Promises, facts and challenges for carbon nanotubes in

Nature Nanotechnology 4, 627-633 DOI: 10.1038/nnano.2009.241

Citation Report

#	Article	IF	CITATIONS
1	The application of exosomes as a nanoscale cancer vaccine. International Journal of Nanomedicine, 2010, 5, 889.	6.7	128
2	Nanomedicine: promises and challenges for the future of public health. International Journal of Nanomedicine, 2010, 5, 803.	6.7	59
3	DNA and carbon nanotubes as medicine. Advanced Drug Delivery Reviews, 2010, 62, 633-649.	13.7	180
4	Enhanced anticancer activity of multi-walled carbon nanotube–methotrexate conjugates using cleavable linkers. Chemical Communications, 2010, 46, 1494-1496.	4.1	131
6	Nanotechniques in proteomics: Current status, promises and challenges. Biosensors and Bioelectronics, 2010, 25, 2389-2401.	10.1	54
7	Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today, 2010, 5, 197-212.	11.9	126
8	Carbon nanotubes for in vivo cancer nanotechnology. Science China Chemistry, 2010, 53, 2217-2225.	8.2	20
9	Complement activation cascade triggered by PEG–PL engineered nanomedicines and carbon nanotubes: The challenges ahead. Journal of Controlled Release, 2010, 146, 175-181.	9.9	157
10	Particle trapping using dielectrophoretically patterned carbon nanotubes. Electrophoresis, 2010, 31, 1366-1375.	2.4	24
11	Functionalized Carbon Nanotubes for Probing and Modulating Molecular Functions. Chemistry and Biology, 2010, 17, 107-115.	6.0	104
12	Potentiometric titration as a straightforward method to assess the number of functional groups on shortened carbon nanotubes. Carbon, 2010, 48, 2447-2454.	10.3	48
13	Raman analysis and mapping for the determination of COOH groups on oxidized single walled carbon nanotubes. Carbon, 2010, 48, 3391-3398.	10.3	22
14	Organic functionalization of carbon nanostructures via 1,3â€dipolar cycloadditions. Physica Status Solidi (B): Basic Research, 2010, 247, 2645-2648.	1.5	9
15	Polyhydroxy Fullerenes for Nonâ€Invasive Cancer Imaging and Therapy. Small, 2010, 6, 2236-2241.	10.0	88
16	Neurons Are Able to Internalize Soluble Carbon Nanotubes: New Opportunities or Old Risks?. Small, 2010, 6, 2630-2633.	10.0	30
17	Metalâ€based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 544-568.	6.1	542
18	Controlled nanotube reactions. Nature, 2010, 465, 172-173.	27.8	44
19	Nanoscale radiosurgery. Nature Materials, 2010, 9, 467-468.	27.5	7

#	Article	IF	CITATIONS
20	Complement monitoring of carbon nanotubes. Nature Nanotechnology, 2010, 5, 382-382.	31.5	26
21	Complement monitoring of carbon nanotubes. Nature Nanotechnology, 2010, 5, 382-383.	31.5	13
22	lmaging and treating tumor vasculature with targeted radiolabeled carbon nanotubes. International Journal of Nanomedicine, 2010, 5, 783.	6.7	117
23	Towards nanomedicines: design protocols to assemble, visualize and test carbon nanotube probes for multi-modality biomedical imaging. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2010, 368, 3683-3712.	3.4	26
24	Investigation of the influence of surface defects on peptide adsorption onto carbon nanotubes. Molecular BioSystems, 2010, 6, 1707.	2.9	21
25	Paradoxical glomerular filtration of carbon nanotubes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12369-12374.	7.1	372
26	Development of novel drug delivery vehicles. Nanomedicine, 2010, 5, 1487-1489.	3.3	5
27	Two-Dimensional Diffusion-Ordered NMR Spectroscopy as a Tool for Monitoring Functionalized Carbon Nanotube Purification and Composition. ACS Nano, 2010, 4, 2051-2058.	14.6	25
28	Purified and Oxidized Single-Walled Carbon Nanotubes as Robust Near-IR Fluorescent Probes for Molecular Imaging. Journal of Physical Chemistry C, 2010, 114, 18407-18413.	3.1	30
29	New Insights of Transmembranal Mechanism and Subcellular Localization of Noncovalently Modified Single-Walled Carbon Nanotubes. Nano Letters, 2010, 10, 1677-1681.	9.1	146
30	Distribution and clearance of PEC-single-walled carbon nanotube cancer drug delivery vehicles in mice. Nanomedicine, 2010, 5, 1535-1546.	3.3	151
31	Antibacterial action of dispersed single-walled carbon nanotubes on Escherichia coli and Bacillus subtilis investigated by atomic force microscopy. Nanoscale, 2010, 2, 2744.	5.6	153
32	Light-Induced Selective Deposition of Au Nanoparticles on Single-Wall Carbon Nanotubes. ACS Nano, 2010, 4, 6105-6113.	14.6	32
33	Antifungal Nanoparticles and Surfaces. Biomacromolecules, 2010, 11, 2810-2817.	5.4	75
34	The alluring potential of functionalized carbon nanotubes in drug discovery. Expert Opinion on Drug Discovery, 2010, 5, 691-707.	5.0	53
35	Dispersion of multi-walled carbon nanotubes in an aqueous medium by water-dispersible conjugated polymer nanoparticles. Chemical Communications, 2010, 46, 6762.	4.1	39
36	Carbon Nanotubes Filled with Ferromagnetic Materials. Materials, 2010, 3, 4387-4427.	2.9	114
37	Effective Drug Delivery, <i>In Vitro</i> and <i>In Vivo</i> , by Carbon-Based Nanovectors Noncovalently Loaded with Unmodified Paclitaxel. ACS Nano, 2010, 4, 4621-4636.	14.6	85

