Blood platelet production with breaks: optimization by

International Journal of Production Economics 121, 464-473 DOI: 10.1016/j.ijpe.2006.11.026

Citation Report

#	Article	IF	CITATIONS
1	Supply Chain Management of Blood Products: A Literature Review. SSRN Electronic Journal, 0, , .	0.4	7
2	On Solving a Stochastic Programming Model for Perishable Inventory Control. Lecture Notes in Computer Science, 2012, , 45-56.	1.0	5
3	Simulation to discover structure in optimal dynamic control policies. , 2012, , .		0
4	Supply chain management of blood products: A literature review. European Journal of Operational Research, 2012, 217, 1-16.	3.5	317
5	A new class of stock-level dependent ordering policies for perishables with a short maximum shelf life. International Journal of Production Economics, 2013, 143, 434-439.	5.1	61
6	Reducing expiry of slow-moving critical medical items with transshipment. IIE Transactions on Healthcare Systems Engineering, 2013, 3, 193-206.	0.8	10
7	Order acceptance and scheduling policies for a make-to-order environment with family-dependent lead and batch setup times. International Journal of Production Research, 2013, 51, 940-951.	4.9	9
8	A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. International Journal of Production Economics, 2013, 145, 658-671.	5.1	112
9	Blood bank inventory management in India. Opsearch, 2014, 51, 376-399.	1.1	34
10	A simulationâ€based apheresis platelet inventory management model. Transfusion, 2014, 54, 2730-2735.	0.8	12
11	An MILP approximation for ordering perishable products with non-stationary demand and service level constraints. International Journal of Production Economics, 2014, 157, 133-146.	5.1	43
12	Optimization of blood supply chain with shortened shelf lives and ABO compatibility. International Journal of Production Economics, 2014, 153, 113-129.	5.1	106
13	Implementation of a novel real-time platelet inventory management system at a multi-site transfusion service. Transfusion, 2015, 55, 2070-2075.	0.8	16
14	A structured review of quantitative models in the blood supply chain: a taxonomic framework for decision-making. International Journal of Production Research, 2015, 53, 7191-7212.	4.9	156
15	A lost sales (r, Q) inventory control model for perishables with fixed lifetime and lead time. International Journal of Production Economics, 2015, 168, 143-157.	5.1	38
16	Age-based policy for blood transshipment during blood shortage. Transportation Research, Part E: Logistics and Transportation Review, 2015, 80, 166-183.	3.7	39
17	On the effect of lifetime variability on the performance of inventory systems. International Journal of Production Economics, 2015, 167, 23-34.	5.1	27
19	Stochastic integer programming models for reducing wastages and shortages of blood products at hospitals. Computers and Operations Research, 2015, 54, 129-141.	2.4	125

#	Article	IF	CITATIONS
20	Buyer–vendor coordination for fixed lifetime product with quantity discount under finite production rate. International Journal of Systems Science, 2016, 47, 821-834.	3.7	20
21	Management of Blood Donation System: Literature Review and Research Perspectives. Springer Proceedings in Mathematics and Statistics, 2016, , 121-132.	0.1	10
22	An integer programming approach to the bloodmobile routing problem. Transportation Research, Part E: Logistics and Transportation Review, 2016, 86, 94-115.	3.7	49
23	Order quantities for perishable inventory control with non-stationary demand and a fill rate constraint. International Journal of Production Economics, 2016, 181, 238-246.	5.1	34
24	Analysis of an order-up-to-level policy for perishables with random issuing. Journal of the Operational Research Society, 2016, 67, 483-505.	2.1	12
25	Simulation-optimization model for production planning in the blood supply chain. Health Care Management Science, 2017, 20, 548-564.	1.5	72
26	A combined ageâ€andâ€stockâ€based policy for ordering blood units in hospital blood banks. International Transactions in Operational Research, 2017, 24, 1561-1586.	1.8	17
27	Revolutionizing blood bank inventory management using the TOC thinking process: An Indian case study. International Journal of Production Economics, 2017, 186, 89-122.	5.1	31
28	Raising quality and safety of platelet transfusion services in a patient-based integrated supply chain under uncertainty. Computers and Chemical Engineering, 2017, 106, 355-372.	2.0	44
29	Platelet ordering policies at hospitals using stochastic integer programming model and heuristic approaches to reduce wastage. Computers and Industrial Engineering, 2017, 110, 151-164.	3.4	45
30	Blood inventory management in hospitals: Considering supply and demand uncertainty and blood transshipment possibility. Operations Research for Health Care, 2017, 15, 43-56.	0.8	61
31	Managing blood inventory with multiple independent sources of supply. European Journal of Operational Research, 2017, 259, 500-511.	3.5	52
32	An age-based lateral-transshipment policy for perishable items. International Journal of Production Economics, 2018, 198, 93-103.	5.1	45
33	Operations Research Applications in Health Care Management. Profiles in Operations Research, 2018, , .	0.3	10
34	Blood Supply Chain Management and Future Research Opportunities. Profiles in Operations Research, 2018, , 241-266.	0.3	8
35	Managing Perishable Inventory Systems with Multiple Demand Classes. SSRN Electronic Journal, 0, , .	0.4	1
36	Designing the blood supply chain: how much, how and where?. Vox Sanguinis, 2018, 113, 760-769.	0.7	34
37	A multi-stage stochastic programming approach for blood supply chain planning. Computers and Industrial Engineering, 2018, 122, 1-14.	3.4	80

