.1	3
1115	Synthesis and characterization of polybenzoxazine/silicaâ€based hybrid nanostructures for flame retardancy applications. Polymer Engineering and Science, 2022, 62, 1386-1398.	3.1	7
1116	Tunable Graphene/Nitrocellulose Temperature Alarm Sensors. ACS Applied Materials & Interfaces, 2022, 14, 13790-13800.	8.0	28
1117	Elektrik Kabloları için Halojensiz Alev Geciktirici Kılıf Malzemesi Üretiminde Kullanılan Kompozit Malzemede Çinko Borat, Alüminyum Hidroksit ve Magnezyum Hidroksit Kompozisyonunun Optimizasyonu. Journal of Polytechnic, 0, , .	t 0.7	Ο
1118	Construction of hetero-structured nanohybrid relying on reactive phosphazene towards flame retardation and mechanical enhancement of epoxy resins. European Polymer Journal, 2022, 167, 111075.	5.4	23
1119	Poly(ethyl methacrylate) Composite Coatings Containing Halogen-Free Inorganic Additives with Flame-Retardant Properties. Journal of Composites Science, 2022, 6, 104.	3.0	1
1120	A review on cone calorimeter for assessment of flame-retarded polymer composites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 10209-10234.	3.6	41
1121	A Review of Environmentally Friendly Approaches in Fire Extinguishing: From Chemical Sciences to Innovations in Electrical Engineering. Polymers, 2022, 14, 1224.	4.5	4
1122	An investigation of polyphosphinoboranes as flame-retardant materials. Polymer, 2022, 247, 124795.	3.8	10
1123	Preparation of melamine borate coated red phosphorus microcapsules and use of zinc borate as synergistic flame retardant in polyethylene. Journal of Vinyl and Additive Technology, 2022, 28, 591-603.	3.4	10

#	Article	IF	CITATIONS
1124	Influence of hydroxyl-terminated phosphoramidates on the flame retardancy of microfiber synthetic leather. Polymer Degradation and Stability, 2022, 199, 109897.	5.8	7
1125	Modification of Glass/Polyester Laminates with Flame Retardants. Materials, 2021, 14, 7901.	2.9	9
1126	Comparative Study of Different Methods of Synthesis and Their Effect on the Thermomechanical Properties of a Halogenated Epoxy-Based Flame-Retardant Resin. ACS Omega, 2022, 7, 1035-1047.	3.5	4
1127	Nanotechnology in Fire Protection—Application and Requirements. Materials, 2021, 14, 7849.	2.9	10
1128	Experimental Investigations of AlMg3 Components with Polyurethane and Graphene Oxide Nanosheets Composite Coatings, after Accelerated UV-Aging. Molecules, 2022, 27, 84.	3.8	2
1129	Morphology of wood degradation and flame retardants wood coating technology: an overview. International Wood Products Journal, 2022, 13, 21-40.	1.1	10
1130	Obtaining environmentally friendly cable PVC composites. IOP Conference Series: Earth and Environmental Science, 2021, 937, 022089.	0.3	0
1131	The Flame-Retardant Mechanisms and Preparation of Polymer Composites and Their Potential Application in Construction Engineering. Polymers, 2022, 14, 82.	4.5	41
1132	High-performance polyurethanes foams for automobile industry. , 2022, , 105-129.		2
1133	Mechanical, viscoelastic, and flammability properties of polymer composites reinforced with novel Sirisha bark filler. Journal of Industrial Textiles, 2022, 51, 5887S-5909S.	2.4	3
1134	Promising low-viscosity phosphorus-containing epoxy compounds: Features of interaction with aromatic amines. Results in Engineering, 2022, 14, 100421.	5.1	5
1135	NaOH hydrothermally treated gibbsite modified silicone acrylic emulsion-based intumescent flame-retardant coatings for plywood. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 646, 129001.	4.7	5
1138	Evaluation of thermal degradation behavior and fire resistance performance of wood-plastic composites containing different modified clay nanoparticles. Wood Material Science and Engineering, 2023, 18, 559-569.	2.3	2
1139	Synthesis of Magnesium Hydroxide Using Postâ€Reaction Filtrate as Ammonia Carrier and Morphology Analysis. Crystal Research and Technology, 0, , 2200014.	1.3	2
1140	Synergic effects of dimethyl methylphosphonate (DMMP) and nano-sized montmorillonite (MMT) on the flammability and mechanical properties of flax fiber reinforced phenolic composites under hydrothermal aging. Composites Science and Technology, 2022, 230, 109487.	7.8	10
1141	Functional Grading of Mycelium Materials with Inorganic Particles: The Effect of Nanoclay on the Biological, Chemical and Mechanical Properties. Biomimetics, 2022, 7, 57.	3.3	12
1142	Targeted modification of black phosphorus by MIL-53(Al) inspired by "Cannikin's Law―to achieve high thermal stability of flame retardant polycarbonate at ultra-low additions. Composites Part B: Engineering, 2022, 238, 109943.	12.0	24