#	Article	IF	CITATIONS
38	Stabilization of Aqueous Carbon Nanotube Dispersions Using Surfactants: Insights from Molecular Dynamics Simulations. ACS Nano, 2010, 4, 7193-7204.	14.6	93
39	Nonviral vectors for the delivery of small interfering RNAs to the CNS. Nanomedicine, 2010, 5, 1219-1236.	3.3	63
40	Efficient receptor-independent intracellular translocation of aptamers mediated by conjugation to carbon nanotubes. Chemical Communications, 2010, 46, 7379.	4.1	41
41	Structural characterization by confocal laser scanning microscopy and electrochemical study of multi-walled carbon nanotube tyrosinase matrix for phenol detection. Analyst, The, 2010, 135, 1918.	3.5	25
42	De Novo Synthesis and Cellular Uptake of Organic Nanocapsules with Tunable Surface Chemistry. Biomacromolecules, 2011, 12, 2327-2334.	5.4	52
43	Polarization-Controlled Differentiation of Human Neural Stem Cells Using Synergistic Cues from the Patterns of Carbon Nanotube Monolayer Coating. ACS Nano, 2011, 5, 4704-4711.	14.6	60
44	Oxidative biodegradation of single- and multi-walled carbon nanotubes. Nanoscale, 2011, 3, 893-896.	5.6	162
45	Carbon nanotube-mediated wireless cell permeabilization: drug and gene uptake. Nanomedicine, 2011, 6, 1709-1718.	3.3	31
46	Single-walled carbon nanohorns as drug carriers: adsorption of prednisolone and anti-inflammatory effects on arthritis. Nanotechnology, 2011, 22, 465102.	2.6	41
47	Nanoscale delivery systems for multiple drug combinations in cancer. Future Oncology, 2011, 7, 1347-1357.	2.4	12
48	Cytotoxic Assessment of Carbon Nanotube Interaction with Cell Cultures. Methods in Molecular Biology, 2011, 726, 299-312.	0.9	52
49	Mapping the Surface Adsorption Forces of Nanomaterials in Biological Systems. ACS Nano, 2011, 5, 9074-9081.	14.6	131
50	Magnetic carbon nanotubes with particle-free surfaces and high drug loading capacity. Nanotechnology, 2011, 22, 355602.	2.6	33
51	<i>In Vivo</i> Osseointegration of Nano-Designed Composite Coatings on Titanium Implants. ACS Nano, 2011, 5, 4790-4799.	14.6	81
52	Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale, 2011, 3, 2627.	5.6	110
53	Antifungal Activity of Amphotericin B Conjugated to Carbon Nanotubes. ACS Nano, 2011, 5, 199-208.	14.6	114
54	Quantum dots and carbon nanotubes in oncology: a review on emerging theranostic applications in nanomedicine. Nanomedicine, 2011, 6, 1101-1114.	3.3	106
55	Interactions of Carbon Nanotubes with the Immune System: Focus on Mechanisms of Internalization and Biodegradation. Else-Kröner-Fresenius-Symposia, 2011, , 80-87.	0.1	3

