Epidermal homeostasis: a balancing act of stem cells in

Nature Reviews Molecular Cell Biology 10, 207-217 DOI: 10.1038/nrm2636

Citation Report

#	Article	IF	CITATIONS
1	Regeneration of Epidermis from Adult Keratinocyte Stem Cells. , 2009, , 551-560.		2
2	Differentiation of the sebaceous gland. Dermato-Endocrinology, 2009, 1, 64-67.	1.9	51
3	Cadherin-mediated Intercellular Adhesion and Signaling Cascades Involving Small GTPases. Cold Spring Harbor Perspectives in Biology, 2009, 1, a003020-a003020.	2.3	68
4	Hypoxiaâ€inducible factors in stem cells and cancer. Journal of Cellular and Molecular Medicine, 2009, 13, 4319-4328.	1.6	121
5	Adhesion within the stem cell niches. Current Opinion in Cell Biology, 2009, 21, 623-629.	2.6	90
6	The Tortoise and the Hair: Slow-Cycling Cells in the Stem Cell Race. Cell, 2009, 137, 811-819.	13.5	351
7	Finding One's Niche in the Skin. Cell Stem Cell, 2009, 4, 499-502.	5.2	147
8	mTOR Mediates Wnt-Induced Epidermal Stem Cell Exhaustion and Aging. Cell Stem Cell, 2009, 5, 279-289.	5.2	356
9	Regulation of Stem Cell Pluripotency and Differentiation Involves a Mutual Regulatory Circuit of the Nanog, OCT4, and SOX2 Pluripotency Transcription Factors With Polycomb Repressive Complexes and Stem Cell microRNAs. Stem Cells and Development, 2009, 18, 1093-1108.	1.1	375
10	Epidermal stem cell diversity and quiescence. EMBO Molecular Medicine, 2009, 1, 260-267.	3.3	162
11	Tissue Engineering in Plastic Surgery: A Review. Plastic and Reconstructive Surgery, 2010, 126, 858-868.	0.7	28
12	Emerging use of stem cells in regenerative medicine. Biochemical Journal, 2010, 428, 11-23.	1.7	92
13	Basement membrane components are key players in specialized extracellular matrices. Cellular and Molecular Life Sciences, 2010, 67, 2879-2895.	2.4	198
14	Probing Stemness and Neural Commitment in Human Amniotic Fluid Cells. Stem Cell Reviews and Reports, 2010, 6, 199-214.	5.6	49
15	Stem Cell Competition for Niche Occupancy: Emerging Themes and Mechanisms. Stem Cell Reviews and Reports, 2010, 6, 345-350.	5.6	12
16	Comparative transcriptional profiling of the limbal epithelial crypt demonstrates its putative stem cell niche characteristics. BMC Genomics, 2010, 11, 526.	1.2	74
17	Nature or nurture: Let food be your epigenetic medicine in chronic inflammatory disorders. Biochemical Pharmacology, 2010, 80, 1816-1832.	2.0	121
18	The hair follicle—a stem cell zoo. Experimental Cell Research, 2010, 316, 1422-1428.	1.2	147

		CITATION REPORT	
#	Article	IF	Citations
19	Keratinocyte stem cells: Friends and foes. Journal of Cellular Physiology, 2010, 225, 310-315.	2.0	74
20	Stem Cell Microenvironments ―Unveiling the Secret of How Stem Cell Fate is Defined. Macror Bioscience, 2010, 10, 1302-1315.	nolecular 2.1	74
21	Pathological axes of wound repair: Gastrulation revisited. Theoretical Biology and Medical Modelling, 2010, 7, 37.	2.1	24
22	Concise Review: Kidney Stem/Progenitor Cells: Differentiate, Sort Out, or Reprogram?. Stem Ce 2010, 28, 1649-1660.	ls, 1.4	89
23	Sebaceous neoplasia and the Muir–Torre syndrome: important connections with clinical impli Histopathology, 2010, 56, 133-147.	cations. 1.6	125
24	Stem cell therapies for recessive dystrophic epidermolysis bullosa. British Journal of Dermatolog 2010, 163, 1149-1156.	y, 1.4	21
25	Development of the prenatal cutaneous antigenâ€presenting cell network. Immunology and Ce Biology, 2010, 88, 393-399.	1.0	16
26	APCDD1 is a novel Wnt inhibitor mutated in hereditary hypotrichosis simplex. Nature, 2010, 46 1043-1047.	4, 13.7	206
27	Skin regeneration and repair. Nature, 2010, 464, 686-687.	13.7	92
28	Identification of the cell lineage at the origin of basal cell carcinoma. Nature Cell Biology, 2010, 299-305.	12, 4.6	345
29	Bcl-2 and accelerated DNA repair mediates resistance of hair follicle bulge stem cells to DNA-damage-induced cell death. Nature Cell Biology, 2010, 12, 572-582.	4.6	222
30	MicroRNA control of signal transduction. Nature Reviews Molecular Cell Biology, 2010, 11, 252	-263. 16.1	1,145
31	MET signalling: principles and functions in development, organ regeneration and cancer. Nature Reviews Molecular Cell Biology, 2010, 11, 834-848.	16.1	1,029
32	Stem and progenitor cell compartments within adult mouse taste buds. European Journal of Neuroscience, 2010, 31, 1549-1560.	1.2	42
33	DKK1 Mediated Inhibition of Wnt Signaling in Postnatal Mice Leads to Loss of TEC Progenitors a Thymic Degeneration. PLoS ONE, 2010, 5, e9062.	and 1.1	60
34	C/EBPα and C/EBPβ Are Required for Sebocyte Differentiation and Stratified Squamous Differentiation Adult Mouse Skin. PLoS ONE, 2010, 5, e9837.	ntiation in 1.1	38
36	Notch regulates the switch from symmetric to asymmetric neural stem cell division in the <i>Drosophila</i> optic lobe. Development (Cambridge), 2010, 137, 2981-2987.	1.2	146
37	The Hippo tumor suppressor pathway regulates intestinal stem cell regeneration. Development (Cambridge), 2010, 137, 4135-4145.	1.2	282

#	Article	IF	CITATIONS
38	Basal cell carcinoma and the carcinogenic role of aberrant Hedgehog signaling. Future Oncology, 2010, 6, 1003-1014.	1.1	24
39	A milieu of regulatory elements in the epidermal differentiation complex syntenic block: implications for atopic dermatitis and psoriasis. Human Molecular Genetics, 2010, 19, 1453-1460.	1.4	92
40	Deciphering the Mesodermal Potency of Porcine Skin-Derived Progenitors (SKP) by Microarray Analysis. Cellular Reprogramming, 2010, 12, 161-173.	0.5	8
41	Porcine Skin-Derived Progenitor (SKP) Spheres and Neurospheres: Distinct "Stemness―Identified by Microarray Analysis. Cellular Reprogramming, 2010, 12, 329-345.	0.5	8
42	Transcription factor E4F1 is essential for epidermal stem cell maintenance and skin homeostasis. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 21076-21081.	3.3	36
43	Parasympathetic Innervation Maintains Epithelial Progenitor Cells During Salivary Organogenesis. Science, 2010, 329, 1645-1647.	6.0	289
45	<i>Drosophila</i> Boi limits Hedgehog levels to suppress follicle stem cell proliferation. Journal of Cell Biology, 2010, 191, 943-952.	2.3	69
46	p38Î′ mitogen-activated protein kinase regulates skin homeostasis and tumorigenesis. Cell Cycle, 2010, 9, 498-505.	1.3	14
47	Acclimatized Induction Reveals the Multipotency of Adult Human Undifferentiated Keratinocytes. Cellular Reprogramming, 2010, 12, 283-294.	0.5	5
48	Removing all obstacles: A critical role for p53 in promoting tissue renewal. Cell Cycle, 2010, 9, 1313-1319.	1.3	31
49	Exact solution of a two-type branching process: clone size distribution in cell division kinetics. Journal of Statistical Mechanics: Theory and Experiment, 2010, 2010, P07028.	0.9	20
50	Canine Follicle Stem Cell Candidates Reside in the Bulge and Share Characteristic Features with Human Bulge Cells. Journal of Investigative Dermatology, 2010, 130, 1988-1995.	0.3	36
51	Skin-Derived Stem Cells in Human Scar Tissues: A Novel Isolation and Proliferation Technique and Their Differentiation Potential to Neurogenic Progenitor Cells. Tissue Engineering - Part C: Methods, 2010, 16, 619-629.	1.1	7
52	MicroRNAs in Mammalian Development. Modecular Medicine and Medicinal, 2010, , 95-123.	0.4	0
53	Myocyte Turnover in the Aging Human Heart. Circulation Research, 2010, 107, 1374-1386.	2.0	260
54	Development and homeostasis of â€~resident' myeloid cells: the case of the Langerhans cell. Trends in Immunology, 2010, 31, 438-445.	2.9	53
55	The Ordered Architecture of Murine Ear Epidermis Is Maintained by Progenitor Cells with Random Fate. Developmental Cell, 2010, 18, 317-323.	3.1	221
56	TPP1 Is Required for TERT Recruitment, Telomere Elongation during Nuclear Reprogramming, and Normal Skin Development in Mice. Developmental Cell, 2010, 18, 775-789.	3.1	116

#	Article	IF	CITATIONS
57	Melanocyte stem cells express receptors for canonical Wnt-signaling pathway on their surface. Biochemical and Biophysical Research Communications, 2010, 396, 837-842.	1.0	27
58	Generation of insulin-producing cells from gnotobiotic porcine skin-derived stem cells. Biochemical and Biophysical Research Communications, 2010, 397, 679-684.	1.0	9
59	Runx family genes, niche, and stem cell quiescence. Blood Cells, Molecules, and Diseases, 2010, 44, 275-286.	0.6	43
60	A Dominant Role of the Hair Follicle Stem Cell Niche in Regulating Melanocyte Stemness. Cell Stem Cell, 2010, 6, 95-96.	5.2	7
61	Stem Cells and the Niche: A Dynamic Duo. Cell Stem Cell, 2010, 6, 103-115.	5.2	349
62	Psoriasis: what we have learned from mouse models. Nature Reviews Rheumatology, 2010, 6, 704-714.	3.5	190
63	Notch Signaling in the Regulation of Stem Cell Self-Renewal and Differentiation. Current Topics in Developmental Biology, 2010, 92, 367-409.	1.0	270
64	The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, 2010, , .	0.8	3
65	Human Eccrine Sweat Gland Cells Can Reconstitute a Stratified Epidermis. Journal of Investigative Dermatology, 2010, 130, 1996-2009.	0.3	86
66	Inference of an in situ epidermal intracellular signaling cascade. , 2010, 2010, 799-802.		3
67	p63 is a suppressor of tumorigenesis and metastasis interacting with mutant p53. Cell Death and Differentiation, 2011, 18, 1487-1499.	5.0	195
68	Manifestations and mechanisms of stem cell aging. Journal of Cell Biology, 2011, 193, 257-266.	2.3	281
69	Lhx2 differentially regulates Sox9, Tcf4 and Lgr5 in hair follicle stem cells to promote epidermal regeneration after injury. Development (Cambridge), 2011, 138, 4843-4852.	1.2	104
70	Hair follicle dermal papilla cells at a glance. Journal of Cell Science, 2011, 124, 1179-1182.	1.2	375
71	Analysis of cell characterization using cell surface markers in the dermis. Journal of Dermatological Science, 2011, 62, 98-106.	1.0	29
72	Visualization and characterisation of defined hair follicle compartments by Fourier transform infrared (FTIR) imaging without labelling. Journal of Dermatological Science, 2011, 63, 191-198.	1.0	14
73	Damage at the root of cell renewal—UV sensitivity of human epidermal stem cells. Journal of Dermatological Science, 2011, 64, 16-22.	1.0	11
74	<scp>R</scp> eâ€epithelialization of wounds. Endodontic Topics, 2011, 24, 59-93.	0.5	34

#	Article	IF	CITATIONS
75	Epithelial Stem Cells. Methods in Molecular Biology, 2011, 750, 261-274.	0.4	4
76	Distinct stem cells contribute to mammary gland development and maintenance. Nature, 2011, 479, 189-193.	13.7	733
77	The disintegrin/metalloproteinase Adam10 is essential for epidermal integrity and Notch-mediated signaling. Development (Cambridge), 2011, 138, 495-505.	1.2	130
78	Permeability Barrier. Methods in Molecular Biology, 2011, , .	0.4	6
80	Effects of Age and Heart Failure on Human Cardiac Stem Cell Function. American Journal of Pathology, 2011, 179, 349-366.	1.9	183
81	Skin Stem Cells Orchestrate Directional Migration by Regulating Microtubule-ACF7 Connections through GSK3β. Cell, 2011, 144, 341-352.	13.5	179
82	Coordinated Activation of Wnt in Epithelial and Melanocyte Stem Cells Initiates Pigmented Hair Regeneration. Cell, 2011, 145, 941-955.	13.5	263
83	Strategies for Homeostatic Stem Cell Self-Renewal in Adult Tissues. Cell, 2011, 145, 851-862.	13.5	441
84	Vision from the right stem. Trends in Molecular Medicine, 2011, 17, 1-7.	3.5	37
85	A procedure for identifying stem cell compartments with multi-lineage differentiation potential. Analyst, The, 2011, 136, 1440.	1.7	13
86	DNA-Damage Response in Tissue-Specific and Cancer Stem Cells. Cell Stem Cell, 2011, 8, 16-29.	5.2	288
87	Specific MicroRNAs Are Preferentially Expressed by Skin Stem Cells To Balance Self-Renewal and Early Lineage Commitment. Cell Stem Cell, 2011, 8, 294-308.	5.2	184
88	Nerve-Derived Sonic Hedgehog Defines a Niche for Hair Follicle Stem Cells Capable of Becoming Epidermal Stem Cells. Cell Stem Cell, 2011, 8, 552-565.	5.2	395
89	Genome-wide Maps of Histone Modifications Unwind InÂVivo Chromatin States of the Hair Follicle Lineage. Cell Stem Cell, 2011, 9, 219-232.	5.2	187
90	Fate Restriction and Multipotency in Retinal Stem Cells. Cell Stem Cell, 2011, 9, 553-562.	5.2	83
91	The multi-potentiality of skin-derived stem cells in pigs. Theriogenology, 2011, 75, 1372-1380.	0.9	10
92	The Mutational Landscape of Head and Neck Squamous Cell Carcinoma. Science, 2011, 333, 1157-1160.	6.0	2,225
93	Decreased expression of p63, a regulator of epidermal stem cells, in the chronic laminitic equine hoof. Equine Veterinary Journal, 2011, 43, 543-551.	0.9	33

#	Article	IF	CITATIONS
94	Developmental roles for Srf, cortical cytoskeleton and cell shape in epidermal spindle orientation. Nature Cell Biology, 2011, 13, 203-214.	4.6	153
95	Combined Gene and Stem Cell Therapy for Cutaneous Wound Healing. Molecular Pharmaceutics, 2011, 8, 1471-1479.	2.3	69
96	miR-203 modulates epithelial differentiation of human embryonic stem cells towards epidermal stratification. Developmental Biology, 2011, 356, 506-515.	0.9	44
97	Cellular adhesion on collagen: a simple method to select human basal keratinocytes which preserves their high growth capacity. European Journal of Dermatology, 2011, 21, 12-20.	0.3	7
98	Phytochemicals and Cancer Chemoprevention: Epigenetic Friends or Foe?. , 0, , .		2
99	Quiescent, Slow-Cycling Stem Cell Populations in Cancer: A Review of the Evidence and Discussion of Significance. Journal of Oncology, 2011, 2011, 1-11.	0.6	306
100	Transforming Growth Factor-? and Endoglin Signaling Orchestrate Wound Healing. Frontiers in Physiology, 2011, 2, 89.	1.3	91
101	The International Workshop on Meibomian Gland Dysfunction: Report of the Subcommittee on Anatomy, Physiology, and Pathophysiology of the Meibomian Gland. , 2011, 52, 1938.		780
102	Macrophages in Injured Skeletal Muscle: A Perpetuum Mobile Causing and Limiting Fibrosis, Prompting or Restricting Resolution and Regeneration. Frontiers in Immunology, 2011, 2, 62.	2.2	65
103	Intensified expressions of a monocarboxylate transporter in consistently renewing tissues of the mouse. Biomedical Research, 2011, 32, 293-301.	0.3	9
104	Sequential and Coordinated Actions of c-Myc and N-Myc Control Appendicular Skeletal Development. PLoS ONE, 2011, 6, e18795.	1.1	17
105	The Hair Follicle Bulge: A Niche for Adult Stem Cells. Microscopy and Microanalysis, 2011, 17, 513-519.	0.2	18
106	Survivin in skin pathologies. Experimental Dermatology, 2011, 20, 457-463.	1.4	20
107	Stem cells and the repair of radiationâ€induced salivary gland damage. Oral Diseases, 2011, 17, 143-153.	1.5	94
108	Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature Reviews Molecular Cell Biology, 2011, 12, 565-580.	16.1	375
109	Ras and Raf pathways in epidermis development and carcinogenesis. British Journal of Cancer, 2011, 104, 229-234.	2.9	57
110	A Comprehensive Analysis of MicroRNA Expression During Human Keratinocyte Differentiation In Vitro and In Vivo. Journal of Investigative Dermatology, 2011, 131, 20-29.	0.3	95
112	ΔNp63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death and Differentiation, 2011, 18, 887-896.	5.0	119