1143	Microcrystalline cellulose modified by phytic acid and condensed tannins exhibits excellent flame retardant and cationic dye adsorption properties. Industrial Crops and Products, 2022, 184, 115035.	5.2	13

#	Article	IF	CITATIONS
1144	A comprehensive review of reactive flame-retardant epoxy resin: fundamentals, recent developments, and perspectives. Polymer Degradation and Stability, 2022, 201, 109976.	5.8	75
1145	Recycling Expanded Polystyrene with a Biodegradable Solvent to Manufacture 3D Printed Prototypes and Finishing Materials for Construction. Journal of Polymers and the Environment, 2022, 30, 3701-3717.	5.0	2
1146	Potential Application of Plant-Based Derivatives as Green Components in Functional Coatings: A Review. Cleaner Materials, 2022, 4, 100097.	5.1	5
1147	Flame retardant nanofillers and its behavior in polymer nanocomposite. , 2022, , 483-511.		2
1148	Polyimide Copolymers and Nanocomposites: A Review of the Synergistic Effects of the Constituents on the Fire-Retardancy Behavior. Energies, 2022, 15, 4014.	3.1	7
1150	Polydopamine primed phosphorylated sepiolite-polypropylene nanocomposite with enhanced thermal, rheological, and flame retardant properties. Polymer Degradation and Stability, 2022, 202, 110005.	5.8	4
1151	Recent Development on Flame Retardants for Polyurethanes. ACS Symposium Series, 0, , 187-223.	0.5	2
1152	Recent Developments in Green Flame Retardants Based on Carbon Nanotubes. ACS Symposium Series, 0, , 47-63.	0.5	2
1153	Flame Retardants: New and Old Environmental Contaminants. , 0, , .		1
1154	Polystyrene nanospheres coated red phosphorus flame retardant for polyamide 66. Journal of Applied Polymer Science, 2022, 139, .	2.6	2
1155	lt Takes Two to Tango: Synergistic Expandable Graphite–Phosphorus Flame Retardant Combinations in Polyurethane Foams. Polymers, 2022, 14, 2562.	4.5	16
1156	Overhead Lines and Wildfires: Role of Outdoor Insulators: Prepared by a Task Force of the IEEE DEIS Outdoor Insulation Technical Committee. IEEE Electrical Insulation Magazine, 2022, 38, 14-25.	0.8	3
1157	Synthesis of reactive phosphorus-based carbonate for flame retardant polyhydroxyurethane foams. Polymer Degradation and Stability, 2022, 202, 110031.	5.8	14
1158	Creating multilayer-structured polystyrene composites for enhanced fire safety and electromagnetic shielding. Composites Part B: Engineering, 2022, 242, 110068.	12.0	18
1159	Environmental, Health, and Legislation Considerations for Rational Design of Nonreactive Flameâ€Retardant Additives for Polymeric Materials: Future Perspectives. Macromolecular Rapid Communications, 2022, 43, .	3.9	5
1160	Synthesis of a novel triazine-based intumescent flame retardant and its effects on the fire performance of expanded polystyrene foams. Polymer Degradation and Stability, 2022, 203, 110079.	5.8	9
1161	Recent Advances in Halogen-Free Flame Retardants for Polyolefin Cable Sheath Materials. Polymers, 2022, 14, 2876.	4.5	10
1162	Smart fire-warning materials and sensors: Design principle, performances, and applications. Materials Science and Engineering Reports, 2022, 150, 100690.	31.8	91

	Сітаті	on Report	
#	Article	IF	CITATIONS
1163	High-performance ene-thiol-acrylate photoresins suited for fabrication lightweight battery compartments of electric vehicles. Reactive and Functional Polymers, 2022, 178, 105337.	4.1	2
1164	Inhibitory Effects of Composite Fire Retardant Loaded in Porous Warm-Mix Agent on Asphalt Pyrolysis and Volatile Emission. Journal of Materials in Civil Engineering, 2022, 34, .	2.9	7
1165	Introduction to flame retardants for polymeric materials. , 2022, , 1-27.		4
1166	Phosphorus Modified Cardanol: A Greener Route to Reduce VolaTile Organic Compounds and Impart Flame Retardant Properties to Alkyd Resin Coatings. Molecules, 2022, 27, 4880.	3.8	1
1167	Organic–inorganic hybrid strategy toward halogenâ€free flame retardant, high transparent and reinforced poly(methyl methacrylate). Journal of Applied Polymer Science, 0, , .	2.6	0
1168	Preparation, Characterization and Thermal Studies of Polypyrrole - Gold nanocomposites. Current Applied Polymer Science, 2022, 05, .	0.2	0
1169	Application analysis of two flame retardant polymer materials. , 0, 13, 183-189.		0
1170	Synergistic effect of DOPO and VMDMS for flame retardancy of alkyd resins. Progress in Organic Coatings, 2022, 172, 107086.	3.9	1
1171	Effects of aging on environmental behavior of plastic additives: Migration, leaching, and ecotoxicity. Science of the Total Environment, 2022, 849, 157951.	8.0	47
1172	Novel design and synthesis of bio-based polyelectrolyte complexes for enhancing the flame retardancy of epoxy resin. Materials Chemistry and Physics, 2022, 291, 126674.	4.0	6
