Mechanotransduction in development: a growing role f

Nature Reviews Molecular Cell Biology 10, 34-43 DOI: 10.1038/nrm2592

Citation Report

#	Article	IF	CITATIONS
1	Mechanical Signals Trigger Myosin II Redistribution and Mesoderm Invagination in <i>Drosophila</i> Embryos. Science Signaling, 2009, 2, ra16.	1.6	198
2	Defining the role of syndecan-4 in mechanotransduction using surface-modification approaches. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 22102-22107.	3.3	109
3	Capillary Force Lithography: A Versatile Tool for Structured Biomaterials Interface Towards Cell and Tissue Engineering. Advanced Functional Materials, 2009, 19, 2699-2712.	7.8	143
4	Aging and the underactive detrusor: A failure of activity or activation?. Neurourology and Urodynamics, 2010, 29, 408-412.	0.8	115
5	Tension in the vasculature. Nature Medicine, 2009, 15, 608-610.	15.2	13
6	Stomaching calcium for bone health. Nature Medicine, 2009, 15, 610-612.	15.2	13
7	Mechanotransduction gone awry. Nature Reviews Molecular Cell Biology, 2009, 10, 63-73.	16.1	1,118
8	Biological evolution based on nonrandom variability regulated by the organism. Biochemistry (Moscow), 2009, 74, 1404-1409.	0.7	5
9	Tissue assembly and organization: Developmental mechanisms in microfabricated tissues. Biomaterials, 2009, 30, 4851-4858.	5.7	122
10	The promotion of neuronal maturation on soft substrates. Biomaterials, 2009, 30, 4567-4572.	5.7	170
11	Bidirectional extracellular matrix signaling during tissue morphogenesis. Cytokine and Growth Factor Reviews, 2009, 20, 459-465.	3.2	66
12	Myosin II Dynamics Are Regulated by Tension in Intercalating Cells. Developmental Cell, 2009, 17, 736-743.	3.1	581
13	Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Developmental Biology, 2009, 336, 169-182.	0.9	85
14	Multi-scale mechanics from molecules to morphogenesis. International Journal of Biochemistry and Cell Biology, 2009, 41, 2147-2162.	1.2	66
15	Evidence that Mechanosensors with Distinct Biomechanical Properties Allow for Specificity in Mechanotransduction. Biophysical Journal, 2009, 97, 347-356.	0.2	31
16	Designing materials to direct stem-cell fate. Nature, 2009, 462, 433-441.	13.7	1,276
17	Changes in topology and geometry of the embryonic epithelium of Xenopus during relaxation of mechanical tension. Russian Journal of Developmental Biology, 2010, 41, 156-163.	0.1	6
18	Emergent morphogenesis: Elastic mechanics of a self-deforming tissue. Journal of Biomechanics, 2010, 43, 63-70.	0.9	55

#	Article	IF	CITATIONS
19	Cinemechanometry (CMM): A Method to Determine the Forces that Drive Morphogenetic Movements from Time-Lapse Images. Annals of Biomedical Engineering, 2010, 38, 2937-2947.	1.3	16
20	Mesenchymal Stem Cell Mechanobiology. Current Osteoporosis Reports, 2010, 8, 98-104.	1.5	80
21	Focal adhesion kinaseâ€dependent regulation of adhesive forces involves vinculin recruitment to focal adhesions. Biology of the Cell, 2010, 102, 203-213.	0.7	44
22	Integrating physical stress, growth, and development. Current Opinion in Plant Biology, 2010, 13, 46-52.	3.5	33
23	Promigratory and procontractile growth factor environments differentially regulate cell morphogenesis. Experimental Cell Research, 2010, 316, 232-244.	1.2	28
24	Elastic Fully Threeâ€dimensional Microstructure Scaffolds for Cell Force Measurements. Advanced Materials, 2010, 22, 868-871.	11.1	177
25	The mechanics of development: Models and methods for tissue morphogenesis. Birth Defects Research Part C: Embryo Today Reviews, 2010, 90, 193-202.	3.6	57
26	Osteogenesis of human stem cells in silk biomaterial for regenerative therapy. Progress in Polymer Science, 2010, 35, 1116-1127.	11.8	41
27	Combining mechanical and optical approaches to dissect cellular mechanobiology. Journal of Biomechanics, 2010, 43, 45-54.	0.9	36
28	A novel platform for in situ investigation of cells and tissues under mechanical strain. Acta Biomaterialia, 2010, 6, 2979-2990.	4.1	34
29	The mechanics behind plant development. New Phytologist, 2010, 185, 369-385.	3.5	169
30	Anisotropies in cortical tension reveal the physical basis of polarizing cortical flows. Nature, 2010, 467, 617-621.	13.7	434
31	Material properties of the cell dictate stress-induced spreading and differentiation in embryonic stemÂcells. Nature Materials, 2010, 9, 82-88.	13.3	506
32	Macroscopic stiffening of embryonic tissues via microtubules, RhoGEF and the assembly of contractile bundles of actomyosin. Development (Cambridge), 2010, 137, 2785-2794.	1.2	63
33	Real-time single-cell response to stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16518-16523.	3.3	116
34	Mechanics of head fold formation: investigating tissue-level forces during early development. Development (Cambridge), 2010, 137, 3801-3811.	1.2	86
35	Mitochondria as a source of mechanical signals in cardiomyocytes. Cardiovascular Research, 2010, 87, 83-91.	1.8	39
36	Opening Angles and Material Properties of the Early Embryonic Chick Brain. Journal of Biomechanical Engineering, 2010, 132, 011005.	0.6	36

#	Article	IF	CITATIONS
37	Roles of the cytoskeleton in regulating EphA2 signals. Communicative and Integrative Biology, 2010, 3, 454-457.	0.6	11
38	The Physical Mechanical Processes that Shape Tissues in the Early Embryo. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 71-97.	0.7	1
39	Mechanical Force Affects Expression of an In Vitro Metastasis-Like Phenotype in HCT-8 Cells. Biophysical Journal, 2010, 99, 2460-2469.	0.2	89
40	Microfabricated Devices for Studying Cellular Biomechanics and Mechanobiology. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2010, , 145-175.	0.7	4
41	T cell receptor triggering by force. Trends in Immunology, 2010, 31, 1-6.	2.9	71
42	Regulation of shape and patterning in plant development. Current Opinion in Genetics and Development, 2010, 20, 454-459.	1.5	41
43	Interfering with the connection between the nucleus and the cytoskeleton affects nuclear rotation, mechanotransduction and myogenesis. International Journal of Biochemistry and Cell Biology, 2010, 42, 1717-1728.	1.2	98
44	A Zyxin-Mediated Mechanism for Actin Stress Fiber Maintenance and Repair. Developmental Cell, 2010, 19, 365-376.	3.1	193
45	Geometric cues for directing the differentiation of mesenchymal stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4872-4877.	3.3	1,598
46	Theoretical Concepts and Models of Cellular Mechanosensing. Methods in Cell Biology, 2010, 98, 143-175.	0.5	40
47	Osteocytes and WNT: the Mechanical Control of Bone Formation. Journal of Dental Research, 2010, 89, 331-343.	2.5	104
48	A microfluidics device to monitor platelet aggregation dynamics in response to strain rate micro-gradients in flowing blood. Lab on A Chip, 2010, 10, 291-302.	3.1	114
49	Measurement and analysis of traction force dynamics in response to vasoactive agonists. Integrative Biology (United Kingdom), 2011, 3, 663-674.	0.6	34
50	Force Localization in Contracting Cell Layers. Physical Review Letters, 2011, 107, 128101.	2.9	70
51	How far cardiac cells can see each other mechanically. Soft Matter, 2011, 7, 6151.	1.2	67
52	(Micro)managing the mechanical microenvironment. Integrative Biology (United Kingdom), 2011, 3, 959.	0.6	79
53	Cytoskeletal polarity mediates localized induction of the heart progenitor lineage. Nature Cell Biology, 2011, 13, 952-957.	4.6	49
54	Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Journal of the American Chemical Society, 2011, 133, 1686-1689.	6.6	110

#	Article	IF	CITATIONS
55	Direct Detection of Cellular Adaptation to Local Cyclic Stretching at the Single Cell Level by Atomic Force Microscopy. Biophysical Journal, 2011, 100, 564-572.	0.2	32
56	Reconstitution of Contractile Actomyosin Bundles. Biophysical Journal, 2011, 100, 2698-2705.	0.2	119
57	Spatiotemporal Constraints on the Force-Dependent Growth of Focal Adhesions. Biophysical Journal, 2011, 100, 2883-2893.	0.2	177
58	A Conditional Gating Mechanism Assures the Integrity of the Molecular Force-Sensor Titin Kinase. Biophysical Journal, 2011, 101, 1978-1986.	0.2	20
59	Spontaneous Mechanical Oscillations. Current Topics in Developmental Biology, 2011, 95, 67-91.	1.0	24
60	Mechanotransduction in the Nervous System. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , 231-245.	0.7	2
61	External forces control mitotic spindle positioning. Nature Cell Biology, 2011, 13, 771-778.	4.6	335
62	Controlling the Growth and Differentiation of Human Mesenchymal Stem Cells by the Arrangement of Individual Carbon Nanotubes. ACS Nano, 2011, 5, 7383-7390.	7.3	157
63	Tissue Engineering in Regenerative Medicine. , 2011, , .		7
64	Role of mechanical factors in fate decisions of stem cells. Regenerative Medicine, 2011, 6, 229-240.	0.8	155
65	Neural Tissue Biomechanics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2011, , .	0.7	25
66	Materials as Artificial Stem Cell Microenvironments. , 2011, , 155-167.		0
(7			
07	Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Biophysical Journal, 2011, 100, 513a.	0.2	30
68	Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Biophysical Journal, 2011, 100, 513a. Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Current Opinion in Genetics and Development, 2011, 21, 664-670.	0.2	30 15
67 68 69	Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Biophysical Journal, 2011, 100, 513a. Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Current Opinion in Genetics and Development, 2011, 21, 664-670. Polycystins, focal adhesions and extracellular matrix interactions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1322-1326.	0.2 1.5 1.8	30 15 62
68 69 70	Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Biophysical Journal, 2011, 100, 513a. Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Current Opinion in Genetics and Development, 2011, 21, 664-670. Polycystins, focal adhesions and extracellular matrix interactions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1322-1326. Three-dimensional biomaterials for the study of human pluripotent stem cells. Nature Methods, 2011, 8, 731-736.	0.2 1.5 1.8 9.0	30 15 62 205
 68 69 70 71 	Mechanical Load Induces a 100-Fold Increase in the Rate of Collagen Proteolysis by MMP-1. Biophysical Journal, 2011, 100, 513a.Quantitative microscopy and imaging tools for the mechanical analysis of morphogenesis. Current Opinion in Cenetics and Development, 2011, 21, 664-670.Polycystins, focal adhesions and extracellular matrix interactions. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2011, 1812, 1322-1326.Three-dimensional biomaterials for the study of human pluripotent stem cells. Nature Methods, 2011, 8, 731-736.Balancing forces: architectural control of mechanotransduction. Nature Reviews Molecular Cell Biology, 2011, 12, 308-319.	0.2 1.5 1.8 9.0 16.1	 30 15 62 205 817