#	Article		CITATIONS
113	Effect of epithelial stem cell transplantation on noise-induced hearing loss in adult mice. Neurobiology of Disease, 2011, 41, 552-559.	2.1	19
114	Regenerative Medicine. Current Problems in Surgery, 2011, 48, 148-212.	0.6	30
115	Basal Cell Carcinomas Arise from Hair Follicle Stem Cells in Ptch1+/â^' Mice. Cancer Cell, 2011, 19, 114-124.	7.7	191
116	Actomyosin-Mediated Cellular Tension Drives Increased Tissue Stiffness and β-Catenin Activation to Induce Epidermal Hyperplasia and Tumor Growth. Cancer Cell, 2011, 19, 776-791.	7.7	477
117	Signaling circuitries controlling stem cell fate: to be or not to be. Current Opinion in Cell Biology, 2011, 23, 716-723.	2.6	64
118	The opposing transcriptional functions of Sin3a and c-Myc are required to maintain tissue homeostasis. Nature Cell Biology, 2011, 13, 1395-1405.	4.6	57
119	Isolation and in vitro expansion of Lgr6-positive multipotent hair follicle stem cells. Cell and Tissue Research, 2011, 344, 435-444.	1.5	18
120	Re-Assessing K15 as an Epidermal Stem Cell Marker. Stem Cell Reviews and Reports, 2011, 7, 927-934.	5.6	25
121	Concise Review: Transplantation of Human Hematopoietic Cells for Extracellular Matrix Protein Deficiency in Epidermolysis Bullosa. Stem Cells, 2011, 29, 900-906.	1.4	31
122	Concise Review: Stem Cell Effects in Radiation Risk. Stem Cells, 2011, 29, 1315-1321.	1.4	44
123	Characterization of factors that determine lentiviral vector tropism in skin tissue using an <i>ex vivo</i> model. Journal of Gene Medicine, 2011, 13, 209-220.	1.4	7
124	Impaired Keratinocyte Proliferative and Clonogenic Potential in Transgenic Mice Overexpressing 14-3-3Ïf in the Epidermis. Journal of Investigative Dermatology, 2011, 131, 1821-1829.	0.3	14
125	Pushing Back: Wound Mechanotransduction in Repair and Regeneration. Journal of Investigative Dermatology, 2011, 131, 2186-2196.	0.3	175
126	Identifying the cellular origin of squamous skin tumors. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 7431-7436.	3.3	257
127	Role of epidermal primary cilia in the homeostasis of skin and hair follicles. Development (Cambridge), 2011, 138, 1675-1685.	1.2	58
128	The Cx26-G45E mutation displays increased hemichannel activity in a mouse model of the lethal form of keratitis-ichthyosis-deafness syndrome. Molecular Biology of the Cell, 2011, 22, 4776-4786.	0.9	81
129	Protein 4.1R regulates cell adhesion, spreading, migration and motility of mouse keratinocytes by modulating surface expression of \hat{l}^21 integrin. Journal of Cell Science, 2011, 124, 2478-2487.	1.2	30
130	The role of cathepsin E in terminal differentiation of keratinocytes. Biological Chemistry, 2011, 392, 571-85.	1.2	12

#	Article		CITATIONS
131	Cellular Systems for Studying Human Oral Squamous Cell Carcinomas. Advances in Experimental Medicine and Biology, 2011, 720, 27-38.	0.8	8
132	EMILIN1–α4/α9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation. Journal of Cell Biology, 2011, 195, 131-145.	2.3	86
133	p63 regulates <i>Satb1</i> to control tissue-specific chromatin remodeling during development of the epidermis. Journal of Cell Biology, 2011, 194, 825-839.	2.3	160
134	Cooperation between both Wnt/β-catenin and PTEN/PI3K/Akt signaling promotes primitive hematopoietic stem cell self-renewal and expansion. Genes and Development, 2011, 25, 1928-1942.	2.7	154
135	E4F1 connects the Bmi1-ARF-p53 pathway to epidermal stem cell-dependent skin homeostasis. Cell Cycle, 2011, 10, 866-867.	1.3	7
136	Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. Dermato-Endocrinology, 2011, 3, 166-174.	1.9	37
137	Selecting the optimal cell for kidney regeneration. Organogenesis, 2011, 7, 123-134.	0.4	36
138	Hair Follicular Expression and Function of Group X Secreted Phospholipase A2 in Mouse Skin. Journal of Biological Chemistry, 2011, 286, 11616-11631.	1.6	34
139	Runx1 modulates adult hair follicle stem cell emergence and maintenance from distinct embryonic skin compartments. Journal of Cell Biology, 2011, 193, 235-250.	2.3	63
140	EZH1 and EZH2 cogovern histone H3K27 trimethylation and are essential for hair follicle homeostasis and wound repair. Genes and Development, 2011, 25, 485-498.	2.7	332
142	p63, a Story of Mice and Men. Journal of Investigative Dermatology, 2011, 131, 1196-1207.	0.3	149
143	Identification of Trichohyalin-Like 1, an S100 Fused-Type Protein Selectively Expressed in Hair Follicles. Journal of Investigative Dermatology, 2011, 131, 1761-1763.	0.3	17
144	The RNA–Methyltransferase Misu (NSun2) Poises Epidermal Stem Cells to Differentiate. PLoS Genetics, 2011, 7, e1002403.	1.5	160
145	TCF/Lef1 activity controls establishment of diverse stem and progenitor cell compartments in mouse epidermis. EMBO Journal, 2011, 30, 3004-3018.	3.5	92
146	The histone methyltransferase Setd8 acts in concert with c-Myc and is required to maintain skin. EMBO Journal, 2012, 31, 616-629.	3.5	71
147	Modelling Hair Follicle Growth Dynamics as an Excitable Medium. PLoS Computational Biology, 2012, 8, e1002804.	1.5	22
148	The in vivo function of mammalian cell and tissue polarity regulators – how to shape and maintain the epidermal barrier. Journal of Cell Science, 2012, 125, 3501-10.	1.2	29
149	Age-related decline in label-retaining tubular cells: implication for reduced regenerative capacity after injury in the aging kidney. American Journal of Physiology - Renal Physiology, 2012, 302, F694-F702.	1.3	22

#	Article		CITATIONS
150	An Overview of Notch Signaling in Adult Tissue Renewal and Maintenance. Current Alzheimer Research, 2012, 9, 227-240.	0.7	52
151	Stem Cell Niches for Skin Regeneration. International Journal of Biomaterials, 2012, 2012, 1-8.	1.1	98
152	TCF/Lef1-Mediated Control of Lipid Metabolism Regulates Skin Barrier Function. Journal of Investigative Dermatology, 2012, 132, 337-345.	0.3	21
153	Basal cell carcinoma — molecular biology and potential new therapies. Journal of Clinical Investigation, 2012, 122, 455-463.	3.9	122
154	Thymic Gene Transfer of Myelin Oligodendrocyte Glycoprotein Ameliorates the Onset but Not the Progression of Autoimmune Demyelination. Molecular Therapy, 2012, 20, 1349-1359.	3.7	8
155	Analyses of Donor-Derived Keratinocytes in Hairy and Nonhairy Skin Biopsies of Female Patients Following Allogeneic Male Bone Marrow Transplantation. Stem Cells and Development, 2012, 21, 152-157.	1.1	7
156	Hierarchy in the population. Nature Reviews Molecular Cell Biology, 2012, 13, 605-605.	16.1	0
157	25 Years of Epidermal Stem Cell Research. Journal of Investigative Dermatology, 2012, 132, 797-810.	0.3	54
158	Stem Cell Dynamics and Heterogeneity: Implications for Epidermal Regeneration and Skin Cancer. Current Medicinal Chemistry, 2012, 19, 5984-5992.	1.2	4
159	DNA Damage, Checkpoint Responses, and Cell Cycle Control in Aging Stem Cells. Else-Kröner-Fresenius-Symposia, 2012, , 36-47.	0.1	0
160	Bovine mammary stem cells: cell biology meets production agriculture. Animal, 2012, 6, 382-393.	1.3	33
161	Chromatin regulators in mammalian epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 897-905.	2.3	36
162	Regulation of selfâ€renewal in normal and cancer stem cells. FEBS Journal, 2012, 279, 3559-3572.	2.2	44
163	Sox2 in the Dermal Papilla Niche Controls Hair Growth by Fine-Tuning BMP Signaling in Differentiating Hair Shaft Progenitors. Developmental Cell, 2012, 23, 981-994.	3.1	127
164	Epigenetic Regulation of Gene Expression in Keratinocytes. Journal of Investigative Dermatology, 2012, 132, 2505-2521.	0.3	111
165	Epigenetic impact of dietary polyphenols in cancer chemoprevention: Lifelong remodeling of our epigenomes. Pharmacological Research, 2012, 65, 565-576.	3.1	216
166	Continuation of Smoking after Treatment of Laryngeal Cancer: An Independent Prognostic Factor?. Orl, 2012, 74, 250-254.	0.6	21
167	The Harmonies Played by TGF-β in Stem Cell Biology. Cell Stem Cell, 2012, 11, 751-764.	5.2	165

#	Article	IF	CITATIONS
168	Act your age: Tuning cell behavior to tissue requirements in interfollicular epidermis. Seminars in Cell and Developmental Biology, 2012, 23, 884-889.	2.3	13
169	Expression profile of cornified envelope structural proteins and keratinocyte differentiation-regulating proteins during skin barrier repair. British Journal of Dermatology, 2012, 166, 1245-1254.	1.4	63
170	Transplanted Mesoangioblasts Require Macrophage IL-10 for Survival in a Mouse Model of Muscle Injury. Journal of Immunology, 2012, 188, 6267-6277.	0.4	44
171	Tsukushi controls the hair cycle by regulating TGF-β1 signaling. Developmental Biology, 2012, 372, 81-87.	0.9	43
172	Stem cell reprogramming as a driver of basal cell carcinoma. Nature Cell Biology, 2012, 14, 1246-1247.	4.6	1
173	Δ <i>Np63</i> knockout mice reveal its indispensable role as a master regulator of epithelial development and differentiation. Development (Cambridge), 2012, 139, 772-782.	1.2	245
174	Eph/ephrin signaling in epidermal differentiation and disease. Seminars in Cell and Developmental Biology, 2012, 23, 92-101.	2.3	43
175	The structure of Wntch signalling and the resolution of transition states in development. Seminars in Cell and Developmental Biology, 2012, 23, 443-449.	2.3	33
176	Paracrine TGF-β Signaling Counterbalances BMP-Mediated Repression in Hair Follicle Stem Cell Activation. Cell Stem Cell, 2012, 10, 63-75.	5.2	316
177	The Impact of Cell Culture on Stem Cell Research. Cell Stem Cell, 2012, 10, 640-641.	5.2	12
178	Inducible deletion of epidermal <i>Dicer</i> and <i>Drosha</i> reveals multiple functions for miRNAs in postnatal skin. Development (Cambridge), 2012, 139, 1405-1416.	1.2	80
179	Physiological Regeneration of Skin Appendages and Implications for Regenerative Medicine. Physiology, 2012, 27, 61-72.	1.6	64
180	Mitotic and mitogenic Wnt signalling. EMBO Journal, 2012, 31, 2705-2713.	3.5	251
181	Epidermal cells delivered for cutaneous wound healing. Journal of Dermatological Treatment, 2012, 23, 224-237.	1.1	4
182	Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche. Cell, 2012, 150, 351-365.	13.5	257
183	Enhanced Proliferation and Functions of In Vitro Expanded Human Hair Follicle Outer Root Sheath Cells by Low Oxygen Tension Culture. Tissue Engineering - Part C: Methods, 2012, 18, 603-613.	1.1	4
184	Distinct contribution of stem and progenitor cells to epidermal maintenance. Nature, 2012, 489, 257-262.	13.7	494
185	Stem cells and the skin. Journal of Cosmetic Dermatology, 2012, 11, 297-306.	0.8	21

#	Article	IF	CITATIONS
186	Accumulation of DNA damage in complex normal tissues after protracted low-dose radiation. DNA Repair, 2012, 11, 823-832.	1.3	25
187	Generation and Staining of Intestinal Stem Cell Lineage in Adult Midgut. Methods in Molecular Biology, 2012, 879, 47-69.	0.4	19
188	mTOR Inhibition Prevents Epithelial Stem Cell Senescence and Protects from Radiation-Induced Mucositis. Cell Stem Cell, 2012, 11, 401-414.	5.2	246
189	Mesenchymal–epithelial interactions during hair follicle morphogenesis and cycling. Seminars in Cell and Developmental Biology, 2012, 23, 917-927.	2.3	319
190	Capturing epidermal stemness for regenerative medicine. Seminars in Cell and Developmental Biology, 2012, 23, 937-944.	2.3	54
191	Somatic Stem Cells. Methods in Molecular Biology, 2012, , .	0.4	6
192	Progressive Alopecia Reveals Decreasing Stem Cell Activation Probability during Aging of Mice with Epidermal Deletion of DNA Methyltransferase 1. Journal of Investigative Dermatology, 2012, 132, 2681-2690.	0.3	74
193	Lineage tracing and genetic ablation of ADAM12+ perivascular cells identify a major source of profibrotic cells during acute tissue injury. Nature Medicine, 2012, 18, 1262-1270.	15.2	355
194	Coupling of Growth, Differentiation and Morphogenesis: An Integrated Approach to Design in Embryogenesis. Cellular Origin and Life in Extreme Habitats, 2012, , 385-428.	0.3	8
195	Genetic Abolishment of Hepatocyte Proliferation Activates Hepatic Stem Cells. PLoS ONE, 2012, 7, e31846.	1.1	23
196	The miR-17 Family Links p63 Protein to MAPK Signaling to Promote the Onset of Human Keratinocyte Differentiation. PLoS ONE, 2012, 7, e45761.	1.1	40
197	Productive Lifecycle of Human Papillomaviruses that Depends Upon Squamous Epithelial Differentiation. Frontiers in Microbiology, 2012, 3, 152.	1.5	95
198	Adult Stem Cells in Tissue Homeostasis and Disease. , 2012, , .		2
199	Pituitary Stem Cells Drop Their Mask. Current Stem Cell Research and Therapy, 2012, 7, 36-71.	0.6	23
200	Epidermal ADAM17 maintains the skin barrier by regulating EGFR ligand–dependent terminal keratinocyte differentiation. Journal of Experimental Medicine, 2012, 209, 1105-1119.	4.2	161
201	Targeting the p53 signaling pathway in cancer therapy – the promises, challenges and perils. Expert Opinion on Therapeutic Targets, 2012, 16, 67-83.	1.5	162
202	Two anatomically distinct niches regulate stem cell activity. Blood, 2012, 120, 2174-2181.	0.6	65
203	The Life and Death of Epithelia During Inflammation: Lessons Learned from the Gut. Annual Review of Pathology: Mechanisms of Disease, 2012, 7, 35-60.	9.6	112

		CITATION RI	EPORT	
#	Article		IF	CITATIONS
204	Stem cells in ectodermal development. Journal of Molecular Medicine, 2012, 90, 783-7	90.	1.7	24
205	Two- and Three-Dimensional Culture of Keratinocyte Stem and Precursor Cells Derived Murine Epidermal Cultures. Stem Cell Reviews and Reports, 2012, 8, 402-413.	from Primary	5.6	27
206	Ontogeny and Homeostasis of Adult Epithelial Skin Stem Cells. Stem Cell Reviews and 561-576.	Reports, 2012, 8,	5.6	16
207	Perivascular localization of dermal stem cells in human scalp. Experimental Dermatolog 78-80.	y, 2012, 21,	1.4	27
208	How do they do Wnt they do?: regulation of transcription by the Wnt/β atenin path Physiologica, 2012, 204, 74-109.	ıway. Acta	1.8	118
209	Aging and dry eye disease. Experimental Gerontology, 2012, 47, 483-490.		1.2	125
210	Tissue engineering for the management of chronic wounds: current concepts and futu Experimental Dermatology, 2012, 21, 729-734.	re perspectives.	1.4	58
211	Stem cell dynamics in sebaceous gland morphogenesis in mouse skin. Developmental Biology, 2012, 363, 138-146.		0.9	86
212	Nuclear survivin expression as a potentially useful tool for the diagnosis of canine cutaneous sebaceous lesions. Veterinary Dermatology, 2012, 23, 394.		0.4	12
213	Regulation of reactive oxygen species in stem cells and cancer stem cells. Journal of Cellular Physiology, 2012, 227, 421-430.		2.0	241
214	Moduleâ€based complexity formation: periodic patterning in feathers and hairs. Wiley Reviews: Developmental Biology, 2013, 2, 97-112.	Interdisciplinary	5.9	50
216	Molecular Dermatology. Methods in Molecular Biology, 2013, , .		0.4	4
218	MicroRNA Protocols. Methods in Molecular Biology, 2013, , .		0.4	2
219	Unravelling stem cell dynamics by lineage tracing. Nature Reviews Molecular Cell Biolog 489-502.	gy, 2013, 14,	16.1	231
221	Epidermal Stem Cells in Homeostasis and Wound Repair of the Skin. Advances in Wou 273-282.	nd Care, 2013, 2,	2.6	51
223	Stochastic simulation of structured skin cell population dynamics. Journal of Mathema 2013, 66, 807-835.	tical Biology,	0.8	8
224	Lineage relationship of effector and memory T cells. Current Opinion in Immunology, 2	013, 25, 556-563.	2.4	173
225	Recent advances in the epidermal growth factor receptor/ligand system biology on ski and keratinocyte stem cell regulation. Journal of Dermatological Science, 2013, 72, 81	homeostasis 86.	1.0	82

ARTICLE IF CITATIONS # Allogeneic blood and bone marrow cells for the treatment of severe epidermolysis bullosa: repair of 226 6.3 75 the extracellular matrix. Lancet, The, 2013, 382, 1214-1223. RNAi-Mediated Gene Function Analysis in Skin. Methods in Molecular Biology, 2013, 961, 351-361. 0.4 The Effects of Adenoviral Transfection of the Keratinocyte Growth Factor Gene on Epidermal Stem 228 1.0 6 Cells: an In Vitro Study. Molecules and Cells, 2013, 36, 316-321. Divergent roles of HDAC1 and HDAC2 in the regulation of epidermal development and tumorigenesis. EMBŎ Journal, 2013, 32, 3176-3191. aPKCλ controls epidermal homeostasis and stem cell fate through regulation of division orientation. 230 2.3 86 Journal of Cell Biology, 2013, 202, 887-900. Keratin 5-Cre-driven excision of nonmuscle myosin IIA in early embryo trophectoderm leads to placenta defects and embryonic lethality. Developmental Biólogy, 2013, 382, 136-148. 232 Skin: Architecture and Function., 2013, , 1-11. 8 Innate Regeneration in the Aging Heart: HealingÂFrom Within. Mayo Clinic Proceedings, 2013, 88, 871-883. 1.4 Architectural Niche Organization by LHX2 Is Linked to Hair Follicle Stem Cell Function. Cell Stem Cell, 234 5.2 84 2013, 13, 314-327. Insulin and Target of rapamycin signaling orchestrate the development of ovarian niche-stem cell 1.2 54 units in <i>Drosophila</i>. Development (Cambridge), 2013, 140, 4145-4154. Regenerating the skin: a task for the heterogeneous stem cell pool and surrounding niche. Nature 236 131 16.1Reviews Molecular Cell Biology, 2013, 14, 737-748. Stem cells of the respiratory system: From identification to differentiation into functional epithelium. BioEssays, 2013, 35, 261-270. 1.2 24 Concise Review: Tissue-Engineered Skin and Nerve Regeneration in Burn Treatment. Stem Cells 238 1.6 83 Translational Medicine, 2013, 2, 545-551. New Insights into Mechanisms of ÂStem Cell Daughter Fate Determination in Regenerative Tissues. 1.6 16 International Review of Cell and Molecular Biology, 2013, 300, 1-50. A matter of life and death: selfâ€renewal in stem cells. EMBO Reports, 2013, 14, 39-48. 240 2.0 153 BRCA1 deficiency in skin epidermis leads to selective loss of hair follicle stem cells and their progeny. 241 33 Genes and Development, 2013, 27, 39-51. Genetic pathways in disorders of epidermal differentiation. Trends in Genetics, 2013, 29, 31-40. 242 2.9 92 Wnt Signaling in Skin Development, Homeostasis, and Disease. Cold Spring Harbor Perspectives in 243 2.3 Biology, 2013, 5, a008029-a008029.

