How do bacterial cells ensure that metalloproteins get t

Nature Reviews Microbiology 7, 25-35

DOI: 10.1038/nrmicro2057

Citation Report

#	Article	IF	CITATIONS
5	Site-Directed Mutagenesis Identifies a Molecular Switch Involved in Copper Sensing by the Histidine Kinase CinS in <i>Pseudomonas putida</i> KT2440. Journal of Bacteriology, 2009, 191, 5304-5311.	1.0	16
6	A subset of the diverse COG0523 family of putative metal chaperones is linked to zinc homeostasis in all kingdoms of life. BMC Genomics, 2009, 10, 470.	1.2	141
7	Alternative periplasmic copperâ€resistance mechanisms in Gram negative bacteria. Molecular Microbiology, 2009, 73, 212-225.	1.2	101
8	Metalloproteins and metal sensing. Nature, 2009, 460, 823-830.	13.7	1,031
9	Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 2009, 5, 333-340.	3.9	506
11	Nickel Homeostasis and Nickel Regulation: An Overview. Chemical Reviews, 2009, 109, 4617-4643.	23.0	187
12	Highly Sensitive and Selective Gold(I) Recognition by a Metalloregulator in <i>Ralstonia metallidurans</i> . Journal of the American Chemical Society, 2009, 131, 10869-10871.	6.6	43
13	Damage control: regulating defenses against toxic metals and metalloids. Current Opinion in Microbiology, 2009, 12, 138-144.	2.3	58
14	Comparative Genomics of Trace Elements: Emerging Dynamic View of Trace Element Utilization and Function. Chemical Reviews, 2009, 109, 4828-4861.	23.0	112
15	Chromotropism Behavior and Biological Activity of some Schiff Base-Mixed Ligand Transition Metal Complexes. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2009, 39, 570-599.	0.6	12
16	Coordination Chemistry of Bacterial Metal Transport and Sensing. Chemical Reviews, 2009, 109, 4644-4681.	23.0	540
17	Molecular Insights into the Metal Selectivity of the Copper(I)-Sensing Repressor CsoR from <i>Bacillus subtilis</i> . Biochemistry, 2009, 48, 3325-3334.	1.2	100
18	CooC1 from <i>Carboxydothermus hydrogenoformans</i> Is a Nickel-Binding ATPase. Biochemistry, 2009, 48, 11505-11513.	1.2	46
19	Supramolecular interactions between functional metal complexes and proteins. Dalton Transactions, 2009, , 10141.	1.6	64
20	Metal specificities of Arabidopsis zinc and copper transport proteins match the relative, but not the absolute, affinities of their N-terminal domains. Chemical Communications, 2009, , 6364.	2.2	8
21	Metal Binding Affinities of Arabidopsis Zinc and Copper Transporters: Selectivities Match the Relative, but Not the Absolute, Affinities of their Amino-Terminal Domains,. Biochemistry, 2009, 48, 11640-11654.	1.2	63
22	Metallochaperones - an Overview. Current Chemical Biology, 2010, 4, 173-186.	0.2	1
24	Nutritional immunity beyond iron: a role for manganese and zinc. Current Opinion in Chemical Biology, 2010, 14, 218-224.	2.8	539

#	Article	IF	Citations
25	Cellular copper managementâ€"a draft user's guide. Coordination Chemistry Reviews, 2010, 254, 506-524.	9.5	62
26	The Zur-Regulated ZinT Protein Is an Auxiliary Component of the High-Affinity ZnuABC Zinc Transporter That Facilitates Metal Recruitment during Severe Zinc Shortage. Journal of Bacteriology, 2010, 192, 1553-1564.	1.0	103
27	Copper Stress Affects Iron Homeostasis by Destabilizing Iron-Sulfur Cluster Formation in <i>Bacillus subtilis</i> Iournal of Bacteriology, 2010, 192, 2512-2524.	1.0	200
28	Structural and mechanistic insights into Helicobacter pylori NikR activation. Nucleic Acids Research, 2010, 38, 3106-3118.	6.5	38
29	YybT Is a Signaling Protein That Contains a Cyclic Dinucleotide Phosphodiesterase Domain and a GGDEF Domain with ATPase Activity. Journal of Biological Chemistry, 2010, 285, 473-482.	1.6	231
30	Znu Is the Predominant Zinc Importer in <i>Yersinia pestis</i> during <i>In Vitro</i> Growth but Is Not Essential for Virulence. Infection and Immunity, 2010, 78, 5163-5177.	1.0	66
31	Mutation of outer-shell residues modulates metal ion co-ordination strength in a metalloenzyme. Biochemical Journal, 2010, 429, 313-321.	1.7	18
32	Metallothioneins: unparalleled diversity in structures and functions for metal ion homeostasis and more. Natural Product Reports, 2010, 27, 720.	5.2	194
33	Molecular recognition in copper trafficking. Natural Product Reports, 2010, 27, 695.	5.2	78
34	Cytosolic metal handling in plants: determinants for zinc specificity in metal transporters and metallothioneins. Metallomics, 2010, 2, 510.	1.0	71
35	Electronic Properties and Desolvation Penalties of Metal Ions Plus Protein Electrostatics Dictate the Metal Binding Affinity and Selectivity in the Copper Efflux Regulator. Journal of the American Chemical Society, 2010, 132, 18092-18102.	6.6	37
36	The Response of <i>Escherichia coli</i> NikR to Nickel: A Second Nickel-Binding Site. Biochemistry, 2010, 49, 6635-6645.	1.2	11
37	Evolution of Metal Selectivity in Templated Protein Interfaces. Journal of the American Chemical Society, 2010, 132, 8610-8617.	6.6	61
38	Direct Quantification of Proteinâ^'Metal Ion Affinities by Electrospray Ionization Mass Spectrometry. Analytical Chemistry, 2010, 82, 2170-2174.	3.2	38
39	The Elements of Plant Micronutrients. Plant Physiology, 2010, 154, 512-515.	2.3	69
40	Evolutionary Trace Annotation of Protein Function in the Structural Proteome. Journal of Molecular Biology, 2010, 396, 1451-1473.	2.0	38
41	An assay for screening microbial cultures for chalkophore production. Environmental Microbiology Reports, 2010, 2, 295-303.	1.0	43
42	Bioinformatics in bioinorganic chemistry. Metallomics, 2010, 2, 39-51.	1.0	17

#	ARTICLE	IF	Citations
43	Determination of Rigidity of Protein Bound Au $<$ sub $>$ 144 $<$ /sub $>$ Clusters by Electron Cryomicroscopy. Journal of Physical Chemistry C, 2010, 114, 16037-16042.	1.5	21
44	Bacterial metal-sensing proteins exemplified by ArsR–SmtB family repressors. Natural Product Reports, 2010, 27, 668.	5.2	116
45	Elucidation of the Functional Metal Binding Profile of a Cd ^{II} /Pb ^{II} Sensor CmtR ^{Sc} from <i>Streptomyces coelicolor</i> . Biochemistry, 2010, 49, 6617-6626.	1.2	17
46	The challenges of determining metal–protein affinities. Natural Product Reports, 2010, 27, 768.	5.2	172
47	Chaperone-mediated copper handling in the periplasm. Natural Product Reports, 2010, 27, 711.	5.2	68
48	The isolated Cys2His2 site in EC metallothionein mediates metal-specific protein folding. Molecular BioSystems, 2010, 6, 1592.	2.9	38
49	Coordinating intracellular nickel–metal-site structure-function relationships and the NikR and RcnR repressors. Natural Product Reports, 2010, 27, 658.	5.2	29
50	Dynamic Copper(I) Imaging in Mammalian Cells with a Genetically Encoded Fluorescent Copper(I) Sensor. Journal of the American Chemical Society, 2010, 132, 2567-2569.	6.6	123
51	History of biological metal utilization inferred through phylogenomic analysis of protein structures. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10567-10572.	3.3	264
52	Differential transition metal uptake and fluorescent probe localization in hippocampal slices. Metallomics, 2011, 3, 829.	1.0	9
53	Phenotypic profile linked to inhibition of the major Zn influx system in Salmonella enterica: proteomics and ionomics investigations. Molecular BioSystems, 2011, 7, 608-619.	2.9	22
54	The tightly regulated copper window in yeast. Chemical Communications, 2011, 47, 2571-2573.	2.2	70
55	How or not to calculate Ni(II) Werner-type complexes: evaluation of quantum chemical methods. Journal of Coordination Chemistry, 2011, 64, 18-29.	0.8	6
56	Switch or Funnel: How RND-Type Transport Systems Control Periplasmic Metal Homeostasis. Journal of Bacteriology, 2011, 193, 2381-2387.	1.0	139
57	Templated Construction of a Zn-Selective Protein Dimerization Motif. Inorganic Chemistry, 2011, 50, 6323-6329.	1.9	19
58	<i>Mycobacterium tuberculosis</i> NmtR Harbors a Nickel Sensing Site with Parallels to <i>Escherichia coli</i> RcnR. Biochemistry, 2011, 50, 7941-7952.	1.2	35
59	Separating the Role of Protein Restraints and Local Metal-Site Interaction Chemistry in the Thermodynamics of a Zinc Finger Protein. Biophysical Journal, 2011, 101, 1459-1466.	0.2	2
60	A Molecular Mechanism for Bacterial Susceptibility to Zinc. PLoS Pathogens, 2011, 7, e1002357.	2.1	387

#	ARTICLE	IF	Citations
61	Metallothionein-Like Multinuclear Clusters of Mercury(II) and Sulfur in Peat. Environmental Science & Environmental &	4.6	59
62	Metal Selectivity of the <i>Escherichia coli</i> Nickel Metallochaperone, SlyD. Biochemistry, 2011, 50, 10666-10677.	1.2	18
63	NMR Studies of Metalloproteins. Topics in Current Chemistry, 2011, 326, 69-98.	4.0	9
64	Metal-binding properties of Hpn from Helicobacter pylori and implications for the therapeutic activity of bismuth. Chemical Science, 2011, 2, 451-456.	3.7	13
65	Copper isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Geochimica Et Cosmochimica Acta, 2011, 75, 784-799.	1.6	126
66	Structural Basis for Metal Sensing by CnrX. Journal of Molecular Biology, 2011, 408, 766-779.	2.0	32
67	Chloroplastic and mitochondrial metal homeostasis. Trends in Plant Science, 2011, 16, 395-404.	4.3	168
68	Mobilizing Cu(I) for Carbonâ^'Carbon Bond Forming Catalysis in the Presence of Thiolate. Chemical Mimicking of Metallothioneins. Journal of the American Chemical Society, 2011, 133, 6403-6410.	6.6	57
69	Insight into the Interaction of Metal Ions with TroA from Streptococcus suis. PLoS ONE, 2011, 6, e19510.	1.1	49
70	New roles for bacterial siderophores in metal transport and tolerance. Environmental Microbiology, 2011, 13, 2844-2854.	1.8	454
71	The combined actions of the copperâ€responsive repressor CsoR and copperâ€metallochaperone CopZ modulate CopAâ€mediated copper efflux in the intracellular pathogen <i>Listeria monocytogenes</i> Molecular Microbiology, 2011, 81, 457-472.	1,2	76
72	A Computational Framework for Proteome-Wide Pursuit and Prediction of Metalloproteins using ICP-MS and MS/MS Data. BMC Bioinformatics, 2011, 12, 64.	1.2	20
73	The biological occurrence and trafficking of cobalt. Metallomics, 2011, 3, 963.	1.0	136
74	Active transport, substrate specificity, and methylation of $Hg(II)$ in anaerobic bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8714-8719.	3.3	245
75	Metals on the move: zinc ions in cellular regulation and in the coordination dynamics of zinc proteins. BioMetals, 2011, 24, 411-418.	1.8	194
76	Heavy metal resistance in Cupriavidus metallidurans CH34 is governed by an intricate transcriptional network. BioMetals, 2011, 24, 1133-1151.	1.8	128
77	Advantages and challenges of increased antimicrobial copper use and copper mining. Applied Microbiology and Biotechnology, 2011, 91, 237-249.	1.7	32
78	Shaping mechanisms of metal specificity in a family of metazoan metallothioneins: evolutionary differentiation of mollusc metallothioneins. BMC Biology, 2011, 9, 4.	1.7	96