1173	Growth of biobased flakes on the surface and within interlayer of metakaolinite to enhance the fire safety and mechanical properties of intumescent flame-retardant polyurea composites. Chemical Engineering Journal, 2022, 450, 138350.	12.7	11
1174	Recent Developments in Flame-Retardant Lignin-Based Biocomposite: Manufacturing, and characterization. Journal of Polymers and the Environment, 2022, 30, 4517-4537.	5.0	15
1175	Polyurethane high-solids coatings modified with silicon-containing functionalized cyclotriphosphazene. Progress in Organic Coatings, 2022, 172, 107139.	3.9	2
1176	Fire and electrically resistive silicone elastomer/alumina trihydrate composites derived from nanoclay and chopped glass fibres for industrial fire safety. Chemical Engineering Research and Design, 2022, 167, 257-261.	5.6	5
1177	Vegetable oil-based flame-retardant polymeric materials. , 2022, , 391-417.		0
1178	High-temperature behavior of silicone rubber composite with boron oxide/calcium silicate. E-Polymers, 2022, 22, 595-606.	3.0	1
1179	Development of natural fiber-reinforced flame-retardant polymer composites. , 2022, , 369-389.		3
1180	Perspectives and challenges in using bio-based flame retardants. , 2022, , 451-466.		0

#	Article	IF	CITATIONS
1181	Toughed interface of Mg(OH)2/polymer composites with improved mechanical performance via intramolecular "bridge― Applied Surface Science, 2023, 607, 155100.	6.1	10
1182	Flame Retardant Strategies and the Physical Barrier Effect of Nanoparticles to Improve the Thermal Performance of a Polymer. Theoretical Foundations of Chemical Engineering, 2022, 56, 545-553.	0.7	2
1183	A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires. I: An Overview of the Theory, Test Methods, and the European Union Regulatory Status. Fire, 2022, 5, 127.	2.8	2
1184	A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires. II: Some Examples of Acid Scavengers at High Temperatures in the Condensed Phase. Fire, 2022, 5, 142.	2.8	0
1185	Fire-Retardant Property of Hexasubstituted Cyclotriphosphazene Derivatives with Schiff Base Linking Unit Applied as an Additives in Polyurethane Coating for Wood Fabrication. Polymers, 2022, 14, 3768.	4.5	3
1186	Recent Advances on Early-Stage Fire-Warning Systems: Mechanism, Performance, and Perspective. Nano-Micro Letters, 2022, 14, .	27.0	22
1187	Flame-retardant effect of tannic acid-based intumescent fire-retardant applied on flammable natural rubber. RSC Advances, 2022, 12, 29928-29938.	3.6	2
1188	Synthesis of P-/N-Containing Bamboo-Activated Carbon toward Enhanced Thermal Stability and Flame Retardancy of Polylactic Acid. Materials, 2022, 15, 6802.	2.9	4
1189	Curing behavior, mechanical, and flameâ€retardant properties of epoxyâ€based composites filled by expandable graphite and ammonium polyphosphate. Journal of Applied Polymer Science, 2023, 140, .	2.6	5
1190	A novel lanthanumâ€based phosphorusâ€containing flame retardant agent and its application in polylactic acid. Journal of Applied Polymer Science, 2023, 140, .	2.6	3
1191	The Effect of Flame Retardant—Aluminum Trihydroxide on Mixed Mode I/II Fracture Toughness of Epoxy Resin. Polymers, 2022, 14, 4386.	4.5	1
1192	Fire Retardancy and Dielectric Strength of Cyclotriphosphazene Compounds with Schiff Base and Ester Linking Units Attached to the Electron-Withdrawing Side Arm. Polymers, 2022, 14, 4378.	4.5	1
1193	Flame-retardant properties and mechanism of LGF/PBT/DOPO-HQ-conjugated flame-retardant composites. Frontiers in Chemistry, 0, 10, .	3.6	3
1194	Recent Advancements in Flame-Retardant Polyurethane Foams: A Review. Industrial & Engineering Chemistry Research, 2022, 61, 15046-15065.	3.7	23
1195	Characteristics of Mechanical Properties and Thermal Behavior of Epoxy Nanocomposites and Coatings by Zinc Borate, Nano Silica, and Hardener. ACS Omega, 2022, 7, 38299-38310.	3.5	3
1196	Ultraductile Cementitious Structural Health Monitoring Coating: Waterborne Polymer Biomimetic Muscle and Polyhedral Oligomeric Silsesquioxaneâ€Assisted Câ€Sâ€H Dispersion. Advanced Functional Materials, 2022, 32, .	14.9	32
1197	A top-down strategy for the preparation of flame retardant, robust, and transparent wood-derived films. Journal of Materials Research and Technology, 2022, 21, 3594-3603.	5.8	4
1198	Growth of copper organophosphate nanosheets on graphene oxide to improve fire safety and mechanical strength of epoxy resins. Chemosphere, 2023, 311, 137047.	8.2	13

#	Article	IF	CITATIONS
1199	Multifunctional polyethylene nanocomposites based on polyethylene-grafted α-zirconium phosphate nanoplatelets. Polymer, 2022, 261, 125422.	3.8	3