		Citation Re	PORT	
#	Article		IF	CITATIONS
244	Stem cell systems and regeneration in planaria. Development Genes and Evolution, 201	3, 223, 67-84.	0.4	278
245	Tracing the cellular origin of cancer. Nature Cell Biology, 2013, 15, 126-134.		4.6	231
246	Genome-wide maps of polyadenylation reveal dynamic mRNA 3′-end formation in ma lineages. Rna, 2013, 19, 413-425.	mmalian cell	1.6	46
247	Local Dkk1 Crosstalk from Breeding Ornaments Impedes Regeneration of Injured Male 2 Developmental Cell, 2013, 27, 19-31.	lebrafish Fins.	3.1	36
248	A Skin-depth Analysis of Integrins: Role of the Integrin Network in Health and Disease. C Communication and Adhesion, 2013, 20, 155-169.	ell	1.0	36
249	The esophageal mucosa and submucosa: immunohistology in GERD and Barrett's esoph the New York Academy of Sciences, 2013, 1300, 144-165.	agus. Annals of	1.8	5
250	Reactivation of NCAM1 Defines a Subpopulation of Human Adult Kidney Epithelial Cells Clonogenic and Stem/Progenitor Properties. American Journal of Pathology, 2013, 183,	with 1621-1633.	1.9	57
251	Epidermal structure created by canine hair follicle keratinocytes enriched with bulge cell threeâ€dimensional skin equivalent model <i>in vitro</i> : implications for regenerative to canine epidermis. Veterinary Dermatology, 2013, 24, 77.	s in a herapy of	0.4	12
252	TGF-β family signaling in stem cells. Biochimica Et Biophysica Acta - General Subjects, 20 2280-2296.)13, 1830,	1.1	134
253	NFIB is a governor of epithelial–melanocyte stem cell behaviour in a shared niche. Nat 98-102.	ure, 2013, 495,	13.7	144
254	Engineering the human pluripotent stem cell microenvironment to direct cell fate. Biote Advances, 2013, 31, 1002-1019.	chnology	6.0	61
255	Control of the epithelial stem cell epigenome: the shaping of epithelial stem cell identity Opinion in Cell Biology, 2013, 25, 162-169.	. Current	2.6	28
256	CD98hc (<i>SLC3A2</i>) regulation of skin homeostasis wanes with age. Journal of Exp Medicine, 2013, 210, 173-190.	erimental	4.2	40
257	Basal stem cells contribute to squamous cell carcinomas in the oral cavity. Carcinogenes 1158-1164.	sis, 2013, 34,	1.3	25
258	Regeneration of Epidermis from Adult Human Keratinocyte Stem Cells. , 2013, , 767-780).		2
259	MicroRNAs in Skin and Wound Healing. Methods in Molecular Biology, 2013, 936, 343-3	356.	0.4	53
260	Rapid and widespread suppression of self-renewal by microRNA-203 during epidermal di Development (Cambridge), 2013, 140, 1882-1891.	fferentiation.	1.2	65
261	Differential response of epithelial stem cell populations in hair follicles to TGF-β signalin Developmental Biology, 2013, 373, 394-406.	g.	0.9	24

#	Article	IF	CITATIONS
262	Cutaneous wound healing: recruiting developmental pathways for regeneration. Cellular and Molecular Life Sciences, 2013, 70, 2059-2081.	2.4	358
263	Beyond TGFÎ ² : roles of other TGFÎ ² superfamily members in cancer. Nature Reviews Cancer, 2013, 13, 328-341.	12.8	352
264	Isolation of Mesenchymal Stem Cells from Human Dermis. Methods in Molecular Biology, 2013, 989, 265-274.	0.4	3
265	Isolation and Differentiation of Hair Follicle-Derived Dermal Precursors. Methods in Molecular Biology, 2013, 989, 247-263.	0.4	9
266	Remodeling of Three-Dimensional Organization of the Nucleus during Terminal Keratinocyte Differentiation in the Epidermis. Journal of Investigative Dermatology, 2013, 133, 2191-2201.	0.3	60
267	Transcriptional Control of Epidermal Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 157-173.	0.8	4
269	BMP signaling in development and diseases: A pharmacological perspective. Biochemical Pharmacology, 2013, 85, 857-864.	2.0	86
270	Direct migration of follicular melanocyte stem cells to the epidermis after wounding or UVB irradiation is dependent on Mc1r signaling. Nature Medicine, 2013, 19, 924-929.	15.2	151
271	Expansion of epidermal progenitors with high p63 phosphorylation during wound healing of mouse epidermis. Experimental Dermatology, 2013, 22, 374-376.	1.4	13
272	Regenerative medicine for the kidney: stem cell prospects & challenges. Clinical and Translational Medicine, 2013, 2, 11.	1.7	54
273	The nonâ€coding skin: Exploring the roles of long nonâ€coding <scp>RNA</scp> s in epidermal homeostasis and disease. BioEssays, 2013, 35, 1093-1100.	1.2	47
274	Progeny of Lgr5-expressing hair follicle stem cell contributes to papillomavirus-induced tumor development in epidermis. Oncogene, 2013, 32, 3732-3743.	2.6	46
275	Sending the right signal: Notch and stem cells. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2307-2322.	1.1	74
276	Effects of low frequency electromagnetic field on proliferation of human epidermal stem cells: An in vitro study. Bioelectromagnetics, 2013, 34, 74-80.	0.9	51
277	Actin filament dynamics impacts keratinocyte stem cell maintenance. EMBO Molecular Medicine, 2013, 5, 640-653.	3.3	46
278	Focal adhesion complex proteins in epidermis and squamous cell carcinoma. Cell Cycle, 2013, 12, 3272-3285.	1.3	29
279	The gene dosage of class Ia PI3K dictates the development of PTEN hamartoma tumor syndrome. Cell Cycle, 2013, 12, 3589-3593.	1.3	3
280	EGFR-Ras-Raf Signaling in Epidermal Stem Cells: Roles in Hair Follicle Development, Regeneration, Tissue Remodeling and Epidermal Cancers. International Journal of Molecular Sciences, 2013, 14, 19361-19384.	1.8	38

#	Article	IF	CITATIONS
281	Polycomb subunits Ezh1 and Ezh2 regulate the Merkel cell differentiation program in skin stem cells. EMBO Journal, 2013, 32, 1990-2000.	3.5	106
282	Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia. Cell Death and Differentiation, 2013, 20, 130-138.	5.0	19
283	A Mutation in the SUV39H2 Gene in Labrador Retrievers with Hereditary Nasal Parakeratosis (HNPK) Provides Insights into the Epigenetics of Keratinocyte Differentiation. PLoS Genetics, 2013, 9, e1003848.	1.5	35
284	Aberrant Expression of p63 in Adenocarcinoma of the Prostate. American Journal of Surgical Pathology, 2013, 37, 1401-1406.	2.1	44
285	Dynamics of Senescent Cell Formation and Retention Revealed by p14ARF Induction in the Epidermis. Cancer Research, 2013, 73, 2829-2839.	0.4	18
286	Keratin 79 identifies a novel population of migratory epithelial cells that initiates hair canal morphogenesis and regeneration. Development (Cambridge), 2013, 140, 4870-4880.	1.2	69
287	Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle Development. Science Signaling, 2013, 6, ra8.	1.6	276
288	Epidermal Stem Cells and Their Epigenetic Regulation. International Journal of Molecular Sciences, 2013, 14, 17861-17880.	1.8	17
289	Spindle checkpoint deficiency is tolerated by murine epidermal cells but not hair follicle stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2928-2933.	3.3	47
290	State-dependent signaling by Ca _v 1.2 regulates hair follicle stem cell function. Genes and Development, 2013, 27, 1217-1222.	2.7	27
291	Genetic analysis of Ras genes in epidermal development and tumorigenesis. Small GTPases, 2013, 4, 236-241.	0.7	8
292	Competitive balance of intrabulge BMP/Wnt signaling reveals a robust gene network ruling stem cell homeostasis and cyclic activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1351-1356.	3.3	169
293	Preparation and Delivery of 4-Hydroxy-Tamoxifen for Clonal and Polyclonal Labeling of Cells of the Surface Ectoderm, Skin, and Hair Follicle. Methods in Molecular Biology, 2013, 1195, 239-245.	0.4	17
294	Mitochondrial metabolism as a regulator of keratinocyte differentiation. Cellular Logistics, 2013, 3, e25456.	0.9	42
295	Skin Stem Cell Hypotheses and Long Term Clone Survival – Explored Using Agent-based Modelling. Scientific Reports, 2013, 3, 1904.	1.6	42
296	Noncanonical NOTCH Signaling Limits Self-Renewal of Human Epithelial and Induced Pluripotent Stem Cells through ROCK Activation. Molecular and Cellular Biology, 2013, 33, 4434-4447.	1.1	44
297	Biology of tooth replacement in amniotes. International Journal of Oral Science, 2013, 5, 66-70.	3.6	58
298	PIR2/Rnf144B regulates epithelial homeostasis by mediating degradation of p21WAF1 and p63. Oncogene, 2013, 32, 4758-4765.	2.6	21

#	Article	IF	CITATIONS
299	Spatially distinct roles of class Ia PI3K isoforms in the development and maintenance of PTEN hamartoma tumor syndrome. Genes and Development, 2013, 27, 1568-1580.	2.7	19
300	Integration and Regression of Implanted Engineered Human Vascular Networks During Deep Wound Healing. Stem Cells Translational Medicine, 2013, 2, 297-306.	1.6	41
301	Understanding epithelial homeostasis in the intestine. Tissue Barriers, 2013, 1, e24965.	1.6	41
302	Long-term time-lapse multimodal intravital imaging of regeneration and bone-marrow-derived cell dynamics in skin. Technology, 2013, 01, 8-19.	1.4	20
303	The Process of Apoptosis in a Holocrine Gland as Shown by the Avian Uropygial Gland. Anatomical Record, 2013, 296, 504-520.	0.8	9
304	Connexins in Lung Function and Inflammation. , 2013, , 165-184.		0
305	notch2, notch4 gene polymorphisms in psoriasis vulgaris. European Journal of Dermatology, 2013, 23, 146-153.	0.3	9
306	The Retinoid-Related Orphan Receptor RORα Promotes Keratinocyte Differentiation via FOXN1. PLoS ONE, 2013, 8, e70392.	1.1	43
307	The Systems Biology of Stem Cell Released Molecules—Based Therapeutics. ISRN Stem Cells, 2013, 2013, 1-12.	1.8	7
308	Localisation of Epithelial Cells Capable of Holoclone Formation In Vitro and Direct Interaction with Stromal Cells in the Native Human Limbal Crypt. PLoS ONE, 2014, 9, e94283.	1.1	80
309	Impaired Hair Growth and Wound Healing in Mice Lacking Thyroid Hormone Receptors. PLoS ONE, 2014, 9, e108137.	1.1	23
310	Can SHED or DPSCs be used to repair/regenerate non-dental tissues? A systematic review of in vivo studies. Brazilian Oral Research, 2014, 28, 1-7.	0.6	25
312	IFN-Î ³ signaling maintains skin pigmentation homeostasis through regulation of melanosome maturation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2301-2306.	3.3	88
314	Wound repair and regeneration: Mechanisms, signaling, and translation. Science Translational Medicine, 2014, 6, 265sr6.	5.8	2,114
315	Postnatal Stem Cells in Tissue Engineering. , 2014, , 639-653.		0
316	c-Rel Downregulation Affects Cell Cycle Progression of Human Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 415-422.	0.3	16
317	Not <scp>miR</scp> ″y micromanagers: the functions and regulatory networks of microRNAs in mammalian skin. Wiley Interdisciplinary Reviews RNA, 2014, 5, 849-865.	3.2	8
318	Mesenchymal Stem Cells With Modification of Junctional Adhesion Molecule A Induce Hair Formation. Stem Cells Translational Medicine, 2014, 3, 481-488.	1.6	8

#	Article	IF	CITATIONS
319	p53 and TAp63 Promote Keratinocyte Proliferation and Differentiation in Breeding Tubercles of the Zebrafish. PLoS Genetics, 2014, 10, e1004048.	1.5	29
320	Cancer Stem Cell Immunology: Key to Understanding Tumorigenesis and Tumor Immune Escape?. Frontiers in Immunology, 2014, 5, 360.	2.2	147
321	RNA-seq Analysis of Host and Viral Gene Expression Highlights Interaction between Varicella Zoster Virus and Keratinocyte Differentiation. PLoS Pathogens, 2014, 10, e1003896.	2.1	70
322	Changes in the composition of the extracellular matrix accumulated by mesenchymal stem cells during in vitro expansion. Animal Science Journal, 2014, 85, 706-713.	0.6	6
323	Epidermal Polarity Genes in Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015255-a015255.	2.9	30
324	Epidermal Differentiation in Barrier Maintenance and Wound Healing. Advances in Wound Care, 2014, 3, 272-280.	2.6	97
325	Knocking out <scp>S</scp> mad3 favors allogeneic mouse fetal skin development in adult wounds. Wound Repair and Regeneration, 2014, 22, 265-271.	1.5	3
326	Application of stems cells in wound healing—An update. Wound Repair and Regeneration, 2014, 22, 151-160.	1.5	68
327	Embryonic maturation of epidermal Merkel cells is controlled by a redundant transcription factor network. Development (Cambridge), 2014, 141, 4690-4696.	1.2	49
328	The Epigenetic Regulation of Wound Healing. Advances in Wound Care, 2014, 3, 468-475.	2.6	47
329	Role of integrin signalling through integrinâ€linked kinase in skin physiology and pathology. Experimental Dermatology, 2014, 23, 453-456.	1.4	7
330	MicroRNA-214 controls skin and hair follicle development by modulating the activity of the Wnt pathway. Journal of Cell Biology, 2014, 207, 549-567.	2.3	127
331	p53/p63/p73 in the Epidermis in Health and Disease. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015248-a015248.	2.9	96
332	Protein kinase D1 deficiency promotes differentiation in epidermal keratinocytes. Journal of Dermatological Science, 2014, 76, 186-195.	1.0	5
333	Neonatal Infant Skin: Development, Structure and Function. Newborn and Infant Nursing Reviews, 2014, 14, 135-141.	0.4	27
334	Epidermal Cells. Methods in Molecular Biology, 2014, , .	0.4	1
335	The Vitamin D Receptor Is Required for Activation of cWnt and Hedgehog Signaling in Keratinocytes. Molecular Endocrinology, 2014, 28, 1698-1706.	3.7	48
336	Eph receptor and ephrin function in breast, gut, and skin epithelia. Cell Adhesion and Migration, 2014, 8, 327-338.	1.1	75

#	Article	IF	CITATIONS
337	Labelâ€retaining, quiescent globose basal cells are found in the olfactory epithelium. Journal of Comparative Neurology, 2014, 522, 731-749.	0.9	40
338	Developing stratified epithelia: lessons from the epidermis and thymus. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 389-402.	5.9	26
340	Computational modelling of epidermal stratification highlights the importance of asymmetric cell division for predictable and robust layer formation. Journal of the Royal Society Interface, 2014, 11, 20140631.	1.5	25
341	Dynamics of Acutely Irradiated Skin Epidermal Epithelium in Swine. Health Physics, 2014, 107, 47-59.	0.3	9
343	Receptor-interacting Protein Kinase 4 and Interferon Regulatory Factor 6 Function as a Signaling Axis to Regulate Keratinocyte Differentiation. Journal of Biological Chemistry, 2014, 289, 31077-31087.	1.6	51
344	Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development (Cambridge), 2014, 141, 3472-3482.	1.2	64
345	Ras signaling is essential for skin development. Oncogene, 2014, 33, 2857-2865.	2.6	34
346	Cell adhesion molecules and their relation to (cancer) cell stemness. Carcinogenesis, 2014, 35, 747-759.	1.3	154
348	Analysis of blood and lymph vascularization patterns in tissue-engineered human dermo-epidermal skin analogs of different pigmentation. Pediatric Surgery International, 2014, 30, 223-231.	0.6	20
349	Modeling analysis of the lymphocytopoiesis dynamics in chronically irradiated residents of Techa riverside villages. Radiation and Environmental Biophysics, 2014, 53, 515-523.	0.6	4
350	Progenitor Outgrowth from the Niche in <i>Drosophila</i> Trachea Is Guided by FGF from Decaying Branches. Science, 2014, 343, 186-189.	6.0	32
351	p53 induces skin aging by depleting Blimp1+ sebaceous gland cells. Cell Death and Disease, 2014, 5, e1141-e1141.	2.7	40
352	Stem Cells and Nanomaterials. Advances in Experimental Medicine and Biology, 2014, 811, 255-275.	0.8	19
353	Adult Stem Cells. Pancreatic Islet Biology, 2014, , .	0.1	2
354	The Role of Stem Cells During Scarless Skin Wound Healing. Advances in Wound Care, 2014, 3, 304-314.	2.6	49
355	p63 and Brg1 control developmentally regulated higher-order chromatin remodelling at the epidermal differentiation complex locus in epidermal progenitor cells. Development (Cambridge), 2014, 141, 101-111.	1.2	81
356	Nanoparticle exposure in animals can be visualized in the skin and analysed via skin biopsy. Nature Communications, 2014, 5, 3796.	5.8	106
357	Epidermal homeostasis and radiation responses in a multiscale tissue modeling framework. Integrative Biology (United Kingdom), 2014, 6, 76-89.	0.6	2