#	Article	IF	CITATIONS
79	The UlaG protein family defines novel structural and functional motifs grafted on an ancient RNase fold. BMC Evolutionary Biology, 2011, 11, 273.	3.2	7
80	The structure of a <scp>D</scp> â€lyxose isomerase from the σ ^B regulon of <i>Bacillus subtilis</i> . Proteins: Structure, Function and Bioinformatics, 2011, 79, 2015-2019.	1.5	12
81	Glycine Peptide Bond Formation Catalyzed by Faujasite. ChemPhysChem, 2011, 12, 2160-2168.	1.0	11
82	Iron-containing transcription factors and their roles as sensors. Current Opinion in Chemical Biology, 2011, 15, 335-341.	2.8	92
83	Molecular design of the microbial cell surface toward the recovery of metal ions. Current Opinion in Biotechnology, 2011, 22, 427-433.	3.3	63
84	Control of Copper Resistance and Inorganic Sulfur Metabolism by Paralogous Regulators in Staphylococcus aureus. Journal of Biological Chemistry, 2011, 286, 13522-13531.	1.6	91
85	Thermodynamics of copper and zinc distribution in the cyanobacterium <i>Synechocystis</i> PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13007-13012.	3.3	51
86	Lactococcus lactis ZitR Is a Zinc-Responsive Repressor Active in the Presence of Low, Nontoxic Zinc Concentrations In Vivo. Journal of Bacteriology, 2011, 193, 1919-1929.	1.0	25
87	The Escherichia coli MntR Miniregulon Includes Genes Encoding a Small Protein and an Efflux Pump Required for Manganese Homeostasis. Journal of Bacteriology, 2011, 193, 5887-5897.	1.0	137
88	CorE from Myxococcus xanthus Is a Copper-Dependent RNA Polymerase Sigma Factor. PLoS Genetics, 2011, 7, e1002106.	1.5	49
89	Metal Sensing in Salmonella. Advances in Microbial Physiology, 2011, 58, 175-232.	1.0	37
90	Copper at the Front Line of the Host-Pathogen Battle. PLoS Pathogens, 2012, 8, e1002887.	2.1	86
91	Mur Regulates the Gene Encoding the Manganese Transporter MntH in Brucella abortus 2308. Journal of Bacteriology, 2012, 194, 561-566.	1.0	18
92	Specific Targeting of the Metallophosphoesterase YkuE to the Bacillus Cell Wall Requires the Twin-arginine Translocation System. Journal of Biological Chemistry, 2012, 287, 29789-29800.	1.6	23
93	Identification of the Human Zinc Transcriptional Regulatory Element (ZTRE). Journal of Biological Chemistry, 2012, 287, 36567-36581.	1.6	33
94	Characterization of the Response to Zinc Deficiency in the Cyanobacterium Anabaena sp. Strain PCC 7120. Journal of Bacteriology, 2012, 194, 2426-2436.	1.0	77
95	Two Zinc Uptake Systems Contribute to the Full Virulence of Listeria monocytogenes during Growth <i>In Vitro</i> and <i>In Vivo</i> . Infection and Immunity, 2012, 80, 14-21.	1.0	69
96	A novel mechanism of bacterial adaptation mediated by copper-dependent RNA polymerase if factors. Transcription, 2012, 3, 63-67.	1.7	9

#	Article	IF	CITATIONS
97	Cyanobacterial metallochaperone inhibits deleterious side reactions of copper. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 95-100.	3.3	91
98	Response to Copper Stress in Streptomyces lividans Extends beyond Genes under Direct Control of a Copper-sensitive Operon Repressor Protein (CsoR). Journal of Biological Chemistry, 2012, 287, 17833-17847.	1.6	50
99	A Novel Role for Copper in Ras/Mitogen-Activated Protein Kinase Signaling. Molecular and Cellular Biology, 2012, 32, 1284-1295.	1.1	226
100	Redox control of copper homeostasis in cyanobacteria. Plant Signaling and Behavior, 2012, 7, 1712-1714.	1.2	15
101	Cytosolic Ni(II) Sensor in Cyanobacterium. Journal of Biological Chemistry, 2012, 287, 12142-12151.	1.6	48
102	Metal acquisition and virulence in <i>Brucella</i> . Animal Health Research Reviews, 2012, 13, 10-20.	1.4	30
103	MetalPDB: a database of metal sites in biological macromolecular structures. Nucleic Acids Research, 2012, 41, D312-D319.	6.5	157
105	Biomolecular electrostatics and solvation: a computational perspective. Quarterly Reviews of Biophysics, 2012, 45, 427-491.	2.4	152
106	Elemental Economy. Advances in Microbial Physiology, 2012, 60, 91-210.	1.0	180
107	Tellurite resistance gene trgB confers copper tolerance to Rhodobacter capsulatus. BioMetals, 2012, 25, 995-1008.	1.8	5
108	Silver(I), Mercury(II), Cadmium(II), and Zinc(II) Target Exposed Enzymic Iron-Sulfur Clusters when They Toxify Escherichia coli. Applied and Environmental Microbiology, 2012, 78, 3614-3621.	1.4	228
109	<i>Corynebacterium glutamicum</i> CsoR Acts as a Transcriptional Repressor of Two Copper/Zinc-Inducible P _{1B} -Type ATPase Operons. Bioscience, Biotechnology and Biochemistry, 2012, 76, 1952-1958.	0.6	12
110	A genetically encoded copper(i) sensor based on engineered structural distortion of EGFP. Chemical Communications, 2012, 48, 3890.	2.2	33
111	Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry. Journal of Biological Chemistry, 2012, 287, 13510-13517.	1.6	94
112	The metal selectivity of a short peptide maquette imitating the high-affinity metal-binding site of E. coli HypB. Dalton Transactions, 2012, 41, 7876.	1.6	19
113	N-Terminal Region of CusB Is Sufficient for Metal Binding and Metal Transfer with the Metallochaperone CusF. Biochemistry, 2012, 51, 6767-6775.	1.2	37
114	Genome-Wide Assessment in Escherichia coli Reveals Time-Dependent Nanotoxicity Paradigms. ACS Nano, 2012, 6, 9402-9415.	7.3	31
115	Metallobiology of host–pathogen interactions: an intoxicating new insight. Trends in Microbiology, 2012, 20, 106-112.	3.5	107

#	Article	IF	CITATIONS
116	Metal site occupancy and allosteric switching in bacterial metal sensor proteins. Archives of Biochemistry and Biophysics, 2012, 519, 210-222.	1.4	66
117	The impact of metal sequestration on Staphylococcus aureus metabolism. Current Opinion in Microbiology, 2012, 15, 10-14.	2.3	30
118	Metalloregulation of Gram-positive pathogen physiology. Current Opinion in Microbiology, 2012, 15, 169-174.	2.3	34
119	Protein degradation and iron homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 1484-1490.	1.9	37
120	Investigating the impact of bisphosphonates and structurally related compounds on bacteria containing conjugative plasmids. Biochemical and Biophysical Research Communications, 2012, 424, 697-703.	1.0	11
121	<i>CorynebacteriumÂglutamicum </i> <scp>Z</scp> ur acts as a zincâ€sensing transcriptional repressor of both zincâ€inducible and zincâ€repressible genes involved in zinc homeostasis. FEBS Journal, 2012, 279, 4385-4397.	2.2	14
122	Origins of specificity and crossâ€ŧalk in metal ion sensing by <i><scp>B</scp>acillus subtilis</i> <scp>Fur</scp> . Molecular Microbiology, 2012, 86, 1144-1155.	1.2	52
123	X-ray absorption spectroscopy at a protein crystallography facility: the Canadian Light Source beamline 08B1-1. Journal of Synchrotron Radiation, 2012, 19, 887-891.	1.0	3
124	Leaching and accumulation of trace elements in sulfate reducing granular sludge under concomitant thermophilic and low pH conditions. Bioresource Technology, 2012, 126, 238-246.	4.8	21
125	Theoretical calculations of physico-chemical and spectroscopic properties of bioinorganic systems: current limits and perspectives. Dalton Transactions, 2012, 41, 5754.	1.6	27
126	Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis. Frontiers in Microbiology, 2012, 3, 142.	1.5	51
127	Sensitive analysis of metal cations in positive ion mode electrospray ionization mass spectrometry using commercial chelating agents and cationic ionâ€pairing reagents. Rapid Communications in Mass Spectrometry, 2012, 26, 1005-1013.	0.7	15
128	Artificial Metalloenzymes as Catalysts in Stereoselective Diels–Alder Reactions. Chemical Record, 2012, 12, 391-406.	2.9	52
129	Importance of electrostatic polarizability in calculating cysteine acidity constants and copper(I) binding energy of <i>Bacillus subtilis</i> CopZ. Journal of Computational Chemistry, 2012, 33, 1142-1151.	1.5	15
130	Cost of cooperation rules selection for cheats in bacterial metapopulations. Journal of Evolutionary Biology, 2012, 25, 473-484.	0.8	61
131	Metals in biology: defining metalloproteomes. Current Opinion in Biotechnology, 2012, 23, 89-95.	3.3	82
132	Nickel Metallomics: General Themes Guiding Nickel Homeostasis. Metal Ions in Life Sciences, 2013, 12, 375-416.	2.8	37
133	Effects of Metal Ion Adduction on the Gas-Phase Conformations of Protein Ions. Journal of the American Society for Mass Spectrometry, 2013, 24, 1654-1662.	1.2	26

#	Article	IF	CITATIONS
134	Solution NMR refinement of a metal ion bound protein using metal ion inclusive restrained molecular dynamics methods. Journal of Biomolecular NMR, 2013, 56, 125-137.	1.6	22
135	Three-Dimensional Structure and Biophysical Characterization of Staphylococcus aureus Cell Surface Antigen–Manganese Transporter MntC. Journal of Molecular Biology, 2013, 425, 3429-3445.	2.0	54
136	Heavy Metal Stress in Plants. , 2013, , .		38
137	Clues for Regulatory Processes in Fungal Uptake and Transfer of Minerals to the Basidiospore. Biological Trace Element Research, 2013, 154, 140-149.	1.9	9
138	The response of the TonB-dependent transport network in Anabaena sp. PCC 7120 to cell density and metal availability. BioMetals, 2013, 26, 549-560.	1.8	15
139	Microbial Interactions in the Arsenic Cycle: Adoptive Strategies and Applications in Environmental Management. Reviews of Environmental Contamination and Toxicology, 2013, 224, 1-38.	0.7	14
140	Biochemical and structural characterization of a novel bacterial manganeseâ€dependent hydroxynitrile lyase. FEBS Journal, 2013, 280, 5815-5828.	2.2	38
141	Pyoverdine biosynthesis and secretion in <i><scp>P</scp>seudomonas aeruginosa</i> i>: implications for metal homeostasis. Environmental Microbiology, 2013, 15, 1661-1673.	1.8	164
142	Tools to study distinct metal pools in biology. Dalton Transactions, 2013, 42, 3210-3219.	1.6	40
143	Physical Characterization of the Manganese-Sensing Pneumococcal Surface Antigen Repressor from <i>Streptococcus pneumoniae</i> . Biochemistry, 2013, 52, 7689-7701.	1.2	41
144	Glutathione analogs in prokaryotes. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 3182-3198.	1.1	182
145	Metallomics and the Cell: Some Definitions and General Comments. Metal Ions in Life Sciences, 2013, 12, 1-13.	2.8	36
146	Improved Protein Overexpression and Purification Strategies for Structural Studies of Cyanobacterial Metal-Responsive Transcription Factor, SmtB from Marine Synechococcus sp. PCC 7002. Protein Journal, 2013, 32, 626-634.	0.7	4
147	Probing the Coordination Environment of the Human Copper Chaperone HAH1: Characterization of Hg ^l â€Bridged Homodimeric Species in Solution. Chemistry - A European Journal, 2013, 19, 9042-9049.	1.7	20
149	Co(ii)-detection does not follow Kco(ii) gradient: channelling in Co(ii)-sensing. Metallomics, 2013, 5, 352.	1.0	13
150	Nonspecific uptake and homeostasis drive the oceanic cadmium cycle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2500-2505.	3.3	99
151	Opportunities for protein interaction networkâ€guided cellular engineering. IUBMB Life, 2013, 65, 17-27.	1.5	3
152	Molecular basis for manganese sequestration by calprotectin and roles in the innate immune response to invading bacterial pathogens. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3841-3846.	3.3	325

#	Article	IF	CITATIONS
153	Nanobio Silver: Its Interactions with Peptides and Bacteria, and Its Uses in Medicine. Chemical Reviews, 2013, 113, 4708-4754.	23.0	692
154	Re-engineering protein interfaces yields copper-inducible ferritin cage assembly. Nature Chemical Biology, 2013, 9, 169-176.	3.9	169
155	Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky. , 2013, 3, 849-915.		249
156	Coordination of Metal lons to β-Amyloid Peptide: Impact on Alzheimer's Disease. Modecular Medicine and Medicinal, 2013, , 127-155.	0.4	O
157	Diversity and distribution of plant metallothioneins: a review of structure, properties and functions. Metallomics, 2013, 5, 1146.	1.0	171
158	Rational Design of Particle Mesh Ewald Compatible Lennard-Jones Parameters for +2 Metal Cations in Explicit Solvent. Journal of Chemical Theory and Computation, 2013, 9, 2733-2748.	2.3	559
159	The role of the Cys-X-X-Cys motif on the kinetics of cupric ion loading to the Streptomyces lividans Sco protein. Dalton Transactions, 2013, 42, 10608.	1.6	4
160	Structure-oriented bioinformatic approach exploring histidine-rich clusters in proteins. Metallomics, 2013, 5, 904.	1.0	14
161	The impact of transition metals on bacterial plant disease. FEMS Microbiology Reviews, 2013, 37, 495-519.	3.9	105
162	Antimicrobial activity of metals: mechanisms, molecular targets and applications. Nature Reviews Microbiology, 2013, 11, 371-384.	13.6	1,987
163	Lessons on the critical interplay between zinc binding and protein structure and dynamics. Journal of Inorganic Biochemistry, 2013, 121, 145-155.	1.5	26
164	Metal-binding properties and structural characterization of a self-assembled coiled coil: Formation of a polynuclear Cd–thiolate cluster. Journal of Inorganic Biochemistry, 2013, 119, 1-9.	1.5	31
165	Recovery of Trace Metal Isotopes in Seawater Samples Using Multifunctional Neem (<i>Azadirachta) Tj ETQq0 0 Sustainable Chemistry and Engineering, 2013, 1, 488-495.</i>	0 rgBT /O\ 3 . 2	verlock 10 Tf ! 10
166	Metal Transfer within the <i>Escherichia coli</i> HypB–HypA Complex of Hydrogenase Accessory Proteins. Biochemistry, 2013, 52, 6030-6039.	1.2	39
167	Genetically Encoded Copper(I) Reporters with Improved Response for Use in Imaging. Journal of the American Chemical Society, 2013, 135, 3144-3149.	6.6	42
168	The dynamic nature of bacterial surfaces: Implications for metal–membrane interaction. Critical Reviews in Microbiology, 2013, 39, 196-217.	2.7	37
169	The Yeast Copper Response Is Regulated by DNA Damage. Molecular and Cellular Biology, 2013, 33, 4041-4050.	1.1	29
170	Structure of UreG/UreF/UreH Complex Reveals How Urease Accessory Proteins Facilitate Maturation of Helicobacter pylori Urease. PLoS Biology, 2013, 11, e1001678.	2.6	104

