Human adiposeâ€derived stem cells: isolation, characte

ANZ Journal of Surgery 79, 235-244

DOI: 10.1111/j.1445-2197.2009.04852.x

Citation Report

#	Article	IF	CITATIONS
1	Chondrogenic differentiation of adiposeâ€derived stem cells. ANZ Journal of Surgery, 2009, 79, 856-857.	0.3	4
2	Birth defects in the child of a woman who had undergone a successful Kasai procedure for biliary atresia. ANZ Journal of Surgery, 2009, 79, 857-858.	0.3	1
3	Clinical and preclinical translation of cell-based therapies using adipose tissue-derived cells. Stem Cell Research and Therapy, 2010, 1, 19.	2.4	224
4	Umbilical cord mesenchymal stem cell transplantation in severe and refractory systemic lupus erythematosus. Arthritis and Rheumatism, 2010, 62, 2467-2475.	6.7	408
5	Generation of Induced Pluripotent Stem Cells from Human Adipose-Derived Stem Cells Without <i>c-MYC</i> . Tissue Engineering - Part A, 2010, 16, 2197-2206.	1.6	77
6	Multipotential Capacity of Human Adipose-Derived Mesenchymal Stem Cells. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	O
7	Future research and therapeutic applications of human stem cells: general, regulatory, and bioethical aspects. Journal of Translational Medicine, 2010, 8, 131.	1.8	77
8	Dedifferentiated fat cells: an alternative source of adult multipotent cells from the adipose tissues. International Journal of Oral Science, 2011, 3, 117-124.	3.6	85
9	Evaluation of intrarenal mesenchymal stem cell injection for treatment of chronic kidney disease in cats: A pilot study. Journal of Feline Medicine and Surgery, 2011, 13, 418-426.	0.6	82
10	Adipose-Derived Stem Cells and Their Potential to Differentiate into the Epithelial Lineage. Stem Cells and Development, 2011, 20, 1805-1816.	1.1	78
11	Cranioplasty With Adipose-Derived Stem Cells and Biomaterial: A Novel Method for Cranial Reconstruction. Neurosurgery, 2011, 68, 1535-1540.	0.6	163
12	Tissue engineering approaches for bone repair: Concepts and evidence. Injury, 2011, 42, 609-613.	0.7	128
13	Administering human adipose-derived mesenchymal stem cells to prevent and treat experimental arthritis. Clinical Immunology, 2011, 141, 328-337.	1.4	95
14	Human adipose-derived stem cells: Potential clinical applications in surgery. Surgery Today, 2011, 41, 18-23.	0.7	47
15	Comparison of osteogenesis between two kinds of stem cells from goat combined calcium phosphate cement in tissue engineering. Journal of Shanghai Jiaotong University (Science), 2011, 16, 628-635.	0.5	1
16	Concise Review: Human Adipose-Derived Stem Cells: Separating Promise from Clinical Need. Stem Cells, 2011, 29, 404-411.	1.4	147
17	Schwannâ€like adult stem cells derived from bone marrow and adipose tissue express γâ€aminobutyric acid type B receptors. Journal of Neuroscience Research, 2011, 89, 1351-1362.	1.3	25
18	Intra-articular adipose-derived mesenchymal stem cells from rheumatoid arthritis patients maintain the function of chondrogenic differentiation. Rheumatology, 2012, 51, 1757-1764.	0.9	26