CITATION REPORT

#	Article	IF	CITATIONS
38	Robust stochastic multi-choice goal programming for blood collection and distribution problem with real application. Journal of Intelligent and Fuzzy Systems, 2018, 35, 2015-2033.	0.8	11
39	Managing platelet supply through improved routing of blood collection vehicles. Computers and Operations Research, 2018, 98, 113-126.	2.4	25
40	Analysis and Improvement of Blood Collection Operations. Manufacturing and Service Operations Management, 2019, 21, 29-46.	2.3	12
41	Survey on blood supply chain management: Models and methods. Computers and Operations Research, 2019, 112, 104756.	2.4	90
42	Supply Chains for Perishable Goods and G-networks. , 2019, , .		1
43	Managing Perishable Inventory Systems with Multiple Priority Classes. Production and Operations Management, 2019, 28, 2305-2322.	2.1	23
44	Inventory management of platelets along blood supply chain to minimize wastage and shortage. Computers and Industrial Engineering, 2019, 130, 714-730.	3.4	71
45	Itemized platelet supply chain with lateral transshipment under uncertainty evaluating inappropriate output in laboratories. Socio-Economic Planning Sciences, 2019, 68, 100697.	2.5	17
46	A multilateral perspective towards blood network design in an uncertain environment: Methodology and implementation. Computers and Industrial Engineering, 2019, 130, 450-471.	3.4	42
47	Improving blood products supply through donation tailoring. Computers and Operations Research, 2019, 102, 10-21.	2.4	17
48	Improved ordering of perishables: The value of stock-age information. International Journal of Production Economics, 2019, 209, 316-324.	5.1	41
49	Developing childhood vaccine administration and inventory replenishment policies that minimize open vial wastage. Annals of Operations Research, 2020, 292, 215-247.	2.6	7
50	Is Platelet Expiring Out of Date? A Systematic Review. Transfusion Medicine Reviews, 2020, 34, 42-50.	0.9	16
51	Robust and stable flexible blood supply chain network design under motivational initiatives. Socio-Economic Planning Sciences, 2020, 70, 100725.	2.5	44
52	Optimal collecting policy for apheresis platelets in a regional blood center. Vox Sanguinis, 2020, 115, 148-158.	0.7	2
53	Hybrid ordering policies for platelet inventory management under demand uncertainty. IISE Transactions on Healthcare Systems Engineering, 2020, 10, 113-126.	1.2	22
54	Preoperative identification of cardiac surgery patients at risk of receiving a platelet transfusion: The Australian Cardiac Surgery Platelet Transfusion (ACSePT) risk prediction tool. Transfusion, 2020, 60, 2272-2283.	0.8	7
55	Multi-criteria approach for platelet inventory management in hospitals. International Journal of Operational Research, 2020, 38, 49.	0.1	6