#	Article	IF	CITATIONS
171	Dissecting the Metal Selectivity of MerR Monovalent Metal Ion Sensors in Salmonella. Journal of Bacteriology, 2013, 195, 3084-3092.	1.0	20
172	Iron, copper, zinc, and manganese transport and regulation in pathogenic Enterobacteria: correlations between strains, site of infection and the relative importance of the different metal transport systems for virulence. Frontiers in Cellular and Infection Microbiology, 2013, 3, 90.	1.8	306
173	Characterization and Molecular Mechanism of AroP as an Aromatic Amino Acid and Histidine Transporter in Corynebacterium glutamicum. Journal of Bacteriology, 2013, 195, 5334-5342.	1.0	27
174	A Novel P1B-type Mn2+-transporting ATPase Is Required for Secreted Protein Metallation in Mycobacteria. Journal of Biological Chemistry, 2013, 288, 11334-11347.	1.6	86
175	MntABC and MntH Contribute to Systemic Staphylococcus aureus Infection by Competing with Calprotectin for Nutrient Manganese. Infection and Immunity, 2013, 81, 3395-3405.	1.0	173
176	Metal Transport in the Rhizobium-Legume Symbiosis. , 2013, , 141-163.		2
177	Metallochaperones Regulate Intracellular Copper Levels. PLoS Computational Biology, 2013, 9, e1002880.	1.5	26
178	Proteomic responses of oceanic Synechococcus WH8102 to phosphate and zinc scarcity and cadmium additions. Frontiers in Microbiology, 2013, 4, 387.	1.5	42
179	Virtual Lead Identification of Farnesyltransferase Inhibitors Based on Ligand and Structure-Based Pharmacophore Techniques. Pharmaceuticals, 2013, 6, 700-715.	1.7	18
180	Manganese acquisition and homeostasis at the host-pathogen interface. Frontiers in Cellular and Infection Microbiology, 2013, 3, 91.	1.8	111
181	Competition for zinc binding in the host-pathogen interaction. Frontiers in Cellular and Infection Microbiology, 2013, 3, 108.	1.8	100
183	Isolation, Identification, and Characterization of Cadmium Resistant <i>Pseudomonas</i> sp. M3 from Industrial Wastewater. Journal of Waste Management, 2014, 2014, 1-6.	0.5	32
184	Cantareus aspersus metallothionein metal binding abilities: The unspecific CaCd/CuMT isoform provides hints about the metal preference determinants in metallothioneins. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1694-1707.	1.1	30
185	Metal Preferences and Metallation. Journal of Biological Chemistry, 2014, 289, 28095-28103.	1.6	305
186	Fixating on metals: new insights into the role of metals in nodulation and symbiotic nitrogen fixation. Frontiers in Plant Science, 2014, 5, 45.	1.7	87
187	Studying Allosteric Regulation in Metal Sensor Proteins Using Computational Methods. Advances in Protein Chemistry and Structural Biology, 2014, 96, 181-218.	1.0	9
188	Potentially novel copper resistance genes in copper-enriched activated sludge revealed by metagenomic analysis. Applied Microbiology and Biotechnology, 2014, 98, 10255-10266.	1.7	30
189	Metal limitation and toxicity at the interface between host and pathogen. FEMS Microbiology Reviews, 2014, 38, 1235-1249.	3.9	189

#	Article	IF	CITATIONS
190	Crystal structure of toxin HP0892 from <i>Helicobacter pylori</i> with two Zn(II) at 1.8 \tilde{A} resolution. Protein Science, 2014, 23, 819-832.	3.1	3
191	Metal Ion Homeostasis in Listeria monocytogenes and Importance in Host–Pathogen Interactions. Advances in Microbial Physiology, 2014, 65, 83-123.	1.0	21
192	Magnesiumâ€dependent processes are targets of bacterial manganese toxicity. Molecular Microbiology, 2014, 93, 736-747.	1.2	45
193	An intimate link: two-component signal transduction systems and metal transport systems in bacteria. Future Microbiology, 2014, 9, 1283-1293.	1.0	31
194	Functional diversity of five homologous Cu+-ATPases present in Sinorhizobium meliloti. Microbiology (United Kingdom), 2014, 160, 1237-1251.	0.7	21
195	Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms. Life, 2014, 4, 865-886.	1.1	124
196	Zinc isotope fractionation during surface adsorption and intracellular incorporation by bacteria. Chemical Geology, 2014, 366, 42-51.	1.4	36
197	Molybdenum and tungsten oxygen transferases – structural and functional diversity within a common active site motif. Metallomics, 2014, 6, 15-24.	1.0	47
198	Catalytic activity of biomass-supported Pd nanoparticles: Influence of the biological component in catalytic efficacy and potential application in †green' synthesis of fine chemicals and pharmaceuticals. Applied Catalysis B: Environmental, 2014, 147, 651-665.	10.8	86
199	The Salmonella enterica ZinT structure, zinc affinity and interaction with the high-affinity uptake protein ZnuA provide insight into the management of periplasmic zinc. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 535-544.	1.1	46
200	Importance of polarization effect in the study of metalloproteins: Application of polarized protein specific charge scheme in predicting the reduction potential of azurin. Proteins: Structure, Function and Bioinformatics, 2014, 82, 2209-2219.	1.5	10
201	T versus D in the MTCXXC motif of copper transport proteins plays a role in directional metal transport. Journal of Biological Inorganic Chemistry, 2014, 19, 1037-1047.	1.1	15
202	The Molecular Basis for the Pharmacokinetics and Pharmacodynamics of Curcumin and Its Metabolites in Relation to Cancer. Pharmacological Reviews, 2014, 66, 222-307.	7.1	418
203	Recent developments in copper and zinc homeostasis in bacterial pathogens. Current Opinion in Chemical Biology, 2014, 19, 59-66.	2.8	111
204	Taking into Account the Ion-Induced Dipole Interaction in the Nonbonded Model of Ions. Journal of Chemical Theory and Computation, 2014, 10, 289-297.	2.3	305
205	Toward a fast evaluation of g -tensor of Cu containing systems: A DFT parametrized approach. Chemical Physics Letters, 2014, 614, 226-233.	1.2	2
206	A copper-responsive gene cluster is required for copper homeostasis and contributes to oxidative resistance in Deinococcus radiodurans R1. Molecular BioSystems, 2014, 10, 2607-2616.	2.9	9
207	Subcellular metal imaging identifies dynamic sites of Cu accumulation in Chlamydomonas. Nature Chemical Biology, 2014, 10, 1034-1042.	3.9	143

#	Article	IF	Citations
208	In-cell NMR: an emerging approach for monitoring metal-related events in living cells. Metallomics, 2014, 6, 69-76.	1.0	11
209	Metal sensing and signal transduction by CnrX from Cupriavidus metallidurans CH34: role of the only methionine assessed by a functional, spectroscopic, and theoretical study. Metallomics, 2014, 6, 263-273.	1.0	21
210	The ZupT transporter plays an important role in zinc homeostasis and contributes to Salmonella enterica virulence. Metallomics, 2014, 6, 845-853.	1.0	55
211	Elemental and Chemically Specific X-ray Fluorescence Imaging of Biological Systems. Chemical Reviews, 2014, 114, 8499-8541.	23.0	234
212	A possible iron delivery function of the dinuclear iron center of HcgD in [Fe]-hydrogenase cofactor biosynthesis. FEBS Letters, 2014, 588, 2789-2793.	1.3	21
213	An integrative computational model for large-scale identification of metalloproteins in microbial genomes: a focus on iron–sulfur cluster proteins. Metallomics, 2014, 6, 1913-1930.	1.0	20
214	Mysteries of Metals in Metalloenzymes. Accounts of Chemical Research, 2014, 47, 3110-3117.	7.6	114
215	Detection of proteins by hyphenated techniques with endogenous metal tags and metal chemical labelling. Analyst, The, 2014, 139, 4124-4153.	1.7	20
216	Effect of Divalent Metals on Hg(II) Uptake and Methylation by Bacteria. Environmental Science & Emp; Technology, 2014, 48, 3007-3013.	4.6	79
217	Metalloproteomics: challenges and prospective for clinical research applications. Expert Review of Proteomics, 2014, 11, 13-19.	1.3	17
218	<scp>IdeR</scp> is required for iron homeostasis and virulence in <i><scp>M</scp>ycobacterium tuberculosis</i> . Molecular Microbiology, 2014, 91, 98-109.	1.2	98
219	The ins and outs of metal homeostasis by the root nodule actinobacterium Frankia. BMC Genomics, 2014, 15, 1092.	1.2	26
220	Transmission of Soluble and Insoluble $\hat{l}\pm$ -Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	0.9	14
221	Transmission of Soluble and Insoluble $\hat{l}\pm$ -Synuclein to Mice. Journal of Neuropathology and Experimental Neurology, 2015, 74, 1158-1169.	0.9	25
222	Metalation Kinetics of the Human αâ€Metallothionein 1a Fragment Is Dependent on the Fluxional Structure of the apoâ€Protein. Chemistry - A European Journal, 2015, 21, 1269-1279.	1.7	24
223	Probing the range of applicability of structure- and energy-adjusted QM/MM link bonds. Journal of Computational Chemistry, 2015, 36, 1929-1939.	1.5	17
224	Oxidative Alkene Cleavage Catalysed by Manganeseâ€Dependent Cupin TM1459 from <i>Thermotoga maritima</i> . Advanced Synthesis and Catalysis, 2015, 357, 3309-3316.	2.1	22
225	<pre><scp>MntR</scp>(<scp>R</scp>v2788): a transcriptional regulator that controls manganese homeostasis in <scp><i>M</i></scp><i>ycobacterium tuberculosis</i>. Molecular Microbiology, 2015, 98, 1168-1183.</pre>	1.2	34

#	Article	IF	CITATIONS
226	Hints for Metal-Preference Protein Sequence Determinants: Different Metal Binding Features of the Five Tetrahymena thermophila Metallothioneins. International Journal of Biological Sciences, 2015, 11, 456-471.	2.6	37
227	Perspectives in Medicinal Chemistry: Metalloprotein Inhibitors: What Have We Made and What is the Next Step?. Current Topics in Medicinal Chemistry, 2015, 16, 467-469.	1.0	3
228	The Regulation of the AdcR Regulon in Streptococcus pneumoniae Depends Both on Zn2+- and Ni2+-Availability. Frontiers in Cellular and Infection Microbiology, 2015, 5, 91.	1.8	10
229	Co2+-dependent gene expression in Streptococcus pneumoniae: opposite effect of Mn2+ and Co2+ on the expression of the virulence genes psaBCA, pcpA, and prtA. Frontiers in Microbiology, 2015, 6, 748.	1.5	9
230	The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. Metallomics, 2015, 7, 1023-1035.	1.0	59
231	Enzyme repurposing of a hydrolase as an emergent peroxidase upon metal binding. Chemical Science, 2015, 6, 4060-4065.	3.7	26
232	Resistive Switching Memory Devices Based on Proteins. Advanced Materials, 2015, 27, 7670-7676.	11.1	140
233	CopM is a novel copperâ€binding protein involved in copper resistance in <i><scp>S</scp>ynechocystis</i> sp. <scp>PCC</scp> 6803. MicrobiologyOpen, 2015, 4, 167-185.	1.2	30
234	Zn ^{II} and Hg ^{II} binding to a designed peptide that accommodates different coordination geometries. Dalton Transactions, 2015, 44, 12576-12588.	1.6	26
235	Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells. Journal of Biological Chemistry, 2015, 290, 19806-19822.	1.6	23
236	Mutational and Computational Evidence That a Nickel-Transfer Tunnel in UreD Is Used for Activation of <i>Klebsiella aerogenes</i> Urease. Biochemistry, 2015, 54, 6392-6401.	1.2	41
237	Copper and nickel bind via two distinct kinetic mechanisms to a CsoR metalloregulator. Dalton Transactions, 2015, 44, 20176-20185.	1.6	4
238	Cofactor composition and function of a H ₂ -sensing regulatory hydrogenase as revealed by Mössbauer and EPR spectroscopy. Chemical Science, 2015, 6, 4495-4507.	3.7	35
239	Visualising mouse neuroanatomy and function by metal distribution using laser ablation-inductively coupled plasma-mass spectrometry imaging. Chemical Science, 2015, 6, 5383-5393.	3.7	69
240	Biophysical and physiological characterization of ZraP from <i>Escherichia coli</i> , the periplasmic accessory protein of the atypical ZraSR two-component system. Biochemical Journal, 2015, 472, 205-216.	1.7	31
241	Organization of the Mammalian Ionome According to Organ Origin, Lineage Specialization, and Longevity. Cell Reports, 2015, 13, 1319-1326.	2.9	56
242	Biological Cycling of Inorganic Nutrients and Metals in Soils and Their Role in Soil Biogeochemistry. , 2015, , 471-503.		11
243	Copper homeostasis-related genes in three separate transcriptional units regulated by CsoR in Corynebacterium glutamicum. Applied Microbiology and Biotechnology, 2015, 99, 3505-3517.	1.7	7