#	Article	IF	CITATIONS
358	Promise of Human Induced Pluripotent Stem Cells in Skin Regeneration and Investigation. Journal of Investigative Dermatology, 2014, 134, 605-609.	0.3	28
359	Highly Rapid and Efficient Conversion of Human Fibroblasts to Keratinocyte-Like Cells. Journal of Investigative Dermatology, 2014, 134, 335-344.	0.3	39
360	InÂvivo transcriptional governance of hair follicle stem cells by canonical Wnt regulators. Nature Cell Biology, 2014, 16, 179-190.	4.6	180
361	The use of skin models in drug development. Advanced Drug Delivery Reviews, 2014, 69-70, 81-102.	6.6	234
362	Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma. Science, 2014, 343, 189-193.	6.0	1,147
363	Adult Stem Cell Niches. Current Topics in Developmental Biology, 2014, 107, 333-372.	1.0	80
364	Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochimica Et Biophysica Acta - General Subjects, 2014, 1840, 2506-2519.	1.1	1,017
365	Thermally Activated TRPV3 Channels. Current Topics in Membranes, 2014, 74, 325-364.	0.5	45
366	Clonal analysis reveals nerve-dependent and independent roles on mammalian hind limb tissue maintenance and regeneration. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 9846-9851.	3.3	73
367	Cells of Origin in Skin Cancer. Journal of Investigative Dermatology, 2014, 134, 2491-2493.	0.3	29
368	Defining a mesenchymal progenitor niche at single-cell resolution. Science, 2014, 346, 1258810.	6.0	128
369	SOX2 is a cancer-specific regulator of tumour initiating potential in cutaneous squamous cell carcinoma. Nature Communications, 2014, 5, 4511.	5.8	100
370	Keratin-6 driven ODC expression to hair follicle keratinocytes enhances stemness and tumorigenesis by negatively regulating Notch. Biochemical and Biophysical Research Communications, 2014, 451, 394-401.	1.0	8
371	Markers of Epidermal Stem Cell Subpopulations in Adult Mammalian Skin. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a013631-a013631.	2.9	103
372	Heterogeneously Expressed <i>fezf2</i> Patterns Gradient Notch Activity in Balancing the Quiescence, Proliferation, and Differentiation of Adult Neural Stem Cells. Journal of Neuroscience, 2014, 34, 13911-13923.	1.7	27
373	Wnt-Responsive Cancer Stem Cells Are Located Close to Distorted Blood Vessels and Not in Hypoxic Regions in a p53-Null Mouse Model of Human Breast Cancer. Stem Cells Translational Medicine, 2014, 3, 857-866.	1.6	8
374	WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis. Nature, 2014, 511, 358-361.	13.7	193
376	Connecting Phytochemicals, Epigenetics, and Healthy Aging. , 2014, , 111-123.		1

ARTICLE IF CITATIONS # Stem Cells and Tissue Repair. Methods in Molecular Biology, 2014, , . 377 0.4 3 Sox4 Links Tumor Suppression to Accelerated Aging in Mice by Modulating Stem Cell Activation. Cell 378 Reports, 2014, 8, 487-500. Multiscale Mathematical Modeling and Simulation of Cellular Dynamical Process. Methods in 379 0.4 5 Molecular Biology, 2014, 1195, 269-283. Equine Epidermis: A Source of Epithelial-Like Stem/Progenitor Cells with In Vitro and In Vivo 380 1.1 Regenerative Capacities. Stem Cells and Development, 2014, 23, 1134-1148. Wnt Signaling Inhibits Adrenal Steroidogenesis by Cell-Autonomous and Non–Cell-Autonomous 381 3.7 72 Mechanisms. Molecular Endocrinology, 2014, 28, 1471-1486. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural 1.1 Development, 2014, 9, 18. Epidermal growth factor receptor signalling in keratinocyte biology: implications for skin toxicity of 383 1.9 47 tyrosine kinase inhibitors. Archives of Toxicology, 2014, 88, 1189-1203. Wnt some lose some: transcriptional governance of stem cells by $Wnt \hat{I}^2$ -catenin signaling. Genes and 384 2.7 Development, 2014, 28, 1517-1532. Transcriptional Mechanisms Link Epithelial Plasticity to Adhesion and Differentiation of Epidermal 385 3.1 110 Progenitor Cells. Developmental Cell, 2014, 29, 47-58. Epigenetic Regulation of Epidermal Differentiation. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015263-a015263. Soft tissue wound healing around teeth and dental implants. Journal of Clinical Periodontology, 387 279 2.32014, 41, S6-22. The Ontogeny of Skin. Advances in Wound Care, 2014, 3, 291-303. 388 2.6 Wnt/l2â€catenin signalling maintains selfâ€renewal and tumourigenicity of head and neck squamous cell 389 2.1 118 carcinoma stemâ€like cells by activating Oct4. Journal of Pathology, 2014, 234, 99-107. Staphylococci: colonizers and pathogens of human skin. Future Microbiology, 2014, 9, 75-91. 1.0 126 3D InÂVitro Model of a Functional Epidermal Permeability Barrier from Human Embryonic Stem Cells 391 2.397 and Induced Pluripotent Stem Cells. Stem Cell Reports, 2014, 2, 675-689. Stem/Progenitor Cells in Liver Development, Homeostasis, Regeneration, and Reprogramming. Cell 463 Stem Cell, 2014, 14, 561-574. 393 New insights into skin stem cell aging and cancer. Biochemical Society Transactions, 2014, 42, 663-669. 1.6 12 394 Epigenetic and Environmental Regulation of Skin Appendage Regeneration., 2015, , 163-184.

	Сітатіс	CITATION REPORT	
#	Article	IF	Citations
395	Palatogenesis and cutaneous repair: A twoâ€headed coin. Developmental Dynamics, 2015, 244, 289-310.	0.8	15
396	Deciphering principles of morphogenesis from temporal and spatial patterns on the integument. Developmental Dynamics, 2015, 244, 905-920.	0.8	21
397	Runx2 contributes to the regenerative potential of the mammary epithelium. Scientific Reports, 2015, 5, 15658.	1.6	30
398	Oriented cell division: new roles in guiding skin wound repair and regeneration. Bioscience Reports, 2015, 35, .	1.1	13
399	Transcription factor p63 bookmarks and regulates dynamic enhancers during epidermal differentiation. EMBO Reports, 2015, 16, 863-878.	2.0	134
400	TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis. Scientific Reports, 2014, 4, 5831.	1.6	11
401	Wound Healing and Cancer Stem Cells: Inflammation as a Driver of Treatment Resistance in Breast Cancer. Cancer Growth and Metastasis, 2015, 8, CGM.S11286.	3.5	94
402	Dynamics of Lgr6 + Progenitor Cells in the Hair Follicle, Sebaceous Gland, and Interfollicular Epidermis. Stem Cell Reports, 2015, 5, 843-855.	2.3	87
403	Spatially transformed fluorescence image data for ERK-MAPK and selected proteins within human epidermis. GigaScience, 2015, 4, 63.	3.3	6
404	Skin equivalents: skin from reconstructions as models to study skin development and diseases. British Journal of Dermatology, 2015, 173, 391-403.	1.4	65
405	Expression and localization of epithelial stem cell and differentiation markers in equine skin, eye and hoof. Veterinary Dermatology, 2015, 26, 213.	0.4	16
406	Vital roles of stem cells and biomaterials in skin tissue engineering. World Journal of Stem Cells, 2015, 7, 428.	1.3	45
407	Transcriptional Profiling of Ectoderm Specification to Keratinocyte Fate in Human Embryonic Stem Cells. PLoS ONE, 2015, 10, e0122493.	1.1	13
408	Disruption of Skin Stem Cell Homeostasis following Transplacental Arsenicosis; Alleviation by Combined Intake of Selenium and Curcumin. PLoS ONE, 2015, 10, e0142818.	1.1	17
409	Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues. Frontiers in Physiology, 2015, 6, 289.	1.3	79
410	Wnt/ <i>β</i> -Catenin Signaling Pathway in Skin Carcinogenesis and Therapy. BioMed Research International, 2015, 2015, 1-8.	0.9	27
411	Transcription Factor PAX6 (Paired Box 6) Controls Limbal Stem Cell Lineage in Development and Disease. Journal of Biological Chemistry, 2015, 290, 20448-20454.	1.6	54
412	Roles of GasderminA3 in Catagen–Telogen Transition During Hair Cycling. Journal of Investigative Dermatology, 2015, 135, 2162-2172.	0.3	26

#	Article	IF	CITATIONS
413	Ceramide Synthase 4 Regulates Stem Cell Homeostasis and Hair Follicle Cycling. Journal of Investigative Dermatology, 2015, 135, 1501-1509.	0.3	40
415	Skin Basics; Structure and Function. , 2015, , 9-23.		12
416	Wntâ€ S ignalwege bei kutaner Homöostase und Pathologie. JDDG - Journal of the German Society of Dermatology, 2015, 13, 302-307.	0.4	0
417	CALML5 is a ZNF750- and TINCR-induced protein that binds stratifin to regulate epidermal differentiation. Genes and Development, 2015, 29, 2225-2230.	2.7	61
418	Hypothalamic radial glia function as self-renewing neural progenitors in the absence of Wnt/ÄŸ-catenin signaling. Development (Cambridge), 2015, 143, 45-53.	1.2	25
419	Starving for more: Nutrient sensing by LIN-28 in adult intestinal progenitor cells. Fly, 2015, 9, 173-177.	0.9	4
420	Deregulated expression of Cdc6 in the skin facilitates papilloma formation and affects the hair growth cycle. Cell Cycle, 2015, 14, 3897-3907.	1.3	12
421	Mesenchymal to epithelial transition during tissue homeostasis and regeneration: Patching up the <i>Drosophila</i> midgut epithelium. Fly, 2015, 9, 132-137.	0.9	11
422	The carboxy-terminus of p63 links cell cycle control and the proliferative potential of epidermal progenitor cells. Development (Cambridge), 2015, 142, 282-90.	1.2	15
423	Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science, 2015, 347, 78-81.	6.0	1,561
424	Skin and Skin Appendage Regeneration. , 2015, , 269-292.		8
425	New Experimental Models of Skin Homeostasis and Diseases. Actas Dermo-sifiliogrÃ _i ficas, 2015, 106, 17-28.	0.2	3
426	Integrin-mediated adhesion and mechano-sensing in cutaneous wound healing. Cell and Tissue Research, 2015, 360, 571-582.	1.5	45
427	Modeling human lung development and disease using pluripotent stem cells. Development (Cambridge), 2015, 142, 13-16.	1.2	40
428	Modelling epidermis homoeostasis and psoriasis pathogenesis. Journal of the Royal Society Interface, 2015, 12, 20141071.	1.5	44
429	The δ-Opioid Receptor Affects Epidermal Homeostasis via ERK-Dependent Inhibition of Transcription Factor POU2F3. Journal of Investigative Dermatology, 2015, 135, 471-480.	0.3	21
430	Keratinocyte Differentiation and Epigenetics. , 2015, , 37-52.		2
431	Epigenetic Modulation of Hair Follicle Stem Cells. , 2015, , 75-84.		0

#	Article	IF	CITATIONS
432	Connexins and skin disease: insights into the role of beta connexins in skin homeostasis. Cell and Tissue Research, 2015, 360, 645-658.	1.5	25
433	Epigenetic Regulation of Epidermal Development and Keratinocyte Differentiation. Journal of Investigative Dermatology Symposium Proceedings, 2015, 17, 18-19.	0.8	9
434	Atypical Protein Kinase C Isoform, aPKCλ, Is Essential for Maintaining Hair Follicle Stem Cell Quiescence. Journal of Investigative Dermatology, 2015, 135, 2584-2592.	0.3	21
435	Disease-associated mutations in IRF6 and RIPK4 dysregulate their signalling functions. Cellular Signalling, 2015, 27, 1509-1516.	1.7	24
436	Epidermal keratinocytes initiate wound healing and pro-inflammatory immune responses following percutaneous schistosome infection. International Journal for Parasitology, 2015, 45, 215-224.	1.3	38
437	Photoactivation of ROS Production In Situ Transiently Activates Cell Proliferation in Mouse Skin and in the Hair Follicle Stem Cell Niche Promoting Hair Growth and Wound Healing. Journal of Investigative Dermatology, 2015, 135, 2611-2622.	0.3	66
438	Somatic Cell Encystment Promotes Abscission in Germline Stem Cells following a Regulated Block in Cytokinesis. Developmental Cell, 2015, 34, 192-205.	3.1	64
439	The human squamous oesophagus has widespread capacity for clonal expansion from cells at diverse stages of differentiation. Gut, 2015, 64, 11-19.	6.1	51
440	Sox9 Controls Self-Renewal of Oncogene Targeted Cells and Links Tumor Initiation and Invasion. Cell Stem Cell, 2015, 17, 60-73.	5.2	126
441	Connexins and pannexins in the integumentary system: the skin and appendages. Cellular and Molecular Life Sciences, 2015, 72, 2937-2947.	2.4	14
442	Rotation is the primary motion of paired human epidermal keratinocytes. Journal of Dermatological Science, 2015, 79, 194-202.	1.0	8
443	The inhibitory mechanism by curcumin on the Zac1-enhanced cyclin D1 expression in human keratinocytes. Journal of Dermatological Science, 2015, 79, 262-267.	1.0	3
444	Cell motion predicts human epidermal stemness. Journal of Cell Biology, 2015, 209, 305-315.	2.3	38
445	Chemokine Involvement in Fetal and Adult Wound Healing. Advances in Wound Care, 2015, 4, 660-672.	2.6	50
446	From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition?. Clinical Epigenetics, 2015, 7, 33.	1.8	156
447	Inactivation of a Cαs–PKA tumour suppressor pathway in skin stem cells initiates basal-cell carcinogenesis. Nature Cell Biology, 2015, 17, 793-803.	4.6	134
448	Expression of the Ly6/uPAR-Domain Proteins C4.4A and Haldisin in Non-Invasive and Invasive Skin Lesions. Journal of Histochemistry and Cytochemistry, 2015, 63, 142-154.	1.3	12
449	MicroRNAs in skin tissue engineering. Advanced Drug Delivery Reviews, 2015, 88, 16-36.	6.6	39

#	Article	IF	CITATIONS
450	A cellular process that includes asymmetric cytokinesis remodels the dorsal tracheal branches in Drosophila larvae. Development (Cambridge), 2015, 142, 1794-1805.	1.2	8
451	Moving epithelia: Tracking the fate of mammalian limbal epithelial stem cells. Progress in Retinal and Eye Research, 2015, 48, 203-225.	7.3	65
452	Activin/Nodal signaling and NANOG orchestrate human embryonic stem cell fate decisions by controlling the H3K4me3 chromatin mark. Genes and Development, 2015, 29, 702-717.	2.7	115
453	FBXO11 promotes ubiquitination of the Snail family of transcription factors in cancer progression and epidermal development. Cancer Letters, 2015, 362, 70-82.	3.2	68
454	Wnt signaling in skin homeostasis and pathology. JDDG - Journal of the German Society of Dermatology, 2015, 13, 302-306.	0.4	8
455	Role of Sphingolipids in Non-melanoma Skin Cancer. , 2015, , 107-122.		1
456	Regulation of ERK-MAPK signaling in human epidermis. BMC Systems Biology, 2015, 9, 41.	3.0	33
457	Gene expression analysis of skin grafts and cultured keratinocytes using synthetic RNA normalization reveals insights into differentiation and growth control. BMC Genomics, 2015, 16, 476.	1.2	21
458	Dermal fibroblast expression of stromal cell-derived factor-1 (SDF-1) promotes epidermal keratinocyte proliferation in normal and diseased skin. Protein and Cell, 2015, 6, 890-903.	4.8	60
459	Thyroid hormone signaling controls hair follicle stem cell function. Molecular Biology of the Cell, 2015, 26, 1263-1272.	0.9	36
460	Integrin-linked kinase regulates the niche of quiescent epidermal stem cells. Nature Communications, 2015, 6, 8198.	5.8	83
461	Skin Stem Cells: At the Frontier Between the Laboratory and Clinical Practice. Part 1: Epidermal Stem Cells. Actas Dermo-sifiliográficas, 2015, 106, 725-732.	0.2	2
462	Células madre de la piel: en la frontera entre el laboratorio y la clÃnica. Parte I: células madre epidérmicas. Actas Dermo-sifiliográficas, 2015, 106, 725-732.	0.2	6
463	Epigenetic regulation of adult stem cell function. FEBS Journal, 2015, 282, 1589-1604.	2.2	28
464	Genetically Induced Cell Death in Bulge Stem Cells Reveals Their Redundancy for Hair and Epidermal Regeneration. Stem Cells, 2015, 33, 988-998.	1.4	13
465	Nuevos modelos experimentales para el estudio de la homeostasis y la enfermedad cutánea. Actas Dermo-sifiliográficas, 2015, 106, 17-28.	0.2	5
466	Constitutive STAT3 activation in epidermal keratinocytes enhances cell clonogenicity and favours spontaneous immortalization by opposing differentiation and senescence checkpoints. Experimental Dermatology, 2015, 24, 29-34.	1.4	21
467	Hypoxia-Inducible Factors Regulate Filaggrin Expression and Epidermal Barrier Function. Journal of Investigative Dermatology, 2015, 135, 454-461.	0.3	41

#	Article	IF	CITATIONS
468	Regulation of the adrenocortical stem cell niche: implications for disease. Nature Reviews Endocrinology, 2015, 11, 14-28.	4.3	73
469	SOX2 in the Skin. , 2016, , 281-300.		1
470	Notch1 Signaling Regulates Wound Healing via Changing the Characteristics of Epidermal Stem Cells. Journal of Stem Cell Research & Therapy, 2016, 6, .	0.3	5
471	Epigenetic Regulation of Epidermal Stem Cell Biomarkers and Their Role in Wound Healing. International Journal of Molecular Sciences, 2016, 17, 16.	1.8	18
472	Manipulating the healing response. , 2016, , 101-116.		5
473	Ultraviolet Radiation-Induced Skin Aging: The Role of DNA Damage and Oxidative Stress in Epidermal Stem Cell Damage Mediated Skin Aging. Stem Cells International, 2016, 2016, 1-14.	1.2	218
474	Skin Redox Balance Maintenance: The Need for an Nrf2-Activator Delivery System. Cosmetics, 2016, 3, 1.	1.5	52
475	sPLA2-IIA Overexpression in Mice Epidermis Depletes Hair Follicle Stem Cells and Induces Differentiation Mediated Through Enhanced JNK/c-Jun Activation. Stem Cells, 2016, 34, 2407-2417.	1.4	8
476	Effects of Imiquimod on Hair Follicle Stem Cells and Hair Cycle Progression. Journal of Investigative Dermatology, 2016, 136, 2140-2149.	0.3	26
477	Cellular plasticity in the adult liver and stomach. Journal of Physiology, 2016, 594, 4815-4825.	1.3	17
478	Stem Cell Niche. , 2016, , 57-85.		3
479	Expansion of Hair Follicle Stem Cells Sticking to Isolated Sebaceous Glands to Generate in Vivo Epidermal Structures. Cell Transplantation, 2016, 25, 2071-2082.	1.2	10
480	Signalling couples hair follicle stem cell quiescence with reduced histone H3 K4/K9/K27me3 for proper tissue homeostasis. Nature Communications, 2016, 7, 11278.	5.8	29
481	c-Rel in Epidermal Homeostasis: A Spotlight on c-Rel in Cell Cycle Regulation. Journal of Investigative Dermatology, 2016, 136, 1090-1096.	0.3	7
482	Apoptosis or senescence? Which exit route do epithelial cells and fibroblasts preferentially follow?. Mechanisms of Ageing and Development, 2016, 156, 17-24.	2.2	23
483	Epidermal differentiation gene regulatory networks controlled by MAF and MAFB. Cell Cycle, 2016, 15, 1405-1409.	1.3	9
484	Anatomical Features and Cell-Cell Interactions inÂthe Human Limbal Epithelial Stem Cell Niche. Ocular Surface, 2016, 14, 322-330.	2.2	79
485	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2