#	Article	IF	CITATIONS
73	Hydrogel-based biomimetic environment for inÂvitro modulation of branching morphogenesis. Biomaterials, 2011, 32, 6754-6763.	5.7	61
74	Synergistic regulation of cell function by matrix rigidity and adhesive pattern. Biomaterials, 2011, 32, 9584-9593.	5.7	75
75	Dynamics and regulation of contractile actin–myosin networks in morphogenesis. Current Opinion in Cell Biology, 2011, 23, 30-38.	2.6	121
76	The Role of Mechanical Forces in Plant Morphogenesis. Annual Review of Plant Biology, 2011, 62, 365-385.	8.6	153
77	Micromechanical regulation in cardiac myocytes and fibroblasts: implications for tissue remodeling. Pflugers Archiv European Journal of Physiology, 2011, 462, 105-117.	1.3	42
78	Mechanical Stress as a Regulator of Cytoskeletal Contractility and Nuclear Shape in Embryonic Epithelia. Annals of Biomedical Engineering, 2011, 39, 443-454.	1.3	26
79	Modulus-driven differentiation of marrow stromal cells in 3D scaffolds that is independent of myosin-based cytoskeletal tension. Biomaterials, 2011, 32, 2256-2264.	5.7	113
80	Structural components and morphogenetic mechanics of the zebrafish yolk extension, a developmental module. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2011, 316B, 76-92.	0.6	12
81	Dynamic Topographical Control of Mesenchymal Stem Cells by Culture on Responsive Poly(ϵ aprolactone) Surfaces. Advanced Materials, 2011, 23, 3278-3283.	11.1	132
82	Slow stretching that mimics embryonic growth rate stimulates structural and mechanical development of tendonâ€ike tissue in vitro. Developmental Dynamics, 2011, 240, 2520-2528.	0.8	65
83	A mechanism of mechanotransduction at the cellâ $\in \mathfrak{e}$ ell interface. BioEssays, 2011, 33, 732-736.	1.2	25
84	The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials, 2011, 32, 5979-5993.	5.7	344
85	Multiscale modeling and simulation of soft adhesion and contact of stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4, 180-189.	1.5	43
86	Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. Journal of Cell Science, 2011, 124, 1195-1205.	1.2	423
87	Mammary Gland ECM Remodeling, Stiffness, and Mechanosignaling in Normal Development and Tumor Progression. Cold Spring Harbor Perspectives in Biology, 2011, 3, a003228-a003228.	2.3	373
88	Punctuated actin contractions during convergent extension and their permissive regulation by the non-canonical Wnt-signaling pathway. Journal of Cell Science, 2011, 124, 635-646.	1.2	130
89	The transcriptional regulator megakaryoblastic leukemiaâ€1 mediates serum response factorâ€independent activation of tenascinâ€C transcription by mechanical stress. FASEB Journal, 2011, 25, 3477-3488.	0.2	56
90	Biomimetic three-dimensional microenvironment for controlling stem cell fate. Interface Focus, 2011, 1, 792-803.	1.5	60

# 91	ARTICLE Cell-Sorting at the A/P Boundary in the Drosophila Wing Primordium: A Computational Model to Consolidate Observed Non-Local Effects of Hh Signaling. PLoS Computational Biology, 2011, 7, e1002025	IF 1.5	CITATIONS
92	Mechanical Stress Inference for Two Dimensional Cell Arrays. PLoS Computational Biology, 2012, 8, e1002512.	1.5	135
93	Contributions of talin-1 to glioma cell–matrix tensional homeostasis. Journal of the Royal Society Interface, 2012, 9, 1311-1317.	1.5	39
94	Matrix stiffness reverses the effect of actomyosin tension on cell proliferation. Journal of Cell Science, 2012, 125, 5974-5983.	1.2	165
95	Not just inductive: a crucial mechanical role for the endoderm during heart tube assembly. Development (Cambridge), 2012, 139, 1680-1690.	1.2	79
96	Attenuation of Cell Mechanosensitivity in Colon Cancer Cells during In Vitro Metastasis. PLoS ONE, 2012, 7, e50443.	1.1	32
97	Structure-mediated micro-to-nano coupling using sculpted light and matter. Proceedings of SPIE, 2012, , .	0.8	1
98	Force-dependent cell signaling in stem cell differentiation. Stem Cell Research and Therapy, 2012, 3, 41.	2.4	130
99	Filamins in Mechanosensing and Signaling. Annual Review of Biophysics, 2012, 41, 227-246.	4.5	211
100	Mechanobiology of tumor invasion: Engineering meets oncology. Critical Reviews in Oncology/Hematology, 2012, 83, 170-183.	2.0	65
101	Control of stem cell fate and function by engineering physical microenvironments. Integrative Biology (United Kingdom), 2012, 4, 1008-1018.	0.6	226
102	F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20820-20825.	3.3	341
103	Cell Ingression and Apical Shape Oscillations during Dorsal Closure in Drosophila. Biophysical Journal, 2012, 102, 969-979.	0.2	67
104	A potential role for differential contractility in early brain development and evolution. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1251-1262.	1.4	20
105	The contribution of cellular mechanotransduction to cardiomyocyte form and function. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1227-1239.	1.4	73
106	Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nature Reviews Molecular Cell Biology, 2012, 13, 591-600.	16.1	788
107	Elastomeric microposts integrated into microfluidics for flow-mediated endothelial mechanotransduction analysis. Lab on A Chip, 2012, 12, 1865.	3.1	76
108	Responsive culture platform to examine the influence of microenvironmental geometry on cell function in 3D. Integrative Biology (United Kingdom), 2012, 4, 1540.	0.6	47

#	Article	IF	CITATIONS
109	Conformational Dynamics Accompanying the Proteolytic Degradation of Trimeric Collagen I by Collagenases. Journal of the American Chemical Society, 2012, 134, 13259-13265.	6.6	45
110	A silicone-based stretchable micropost array membrane for monitoring live-cell subcellular cytoskeletal response. Lab on A Chip, 2012, 12, 731-740.	3.1	89
111	Nanopatterning Reveals an ECM Area Threshold for Focal Adhesion Assembly and Force Transmission that is regulated by Integrin Activation and Cytoskeleton Tension. Journal of Cell Science, 2012, 125, 5110-23.	1.2	111
112	Actin cytoskeleton controls activation of Wnt/β-catenin signaling in mesenchymal cells on implant surfaces with different topographies. Acta Biomaterialia, 2012, 8, 2963-2968.	4.1	65
113	Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels. Cell Reports, 2012, 1, 241-250.	2.9	54
114	Mechanical Environment Modulates Biological Properties of Oligodendrocyte Progenitor Cells. Stem Cells and Development, 2012, 21, 2905-2914.	1.1	105
115	Microâ€Engineered 3D Scaffolds for Cell Culture Studies. Macromolecular Bioscience, 2012, 12, 1301-1314.	2.1	109
116	Forcing Stem Cells to Behave: A Biophysical Perspective of the Cellular Microenvironment. Annual Review of Biophysics, 2012, 41, 519-542.	4.5	367
117	Dynamic force-induced direct dissociation of protein complexes in a nuclear body in living cells. Nature Communications, 2012, 3, 866.	5.8	124
118	7.12 Biophysics of Cell Developmental Processes: A Lasercutter's Perspective. , 2012, , 194-207.		2
119	Understanding the Cooperative Interaction between Myosin II and Actin Cross-Linkers Mediated by Actin Filaments during Mechanosensation. Biophysical Journal, 2012, 102, 238-247.	0.2	82
120	Mechanical Regulation of Auxin-Mediated Growth. Current Biology, 2012, 22, 1468-1476.	1.8	205
121	Cellular and Molecular Bioengineering: A Tipping Point. Cellular and Molecular Bioengineering, 2012, 5, 239-253.	1.0	3
122	United we stand – integrating the actin cytoskeleton and cell–matrix adhesions in cellular mechanotransduction. Journal of Cell Science, 2012, 125, 3051-60.	1.2	278
123	A three dimensional soft matter cell model for mechanotransduction. Soft Matter, 2012, 8, 5765.	1.2	18
124	Site-Specific Expression of Gelatinolytic Activity during Morphogenesis of the Secondary Palate in the Mouse Embryo. PLoS ONE, 2012, 7, e47762.	1.1	14
125	Mechanosensitive mechanisms in transcriptional regulation. Journal of Cell Science, 2012, 125, 3061-73.	1.2	332
126	Making waves: the rise and fall and rise of quantitative developmental biology. Development (Cambridge), 2012, 139, 3065-3069.	1.2	5

#	Article	IF	CITATIONS
127	Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography. Advanced Materials, 2012, 24, 4266-4270.	11.1	302
128	Microenvironmental Control of the Breast Cancer Cell Cycle. Anatomical Record, 2012, 295, 553-562.	0.8	15
129	Computational models for mechanics of morphogenesis. Birth Defects Research Part C: Embryo Today Reviews, 2012, 96, 132-152.	3.6	81
130	Engineering Approaches Toward Deconstructing and Controlling the Stem Cell Environment. Annals of Biomedical Engineering, 2012, 40, 1301-1315.	1.3	58
131	Single-Molecule Imaging: AÂCollagenase Pauses before Embarking on a Killing Spree. Current Biology, 2012, 22, R499-R501.	1.8	1
132	The role of microtopography in cellular mechanotransduction. Biomaterials, 2012, 33, 2835-2847.	5.7	139
133	Biophysical control of invasive tumor cell behavior by extracellular matrix microarchitecture. Biomaterials, 2012, 33, 4157-4165.	5.7	159
134	Biomechanical regulation of contractility: spatial control and dynamics. Trends in Cell Biology, 2012, 22, 61-81.	3.6	263
135	Plasmaâ€ 5 prayed Ceramic Coatings for Osseointegration. International Journal of Applied Ceramic Technology, 2013, 10, 1-10.	1.1	35
136	Mechanics in Neuronal Development and Repair. Annual Review of Biomedical Engineering, 2013, 15, 227-251.	5.7	293
137	Mechanical and Chemical Signaling in Angiogenesis. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , .	0.7	1
138	Silicon chips detect intracellular pressure changes in living cells. Nature Nanotechnology, 2013, 8, 517-521.	15.6	68
139	The mechanical control of nervous system development. Development (Cambridge), 2013, 140, 3069-3077.	1.2	199
140	Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development (Cambridge), 2013, 140, 3146-3155.	1.2	105
141	Cell mediated contraction in 3D cell-matrix constructs leads to spatially regulated osteogenic differentiation. Integrative Biology (United Kingdom), 2013, 5, 1174.	0.6	29
142	Conducting polymer actuators for medical devices and cell mechanotransduction. , 2013, , .		3
143	Biophysical regulation of epigenetic state and cell reprogramming. Nature Materials, 2013, 12, 1154-1162.	13.3	437
145	Directional migration of leading-edge mesoderm generates physical forces: Implication in Xenopus notochord formation during gastrulation. Developmental Biology, 2013, 382, 482-495.	0.9	39

#	Article	IF	CITATIONS
146	Cell shape-dependent early responses of fibroblasts to cyclic strain. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 3415-3425.	1.9	8
147	Cells Actively Stiffen Fibrin Networks by Generating Contractile Stress. Biophysical Journal, 2013, 105, 2240-2251.	0.2	146
148	Mechanics in the embryo. Nature, 2013, 504, 223-225.	13.7	20
149	Mechano-transduction in tumour growth modelling. European Physical Journal E, 2013, 36, 23.	0.7	23
150	Interrogating Biology with Force: Single Molecule High-Resolution Measurements with Optical Tweezers. Biophysical Journal, 2013, 105, 1293-1303.	0.2	123
151	Computational and experimental study of the mechanics of embryonic wound healing. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 28, 125-146.	1.5	16
152	ESCRT-III Assembly and Cytokinetic Abscission Are Induced by Tension Release in the Intercellular Bridge. Science, 2013, 339, 1625-1629.	6.0	166
153	Skeletal muscle adaptation in response to mechanical stress in p130casâ^'/â^' mice. American Journal of Physiology - Cell Physiology, 2013, 304, C541-C547.	2.1	14
154	Let's push things forward: disruptive technologies and the mechanics of tissue assembly. Integrative Biology (United Kingdom), 2013, 5, 1162.	0.6	13
155	In vitro wrinkle formation via shape memory dynamically aligns adherent cells. Soft Matter, 2013, 9, 4705.	1.2	59
156	Enhanced contractility with 2-deoxy-ATP and EMD 57033 is correlated with reduced myofibril structure and twitch power in neonatal cardiomyocytes. Integrative Biology (United Kingdom), 2013, 5, 1366.	0.6	7
157	Nanotopography-guided tissue engineering and regenerative medicine. Advanced Drug Delivery Reviews, 2013, 65, 536-558.	6.6	346
158	Tissues, the Extracellular Matrix, and Cell–Biomaterial Interactions. , 2013, , 452-474.		6
159	Development of a novel approach to safely couple the intestine to a distraction-induced device for intestinal growth: use of reconstructive tissue matrix. Pediatric Surgery International, 2013, 29, 151-156.	0.6	9
160	The effect of growth factor environment on fibroblast morphological response to substrate stiffness. Biomaterials, 2013, 34, 965-974.	5.7	31
161	How cells sense extracellular matrix stiffness: a material's perspective. Current Opinion in Biotechnology, 2013, 24, 948-953.	3.3	165
162	Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization. Experimental Cell Research, 2013, 319, 546-555.	1.2	29
163	Ultrasound can Modulate Neuronal Development: Impact on Neurite Growth and Cell Body Morphology. Ultrasound in Medicine and Biology, 2013, 39, 915-925.	0.7	47