CITATION REPORT

CITATION REPORT

#	Article	IF	CITATIONS
56	Artificial intelligence in transfusion medicine and its impact on the quality concept. Transfusion and Apheresis Science, 2020, 59, 103021.	0.5	2
57	Environmental effect for a complex green supply-chain management to control waste: A sustainable approach. Journal of Cleaner Production, 2020, 277, 122919.	4.6	59
58	Improving Blood Bank Inventory Management Using Double Cross-match and Hybrid Issuance Policy. , 2020, , .		0
59	Blood order and collection problems with two demand classes and emergency replenishment. Journal of the Operational Research Society, 2021, 72, 501-518.	2.1	9
60	G-NETWORKS AND THE OPTIMIZATION OF SUPPLY CHAINS. Probability in the Engineering and Informational Sciences, 2021, 35, 62-74.	0.6	0
61	A simple empirical model for blood platelet production and inventory management under uncertainty. Journal of Ambient Intelligence and Humanized Computing, 2021, 12, 1783-1799.	3.3	14
62	Proactive transshipment in the blood supply chain: A stochastic programming approach. Omega, 2021, 98, 102112.	3.6	54
63	Modeling for Dynamic Programming. EURO Advanced Tutorials on Operational Research, 2021, , 67-97.	0.6	Ο
64	A solution algorithm for integrated production-inventory-routing of perishable goods with transshipment and uncertain demand. Complex & Intelligent Systems, 2021, 7, 1349-1365.	4.0	23
65	Designing a closed-loop blood supply chain network considering transportation flow and quality aspects. Sustainable Operations and Computers, 2021, 2, 170-189.	6.3	7
66	Ordering policies for heterogeneous platelets demand with unreliable supply and substitution. Journal of the Operational Research Society, 2022, 73, 919-935.	2.1	5
67	A resilient approach to modelling the supply and demand of platelets in the United Kingdom blood supply chain. International Journal of Management Science and Engineering Management, 2021, 16, 143-150.	2.6	12
68	Heuristic-based allocation of supply constrained blood platelets in emerging economies. Journal of Heuristics, 2021, 27, 719-745.	1.1	1
69	Research on Blood Supply Chain Optimization under Supply Unreliable and Stochastic Demand. Journal of Physics: Conference Series, 2021, 1910, 012013.	0.3	1
70	A robust possibilistic programming approach for blood supply chain network design in disaster relief considering congestion. Operational Research, 2022, 22, 1987-2032.	1.3	11
71	Optimal ordering policy for platelets: Data-driven method vs model-driven method. Fundamental Research, 2021, 1, 508-516.	1.6	2
72	Optimal blood issuing by comprehensive matching. European Journal of Operational Research, 2022, 296, 240-253.	3.5	2
73	Optimal Issuing of Perishables with a Short Fixed Shelf Life. Lecture Notes in Computer Science, 2011, , 160-169.	1.0	13

#	Article	IF	CITATIONS
74	A simulation-optimisation approach for production control strategies in perishable food supply chains. Journal of Simulation, 2023, 17, 211-227.	1.0	2
75	Analysis of a Stochastic Lot Scheduling Problem with Strict Due-Dates. Profiles in Operations Research, 2017, , 407-423.	0.3	0
76	An Al-Driven Predictive Modelling Framework to Analyze and Visualize Blood Product Transactional Data for Reducing Blood Products' Discards. Lecture Notes in Computer Science, 2020, , 192-202.	1.0	3
77	The Use of Discrete Event Simulation for Optimal Performance of Blood Banks (A Case Study of) Tj ETQq1 1 0.78-	4314 rgBT	/Overlock
78	On perishable inventory in healthcare: random expiration dates and age discriminated demand. Journal of Simulation, 2022, 16, 458-479.	1.0	4
79	Designing blood supply chain network in disaster situation considering blood groups and expiration date. SSRN Electronic Journal, 0, , .	0.4	5
80	A systematic literature review on the blood supply chain: exploring the trend and future research directions. Journal of Ambient Intelligence and Humanized Computing, 2022, 13, 1173-1200.	3.3	4
81	Towards an Optimized and Sustainable Blood Supply Chain Network under Uncertainty: A Literature Review. Cleaner Logistics and Supply Chain, 2022, 3, 100028.	3.1	16
84	Simulation-Based Optimization Algorithm for the Vendor-Managed Inventory Problem for Blood Platelets. Ingenieria Y Universidad, 0, 26, .	0.5	0
85	An enhanced framework for blood supply chain risk management. Sustainable Futures, 2022, 4, 100091.	1.5	5
86	A dynamic ordering policy for a three echelon supply chain with backordering for perishable goods. International Journal of Management Science and Engineering Management, 2023, 18, 266-276.	2.6	2
87	A Systematic Literature Review of the Blood Supply Chain through Bibliometric Analysis and Taxonomy. Systems, 2023, 11, 124.	1.2	1

94 Perishables. , 2024, , 141-177.

CITATION REPORT