1200	A novel green IFR system: Design of a self-assembled peanut shell-based flame retardant and its fire performance in EP. Progress in Organic Coatings, 2023, 174, 107277.	3.9	6
1201	Biodegradable Poly(Butylene Succinate) Nanocomposites Based on Dimeric Surfactant Organomodified Clays with Enhanced Water Vapor Barrier and Mechanical Properties. ACS Omega, 2022, 7, 43254-43264.	3.5	6
1202	Accelerated Design of Flame Retardant Polymeric Nanocomposites via Machine Learning Prediction. , 2023, 1, 596-605.		11
1203	A void surface flame retardant strategy for polymeric <scp>polyHIPEs</scp> . Journal of Applied Polymer Science, 0, , .	2.6	0
1204	Investigation of the modes of action for phosphorous flame retardants in a fully waterborne sugar-based epoxy resin. Journal of Thermal Analysis and Calorimetry, 2023, 148, 281-292.	3.6	4
1205	Boron-containing ionic liquid functionalized Mo-MOF/graphene oxide hybrid for improving fire safety and maintaining mechanical properties for epoxy resin. Applied Surface Science, 2023, 611, 155736.	6.1	12
1206	Nanoarchitectonics of flame retardant leather: Current status and future perspectives. Composites Part A: Applied Science and Manufacturing, 2023, 165, 107327.	7.6	7
1207	Phosphorus grafted chitosan functionalized graphene oxide-based nanocomposite as a novel flame-retardant material for textile and wood. Reaction Chemistry and Engineering, 2023, 8, 804-814.	3.7	4
1208	Fire-resistant and flame-retardant surface finishing of polymers and textiles: A state-of-the-art review. Progress in Organic Coatings, 2023, 175, 107330.	3.9	18
1209	Facile construction of agar-based fire-resistant aerogels: A synergistic strategy via in situ generations of magnesium hydroxide and cross-linked Ca-alginate. International Journal of Biological Macromolecules, 2023, 227, 297-306.	7.5	8
1210	Phosphorylation of Kapok Fiber with Phytic Acid for Enhanced Flame Retardancy. International Journal of Molecular Sciences, 2022, 23, 14950.	4.1	3
1211	Influence of aluminum trihydrate (ATH) particle size on mechanical, thermal, flame retardancy and combustion behavior of polypropylene composites. Journal of Thermal Analysis and Calorimetry, 2023, 148, 807-819.	3.6	2
1212	Waste to Resource: Synthesis of Polyurethanes from Waste Cooking Oil. Industrial & Engineering Chemistry Research, 2022, 61, 18400-18411.	3.7	5
1213	New Transparent Flame-Retardant (FR) Coatings Based on Epoxy-Aluminum Hypophosphite Nanocomposites. Coatings, 2023, 13, 140.	2.6	6
1214	Influence of Phosphorus Structures and Their Oxidation States on Flame-Retardant Properties of Polyhydroxyurethanes. Molecules, 2023, 28, 611.	3.8	2
1215	Photoaging process of microplastics and their pollutant release. Comprehensive Analytical Chemistry, 2023, , .	1.3	0
1216	Stannate and surface functionalized molybdate of zinc for enhanced flame retardancy of epoxy nanocomposites. Journal of Applied Polymer Science, 0, , .	2.6	Ο

#	Article	IF	Citations
1217	Performance evaluation of various phosphorus compounds on the flammability properties of short carbon fiberâ€reinforced polyamide 6 composites. Fire and Materials, 2023, 47, 837-847.	2.0	1
1218	Recently emerging advancements in thermal conductivity and flame retardancy of MXene polymeric nanoarchitectures. Polymer-Plastics Technology and Materials, 2023, 62, 510-546.	1.3	16
1219	Understanding the durability of advanced fiber-reinforced polymer (FRP) composites for structural applications. , 2013, , 271-341.		0
1220	Flame Retardants: Additives in Plastic Technology. , 2016, , 1-27.		0
1221	Flame retardancy and thermal properties of graphitic carbon nitride-based materials. , 2023, , 207-224.		0
1222	Flame-Retardant and Recyclable Soybean Oil-Based Thermosets Enabled by the Dynamic Phosphate Ester and Tannic Acid. ACS Applied Materials & Interfaces, 2023, 15, 5963-5973.	8.0	9
1223	Raylı Sistem Araçlarında Kullanılan Kompozit Malzemelerin Termografik Muayene ile Kontrolü. Demiryolu Mühendisliği, 0, , .	0.6	0
1224	A review: Impact of surface treatment of nanofillers for improvement in thermo mechanical properties of the epoxy based nanocomposites. Materials Today: Proceedings, 2023, 78, 164-172.	1.8	9
1225	General overview of biopolymers: structure and properties. ChemistrySelect, 2023, .	1.5	0
1226	Catalyst-free reprocessable, degradable and intrinsically flame-retardant epoxy vitrimer for carbon fiber reinforced composites. Polymer Degradation and Stability, 2023, 211, 110315.	5.8	10
1227	Polyvinyl alcohol/montmorillonite/magnesium diboride fibers with superior flame retardancy, strength, and flexibility. Chemical Engineering Journal, 2023, 462, 142261.	12.7	7