#	Article	IF	CITATIONS
164	Apical Oscillations in Amnioserosa Cells: Basolateral Coupling and Mechanical Autonomy. Biophysical Journal, 2013, 105, 255-265.	0.2	32
165	Being Squeezed into the Right Place within the Egg Shell. Biophysical Journal, 2013, 105, 1735-1736.	0.2	ο
166	Cyclic strain dominates over microtopography in regulating cytoskeletal and focal adhesion remodeling of human mesenchymal stem cells. Biochemical and Biophysical Research Communications, 2013, 430, 1040-1046.	1.0	15
167	Microfluidic systems: A new toolbox for pluripotent stem cells. Biotechnology Journal, 2013, 8, 180-191.	1.8	27
168	Emergent complexity of the cytoskeleton: from single filaments to tissue. Advances in Physics, 2013, 62, 1-112.	35.9	182
169	The Yin-Yang of Rigidity Sensing: How Forces and Mechanical Properties Regulate the Cellular Response to Materials. Annual Review of Materials Research, 2013, 43, 589-618.	4.3	106
170	Mechanosensitive TRPC1 Channels Promote Calpain Proteolysis of Talin to Regulate Spinal Axon Outgrowth. Journal of Neuroscience, 2013, 33, 273-285.	1.7	120
171	Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Nanomedicine, 2013, 8, 623-638.	1.7	44
172	Mechanosensory Pathways in Angiocrine Mediated Tissue Regeneration. Studies in Mechanobiology, Tissue Engineering and Biomaterials, 2013, , 19-45.	0.7	2
173	Dynamics and Regulation of Epithelial Adherens Junctions. International Review of Cell and Molecular Biology, 2013, 303, 27-99.	1.6	92
174	Mechanobiology: a new frontier for human pluripotent stem cells. Integrative Biology (United) Tj ETQq0 0 0 rgBT	Qverlock	2 10 Tf 50 342
175	Mechanosensitivity and compositional dynamics of cell–matrix adhesions. EMBO Reports, 2013, 14, 509-519.	2.0	238
176	Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Biotechnology Advances, 2013, 31, 654-668.	6.0	213
177	Relative impact of uniaxial alignment vs. form-induced stress on differentiation of human adipose derived stem cells. Biomaterials, 2013, 34, 9812-9818.	5.7	31
178	ADHESIVITY OF COLON CANCER CELLS DURING <i>IN VITRO</i> METASTASIS. International Journal of Applied Mechanics, 2013, 05, 1350025.	1.3	3
179	Shp2 plays a crucial role in cell structural orientation and force polarity in response to matrix rigidity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2840-2845.	3.3	34
180	Cell-Based Multi-Parametric Model of Cleft Progression during Submandibular Salivary Gland Branching Morphogenesis. PLoS Computational Biology, 2013, 9, e1003319.	1.5	14
181	The emerging role of protein kinase Cl̂, in cytoskeletal signaling. Journal of Leukocyte Biology, 2012, 93, 319-327.	1.5	8

# 182	ARTICLE Regulation of YAP and TAZ by Epithelial Plasticity. , 2013, , 89-113.	IF	CITATIONS
183	Uniaxial cell stretching device for live-cell imaging of mechanosensitive cellular functions. Review of Scientific Instruments, 2013, 84, 114304.	0.6	58
184	Mesenchymal stem cell durotaxis depends on substrate stiffness gradient strength. Biotechnology Journal, 2013, 8, 472-484.	1.8	219
185	The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair. Journal of Bone and Joint Surgery - Series A, 2013, 95, 1620-1628.	1.4	197
186	Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nature Communications, 2013, 4, 2821.	5.8	160
187	Biotensegrity: A Unifying Theory of Biological Architecture With Applications to Osteopathic Practice, Education, and Research—A Review and Analysis. Journal of Osteopathic Medicine, 2013, 113, 34-52.	0.4	67
188	Control of cell differentiation by mechanical stress. The Journal of Physical Fitness and Sports Medicine, 2013, 2, 49-62.	0.2	8
189	Controlling Osteogenic Stem Cell Differentiation via Soft Bioinspired Hydrogels. PLoS ONE, 2014, 9, e98640.	1.1	35
190	Regulation of RhoA Activity by Adhesion Molecules and Mechanotransduction. Current Molecular Medicine, 2014, 14, 199-208.	0.6	101
191	Linear patterning of mesenchymal condensations is modulated by geometric constraints. Journal of the Royal Society Interface, 2014, 11, 20140215.	1.5	12
192	Amniotic Fluid-Derived Stem Cells Demonstrated Cardiogenic Potential in Indirect Co-culture with Human Cardiac Cells. Annals of Biomedical Engineering, 2014, 42, 2490-2500.	1.3	19
193	Physical developmental cues for the maturation of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Research and Therapy, 2014, 5, 117.	2.4	97
194	Common and Diverging Integrin Signals Downstream of Adhesion and Mechanical Stimuli and Their Interplay with Reactive Oxygen Species. Biophysical Reviews and Letters, 2014, 09, 159-171.	0.9	1
195	Advancements in stem cells treatment of skeletal muscle wasting. Frontiers in Physiology, 2014, 5, 48.	1.3	18
196	Bending of the Looping Heart: Differential Growth Revisited. Journal of Biomechanical Engineering, 2014, 136, .	0.6	39
197	Biomechanics of Musculoskeletal Adaptation. , 2014, , 1-37.		1
198	Picking up the threads: extracellular matrix signals in epithelial morphogenesis. Current Opinion in Cell Biology, 2014, 30, 83-90.	2.6	19
200	Cell morphology and focal adhesion location alters internal cell stress. Journal of the Royal Society Interface, 2014, 11, 20140885.	1.5	39

#	Article	IF	CITATIONS
201	Mesenchymal stem cell mechanosensing in engineered fibrillar microenvironments. , 2014, , .		0
202	Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton. Proceedings of SPIE, 2014, , .	0.8	0
203	Cell force measurements in 3D microfabricated environments based on compliant cantilevers. Lab on A Chip, 2014, 14, 286-293.	3.1	16
204	Engineering physical microenvironment for stem cell based regenerative medicine. Drug Discovery Today, 2014, 19, 763-773.	3.2	53
205	Integrated Micro/Nanoengineered Functional Biomaterials for Cell Mechanics and Mechanobiology: A Materials Perspective. Advanced Materials, 2014, 26, 1494-1533.	11.1	121
206	Actomyosin networks and tissue morphogenesis. Development (Cambridge), 2014, 141, 1789-1793.	1.2	191
207	Force Measurement Tools to Explore Cadherin Mechanotransduction. Cell Communication and Adhesion, 2014, 21, 193-205.	1.0	14
208	BMP growth factor signaling in a biomechanical context. BioFactors, 2014, 40, 171-187.	2.6	43
209	Sensing rigidity. Nature Materials, 2014, 13, 539-540.	13.3	28
210	Fluorescence-Based Force/Tension Sensors: A Novel Tool to Visualize Mechanical Forces in Structural Proteins in Live Cells. Antioxidants and Redox Signaling, 2014, 20, 986-999.	2.5	49
211	Quantifying cell-generated mechanical forces within living embryonic tissues. Nature Methods, 2014, 11, 183-189.	9.0	336
212	Oscillatory shear stress induced calcium flickers in osteoblast cells. Integrative Biology (United) Tj ETQq1 1 0.784	314 rgBT	/Overlock 10
213	Engineering Three-Dimensional Stem Cell Morphogenesis for the Development of Tissue Models and Scalable Regenerative Therapeutics. Annals of Biomedical Engineering, 2014, 42, 352-367.	1.3	71
214	Optothermally Responsive Nanocomposite Generating Mechanical Forces for Cells Enabled by Few-Walled Carbon Nanotubes. ACS Nano, 2014, 8, 11695-11706.	7.3	21
215	Regulation of YAP by Mechanical Strain through Jnk and Hippo Signaling. Current Biology, 2014, 24, 2012-2017.	1.8	195
216	From mechanical stimulation to biological pathways in the regulation of stem cell fate. Cell Biochemistry and Function, 2014, 32, 309-325.	1.4	57
217	In vitro development of preimplantation porcine embryos using alginate hydrogels as a three-dimensional extracellular matrix. Reproduction, Fertility and Development, 2014, 26, 943.	0.1	13
218	Bioengineering 3D environments for cancer models. Advanced Drug Delivery Reviews, 2014, 79-80, 40-49.	6.6	108

#	Article	IF	CITATIONS
219	FAK is required for tension-dependent organization of collective cell movements in Xenopus mesendoderm. Developmental Biology, 2014, 394, 340-356.	0.9	25
220	The Biology of YAP/TAZ: Hippo Signaling and Beyond. Physiological Reviews, 2014, 94, 1287-1312.	13.1	1,336
221	The Detection and Role of Molecular Tension in Focal Adhesion Dynamics. Progress in Molecular Biology and Translational Science, 2014, 126, 3-24.	0.9	19
222	Optimization of fully aligned bioactive electrospun fibers for "in vitro―nerve guidance. Journal of Materials Science: Materials in Medicine, 2014, 25, 2323-2332.	1.7	54
223	Mechanotransduction in the Endothelium: Role of Membrane Proteins and Reactive Oxygen Species in Sensing, Transduction, and Transmission of the Signal with Altered Blood Flow. Antioxidants and Redox Signaling, 2014, 20, 899-913.	2.5	72
224	A discrete approach for modeling cell–matrix adhesions. Computational Particle Mechanics, 2014, 1, 117-130.	1.5	22
225	Cessation of contraction induces cardiomyocyte remodeling during zebrafish cardiogenesis. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H382-H395.	1.5	17
226	Threeâ€Dimensional Scaffolds of Carbonized Polyacrylonitrile for Bone Tissue Regeneration. Angewandte Chemie - International Edition, 2014, 53, 9213-9217.	7.2	34
227	Role of extracellular matrix and YAP/TAZ in cell fate determination. Cellular Signalling, 2014, 26, 186-191.	1.7	72
228	Effects of material and surface functional group on collagen self-assembly and subsequent cell adhesion behaviors. Colloids and Surfaces B: Biointerfaces, 2014, 116, 303-308.	2.5	14
229	The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry. Biomaterials, 2014, 35, 961-969.	5.7	113
230	Osteogenic differentiation of human mesenchymal stem cells on $\hat{1}\pm 5$ integrin binding peptide hydrogels is dependent on substrate elasticity. Biomaterials Science, 2014, 2, 352-361.	2.6	52
231	Cardiomyocyte maturation: It takes a village to raise a kid. Journal of Molecular and Cellular Cardiology, 2014, 74, 193-195.	0.9	2
232	Shear Stress Induced by an Interstitial Level of Slow Flow Increases the Osteogenic Differentiation of Mesenchymal Stem Cells through TAZ Activation. PLoS ONE, 2014, 9, e92427.	1.1	158
233	Preparation of DNA-crosslinked Polyacrylamide Hydrogels. Journal of Visualized Experiments, 2014, , .	0.2	1
234	Mechanotransduction in intervertebral discs. Journal of Cellular and Molecular Medicine, 2014, 18, 2351-2360.	1.6	9
235	Nanoscale Mechanical Testing of FIB-Isolated Biological Specimens. , 2014, , 382-391.		0
236	Using biomaterials to study stem cell mechanotransduction, growth and differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2015, 9, 528-539.	1.3	69