#	Article	IF	CITATIONS
244	Coordinated Zinc Homeostasis Is Essential for the Wild-Type Virulence of Brucella abortus. Journal of Bacteriology, 2015, 197, 1582-1591.	1.0	28
245	Systematic Parameterization of Monovalent lons Employing the Nonbonded Model. Journal of Chemical Theory and Computation, 2015, 11, 1645-1657.	2.3	334
246	Crystal structure of a periplasmic solute binding protein in metal-free, intermediate and metal-bound states from Candidatus Liberibacter asiaticus. Journal of Structural Biology, 2015, 189, 184-194.	1.3	18
247	Advances in the molecular understanding of biological zinc transport. Chemical Communications, 2015, 51, 4544-4563.	2.2	85
248	The Zinc Finger Protein ZNF658 Regulates the Transcription of Genes Involved in Zinc Homeostasis and Affects Ribosome Biogenesis through the Zinc Transcriptional Regulatory Element. Molecular and Cellular Biology, 2015, 35, 977-987.	1.1	34
249	Metal Response in Cupriavidus metallidurans. Springer Briefs in Molecular Science, 2015, , .	0.1	10
250	Mechanistic insights into metal ion activation and operator recognition by the ferric uptake regulator. Nature Communications, 2015, 6, 7642.	5.8	107
251	Cooperativity, allostery and synergism in ligand binding to riboswitches. Biochimie, 2015, 117, 100-109.	1.3	25
252	Structural basis of a Ni acquisition cycle for [NiFe] hydrogenase by Ni-metallochaperone HypA and its enhancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 7701-7706.	3.3	54
253	Characterization of intracellular palladium nanoparticles synthesized by Desulfovibrio desulfuricans and Bacillus benzeovorans. Journal of Nanoparticle Research, 2015, 17, 264.	0.8	61
254	Detoxification of Mercury by Bacteria Using Crude Glycerol from Biodiesel as a Carbon Source. Water, Air, and Soil Pollution, 2015, 226, 1.	1.1	12
255	Responses to Oxidative and Heavy Metal Stresses in Cyanobacteria: Recent Advances. International Journal of Molecular Sciences, 2015, 16, 871-886.	1.8	89
256	Structural Basis of Functional Diversification of the HD-GYP Domain Revealed by the Pseudomonas aeruginosa PA4781 Protein, Which Displays an Unselective Bimetallic Binding Site. Journal of Bacteriology, 2015, 197, 1525-1535.	1.0	33
257	Distinct Metal Isoforms Underlie Promiscuous Activity Profiles of Metalloenzymes. ACS Chemical Biology, 2015, 10, 1684-1693.	1.6	42
258	Host-imposed manganese starvation of invading pathogens: two routes to the same destination. BioMetals, 2015, 28, 509-519.	1.8	16
259	Bacterial Riboswitches Cooperatively Bind Ni 2+ or Co 2+ Ions and Control Expression of Heavy Metal Transporters. Molecular Cell, 2015, 57, 1088-1098.	4.5	147
260	Peptide self-assembly triggered by metal ions. Chemical Society Reviews, 2015, 44, 5200-5219.	18.7	232
261	Living Composites of Bacteria and Polymers as Biomimetic Films for Metal Sequestration and Bioremediation. Macromolecular Bioscience, 2015, 15, 1052-1059.	2.1	30

#	Article	IF	Citations
262	The dynamic balance of import and export of zinc in <i>Escherichia coli</i> suggests a heterogeneous population response to stress. Journal of the Royal Society Interface, 2015, 12, 20150069.	1.5	19
263	Melanosomes or Microbes: Testing an Alternative Hypothesis for the Origin of Microbodies in Fossil Feathers. Scientific Reports, 2014, 4, 4233.	1.6	58
264	The Ubiquitous yybP-ykoY Riboswitch Is a Manganese-Responsive Regulatory Element. Molecular Cell, 2015, 57, 1099-1109.	4.5	120
265	Structural insights into conformational switching in the copper metalloregulator CsoR from <i>Streptomyces lividans</i> . Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 1872-1878.	2.5	9
266	Magnetic nanoparticles: Advantages of using, methods for preparation, characterization, application in pharmacy. Review Journal of Chemistry, 2015, 5, 256-280.	1.0	22
267	DFTB3 Parametrization for Copper: The Importance of Orbital Angular Momentum Dependence of Hubbard Parameters. Journal of Chemical Theory and Computation, 2015, 11, 4205-4219.	2.3	30
268	The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites. Geochimica Et Cosmochimica Acta, 2015, 167, 1-10.	1.6	53
269	Staphylococcus aureus Targets the Duffy Antigen Receptor for Chemokines (DARC) to Lyse Erythrocytes. Cell Host and Microbe, 2015, 18, 363-370.	5.1	88
270	Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. Journal of Nutritional Biochemistry, 2015, 26, 1103-1115.	1.9	46
271	Fate of Trace Metals in Anaerobic Digestion. Advances in Biochemical Engineering/Biotechnology, 2015, 151, 171-195.	0.6	10
272	Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology, 2015, 64, 471-497.	0.7	294
273	Separative techniques for metalloproteomics require balance between separation and perturbation. TrAC - Trends in Analytical Chemistry, 2015, 64, 64-74.	5.8	30
274	General Chemistry, Sampling, Analytical Methods, and Speciationâ´—., 2015, , 15-44.		8
276	Structural Characterization of Natural Nickel and Copper Binding Ligands along the US GEOTRACES Eastern Pacific Zonal Transect. Frontiers in Marine Science, 2016, 3, .	1.2	60
277	Extracellular Proteins: Novel Key Components of Metal Resistance in Cyanobacteria?. Frontiers in Microbiology, 2016, 7, 878.	1.5	37
278	Cucumber Metallothionein-Like 2 (CsMTL2) Exhibits Metal-Binding Properties. Genes, 2016, 7, 106.	1.0	16
279	FmvB: A Francisella tularensis Magnesium-Responsive Outer Membrane Protein that Plays a Role in Virulence. PLoS ONE, 2016, 11, e0160977.	1.1	12
280	The Two-Component System ArlRS and Alterations in Metabolism Enable Staphylococcus aureus to Resist Calprotectin-Induced Manganese Starvation. PLoS Pathogens, 2016, 12, e1006040.	2.1	71

#	Article	IF	CITATIONS
281	Metallome of <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> : a role for siderophores. Environmental Microbiology, 2016, 18, 3258-3267.	1.8	47
282	AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase. Journal of Biological Chemistry, 2016, 291, 18129-18138.	1.6	17
283	The multiple stress responsive transcriptional regulator Rv3334 of <i>Mycobacterium tuberculosis</i> is an autorepressor and a positive regulator of <i>kstR</i> . FEBS Journal, 2016, 283, 3056-3071.	2.2	16
284	Short Selfâ€Assembling Peptides Are Able to Bind to Copper and Activate Oxygen. Angewandte Chemie - International Edition, 2016, 55, 9017-9020.	7.2	106
285	Short Selfâ€Assembling Peptides Are Able to Bind to Copper and Activate Oxygen. Angewandte Chemie, 2016, 128, 9163-9166.	1.6	20
286	Engineering Genetically-Encoded Mineralization and Magnetism via Directed Evolution. Scientific Reports, 2016, 6, 38019.	1.6	31
287	The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Australian Journal of Chemistry, 2016, 69, 1383.	0.5	6
288	Control of electrochemical signals from quantum dots conjugated to organic materials by using DNA structure in an analog logic gate. Bioelectrochemistry, 2016, 111, 1-6.	2.4	8
289	Promiscuity in the Enzymatic Catalysis of Phosphate and Sulfate Transfer. Biochemistry, 2016, 55, 3061-3081.	1.2	32
290	Protein self-assembly via supramolecular strategies. Chemical Society Reviews, 2016, 45, 2756-2767.	18.7	254
291	Bacterial Strategies to Maintain Zinc Metallostasis at the Host-Pathogen Interface. Journal of Biological Chemistry, 2016, 291, 20858-20868.	1.6	131
292	Preface. Methods in Enzymology, 2016, 580, xvii-xxii.	0.4	1
293	Ni interferes in the Cuâ€regulated transcriptional switch <i>petJ/petE</i> in <i>Synechocystis</i> sp. <scp>PCC</scp> 6803. FEBS Letters, 2016, 590, 3639-3648.	1.3	5
294	Discrimination and Integration of Stress Signals by Pathogenic Bacteria. Cell Host and Microbe, 2016, 20, 144-153.	5.1	22
297	Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chemical Reviews, 2016, 116, 13571-13632.	23.0	452
299	Zinc Homeostasis at the Bacteria/Host Interfaceâ€"From Coordination Chemistry to Nutritional Immunity. Chemistry - A European Journal, 2016, 22, 15992-16010.	1.7	66
300	An overview of the biological metal uptake pathways in <scp><i>P</i></scp> <i>seudomonas aeruginosa</i> . Environmental Microbiology, 2016, 18, 3227-3246.	1.8	45
301	Microbial Virulence and Interactions With Metals. Progress in Molecular Biology and Translational Science, 2016, 142, 27-49.	0.9	14

#	Article	IF	CITATIONS
302	A Metalloregulated Fourâ€State Nanoswitch Controls Twoâ€Step Sequential Catalysis in an Elevenâ€Component System. Angewandte Chemie - International Edition, 2016, 55, 10512-10517.	7. 2	46
303	Binding States of Protein–Metal Complexes in Cells. Analytical Chemistry, 2016, 88, 10860-10866.	3.2	28
304	Evolution of Enzyme Superfamilies: Comprehensive Exploration of Sequence–Function Relationships. Biochemistry, 2016, 55, 6375-6388.	1.2	56
306	Ein metallregulierter vierstufiger Nanoschalter zur Steuerung einer zweistufigen sequenziellen Katalyse in einem Elfâ€Komponenten‧ystem. Angewandte Chemie, 2016, 128, 10668-10673.	1.6	11
307	Zinc sensing by metal-responsive transcription factor 1 (MTF1) controls metallothionein and ZnT1 expression to buffer the sensitivity of the transcriptome response to zinc. Metallomics, 2016, 8, 337-343.	1.0	74
308	Roles of Escherichia coli ZinT in cobalt, mercury and cadmium resistance and structural insights into the metal binding mechanism. Metallomics, 2016, 8, 327-336.	1.0	20
309	In depth analysis of the mechanism of action of metal-dependent sigma factors: characterization of CorE2 from <i>Myxococcus xanthus</i> . Nucleic Acids Research, 2016, 44, 5571-5584.	6.5	28
310	Metal Sequestration: An Important Contribution of Antimicrobial Peptides to Nutritional Immunity. , 2016, , 89-100.		6
311	Survival Strategies of the Plant-Associated Bacterium Enterobacter sp. Strain EG16 under Cadmium Stress. Applied and Environmental Microbiology, 2016, 82, 1734-1744.	1.4	101
313	Heterogeneous behavior of metalloproteins toward metal ion binding and selectivity: insights from molecular dynamics studies. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1470-1485.	2.0	7
314	Chemical speciation of sulfur and metals in biogas reactors – Implications for cobalt and nickel bio-uptake processes. Journal of Hazardous Materials, 2017, 324, 110-116.	6.5	20
315	Metal″onâ€Mediated Supramolecular Assembly of C ₃ â€Peptides. Chemistry - an Asian Journal, 2017, 12, 497-502.	1.7	12
316	Biocompatibility of iron carbide and detection of metals ions signaling proteomic analysis via HPLC/ESI-Orbitrap. Nano Research, 2017, 10, 1912-1923.	5.8	37
317	In silico characterization of TTHA0596: A potential Zn 2+ binding protein of ATP-binding cassette transporter. Gene Reports, 2017, 6, 132-141.	0.4	2
318	The effect of iron limitation on cyanobacteria major nutrient and trace element stoichiometry. Limnology and Oceanography, 2017, 62, 846-858.	1.6	21
319	Transition Metal Homeostasis in Streptococcus pyogenes and Streptococcus pneumoniae. Advances in Microbial Physiology, 2017, 70, 123-191.	1.0	32
320	A Transition Metal-Binding, Trimeric $\hat{l}^2\hat{l}^3$ -Crystallin from Methane-Producing Thermophilic Archaea, <i>Methanosaeta thermophila</i> . Biochemistry, 2017, 56, 1299-1310.	1.2	7
321	Metal homeostasis in bacteria: the role of ArsR–SmtB family of transcriptional repressors in combating varying metal concentrations in the environment. BioMetals, 2017, 30, 459-503.	1.8	40