			-
#	ARTICLE	IF	CITATIONS
486	Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. Mutation Research - Reviews in Mutation Research, 2016, 770, 349-368.	2.4	42
487	Discovery of a Small-Molecule BMP Sensitizer for Human Embryonic Stem Cell Differentiation. Cell Reports, 2016, 15, 2063-2075.	2.9	22
488	Sterile Inflammation Enhances ECM Degradation in Integrin β1 KO Embryonic Skin. Cell Reports, 2016, 16, 3334-3347.	2.9	26
489	High-fat diet feeding promotes stemness and precancerous changes in murine gastric mucosa mediated by leptin receptor signaling pathway. Archives of Biochemistry and Biophysics, 2016, 610, 16-24.	1.4	23
490	Norepinephrine Regulates Keratinocyte Proliferation to Promote the Growth of Hair Follicles. Cells Tissues Organs, 2016, 201, 423-435.	1.3	8
491	JARID1B Enables Transit between Distinct States of the Stem-like Cell Population in Oral Cancers. Cancer Research, 2016, 76, 5538-5549.	0.4	46
492	Tracing cellular dynamics in tissue development, maintenance and disease. Current Opinion in Cell Biology, 2016, 43, 38-45.	2.6	39
493	Cross-talk between interferon-gamma and interleukin-18 in melanogenesis. Journal of Photochemistry and Photobiology B: Biology, 2016, 163, 133-143.	1.7	25
494	Non-coding RNAs: Classification, Biology and Functioning. Advances in Experimental Medicine and Biology, 2016, 937, 3-17.	0.8	596
495	Extracellular Matrix Regulation of Stem Cell Behavior. Current Stem Cell Reports, 2016, 2, 197-206.	0.7	166
496	Hair Follicle and Sebaceous Gland De Novo Regeneration With Cultured Epidermal Stem Cells and Skin-Derived Precursors. Stem Cells Translational Medicine, 2016, 5, 1695-1706.	1.6	49
497	Association of TGFÎ ² signaling with the maintenance of a quiescent stem cell niche in human oral mucosa. Histochemistry and Cell Biology, 2016, 146, 539-555.	0.8	12
498	MicroRNAs-103/107 coordinately regulate macropinocytosis and autophagy. Journal of Cell Biology, 2016, 215, 667-685.	2.3	38
499	THz Time-Domain Spectroscopy of Human Skin Tissue for In-Body Nanonetworks. IEEE Transactions on Terahertz Science and Technology, 2016, 6, 803-809.	2.0	30
500	In situ production of ROS in the skin by photodynamic therapy as a powerful tool in clinical dermatology. Methods, 2016, 109, 190-202.	1.9	39
501	Neural Stem Cells Restore Hair Growth through Activation of the Hair Follicle Niche. Cell Transplantation, 2016, 25, 1439-1451.	1.2	16
502	Hair follicles' transit-amplifying cells govern concurrent dermal adipocyte production through Sonic Hedgehog. Genes and Development, 2016, 30, 2325-2338.	2.7	75
503	Isolating Hair Follicle Stem Cells and Epidermal Keratinocytes from Dorsal Mouse Skin. Journal of Visualized Experiments, 2016, , .	0.2	9

#	ARTICLE	IF	CITATIONS
504	Lrig1 Expression in Human Sebaceous Gland Tumors. Dermatopathology (Basel, Switzerland), 2016, 3, 44-54.	0.7	3
505	Asymmetric stem-cell division ensures sustained keratinocyte hyperproliferation in psoriatic skin lesions. International Journal of Molecular Medicine, 2016, 37, 359-368.	1.8	33
506	Skin Response to Single and Fractionated Irradiation. Health Physics, 2016, 111, 513-527.	0.3	1
507	Dental Stem Cells. Pancreatic Islet Biology, 2016, , .	0.1	2
508	Dental Stem Cells in Oral, Maxillofacial and Craniofacial Regeneration. Pancreatic Islet Biology, 2016, , 143-165.	0.1	4
509	Dissecting the Roles of Polycomb Repressive Complex 2 Subunits in the Control of Skin Development. Journal of Investigative Dermatology, 2016, 136, 1647-1655.	0.3	48
510	Multicolor Cell Barcoding Technology for Long-Term Surveillance of Epithelial Regeneration in Zebrafish. Developmental Cell, 2016, 36, 668-680.	3.1	71
511	Foxc1 reinforces quiescence in self-renewing hair follicle stem cells. Science, 2016, 351, 613-617.	6.0	109
512	Cbx4 maintains the epithelial lineage identity and cell proliferation in the developing stratified epithelium. Journal of Cell Biology, 2016, 212, 77-89.	2.3	57
513	Cbx4: A new guardian of p63's domain of epidermal control. Journal of Cell Biology, 2016, 212, 9-11.	2.3	6
514	Role of Keratinocyte Growth Factor in the Differentiation of Sweat Gland-Like Cells From Human Umbilical Cord-Derived Mesenchymal Stem Cells. Stem Cells Translational Medicine, 2016, 5, 106-116.	1.6	29
515	Stem Cell and Stem Cell-Derived Molecular Therapies to Enhance Dermal Wound Healing. , 2016, , 113-141.		2
516	Connexin26 Mutations Causing Palmoplantar Keratoderma and Deafness Interact with Connexin43, Modifying Gap Junction and Hemichannel Properties. Journal of Investigative Dermatology, 2016, 136, 225-235.	0.3	43
517	Microscale Technologies for Cell Engineering. , 2016, , .		3
518	The EGF receptor ligand amphiregulin controls cell division via FoxM1. Oncogene, 2016, 35, 2075-2086.	2.6	29
519	Differentiation of Keratinocytes Modulates Skin HPA Analog. Journal of Cellular Physiology, 2017, 232, 154-166.	2.0	22
520	Low Dose Radiation Causes Skin Cancer in Mice and Has a Differential Effect on Distinct Epidermal Stem Cells. Stem Cells, 2017, 35, 1355-1364.	1.4	18
521	Stress-induced premature senescence of dermal papilla cells compromises hair follicle epithelial-mesenchymal interaction. Journal of Dermatological Science, 2017, 86, 114-122.	1.0	40

#	Article	IF	CITATIONS
522	Differentiated State of Initiating Tumor Cells Is Key to Distinctive Immune Responses Seen in H-RasG12V–Induced Squamous Tumors. Cancer Immunology Research, 2017, 5, 198-210.	1.6	7
523	Notch as a tumour suppressor. Nature Reviews Cancer, 2017, 17, 145-159.	12.8	301
524	PFKFB3, a Direct Target of p63, Is Required for Proliferation and Inhibits Differentiation in Epidermal Keratinocytes. Journal of Investigative Dermatology, 2017, 137, 1267-1276.	0.3	27
525	Stellera chamaejasme and its constituents induce cutaneous wound healing and anti-inflammatory activities. Scientific Reports, 2017, 7, 42490.	1.6	25
526	Essential roles of Tbx3 in embryonic skin development during epidermal stratification. Genes To Cells, 2017, 22, 284-292.	0.5	4
527	Rictor/mTORC2 deficiency enhances keratinocyte stress tolerance via mitohormesis. Cell Death and Differentiation, 2017, 24, 731-746.	5.0	24
528	The role of macrophages in skin homeostasis. Pflugers Archiv European Journal of Physiology, 2017, 469, 455-463.	1.3	71
529	Neuronal Activity in Ontogeny and Oncology. Trends in Cancer, 2017, 3, 89-112.	3.8	80
530	Asymmetric Cell Division in Development, Differentiation and Cancer. Results and Problems in Cell Differentiation, 2017, , .	0.2	5
531	Stem Cells and Tissue Engineering. Clinics in Plastic Surgery, 2017, 44, 635-650.	0.7	56
532	A Comparative Perspective on Wnt/β-Catenin Signalling in Cell Fate Determination. Results and Problems in Cell Differentiation, 2017, 61, 323-350.	0.2	19
533	Identifying the niche controlling melanocyte differentiation. Genes and Development, 2017, 31, 721-723.	2.7	7
534	Wound Healing from Dermal Grafts Containing CD34+ Cells Is Comparable to Wound Healing with Split-Thickness Skin Micrografts. Plastic and Reconstructive Surgery, 2017, 140, 306-314.	0.7	12
535	Identification of hair shaft progenitors that create a niche for hair pigmentation. Genes and Development, 2017, 31, 744-756.	2.7	43
536	Hair Follicle Terminal Differentiation Is Orchestrated by Distinct Early and Late Matrix Progenitors. Cell Reports, 2017, 19, 809-821.	2.9	55
538	YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nature Communications, 2017, 8, 15206.	5.8	225
539	p63 Transcription Factor Regulates NuclearÂShape and Expression of NuclearÂEnvelope-Associated Genes in Epidermal Keratinocytes. Journal of Investigative Dermatology, 2017, 137, 2157-2167.	0.3	25
540	Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell, 2017, 169, 1119-1129.e11.	13.5	477

#	Article	IF	CITATIONS
541	PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells. Stem Cell Reports, 2017, 9, 304-314.	2.3	22
542	Basic fibroblast growth factor reduces scar by inhibiting the differentiation of epidermal stem cells to myofibroblasts via the Notch1/Jagged1 pathway. Stem Cell Research and Therapy, 2017, 8, 114.	2.4	35
543	The Histone Methyltransferase Ash1l is Required for Epidermal Homeostasis in Mice. Scientific Reports, 2017, 7, 45401.	1.6	22
544	A Feasibility Study of Broadband White Light Emitting Diode (WLED) Based Full-Field Optical Coherence Microscopy (FF-OCM) Using Derivative-Based Algorithm. IEEE Photonics Journal, 2017, 9, 1-13.	1.0	3
545	Clasp2 ensures mitotic fidelity and prevents differentiation of epidermal keratinocytes. Journal of Cell Science, 2017, 130, 683-688.	1.2	5
546	P311 Accelerates Skin Wound Reepithelialization by Promoting Epidermal Stem Cell Migration Through RhoA and Rac1 Activation. Stem Cells and Development, 2017, 26, 451-460.	1.1	29
547	An Acrodermatitis Enteropathica-Associated Zn Transporter, ZIP4, Regulates Human Epidermal Homeostasis. Journal of Investigative Dermatology, 2017, 137, 874-883.	0.3	33
548	Stage-specific embryonic antigen-4 as a novel marker of ductal cells of human eccrine sweat glands. British Journal of Dermatology, 2017, 176, 1541-1548.	1.4	4
549	Developmental Biology of Skin Wound Healing: On Pathways and Genes Controlling Regeneration Versus Scarring. Frontiers in Nanobiomedical Research, 2017, , 127-140.	0.1	1
551	Emergence and universality in the regulation of stem cell fate. Current Opinion in Systems Biology, 2017, 5, 57-62.	1.3	7
552	Lgr6 is a stem cell marker in mouse skin squamous cell carcinoma. Nature Genetics, 2017, 49, 1624-1632.	9.4	47
553	The Cohesin Complex Is Necessary for Epidermal Progenitor Cell Function through Maintenance of Self-Renewal Genes. Cell Reports, 2017, 20, 3005-3013.	2.9	22
554	Transcription Factor CTIP1/ BCL11A Regulates Epidermal Differentiation and Lipid Metabolism During Skin Development. Scientific Reports, 2017, 7, 13427.	1.6	26
555	E6/E7 oncogenes in epithelial suprabasal layers and estradiol promote cervical growth and ear regeneration. Oncogenesis, 2017, 6, e374-e374.	2.1	5
556	Epidermal Stem Cells in Skin Wound Healing. Advances in Wound Care, 2017, 6, 297-307.	2.6	56
557	Tbx3-dependent amplifying stem cell progeny drives interfollicular epidermal expansion during pregnancy and regeneration. Nature Communications, 2017, 8, 508.	5.8	23
558	Stem cells and the circadian clock. Developmental Biology, 2017, 431, 111-123.	0.9	73
559	Regulatory T cells in skin. Immunology, 2017, 152, 372-381.	2.0	115

ARTICLE IF CITATIONS # MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clinical Science, 2017, 131, 560 1.8 31 1923-1940. Sca-1 identifies a trophoblast population with multipotent potential in the mid-gestation mouse 1.6 placenta. Scientific Reports, 2017, 7, 5575. Skin renewal activity of non-thermal plasma through the activation of \hat{l}^2 -catenin in keratinocytes. 562 1.6 40 Scientific Reports, 2017, 7, 6146. Time-Restricted Feeding Shifts the Skin Circadian Clock and Alters UVB-Induced DNA Damage. Cell 2.9 79 Reports, 2017, 20, 1061-1072. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiological Reviews, 2017, 97, 565 13.1 658 1235-1294. Notch Signaling., 2017,,. Properties of skin stem cells and their potential clinical applications in modern dermatology. 567 0.3 12 European Journal of Dermatology, 2017, 27, 227-236. Importance and regulation of adult stem cell migration. Journal of Cellular and Molecular Medicine, 1.6 78 2018, 22, 746-754. 569 Epithelial plasticity in the mammary gland. Current Opinion in Cell Biology, 2017, 49, 59-63. 2.6 24 H19 lncRNA regulates keratinocyte differentiation by targeting miR-130b-3p. Cell Death and Disease, 570 2.7 2017, 8, e3174-e3174. Skin and Its Regenerative Powers: An Alliance between Stem Cells and Their Niche. Developmental Cell, 571 314 3.1 2017, 43, 387-401. Transgenic stem cells replace skin. Nature, 2017, 551, 306-307. Double deficiency of Trex2 and DNase1L2 nucleases leads to accumulation of DNA in lingual cornifying 573 1.6 14 keratinocytes without activating inflammatory responses. Scientific Reports, 2017, 7, 11902. Cancer stem cells and differentiation therapy. Tumor Biology, 2017, 39, 101042831772993. 574 0.8 Hair growth promoting activity of discarded biocomposite keratin extract. Journal of Biomaterials 575 1.2 5 Applications, 2017, 32, 230-241. Scaffolding proteins in the development and maintenance of the epidermal permeability barrier. Tissue 576 Barriers, 2017, 5, e1341969. KDF1, encoding keratinocyte differentiation factor 1, is mutated in a multigenerational family with 577 1.8 18 ectodermal dysplasia. Human Genetics, 2017, 136, 99-105. Expression Analysis of the Stem Cell Marker Pw1/Peg3 Reveals a CD34 Negative Progenitor Population 578 1.4 in the Hair Follicle. Stem Cells, 2017, 35, 1015-1027.

#	Αρτιςι ε	IF	CITATIONS
579	Impaired Wound Repair and Delayed Angiogenesis. , 2017, , 1003-1015.		2
580	Effects of Acute and Chronic Irradiation on Human Hematopoiesis. , 2017, , 201-268.		0
581	Skin-Specific Deletion of Mis18α Impedes Proliferation and Stratification of EpidermalÂKeratinocytes. Journal of Investigative Dermatology, 2017, 137, 414-421.	0.3	5
582	Environmental Radiation Effects on Mammals. , 2017, , .		5
583	Regulation of zonation and homeostasis in the adrenal cortex. Molecular and Cellular Endocrinology, 2017, 441, 146-155.	1.6	55
584	Isolation and cultivation of primary keratinocytes from piglet skin for compartmentalized co-culture with dorsal root ganglion neurons. Journal of Cellular Biotechnology, 2017, 2, 93-115.	0.1	2
585	A thermal gradient modulates the oxidative metabolism and growth of human keratinocytes. FEBS Open Bio, 2017, 7, 1843-1853.	1.0	11
586	Expression of C4.4A in an In Vitro Human Tissue-Engineered Skin Model. BioMed Research International, 2017, 2017, 1-9.	0.9	3
587	Current and Future Perspectives of Stem Cell Therapy in Dermatology. Annals of Dermatology, 2017, 29, 667.	0.3	20
588	Pigmented Epithelioid Melanocytoma (PEM)/Animal Type Melanoma (ATM): Quest for an Origin. Report of One Unusual Case Indicating Follicular Origin and Another Arising in an Intradermal Nevus. International Journal of Molecular Sciences, 2017, 18, 1769.	1.8	4
589	Roles of the Hedgehog Signaling Pathway in Epidermal and Hair Follicle Development, Homeostasis, and Cancer. Journal of Developmental Biology, 2017, 5, 12.	0.9	66
590	Pediatric Thermal Burns and Treatment: A Review of Progress and Future Prospects. Medicines (Basel,) Tj ETQq1	1 0.78431 0.7	4 rgBT /Over
591	Phosphoinositide 3-Kinase-Dependent Signalling Pathways in Cutaneous Squamous Cell Carcinomas. Cancers, 2017, 9, 86.	1.7	28
592	Mesenchymal Stem Cells from Adipose Tissue in Clinical Applications for Dermatological Indications and Skin Aging. International Journal of Molecular Sciences, 2017, 18, 208.	1.8	131
593	Stimulation of hair follicle stem cell proliferation through an IL-1 dependent activation of γÎT-cells. ELife, 2017, 6, .	2.8	60
594	A parapoxviral virion protein inhibits NF-κB signaling early in infection. PLoS Pathogens, 2017, 13, e1006561.	2.1	33
595	A parapoxviral virion protein targets the retinoblastoma protein to inhibit NF-κB signaling. PLoS Pathogens, 2017, 13, e1006779.	2.1	26
596	The cytotoxic mechanism of epigallocatechin gallate on proliferative HaCaT keratinocytes. Journal of Biomedical Science, 2017, 24, 55.	2.6	6