#	Article	IF	CITATIONS
19	Adipose-Derived Mesenchymal Stromal/Stem Cells: Tissue Localization, Characterization, and Heterogeneity. Stem Cells International, 2012, 2012, 1-11.	1.2	384
20	Autologous transplantation of adipose-derived mesenchymal stem cells ameliorates streptozotocin-induced diabetic nephropathy in rats by inhibiting oxidative stress, pro-inflammatory cytokines and the p38 MAPK signaling pathway. International Journal of Molecular Medicine, 2012, 30, 85-92.	1.8	82
21	Cell Therapy Using Adipose-Derived Stem Cells for Chronic Liver Injury in Mice. Cell Medicine, 2012, 3, 113-119.	5.0	4
22	Autologous transplantation of adipose-derived mesenchymal stem cells attenuates cerebral ischemia and reperfusion injury through suppressing apoptosis and inducible nitric oxide synthase. International Journal of Molecular Medicine, 2012, 29, 848-54.	1.8	24
23	Cryopreservation of Human Adipose Tissue-Derived Stem/Progenitor Cells Using the Silk Protein Sericin. Cell Transplantation, 2012, 21, 617-622.	1.2	56
24	Use of adipose-derived stem cells to fabricate scaffoldless tissue-engineered neural conduits in vitro. Neuroscience, 2012, 201, 349-356.	1.1	18
25	Unravelling the retention of proliferation and differentiation potency in extensive culture of human subcutaneous fatâ€derived mesenchymal stem cells in different media. Cell Proliferation, 2012, 45, 516-526.	2.4	15
26	Isolation of Adult Stem Cells and Their Differentiation to Schwann Cells. Methods in Molecular Biology, 2012, 916, 47-57.	0.4	25
27	Growth Characteristics of Human Adipose-Derived Stem Cells During Long Time Culture Regulated by Cyclin A and Cyclin D1. Applied Biochemistry and Biotechnology, 2012, 168, 2230-2244.	1.4	11
28	BIOINGEGNERIA DEL NERVO ARTIFICIALE. Istituto Lombardo - Accademia Di Scienze E Lettere - Rendiconti Di Scienze, 2012, , .	0.0	O
29	Adipose-derived stem cells: characterization and clinical application. Journal of the Korean Medical Association, 2012, 55, 757.	0.1	3
30	Human adipose tissueâ€derived stem cells protect impaired cardiomyocytes from hypoxia/reoxygenation injury through hypoxiaâ€induced paracrine mechanism. Cell Biochemistry and Function, 2012, 30, 505-514.	1.4	26
31	Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surgery, Sports Traumatology, Arthroscopy, 2012, 20, 1182-1191.	2.3	120
32	Efficacy of adipose tissueâ€derived mesenchymal stem cells for fulminant hepatitis in mice induced by concanavalin A. Journal of Gastroenterology and Hepatology (Australia), 2012, 27, 165-172.	1.4	32
33	Adult stem cell-based tissue engineered blood vessels: A review. Biomaterials, 2012, 33, 3388-3400.	5.7	106
34	Application of Epigenomeâ€Modifying Small Molecules in Induced Pluripotent Stem Cells. Medicinal Research Reviews, 2013, 33, 790-822.	5.0	14
35	Effect of high glucose on extensive culturing of mesenchymal stem cells derived from subcutaneous fat, omentum fat and bone marrow. Cell Biochemistry and Function, 2013, 31, 20-29.	1.4	28
36	Repeated Systemic Administration of Human Adipose-Derived Stem Cells Attenuates Overt Diabetic Nephropathy in Rats. Stem Cells and Development, 2013, 22, 3074-3086.	1.1	58

#	Article	IF	Citations
37	Human omentum fatâ€derived mesenchymal stem cells transdifferentiates into pancreatic isletâ€like cluster. Cell Biochemistry and Function, 2013, 31, 612-619.	1.4	13
38	Adipose-Derived Stem Cells and Nerve Regeneration. International Review of Neurobiology, 2013, 108, 121-136.	0.9	47
39	Photo-mediated internalization of nanocomplex for effective gene delivery to adipose tissue-derived stem cells. Colloids and Surfaces B: Biointerfaces, 2013, 112, 177-185.	2.5	9
40	Promotion of wound healing using adipose-derived stem cells in radiation ulcer of a rat model. Journal of Biomedical Science, 2013, 20, 51.	2.6	81
41	Plasticity and banking potential of cultured adipose tissue derived mesenchymal stem cells. Cell and Tissue Banking, 2013, 14, 303-315.	0.5	15
42	Increased SCF/câ€kit by hypoxia promotes autophagy of human placental chorionic plateâ€derived mesenchymal stem cells via regulating the phosphorylation of mTOR. Journal of Cellular Biochemistry, 2013, 114, 79-88.	1.2	62
43	PTHrP in differentiating human mesenchymal stem cells: Transcript isoform expression, promoter methylation, and protein accumulation. Biochimie, 2013, 95, 1888-1896.	1.3	20
44	Baclofen Modulates the Expression and Release of Neurotrophins in Schwann-Like Adipose Stem Cells. Journal of Molecular Neuroscience, 2013, 49, 233-243.	1.1	17
45	Stem cell separation technologies. Current Opinion in Chemical Engineering, 2013, 2, 3-7.	3.8	57
46	Prospective biomarkers of stem cells of human endometrium and fallopian tube compared with bone marrow. Cell and Tissue Research, 2013, 352, 537-549.	1.5	20
47	Adipose tissue can be generated in vitro by using adipocytes from human fat tissue mesenchymal stem cells seeded and cultured on fibrin gel sheet. Cell and Tissue Banking, 2013, 14, 97-106.	0.5	5
48	Recovery of behavioral symptoms in hemi-parkinsonian rhesus monkeys through combined gene and stem cell therapy. Cytotherapy, 2013, 15, 467-480.	0.3	33
49	Comprehensive Phenotypic Characterization of Human Adipose-Derived Stromal/Stem Cells and Their Subsets by a High Throughput Technology. Stem Cells and Development, 2013, 22, 330-339.	1.1	93
50	Comparison between Stem Cells Harvested from Wet and Dry Lipoaspirates. Connective Tissue Research, 2013, 54, 34-40.	1.1	14
51	Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor. Stem Cells International, 2013, 2013, 1-9.	1.2	36
52	Human Adipose-Derived Stromal Cells for Cell-Based Therapies in the Treatment of Systemic Sclerosis. Cell Transplantation, 2013, 22, 779-795.	1.2	108
53	Effects of Lipokit® Centrifugation on Morphology and Resident Cells of Adipose Tissue. International Journal of Morphology, 2013, 31, 64-69.	0.1	2
54	Cell Supermarket: Adipose Tissue as a Source of Stem Cells. Journal of Genomics, 2013, 1, 39-44.	0.6	21