#	Article	IF	CITATIONS
238	Modulating Cell Adhesion by Non-Covalent Ligand Attachment. , 2015, , 73-92.		2
239	Interstitial Fluid Flow Mechanosensing: Mechanisms and Consequences. , 2015, , 145-172.		Ο
240	Subcellular and Dynamic Coordination between Src Activity and Cell Protrusion in Microenvironment. Scientific Reports, 2015, 5, 12963.	1.6	4
241	Modulation of cationicity of chitosan for tuning mesenchymal stem cell adhesion, proliferation, and differentiation. Biointerphases, 2015, 10, 04A304.	0.6	12
242	Synthetic Extracellular Microenvironment for Modulating Stem Cell Behaviors. Biomarker Insights, 2015, 10s1, BMI.S20057.	1.0	26
243	Extracellular Matrix and Integrins in Embryonic Stem Cell Differentiation. Biochemistry Insights, 2015, 8s2, BCI.S30377.	3.3	50
244	Engineering Nanoscale Stem Cell Niche: Direct Stem Cell Behavior at Cell–Matrix Interface. Advanced Healthcare Materials, 2015, 4, 1900-1914.	3.9	37
245	3D culture of ovarian follicles: a system towards their engineering?. International Journal of Developmental Biology, 2015, 59, 211-216.	0.3	10
246	Forces of nature: understanding the role of mechanotransduction in stem cell differentiation. , 0, , 205-226.		0
247	Role of Mechanical Cues in Cell Differentiation and Proliferation: A 3D Numerical Model. PLoS ONE, 2015, 10, e0124529.	1.1	70
248	Modulation of the Cardiomyocyte Contraction inside a Hydrostatic Pressure Bioreactor:In VitroVerification of the Frank-Starling Law. BioMed Research International, 2015, 2015, 1-7.	0.9	7
249	Stretchable micropost array cytometry: a powerful tool for cell mechanics and mechanobiology research. , 0, , 32-46.		0
250	A biomechanical perspective on stress fiber structure and function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2015, 1853, 3065-3074.	1.9	85
251	A role for matrix stiffness in the regulation of cardiac side population cell function. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H990-H997.	1.5	34
252	Tissue homeostasis: A tensile state. Europhysics Letters, 2015, 109, 58005.	0.7	19
253	PDMS ring-spring soft probe for nano-force biosensing. , 2015, , .		0
254	Active Stress as a Local Regulator of Global Size in Morphogenesis. Procedia IUTAM, 2015, 12, 176-184.	1.2	0
255	Dynamic stiffening of poly(ethylene glycol)-based hydrogels to direct valvular interstitial cell phenotype in a three-dimensional environment. Biomaterials, 2015, 49, 47-56.	5.7	187

		CITATION RE	PORT	
#	Article		IF	CITATIONS
256	Oxidation stiffening of PDMS microposts. Extreme Mechanics Letters, 2015, 3, 17-23.		2.0	3
257	Substrate stress relaxation regulates cell spreading. Nature Communications, 2015, 6,	6364.	5.8	637
258	Osteocalcin/fibronectinâ€functionalized collagen matrices for bone tissue engineering Biomedical Materials Research - Part A, 2015, 103, 2133-2140.	. Journal of	2.1	6
259	Why is cytoskeletal contraction required for cardiac fusion before but not after loopin Physical Biology, 2015, 12, 016012.	g begins?.	0.8	12
260	Two-Bubble Acoustic Tweezing Cytometry for Biomechanical Probing and Stimulation Biophysical Journal, 2015, 108, 32-42.	of Cells.	0.2	27
261	Biocompatible Optically Transparent MEMS for Micromechanical Stimulation and Mult of Living Cells. Annals of Biomedical Engineering, 2015, 43, 1841-1850.	imodal Imaging	1.3	3
262	β-Catenin as a Tension Transmitter Revealed by AFM Nanomechanical Testing. Cellular Bioengineering, 2015, 8, 14-21.	and Molecular	1.0	5
263	The Effects of Oxidative Stress on the Compressive Damage Thresholds of C2C12 Mou Implications for Deep Tissue Injury. Annals of Biomedical Engineering, 2015, 43, 287-2	ise Myoblasts: 96.	1.3	14
264	On human pluripotent stem cell control: The rise of 3D bioengineering and mechanobi Biomaterials, 2015, 52, 26-43.	ology.	5.7	105
265	A molecular mechanotransduction pathway regulates collective migration of epithelial Cell Biology, 2015, 17, 276-287.	cells. Nature	4.6	314
266	Systems Chemoâ€Biology and Transcriptomic Metaâ€Analysis Reveal the Molecular Ro Lipids in Cardiomyocyte Differentiation. Journal of Cellular Biochemistry, 2015, 116, 20	oles of Bioactive)18-2031.	1.2	1
267	Active stress as a local regulator of global size in morphogenesis. International Journal Non-Linear Mechanics, 2015, 75, 5-14.	of	1.4	8
268	Flow perfusion effects on three-dimensional culture and drug sensitivity of Ewing sarco Proceedings of the National Academy of Sciences of the United States of America, 201	oma. .5, 112, 10304-10309.	3.3	93
269	Multiscale Biofabrication of Articular Cartilage: Bioinspired and Biomimetic Approaches Engineering - Part B: Reviews, 2015, 21, 543-559.	s. Tissue	2.5	41
270	Physical Principles of Nanoparticle Cellular Endocytosis. ACS Nano, 2015, 9, 8655-867	1.	7.3	852
271	Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat Communications, 2015, 6, 7525.	ure	5.8	233
272	Modeling Active Mechanosensing in Cell–Matrix Interactions. Annual Review of Biop 1-32.	hysics, 2015, 44,	4.5	77
273	Proliferation of preosteoblasts on TiO ₂ nanotubes is FAK/RhoA related. RS 2015, 5, 38117-38124.	C Advances,	1.7	23

ARTICLE IF CITATIONS # Oscillatory Flow Modulates Mechanosensitive klf2a Expression through trpv4 and trpp2 during Heart 274 1.8 143 Valve Development. Current Biology, 2015, 25, 1354-1361. Rho-guanine nucleotide exchange factors involved in cyclic stretch-induced reorientation of 1.2 vascular endothelial cells. Journal of Cell Science, 2015, 128, 1683-95. Regulation of tissue morphodynamics: an important role for actomyosin contractility. Current 276 1.5 21 Opinion in Genetics and Development, 2015, 32, 80-85. Between Rho(k) and a Hard Place. Circulation Research, 2015, 116, 895-908. 2.0 148 From Skeletal Development to Tissue Engineering: Lessons from the Micromass Assay. Tissue 278 2.5 18 Engineering - Part B: Reviews, 2015, 21, 427-437. Mechanical induction of the tumorigenic \hat{l}^2 -catenin pathway by tumour growth pressure. Nature, 2015, 279 13.7 288 523, 92-95. 280 Single-cell mechanics: The parallel plates technique. Methods in Cell Biology, 2015, 125, 187-209. 0.5 26 Investigating cell mechanics with atomic force microscopy. Journal of the Royal Society Interface, 2015, 12, 20140970. 281 1.5 288 Mechanotransduction's Impact on Animal Development, Evolution, and Tumorigenesis. Annual Review 282 4.0 58 of Cell and Developmental Biology, 2015, 31, 373-397. Molecular-Scale Tools for Studying Mechanotransduction. Annual Review of Biomedical Engineering, 5.7 24 2015, 17, 287-316. Designer hydrogels for precision control of oxygen tension and mechanical properties. Journal of 284 2.9 23 Materials Ćhemistry B, 2015, 3, 7939-7949. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing inÂengineered fibrillar 13.3 464 microenvironments. Nature Materials, 2015, 14, 1262-1268. Extracellular rigidity sensing by talin isoform-specific mechanical linkages. Nature Cell Biology, 2015, 286 4.6 278 17, 1597-1606. Neural Crest Specification by Inhibition of the ROCK/Myosin II Pathway. Stem Cells, 2015, 33, 674-685. 1.4 Evolving insights in cell–matrix interactions: Elucidating how non-soluble properties of the 288 4.1 115 extracellular niche direct stem cell fate. Acta Biomaterialia, 2015, 11, 3-16. Mesenchymal morphogenesis of embryonic stem cells dynamically modulates the biophysical microtissue niche. Scientific Reports, 2015, 4, 4290. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of 290 1.4 63 cellular self-organization. Biomechanics and Modeling in Mechanobiology, 2015, 14, 1-13. Lymphoid Tissue Mesenchymal Stromal Cells in Development and Tissue Remodeling. Stem Cells 291 1.2 International, 2016, 2016, 1-7.

#	Article	IF	CITATIONS
292	The Regulation of Cellular Responses to Mechanical Cues by Rho GTPases. Cells, 2016, 5, 17.	1.8	85
293	Hydrogels as Extracellular Matrix Analogs. Gels, 2016, 2, 20.	2.1	64
294	MEDYAN: Mechanochemical Simulations of Contraction and Polarity Alignment in Actomyosin Networks. PLoS Computational Biology, 2016, 12, e1004877.	1.5	81
295	A Guide to Magnetic Tweezers and Their Applications. Frontiers in Physics, 2016, 4, .	1.0	71
296	Mesenchymal Remodeling during Palatal Shelf Elevation Revealed by Extracellular Matrix and F-Actin Expression Patterns. Frontiers in Physiology, 2016, 7, 392.	1.3	34
297	Direct Mechanical Stimulation of Stem Cells: A Beating Electromechanically Active Scaffold for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2016, 5, 1471-1480.	3.9	99
298	Three-dimensional spherical spatial boundary conditions differentially regulate osteogenic differentiation of mesenchymal stromal cells. Scientific Reports, 2016, 6, 21253.	1.6	46
300	Universally Conserved Relationships between Nuclear Shape and Cytoplasmic Mechanical Properties in Human Stem Cells. Scientific Reports, 2016, 6, 23047.	1.6	22
301	Identification of Meflin as a Potential Marker for Mesenchymal Stromal Cells. Scientific Reports, 2016, 6, 22288.	1.6	75
302	Numerical modeling of cell differentiation and proliferation in force-induced substrates via encapsulated magnetic nanoparticles. Computer Methods and Programs in Biomedicine, 2016, 130, 106-117.	2.6	23
303	Bioengineering Lungs for Transplantation. Thoracic Surgery Clinics, 2016, 26, 163-171.	0.4	32
304	Single cell rigidity sensing: A complex relationship between focal adhesion dynamics and large-scale actin cytoskeleton remodeling. Cell Adhesion and Migration, 2016, 10, 554-567.	1.1	47
305	A toolbox to explore the mechanics of living embryonic tissues. Seminars in Cell and Developmental Biology, 2016, 55, 119-130.	2.3	112
306	Phenotypic Novelty in EvoDevo: The Distinction Between Continuous and Discontinuous Variation and Its Importance in Evolutionary Theory. Evolutionary Biology, 2016, 43, 314-335.	0.5	31
307	Substrate stiffness and matrix composition coordinately control the differentiation of liver progenitor cells. Biomaterials, 2016, 99, 82-94.	5.7	86
308	Nanotopography promoted neuronal differentiation of human induced pluripotent stem cells. Colloids and Surfaces B: Biointerfaces, 2016, 148, 49-58.	2.5	111
309	Biomechanical properties of the spinal cord: implications for tissue engineering and clinical translation. Regenerative Medicine, 2016, 11, 659-673.	0.8	31
310	The body's tailored suit: Skin as a mechanical interface. European Journal of Cell Biology, 2016, 95, 475-482	1.6	7

		CITATION REPORT	
#	Article	IF	CITATIONS
311	Looking Beyond the Genes. Current Topics in Developmental Biology, 2016, 119, 227-290.	1.0	8
312	Contraction of endothelial cells: 40Âyears of research, but the debate still lives. Histochemistry an Cell Biology, 2016, 146, 651-656.	d 0.8	29
313	Common and Diverging Integrin Signals Downstream of Adhesion and Mechanical Stimuli and The Interplay with Reactive Oxygen Species. , 2016, , 125-137.	ir	0
314	Properties of Life: Toward a Coherent Understanding of the Organism. Acta Biotheoretica, 2016, 6 277-307.	54, 0.7	9
315	Dynamic transcription factor activity networks in response to independently altered mechanical a adhesive microenvironmental cues. Integrative Biology (United Kingdom), 2016, 8, 844-860.	nd 0.6	28
316	Programming the shape-shifting of flat soft matter: from self-rolling/self-twisting materials to self-folding origami. Materials Horizons, 2016, 3, 536-547.	6.4	129
317	Cell sheet mechanics: How geometrical constraints induce the detachment of cell sheets from concave surfaces. Acta Biomaterialia, 2016, 45, 85-97.	4.1	38
318	Mechanical signaling coordinates the embryonic heartbeat. Proceedings of the National Academy Sciences of the United States of America, 2016, 113, 8939-8944.	of 3.3	46
320	Mathematical Modeling of Morphogenesis in Living Materials. Lecture Notes in Mathematics, 201 211-274.	б,, 0.1	0
321	Heterogeneous force network in 3D cellularized collagen networks. Physical Biology, 2016, 13, 06	6001. 0.8	49
322	Flexible nanopillars to regulate cell adhesion and movement. Nanotechnology, 2016, 27, 475101.	1.3	15
323	Nano-mechanical signature of brain tumours. Nanoscale, 2016, 8, 19629-19643.	2.8	75
324	Myelinating glia differentiation is regulated by extracellular matrix elasticity. Scientific Reports, 20 6, 33751.	16, 1.6	91
325	Influence of micro-scale substrate curvature on subcellular behaviors of vascular cells. , 2016, , .		2
326	The essential role of inorganic substrate in the migration and osteoblastic differentiation of mesenchymal stem cells. Journal of the Mechanical Behavior of Biomedical Materials, 2016, 59, 35	i3-365. ^{1.5}	12
327	Elastic hydrogel as a sensor for detection of mechanical stress generated by single cells grown in three-dimensional environment. Biomaterials, 2016, 98, 103-112.	5.7	31
328	Interplay between Solo and keratin filaments is crucial for mechanical force–induced stress fibere reinforcement. Molecular Biology of the Cell, 2016, 27, 954-966.	. 0.9	42
329	Beyond Turing: mechanochemical pattern formation in biological tissues. Biology Direct, 2016, 11	, 22. 1.9	26