#	Article	IF	CITATIONS
597	A rareÂcase ofÂfailed healing in previously burned skinÂafter aÂsecondary burns. Burns and Trauma, 2017, 5, 32.	2.3	1
598	T-Cadherin Expression in the Epidermis and Adnexal Structures of Normal Skin. Dermatopathology (Basel, Switzerland), 2017, 3, 68-78.	0.7	5
599	Mammary gland stem cells and their application in breast cancer. Oncotarget, 2017, 8, 10675-10691.	0.8	23
600	Influence of Chemical- and Natural-Based Lotions on Bacterial Communities in Human Forearm Skin. Journal of Bacteriology and Virology, 2017, 47, 41.	0.0	2
601	Production-scale fibronectin nanofibers promote wound closure and tissue repair in a dermal mouse model. Biomaterials, 2018, 166, 96-108.	5.7	72
602	Multifaceted Roles of Connexin 43 in Stem Cell Niches. Current Stem Cell Reports, 2018, 4, 1-12.	0.7	23
603	Tissue stiffening promotes keratinocyte proliferation via activation of epidermal growth factor signaling. Journal of Cell Science, 2018, 131, .	1.2	36
604	Past stem cells and finally in transit: <scp>SLC</scp> 1A3 instructs skin niche coupling. EMBO Journal, 2018, 37, .	3.5	2
605	Regulation of melanocyte stem cell behavior by the niche microenvironment. Pigment Cell and Melanoma Research, 2018, 31, 556-569.	1.5	25
606	Effects of porcine acellular dermal matrix treatment on wound healing and scar formation: Role of Jag1 expression in epidermal stem cells. Organogenesis, 2018, 14, 25-35.	0.4	11
607	Involvement of Tsukushi in diverse developmental processes. Journal of Cell Communication and Signaling, 2018, 12, 205-210.	1.8	24
608	Concise Review: Translating Regenerative Biology into Clinically Relevant Therapies: Are We on the Right Path?. Stem Cells Translational Medicine, 2018, 7, 220-231.	1.6	30
609	Hair Follicle Stem Cell Faith Is Dependent on Chromatin Remodeling Capacity Following Low-Dose Radiation. Stem Cells, 2018, 36, 574-588.	1.4	13
610	Sonic Hedgehog Pathway Inhibition in the Treatment of Advanced Basal Cell Carcinoma. , 2018, , 541-548.		1
611	PRC1 Fine-tunes Gene Repression and Activation to Safeguard Skin Development and Stem Cell Specification. Cell Stem Cell, 2018, 22, 726-739.e7.	5.2	106
612	Isolation and Cultivation of Epidermal (Stem) Cells. Methods in Molecular Biology, 2018, 1879, 133-138.	0.4	2
613	Orchestrated control of filaggrin–actin scaffolds underpins cornification. Cell Death and Disease, 2018, 9, 412.	2.7	42
614	Nanofibered Gelatinâ€Based Nonwoven Elasticity Promotes Epithelial Histogenesis. Advanced Healthcare	3.9	20

#	Article	IF	CITATIONS
615	Retinoic acid receptorâ€related orphan receptor RORα regulates differentiation and survival of keratinocytes during hypoxia. Journal of Cellular Physiology, 2018, 233, 641-650.	2.0	17
616	The Hair Follicle: An Underutilized Source of Cells and Materials for Regenerative Medicine. ACS Biomaterials Science and Engineering, 2018, 4, 1193-1207.	2.6	28
617	Concise Review: Wnt Signaling Pathways in Skin Development and Epidermal Stem Cells. Stem Cells, 2018, 36, 22-35.	1.4	99
618	Stem cells, niches and scaffolds: Applications to burns and wound care. Advanced Drug Delivery Reviews, 2018, 123, 82-106.	6.6	48
620	Mechanisms of DNA damage repair in adult stem cells and implications for cancer formation. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 89-101.	1.8	40
621	Genome-Wide Identification of Transcription Factor-Binding Sites in Quiescent Adult Neural Stem Cells. Methods in Molecular Biology, 2018, 1686, 265-286.	0.4	1
622	Adherens Junctions and Desmosomes Coordinate Mechanics and Signaling to Orchestrate Tissue Morphogenesis and Function: An Evolutionary Perspective. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029207.	2.3	102
623	Adhesion forces and cortical tension couple cell proliferation and differentiation to drive epidermal stratification. Nature Cell Biology, 2018, 20, 69-80.	4.6	207
624	UV and Skin: Photocarcinogenesis. , 2018, , 67-103.		2
626	Replicative cellular age distributions in compartmentalized tissues. Journal of the Royal Society Interface, 2018, 15, 20180272.	1.5	10
628	Hedgehog stimulates hair follicle neogenesis by creating inductive dermis during murine skin wound healing. Nature Communications, 2018, 9, 4903.	5.8	182
629	Conditional ablation of p130Cas/BCAR1 adaptor protein impairs epidermal homeostasis by altering cell adhesion and differentiation. Cell Communication and Signaling, 2018, 16, 73.	2.7	12
630	Environmental Influences on the Development of Epidermal Progenitors. , 2018, , 243-243.		0
631	microRNA-203 Modulates Wound Healing and Scar Formation via Suppressing Hes1 Expression in Epidermal Stem Cells. Cellular Physiology and Biochemistry, 2018, 49, 2333-2347.	1.1	26
632	In Vivo Genetic Alteration and Lineage Tracing of Single Stem Cells by Live Imaging. Methods in Molecular Biology, 2018, 1879, 1-14.	0.4	4
633	Orchestrated Role of microRNAs in Skin Development and Regeneration. Contributions To Management Science, 2018, , 175-196.	0.4	0
634	Embryonic Development of the Epidermis. , 2018, , .		1
635	More Than the Sum of Its Parts: Single-Cell Transcriptomics Reveals Epidermal Cell States. Cell Reports, 2018, 25, 823-824.	2.9	3

#	Article	IF	CITATIONS
636	Label-Retaining, Putative Mesenchymal Stem Cells Contribute to Murine Myometrial Repair During Uterine Involution. Stem Cells and Development, 2018, 27, 1715-1728.	1.1	12
637	Population-level rhythms in human skin with implications for circadian medicine. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12313-12318.	3.3	97
638	Genome-wide association study provides insights into genes related with horn development in Nelore beef cattle. PLoS ONE, 2018, 13, e0202978.	1.1	12
639	Mesothelial Stem Cells and Stromal Vascular Fraction for Skin Rejuvenation. Facial Plastic Surgery Clinics of North America, 2018, 26, 513-532.	0.9	12
640	Epigenetic Regulation of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , .	0.1	0
641	All Roads Go to the Nucleus: Integration of Signaling/Transcription Factor-Mediated and Epigenetic Regulatory Mechanisms in theÂControl of Skin Development and Regeneration. Pancreatic Islet Biology, 2018, , 1-55.	0.1	0
642	Enhancer-Promoter Interactions and Their Role in theÂControl of Epidermal Differentiation. Contributions To Management Science, 2018, , 231-262.	0.4	0
643	Integration of Biochemical and Mechanical Signals at the Nuclear Periphery: Impacts on Skin Development and Disease. Pancreatic Islet Biology, 2018, , 263-292.	0.1	1
644	Polycomb Proteins and their Roles in Skin Development and Regeneration. Contributions To Management Science, 2018, , 75-104.	0.4	0
645	A 3D Organotypic Melanoma Spheroid Skin Model. Journal of Visualized Experiments, 2018, , .	0.2	19
646	Deciphering the cells of origin of squamous cell carcinomas. Nature Reviews Cancer, 2018, 18, 549-561.	12.8	171
648	ΔNp63 promotes abnormal epidermal proliferation in arsenical skin cancers. Toxicology in Vitro, 2018, 53, 57-66.	1.1	10
649	Extracellular Matrix as a Regulator of Epidermal Stem Cell Fate. International Journal of Molecular Sciences, 2018, 19, 1003.	1.8	68
650	Sirt1 Protects against Oxidative Stress-Induced Apoptosis in Fibroblasts from Psoriatic Patients: A New Insight into the Pathogenetic Mechanisms of Psoriasis. International Journal of Molecular Sciences, 2018, 19, 1572.	1.8	49
651	The Role of the Slc39a Family of Zinc Transporters in Zinc Homeostasis in Skin. Nutrients, 2018, 10, 219.	1.7	20
652	Maintenance of tight junction barrier integrity in cell turnover and skin diseases. Experimental Dermatology, 2018, 27, 876-883.	1.4	51
653	Hierarchical Cluster Analysis of Cytokeratins and Stem Cell Expression Profiles of Canine Cutaneous Epithelial Tumors. Veterinary Pathology, 2018, 55, 821-837.	0.8	15

#	Article	IF	CITATIONS
655	FGF signalling controls the specification of hair placode-derived SOX9 positive progenitors to Merkel cells. Nature Communications, 2018, 9, 2333.	5.8	30
656	The Role of Stem Cells in the Hepatobiliary System and in Cancer Development: a Surgeon's Perspective. , 2018, , 211-253.		2
657	Stem/Progenitor Cells in Chronically Injured Liver and the Surrounding Microenvironment. , 2018, , 255-272.		0
658	In vitro models of melanoma. , 2018, , 57-75.		1
659	Establishment of an in vitro organoid model of dermal papilla of human hair follicle. Journal of Cellular Physiology, 2018, 233, 9015-9030.	2.0	50
660	Multiscale modeling of layer formation in epidermis. PLoS Computational Biology, 2018, 14, e1006006.	1.5	21
661	Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Advanced Drug Delivery Reviews, 2019, 146, 344-365.	6.6	301
662	FAM 83C/Fam83g genetic variants affect canine and murine hair formation. Experimental Dermatology, 2019, 28, 350-354.	1.4	7
663	Regenerative Medicine Approaches for Engineering a Human Hair Follicle. , 2019, , 1297-1308.		0
664	Substrate softness promotes terminal differentiation of human keratinocytes without altering their ability to proliferate back into a rigid environment. Archives of Dermatological Research, 2019, 311, 741-751.	1.1	5
665	Skin Cell Cultures and Skin Engineering. , 2019, , 171-202.		0
666	Cdc42 Deficiency Leads To Epidermal Barrier Dysfunction by Regulating Intercellular Junctions and Keratinization of Epidermal Cells during Mouse Skin Development. Theranostics, 2019, 9, 5065-5084.	4.6	14
667	Epidermal stem cells in wound healing and their clinical applications. Stem Cell Research and Therapy, 2019, 10, 229.	2.4	107
669	Dermal papilla regulation of hair growth and pigmentation. Advances in Stem Cells and Their Niches, 2019, , 115-138.	0.1	3
670	Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface. Graefe's Archive for Clinical and Experimental Ophthalmology, 2019, 257, 1915-1924.	1.0	7
671	An analysis of a mathematical model describing acidâ€mediated tumor invasion. Mathematical Methods in the Applied Sciences, 2019, 42, 6686-6705.	1.2	5
672	Biophysical regulation of epidermal fate and function. Advances in Stem Cells and Their Niches, 2019, 3, 1-30.	0.1	1
673	Polarity signaling ensures epidermal homeostasis by coupling cellular mechanics and genomic integrity. Nature Communications, 2019, 10, 3362.	5.8	30

#	Article	IF	CITATIONS
674	Long-term expansion and differentiation of adult murine epidermal stem cells in 3D organoid cultures. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 14630-14638.	3.3	56
675	Y-27632 preserves epidermal integrity in a human skin organ-culture (hSOC) system by regulating AKT and ERK signaling pathways. Journal of Dermatological Science, 2019, 96, 99-109.	1.0	8
676	Lymphatic vessels interact dynamically with the hair follicle stem cell niche during skin regeneration <i>inÂvivo</i> . EMBO Journal, 2019, 38, e101688.	3.5	47
677	Senescent human melanocytes drive skin ageing via paracrine telomere dysfunction. EMBO Journal, 2019, 38, e101982.	3.5	136
678	The long nonâ€coding <scp>RNA LINC</scp> 00941 and <scp>SPRR</scp> 5 are novel regulators of human epidermal homeostasis. EMBO Reports, 2019, 20, .	2.0	29
679	Isolation, cultivation and immunofluorescence characterization of lamellar keratinocytes from equine hoof by using explants. Pesquisa Veterinaria Brasileira, 2019, 39, 292-298.	0.5	0
680	Dietary Fat-Accelerating Leptin Signaling Promotes Protumorigenic Gastric Environment in Mice. Nutrients, 2019, 11, 2127.	1.7	8
681	Potential of Curcumin in Skin Disorders. Nutrients, 2019, 11, 2169.	1.7	106
682	Keratin 14 is a novel interaction partner of keratinocyte differentiation regulator: receptor-interacting protein kinase 4. Turkish Journal of Biology, 2019, 43, 225-234.	2.1	11
683	Epithelial stratification shapes infection dynamics. PLoS Computational Biology, 2019, 15, e1006646.	1.5	13
684	Dermal niche signaling and epidermal stem cells. Advances in Stem Cells and Their Niches, 2019, , 157-192.	0.1	0
685	p73 regulates epidermal wound healing and induced keratinocyte programming. PLoS ONE, 2019, 14, e0218458.	1.1	20
686	Dynamic expression of \hat{I} ±6 integrin indicates epidermal cell behaviors. Biochemical and Biophysical Research Communications, 2019, 515, 119-124.	1.0	0
687	Biotin Identification Proteomics in Three-Dimensional Organotypic Human Skin Cultures. Methods in Molecular Biology, 2019, 2109, 185-197.	0.4	3
688	Flexibility sustains epithelial tissue homeostasis. Current Opinion in Cell Biology, 2019, 60, 84-91.	2.6	29
689	Therapeutic Effects of Synthetic Antimicrobial Peptides, TRAIL and NRP1 Blocking Peptides in Psoriatic Keratinocytes. Chonnam Medical Journal, 2019, 55, 75.	0.5	4
690	The Roles of YAP/TAZ and the Hippo Pathway in Healthy and Diseased Skin. Cells, 2019, 8, 411.	1.8	63
691	Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses, 2019, 11, 369.	1.5	42

#	Article	IF	Citations
692	EGFR Controls Hair Shaft Differentiation in a p53-Independent Manner. IScience, 2019, 15, 243-256.	1.9	14
693	microRNA Modulation. , 2019, , 1-66.		0
694	From neural crest cells to melanocytes: cellular plasticity during development and beyond. Cellular and Molecular Life Sciences, 2019, 76, 1919-1934.	2.4	70
695	The Wave complex controls epidermal morphogenesis and proliferation by suppressing Wnt–Sox9 signaling. Journal of Cell Biology, 2019, 218, 1390-1406.	2.3	19
696	An enriched network motif family regulates multistep cell fate transitions with restricted reversibility. PLoS Computational Biology, 2019, 15, e1006855.	1.5	37
697	Relevance of Oxygen Concentration in Stem Cell Culture for Regenerative Medicine. International Journal of Molecular Sciences, 2019, 20, 1195.	1.8	138
698	Gain-of-Function Mutations in TRPM4 Activation Gate Cause Progressive Symmetric Erythrokeratodermia. Journal of Investigative Dermatology, 2019, 139, 1089-1097.	0.3	32
699	Bioengineering the microanatomy of human skin. Journal of Anatomy, 2019, 234, 438-455.	0.9	91
700	Activin B Stimulates Mouse Vibrissae Growth and Regulates Cell Proliferation and Cell Cycle Progression of Hair Matrix Cells through ERK Signaling. International Journal of Molecular Sciences, 2019, 20, 853.	1.8	9
701	Zooming in across the Skin: A Macro-to-Molecular Panorama. Advances in Experimental Medicine and Biology, 2019, 1247, 157-200.	0.8	8
702	Conventional and Emerging Markers in Stem Cell Isolation and Characterization. Advances in Experimental Medicine and Biology, 2019, 1341, 1-14.	0.8	1
703	Discovery of increased epidermal DNAH10 expression after regeneration of dermis in a randomized with-in person trial — reflections on psoriatic inflammation. Scientific Reports, 2019, 9, 19136.	1.6	3
704	Protective mechanism of GPR30 agonist G1 against ultraviolet B-induced injury in epidermal stem cells. Artificial Cells, Nanomedicine and Biotechnology, 2019, 47, 4165-4171.	1.9	5
705	Heterogeneity within Stratified Epithelial Stem Cell Populations Maintains the Oral Mucosa in Response to Physiological Stress. Cell Stem Cell, 2019, 25, 814-829.e6.	5.2	40
706	Sonic Hedgehog Pathway Inhibition in the Treatment of Advanced Basal Cell Carcinoma. Current Treatment Options in Oncology, 2019, 20, 84.	1.3	25
707	Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing?. Lasers in Surgery and Medicine, 2019, 51, 370-382.	1.1	85
708	PRC1 preserves epidermal tissue integrity independently of PRC2. Genes and Development, 2019, 33, 55-60.	2.7	36
709	Stem cell dynamics, migration and plasticity during wound healing. Nature Cell Biology, 2019, 21, 18-24.	4.6	250

#	Article	IF	CITATIONS
710	Biophysical factors in the regulation of asymmetric division of stem cells. Biological Reviews, 2019, 94, 810-827.	4.7	8
711	Role of caveolin-1 in epidermal stem cells during burn wound healing in rats. Developmental Biology, 2019, 445, 271-279.	0.9	15
712	Curcumin promotes burn wound healing in mice by upregulating caveolinâ€1 in epidermal stem cells. Phytotherapy Research, 2019, 33, 422-430.	2.8	22
713	RhoGDlÎ ² affects HeLa cell spindle orientation following UVC irradiation. Journal of Cellular Physiology, 2019, 234, 15134-15146.	2.0	3
714	Hedgehog Pathway Inhibitors and Their Utility in Basal Cell Carcinoma: A Comprehensive Review of Current Evidence. Dermatology and Therapy, 2019, 9, 33-49.	1.4	23
715	Cytoprotective role of S14G-humanin (HNG) in ultraviolet-B induced epidermal stem cells injury. Biomedicine and Pharmacotherapy, 2019, 110, 248-253.	2.5	7
716	Keratinocyte Cytokine Networks AssociatedÂwith Human Melanocytic NevusÂDevelopment. Journal of Investigative Dermatology, 2019, 139, 177-185.	0.3	4
717	Time-Series Expression Analysis of Epidermal Stem Cells from High Fat Diet Mice. Journal of Computational Biology, 2020, 27, 769-778.	0.8	2
718	Epidermal mammalian target of rapamycin complex 2 controls lipid synthesis and filaggrin processing in epidermal barrier formation. Journal of Allergy and Clinical Immunology, 2020, 145, 283-300.e8.	1.5	24
719	DNA Methylation in Epidermal Differentiation, Aging, and Cancer. Journal of Investigative Dermatology, 2020, 140, 38-47.	0.3	54
720	Inhibition of sphingosine 1-phosphate lyase activates human keratinocyte differentiation and attenuates psoriasis in mice. Journal of Lipid Research, 2020, 61, 20-32.	2.0	21
721	Differential expression of α6 and β1 integrins reveals epidermal heterogeneity at singleâ€cell resolution. Journal of Cellular Biochemistry, 2020, 121, 2664-2676.	1.2	6
722	Long non oding RNAs in cutaneous biology and proliferative skin diseases: Advances and perspectives. Cell Proliferation, 2020, 53, e12698.	2.4	33
723	Cellular mechanisms of epithelial stem cell selfâ€renewal and differentiation during homeostasis and repair. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e361.	5.9	20
724	Putative human myometrial and fibroid stem-like cells have mesenchymal stem cell and endometrial stromal cell properties. Human Reproduction, 2020, 35, 44-57.	0.4	18
725	Toward Combined Cell and Gene Therapy for Genodermatoses. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035667.	2.3	23
726	New Frontiers in Skin Rejuvenation, Including Stem Cells and Autologous Therapies. Facial Plastic Surgery Clinics of North America, 2020, 28, 101-117.	0.9	14
727	RIPK4 suppresses the TGFâ€Î²1 signaling pathway in HaCaT cells. Cell Biology International, 2020, 44, 848-860.	1.4	7