1228	Multifunctional waterborne polyurethane nanocoatings based on large-scale exfoliated mono-layered montmorillonite nanosheets. Progress in Organic Coatings, 2023, 177, 107410.	3.9	0
1229	Flexible and Self-Powered Thermal Sensor Based on Graphene-Modified Intumescent Flame-Retardant Coating with Hybridized Nanogenerators. ACS Applied Nano Materials, 2023, 6, 2429-2437.	5.0	4
1230	Future of Nanotechnology in Food Industry: Challenges in Processing, Packaging, and Food Safety. Global Challenges, 2023, 7, .	3.6	22
1231	Flammability and vibrational study of graphene incorporated epoxy/ramie/glass hybrid nanocomposite. Journal of Applied Polymer Science, 2023, 140, .	2.6	6
1232	Enhanced flame retardancy, smoke suppression, and acid resistance of polypropylene/magnesium hydroxide composite by expandable graphite and microencapsulated red phosphorus. Journal of Vinyl and Additive Technology, 2023, 29, 395-409.	3.4	8
1233	Effect of Hemp Hurd Biochar and Humic Acid on the Flame Retardant and Mechanical Properties of Ethylene Vinyl Acetate. Polymers, 2023, 15, 1411.	4.5	0
1234	Triple Benefits of Cardanol as Chain Stopper, Flame Retardant and Reactive Diluent for Greener Alkyd Coating. Organics, 2023, 4, 109-125.	1.3	1

		CITATION REI	PORT	
#	ARTICLE Flame retardancy evaluation of polymer composite-reinforced ceramic nanofillers. , 2023, ,	89-126	IF	CITATIONS
1200	Study on the thermal stability and combustion performance of polyurethane foams modifie			I
1236	manganese phytate. International Polymer Processing, 2023, 38, 300-309.		0.5	2
1237	The effects of chemical structure for phosphorus-nitrogen flame retardants on flame retard mechanisms. Journal of Materials Science, 2023, 58, 6850-6864.	ant	3.7	7
1238	Shielding Encapsulation to Enhance Fire Endurance of Phase Change Materials in Energy-Ef Concrete. Fire Technology, 2023, 59, 1697-1723.	ficient	3.0	2
1239	Lignin to dispersants, adsorbents, flocculants and adhesives: A critical review on industrial applications of lignin. Industrial Crops and Products, 2023, 199, 116715.		5.2	6
1240	Functionalized nanofibers as fire-retardant fabrics. , 2023, , 893-921.			0
1241	Fireproof Nanocomposite Polyurethane Foams: A Review. Polymers, 2023, 15, 2314.		4.5	1
1242	Inhibition effects of aluminum dust explosions by various kinds of ammonium polyphospha of Loss Prevention in the Process Industries, 2023, 83, 105083.	te. Journal	3.3	2
1243	Introduction to coatings and surface preparation. , 2023, , 1-18.			0
1244	Fire resistance of pine wood treated with phenol-formaldehyde resin and phosphate-based retardant. Wood Material Science and Engineering, 2023, 18, 1933-1939.	flame	2.3	1
1245	Effect of solid surface curvature and wall heat loss on the downward flame spread along th of thin PMMA sheets. Combustion and Flame, 2023, 254, 112837.	e edge	5.2	0
1246	Advances and opportunities in synthesis of flame retardant polymers via reversible deactive radical polymerization. Polymer Degradation and Stability, 2023, 214, 110414.	ition	5.8	1
1247	A Molecular Understanding of the Flame Retardant Mechanism of Zinc Stannate/Polypropy Composites via ReaxFF Simulations. Inorganics, 2023, 11, 233.	lene	2.7	1
1248	Bio-based non-flammable foams with a circular end-of-life based on the self-foaming proces Engineering Journal, 2023, 470, 143957.	s. Chemical	12.7	1
1249	La NanotecnologÃa en las Ciencias Biológicas. , 2018, 1, 108-125.			0
1250	Ammonium polyphosphate-melamine synergies in thermal degradation and smoke toxicity polyurethane foams. Thermochimica Acta, 2023, 726, 179554.	of flexible	2.7	2
1251	Effect of Modified Halloysite/Expandable Graphite Addition on Thermal and Intumescent Pr the Fire-Resistant Paints for Steel. Arabian Journal for Science and Engineering, 2023, 48, 1		3.0	1
1252	Sodium lignosulfonate improves the compatibility of melamine polyphosphate with graphite-containing alkali-activated cenospheres-based coating for flame-retarding plywood Materials Today Communications, 2023, 36, 106450.	d.	1.9	0

#	Article	IF	CITATIONS
1253	Synergistic effect of nano silicon and piperazine pyrophosphate/melamine polyphosphate on flame retardancy of polypropylene. Journal of Fire Sciences, 0, , .	2.0	0
1254	3D printing of fire-retardant biopolymers. , 2023, , 101-133.		0
1255	Application of ammonium polyphosphate as intumescent flame retardant on Varanasi brocade pineapple fabric. Biomass Conversion and Biorefinery, 0, , .	4.6	1
1256	Effects of different types of flame-retardant treatment on the flame performance of polyurethane/wood-flour composites. Heliyon, 2023, 9, e15825.	3.2	2