#	Article	IF	CITATIONS
55	Mesenchymal Stem Cell Injection for Osteochondral Lesions of the Talus: Letter to the Editor. American Journal of Sports Medicine, 2014, 42, NP34-NP35.	1.9	5
56	Adipose-derived Stromal/Stem Cells and Their Differentiation Potential into the Endothelial Lineage. , 2014, , 53-70.		0
57	Mesenchymal Stem Cell Injection for Osteochondral Lesions of the Talus: Response. American Journal of Sports Medicine, 2014, 42, NP35-NP36.	1.9	3
59	The Role of Stem Cells in Aesthetic Surgery. Plastic and Reconstructive Surgery, 2014, 134, 193-200.	0.7	53
60	Tejido adiposo: heterogeneidad celular y diversidad funcional. Endocrinologia Y Nutricion: Organo De La Sociedad Espanola De Endocrinologia Y Nutricion, 2014, 61, 100-112.	0.8	142
61	Human adult stem cells from diverse origins: An overview from multiparametric immunophenotyping to clinical applications. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2014, 85, 43-77.	1.1	147
62	Adipose stem cells: biology and clinical applications for tissue repair and regeneration. Translational Research, 2014, 163, 399-408.	2.2	219
63	Power assisted liposuction to obtain adipose-derived stem cells: Impact on viability and differentiation to adipocytes in comparison to manual aspiration. Journal of Plastic, Reconstructive and Aesthetic Surgery, 2014, 67, e1-e8.	0.5	46
64	Proliferative and phenotypical characteristics of human adipose tissue–derived stem cells: comparison of Ficoll gradient centrifugation and red blood cell lysis buffer treatment purification methods. Cytotherapy, 2014, 16, 1220-1228.	0.3	22
65	The responses of human adipose-derived mesenchymal stem cells on polycaprolactone-based scaffolds: an in vitro study. Tissue Engineering and Regenerative Medicine, 2014, 11, 239-246.	1.6	24
66	Short-term mechanical stretch fails to differentiate human adipose-derived stem cells into cardiovascular cell phenotypes. BioMedical Engineering OnLine, 2014, 13, 54.	1.3	19
67	Adipose tissue: Cell heterogeneity and functional diversity. EndocrinologÃa Y Nutrición (English) Tj ETQq1 1 0.75	84314 rgE 0.5	T <u>1</u> 8verlock
68	Adipose mesenchymal stem cells in the field of bone tissue engineering. World Journal of Stem Cells, 2014, 6, 144.	1.3	75
69	Cryopreservation of Adipose-Derived Mesenchymal Stem Cells. Cell Medicine, 2015, 8, 3-7.	5.0	44
70	Management of Postoperative Gastrointestinal Leakage With Autologous Stromal Vascular Fraction. International Surgery, 2015, 100, 748-754.	0.0	4
71	Construction of engineering adipose-like tissue <i>in vivo</i> in vivoin unbilical cord mesenchymal stromal cells with silk fibroin 3D scaffolds. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, E267-E275.	1.3	7
72	Strategic Sequences in Fat Graft Survival. Annals of Plastic Surgery, 2015, 74, 376-382.	0.5	16
73	Orbital Fibroblasts From Graves' Orbitopathy Patients Share Functional and Immunophenotypic Properties With Mesenchymal Stem/Stromal Cells., 2015, 56, 6549.		20