#	Article	IF	CITATIONS
728	Overexpression of MYB in the Skin Induces Alopecia and Epidermal Hyperplasia. Journal of Investigative Dermatology, 2020, 140, 1204-1213.e5.	0.3	5
729	Cancer Stem Cells: New Horizons in Cancer Therapies. , 2020, , .		1
730	Adipose-Derived Stem Cells (ADSCs) and Growth Differentiation Factor 11 (GDF11): Regenerative and Antiaging Capacity for the Skin. , 0, , .		2
731	DNMT1-mediated methylation inhibits microRNA-214-3p and promotes hair follicle stem cell differentiate into adipogenic lineages. Stem Cell Research and Therapy, 2020, 11, 444.	2.4	8
732	Integrated Wound Recognition in Bandages for Intelligent Treatment. Advanced Healthcare Materials, 2020, 9, e2000941.	3.9	20
733	Targeting Wnt/β-Catenin Pathway for Developing Therapies for Hair Loss. International Journal of Molecular Sciences, 2020, 21, 4915.	1.8	97
734	Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development (Cambridge), 2020, 147, .	1.2	17
735	Wwox Deficiency Causes Downregulation of Prosurvival ERK Signaling and Abnormal Homeostatic Responses in Mouse Skin. Frontiers in Cell and Developmental Biology, 2020, 8, 558432.	1.8	6
736	Heparan Sulfate Proteoglycans: Key Mediators of Stem Cell Function. Frontiers in Cell and Developmental Biology, 2020, 8, 581213.	1.8	18
737	The Role of microRNAs in Organismal and Skin Aging. International Journal of Molecular Sciences, 2020, 21, 5281.	1.8	56
738	Low-frequency electromagnetic fields promote hair follicles regeneration by injection a mixture of epidermal stem cells and dermal papilla cells. Electromagnetic Biology and Medicine, 2020, 39, 251-256.	0.7	2
739	Costello syndrome model mice with a Hras G12S mutation are susceptible to develop house dust mite-induced atopic dermatitis. Cell Death and Disease, 2020, 11, 617.	2.7	2
740	Schwann Cell-Like Cells: Origin and Usability for Repair and Regeneration of the Peripheral and Central Nervous System. Cells, 2020, 9, 1990.	1.8	37
741	UBAC1/KPC2 Regulates TLR3 Signaling in Human Keratinocytes through Functional Interaction with the CARD14/CARMA2sh-TANK Complex. International Journal of Molecular Sciences, 2020, 21, 9365.	1.8	7
742	An Intrinsic Oscillation of Gene Networks Inside Hair Follicle Stem Cells: An Additional Layer That Can Modulate Hair Stem Cell Activities. Frontiers in Cell and Developmental Biology, 2020, 8, 595178.	1.8	27
743	Silk fibroin/collagen 3D scaffolds loaded with TiO2 nanoparticles for skin tissue regeneration. Polymer Bulletin, 2021, 78, 7199-7218.	1.7	14
744	miR-155 Contributes to Normal Keratinocyte Differentiation and Is Upregulated in the Epidermis of Psoriatic Skin Lesions. International Journal of Molecular Sciences, 2020, 21, 9288.	1.8	13
745	Tp63-expressing adult epithelial stem cells cross lineages boundaries revealing latent hairy skin competence. Nature Communications, 2020, 11, 5645.	5.8	9

ARTICLE IF CITATIONS # Regulatory T cells in skin injury: At the crossroads of tolerance and tissue repair. Science 746 5.6 99 Immunology, 2020, 5, . 747 Inflammasomes in Common Immune-Related Skin Diseases. Frontiers in Immunology, 2020, 11, 882. 2.2 Pontin-deficiency causes senescence in fibroblast cells and epidermal keratinocytes but induces 748 1.9 1 apoptosis in cancer cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118740. miRNAs in diabetic wound healing., 2020, , 149-166. 749 Novel approaches for managing aged skin and nonmelanoma skin cancer. Advanced Drug Delivery 750 6.6 25 Reviews, 2020, 153, 18-27. Calcium regulation of stem cells. EMBO Reports, 2020, 21, e50028. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Research and 752 2.4 51 Therapy, 2020, 11, 144. Epidermal Cells. Methods in Molecular Biology, 2020, , . 0.4 Protective Effects of Salicornia europaea on UVB-Induced Misoriented Cell Divisions in Skin 754 1.5 6 Epithelium. Cosmetics, 2020, 7, 44. Cell Biology and Translational Medicine, Volume 8. Advances in Experimental Medicine and Biology, 0.8 2020,,. Mathematical Analysis of a Non-Local Mixed ODE-PDE Model for Tumor Invasion and Chemotherapy. 756 0 0.5 Acta Applicandae Mathematicae, 2020, 170, 415-442. Effect of Hataedock Treatment on Epidermal Structure Maintenance through Intervention in the Endocannabinoid System. Evidence-based Complementary and Alternative Medicine, 2020, 2020, 1-14. Hopes and Limits of Adipose-Derived Stem Cells (ADSCs) and Mesenchymal Stem Cells (MSCs) in Wound 758 1.8 250 Healing. International Journal of Molecular Sciences, 2020, 21, 1306. A G1 Sizer Coordinates Growth and Division in the Mouse Epidermis. Current Biology, 2020, 30, 1.8 916-924.e2. Network pharmacology-based preventive effect of XZF on cutaneous toxicities induced by EGFR 760 2.58 inhibitor. Biomedicine and Pharmacotherapy, 2020, 123, 109755. Forensic touch DNA recovery from metal surfaces – A review. Science and Justice - Journal of the 46 Forensic Science Society, 2020, 60, 206-215. Protective Effects of Astaxanthin Supplementation against Ultraviolet-Induced Photoaging in Hairless 762 1.4 30 Mice. Biomedicines, 2020, 8, 18. In Silico Analysis of the Age-Dependent Evolution of the Transcriptome of Mouse Skin Stem Cells. 1.8 Cells, 2020, 9, 165.

#	Article	IF	CITATIONS
764	The effects of microgravity on differentiation and cell growth in stem cells and cancer stem cells. Stem Cells Translational Medicine, 2020, 9, 882-894.	1.6	51
765	Impact of intercellular crosstalk between epidermal keratinocytes and dermal fibroblasts on skin homeostasis. Biochimica Et Biophysica Acta - Molecular Cell Research, 2020, 1867, 118722.	1.9	33
766	Exploring differentially expressed genes between anagen and telogen secondary hair follicle stem cells from the Cashmere goat (Capra hircus) by RNA-Seq. PLoS ONE, 2020, 15, e0231376.	1.1	16
767	Gut–organ axis: a microbial outreach and networking. Letters in Applied Microbiology, 2021, 72, 636-668.	1.0	115
768	Specific Smad2/3 Linker Phosphorylation Indicates Esophageal Non-neoplastic and Neoplastic Stem-Like Cells and Neoplastic Development. Digestive Diseases and Sciences, 2021, 66, 1862-1874.	1.1	1
769	Preparing the hair follicle canal for hair shaft emergence. Experimental Dermatology, 2021, 30, 472-478.	1.4	5
770	In vitro skin toxicity of CuO and ZnO nanoparticles: Application in the safety assessment of antimicrobial coated textiles. NanoImpact, 2021, 21, 100282.	2.4	29
771	A novel missense mutation within KRT75 gene strongly affects heat stress in Chinese cattle. Gene, 2021, 768, 145294.	1.0	5
772	Expression of the epidermal stem cell marker p63/CK5 in cutaneous papillomas and cutaneous squamous cell carcinomas of dogs. Research in Veterinary Science, 2021, 135, 366-370.	0.9	0
773	Human Keratinocytes Adopt Neuronal Fates After In Utero Transplantation in the Developing Rat Brain. Cell Transplantation, 2021, 30, 096368972097821.	1.2	1
774	Effect of Lactic Fermentation Products on Human Epidermal Cell Differentiation, Ceramide Content, and Amino Acid Production. Skin Pharmacology and Physiology, 2021, 34, 103-114.	1.1	4
775	AJUBA: A regulator of epidermal homeostasis and cancer. Experimental Dermatology, 2021, 30, 546-559.	1.4	13
776	Defining human mesenchymal and epithelial heterogeneity in response to oral inflammatory disease. ELife, 2021, 10, .	2.8	52
777	Wound Healing by Keratinocytes: A Cytoskeletal Perspective. Journal of the Indian Institute of Science, 2021, 101, 73-80.	0.9	6
778	Sonidegib. , 2021, , 199-213.		0
779	Skin Immunomodulation during Regeneration: Emerging New Targets. Journal of Personalized Medicine, 2021, 11, 85.	1.1	21
780	Primary nonkeratinizing squamous cell carcinoma of the scapular bone: A case report. World Journal of Clinical Cases, 2021, 9, 976-982.	0.3	0
781	Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). Phytotherapy Research, 2021, 35, 3649-3664.	2.8	12

#	Article	IF	CITATIONS
782	Decreased p53 is associated with a decline in asymmetric stem cell selfâ€renewal in aged human epidermis. Aging Cell, 2021, 20, e13310.	3.0	8
783	SPT6 promotes epidermal differentiation and blockade of an intestinal-like phenotype through control of transcriptional elongation. Nature Communications, 2021, 12, 784.	5.8	13
784	Vasculature-driven stem cell population coordinates tissue scaling in dynamic organs. Science Advances, 2021, 7, .	4.7	11
785	Growth and Viability of Cutaneous Squamous Cell Carcinoma Cell Lines Display Different Sensitivities to Isoform-Specific Phosphoinositide 3-Kinase Inhibitors. International Journal of Molecular Sciences, 2021, 22, 3567.	1.8	5
786	The role of stem cells in uterine involution. Reproduction, 2021, 161, R61-R77.	1.1	11
787	Isolation, characterization and evaluation of anti-proliferative properties of andrographolide isolated from <i>Andrographis paniculata</i> on cultured HaCaT cells. Herba Polonica, 2021, 67, 35-45.	0.2	2
788	Epigenetic and metabolic regulation of epidermal homeostasis. Experimental Dermatology, 2021, 30, 1009-1022.	1.4	11
789	Dnmt3a deficiency in the skin causes focal, canonical DNA hypomethylation and a cellular proliferation phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, e2022760118.	3.3	6
790	Approaches for Regenerative Healing of Cutaneous Wound with an Emphasis on Strategies Activating the Wnt/β-Catenin Pathway. Advances in Wound Care, 2022, 11, 70-86.	2.6	22
791	Leaf-inspired homeostatic cellulose biosensors. Science Advances, 2021, 7, .	4.7	29
793	Human skin aging is associated with increased expression of the histone variant H2A.J in the epidermis. Npj Aging and Mechanisms of Disease, 2021, 7, 7.	4.5	32
794	<i>N</i> 1-acetylspermidine is a determinant of hair follicle stem cell fate. Journal of Cell Science, 2021, 134, .	1.2	11
795	Wound Repair and Extremely Low Frequency-Electromagnetic Field: Insight from In Vitro Study and Potential Clinical Application. International Journal of Molecular Sciences, 2021, 22, 5037.	1.8	24
796	Genetic fate-mapping reveals surface accumulation but not deep organ invasion of pleural and peritoneal cavity macrophages following injury. Nature Communications, 2021, 12, 2863.	5.8	25
798	The PI3K/Akt Pathway: Emerging Roles in Skin Homeostasis and a Group of Non-Malignant Skin Disorders. Cells, 2021, 10, 1219.	1.8	53
800	Regulation and mechanism of YAP/TAZ in theÂmechanical microenvironment of stem cells (Review). Molecular Medicine Reports, 2021, 24, .	1.1	16
801	Effects of UV Induced-Photoaging on the Hair Follicle Cycle of C57BL6/J Mice. Clinical, Cosmetic and Investigational Dermatology, 2021, Volume 14, 527-539.	0.8	10
802	Epigenetic regulation and signalling pathways in Merkel cell development. Experimental Dermatology, 2021, 30, 1051-1064.	1.4	8

	CITATION	Report	
#	Article	IF	CITATIONS
803	α2β1 integrins spatially restrict Cdc42 activity to stabilise adherens junctions. BMC Biology, 2021, 19, 130.	1.7	9
804	The METTL3-m6A Epitranscriptome: Dynamic Regulator of Epithelial Development, Differentiation, and Cancer. Genes, 2021, 12, 1019.	1.0	15
805	Human pluripotent stem cells: An alternative for 3D in vitro modelling of skin disease. Experimental Dermatology, 2021, 30, 1572-1587.	1.4	6
806	The regional distribution of melanosomes in the epidermis affords a localized intensive photoprotection for basal keratinocyte stem cells. Journal of Dermatological Science, 2021, 103, 130-134.	1.0	5
807	Cyclic AMP-Dependent Protein Kinase Exhibits Antagonistic Effects on the Replication Efficiency of Different Human Papillomavirus Types. Journal of Virology, 2021, 95, e0025121.	1.5	5
808	Apoptotic cells represent a dynamic stem cell niche governing proliferation and tissue regeneration. Developmental Cell, 2021, 56, 1900-1916.e5.	3.1	28
809	The human vermilion surface contains a rich amount of cholesterol sulfate than the skin. Journal of Dermatological Science, 2021, 103, 143-150.	1.0	3
810	A ubiquitin-like protein encoded by the "noncoding―RNA TINCR promotes keratinocyte proliferation and wound healing. PLoS Genetics, 2021, 17, e1009686.	1.5	11
811	Dynamic spatiotemporal coordination of neural stem cell fate decisions occurs through local feedback in the adult vertebrate brain. Cell Stem Cell, 2021, 28, 1457-1472.e12.	5.2	29
812	Inhibition of microRNA turns back the CLOCK of hair follicle aging. Nature Aging, 2021, 1, 753-754.	5.3	2
815	Regulation of tissue architecture and stem cell dynamics to sustain homeostasis and repair in the skin epidermis. Seminars in Cell and Developmental Biology, 2022, 130, 79-89.	2.3	2
816	Liposomal honokiol promotes hair growth via activating Wnt3a/β-catenin signaling pathway and down regulating TGF-β1 in C57BL/6N mice. Biomedicine and Pharmacotherapy, 2021, 141, 111793.	2.5	19
817	Skin Structure and Function, Wound Healing and Scarring. , 2022, , 1-14.		2
820	Adult Stem Cels and Their Niches. Advances in Experimental Medicine and Biology, 2010, 695, 155-168.	0.8	142
821	The Wnt/ \hat{I}^2 -catenin Signaling Circuitry in Head and Neck Cancer. , 2014, , 199-214.		1
822	Protocol for Cutaneous Wound Healing Assay in a Murine Model. Methods in Molecular Biology, 2014, 1210, 151-159.	0.4	10
823	Adult Stem Cell Plasticity Revisited. , 2011, , 113-131.		1
824	Transcriptional Regulation of Epidermal Barrier Formation. Methods in Molecular Biology, 2011, 763, 51-71.	0.4	1

#	Article	IF	CITATIONS
825	Isolation and Characterization of Stem Cell-Enriched Human and Canine Hair Follicle Keratinocytes. Methods in Molecular Biology, 2012, 879, 389-401.	0.4	21
827	Impaired Wound Repair and Delayed Angiogenesis. , 2015, , 1-13.		3
828	Skin architecture and function. , 2012, , 29-46.		1
830	Stem Cell Niche. , 2011, , 81-101.		3
831	Stem Cells in the Drosophila Digestive System. Advances in Experimental Medicine and Biology, 2013, 786, 63-78.	0.8	12
832	Regulation and functions of the Hippo pathway in stemness and differentiation. Acta Biochimica Et Biophysica Sinica, 2020, 52, 736-748.	0.9	17
833	A Review of 3-Dimensional Skin Bioprinting Techniques: Applications, Approaches, and Trends. Dermatologic Surgery, 2020, 46, 1500-1505.	0.4	22
838	Epithelial stem cell mutations that promote squamous cell carcinoma metastasis. Journal of Clinical Investigation, 2013, 123, 4390-4404.	3.9	83
839	Defining epithelial cell dynamics and lineage relationships in the developing lacrimal gland. Development (Cambridge), 2017, 144, 2517-2528.	1.2	32
840	ABL1 Joins the Cadre of Spindle Orientation Machinery. Cell Structure and Function, 2012, 37, 81-87.	0.5	5
841	Positive Effects of Diphlorethohydroxycarmalol (DPHC) on the Stability of the Integument Structure in Diet-Induced Obese Female Mice. Development & Reproduction, 2015, 19, 145-152.	0.5	2
842	Polycomb-Mediated Repression and Sonic Hedgehog Signaling Interact to Regulate Merkel Cell Specification during Skin Development. PLoS Genetics, 2016, 12, e1006151.	1.5	53
843	Dkk4 and Eda Regulate Distinctive Developmental Mechanisms for Subtypes of Mouse Hair. PLoS ONE, 2010, 5, e10009.	1.1	52
844	In Vivo Identification of Solar Radiation-Responsive Gene Network: Role of the p38 Stress-Dependent Kinase. PLoS ONE, 2010, 5, e10776.	1.1	14
845	NASA-Approved Rotary Bioreactor Enhances Proliferation of Human Epidermal Stem Cells and Supports Formation of 3D Epidermis-Like Structure. PLoS ONE, 2011, 6, e26603.	1.1	68
846	Local Microenvironment Provides Important Cues for Cell Differentiation in Lingual Epithelia. PLoS ONE, 2012, 7, e35362.	1.1	6
847	Estrogen Leads to Reversible Hair Cycle Retardation through Inducing Premature Catagen and Maintaining Telogen. PLoS ONE, 2012, 7, e40124.	1.1	42
848	Valproic Acid Induces Cutaneous Wound Healing In Vivo and Enhances Keratinocyte Motility. PLoS ONE, 2012, 7, e48791.	1.1	48