#	Article	IF	CITATIONS
330	Biomaterials control of pluripotent stem cell fate for regenerative therapy. Progress in Materials Science, 2016, 82, 234-293.	16.0	40
331	Mechanical Forces Reshape Differentiation Cues That Guide Cardiomyogenesis. Circulation Research, 2016, 118, 296-310.	2.0	58
332	Cyclic Mechanical Loading Is Essential for Rac1-Mediated Elongation and Remodeling of the Embryonic Mitral Valve. Current Biology, 2016, 26, 27-37.	1.8	40
333	Design of a Tunable PDMS Force Delivery and Sensing Probe for Studying Mechanosensation. IEEE Sensors Journal, 2016, 16, 620-627.	2.4	1
334	The journey of integrins and partners in a complex interactions landscape studied by super-resolution microscopy and single protein tracking. Experimental Cell Research, 2016, 343, 28-34.	1.2	19
335	Mechanotransduction through substrates engineering and microfluidic devices. Current Opinion in Chemical Engineering, 2016, 11, 67-76.	3.8	13
336	Cellular microenvironment controls the nuclear architecture of breast epithelia through β1-integrin. Cell Cycle, 2016, 15, 345-356.	1.3	23
337	Mechanotransduction During Vertebrate Neurulation. Current Topics in Developmental Biology, 2016, 117, 359-376.	1.0	16
338	Experimental approaches in mechanotransduction: From molecules to pathology. Methods, 2016, 94, 1-3.	1.9	2
339	Nanotopography Promotes Pancreatic Differentiation of Human Embryonic Stem Cells and Induced Pluripotent Stem Cells. ACS Nano, 2016, 10, 3342-3355.	7.3	53
340	Shaping tissues by balancing active forces and geometric constraints. Journal Physics D: Applied Physics, 2016, 49, 053001.	1.3	21
341	Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nature Materials, 2016, 15, 326-334.	13.3	1,650
342	Review of cellular mechanotransduction on micropost substrates. Medical and Biological Engineering and Computing, 2016, 54, 249-271.	1.6	9
343	Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Experimental Cell Research, 2016, 343, 42-53.	1.2	340
344	For whom the cells pull: Hydrogel and micropost devices for measuring traction forces. Methods, 2016, 94, 51-64.	1.9	61
345	Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods, 2016, 94, 4-12.	1.9	27
346	<scp>YAP</scp> is essential for 3D organogenesis withstanding gravity. Development Growth and Differentiation, 2017, 59, 52-58.	0.6	6
347	Simultaneous measurement of the Young's modulus and the Poisson ratio of thin elastic layers. Soft Matter, 2017, 13, 1048-1055.	1.2	27

#	Article	IF	CITATIONS
348	Mechanotransductive cascade of Myo-II-dependent mesoderm and endoderm invaginations in embryo gastrulation. Nature Communications, 2017, 8, 13883.	5.8	64
349	The Horizon of Materiobiology: A Perspective on Material-Guided Cell Behaviors and Tissue Engineering. Chemical Reviews, 2017, 117, 4376-4421.	23.0	424
350	The animal sensorimotor organization: a challenge for the environmental complexity thesis. Biology and Philosophy, 2017, 32, 421-441.	0.7	29
351	Light robotics: an all-optical nano- and micro-toolbox. Proceedings of SPIE, 2017, , .	0.8	1
352	Decreased nuclear stiffness via FAK-ERK1/2 signaling is necessary for osteopontin-promoted migration of bone marrow-derived mesenchymal stem cells. Experimental Cell Research, 2017, 355, 172-181.	1.2	18
353	Light robotics: aiming towards all-optical nano-robotics. Proceedings of SPIE, 2017, , .	0.8	1
354	In vivo quantification of spatially varying mechanical properties in developing tissues. Nature Methods, 2017, 14, 181-186.	9.0	259
355	Biophysical Regulation of Cell Behavior—Cross Talk between Substrate Stiffness and Nanotopography. Engineering, 2017, 3, 36-54.	3.2	193
356	Spatial distributions of pericellular stiffness in natural extracellular matrices are dependent on cell-mediated proteolysis and contractility. Acta Biomaterialia, 2017, 57, 304-312.	4.1	47
357	Interfacing 3D magnetic twisting cytometry with confocal fluorescence microscopy to image force responses in living cells. Nature Protocols, 2017, 12, 1437-1450.	5.5	42
358	Multiscale force sensing in development. Nature Cell Biology, 2017, 19, 581-588.	4.6	185
359	A cytoskeletal clutch mediates cellular force transmission in a soft, three-dimensional extracellular matrix. Molecular Biology of the Cell, 2017, 28, 1959-1974.	0.9	63
360	Myosin activity drives actomyosin bundle formation and organization in contractile cells of the <i>Caenorhabditis elegans</i> spermatheca. Molecular Biology of the Cell, 2017, 28, 1937-1949.	0.9	26
361	New advances in probing cell–extracellular matrix interactions. Integrative Biology (United) Tj ETQq1 1 0.7843	14 rgBT /0	Dverlock 10 T
362	Biology meets physics: Reductionism and multi-scale modeling of morphogenesis. Studies in History and Philosophy of Science Part C:Studies in History and Philosophy of Biological and Biomedical Sciences, 2017, 61, 20-34.	0.8	63
363	CRMP4 Inhibits Bone Formation by Negatively Regulating BMP and RhoA Signaling. Journal of Bone and Mineral Research, 2017, 32, 913-926.	3.1	16
364	Rapid dynamics of cell-shape recovery in response to local deformations. Soft Matter, 2017, 13, 567-577.	1.2	3
365	Mechanical and signaling roles for keratin intermediate filaments in the assembly and morphogenesis of mesendoderm tissue at gastrulation. Development (Cambridge), 2017, 144, 4363-4376.	1.2	35

#	Article	IF	CITATIONS
366	The E-cadherin/AmotL2 complex organizes actin filaments required for epithelial hexagonal packing and blastocyst hatching. Scientific Reports, 2017, 7, 9540.	1.6	30
367	Mechanobiology of YAP and TAZ in physiology and disease. Nature Reviews Molecular Cell Biology, 2017, 18, 758-770.	16.1	879
368	Coordination of Morphogenesis and Cell-Fate Specification in Development. Current Biology, 2017, 27, R1024-R1035.	1.8	171
369	Tension Creates an Endoreplication Wavefront that Leads Regeneration of Epicardial Tissue. Developmental Cell, 2017, 42, 600-615.e4.	3.1	103
370	Epidermal growth factor as a mechanosensitizer in human bone marrow stromal cells. Stem Cell Research, 2017, 24, 69-76.	0.3	18
371	Curvature and Rho activation differentially control the alignment of cells and stress fibers. Science Advances, 2017, 3, e1700150.	4.7	73
372	A Strong Contractile Actin Fence and Large Adhesions Direct Human Pluripotent Colony Morphology and Adhesion. Stem Cell Reports, 2017, 9, 67-76.	2.3	59
373	Active tension network model suggests an exotic mechanical state realized in epithelial tissues. Nature Physics, 2017, 13, 1221-1226.	6.5	73
374	Design of a nanocomposite substrate inducing adult stem cell assembly and progression toward an Epiblast-like or Primitive Endoderm-like phenotype via mechanotransduction. Biomaterials, 2017, 144, 211-229.	5.7	23
375	Spatiotemporal hydrogel biomaterials for regenerative medicine. Chemical Society Reviews, 2017, 46, 6532-6552.	18.7	317
376	Mechanical signals activate p38 MAPK pathway-dependent reinforcement of actin via mechanosensitive HspB1. Molecular Biology of the Cell, 2017, 28, 2661-2675.	0.9	68
377	Visualizing Intercellular Tensile Forces by DNA-Based Membrane Molecular Probes. Journal of the American Chemical Society, 2017, 139, 18182-18185.	6.6	68
378	Designer biomaterials for mechanobiology. Nature Materials, 2017, 16, 1164-1168.	13.3	144
379	Novel peptide probes to assess the tensional state of fibronectin fibers in cancer. Nature Communications, 2017, 8, 1793.	5.8	31
380	Mechanical forces direct stem cell behaviour in development and regeneration. Nature Reviews Molecular Cell Biology, 2017, 18, 728-742.	16.1	1,042
381	Measurement of surface topography and stiffness distribution on crossâ€section of Xenopus laevis tailbud for estimation of mechanical environment in embryo. Development Growth and Differentiation, 2017, 59, 434-443.	0.6	1
382	Demystification of animal symmetry: symmetry is a response to mechanical forces. Biology Direct, 2017, 12, 11.	1.9	11
383	Single-cell mechanical phenotype is an intrinsic marker of reprogramming and differentiation along the mouse neural lineage. Development (Cambridge), 2017, 144, 4313-4321.	1.2	34

#	Article	IF	CITATIONS
384	Genetically Encoded Photoactuators and Photosensors for Characterization and Manipulation of Pluripotent Stem Cells. Theranostics, 2017, 7, 3539-3558.	4.6	17
385	5.1 Scaffolds: Flow Perfusion Bioreactor Design â~†. , 2017, , 1-17.		0
386	Biophysical Tools to Study Cellular Mechanotransduction. Bioengineering, 2017, 4, 12.	1.6	34
387	2.9 Materials as Artificial Stem Cell Microenvironments â~†. , 2017, , 179-201.		0
388	Soft tissue application of biocomposites. , 2017, , 59-82.		1
389	Mechanotransduction in tumor progression: The dark side of the force. Journal of Cell Biology, 2018, 217, 1571-1587.	2.3	225
390	TGFβ1â€induced expression of caldesmon mediates epithelial–mesenchymal transition. Cytoskeleton, 2018, 75, 201-212.	1.0	10
391	Kindlin-2 regulates mesenchymal stem cell differentiation through control of YAP1/TAZ. Journal of Cell Biology, 2018, 217, 1431-1451.	2.3	71
392	The Theory of Tensegrity and Spatial Organization of Living Matter. Russian Journal of Developmental Biology, 2018, 49, 87-100.	0.1	4
393	A Preferred Curvature-Based Continuum Mechanics Framework for Modeling Embryogenesis. Biophysical Journal, 2018, 114, 267-277.	0.2	13
394	Computation of forces from deformed visco-elastic biological tissues. Inverse Problems, 2018, 34, 044001.	1.0	1
395	Nanotopography regulates motor neuron differentiation of human pluripotent stem cells. Nanoscale, 2018, 10, 3556-3565.	2.8	38
396	Selfâ€Calibrating Mechanochromic Fluorescent Polymers Based on Encapsulated Excimerâ€Forming Dyes. Advanced Materials, 2018, 30, e1704603.	11.1	81
398	Fabrication and Mechanical Properties Measurements of 3D Microtissues for the Study of Cell–Matrix Interactions. Methods in Molecular Biology, 2018, 1722, 303-328.	0.4	3
399	Realizations of highly heterogeneous collagen networks via stochastic reconstruction for micromechanical analysis of tumor cell invasion. Physical Review E, 2018, 97, 033311.	0.8	23
400	Matrix Stiffness Modulates Mesenchymal Stem Cell Sensitivity to Geometric Asymmetry Signals. Annals of Biomedical Engineering, 2018, 46, 888-898.	1.3	14
401	Preparation of Matrices of Variable Stiffness for the Study of Mechanotransduction in Schwann Cell Development. Methods in Molecular Biology, 2018, 1739, 281-297.	0.4	5
402	Cell density overrides the effect of substrate stiffness on human mesenchymal stem cells' morphology and proliferation. Biomaterials Science, 2018, 6, 1109-1119.	2.6	57