#	Article	IF	CITATIONS
74	Adipose-Derived Stromal Vascular Fraction Cell Effects on a Rodent Model of Thin Endometrium. PLoS ONE, 2015, 10, e0144823.	1.1	15
75	Adipose-Derived Stem Cells in Radiotherapy Injury: A New Frontier. Frontiers in Surgery, 2015, 2, 1.	0.6	85
76	Human Adult Stem Cells Maintain a Constant Phenotype Profile Irrespective of Their Origin, Basal Media, and Long Term Cultures. Stem Cells International, 2015, 2015, 1-29.	1.2	10
77	Vascularization mediated by mesenchymal stem cells from bone marrow and adipose tissue: a comparison. Cell Regeneration, 2015, 4, 4:8.	1.1	66
78	Human Adipose-Derived Stem Cells (ASC): Their Efficacy in Clinical Applications., 2015,, 135-149.		2
79	Efficient endodermal induction of human adipose stem cells using various concentrations of Activin A for hepatic differentiation. Biochemical and Biophysical Research Communications, 2015, 464, 1178-1184.	1.0	9
80	Nanoengineered Polystyrene Surfaces with Nanopore Array Pattern Alters Cytoskeleton Organization and Enhances Induction of Neural Differentiation of Human Adipose-Derived Stem Cells. Tissue Engineering - Part A, 2015, 21, 2115-2124.	1.6	19
81	Therapeutically relevant aspects in bone repair and regeneration. Materials Today, 2015, 18, 573-589.	8.3	101
82	Adipose Tissue-Derived Mesenchymal Stem Cells Attenuate Staphylococcal Enterotoxin A-Induced Toxic Shock. Infection and Immunity, 2015, 83, 3490-3496.	1.0	13
83	Methods and Procedures in Adipose Stem Cells: State of the Art and Perspective for Translation Medicine. Journal of Cellular Physiology, 2015, 230, 489-495.	2.0	33
84	Peripheral nerve regeneration: Experimental strategies and future perspectives. Advanced Drug Delivery Reviews, 2015, 82-83, 160-167.	6.6	446
86	Pharmacological priming of adipose-derived stem cells for paracrine VEGF production with deferoxamine. Journal of Tissue Engineering and Regenerative Medicine, 2016, 10, E167-E176.	1.3	23
87	Co Expression of CD14/45 and CD3/19 Markers is Unique Signature for Identification of Differentiated Chondrocytes from hADSC. Journal of Cytology & Histology, 2016, 07, .	0.1	0
88	Rapid Prototyping Assisted Scaffold Fabrication for Bone Tissue Regeneration. Journal of Materials Science Research, 2016, 5, 79.	0.1	2
89	Improvement of Mouth Functional Disability in Systemic Sclerosis Patients over One Year in a Trial of Fat Transplantation versus Adipose-Derived Stromal Cells. Stem Cells International, 2016, 2016, 1-9.	1.2	45
90	Potential Role of Activating Transcription Factor 5 during Osteogenesis. Stem Cells International, 2016, 2016, 1-8.	1.2	17
91	Estimated Maximal Safe Dosages of Tumescent Lidocaine. Anesthesia and Analgesia, 2016, 122, 1350-1359.	1.1	116
92	Allogeneic adiposeâ€derived stem cells for the treatment of perianal fistula in Crohn's disease: a pilot clinical trial. Colorectal Disease, 2016, 18, 468-476.	0.7	54

#	Article	IF	CITATIONS
93	Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochemistry and Function, 2016, 34, 163-172.	1.4	3
94	Non-Thermal Atmospheric Pressure Plasma Efficiently Promotes the Proliferation of Adipose Tissue-Derived Stem Cells by Activating NO-Response Pathways. Scientific Reports, 2016, 6, 39298.	1.6	38
95	Potential drawbacks in cell-assisted lipotransfer: A systematic review of existing reports (Review). Molecular Medicine Reports, 2016, 13, 1063-1069.	1.1	11
96	Injectable adipose tissue combined with stem cells for soft-tissue augmentation: A pilot study for dental applications. Journal of Dental Sciences, 2016, 11, 377-386.	1.2	0
98	Osteoblastic potential of infrapatellar fat padâ€derived mesenchymal stem cells from rheumatoid arthritis and osteoarthritis patients. International Journal of Rheumatic Diseases, 2016, 19, 577-585.	0.9	7
99	Adipose mesenchymal stromal cells response to ionizing radiation. Cytotherapy, 2016, 18, 384-401.	0.3	17
100	Caveolin-1 is essential in the differentiation of human adipose-derived stem cells into hepatocyte-like cells via an MAPK pathway-dependent mechanism. Molecular Medicine Reports, 2016, 13, 1487-1494.	1.1	17
101	Assessment of Abdominal Fat Graft to Repair Anterior Skull Base after Malignant Sinonasal Tumor Extirpation. Otolaryngology - Head and Neck Surgery, 2016, 154, 540-546.	1.1	19
102	The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering. Journal of Biomedical Materials Research - Part A, 2016, 104, 264-271.	2.1	72
103	Adipose-derived stem cell differentiation as a basic tool for vascularized adipose tissue engineering. Differentiation, 2016, 92, 52-64.	1.0	46
104	Development of hepatic blocks using human adipose tissue-derived stem cells through three-dimensional cell printing techniques. Journal of Materials Chemistry B, 2017, 5, 1098-1107.	2.9	14
105	Potential role of tracing stem cell transplantation and effects on the immune cell function of ferumoxytol combining with heparin and protamine in vivo/in vitro. Cell Biology International, 2017, 41, 423-432.	1.4	3
106	Mesenchymal Stem Cells to Treat Crohn's Disease with Fistula. Human Gene Therapy, 2017, 28, 534-540.	1.4	18
107	Adipose-Derived Stem Cells in Peripheral Nerve Regeneration. Current Surgery Reports, 2017, 5, 1.	0.4	8
108	Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an in vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture. Cell Medicine, 2017, 9, 35-44.	5.0	15
109	Making Sense of Implant "Profile―in Breast Augmentation. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1343.	0.3	3
110	The transplantation of mesenchymal stem cells derived from unconventional sources: an innovative approach to multiple sclerosis therapy. Archivum Immunologiae Et Therapiae Experimentalis, 2017, 65, 363-379.	1.0	18
111	Concise Review: Bioprinting of Stem Cells for Transplantable Tissue Fabrication. Stem Cells Translational Medicine, 2017, 6, 1940-1948.	1.6	132