#	Article	IF	CITATIONS
849	Dynamics of Response to Asynapsis and Meiotic Silencing in Spermatocytes from Robertsonian Translocation Carriers. PLoS ONE, 2013, 8, e75970.	1.1	15
850	Deregulation of the pRb-E2F4 axis alters epidermal homeostasis and favors tumor development. Oncotarget, 2016, 7, 75712-75728.	0.8	2
851	Anti-proliferative effects of an herbal formulated cream on human keratinocytes and its implication for psoriasis treatment. International Journal of Bioassays, 2016, 5, 4686.	0.1	2
852	Epidermal Differentiation Complex: A Review on Its Epigenetic Regulation and Potential Drug Targets. Cell Journal, 2016, 18, 1-6.	0.2	58
853	The Reconstructed Human Epidermis in vitro — a Model for Basic and Applied Research of Human Skin. Vestnik Dermatologii I Venerologii, 2020, 96, 24-34.	0.2	3
854	Intrinsic Disorder in Nuclear Receptor Amino Termini: From Investigational Challenge to Therapeutic Opportunity. Nuclear Receptor Research, 2019, 6, .	2.5	3
855	Isolating stem cells from skin: designing a novel highly efficient non-enzymatic approach. Physiological Research, 2019, 68, S385-S388.	0.4	9
856	Decellularized Scaffolds for Skin Repair and Regeneration. Applied Sciences (Switzerland), 2020, 10, 3435.	1.3	52
858	Demographic modeling of transient amplifying cell population growth. Mathematical Biosciences and Engineering, 2014, 11, 363-384.	1.0	4
859	Challenges of stem cell therapies in companion animal practice. Journal of Veterinary Science, 2020, 21, e42.	0.5	9
860	Glucocorticoid receptors, epidermal homeostasis and hair follicle differentiation. Dermato-Endocrinology, 2011, 3, 166-74.	1.9	22
861	Anti-wrinkle effect of bone morphogenetic protein receptor 1a-extracellular domain (BMPR1a-ECD). BMB Reports, 2013, 46, 465-470.	1.1	5
862	Epithelial cells supply Sonic Hedgehog to the perinatal dentate gyrus via transport by platelets. ELife, 2015, 4, .	2.8	11
863	Stem cell topography splits growth and homeostatic functions in the fish gill. ELife, 2019, 8, .	2.8	16
864	Stepwise polarisation of developing bilayered epidermis is mediated by aPKC and E-cadherin in zebrafish. ELife, 2020, 9, .	2.8	10
865	Stem cell niche exit in C. elegans via orientation and segregation of daughter cells by a cryptic cell outside the niche. ELife, 2020, 9, .	2.8	26
866	Functions of the Skin. , 2022, , 133-143.		0
867	A Beginner's Introduction to Skin Stem Cells and Wound Healing. International Journal of Molecular Sciences, 2021, 22, 11030.	1.8	15

#	Article	IF	CITATIONS
868	Bisdemethoxycurcumin alleviates vandetanib-induced cutaneous toxicity in vivo and in vitro through autophagy activation. Biomedicine and Pharmacotherapy, 2021, 144, 112297.	2.5	4
869	Postnatal Stem Cells in Tissue Engineering. , 2009, , 583-590.		0
871	Futuristic Approaches to Skin Care. , 2010, , 89-99.		0
872	Futuristic Approaches to Skin Care. Series in Cosmetic and Laser Therapy, 2010, , 89-99.	0.0	0
875	Eczema, psoriasis, skin cancers and other skin disorder. , 2011, , 361-396.		0
876	Stem Cells and Alcohol-Related Cancers. , 2011, , 211-223.		0
877	Research progress in the cell origin of basal cell carcinoma. World Journal of Medical Genetics, 2011, 1, 11.	1.0	0
878	Clinical Application of Autologous Epithelial Stem Cells in Disorders of Squamous Epithelia. Pancreatic Islet Biology, 2011, , 45-53.	0.1	0
879	DNA Repair, Human Diseases and Aging. , 0, , .		0
880	Neural Crest and Hirschsprung's Disease. , 2012, , 353-386.		1
881	Psoriasis and Stress $\hat{a} {\in} ``$ Psoriasis Aspect of Psychoneuroendocrinology. , 0, , .		1
882	Isolation and Characterization of Prostate Stem Cells. , 2013, , 21-36.		0
883	Stem Cell Niche. , 2013, , 79-106.		2
884	Adult Liver Stem Cells. Pancreatic Islet Biology, 2014, , 319-338.	0.1	0
886	Skin Regeneration and Circulating Stem Cells. Pancreatic Islet Biology, 2014, , 163-177.	0.1	0
887	Stem Cell versus Cancer and Cancer Stem Cell: Intricate Balance Decides Their Respective Usefulness or Harmfulness in the Biological System. Journal of Stem Cell Research & Therapy, 2014, 04, .	0.3	3
888	Zellen. , 2014, , 131-199.		0
889	Telomere Length Differences upon Keratinization and its Variations in Normal Human Epidermal Keratinocytes. Cell Biology, 2014, 2, 55.	0.2	0

#	Article	IF	CITATIONS
890	Desenvolvimento do sistema tegumentar em bovinos com idades gestacionais estimadas de 20 a 140 dias. Pesquisa Veterinaria Brasileira, 2014, 34, 695-702.	0.5	0
895	Histone Deacetylase Functions in Epidermal Development, Homeostasis and Cancer. Contributions To Management Science, 2018, , 121-157.	0.4	Ο
896	Identification of Bulge Stem Cells in Mouse and Human Hair Follicles. Microscopy Research, 2018, 06, 19-29.	0.3	4
904	microRNA Modulation. , 2020, , 511-576.		0
905	Skin Architecture and Function. , 2020, , 27-40.		0
906	Therapeutic Implication of Cancer Stem Cells. , 2020, , 155-166.		0
907	RACK1 Prevents the Premature Differentiation of Epidermal Progenitor Cells by Inhibiting IRF6 Expression. Journal of Investigative Dermatology, 2022, 142, 1499-1502.e4.	0.3	2
908	The Diverse Manifestations of Regeneration and Why We Need to Study Them. Cold Spring Harbor Perspectives in Biology, 2021, , a040931.	2.3	1
912	Regulation of germ line stem cell homeostasis. Animal Reproduction, 2015, 12, 35-45.	0.4	16
913	Natural product topical therapy in mitigating imiquimod-induced psoriasis-like skin inflammation-underscoring the anti-psoriatic potential of Nimbolide. Indian Journal of Pharmacology, 2021, 53, 278-285.	0.4	2
914	Aryl Hydrocarbon Receptor Controls Skin Homeostasis, Regeneration, and Hair Follicle Cycling by Adjusting Epidermal Stem Cell Function. Stem Cells, 2021, 39, 1733-1750.	1.4	12
915	In-Corpo-Real Robot-Dreams: Empathy, Skin, and Boundaries. , 2021, , .		0
916	The Effect of Nanoparticle-Incorporated Natural-Based Biomaterials towards Cells on Activated Pathways: A Systematic Review. Polymers, 2022, 14, 476.	2.0	31
917	One Size Does Not Fit All: Diversifying Immune Function in the Skin. Journal of Immunology, 2022, 208, 227-234.	0.4	5
918	Therapeutic potential of adipose tissueâ€derivatives in modern dermatology. Experimental Dermatology, 2022, 31, 1837-1852.	1.4	14
919	Multi-scale Fabrication Techniques of Collagen Hydrogel for Developing Physiological 3D In vitro Barrier Model. International Journal of Precision Engineering and Manufacturing, 2022, 23, 227-254.	1.1	2
920	Marine Collagen: A Promising Biomaterial for Wound Healing, Skin Anti-Aging, and Bone Regeneration. Marine Drugs, 2022, 20, 61.	2.2	71
921	Comparative genomics reveals evolutionary loss of epiplakin in cetaceans. Scientific Reports, 2022, 12, 1112.	1.6	2

ARTICLE IF CITATIONS # Djhsp70s, especially Djhsp70c, play a key role in planarian regeneration and tissue homeostasis by 922 1.0 1 regulating cell proliferation and apoptosis. Gene, 2022, 820, 146215. The regulatory role of microRNAs in the development, cyclic changes, and cell differentiation of the 1.8 hair follicle. Process Biochemistry, 2022, 114, 36-41. Cellular Heterogeneity and Plasticity of Skin Epithelial Cells in Wound Healing and Tumorigenesis. 924 1.7 8 Stem Cell Reviews and Reports, 2022, 18, 1912-1925. Mesenchymal stem cells, secretome and biomaterials in in-vivo animal models: Regenerative medicine 0.4 application in cutaneous wound healing. Biocell, 2022, 46, 1815-1826. ENKD1 promotes epidermal stratification by regulating spindle orientation in basal keratinocytes. Cell 927 5.0 8 Death and Differentiation, 2022, 29, 1719-1729. Advancing Regenerative Cellular Therapies in Non-Scarring Alopecia. Pharmaceutics, 2022, 14, 612. Continuous ZnO nanoparticle exposure induces melanoma-like skin lesions in epidermal barrier 929 dysfunction model mice through anti-apoptotic effects mediated by the oxidative stress–activated 4.2 6 NF-I[®]B pathway. Journal of Nanobiotechnology, 2022, 20, 111. Osmotic Stress Interferes with DNA Damage Response and H2AX Phosphorylation in Human 930 1.8 Keratinocytes. Cells, 2022, 11, 959. The Effects of Arginine Glutamate (RE:pair) on Wound Healing and Skin Elasticity Improvement After 932 0.8 2 CO ₂ Laser Irradiation. Journal of Cosmetic Dermatology, 2022, , . Aberrant Wnt Signaling Induces Comedo-Like Changes in the Murine Upper Hair Follicle. Journal of Investigative Dermatology, 2022, 142, 2603-2612.e6. The Immunological Impact of IL-1 Family Cytokines on the Epidermal Barrier. Frontiers in Immunology, 934 2.2 27 2021, 12, 808012. Calcium Signaling in the Photodamaged Skin: In Vivo Experiments and Mathematical Modeling. 1.1 Function, 2021, 3, zqab064. Reawakening GDNF's regenerative past in mice and humans. Regenerative Therapy, 2022, 20, 78-85. 937 1.4 2 Clinical applications of dental stem cells in modern regenerative medicine: A systematic review with 0.2 updates. Nigerian Journal of Clinical Practice, 2021, 24, 457 Push or Pull? Cell Proliferation and Migration During Wound Healing. Frontiers in Systems Biology, 953 0.53 2022, 2, . The Rho guanosine nucleotide exchange factors Vav2 and Vav3 modulate epidermal stem cell function. 954 Oncogene, 2022, 41, 3341-3354. The Biology of Varicella-Zoster Virus Replication in the Skin. Viruses, 2022, 14, 982. 955 1.58 Increase in Inhibin beta A/Activin-A expression in the human epidermis and the suppression of epidermal stem/progenitor cell proliferation with aging. Journal of Dermatological Science, 2022, , .

#	Article	IF	CITATIONS
957	Therapeutic Potential of Skin Stem Cells and Cells of Skin Origin: Effects of Botanical Drugs Derived from Traditional Medicine. Stem Cell Reviews and Reports, 2022, 18, 1986-2001.	1.7	1
959	100 plus years of stem cell research—20 years of ISSCR. Stem Cell Reports, 2022, 17, 1248-1267.	2.3	1
960	Advances in Biodegradable Electronic Skin: Material Progress and Recent Applications in Sensing, Robotics, and Human–Machine Interfaces. Advanced Materials, 2023, 35, .	11.1	82
961	Silk fibroin and silk sericin in skin tissue engineering and wound healing: retrospect and prospects. , 2022, , 301-331.		3
962	Inhibition of Canonical Wnt Signaling Promotes Ex Vivo Maintenance and Proliferation of Hematopoietic Stem Cells in Zebrafish. Stem Cells, 2022, 40, 831-842.	1.4	5
963	Dual-Action Icariin-Containing Thermosensitive Hydrogel for Wound Macrophage Polarization and Hair-Follicle Neogenesis. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	13
964	Epidermal Immunity and Function: Origin in Neonatal Skin. Frontiers in Molecular Biosciences, 0, 9, .	1.6	7
965	Impaired differentiation potential of CD34-positive cells derived from mouse hair follicles after long-term culture. Scientific Reports, 2022, 12, .	1.6	2
966	THY1-mediated mechanisms converge to drive YAP activation in skin homeostasis and repair. Nature Cell Biology, 2022, 24, 1049-1063.	4.6	12
967	Characterization of histone lysine βâ€hydroxybutyrylation in bovine tissues, cells, and cumulus–oocyte complexes. Molecular Reproduction and Development, 2022, 89, 375-398.	1.0	5
968	Niche stiffness regulates stem cell aging. Nature Aging, 0, , .	5.3	0
969	Differential gene screening and bioinformatics analysis of epidermal stem cells and dermal fibroblasts during skin aging. Scientific Reports, 2022, 12, .	1.6	1
970	Epidermal Stem Cell in Wound Healing of Gliricidia sepium Leaves from Indonesia and the Philippines in Rats (Rattus norvegicus). Open Access Macedonian Journal of Medical Sciences, 2022, 10, 1143-1150.	0.1	0
971	Novel Photo- and Thermo-Responsive Nanocomposite Hydrogels Based on Functionalized rGO and Modified SIS/Chitosan Polymers for Localized Treatment of Malignant Cutaneous Melanoma. Frontiers in Bioengineering and Biotechnology, 0, 10, .	2.0	4
972	Thy1 marks a distinct population of slow-cycling stem cells in the mouse epidermis. Nature Communications, 2022, 13, .	5.8	7
973	HYPOTHESIS: Do LRIG Proteins Regulate Stem Cell Quiescence by Promoting BMP Signaling?. Stem Cell Reviews and Reports, 0, , .	1.7	4
974	Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells, 2022, 11, 2439.	1.8	57
975	Binary organization of epidermal basal domains highlights robustness to environmental exposure. EMBO Journal, 2022, 41, .	3.5	10

#	ARTICLE	IF	CITATIONS
976	ROR2 regulates self-renewal and maintenance of hair follicle stem cells. Nature Communications, 2022, 13, .	5.8	5
977	A reductionist approach to determine the effect of cell-cell contact on human epidermal stem cell differentiation. Acta Biomaterialia, 2022, 150, 265-276.	4.1	3
978	Differentiationâ€related epigenomic changes define clinically distinct keratinocyte cancer subclasses. Molecular Systems Biology, 2022, 18, .	3.2	6
979	Biofabrication of Human Skin with Its Appendages. Advanced Healthcare Materials, 2022, 11, .	3.9	13
980	Downregulation of Lhx2 Markedly Impairs Wound Healing in Mouse Fetus. Biomedicines, 2022, 10, 2132.	1.4	0
981	Spatially Guided Construction of Multilayered Epidermal Models Recapturing Structural Hierarchy and Cell–Cell Junctions. Small Science, 0, , 2200051.	5.8	0
982	MIRA: joint regulatory modeling of multimodal expression and chromatin accessibility in single cells. Nature Methods, 2022, 19, 1097-1108.	9.0	25
984	MicroRNA-148a Controls Epidermal and Hair Follicle Stem/Progenitor Cells by Modulating the Activities of ROCK1 and ELF5. Journal of Investigative Dermatology, 2023, 143, 480-491.e5.	0.3	1
986	The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. International Journal of Molecular Sciences, 2022, 23, 12622.	1.8	9
988	The basement membrane in epidermal polarity, stemness, and regeneration. American Journal of Physiology - Cell Physiology, 2022, 323, C1807-C1822.	2.1	8
991	Characterization of TGF-β signaling in a human organotypic skin model reveals that loss of TGF-βRII induces invasive tissue growth. Science Signaling, 2022, 15, .	1.6	7
992	Understanding, Status, and Therapeutic Potentials of Stem Cells in Goat. Current Stem Cell Research and Therapy, 2023, 18, 947-957.	0.6	0
993	Immunoproteasome inhibition attenuates experimental psoriasis. Frontiers in Immunology, 0, 13, .	2.2	2
994	Involvement of hypoxiaâ€inducible factor activity in inevitable airâ€exposure treatment upon differentiation in a threeâ€dimensional keratinocyte culture. FEBS Journal, 2023, 290, 2049-2063.	2.2	1
995	Regulation of effector and memory CD8 + T cell differentiation: a focus on orphan nuclear receptor NR4A family, transcription factor, and metabolism. Immunologic Research, 2023, 71, 314-327.	1.3	2
996	The Effect of Sunscreens on the Skin Barrier. Life, 2022, 12, 2083.	1.1	6
997	Treg specialization and functions beyond immune suppression. Clinical and Experimental Immunology, 2023, 211, 176-183.	1.1	11
998	Use of mouse primary epidermal organoids for USA300 infection modeling and drug screening. Cell Death and Disease, 2023, 14, .	2.7	1

#	Article	IF	CITATIONS
999	DNA dioxygenases Tet2/3 regulate gene promoter accessibility and chromatin topology in lineage-specific loci to control epithelial differentiation. Science Advances, 2023, 9, .	4.7	3
1000	Chromatin Landscape Governing Murine Epidermal Differentiation. Journal of Investigative Dermatology, 2023, 143, 1220-1232.e9.	0.3	4
1001	Niche formation and function in developing tissue: studies from the Drosophila ovary. Cell Communication and Signaling, 2023, 21, .	2.7	0
1002	A multifunctional sateen woven dressings for treatment of skin injuries. Colloids and Surfaces B: Biointerfaces, 2023, 224, 113197.	2.5	1
1003	Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics. Journal of Pharmaceutical Analysis, 2023, 13, 745-759.	2.4	1
1004	Protective effects of an electrophilic metabolite of docosahexaenoic acid on UVB-induced oxidative cell death, dermatitis, and carcinogenesis. Redox Biology, 2023, 62, 102666.	3.9	1
1006	Induction of autophagy improves skin and hair conditions in dogs with underlying diseases. Frontiers in Veterinary Science, 0, 10, .	0.9	1
1007	ΔNp63α-mediated epigenetic regulation in keratinocyte senescence. Epigenetics, 2023, 18, .	1.3	1
1009	Injury-induced interleukin-1 alpha promotes Lgr5 hair follicle stem cells de novo regeneration and proliferation via regulating regenerative microenvironment in mice. Inflammation and Regeneration, 2023, 43, .	1.5	11
1010	To not love thy neighbor: mechanisms of cell competition in stem cells and beyond. Cell Death and Differentiation, 2023, 30, 979-991.	5.0	3
1011	Regulation of epidermal stratification and development by basal keratinocytes. Journal of Cellular Physiology, 2023, 238, 742-748.	2.0	1
1012	Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life, 2023, 13, 688.	1.1	0
1013	Molecular hydrogen promotes wound healing by inducing early epidermal stem cell proliferation and extracellular matrix deposition. Inflammation and Regeneration, 2023, 43, .	1.5	7
1014	Innovative Strategies for Hair Regrowth and Skin Visualization. Pharmaceutics, 2023, 15, 1201.	2.0	2
1024	Polycomb Bodies Detection in Murine Fibromuscular Stroma from Skin, Skeletal Muscles, and Aortic Tissues. Methods in Molecular Biology, 2023, , 125-146.	0.4	0
1037	Phospholipase's role in maintaining and restoring skin and hair health. , 2023, , 229-242.		0
1039	Skin Resident Stem Cells. , 2024, , 205-249.		0
1040	Cutaneous homeostasis: a balancing cross-talk between epidermal stem cell pool and regulatory pathways. , 2024, , 67-85.		0

#	Article	IF	CITATIONS
1061	Stem Cells and Regenerative Strategies for Wound Healing: Therapeutic and Clinical Implications. Current Pharmacology Reports, 2024, 10, 121-144.	1.5	0
1067	Characterization of the Newborn Epidermis and Adult Hair Follicles Using Whole-Mount Immunofluorescent Staining of Mouse Dorsal Skin. Methods in Molecular Biology, 2024, , .	0.4	0
1075	Stem Cells and Extracellular Vesicles in Epithelial Repair: Hints for Improving Chronic Wound Healing. , 2024, , .		0