#	Article	IF	CITATIONS
322	A Database of Transition-Metal-Coordinated Peptide Cross-Sections: Selective Interaction with Specific Amino Acid Residues. Journal of the American Society for Mass Spectrometry, 2017, 28, 1293-1303.	1.2	8
323	Glutamate Ligation in the Ni(II)- and Co(II)-Responsive <i>Escherichia coli</i> Regulator, RcnR. Inorganic Chemistry, 2017, 56, 6459-6476.	1.9	16
324	Conjugated Polymers Act Synergistically with Antibiotics to Combat Bacterial Drug Resistance. ACS Applied Materials & Drug Resistance. ACS Applied Materials & Drug Resistance. ACS	4.0	40
325	Dihydropyrimidine-Thiones and Clioquinol Synergize To Target \hat{l}^2 -Amyloid Cellular Pathologies through a Metal-Dependent Mechanism. ACS Chemical Neuroscience, 2017, 8, 2039-2055.	1.7	17
326	Proteolytic cleavage orchestrates cofactor insertion and protein assembly in [NiFe]-hydrogenase biosynthesis. Journal of Biological Chemistry, 2017, 292, 11670-11681.	1.6	25
327	α-Synuclein Enhances Cadmium Uptake and Neurotoxicity via Oxidative Stress and Caspase Activated Cell Death Mechanisms in a Dopaminergic Cell Model of Parkinson's Disease. Neurotoxicity Research, 2017, 32, 231-246.	1.3	11
328	Metal homeostasis and resistance in bacteria. Nature Reviews Microbiology, 2017, 15, 338-350.	13.6	568
329	Theoretical study of Cr and Co-porphyrin-induced C ₇₀ fullerene: a request for a novel sensor of sulfur and nitrogen dioxide. Journal of Sulfur Chemistry, 2017, 38, 357-371.	1.0	14
330	Identification of a U/Zn/Cu responsive global regulatory twoâ€component system in ⟨i⟩Caulobacter crescentus⟨/i⟩. Molecular Microbiology, 2017, 104, 46-64.	1.2	10
331	Overexpression of Rv2788 increases mycobacterium stresses survival. Microbiological Research, 2017, 195, 51-59.	2.5	10
332	Identification and characterization of CD4 + T cell epitopes on manganese transport protein C of Staphylococcus aureus. Microbial Pathogenesis, 2017, 112, 30-37.	1.3	2
333	O ₂ availability impacts iron homeostasis in <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12261-12266.	3.3	72
334	Extending the Nonbonded Cationic Dummy Model to Account for Ion-Induced Dipole Interactions. Journal of Physical Chemistry Letters, 2017, 8, 5408-5414.	2.1	33
335	Penicillin-binding protein encoded by pbp4 is involved in mediating copper stress in Listeria monocytogenes. FEMS Microbiology Letters, 2017, 364, .	0.7	10
336	Affected energy metabolism under manganese stress governs cellular toxicity. Scientific Reports, 2017, 7, 11645.	1.6	51
337	The Role of Zinc in the Biology and Virulence of Brucella Strains. , 2017, , 63-72.		1
339	iTRAQ-based proteomic technology revealed protein perturbations in intestinal mucosa from manganese exposure in rat models. RSC Advances, 2017, 7, 31745-31758.	1.7	5
340	Small Scaffolds, Big Potential: Developing Miniature Proteins as Therapeutic Agents. Drug Development Research, 2017, 78, 268-282.	1.4	6

#	Article	IF	CITATIONS
341	Structural insights into how GTP-dependent conformational changes in a metallochaperone UreG facilitate urease maturation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10890-E10898.	3.3	41
342	Prospects and Challenges in Algal Biotechnology. , 2017, , .		15
343	Selective Metal Ion Homeostasis in Cyanobacteria., 2017,, 219-232.		1
344	The Role of Intermetal Competition and Mis-Metalation in Metal Toxicity. Advances in Microbial Physiology, 2017, 70, 315-379.	1.0	48
345	Regulating cellular trace metal economy in algae. Current Opinion in Plant Biology, 2017, 39, 88-96.	3.5	52
346	Integration of fluorescence imaging with proteomics enables visualization and identification of metallo-proteomes in living cells. Metallomics, 2017, 9, 38-47.	1.0	21
348	Comparative assessment of Ni and As(III) mediated alterations in diazotrophic cyanobacteria, Anabaena doliolum and Anabaena sp. PCC7120. African Journal of Microbiology Research, 2017, 11, 804-813.	0.4	2
349	Zinc-Dependent Transcriptional Regulation in Paracoccus denitrificans. Frontiers in Microbiology, 2017, 8, 569.	1.5	15
350	Metallochaperones and metalloregulation in bacteria. Essays in Biochemistry, 2017, 61, 177-200.	2.1	103
351	Transition metals at the host–pathogen interface: how <i>Neisseria</i> exploit human metalloproteins for acquiring iron and zinc. Essays in Biochemistry, 2017, 61, 211-223.	2.1	24
352	Metabolic and fitness determinants for in vitro growth and intestinal colonization of the bacterial pathogen Campylobacter jejuni. PLoS Biology, 2017, 15, e2001390.	2.6	58
353	The Potential of Metals in Combating Bacterial Pathogens. , 2018, , 129-150.		4
354	Biomedical Applications of Metals. , 2018, , .		6
355	Structure–function analysis of manganese exporter proteins across bacteria. Journal of Biological Chemistry, 2018, 293, 5715-5730.	1.6	44
356	In-vivo turnover frequency of the cyanobacterial NiFe-hydrogenase during photohydrogen production outperforms in-vitro systems. Scientific Reports, 2018, 8, 6083.	1.6	17
357	Metalâ€Ionâ€Mediated Supramolecular Chirality of <scp> </scp> â€Phenylalanine Based Hydrogels. Angewandte Chemie - International Edition, 2018, 57, 5655-5659.	7.2	110
358	Metal″onâ€Mediated Supramolecular Chirality of <scp>l</scp> â€Phenylalanine Based Hydrogels. Angewandte Chemie, 2018, 130, 5757-5761.	1.6	26
359	Extracellular Electron Transfer Powers Enterococcus faecalis Biofilm Metabolism. MBio, 2018, 9, .	1.8	96

#	Article	IF	Citations
360	Survival of Anaerobic Fe $<$ sup $>$ 2+ $<$ /sup $>$ Stress Requires the ClpXP Protease. Journal of Bacteriology, 2018, 200, .	1.0	13
361	Transcriptional response of Clostridium difficile to low iron conditions. Pathogens and Disease, 2018, 76, .	0.8	33
362	Bio-prospectus of cadmium bioadsorption by lactic acid bacteria to mitigate health and environmental impacts. Applied Microbiology and Biotechnology, 2018, 102, 1599-1615.	1.7	23
363	A cytosolic copper storage protein provides a second level of copper tolerance in <i>Streptomyces lividans</i> . Metallomics, 2018, 10, 180-193.	1.0	23
364	New Insights into the Role of Zinc Acquisition and Zinc Tolerance in Group A Streptococcal Infection. Infection and Immunity, 2018, 86, .	1.0	41
365	Copper-Binding Small Molecule Induces Oxidative Stress and Cell-Cycle Arrest in Glioblastoma-Patient-Derived Cells. Cell Chemical Biology, 2018, 25, 585-594.e7.	2.5	59
366	Amino Acid Coordinated Selfâ€Assembly. Chemistry - A European Journal, 2018, 24, 755-761.	1.7	58
367	Redox Sensing by Fe ²⁺ in Bacterial Fur Family Metalloregulators. Antioxidants and Redox Signaling, 2018, 29, 1858-1871.	2.5	58
368	Peptides having antimicrobial activity and their complexes with transition metal ions. European Journal of Medicinal Chemistry, 2018, 143, 997-1009.	2.6	49
369	Supramolecular Antibacterial Materials for Combatting Antibiotic Resistance. Advanced Materials, 2019, 31, e1805092.	11.1	380
370	Control on Dimensions and Supramolecular Chirality of Self-Assemblies through Light and Metal lons. Journal of the American Chemical Society, 2018, 140, 16275-16283.	6.6	110
371	Biosorption and Bioaccumulation Abilities of Actinomycetes/Streptomycetes Isolated from Metal Contaminated Sites. Separations, 2018, 5, 54.	1.1	91
372	Poly(3-hydroxybutyrate) production in an integrated electromicrobial setup: Investigation under stress-inducing conditions. PLoS ONE, 2018, 13, e0196079.	1.1	37
373	Half sandwich based rhodamine ―hydrazone single molecule probe: Light responsive, metal sensing and imaging properties. Applied Organometallic Chemistry, 2018, 32, e4612.	1.7	10
374	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie, 2018, 130, 17330-17334.	1.6	29
375	Amino Acid Coordination Driven Selfâ€Assembly for Enhancing both the Biological Stability and Tumor Accumulation of Curcumin. Angewandte Chemie - International Edition, 2018, 57, 17084-17088.	7.2	185
376	ldeR, a DtxR Family Iron Response Regulator, Controls Iron Homeostasis, Morphological Differentiation, Secondary Metabolism, and the Oxidative Stress Response in Streptomyces avermitilis. Applied and Environmental Microbiology, 2018, 84, .	1.4	23
377	Nanomolar Copper Enhances Mercury Methylation by <i>Desulfovibrio desulfuricans</i> ND132. Environmental Science and Technology Letters, 2018, 5, 372-376.	3.9	24

#	Article	IF	CITATIONS
378	Impact of $Cu(II)$ -doping on the vulnerability of Escherichia coli ATCC 10536 revealed by Atomic Force Microscopy. Micron, 2018, 110, 73-78.	1.1	1
379	Use of synchrotron radiation Xâ€ray fluorescence and Xâ€ray absorption spectroscopy to investigate bioaccumulation, molecular target, and biotransformation of volcanic elements. X-Ray Spectrometry, 2018, 47, 305-319.	0.9	6
380	Various Biomaterials and Techniques for Improving Antibacterial Response. ACS Applied Bio Materials, 2018, 1, 3-20.	2.3	91
381	The complex global response to copper in the multicellular bacterium <i>Myxococcus xanthus</i> Metallomics, 2018, 10, 876-886.	1.0	16
382	A new approach to study attached biofilms and floating communities from Pseudomonas aeruginosa strains of various origins reveals diverse effects of divalent ions. FEMS Microbiology Letters, 2018, 365, .	0.7	11
383	Ecological Risks of Nanoparticles. , 2018, , 429-452.		5
384	Investigation of the Role of Genes Encoding Zinc Exporters zntA, zitB, and fieF during Salmonella Typhimurium Infection. Frontiers in Microbiology, 2017, 8, 2656.	1.5	21
385	Algae in Biotechnological Processes. , 2018, , 33-48.		1
386	Conformational dynamics and enzyme evolution. Journal of the Royal Society Interface, 2018, 15, 20180330.	1.5	140
387	MntC-Dependent Manganese Transport Is Essential for <i>Staphylococcus aureus</i> Oxidative Stress Resistance and Virulence. MSphere, 2018, 3, .	1.3	27
388	Competitive inhibition of cobalt uptake by zinc and manganese in a pacific <i>Prochlorococcus</i> strain: Insights into metal homeostasis in a streamlined oligotrophic cyanobacterium. Limnology and Oceanography, 2018, 63, 2229-2249.	1.6	23
389	Rv0474 is a copperâ€responsive transcriptional regulator that negatively regulates expression of <scp>RNA</scp> polymerase β subunit in <i>Mycobacterium tuberculosis</i> FEBS Journal, 2018, 285, 3849-3869.	2.2	4
390	Smart Peptide-Based Supramolecular Photodynamic Metallo-Nanodrugs Designed by Multicomponent Coordination Self-Assembly. Journal of the American Chemical Society, 2018, 140, 10794-10802.	6.6	377
391	The Irving–Williams series and the 2-His-1-carboxylate facial triad: a thermodynamic study of Mn2+, Fe2+, and Co2+ binding to taurine/α-ketoglutarate dioxygenase (TauD). Journal of Biological Inorganic Chemistry, 2018, 23, 785-793.	1.1	3
392	Intracellular Metabolism and Homeostasis of Metal Ions. , 2019, , 207-259.		0
393	Advances in catalytic/photocatalytic bacterial inactivation by nano Ag and Cu coated surfaces and medical devices. Applied Catalysis B: Environmental, 2019, 240, 291-318.	10.8	112
394	A Method for Metal/Protein Stoichiometry Determination Using Thin-Film Energy Dispersive X-ray Fluorescence Spectroscopy. Analytical Chemistry, 2019, 91, 11502-11506.	3.2	8
395	Coordination promiscuity guarantees metal substrate selection in transmembrane primary-active Zn ²⁺ pumps. Chemical Communications, 2019, 55, 10844-10847.	2.2	4