#	Article	IF	CITATIONS
403	Unlocking the secrets to regenerating cardiac tissue: an update. Interactive Cardiovascular and Thoracic Surgery, 2018, 26, 146-153.	0.5	4
404	Adaptive responses of murine osteoblasts subjected to coupled mechanical stimuli. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 77, 250-257.	1.5	5
405	Role of substrate biomechanics in controlling (stem) cell fate: Implications in regenerative medicine. Journal of Tissue Engineering and Regenerative Medicine, 2018, 12, 1012-1019.	1.3	17
406	Relating cell shape and mechanical stress in a spatially disordered epithelium using a vertex-based model. Mathematical Medicine and Biology, 2018, 35, i1-i27.	0.8	44
408	A scheme for 3-dimensional morphological reconstruction and force inference in the early C. elegans embryo. PLoS ONE, 2018, 13, e0199151.	1.1	13
409	Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chemical Society Reviews, 2018, 47, 8639-8684.	18.7	115
410	Integrated analysis of microRNA and mRNA expression profiles in splenomegaly induced by non-cirrhotic portal hypertension in rats. Scientific Reports, 2018, 8, 17983.	1.6	3
411	Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding. Oncotarget, 2018, 9, 25008-25024.	0.8	11
412	Modulating physical, chemical, and biological properties in 3D printing for tissue engineering applications. Applied Physics Reviews, 2018, 5, .	5.5	28
413	Measurement of Force-Sensitive Protein Dynamics in Living Cells Using a Combination of Fluorescent Techniques. Journal of Visualized Experiments, 2018, , .	0.2	3
414	Increased elastic modulus of plasma polymer coatings reinforced with detonation nanodiamond particles improves osteogenic differentiation of mesenchymal stem cells. Turkish Journal of Biology, 2018, 42, 195-203.	2.1	1
415	Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10333-E10341.	3.3	81
416	Solo and Keratin Filaments Regulate Epithelial Tubule Morphology. Cell Structure and Function, 2018, 43, 95-105.	0.5	7
417	Supramolecular complexes for nanomedicine. Bioorganic and Medicinal Chemistry Letters, 2018, 28, 3290-3301.	1.0	29
418	Tailoring the Interface of Biomaterials to Design Effective Scaffolds. Journal of Functional Biomaterials, 2018, 9, 50.	1.8	43
419	Acoustic Tweezing Cytometry Induces Rapid Initiation of Human Embryonic Stem Cell Differentiation. Scientific Reports, 2018, 8, 12977.	1.6	20
420	Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nature Materials, 2018, 17, 633-641.	13.3	174
421	New substrates for stem cell control. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170223.	1.8	11

#	Article	IF	CITATIONS
422	β-Catenin–dependent mechanotransduction dates back to the common ancestor of Cnidaria and Bilateria. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6231-6236.	3.3	62
423	Quantifying compressive forces between living cell layers and within tissues using elastic round microgels. Nature Communications, 2018, 9, 1878.	5.8	91
424	Methylation mechanisms and biomechanical effectors controlling cell fate. Reproduction, Fertility and Development, 2018, 30, 64.	0.1	6
425	The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis. Cancers, 2018, 10, 122.	1.7	10
426	Mechanotransduction and cell biomechanics of the intervertebral disc. JOR Spine, 2018, 1, e1026.	1.5	91
427	Migration critically meditates osteoblastic differentiation of bone mesenchymal stem cells through activating canonical Wnt signal pathway. Colloids and Surfaces B: Biointerfaces, 2018, 171, 205-213.	2.5	19
428	Control of MSC Differentiation by Tuning the Alkyl Chain Length of Phenylboroinc Acid Based Low-molecular-weight Gelators. Journal of Bionic Engineering, 2018, 15, 682-692.	2.7	4
429	Nano-topography: Quicksand for cell cycle progression?. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2656-2665.	1.7	4
430	PKC epsilon signaling effect on actin assembly is diminished in cardiomyocytes when challenged to additional work in a stiff microenvironment. Cytoskeleton, 2018, 75, 363-371.	1.0	6
431	TGF- <i>β</i> induces changes in breast cancer cell deformability. Physical Biology, 2018, 15, 065005.	0.8	20
432	The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. Scientific Reports, 2018, 8, 7228.	1.6	126
433	A method for investigating the cellular response to cyclic tension or compression in three-dimensional culture. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 88, 11-17.	1.5	0
434	The homeostatic ensemble for cells. Biomechanics and Modeling in Mechanobiology, 2018, 17, 1631-1662.	1.4	27
435	<i>Hydra</i> Regeneration: Closing the Loop with Mechanical Processes in Morphogenesis. BioEssays, 2018, 40, e1700204.	1.2	35
436	Encapsulated piezoelectric nanoparticle–hydrogel smart material to remotely regulate cell differentiation and proliferation: a finite element model. Computational Mechanics, 2019, 63, 471-489.	2.2	8
437	Micro-indentation and optical coherence tomography for the mechanical characterization of embryos: Experimental setup and measurements on chicken embryos. Acta Biomaterialia, 2019, 97, 524-534.	4.1	17
438	Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomaterialia, 2019, 97, 74-92.	4.1	88
439	Regulatory networks in mechanotransduction reveal key genes in promoting cancer cell stemness and proliferation. Oncogene, 2019, 38, 6818-6834.	2.6	34

#	ARTICLE	IF	CITATIONS
440	Biophysical and biomechanical properties of neural progenitor cells as indicators of developmental neurotoxicity. Archives of Toxicology, 2019, 93, 2979-2992.	1.9	7
441	Identification of Viscoelastic Constitutive Parameters of a Cell Based on Fluid-Structure Coupled Finite Element Model and Experiment. Mathematical Problems in Engineering, 2019, 2019, 1-13.	0.6	2
442	Designing Microenvironments for Optimal Outcomes in Tissue Engineering and Regenerative Medicine: From Biopolymers to Culturing Conditions. , 2019, , 119-119.		1
443	Computational Simulation of Cell Behavior for Tissue Regeneration. , 2019, , 287-312.		0
444	A TR(i)P to Cell Migration: New Roles of TRP Channels in Mechanotransduction and Cancer. Frontiers in Physiology, 2019, 10, 757.	1.3	63
445	The Effect of Matrix Stiffness of Biomimetic Gelatin Nanofibrous Scaffolds on Human Cardiac Pericyte Behavior. ACS Applied Bio Materials, 2019, 2, 4385-4396.	2.3	5
446	Molecular-Level Interactions between Engineered Materials and Cells. International Journal of Molecular Sciences, 2019, 20, 4142.	1.8	12
447	Differential cellular contractility as a mechanism for stiffness sensing. New Journal of Physics, 2019, 21, 063005.	1.2	4
448	Mechanics of tissue competition: interfaces stabilize coexistence. New Journal of Physics, 2019, 21, 063017.	1.2	12
449	The analogies between human development and additive manufacture: Expanding the definition of design. Cogent Engineering, 2019, 6, .	1.1	5
450	Cell mechanosensing is regulated by substrate strain energy rather than stiffness. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22004-22013.	3.3	60
451	Spatiotemporal material functionalization via competitive supramolecular complexation of avidin and biotin analogs. Nature Communications, 2019, 10, 4347.	5.8	21
452	A PINCH-1–Smurf1 signaling axis mediates mechano-regulation of BMPR2 and stem cell differentiation. Journal of Cell Biology, 2019, 218, 3773-3794.	2.3	11
453	Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nature Communications, 2019, 10, 529.	5.8	128
454	Fiber Density Modulates Cell Spreading in 3D Interstitial Matrix Mimetics. ACS Biomaterials Science and Engineering, 2019, 5, 2965-2975.	2.6	64
455	Cell Adhesion-Mediated Actomyosin Assembly Regulates the Activity of Cubitus Interruptus for Hematopoietic Progenitor Maintenance in <i>Drosophila</i> . Genetics, 2019, 212, 1279-1300.	1.2	23
456	A novel method for quantifying traction forces on hexagonal micropatterned protein features on deformable poly-dimethyl siloxane sheets. MethodsX, 2019, 6, 1343-1352.	0.7	9
457	Fabrication of elastomer pillar arrays with elasticity gradient for cell migration, elongation and patterning. Biofabrication, 2019, 11, 045003.	3.7	14

#	Article	IF	CITATIONS
458	Regulation of Actin Dynamics in the C. elegans Somatic Gonad. Journal of Developmental Biology, 2019, 7, 6.	0.9	13
459	Keratinâ€binding ability of the Nâ€ŧerminal Solo domain of Solo is critical for its function in cellular mechanotransduction. Genes To Cells, 2019, 24, 390-402.	0.5	14
460	Strategies for controlling egress of therapeutic cells from hydrogel microcapsules. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 612-624.	1.3	12
461	High-throughput mechanotransduction in <i>Drosophila</i> embryos with mesofluidics. Lab on A Chip, 2019, 19, 1141-1152.	3.1	18
462	Inactive Tlk associating with Tak1 increases p38 MAPK activity to prolong the G2 phase. Scientific Reports, 2019, 9, 1885.	1.6	2
463	Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development. Scientific Reports, 2019, 9, 17031.	1.6	47
464	Hydrogel-integrated Microfluidic Systems for Advanced Stem Cell Engineering. Biochip Journal, 2019, 13, 306-322.	2.5	10
465	The regulation and function of the Hippo pathway in heart regeneration. Wiley Interdisciplinary Reviews: Developmental Biology, 2019, 8, e335.	5.9	25
466	Design and applications of man-made biomimetic fibrillar hydrogels. Nature Reviews Materials, 2019, 4, 99-115.	23.3	253
467	Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nature Communications, 2019, 10, 144.	5.8	83
468	Mechanical Response of an Epithelial Island Subject to Uniaxial Stretch on a Hybrid Silicone Substrate. Cellular and Molecular Bioengineering, 2019, 12, 33-40.	1.0	8
469	Finite element modeling of living cells for AFM indentation-based biomechanical characterization. Micron, 2019, 116, 108-115.	1.1	33
470	Where No Hand Has Gone Before: Probing Mechanobiology at the Cellular Level. ACS Biomaterials Science and Engineering, 2019, 5, 3703-3719.	2.6	20
471	Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Birth Defects Research, 2019, 111, 991-998.	0.8	43
472	Role of cell-secreted extracellular matrix formation in aggregate formation and stability of human induced pluripotent stem cells in suspension culture. Journal of Bioscience and Bioengineering, 2019, 127, 372-380.	1.1	19
473	Endothelial Nanomechanics in the Context of Endothelial (Dys)function and Inflammation. Antioxidants and Redox Signaling, 2019, 30, 945-959.	2.5	23
474	Impact of PDMS surface treatment in cell-mechanics applications. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 103, 103538.	1.5	5
475	Enhanced mechanical and electrical properties of heteroscaled hydrogels infused with aqueous-dispersible hybrid nanofibers. Biofabrication, 2020, 12, 015020.	3.7	19

# 476	ARTICLE Finite element simulation of the structural integrity of endothelial cell monolayers: A step for tumor cell extravasation. Engineering Fracture Mechanics, 2020, 224, 106718.	IF 2.0	CITATIONS 6
477	Polymeric sheet actuators with programmable bioinstructivity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1895-1901.	3.3	13
478	Keratocyte mechanobiology. Experimental Eye Research, 2020, 200, 108228.	1.2	11
479	The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science, 2020, 370, .	6.0	232
480	A dynamic matrix potentiates mesenchymal stromal cell paracrine function <i>via</i> an effective mechanical dose. Biomaterials Science, 2020, 8, 4779-4791.	2.6	18
481	Dynamic azopolymeric interfaces for photoactive cell instruction. Biophysics Reviews, 2020, 1, .	1.0	10
482	A Self-Healing Hierarchical Fiber Hydrogel That Mimics ECM Structure. Materials, 2020, 13, 5277.	1.3	10
483	Quantifying tensile forces at cell–cell junctions with a DNA-based fluorescent probe. Chemical Science, 2020, 11, 8558-8566.	3.7	33
484	Developmentally-Inspired Biomimetic Culture Models to Produce Functional Islet-Like Cells From Pluripotent Precursors. Frontiers in Bioengineering and Biotechnology, 2020, 8, 583970.	2.0	12
485	Intracellular optical doppler phenotypes of chemosensitivity in human epithelial ovarian cancer. Scientific Reports, 2020, 10, 17354.	1.6	13
486	Label-Free and Simultaneous Mechanical and Electrical Characterization of Single Plant Cells Using Microfluidic Impedance Flow Cytometry. Analytical Chemistry, 2020, 92, 14568-14575.	3.2	25
487	Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature, 2020, 584, 535-546.	13.7	1,045
488	Environmentally controlled magnetic nano-tweezer for living cells and extracellular matrices. Scientific Reports, 2020, 10, 13453.	1.6	32
489	Stem Cell Mechanobiology and the Role of Biomaterials in Governing Mechanotransduction and Matrix Production for Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2020, 8, 597661.	2.0	62
490	Fluorescent Nanofibrillar Hydrogels of Carbon Dots and Cellulose Nanocrystals and Their Biocompatibility. ACS Sustainable Chemistry and Engineering, 2020, 8, 18492-18499.	3.2	28
491	Exploration of the Effects of Substrate Stiffness on Biological Responses of Neural Cells and Their Mechanisms. ACS Omega, 2020, 5, 31115-31125.	1.6	9
492	Current Perspective: 3D Spheroid Models Utilizing Human-Based Cells for Investigating Metabolism-Dependent Drug-Induced Liver Injury. Frontiers in Medical Technology, 2020, 2, 611913.	1.3	25
493	Deciphering the mechanoresponsive role of β-catenin in keratoconus epithelium. Scientific Reports, 2020, 10, 21382.	1.6	15