#	Article	IF	CITATIONS
112	3D Printing for Cell Therapy Applications. Molecular and Translational Medicine, 2017, , 227-248.	0.4	6
113	Evaluation of Serum-Free, Xeno-Free Cryopreservation Solutions for Human Adipose-Derived Mesenchymal Stem Cells. Cell Medicine, 2017, 9, 15-20.	5.0	19
114	Prevention of Surgical Site Infections and Biofilms: Pharmacokinetics of Subcutaneous Cefazolin and Metronidazole in a Tumescent Lidocaine Solution. Plastic and Reconstructive Surgery - Global Open, 2017, 5, e1351.	0.3	1
115	Phenotypical and Functional Characteristics of in Vitro-Expanded Adipose-Derived Mesenchymal Stromal Cells from Patients with Systematic Sclerosis. Cell Transplantation, 2017, 26, 841-854.	1.2	31
116	Application of Adipose-Derived Stem Cells to Observe the Morphological Changes by Induction with Decellularized Corneal Extracellular Matrix and Specified Medium. Journal of Medical and Biological Engineering, 2017, 37, 695-702.	1.0	0
117	Adipose-Derived Stem Cells in Novel Approaches to Breast Reconstruction: Their Suitability for Tissue Engineering and Oncological Safety. Breast Cancer: Basic and Clinical Research, 2017, 11, 117822341772677.	0.6	38
118	Methacrylated gelatin/hyaluronan-based hydrogels for soft tissue engineering. Journal of Tissue Engineering, 2017, 8, 204173141774415.	2.3	54
119	An ECM-Mimicking, Mesenchymal Stem Cell-Embedded Hybrid Scaffold for Bone Regeneration. BioMed Research International, 2017, 2017, 1-12.	0.9	26
120	Adipose-Derived Cell Transplantation in Systemic Sclerosis: State of the Art and Future Perspectives. Journal of Scleroderma and Related Disorders, 2017, 2, 33-41.	1.0	8
121	Recent Advances and Future Directions in Postmastectomy Breast Reconstruction. Clinical Breast Cancer, 2018, 18, e571-e585.	1.1	23
122	Regional Differentiation of Adipose-Derived Stem Cells Proves the Role of Constant Electric Potential in Enhancing Bone Healing. Journal of Medical and Biological Engineering, 2018, 38, 804-815.	1.0	12
123	Stem cells: their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a review. Biotechnology Advances, 2018, 36, 1111-1126.	6.0	343
124	Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field. Journal of Cellular Physiology, 2018, 233, 1061-1070.	2.0	60
125	Silk-sericin degummed wastewater solution-derived and nitrogen enriched porous carbon nanosheets for robust biological imaging of stem cells. International Journal of Biological Macromolecules, 2018, 107, 2122-2130.	3.6	13
126	Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clinical Application of Each Entity. American Journal of Sports Medicine, 2018, 46, 2540-2552.	1.9	73
127	Promoting effects of adipose-derived stem cells on breast cancer cells are reversed by radiation therapy. Cytotechnology, 2018, 70, 701-711.	0.7	6
128	Spontaneous adipogenic differentiation potential of adipose‑derived stem cells decreased with increasing cell passages. Molecular Medicine Reports, 2018, 17, 6109-6115.	1.1	8
129	Cell Biology and Translational Medicine, Volume 4. Advances in Experimental Medicine and Biology, 2018, , .	0.8	4

#	ARTICLE	IF	CITATIONS
130	C-Terminal Residue of Ultrashort Peptides Impacts on Molecular Self-Assembly, Hydrogelation, and Interaction with Small-Molecule Drugs. Scientific Reports, 2018, 8, 17127.	1.6	31
131	Stem Cells Derived from Lipoma and Adipose Tissueâ€"Similar Mesenchymal Phenotype but Different Differentiation Capacity Governed by Distinct Molecular Signature. Cells, 2018, 7, 260.	1.8	15
132	Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience, 2018, 12, 822.	0.6	102
133	Cryopreservation of Human Adipose-Derived Stem Cells for Use in Ex Vivo Regional Gene Therapy for Bone Repair. Human Gene Therapy Methods, 2018, 29, 269-277.	2.1	10
134	A Thin Layer of Decellularized Porcine Myocardium for Cell Delivery. Scientific Reports, 2018, 8, 16206.	1.6	25
135	Adipose Tissue-Derived Stromal Cells for Wound Healing. Advances in Experimental Medicine and Biology, 2018, 1119, 133-149.	0.8	42
136	Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells International, 2018, 2018, 1-20.	1.2	69
137	Human Adipose-Derived Mesenchymal Stem/Stromal Cells Handling Protocols. Lipid Droplets and Proteins Double-Staining. Frontiers in Cell and Developmental Biology, 2018, 6, 33.	1.8	15
138	Adipose-Derived Stem Cells in Cancer Progression: New Perspectives and Opportunities. International Journal of Molecular Sciences, 2019, 20, 3296.	1.8	51
139	Impact of the Different Preparation Methods to Obtain Human Adipose-Derived Stromal Vascular Fraction Cells (AD-SVFs) and Human Adipose-Derived Mesenchymal Stem Cells (AD-MSCs): Enzymatic Digestion Versus Mechanical Centrifugation. International Journal of Molecular Sciences, 2019, 20, 5471.	1.8	81
140	Genomics, Proteomics, and Metabolomics. Pancreatic Islet Biology, 2019, , .	0.1	6
141	Investigation of stemness and multipotency of equine adipose-derived mesenchymal stem cells (ASCs) from different fat sources in comparison with lipoma. Stem Cell Research and Therapy, 2019, 10, 309.	2.4	26
142	Osteogenic Differentiation and Biocompatibility of Bovine Teeth Scaffold with Rat Adipose-derived Mesenchymal Stem Cells. European Journal of Dentistry, 2019, 13, 206-212.	0.8	19
143	Concise Review: Adipose-Derived Stem Cells (ASCs) and Adipocyte-Secreted Exosomal microRNA (A-SE-miR) Modulate Cancer Growth and proMote Wound Repair. Journal of Clinical Medicine, 2019, 8, 855.	1.0	106
144	Analysis of Biological Properties of Human Adult Mesenchymal Stem Cells and Their Effect on Mouse Hind Limb Ischemia. Journal of Vascular Research, 2019, 56, 77-91.	0.6	6
145	3D Print Technology for Cell Culturing. , 2019, , 83-114.		1
146	Secretome of Mesenchymal Stem Cells and Its Potential Protective Effects on Brain Pathologies. Molecular Neurobiology, 2019, 56, 6902-6927.	1.9	52
147	Adhesion and Proliferation of Human Adipose-Derived Stem Cells on Titania Nanotube Surfaces. Regenerative Engineering and Translational Medicine, 2019, 5, 435-445.	1.6	7