#	Article	IF	CITATIONS
396	The Use of Copper as an Antimicrobial Agent in Health Care, Including Obstetrics and Gynecology. Clinical Microbiology Reviews, 2019, 32, .	5.7	98
397	The Chemistry of Lanthanides in Biology: Recent Discoveries, Emerging Principles, and Technological Applications. ACS Central Science, 2019, 5, 1496-1506.	5.3	166
398	The Maturation Pathway of Nickel Urease. Inorganics, 2019, 7, 85.	1.2	27
399	Molecular Dynamics Simulation of Zinc Ion in Water with an ab Initio Based Neural Network Potential. Journal of Physical Chemistry A, 2019, 123, 6587-6595.	1.1	24
401	Plant–Microbe–Metal (PMM) Interactions and Strategies for Remediating Metal Ions. , 2019, , 247-262.		2
402	The Electronic Structure of the Metal Active Site Determines the Geometric Structure and Function of the Metalloregulator NikR. Biochemistry, 2019, 58, 3585-3591.	1.2	2
403	Metal ligands in micronutrient acquisition and homeostasis. Plant, Cell and Environment, 2019, 42, 2902-2912.	2.8	87
404	Mechanisms of toxicity by and resistance to ferrous iron in anaerobic systems. Free Radical Biology and Medicine, 2019, 140, 167-171.	1.3	20
405	Peptide-coordination self-assembly for the precise design of theranostic nanodrugs. Coordination Chemistry Reviews, 2019, 397, 14-27.	9.5	54
406	Bioinformatic Exploration of Metal-Binding Proteome of Zoonotic Pathogen Orientia tsutsugamushi. Frontiers in Genetics, 2019, 10, 797.	1.1	12
407	Metals in Biology: From Metallomics to Trafficking. Inorganic Chemistry, 2019, 58, 13505-13508.	1.9	17
408	Solvent free synthesis of ferrocene based rhodamine – hydrazone molecular probe with improved bioaccumulation for sensing and imaging applications. Journal of Organometallic Chemistry, 2019, 904, 120999.	0.8	16
409	A Fragment Quantum Mechanical Method for Metalloproteins. Journal of Chemical Theory and Computation, 2019, 15, 1430-1439.	2.3	17
410	Supramolecular Protein Nanodrugs with Coordination―and Heatingâ€Enhanced Photothermal Effects for Antitumor Therapy. Small, 2019, 15, e1905326.	5.2	33
411	Manganese Mapping Using a Fluorescent Mn ²⁺ Sensor and Nanosynchrotron X-ray Fluorescence Reveals the Role of the Golgi Apparatus as a Manganese Storage Site. Inorganic Chemistry, 2019, 58, 13724-13732.	1.9	23
412	Designating ligand specificities to metal uptake ABC transporters in <i>Thermus thermophilus</i> HB8. Metallomics, 2019, 11, 597-612.	1.0	15
413	Molecular insight into the expression of metal transporter genes in Chryseobacterium sp. PMSZPI isolated from uranium deposit. PLoS ONE, 2019, 14, e0216995.	1.1	16
414	Ni(II) Sensing by RcnR Does Not Require an FrmR-Like Intersubunit Linkage. Inorganic Chemistry, 2019, 58, 13639-13653.	1.9	6

#	ARTICLE	IF	Citations
415	Microbial characterization of heavy metal resistant bacterial strains isolated from an electroplating wastewater treatment plant. Ecotoxicology and Environmental Safety, 2019, 181, 472-480.	2.9	49
416	Three-dimensional graphene for electrochemical detection of Cadmium in Klebsiella michiganensis to study the influence of Cadmium uptake in rice plant. Materials Science and Engineering C, 2019, 103, 109802.	3.8	28
417	Upconversion of Cellulosic Waste Into a Potential "Drop in Fuel―via Novel Catalyst Generated Using Desulfovibrio desulfuricans and a Consortium of Acidophilic Sulfidogens. Frontiers in Microbiology, 2019, 10, 970.	1.5	9
418	Emergence of metal selectivity and promiscuity in metalloenzymes. Journal of Biological Inorganic Chemistry, 2019, 24, 517-531.	1.1	40
419	Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells, 2019, 8, 492.	1.8	71
420	Specificity in the Susceptibilities of Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus Clinical Isolates to Six Metal Antimicrobials. Antibiotics, 2019, 8, 51.	1.5	23
421	High Energy Resolution-X-ray Absorption Near Edge Structure Spectroscopy Reveals Zn Ligation in Whole Cell Bacteria. Journal of Physical Chemistry Letters, 2019, 10, 2585-2592.	2.1	17
422	Mg ²⁺ homeostasis and transport in cyanobacteria – at the crossroads of bacterial and chloroplast Mg ²⁺ import. Biological Chemistry, 2019, 400, 1289-1301.	1.2	17
423	The PmoB subunit of particulate methane monooxygenase (pMMO) in Methylococcus capsulatus (Bath): The Cul sponge and its function. Journal of Inorganic Biochemistry, 2019, 196, 110691.	1.5	17
424	Metalloproteins in the Biology of Heterocysts. Life, 2019, 9, 32.	1.1	23
425	Copper Utilization, Regulation, and Acquisition by Aspergillus fumigatus. International Journal of Molecular Sciences, 2019, 20, 1980.	1.8	30
426	Emerging chemical tools and techniques for tracking biological manganese. Dalton Transactions, 2019, 48, 7047-7061.	1.6	14
427	Metal bioavailability and the soil microbiome. Advances in Agronomy, 2019, 155, 79-120.	2.4	31
428	An ion for an iron: streptococcal metal homeostasis under oxidative stress. Biochemical Journal, 2019, 476, 699-703.	1.7	4
429	Metallophore profiling of nitrogen-fixing <i>Frankia</i> spp. to understand metal management in the rhizosphere of actinorhizal plants. Metallomics, 2019, 11, 810-821.	1.0	22
430	High-throughput screening and Bayesian machine learning for copper-dependent inhibitors of <i>Staphylococcus aureus</i> . Metallomics, 2019, 11, 696-706.	1.0	30
431	Pullâ€Down of Metalloproteins in Their Native States by Using Desthiobiotinâ€Based Probes. ChemBioChem, 2019, 20, 1003-1007.	1.3	3
432	The Cation Diffusion Facilitator Family Protein EmfA Confers Resistance to Manganese Toxicity in Brucella abortus 2308 and Is an Essential Virulence Determinant in Mice. Journal of Bacteriology, 2019, 202, .	1.0	7

#	Article	IF	CITATIONS
433	Theoretical insights into the competitive metal bioaffinity of lactoferrin as a metal ion carrier: a DFT study. New Journal of Chemistry, 2019, 43, 16374-16384.	1.4	10
434	Predicting disease-associated mutation of metal-binding sites in proteins using a deep learning approach. Nature Machine Intelligence, 2019, 1, 561-567.	8.3	48
435	Predicting cracks in metalloproteins. Nature Machine Intelligence, 2019, 1, 553-554.	8.3	2
436	Antibacterial efficiency of alkali-free bio-glasses incorporating ZnO and/or SrO as therapeutic agents. Ceramics International, 2019, 45, 4368-4380.	2.3	27
437	The role of metal ions in the virulence and viability of bacterial pathogens. Biochemical Society Transactions, 2019, 47, 77-87.	1.6	83
438	Functional Diversity of Bacterial Strategies to Cope With Metal Toxicity. , 2019, , 409-426.		8
439	Specificity of Mo and V Removal from a Spent Catalyst by Cupriavidus metallidurans CH34. Waste and Biomass Valorization, 2019, 10, 1037-1042.	1.8	4
441	Single molecule observation of hard–soft-acid–base (HSAB) interaction in engineered <i>Mycobacterium smegmatis</i> porin A (MspA) nanopores. Chemical Science, 2020, 11, 879-887.	3.7	47
442	Allosteric control of metal-responsive transcriptional regulators in bacteria. Journal of Biological Chemistry, 2020, 295, 1673-1684.	1.6	26
443	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie, 2020, 132, 3601-3605.	1.6	10
444	Target Selfâ€Enhanced Selectivity in Metalâ€Specific DNAzymes. Angewandte Chemie - International Edition, 2020, 59, 3573-3577.	7.2	43
446	Novel antibacterial cellulose acetate fibers modified with 2-fluoropyridine complexes. Journal of Molecular Structure, 2020, 1204, 127537.	1.8	12
447	Small molecule optical sensors for nickel: The quest for a universal nickel receptor. Coordination Chemistry Reviews, 2020, 425, 213522.	9.5	13
448	Single molecule force spectroscopy reveals that a two-coordinate ferric site is critical for the folding of holo-rubredoxin. Nanoscale, 2020, 12, 22564-22573.	2.8	8
449	Metallic Antibacterial Surface Treatments of Dental and Orthopedic Materials. Materials, 2020, 13, 4594.	1.3	11
450	The Best Peptidomimetic Strategies to Undercover Antibacterial Peptides. International Journal of Molecular Sciences, 2020, 21, 7349.	1.8	24
451	Bactericidal activity of silver nanoparticles: A mechanistic review. Materials Science for Energy Technologies, 2020, 3, 756-769.	1.0	153
452	Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. International Journal of Molecular Sciences, 2020, 21, 8285.	1.8	8

#	Article	IF	CITATIONS
453	Cobalt Resistance via Detoxification and Mineralization in the Iron-Reducing Bacterium Geobacter sulfurreducens. Frontiers in Microbiology, 2020, 11, 600463.	1.5	24
454	Identification of Zinc-Dependent Mechanisms Used by Group B <i>Streptococcus</i> To Overcome Calprotectin-Mediated Stress. MBio, 2020, 11, .	1.8	30
455	Synthesis of the Hydroxamate Siderophore Nα-Methylcoprogen B in Scedosporium apiospermum Is Mediated by sidD Ortholog and Is Required for Virulence. Frontiers in Cellular and Infection Microbiology, 2020, 10, 587909.	1.8	7
456	Differences in metal tolerance among strains, populations, and species of marine diatoms – Importance of exponential growth for quantification. Aquatic Toxicology, 2020, 226, 105551.	1.9	15
457	Cobalt can fully recover the phenotypes related to zinc deficiency in <i>Salmonella</i> Typhimurium. Metallomics, 2020, 12, 2021-2031.	1.0	12
458	AmpR of <i>Stenotrophomonas maltophilia </i> is involved in stenobactin synthesis and enhanced l²-lactam resistance in an iron-depleted condition. Journal of Antimicrobial Chemotherapy, 2020, 75, 3544-3551.	1.3	11
459	Making or Breaking Metalâ€Dependent Catalytic Activity: The Role of Stammers in Designed Threeâ€Stranded Coiled Coils. Angewandte Chemie, 2020, 132, 20625-20629.	1.6	0
460	Making or Breaking Metalâ€Dependent Catalytic Activity: The Role of Stammers in Designed Threeâ€Stranded Coiled Coils. Angewandte Chemie - International Edition, 2020, 59, 20445-20449.	7.2	10
461	A new purification method for Ni and Cu stable isotopes in seawater provides evidence for widespread Ni isotope fractionation by phytoplankton in the North Pacific. Chemical Geology, 2020, 547, 119662.	1.4	22
462	Basidiospores from Wood-Decay Fungi Transform Laccase Substrates in the Absence of Glucose and Nitrogen Supplements. Journal of Fungi (Basel, Switzerland), 2020, 6, 62.	1.5	1
463	Metallomic and lipidomic analysis of <i>S. cerevisiae</i> response to cellulosic copper nanoparticles uncovers drivers of toxicity. Metallomics, 2020, 12, 799-812.	1.0	9
464	A novel iron quantum cluster confined in hemoglobin as fluorescent sensor for rapid detection of Escherichia coli. Talanta, 2020, 218, 121137.	2.9	8
465	Systematic approach of chromone skeleton for detecting Mg2+, ion: Applications for sustainable cytotoxicity and cell imaging possibilities. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2020, 235, 118290.	2.0	18
466	Characterization of the Fe metalloproteome of a ubiquitous marine heterotroph, <i>Pseudoalteromonas</i> (BB2-AT2): multiple bacterioferritin copies enable significant Fe storage. Metallomics, 2020, 12, 654-667.	1.0	16
467	Systematic Parametrization of Divalent Metal Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Theory and Computation, 2020, 16, 4429-4442.	2.3	58
468	Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes. Angewandte Chemie - International Edition, 2020, 59, 9149-9154.	7.2	61
469	The <i>czcD</i> (NiCo) Riboswitch Responds to Iron(II). Biochemistry, 2020, 59, 1508-1516.	1.2	20
470	Trace Metal Substitution in Marine Phytoplankton. Annual Review of Earth and Planetary Sciences, 2020, 48, 491-517.	4.6	52