1257	Synergistic Effect of Activated Carbon, NiO and Al2O3 on Improving the Thermal Stability and Flame Retardancy of Polypropylene Composites. Polymers, 2023, 15, 2135.	4.5	0
1258	Heat and fire-resistant nanofiber networks: Towards tailoring the new generation of lightweight intermeshing polymer composite systems. Chemical Engineering Journal, 2023, 467, 143487.	12.7	4
1259	Synergistic Improvement of Flame Retardancy and Mechanical Properties of Epoxy/Benzoxazine/Aluminum Trihydrate Adhesive Composites. Polymers, 2023, 15, 2452.	4.5	0
1260	Flame-retardant performance of phosphorylated furan-containing alkyd resins. Green Materials, 0, , 1-15.	2.1	0
1261	A novel P, N doped organic-inorganic hierarchical core-shell nanostructures: Reducing the fire risk of epoxy resin. Progress in Organic Coatings, 2023, 183, 107776.	3.9	0
1262	A New Perspective on Hydrogen Chloride Scavenging at High Temperatures for Reducing the Smoke Acidity of PVC Cables in Fires, IV: The Impact of Acid Scavengers at High Temperatures on Flame Retardance and Smoke Emission. Fire, 2023, 6, 259.	2.8	1
1263	Rational strategy for construction of multifunctional coatings for achieving high fire safety, antibacterial, UV protection and electrical conductivity functions of textile fabrics. Materials Today Sustainability, 2023, 23, 100450.	4.1	7
1265	The rise of phosphate ester exchange in developing dynamic covalent networks: Advances and challenges. European Polymer Journal, 2023, 196, 112286.	5.4	1
1266	Testing and modeling of an in situ shear exfoliated 2D nanocomposite coating casing material for the suppression of Li-ion battery fires in electric vehicles. MRS Advances, 0, , .	0.9	1
1267	Insights into the effect of different macromolecular architectures on the charring ability of polyethylene. Polymer Degradation and Stability, 2023, 216, 110476.	5.8	0
1268	Î ² -cyclodextrin modified aliphatic waterborne polyurethane-based intumescent flame-retardant coatings: Experiments and pyrolysis kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 675, 132079.	4.7	0
1269	How phosphinated hydroxyurethane groups improve chemical resistance and flame retardant properties of alkyd resins?. Polymer Degradation and Stability, 2023, 216, 110477.	5.8	1
1270	Insights into Ionic Liquids for Flame Retardant: A Study Based on Bibliometric Mapping. Safety, 2023, 9, 49.	1.7	1
1271	Recent progress in Epoxy Nanocomposites: Corrosion, structural, flame retardancy and applications — A comprehensive review. Polymers for Advanced Technologies, 2023, 34, 3438-3472.	3.2	12

#	Article	IF	CITATIONS
1272	A phosphonateâ€derived epoxy vitrimer with intrinsic flame retardancy and catalystâ€free reprocessability. Journal of Polymer Science, 0, , .	3.8	2
1273	Soft robotics in medical applications: State of the art, challenges, and recent advances. , 2023, , 25-61.		0
1274	Application status and development prospects of bio-based flame retardants in packaging materials. European Journal of Wood and Wood Products, 0, , .	2.9	0
1275	New Progress in the Application of Flame-Retardant Modified Epoxy Resins and Fire-Retardant Coatings. Coatings, 2023, 13, 1663.	2.6	1
1276	Recent Advances and Outlook in 2D Nanomaterial-Based Flame-Retardant PLA Materials. Materials, 2023, 16, 6046.	2.9	0
1277	How to Address Flame-Retardant Technology on Cotton Fabrics by Using Functional Inorganic Sol–Gel Precursors and Nanofillers: Flammability Insights, Research Advances, and Sustainability Challenges. Inorganics, 2023, 11, 306.	2.7	1
1278	The synergistic effects of micro-and nano-fillers on the properties of polyamide 11/poly (lactic acid) blend. Journal of Thermoplastic Composite Materials, 0, , .	4.2	0
1279	Mussel-inspired flame retardant coating on polyurethane foam. Chemical Engineering Journal, 2023, 474, 145588.	12.7	6
1280	Facile construction of bio-based high fire-safety cellulose fabrics with well wearing performance. International Journal of Biological Macromolecules, 2023, 253, 127349.	7.5	2
1281	Flame Retardants and Flame-Retarded Plastics. , 2021, , 53-128.		0
1282	Innovating fire safety with recombinant hydrophobic proteins for textile fire retardancy. Microbial Biotechnology, 0, , .	4.2	0
1283	Multifunctional Textiles with Flame Retardant and Antibacterial Properties: A Review. Molecules, 2023, 28, 6628.	3.8	1
1284	Polyolefin nanocomposites with polyelectrolyte coated redispersible nanoparticles produced continuously and massively via reactive flash nanoprecipitation. Polymer, 2023, 283, 126285.	3.8	0
1285	The potential use of natural expanded perlite as a flame retardant additive for acrylonitrileâ€butadieneâ€styrene based composites. Journal of Vinyl and Additive Technology, 2024, 30,	3.4	1
	277-293.		