#	ARTICLE	IF	CITATIONS
148	Effects of titania nanotube surfaces on osteogenic differentiation of human adipose-derived stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2019, 17, 380-390.	1.7	24
149	Stem cell therapy in pain medicine. Korean Journal of Pain, 2019, 32, 245-255.	0.8	19
150	Structural and Functional Characterization of Deceased Donor Stem Cells: A Viable Alternative to Living Donor Stem Cells. Stem Cells International, 2019, 2019, 1-13.	1.2	3
151	Biomechanical evaluation of tendon regeneration with adiposeâ€derived stem cell. Journal of Orthopaedic Research, 2019, 37, 1281-1286.	1.2	18
152	Synergistic Effects of Acetyl-l-Carnitine and Adipose-Derived Stromal Cells on Improving Regenerative Capacity of Acellular Nerve Allograft in Sciatic Nerve Defect. Journal of Pharmacology and Experimental Therapeutics, 2019, 368, 490-502.	1.3	16
153	A 3Dâ€printed polycaprolactone/βâ€tricalcium phosphate mandibular prosthesis: A pilot animal study. Laryngoscope, 2020, 130, 358-366.	1.1	15
154	Base excision repair but not DNA doubleâ€strand break repair is impaired in aged human adiposeâ€derived stem cells. Aging Cell, 2020, 19, e13062.	3.0	11
155	Research progress on Mesenchymal Stem Cells (MSCs), Adipose-Derived Mesenchymal Stem Cells (AD-MSCs), Drugs, and Vaccines in Inhibiting COVID-19 Disease. , 2020, 11, 1191.		46
156	Exosomes as Part of the Human Adipose-Derived Stem Cells Secretome- Opening New Perspectives for Cell-Free Regenerative Applications. Advances in Experimental Medicine and Biology, 2020, 1312, 139-163.	0.8	12
157	Lipidomics of mesenchymal stem cell differentiation. Chemistry and Physics of Lipids, 2020, 232, 104964.	1.5	16
158	Modeling Adipogenesis: Current and Future Perspective. Cells, 2020, 9, 2326.	1.8	40
160	Therapeutic application of adipose-derived stromal vascular fraction in diabetic foot. Stem Cell Research and Therapy, 2020, 11, 394.	2.4	12
161	Comparison the effects of hypoxia-mimicking agents on migration-related signaling pathways in mesenchymal stem cells. Cell and Tissue Banking, 2020, 21, 643-653.	0.5	6
162	Effects mediated by the $\hat{l}\pm7$ nicotinic acetylcholine receptor on cell proliferation and migration in rat adipose-derived stem cells. European Journal of Histochemistry, 2020, 64, .	0.6	6
163	Fat Therapeutics: The Clinical Capacity of Adipose-Derived Stem Cells and Exosomes for Human Disease and Tissue Regeneration. Frontiers in Pharmacology, 2020, 11, 158.	1.6	117
164	Improved Isolation and Culture of Urine-Derived Stem Cells (USCs) and Enhanced Production of Immune Cells from the USC-Derived Induced Pluripotent Stem Cells. Journal of Clinical Medicine, 2020, 9, 827.	1.0	18
165	Ex vivo regional gene therapy with human adipose-derived stem cells for bone repair. Bone, 2020, 138, 115524.	1.4	16
166	Extensive Characterization of Mesenchymal Stem Cell Marker Expression on Freshly Isolated and <i>In Vitro</i> Expanded Human Adipose-Derived Stem Cells from Breast Cancer Patients. Stem Cells International, 2020, 2020, 1-12.	1.2	9