#	Article	IF	CITATIONS
471	Bacterial manganese sensing and homeostasis. Current Opinion in Chemical Biology, 2020, 55, 96-102.	2.8	38
472	Insights into <i>ir</i> and <i>rirA</i> gene regulation on the virulence of <i>Brucella melitensis</i> M5-90. Canadian Journal of Microbiology, 2020, 66, 351-358.	0.8	8
473	Intracellular Reactions Promoted by Bis(histidine) Miniproteins Stapled Using Palladium(II) Complexes. Angewandte Chemie, 2020, 132, 9234-9239.	1.6	18
474	Antimicrobial Metal Nanomaterials: From Passive to Stimuliâ€Activated Applications. Advanced Science, 2020, 7, 1902913.	5. 6	192
476	Effect of rhizospheric inoculation of isolated arsenic (As) tolerant strains on growth, As-uptake and bacterial communities in association with Adiantum capillus-veneris. Ecotoxicology and Environmental Safety, 2020, 196, 110498.	2.9	19
477	Ynt is the primary nickel import system used by <i>Proteus mirabilis</i> and specifically contributes to fitness by supplying nickel for urease activity. Molecular Microbiology, 2020, 114, 185-199.	1.2	8
478	Ion Binding Properties of a Naturally Occurring Metalloantibody. Antibodies, 2020, 9, 10.	1.2	0
479	Structural Evaluation of Protein/Metal Complexes via Native Electrospray Ultraviolet Photodissociation Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2020, 31, 1140-1150.	1.2	16
480	Iron is a ligand of SecA-like metal-binding domains in vivo. Journal of Biological Chemistry, 2020, 295, 7516-7528.	1.6	3
481	Dysregulation of Magnesium Transport Protects Bacillus subtilis against Manganese and Cobalt Intoxication. Journal of Bacteriology, 2020, 202, .	1.0	18
482	Biological and molecular modeling studies on some transition metal(II) complexes of a quinoxaline based ONO donor bishydrazone ligand. Journal of Biomolecular Structure and Dynamics, 2021, 39, 4385-4397.	2.0	5
483	<i>Staphylococcus aureus</i> lacking a functional MntABC manganese import system has increased resistance to copper. Molecular Microbiology, 2021, 115, 554-573.	1.2	20
484	Inter-comparison of stable iron, copper and zinc isotopic compositions in six reference materials of biological origin. Talanta, 2021, 221, 121576.	2.9	16
486	Adsorption at Natural Minerals/Water Interfaces. Engineering Materials, 2021, , .	0.3	6
487	Where do the electrons go? How numerous redox processes drive phytochemical diversity. Phytochemistry Reviews, 2021, 20, 367-407.	3.1	11
488	Heavy metal removal by cyanobacteria. , 2021, , 441-466.		0
489	Transition-metal ion-mediated morphological transformation of pyridine-based peptide nanostructures. New Journal of Chemistry, 2021, 45, 153-161.	1.4	7
490	Determination of van der Waals Parameters Using a Double Exponential Potential for Nonbonded Divalent Metal Cations in TIP3P Solvent. Journal of Chemical Theory and Computation, 2021, 17, 1086-1097.	2.3	16

#	Article	IF	CITATIONS
491	Sensitive and Specific Cadmium Biosensor Developed by Reconfiguring Metal Transport and Leveraging Natural Gene Repositories. ACS Sensors, 2021, 6, 995-1002.	4.0	25
492	Metal Ion Homeostasis. , 2021, , 929-953.		1
493	Evaluation of bioactive glass scaffolds incorporating SrO or ZnO for bone repair: In vitro bioactivity and antibacterial activity. Journal of Applied Biomaterials and Functional Materials, 2021, 19, 228080002110409.	0.7	11
494	Calculating metalation in cells reveals CobW acquires Coll for vitamin B12 biosynthesis while related proteins prefer Znll. Nature Communications, 2021, 12, 1195.	5.8	32
495	Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. Journal of Chemical Information and Modeling, 2021, 61, 869-880.	2.5	81
496	A molecular docking and dynamic approach to screen inhibitors against ZnuAl of <i>Candidatus</i> Liberibacter asiaticus. Molecular Simulation, 2021, 47, 510-525.	0.9	18
497	Zinc: Multidimensional Effects on Living Organisms. Biomedicines, 2021, 9, 208.	1.4	33
498	Restriction of an intron size <i>en route</i> to endothermy. Nucleic Acids Research, 2021, 49, 2460-2487.	6.5	6
499	The Roles of Escherichia coli cyaA / crp Genes in Metal Stress. Adıyaman University Journal of Science, 0, , .	0.0	0
500	Isotopically Light Cd in Sediments Underlying Oxygen Deficient Zones. Frontiers in Earth Science, 2021, 9, .	0.8	3
501	Editorial: microbes vs. metals: harvest and recycle. FEMS Microbiology Ecology, 2021, 97, .	1.3	6
502	Characterization of the roles of activated charcoal and Chelex in the induction of PrfA regulon expression in complex medium. PLoS ONE, 2021, 16, e0250989.	1.1	3
503	Bioactive Trace Metals and Their Isotopes as Paleoproductivity Proxies: An Assessment Using GEOTRACESâ€Era Data. Global Biogeochemical Cycles, 2021, 35, e2020GB006814.	1.9	42
504	How Zinc-Binding Systems, Expressed by Human Pathogens, Acquire Zinc from the Colonized Host Environment: A Critical Review on Zincophores. Current Medicinal Chemistry, 2021, 28, 7312-7338.	1.2	9
505	CityApps: A bioinformatics tool for predicting the key residues of enzymes weakly interacting with monovalent metal ions. Process Biochemistry, 2021, 104, 76-82.	1.8	3
506	HP1021 is a redox switch protein identified in <i>Helicobacter pylori</i> . Nucleic Acids Research, 2021, 49, 6863-6879.	6.5	10
507	Refactoring of a synthetic raspberry ketone pathway with EcoFlex. Microbial Cell Factories, 2021, 20, 116.	1.9	12
508	Metal effect on intein splicing: A review. Biochimie, 2021, 185, 53-67.	1.3	9

#	Article	IF	CITATIONS
509	Iron transport in cyanobacteria – from molecules to communities. Trends in Microbiology, 2022, 30, 229-240.	3.5	19
510	Differential Multi-cellularity Is Required for the Adaptation for Bacillus licheniformis to Withstand Heavy Metals Toxicity. Indian Journal of Microbiology, 2021, 61, 524-529.	1.5	4
511	Multi-target mode of action of silver against Staphylococcus aureus endows it with capability to combat antibiotic resistance. Nature Communications, 2021, 12, 3331.	5.8	80
512	Metal(loid) speciation and transformation by aerobic methanotrophs. Microbiome, 2021, 9, 156.	4.9	10
513	Bridging the 12-6-4 Model and the Fluctuating Charge Model. Frontiers in Chemistry, 2021, 9, 721960.	1.8	4
514	COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics, 2021, 13, .	1.0	15
515	Disruption of Metallostasis in the Anaerobic Human Pathogen <i>Fusobacterium nucleatum</i> by the Zinc Ionophore PBT2. ACS Infectious Diseases, 2021, 7, 2285-2298.	1.8	6
516	Metal–ion promiscuity of microbial enzyme DapE at its second metal-binding site. Journal of Biological Inorganic Chemistry, 2021, 26, 569-582.	1.1	5
517	The Central Role of Redox-Regulated Switch Proteins in Bacteria. Frontiers in Molecular Biosciences, 2021, 8, 706039.	1.6	7
518	The Invisible Hand of the Periodic Table: How Micronutrients Shape Ecology. Annual Review of Ecology, Evolution, and Systematics, 2021, 52, 199-219.	3.8	39
519	Spectroscopic and Kinetic Properties of Purified Peroxidase from Germinated Sorghum Grains. Journal of the American Society of Brewing Chemists, 0 , , 1 -13.	0.8	0
520	Homeostasis drives intense microbial trace metal processing on marine particles. Limnology and Oceanography, 2021, 66, 3842-3855.	1.6	8
521	Strategies for Zinc Uptake in Pseudomonas aeruginosa at the Host–Pathogen Interface. Frontiers in Microbiology, 2021, 12, 741873.	1.5	7
522	Deferasirox pyridine solvate and its Cu(II) complex: Synthesis, crystal structure, Hirshfeld surface analysis, antimicrobial assays and antioxidant activity. Journal of Molecular Structure, 2022, 1249, 131525.	1.8	7
523	Regulation and biological function of metal ions in Drosophila. Current Opinion in Insect Science, 2021, 47, 18-24.	2.2	19
524	Fusobacterium nucleatum – Friend or foe?. Journal of Inorganic Biochemistry, 2021, 224, 111586.	1.5	30
525	Effect of round-shaped silver nanoparticles on the genetic and functional diversity of soil microbial community in soil and "soil-plant―systems. Applied Soil Ecology, 2021, 168, 104165.	2.1	11
526	Oxidative stress biomarkers in cyanobacteria exposed to heavy metals., 2021,, 385-403.		1

#	Article	IF	CITATIONS
528	Streptomycinâ \in induced ribosome engineering complemented with fermentation optimization for enhanced production of 10 â \in membered enediynes tiancimycinâ \in A and tiancimycinâ \in D. Biotechnology and Bioengineering, 2019, 116, 1304-1314.	1.7	28
529	Response of Cupriavidus metallidurans CH34 to Metals. Springer Briefs in Molecular Science, 2015, , 45-89.	0.1	5
531	Metallomics and Metabolomics of Plants Under Environmental Stress Caused by Metals., 2013, , 173-201.		4
532	Affected energy metabolism is the primal cause of manganese toxicity. , 2020, , 107-130.		1
533	Defining the regulatory mechanism of NikR, a nickel-responsive transcriptional regulator, in Brucella abortus. Microbiology (United Kingdom), 2018, 164, 1320-1325.	0.7	3
536	Effects of different operating parameters on hydrogen production by Parageobacillus thermoglucosidasius DSM 6285. AMB Express, 2019, 9, 207.	1.4	12
537	Identification and Characterization of the Transcriptional Regulator ChrB in the Chromate Resistance Determinant of Ochrobactrum tritici 5bvl1. PLoS ONE, 2013, 8, e77987.	1.1	24
538	Proteome-Wide Analysis and Diel Proteomic Profiling of the Cyanobacterium Arthrospira platensis PCC 8005. PLoS ONE, 2014, 9, e99076.	1.1	28
539	Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803. PLoS ONE, 2014, 9, e108912.	1.1	46
540	Francisella tularensis IglG Belongs to a Novel Family of PAAR-Like T6SS Proteins and Harbors a Unique N-terminal Extension Required for Virulence. PLoS Pathogens, 2016, 12, e1005821.	2.1	41
541	A Superoxide Dismutase Capable of Functioning with Iron or Manganese Promotes the Resistance of Staphylococcus aureus to Calprotectin and Nutritional Immunity. PLoS Pathogens, 2017, 13, e1006125.	2.1	89
542	RNA-based thermoregulation of a Campylobacter jejuni zinc resistance determinant. PLoS Pathogens, 2020, 16, e1009008.	2.1	8
543	Roles of metals in human health. MOJ Bioorganic & Organic Chemistry, 2018, 2, .	0.1	22
544	Small and Hungry: MicroRNAs in Micronutrient Homeostasis of Plants. MicroRNA (Shariqah, United) Tj ETQq1 1 ().784314 t	rgBT/Overlo
545	Effect of aluminum in Bacillus megaterium nickel resistance and removal capability. Mexican Journal of Biotechnology, 2017, 2, 206-220.	0.2	3
546	Growth and biochemical constituents of an indigenous cyanobacterium affected by heavy metal stress. Environment Conservation Journal, 2016, 17, 37-43.	0.1	2
547	Metal Toxicity in Microorganism. Advances in Environmental Engineering and Green Technologies Book Series, 2017, , 1-23.	0.3	4
548	Mechanistic studies of the cofactor assembly in class Ib ribonucleotide reductases and protein affinity for MnII and FeII. Metallomics, 2021, 13 , .	1.0	3

#	ARTICLE	IF	CITATIONS
549	Functions predict horizontal gene transfer and the emergence of antibiotic resistance. Science Advances, 2021, 7, eabj5056.	4.7	44
550	Multi-Element Composition of Diatom Chaetoceros spp. from Natural Phytoplankton Assemblages of the Russian Arctic Seas. Biology, 2021, 10, 1009.	1.3	11
551	Dynamics of Soil Microbial N-Cycling Strategies in Response to Cadmium Stress. Environmental Science &	4.6	39
552	Characterization of the metalloproteome of <i>Pseudoalteromonas</i> (BB2-AT2): biogeochemical underpinnings for zinc, manganese, cobalt, and nickel cycling in a ubiquitous marine heterotroph. Metallomics, 2021, 13, .	1.0	6
553	Metal Transport. Plant Cell Monographs, 2011, , 303-330.	0.4	0
555	Magnesium, Copper and Cobalt. , 2017, , 81-94.		0
558	THE MECHANISMS OF BACTERICIDAL ACTION IMPACT IN COMMON ANTIBACTERIAL EFFECTS OF METAL CATIONS IN CULTURE OF STREPTOCOCCUS PYOGENES. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2018, , 3-9.	0.3	0
559	BACTERIAL METALLOTHIONEINS. Postepy Mikrobiologii, 2019, 56, 171-179.	0.1	1
561	Enzyme alchemy: cell-free synthetic biochemistry for natural products. Emerging Topics in Life Sciences, 2019, 3, 529-535.	1.1	3
565	Methicillin-Resistant Staphylococcus aureus Proteome Response to Antibiotic Stress Provides Insights for New Therapeutic Strategies. OMICS A Journal of Integrative Biology, 2021, 25, 711-724.	1.0	3
566	Deciphering the Key Factors for Heavy Metal Resistance in Gram-Negative Bacteria., 2020, , 101-116.		3
567	Roles of Type VI Secretion System in Transport of Metal Ions. Frontiers in Microbiology, 2021, 12, 756136.	1.5	23
568	The cell biology of zinc. Journal of Experimental Botany, 2022, 73, 1688-1698.	2.4	29
569	Cationic Peptides and Their Cu(II) and Ni(II) Complexes: Coordination and Biological Characteristics. International Journal of Molecular Sciences, 2021, 22, 12028.	1.8	5
571	Parameterization of a Dioxygen Binding Metal Site Using the MCPB.py Program. Methods in Molecular Biology, 2021, 2199, 257-275.	0.4	3
572	PRODUCTION OF Candida BIOMASSES FOR HEAVY METAL REMOVAL FROM WASTEWATERS. Trakya University Journal of Natural Sciences, 0, , .	0.4	2
573	Effect of Copper(II) Ion Binding by Porin P1 Precursor Fragments from Fusobacterium nucleatum on DNA Degradation. International Journal of Molecular Sciences, 2021, 22, 12541.	1.8	3
574	Towards a Synthetic Biology Toolset for Metallocluster Enzymes in Biosynthetic Pathways: What We Know and What We Need. Molecules, 2021, 26, 6930.	1.7	4