#	Article	IF	CITATIONS
494	Mechanobiology of the brain in ageing and Alzheimer's disease. European Journal of Neuroscience, 2021, 53, 3851-3878.	1.2	61
495	Simvastatin ameliorates altered mechanotransduction in uterine leiomyoma cells. American Journal of Obstetrics and Gynecology, 2020, 223, 733.e1-733.e14.	0.7	32
496	The extracellular matrix in development. Development (Cambridge), 2020, 147, .	1.2	210
497	Quantitative Analysis of 3D Tissue Deformation Reveals Key Cellular Mechanism Associated with Initial Heart Looping. Cell Reports, 2020, 30, 3889-3903.e5.	2.9	16
498	Mechanical Stress Regulates Epithelial Tissue Integrity and Stiffness through the FGFR/Erk2 Signaling Pathway during Embryogenesis. Cell Reports, 2020, 30, 3875-3888.e3.	2.9	28
499	Fibrillar Collagen Type I Participates in the Survival and Aggregation of Primary Hepatocytes Cultured on Soft Hydrogels. Biomimetics, 2020, 5, 30.	1.5	8
500	Reversible control of biomaterial properties for dynamically tuning cell behavior. Journal of Applied Polymer Science, 2020, 137, 49058.	1.3	20
501	Multiple Effects of Mechanical Stretch on Myogenic Progenitor Cells. Stem Cells and Development, 2020, 29, 336-352.	1.1	23
502	A 3D approach to reproduction. Theriogenology, 2020, 150, 2-7.	0.9	8
503	How Computation Is Helping Unravel the Dynamics of Morphogenesis. Frontiers in Physics, 2020, 8, .	1.0	11
504	All roads lead to Rome: the many ways to pluripotency. Journal of Assisted Reproduction and Genetics, 2020, 37, 1029-1036.	1.2	7
505	Force-induced gene up-regulation does not follow the weak power law but depends on H3K9		
	demethylation. Science Advances, 2020, 6, eaay9095.	4.7	47
506	demethylation. Science Advances, 2020, 6, eaay9095. Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines. Polymers, 2020, 12, 924.	4.7 2.0	47
506 508	demethylation. Science Advances, 2020, 6, eaay9095. Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines. Polymers, 2020, 12, 924. Effect of Biomechanical Environment on Degeneration of Meckel's Cartilage. Journal of Dental Research, 2021, 100, 171-178.	4.72.02.5	47 7
506 508 509	demethylation. Science Advances, 2020, 6, eaay9095. Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines. Polymers, 2020, 12, 924. Effect of Biomechanical Environment on Degeneration of Meckel's Cartilage. Journal of Dental Research, 2021, 100, 171-178. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 949-960.	4.7 2.0 2.5 1.6	47 7 1 6
506 508 509 510	demethylation. Science Advances, 2020, 6, eaay9095. Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines. Polymers, 2020, 12, 924. Effect of Biomechanical Environment on Degeneration of Meckel's Cartilage. Journal of Dental Research, 2021, 100, 171-178. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 949-960. Carbon Nanomaterials for Neuronal Tissue Engineering. RSC Nanoscience and Nanotechnology, 2021, 184-222.	 4.7 2.0 2.5 1.6 0.2 	47 7 1 6 0
506 508 509 510 512	demethylation. Science Advances, 2020, 6, eaay9095. Biological Effects of Polyrotaxane Surfaces on Cellular Responses of Fibroblast, Preosteoblast and Preadipocyte Cell Lines. Polymers, 2020, 12, 924. Effect of Biomechanical Environment on Degeneration of Meckel's Cartilage. Journal of Dental Research, 2021, 100, 171-178. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 949-960. Carbon Nanomaterials for Neuronal Tissue Engineering. RSC Nanoscience and Nanotechnology, 2021, , 184-222. Mechanotransduction, nanotechnology, and nanomedicine. Journal of Biomedical Research, 2021, 35, 284.	 4.7 2.0 2.5 1.6 0.2 0.7 	47 7 1 6 0 7

#	Article	IF	CITATIONS
514	Harnessing Mechanobiology for Tissue Engineering. Developmental Cell, 2021, 56, 180-191.	3.1	54
515	Distribution and propagation of mechanical stress in simulated structurally heterogeneous tissue spheroids. Soft Matter, 2021, 17, 6603-6615.	1.2	8
516	Spheroid mechanics and implications for cell invasion. Advances in Physics: X, 2021, 6, .	1.5	4
519	Articular Chondrocyte Phenotype Regulation through the Cytoskeleton and the Signaling Processes That Originate from or Converge on the Cytoskeleton: Towards a Novel Understanding of the Intersection between Actin Dynamics and Chondrogenic Function. International Journal of Molecular Sciences, 2021, 22, 3279.	1.8	38
521	Heparin-Mimicking Polymer-Based In Vitro Platform Recapitulates In Vivo Muscle Atrophy Phenotypes. International Journal of Molecular Sciences, 2021, 22, 2488.	1.8	5
522	High-Throughput Discovery of Targeted, Minimally Complex Peptide Surfaces for Human Pluripotent Stem Cell Culture. ACS Biomaterials Science and Engineering, 2021, 7, 1344-1360.	2.6	4
523	Single-cell mechanical analysis and tension quantification via electrodeformation relaxation. Physical Review E, 2021, 103, 032409.	0.8	9
524	Force-FAK signaling coupling at individual focal adhesions coordinates mechanosensing and microtissue repair. Nature Communications, 2021, 12, 2359.	5.8	27
525	Advanced in silico validation framework for three-dimensional traction force microscopy and application to an in vitro model of sprouting angiogenesis. Acta Biomaterialia, 2021, 126, 326-338.	4.1	13
526	Wnt∫î²-catenin signaling pathway in uterine leiomyoma: role in tumor biology and targeting opportunities. Molecular and Cellular Biochemistry, 2021, 476, 3513-3536.	1.4	18
527	The Rheology of the Carotid Sinus: A Path Toward Bioinspired Intervention. Frontiers in Bioengineering and Biotechnology, 2021, 9, 678048.	2.0	5
528	From stretch to deflection: the importance of context in the activation of mammalian, mechanically activated ion channels. FEBS Journal, 2022, 289, 4447-4469.	2.2	19
529	Mechanical Strain-Enabled Reconstitution of Dynamic Environment in Organ-on-a-Chip Platforms: A Review. Micromachines, 2021, 12, 765.	1.4	12
530	Nanofibrillar Hydrogels by Temperature Driven Selfâ€Assembly: New Structures for Cell Growth and Their Biological and Medical Implications. Advanced Materials Interfaces, 2021, 8, 2002202.	1.9	12
531	Precise Tuning of Polymeric Fiber Dimensions to Enhance the Mechanical Properties of Alginate Hydrogel Matrices. Polymers, 2021, 13, 2202.	2.0	10
533	Biocompatible and Enzymatically Degradable Gels for 3D Cellular Encapsulation under Extreme Compressive Strain. Gels, 2021, 7, 101.	2.1	6
534	Biophysical properties of corneal cells reflect high myopia progression. Biophysical Journal, 2021, 120, 3498-3507.	0.2	5
535	Ventral stress fibers induce plasma membrane deformation in human fibroblasts. Molecular Biology of the Cell, 2021, 32, 1707-1723.	0.9	2

# 537	ARTICLE Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications. Nanomaterials, 2021, 11, 2255	IF 1.9	CITATIONS
538	Integrated computational and experimental pipeline for quantifying local cell–matrix interactions. Scientific Reports, 2021, 11, 16465.	1.6	2
540	Mechanotopographyâ€Driven Design of Dispersible Nanofiber‣aden Hydrogel as a 3D Cell Culture Platform for Investigating Tissue Fibrosis. Advanced Healthcare Materials, 2021, 10, e2101109.	3.9	3
541	Mapping mechanical properties of biological materials via an add-on Brillouin module to confocal microscopes. Nature Protocols, 2021, 16, 1251-1275.	5.5	38
543	Cell-Generated Forces in Tissue Assembly, Function, and Disease. , 2011, , 47-74.		2
544	Clinical Efficacy of Stem Cell Mediated Osteogenesis and Bioceramics for Bone Tissue Engineering. Advances in Experimental Medicine and Biology, 2012, 760, 174-187.	0.8	8
545	Hippo and Mouse Models for Cancer. , 2013, , 225-247.		2
546	Probing Regional Mechanical Properties of Embryonic Tissue Using Microindentation and Optical Coherence Tomography. Methods in Molecular Biology, 2015, 1189, 3-16.	0.4	12
547	The Role of Mechanical Forces in Guiding Tissue Differentiation. , 2011, , 77-97.		3
548	Continuum Models of Collective Cell Migration. Advances in Experimental Medicine and Biology, 2019, 1146, 45-66.	0.8	24
549	Viscoelastic hydrogels for 3D cell culture. Biomaterials Science, 2017, 5, 1480-1490.	2.6	230
550	Spectrin couples cell shape, cortical tension, and Hippo signaling in retinal epithelial morphogenesis. Journal of Cell Biology, 2020, 219, .	2.3	29
556	FRET efficiency measurement in a molecular tension probe with a low-cost frequency-domain fluorescence lifetime imaging microscope. Journal of Biomedical Optics, 2019, 24, 1.	1.4	9
557	Filopodial-Tension Model of Convergent-Extension of Tissues. PLoS Computational Biology, 2016, 12, e1004952.	1.5	24
558	Numerical knockouts–In silico assessment of factors predisposing to thoracic aortic aneurysms. PLoS Computational Biology, 2020, 16, e1008273.	1.5	19
559	Flow-Dependent Mass Transfer May Trigger Endothelial Signaling Cascades. PLoS ONE, 2012, 7, e35260.	1.1	8
560	Effect of Substrate Stiffness on Early Mouse Embryo Development. PLoS ONE, 2012, 7, e41717.	1.1	84
561	The Effect of Growth-Mimicking Continuous Strain on the Early Stages of Skeletal Development in Micromass Culture. PLoS ONE, 2015, 10, e0124948.	1.1	6

#	Article	IF	CITATIONS
562	Non-Muscle Myosin II Isoforms Have Different Functions in Matrix Rearrangement by MDA-MB-231 Cells. PLoS ONE, 2015, 10, e0131920.	1.1	9
563	Interpenetrating polymer network hydrogels as bioactive scaffolds for tissue engineering. Reviews in Chemical Engineering, 2022, 38, 347-361.	2.3	28
564	RNA-seq reveals the diverse effects of substrate stiffness on epidermal ovarian cancer cells. Aging, 2020, 12, 20493-20511.	1.4	4
565	Hybrid Organic-Inorganic Scaffolding Biomaterials for Regenerative Therapies. Current Organic Chemistry, 2014, 18, 2299-2314.	0.9	36
566	A review of decellularized stem cell matrix: a novel cell expansion system for cartilage tissue engineering. , 2011, 22, 333-343.		89
567	The importance of WNT pathways for bone metabolism and their regulation by implant topography. , 2012, 24, 46-59.		47
568	Shaping the meristem by mechanical forces. F1000 Biology Reports, 2009, 1, 45.	4.0	1
569	Cellular mechanotransduction. AIMS Biophysics, 2016, 3, 50-62.	0.3	37
570	Ion-Doped Silicate Bioceramic Coating of Ti-Based Implant. Iranian Biomedical Journal, 2016, 20, 189-200.	0.4	7
571	The major \hat{l}^2 -catenin/E-cadherin junctional binding site is a primary molecular mechano-transductor of differentiation in vivo. ELife, 2018, 7, .	2.8	62
572	Tunable molecular tension sensors reveal extension-based control of vinculin loading. ELife, 2018, 7, .	2.8	74
573	Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-ß-catenin. ELife, 2020, 9, .	2.8	161
574	Directing Cell Fate Through Biomaterial Microenvironments. , 2011, , 123-140.		0
575	A Uniaxial Loading Device for Studying Mechanoresponses of Single Plant Cell. Engineering, 2013, 05, 416-419.	0.4	0
576	Single-Cell Microfluidic Cytometry for Next-Generation High-Throughput Biology and Drug Discovery. , 2014, , 75-96.		1
577	Microenvironment-enhanced invasive tumor growth via cellular automaton simulations. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 058706.	0.2	0
580	CAN GRAPHENE BILAYERS BE THE MEMBRANE MIMETIC MATERIALS?. Radioelektronika, Nanosistemy, Informacionnye Tehnologii, 2016, 8, 25-38.	0.2	0
582	Ultrafast single molecule technique for the study of force dependent kinetics and conformational changes of actin-protein interaction involved in mechanotransduction. , 2018, , .		Ο