#	Article	IF	CITATIONS
167	Mesenchymal Stem Cells Combined with Tissue Fusion Technology Promoted Wound Healing in Porcine Bowel Anastomosis. Stem Cells International, 2020, 2020, 1-14.	1.2	11
168	The Effects of Allogeneic cADSCs on an Experimental Ear Auricular Defect to Evaluate Cartilage Regeneration in a Canine Model. , 2021, 02, .		0
169	Fundamental Concepts in Regenerative Medicine: Structural Fat Grafting (SFG) and Platelet-Rich Plasma (PRP)., 2021,, 1-12.		0
170	Bioactive Lipids in MSCs Biology: State of the Art and Role in Inflammation. International Journal of Molecular Sciences, 2021, 22, 1481.	1.8	11
171	Synergic effects of extremely low-frequency electromagnetic field and betaine on in vitro osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells. In Vitro Cellular and Developmental Biology - Animal, 2021, 57, 468-476.	0.7	1
172	Adipose Tissue-Derived Stem Cell Yield Depends on Isolation Protocol and Cell Counting Method. Cells, 2021, 10, 1113.	1.8	11
173	The Buccal Fat Pad Flap. Oral and Maxillofacial Surgery Clinics of North America, 2021, 33, 177-184.	0.4	18
174	Will stem cells from fat and growth factors from blood bring new hope to female patients with reproductive disorders?. Reproductive Biology, 2021, 21, 100472.	0.9	2
175	<i>Apolipoprotein E</i> deficiency activates thermogenesis of white adipose tissues in mice through enhancing l²â€hydroxybutyrate production from precursor cells. FASEB Journal, 2021, 35, e21760.	0.2	2
176	The essential roles of human adipose tissue: Metabolic, thermoregulatory, cellular, and paracrine effects. Journal of Cartilage & Joint Preservation, 2021, 1, 100023.	0.2	10
177	Construction of transplantable artificial vascular tissue based on adipose tissue-derived mesenchymal stromal cells by a cell coating and cryopreservation technique. Scientific Reports, 2021, 17989.	1.6	4
178	Adipose-derived stromal/stem cells for bone tissue engineering applications. , 2022, , 371-414.		O
179	Bioreactors and microphysiological systems for adipose-based pharmacologic screening. , 2022, , 121-146.		1
180	Expansion and inflammation of white adipose tissue - focusing on adipocyte progenitors. Biological Chemistry, 2021, 402, 123-132.	1.2	12
181	Different Gene Expression Profile of Mesenchymal Stem Cells from Various Sources. Pancreatic Islet Biology, 2019, , 83-96.	0.1	3
182	Cellular and Molecular Aspects of Adipose Tissue. , 2011, , 1-12.		2
183	Role of mesenchymal stem cells and their culture medium in alleviating kidney injury in rats diabetic nephropathy. Egyptian Journal of Medical Human Genetics, 2020, 21, .	0.5	3
184	Adipose-derived stem cells secrete neurotrophic factors. Annals of Oral and Maxillofacial Surgery, $2013, 1, \dots$	0.1	2

#	Article	lF	Citations
185	Human adipose-derived stem cells support the growth of limbal stem/progenitor cells. PLoS ONE, 2017, 12, e0186238.	1.1	15
186	Defining adipose tissue-derived stem cells in tissue and in culture. Histology and Histopathology, 2010, 25, 807-15.	0.5	205
187	Cell therapy for bone fracture repair: A comparative preclinical review of mesenchymal stromal cells from bone marrow and from adipose tissue. Journal of Medicines Development Sciences, 2015, 1, 12.	0.1	2
188	Potential Applications for Using Stem Cells in Spine Surgery. Current Stem Cell Research and Therapy, 2010, 5, 345-355.	0.6	13
189	Current and Future Applications for Stem Cell Therapies in Spine Surgery. Current Stem Cell Research and Therapy, 2013, 8, 381-393.	0.6	14
190	Effect of hyperbaric oxygen therapy on bone prefabrication in rats. Acta Orthopaedica Et Traumatologica Turcica, 2010, 44, 403-409.	0.3	7
191	Adipose regeneration and implications for breast reconstruction: update and the future. Gland Surgery, 2016, 5, 227-41.	0.5	30
192	Adipose derived stem cells and nerve regeneration. Neural Regeneration Research, 2014, 9, 1341.	1.6	32
193	In vivo tracking of human adipose-derived stem cells labeled with ferumoxytol in rats with middle cerebral artery occlusion by magnetic resonance imaging. Neural Regeneration Research, 2015, 10, 909.	1.6	17
194	Role of stem cell therapies in treating chronic wounds: A systematic review. World Journal of Stem Cells, 2020, 12, 659-675.	1.3	24
195	Current applications of adipose-derived stem cells and their future perspectives. World Journal of Stem Cells, 2014, 6, 65.	1.3	66
196	Skeletal and Adipose Tissue Engineering with Adipose-Derived Stromal Cells. , 0, , .		1
197	Analysis of Stromal Vascular Fraction from Lipoaspirates: Our Institute's Experiences. Archives of Aesthetic Plastic Surgery, 2013, 19, 25.	0.1	0
200	Composition of a Medium for Serum-free Culture of an Adipose-derived Stem Cell Line Established with a Simian Virus 40 T Antigen. Journal of Life Science, 2014, 24, 1301-1307.	0.2	1
201	Effects of Low Intensity Ultrasound on the Chondrogenic Differentiation of Adult Stem Cells From Adipose Tissue. Zahedan Journal of Researches in Medical Sciences, 2016, In Press, .	0.1	0
202	Culture and expansion of Adipose derived Mesenchymal stem cells in Ovine. Indian Journal of Animal Research, 2017, , .	0.0	0
203	Cell viability and extracellular matrix synthesis in a co-culture system of corneal stromal cells and adipose-derived mesenchymal stem cells. International Journal of Ophthalmology, 2017, 10, 670-678.	0.5	9
204	Current Stem Cell Therapy for Osteoarthritis. Korean Journal of Medicine, 2019, 94, 145-151.	0.1	0