#	Article	IF	CITATIONS
575	Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression. Metallomics, 2021, 13, .	1.0	4
576	Structural and thermodynamic insights into a novel Mg ²⁺ â€"citrate-binding protein from the ABC transporter superfamily. Acta Crystallographica Section D: Structural Biology, 2021, 77, 1516-1534.	1.1	1
577	Sustainable approaches for nickel removal from wastewater using bacterial biomass and nanocomposite adsorbents: A review. Chemosphere, 2022, 291, 132862.	4.2	8
578	Advances in Molecular Modeling of Ion-Protein Interaction Systems Towards Accurate Electrostatics: Methods and Applications. Journal of Computational Biophysics and Chemistry, 0, , 1-11.	1.0	2
579	Cu and Cu-based nanomaterials as nanofungicides. , 2022, , 155-183.		0
580	Quantifying structural relationships of metal-binding sites suggests origins of biological electron transfer. Science Advances, 2022, 8, eabj3984.	4.7	24
581	AzuR From the SmtB/ArsR Family of Transcriptional Repressors Regulates Metallothionein in Anabaena sp. Strain PCC 7120. Frontiers in Microbiology, 2021, 12, 782363.	1.5	2
582	Hydroxamic Acid as a Potent Metal-Binding Group for Inhibiting Tyrosinase. Antioxidants, 2022, 11, 280.	2.2	7
583	General chemistry of metals, sampling, analytical methods, and speciation., 2022, , 15-54.		0
584	Old dogs, new tricks: New insights into the iron/manganese superoxide dismutase family. Journal of Inorganic Biochemistry, 2022, 230, 111748.	1.5	7
585	Multivariate analysis of otolith microchemistry can discriminate the source of oil contamination in exposed fish. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2022, 254, 109253.	1.3	3
586	Past mastering of metal transformation enabled physicians to increase their therapeutic potential. Journal of Trace Elements in Medicine and Biology, 2022, 71, 126926.	1.5	2
587	Fe-S clusters masquerading as zinc finger proteins. Journal of Inorganic Biochemistry, 2022, 230, 111756.	1.5	11
589	Peculiarities of the Edaphic Cyanobacterium Nostoc linckia Culture Response and Heavy Metal Accumulation from Copper-Containing Multimetal Systems. Toxics, 2022, 10, 113.	1.6	1
590	A Metalâ€ionâ€incorporated Musselâ€inspired Poly(Vinyl Alcohol)â€Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
591	Supramolecular Salts of Fe(II)/Co(II)/Ni(II)/Cu(II)/Zn(II) 1,10â€Phenanthroline Cations and Similar Complex Tartratostannate(IV) Anions: From Structural Features to Antimicrobial Activity and Enzyme Activation. ChemistrySelect, 2022, 7, .	0.7	3
592	In-Cell Structural Biology by NMR: The Benefits of the Atomic Scale. Chemical Reviews, 2022, 122, 9497-9570.	23.0	55
593	Overcoming universal restrictions on metal selectivity by protein design. Nature, 2022, 603, 522-527.	13.7	32

#	Article	IF	CITATIONS
594	A Metalâ€lonâ€lncorporated Musselâ€lnspired Poly(Vinyl Alcohol)â€Based Polymer Coating Offers Improved Antibacterial Activity and Cellular Mechanoresponse Manipulation. Angewandte Chemie, 0, , .	1.6	0
595	Porphyrin in Prebiotic Catalysis: Ascertaining a Route for the Emergence of Early Metalloporphyrins**. ChemBioChem, 2022, 23, .	1.3	8
596	Effect of Ferredoxin Receptor FusA on the Virulence Mechanism of Pseudomonas plecoglossicida. Frontiers in Cellular and Infection Microbiology, 2022, 12, 808800.	1.8	12
597	Higher sensitivity to Cu2+ exposure of Microcystis aeruginosa in late lag phase is beneficial to its control. Water Research, 2022, 214, 118207.	5. 3	21
598	Using a chemical genetic screen to enhance our understanding of the antimicrobial properties of copper. Metallomics, $2022, 14, .$	1.0	4
599	Review on the QM/MM Methodologies and Their Application to Metalloproteins. Molecules, 2022, 27, 2660.	1.7	28
601	Impact and control of fouling in radioactive environments. Progress in Nuclear Energy, 2022, 148, 104215.	1.3	6
610	The role of nucleoside triphosphate hydrolase metallochaperones in making metalloenzymes. Metallomics, 2022, 14, .	1.0	7
611	Ecotoxicological response of Spirulina platensis to coexisted copper and zinc in anaerobic digestion effluent. Science of the Total Environment, 2022, 837, 155874.	3.9	6
612	Emerging frontiers in virtual drug discovery: From quantum mechanical methods to deep learning approaches. Current Opinion in Chemical Biology, 2022, 69, 102156.	2.8	13
613	Effects of 4â€Brâ€A23187 on <i>Bacillus subtilis</i> cells and unilamellar vesicles reveal it to be a potent copper ionophore. Proteomics, 2022, 22, .	1.3	6
616	HYBRID ANTIBACTERIAL MICROFIBERS OF CELLULOSE ACETATE MODIFIED WITH NOVEL PYRIDINE COMPLEXES TO OVERCOME ANTIMICROBIAL RESISTANCE. Cellulose Chemistry and Technology, 2022, 56, 559-573.	0.5	3
617	Genome analysis and virulence gene expression profile of a multi drug resistant Salmonella enterica serovar Typhimurium ms202. Gut Pathogens, 2022, 14, .	1.6	6
618	Biofilm control on metallic materials in medical fields from the viewpoint of materials science – from the fundamental aspects to evaluation. International Materials Reviews, 2023, 68, 247-271.	9.4	2
619	Battle for Metals: Regulatory RNAs at the Front Line. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	9
620	Regulation of Bacterial Manganese Homeostasis and Usage During Stress Responses and Pathogenesis. Frontiers in Molecular Biosciences, 0, 9, .	1.6	9
621	Calcium Determines <i>Lactiplantibacillus plantarum</i> Intraspecies Competitive Fitness. Applied and Environmental Microbiology, 2022, 88, .	1.4	2
622	Synthesis of new thiourea derivatives and metal complexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. Journal of Molecular Structure, 2022, 1269, 133758.	1.8	12

#	Article	IF	Citations
623	Metal Homeostasis in Pathogenic Streptococci. Microorganisms, 2022, 10, 1501.	1.6	5
625	Efficient Base-Catalyzed Kemp Elimination in an Engineered Ancestral Enzyme. International Journal of Molecular Sciences, 2022, 23, 8934.	1.8	5
627	Metal ion homeostasis: Metalloenzyme paralogs in the bacterial adaptative response to zinc restriction. , 2022, , .		1
628	Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving–Williams Behavior. Journal of the American Chemical Society, 2022, 144, 18090-18100.	6.6	6
629	Copper nanoparticles and their oxides: optical, anticancer and antibacterial properties. International Nano Letters, 2022, 12, 379-398.	2.3	25
630	Simultaneous analysis of 16 metal ions by ion― <scp>pairing</scp> highâ€performance liquid chromatographyâ€electrospray ionization tandem mass spectrometry. Journal of the Chinese Chemical Society, 0, , .	0.8	2
631	Substrate Induced Movement of the Metal Cofactor between Active and Resting State. Angewandte Chemie, $0, , .$	1.6	0
632	Manganese Limitation of Phytoplankton Physiology and Productivity in the Southern Ocean. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
633	Biochemical studies highlight determinants for metal selectivity in the $<$ i>Escherichia coli $<$ li>periplasmic solute binding protein NikA. Metallomics, 2022, 14, .	1.0	1
634	Substrate Induced Movement of the Metal Cofactor between Active and Resting State. Angewandte Chemie - International Edition, 0, , .	7.2	1
635	Declining metal availability in the Mesozoic seawater reflected in phytoplankton succession. Nature Geoscience, 2022, 15, 932-941.	5.4	5
636	Dynamical activation of function in metalloenzymes. FEBS Letters, 2023, 597, 79-91.	1.3	3
638	Supramolecular enzyme-mimicking catalysts self-assembled from peptides. IScience, 2023, 26, 105831.	1.9	5
639	Molecular Insights into the Calcium Binding in Troponin C through a Molecular Dynamics Study. Journal of Chemical Information and Modeling, 2023, 63, 354-361.	2.5	0
640	Metal-coordinated nanodrugs based on natural products for cancer theranostics. Chemical Engineering Journal, 2023, 456, 140892.	6.6	9
641	Co-evolution-based prediction of metal-binding sites in proteomes by machine learning. Nature Chemical Biology, 2023, 19, 548-555.	3.9	10
642	The role of oxidative stress in genome destabilization and adaptive evolution of bacteria. Gene, 2023, 857, 147170.	1.0	1
643	Accurate Metal–Imidazole Interactions. Journal of Chemical Theory and Computation, 2023, 19, 619-625.	2.3	3

#	Article	IF	CITATIONS
644	Protein assembly: Controllable design strategies and applications in biology. Aggregate, 2023, 4, .	5.2	5
646	Divalent metal ion binding to Staphylococcus aureus FeoB transporter regions. Journal of Inorganic Biochemistry, 2023, 244, 112203.	1.5	3
647	Unsymmetrically bi-functionalized $1,1\hat{a}\in^2$ -ferrocenyl bi-hydrazone and hydrazone-cyanovinyl molecules as fluorescent $\hat{a}\in\infty$ on $\hat{a}\in$ sensor: Synthesis, cytotoxicity and cancer cell imaging behavior. Inorganica Chimica Acta, 2023, 552, 121511.	1.2	3
648	Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes "multicopper oxidases and superoxide dismutases― International Journal of Biological Macromolecules, 2023, 233, 123534.	3.6	4
649	Identification and characterization of two transcriptional regulators in Xanthomonas oryzae pv. oryzicola YM15. Physiological and Molecular Plant Pathology, 2023, 124, 101964.	1.3	1
650	Trace metal nutrition and response to deficiency. , 2023, , 167-203.		2
651	Insights into the structure-function relationship of the NorQ/NorD chaperones from Paracoccus denitrificans reveal shared principles of interacting MoxR AAA+/VWA domain proteins. BMC Biology, 2023, 21, .	1.7	0
652	What Is the Correlation between Preeclampsia and Cancer? The Important Role of Tachykinins and Transition Metal Ions. Pharmaceuticals, 2023, 16, 366.	1.7	0
653	<i>In Situ</i> Microscopic Studies on the Interaction of Multi-Principal Element Nanoparticles and Bacteria. ACS Nano, 2023, 17, 5880-5893.	7. 3	6
654	Enhanced Bacterial Growth by Polyelemental Glycerolate Particles. ACS Applied Bio Materials, 2023, 6, 1515-1524.	2.3	4
655	Evaluation of copper-induced biomolecular changes in different porin mutants of Escherichia coli W3110 by infrared spectroscopy. Journal of Biological Physics, 2023, 49, 309-327.	0.7	1
656	An ancient metalloenzyme evolves through metal preference modulation. Nature Ecology and Evolution, 2023, 7, 732-744.	3.4	2
657	Steric Effects on the Chelation of Mn ²⁺ and Zn ²⁺ by Hexadentate Polyimidazole Ligands: Modeling Metal Binding by Calprotectin Site 2. Chemistry - A European Journal, 2023, 29, .	1.7	1
658	The Metal-binding Protein Atlas (MbPA): An Integrated Database for Curating Metalloproteins in All Aspects. Journal of Molecular Biology, 2023, 435, 168117.	2.0	5
663	Atomically Accurate Design of Metalloproteins with Predefined Coordination Geometries. Journal of the American Chemical Society, 0 , , .	6.6	0
687	Biological transformations of mineral nutrients in soils and their role in soil biogeochemistry. , 2024, , 439-471.		O