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
583	Mechanical Load Transfer at the Cellular Level. Frontiers of Biomechanics, 2019, , 159-	179.	0.1	0
587	Biomechanical View on the Cytoplasm (and Cytosol) of Cells. Biological and Medical Pl 2020, , 57-94.	nysics Series,	0.3	Ο
590	Are Osteoclasts Mechanosensitive Cells?. Journal of Biomedical Nanotechnology, 2021	, 17, 1917-1938.	0.5	6
593	Microscale characterisation of the time-dependent mechanical behaviour of brain white Journal of the Mechanical Behavior of Biomedical Materials, 2022, 125, 104917.	e matter.	1.5	12
594	Transcription for Protein Biosynthesis. Biological and Medical Physics Series, 2020, , 47	7-508.	0.3	0
595	Focal Adhesion Proteins Regulate Cell–Matrix and Cell–Cell Adhesion and Act as Fo Biological and Medical Physics Series, 2020, , 95-140.	orce Sensors.	0.3	0
596	Intrinsic Mechanical Cues and Their Impact on Stem Cells and Embryogenesis. Frontier Developmental Biology, 2021, 9, 761871.	s in Cell and	1.8	37
597	Effects of Electrical Stimulation on Stem Cells. Current Stem Cell Research and Therap 441-448.	y, 2020, 15,	0.6	6
600	Role of Hippo Pathway Effector Tafazzin Protein in Maintaining Stemness of Umbilical Mesenchymal Stem Cells (UC-MSC). International Journal of Hematology-Oncology and Research, 2018, 12, 153-165.	Cord-Derived d Stem Cell	0.3	0
601	Generation, Transmission, and Regulation of Mechanical Forces in Embryonic Morphog 2021, , 2103466.	enesis. Small,	5.2	5
602	3D modeling in cancer studies. Human Cell, 2022, 35, 23-36.		1.2	29
603	Droplet microfluidic devices for organized stem cell differentiation into germ cells: cap challenges. Biophysical Reviews, 2021, 13, 1245-1271.	abilities and	1.5	1
604	Mechanobiological Strategies to Enhance Stem Cell Functionality for Regenerative Me Tissue Engineering. Frontiers in Cell and Developmental Biology, 2021, 9, 747398.	dicine and	1.8	25
605	Mechanical Regulation of Limb Bud Formation. Cells, 2022, 11, 420.		1.8	5
606	Towards an integrative understanding of cancer mechanobiology: calcium, YAP, and m biophysical forces. Soft Matter, 2022, 18, 1112-1148.	icroRNA under	1.2	11
607	Impact of Aging on the Ovarian Extracellular Matrix and Derived 3D Scaffolds. Nanoma 12, 345.	terials, 2022,	1.9	15
608	Cell and Tissue Nanomechanics: From Early Development to Carcinogenesis. Biomedici	nes, 2022, 10, 345.	1.4	3
609	AGNW-Embedded and Nano-Patterned PDMS Thin Film for Improved Adhesion and Con Cardiomyocytes. , 2022, , .	nnection of		0

	CITATION RE	PORT	
#	Article	IF	CITATIONS
610	Kidney development and function: ECM cannot be ignored. Differentiation, 2022, 124, 28-42.	1.0	3
611	Quantification of the Microrheology of Living Cells Using Multi-Frequency Magnetic Force Modulation Atomic Force Microscopy. IEEE Transactions on Instrumentation and Measurement, 2022, 71, 1-9.	2.4	1
612	Crosstalk between ERK and MRTFâ€A signaling regulates TGFβ1â€induced epithelialâ€mesenchymal transition. Journal of Cellular Physiology, 2022, 237, 2503-2515.	2.0	3
613	Identification of phenotype-specific networks from paired gene expression–cell shape imaging data. Genome Research, 2022, 32, 750-765.	2.4	5
614	Ret kinase-mediated mechanical induction of colon stem cells by tumor growth pressure stimulates cancer progression in vivo. Communications Biology, 2022, 5, 137.	2.0	4
615	Light robotics: new micro-drones powered by light. , 2022, , .		0
616	Sticking around: Cell adhesion patterning for energy minimization and substrate mechanosensing. Biophysical Journal, 2022, 121, 1777-1786.	0.2	8
617	Mechanical control of nuclear import by Importin-7 is regulated by its dominant cargo YAP. Nature Communications, 2022, 13, 1174.	5.8	32
618	Mechanotransductive Mechanisms of Biomimetic Hydrogel Cues Modulating Meckel's Cartilage Degeneration. Advanced Biology, 2022, , 2101315.	1.4	1
619	Delivering Mechanical Stimulation to Cells: State of the Art in Materials and Devices Design. Advanced Materials, 2022, 34, e2110267.	11.1	15
620	Micro-patterned cell populations as advanced pharmaceutical drugs with precise functional control. Advanced Drug Delivery Reviews, 2022, 184, 114169.	6.6	10
621	The influence of nanotopography on cell behaviour through interactions with the extracellular matrix – A review. Bioactive Materials, 2022, 15, 145-159.	8.6	48
622	Regulation of Substrate Dissipation via Tunable Linear Elasticity Controls Cell Activity. Advanced Functional Materials, 2022, 32, .	7.8	7
623	Impact of Whole Body Vibration and Zoledronic Acid on Femoral Structure after Ovariectomy: Morphological Evaluation. Journal of Clinical Medicine, 2022, 11, 2441.	1.0	4
624	The transcription factor PREP1(PKNOX1) regulates nuclear stiffness, the expression of LINC complex proteins and mechanotransduction. Communications Biology, 2022, 5, 456.	2.0	3
625	<i>Pseudomonas aeruginosa</i> distinguishes surfaces by stiffness using retraction of type IV pili. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2119434119.	3.3	16
626	Mechanosignaling in vertebrate development. Developmental Biology, 2022, 488, 54-67.	0.9	12
627	Pneumatic equiaxial compression device for mechanical manipulation of epithelial cell packing and physiology. PLoS ONE, 2022, 17, e0268570.	1.1	8

#	Article	IF	CITATIONS
628	Integrin molecular tension required for focal adhesion maturation and YAP nuclear translocation. Biochemistry and Biophysics Reports, 2022, 31, 101287.	0.7	3
629	Soft elastomers: A playground for guided waves. Journal of the Acoustical Society of America, 2022, 151, 3343-3358.	0.5	3
630	Self-Sustained Regulation or Self-Perpetuating Dysregulation: ROS-dependent HIF-YAP-Notch Signaling as a Double-Edged Sword on Stem Cell Physiology and Tumorigenesis. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	4
631	Cell mediated remodeling of stiffness matched collagen and fibrin scaffolds. Scientific Reports, 2022, 12, .	1.6	5
632	Cellular forceâ€sensing through actin filaments. FEBS Journal, 2023, 290, 2576-2589.	2.2	8
633	Adhesive peptide and polymer density modulate 3D cell traction forces within synthetic hydrogels. Biomaterials, 2022, 288, 121710.	5.7	3
634	Plasticity of body axis polarity in Hydra regeneration under constraints. Scientific Reports, 2022, 12, .	1.6	6
635	Engineering the viscoelasticity of gelatin methacryloyl (GelMA) hydrogels via small "dynamic bridges― to regulate BMSC behaviors for osteochondral regeneration. Bioactive Materials, 2023, 25, 445-459.	8.6	18
636	How do the Local Physical, Biochemical, and Mechanical Properties of an Injectable Synthetic Anisotropic Hydrogel Affect Oriented Nerve Growth?. Advanced Functional Materials, 2022, 32, .	7.8	14
637	Biomimetic Hydrogels in the Study of Cancer Mechanobiology: Overview, Biomedical Applications, and Future Perspectives. Gels, 2022, 8, 496.	2.1	4
638	Bio-chemo-mechanical coupling models of soft biological materials: A review. Advances in Applied Mechanics, 2022, , 309-392.	1.4	5
639	Phosphorylation of the small heat shock protein HspB1 regulates cytoskeletal recruitment and cell motility. Molecular Biology of the Cell, 2022, 33, .	0.9	10
640	α-Actinin-4 recruits Shp2 into focal adhesions to potentiate ROCK2 activation in podocytes. Life Science Alliance, 2022, 5, e202201557.	1.3	2
641	Nucleoli in epithelial cell collectives respond to tumorigenic, spatial, and mechanical cues. Molecular Biology of the Cell, 2022, 33, .	0.9	2
642	Adipose Tissue Development Relies on Coordinated Extracellular Matrix Remodeling, Angiogenesis, and Adipogenesis. Biomedicines, 2022, 10, 2227.	1.4	6
643	Harnessing conserved signaling and metabolic pathways to enhance the maturation of functional engineered tissues. Npj Regenerative Medicine, 2022, 7, .	2.5	1
645	Dynamically Crosslinked Poly(ethyleneâ€glycol) Hydrogels Reveal a Critical Role of Viscoelasticity in Modulating Glioblastoma Fates and Drug Responses in 3D. Advanced Healthcare Materials, 2023, 12, .	3.9	8
646	Mesenchymal βâ€catenin signaling affects palatogenesis by regulating αâ€actininâ€4 and Fâ€actin. Oral Disease 2023, 29, 3493-3502.	' ^S 1.5	2

#	ARTICLE	IF	CITATIONS
647	Regulatory mechanisms of mechanotransduction in genome instability. Genome Instability & Disease, 0, , .	0.5	0
648	Tailoring the elasticity of nerve implants for regulating peripheral nerve regeneration. Smart Materials in Medicine, 2023, 4, 266-285.	3.7	5
649	Embryonic aortic arch material properties obtained by optical coherence tomography-guided micropipette aspiration. Journal of Biomechanics, 2023, 146, 111392.	0.9	0
651	Enseñando a ser madres: la educación de mujer a mujer en la Valencia del primer tercio del siglo XX. Asclepio, 2022, 74, p614.	0.2	Ο
652	Mechano-biochemical marine stimulation of inversion, gastrulation, and endomesoderm specification in multicellular Eukaryota. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	1
653	Computational modelling of the mechanical behaviour of protein-based hydrogels. Journal of the Mechanical Behavior of Biomedical Materials, 2023, 138, 105661.	1.5	2
654	Low-intensity pulsed ultrasound (LIPUS) enhances the anti-inflammatory effects of bone marrow mesenchymal stem cells (BMSCs)-derived extracellular vesicles. Cellular and Molecular Biology Letters, 2023, 28, .	2.7	16
655	3D bio-printed living nerve-like fibers refine the ecological niche for long-distance spinal cord injury regeneration. Bioactive Materials, 2023, 25, 160-175.	8.6	7
656	A review on regulation of cell cycle by extracellular matrix. International Journal of Biological Macromolecules, 2023, 232, 123426.	3.6	6
657	The force-dependent filamin A–G3BP1 interaction regulates phase-separated stress granule formation. Journal of Cell Science, 2023, 136, .	1.2	2
658	Cell–extracellular matrix mechanotransduction in 3D. Nature Reviews Molecular Cell Biology, 2023, 24, 495-516.	16.1	72
659	Bending actin filaments: twists of fate. Faculty Reviews, 0, 12, .	1.7	1
670	Cellular mechanotransduction in health and diseases: from molecular mechanism to therapeutic targets. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	16
678	Development of the Avian Respiratory System. Zoological Monographs, 2023, , 99-189.	1.1	0
691	The first embryo, the origin of cancer and animal phylogeny. II. The neoplastic process as an evolutionary engine. Journal of Biosciences, 2024, 49, .	0.5	0
693	Mechanobiology regulation. , 2024, , 127-160.		0