#	Article	IF	CITATIONS
205	Adipogenic progenitors in different organs: Pathophysiological implications. Reviews in Endocrine and Metabolic Disorders, 2022, 23, 71-85.	2.6	10
206	Isolation and characterization of exosomes from adipose tissueâ€derived mesenchymal stem cells. Journal of Anatomy, 2021, 238, 1203-1217.	0.9	16
207	Adipose-Derived Stem Cell: "Treat or Trick― Biomedicines, 2021, 9, 1624.	1.4	10
208	Characterisation of the cell product obtained with the $\hat{a}\in ESVIEF$ System $\hat{a}\in ESVIEF$ kit for isolation of stromal vascular fraction from human adipose tissue. , 2020, , .		1
209	Differentiation of rhesus adipose stem cells into dopaminergic neurons. Neural Regeneration Research, 2012, 7, 2645-52.	1.6	2
210	Immunomodulatory and Antioxidative potentials of adipose-derived Mesenchymal stem cells isolated from breast versus abdominal tissue: a comparative study. Cell Regeneration, 2020, 9, 18.	1.1	1
211	In vitro osteogenic induction of human adipose stem cells co-treated with betaine/osteogenesis differentiation medium. Molecular Biology Research Communications, 2021, 10, 93-103.	0.2	2
212	Immunomodulatory and Antioxidative potentials of adipose-derived Mesenchymal stem cells isolated from breast versus abdominal tissue: a comparative study. Cell Regeneration, 2020, 9, 18.	1.1	7
213	Infrapatellar fat pad adipose-derived stem cells co-cultured with articular chondrocytes from osteoarthritis patients exhibit increased chondrogenic gene expression. Cell Communication and Signaling, 2022, 20, 17.	2.7	6
214	Stem cells of fallopian tube mucosa lost their stemness characteristics under prolonged conditions. Jornal Brasileiro De Reproducao Assistida, 2021, , .	0.3	0
215	A composite bilayer scaffold functionalized for osteochondral tissue regeneration in rat animal model. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 559-574.	1.3	9
216	Major approaches to bucomaxillofacial bone regeneration and remodeling with the use of biomaterials: a systematic review. MedNEXT Journal of Medical and Health Sciences, 0, 3, .	0.0	0
217	Effects of Adipose-Derived Stem Cells and Their Conditioned Medium in a Human Ex Vivo Wound Model. Cells, 2022, 11, 1198.	1.8	18
221	Photobiomodulation improves the therapeutic efficacy of mesenchymal stem cells in regenerative medicine. Medical Lasers, 2022, 11, 134-142.	0.2	1
223	Mesoporous Silica Promotes Osteogenesis of Human Adipose-Derived Stem Cells Identified by a High-Throughput Microfluidic Chip Assay. Pharmaceutics, 2022, 14, 2730.	2.0	2
224	Alginate sulfate/ECM composite hydrogel containing electrospun nanofiber with encapsulated human adipose-derived stem cells for cartilage tissue engineering. International Journal of Biological Macromolecules, 2023, 238, 124098.	3.6	7
225	Carbachol, along with calcium, indicates new strategy in neural differentiation of human adipose tissue-derived mesenchymal stem cells inÂvitro. Regenerative Therapy, 2023, 23, 60-66.	1.4	4
226	Adipose-Derived Mesenchymal Stromal Cells in Basic Research and Clinical Applications. International Journal of Molecular Sciences, 2023, 24, 3888.	1.8	13

#	Article	IF	CITATIONS
227	Stromal Vascular Fraction Cells from Individuals Who Have Previously Undergone Radiotherapy Retain Their Pro-Wound Healing Properties. Journal of Clinical Medicine, 2023, 12, 2052.	1.0	0
228	Current perspectives on cell-assisted lipotransfer for breast cancer patients after radiotherapy. World Journal of Surgical Oncology, 2023, 21, .	0.8	4
229	Adipose-derived stem cells: Use in clinical medicine. , 2023, , 213-229.		0