1286	277-293. Formaldehyde-free durable flame-retardant finishing for polyester/cotton blended fabrics through chemical grafting and cross-linking. Polymer Degradation and Stability, 2023, 217, 110531.	5.8	1
1286 1287	Formaldehyde-free durable flame-retardant finishing for polyester/cotton blended fabrics through		1
	Formaldehyde-free durable flame-retardant finishing for polyester/cotton blended fabrics through chemical grafting and cross-linking. Polymer Degradation and Stability, 2023, 217, 110531. Novel preparation method and fire performance study of EPS composites based on calcium sulphate	5.8	

#	Article	IF	CITATIONS
1290	The effects of a phosphorus/nitrogen-containing diphenol on the flammability, thermal stability, and mechanical properties of rigid polyurethane foam. Colloid and Polymer Science, 0, , .	2.1	2
1291	Replacing Harmful Flame Retardants with Biodegradable Starch-Based Materials in Polyethylene Formulations. Polymers, 2023, 15, 4078.	4.5	0
1292	Electrical tracking, erosion and flammability resistance of high voltage outdoor composite insulation: Research, innovation and future outlook. Materials Science and Engineering Reports, 2023, 156, 100757.	31.8	3
1293	Use of montmorillonite to improve flame retardancy, thermal stability and reducing smoke toxicity of chicken feather proteinâ€based rigid polyurethane foam. Journal of Vinyl and Additive Technology, 2024, 30, 483-498.	3.4	0
1294	Modified Gallic Acids as Both Reactive Flame Retardants and Crossâ€Linkers for the Fabrication of Flameâ€Retardant Polyurethane Elastomers. ChemistrySelect, 2023, 8, .	1.5	1
1295	Flame Retardancy of Textiles—New Strategies and Mechanisms. Advanced Structured Materials, 2023, , 279-317.	0.5	0
1296	A graphene@Cu-MOF hybrid synthesized by mechanical ball milling method and its flame retardancy and smoke suppression effect on EP. Chemosphere, 2024, 346, 140521.	8.2	2
1297	Plant-derived Fire Retardants. , 2023, , 4-71.		0
1298	Influence of Special-Purpose Agents Added to Water on the Localization and Suppression of the Combustion of Materials with it. Journal of Engineering Physics and Thermophysics, 2023, 96, 1142-1151.	0.6	0
1299	A Review of Transition Metal Boride, Carbide, Pnictide, and Chalcogenide Water Oxidation Electrocatalysts. Chemical Reviews, 2023, 123, 12795-13208.	47.7	9
1301	Green synthesis of bio-based flame retardant/natural rubber inorganic-organic hybrid and its flame retarding and toughening effect for polylactic acid. International Journal of Biological Macromolecules, 2024, 256, 128378.	7.5	2
1302	Applications and Safety Assessment of Green Fire Retardants. , 2023, , 356-426.		0
1303	Synthesis and Characterization of a Novel DOPO-Based Flame Retardant Intermediate and Its Flame Retardancy as a Polystyrene Intrinsic Flame Retardant. ACS Omega, 2023, 8, 48825-48842.	3.5	2
1304	Fluorine-rich Modification of Self-Extinguishable Lithium-Ion Battery Separators using Cross-linking Networks of Chemically Functionalized PVDF Terpolymers for Highly Enhanced Electrolyte Affinity and Thermal, Mechanical Stability. Journal of Materials Chemistry A, 0, , .	10.3	0
1305	Polymer nanocomposites: 35 years on. MRS Bulletin, 2024, 49, 236-246.	3.5	1
1306	Nano-hydroxyapatite filled EPDM nanocomposite: towards green elastomeric thermal insulating coating with superior mechanical, thermal, and ablation properties. Journal of Energetic Materials, 0, , 1-22.	2.0	0
1307	Fire-safe polymer electrolyte strategies for lithium batteries. Energy Storage Materials, 2024, 66, 103174.	18.0	0
1308	Progress in Achieving Fire-Retarding Cellulose-Derived Nano/Micromaterial-Based Thin Films/Coatings and Aerogels: A Review. Fire, 2024, 7, 31.	2.8	0

#	Article	IF	CITATIONS
1309	Urea Effect on Cellulose Phosphorylation and Sustainable Valorization of Recycled Washing Filtrates. Waste and Biomass Valorization, 0, , .	3.4	1
1310	Enhancing the fire-resistance performance of composite laminates via multi-scale hybridisation: A review. Journal of Industrial Textiles, 2024, 54, .	2.4	0
1311	Environmental challenges and perspectives in the development of nanocomposites for enhanced flame-retardant properties. , 2024, , 369-424.		0
1312	Facile preparation of sodium alginate based hybrid material and its enhanced flame retardancy: Unravelling the role of silver phosphate. Journal of Analytical and Applied Pyrolysis, 2024, 177, 106342.	5.5	0
1313	Valorization of kapok fiber by phosphorylation with a reactive phosphorus―and nitrogen ontaining flame retardant for enhanced fire safety. Journal of Applied Polymer Science, 2024, 141, .	2.6	0
1314	Polyimide nanocomposites and blends for textiles. , 2024, , 145-188.		0
1315	Flame-Retardant Behavior and Nanocrystal Synthesis through Formation of Multilayers of Poly(acrylic acid) and Zinc Phosphate on Cotton Fabric. ACS Omega, 2024, 9, 5932-5941.	3.5	0
1316	Advances in Novel Flame-Retardant Technologies for Fire-Safe Polymeric Materials. Molecules, 2024, 29, 573.	3.8	0
1317	The utilization of phytic acid as a reactive flame retardant in the preparation of a fully waterborne biobased epoxy system. Fire and Materials, 2024, 48, 508-521.	2.0	0
1318	Flame retardant properties of polymer nanocomposites based on new layered structure nanoparticles. , 2024, , 117-158.		0
1319	Biobased nanoparticles as flame retardant for polymers. , 2024, , 321-354.		0
1320	Flame-retardant properties of fullerene and nanodiamond-based polymer nanocomposites. , 2024, , 263-286.		0
1321	Flame retardant nanocomposites in various key application sectors. , 2024, , 355-368.		0
1322	Synergistic suppressions of porous warm mix agent and composite flame retardant on combustion and fume release of asphalt pavement. Journal of Cleaner Production, 2024, 443, 141003.	9.3	1
1323	Flame Retardant Additives Used for Polyurea-Based Elastomers—A Review. Fire, 2024, 7, 50.	2.8	0
1324	Ion-Pair Membrane Based on Imidazolium-Functionalized Poly(pentafluorostyrene) for High-Temperature Proton Exchange Membrane Fuel Cell Application. ACS Applied Energy Materials, 2024, 7, 1864-1872.	5.1	0
1325	Strong, self-healing and flame-retardant elastomer composite based on epoxidized natural rubber, polylactic acid, chitosan and guanidine phosphate. Journal of Polymer Research, 2024, 31, .	2.4	0
1326	The chemistry, properties and performance of flame-retardant rubber composites: Collecting, analyzing, categorizing, machine learning modeling, and visualizing. Composites Science and Technology, 2024, 250, 110517.	7.8	0

#	Article	IF	CITATIONS
1327	Influence of Ammonium Polyphosphates and 2,4,6-Triamino-1,3,5-Triazine on the Mechanical-Physical Properties of Polyurethane and Alkali-Activated Materials. , 0, , .		0
1328	Enhanced Dielectric Breakdown Property of Polypropylene Based on Mesoscopic Structure Modulation by Crystal Phase Transformation for High Voltage Power Cable Insulation. ACS Applied Polymer Materials, 2024, 6, 3031-3041.	4.4	0
1329	Graphene Nanoplatelets in Brief. Springer Series in Materials Science, 2024, , 7-25.	0.6	0
1330	Principle of Fire/Flame-Retarding Polymer Materials. Springer Series in Materials Science, 2024, , 37-41.	0.6	0
1331	Polymer Nanocomposites. Springer Series in Materials Science, 2024, , 1-5.	0.6	0
1332	Flame Retardant Additives in Polylactic Acid (PLA) Photopolymer Resin for 3D Printing Digital Light Processing (DLP). Applied Mechanics and Materials, 0, 920, 49-59.	0.2	0
1333	Intrinsically flame-retardant epoxy vitrimers with catalyst-free multi-reprocessability towards sustainable carbon fiber composites. Sustainable Materials and Technologies, 2024, 40, e00883.	3.3	0
1334	Flame retardancy and mechanical properties of polypropylene composites containing intumescent flame retardants, preceramic polymers, and other additives. SPE Polymers, 0, , .	3.3	0
1335	Lignosulfonate/silica hybrid nanoparticles as a novel biobased filler in polybenzoxazine matrix. Polymers for Advanced Technologies, 2024, 35, .	3.2	0
1336	Fe3O4 nano particles filled densified bamboo with improved strength, fracture toughness, fire and water resistance. Construction and Building Materials, 2024, 422, 135792.	7.2	0
1337	Influence of Thiol-Functionalized Polysilsesquioxane/Phosphorus Flame-Retardant Blends on the Flammability and Thermal, Mechanical, and Volatile Organic Compound (VOC) Emission Properties of Epoxy Resins. Polymers, 2024, 16, 842.	4.5	0