#	Article	IF	CITATIONS
56	Local Cancer Therapy with Magnetic Nanoparticles. Else-Kröner-Fresenius-Symposia, 2011, , 154-164.	0.1	2
57	A functionalized single-walled carbon nanotube-induced autophagic cell death in human lung cells through Akt–TSC2-mTOR signaling. Cell Death and Disease, 2011, 2, e159-e159.	6.3	168
58	Targeted killing of Leishmania donovani in vivo and in vitro with amphotericin B attached to functionalized carbon nanotubes. Journal of Antimicrobial Chemotherapy, 2011, 66, 874-879.	3.0	140
59	Dispersal State of Multiwalled Carbon Nanotubes Elicits Profibrogenic Cellular Responses That Correlate with Fibrogenesis Biomarkers and Fibrosis in the Murine Lung. ACS Nano, 2011, 5, 9772-9787.	14.6	178
60	Noncovalent assembly of carbon nanotube-inorganic hybrids. Journal of Materials Chemistry, 2011, 21, 7527.	6.7	74
61	Biomedical Nanotechnology. Methods in Molecular Biology, 2011, , .	0.9	10
62	Gold Nano-Popcorn Attached SWCNT Hybrid Nanomaterial for Targeted Diagnosis and Photothermal Therapy of Human Breast Cancer Cells. ACS Applied Materials & Interfaces, 2011, 3, 3316-3324.	8.0	110
63	Efficient synthesis of tailored magnetic carbon nanotubesvia a noncovalent chemical route. Nanoscale, 2011, 3, 668-673.	5.6	14
64	Nanomedicine(s) under the Microscope. Molecular Pharmaceutics, 2011, 8, 2101-2141.	4.6	815
65	Functionalized carbon nanotubes for anticancer drug delivery. Expert Review of Medical Devices, 2011, 8, 561-566.	2.8	60
66	Carbon Nanotubes Activate Store-Operated Calcium Entry in Human Blood Platelets. ACS Nano, 2011, 5, 5808-5813.	14.6	69
67	Non-covalent interactions between carbon nanotubes and conjugated polymers. Nanoscale, 2011, 3, 3545.	5.6	115
68	Cell entry of one-dimensional nanomaterials occurs by tip recognition and rotation. Nature Nanotechnology, 2011, 6, 714-719.	31.5	416
69	Emerging nanoproteomics approaches for disease biomarker detection: A current perspective. Journal of Proteomics, 2011, 74, 2660-2681.	2.4	63
70	A comparison of acute and long-term effects of industrial multiwalled carbon nanotubes on human lung and immune cells in vitro. Toxicology Letters, 2011, 200, 176-186.	0.8	143
71	Carbon Nanotubes. Progress in Molecular Biology and Translational Science, 2011, 104, 175-245.	1.7	52
72	PEG-Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead. Biomacromolecules, 2011, 12, 3381-3393.	5.4	194
73	Nano Delivers Big: Designing Molecular Missiles for Cancer Therapeutics. Pharmaceutics, 2011, 3, 34-52.	4.5	42

ATION RE

#	Article	IF	CITATIONS
74	<i>In Vivo</i> Pharmacokinetics, Long-Term Biodistribution, and Toxicology of PEGylated Graphene in Mice. ACS Nano, 2011, 5, 516-522.	14.6	774
76	Imaging and Biomedical Application of Magnetic Carbon Nanotubes. , 0, , .		4
77	Advances in cancer therapy through the use of carbon nanotube-mediated targeted hyperthermia. International Journal of Nanomedicine, 2011, 6, 1675.	6.7	69
78	Combining Portable Raman Probes with Nanotubes for Theranostic Applications. Theranostics, 2011, 1, 310-321.	10.0	35
79	Effective colon cancer prophylaxis in mice using embryonic stem cells and carbon nanotubes. International Journal of Nanomedicine, 2011, 6, 1945.	6.7	26
80	Microwave-assisted Functionalization of Carbon Nanostructured Materials. Current Organic Chemistry, 2011, 15, 1121-1132.	1.6	20
82	Evaluation of CNT toxicity by comparison to tattoo ink. Materials Today, 2011, 14, 434-440.	14.2	19
83	Synthesis and characterization of iron-filled multi-walled nanotubes. Materials Science-Poland, 2011, 29, 299-304.	1.0	5
84	Fabrication and characterization of recyclable carbon nanotube/polyvinyl butyral composite fiber. Composites Science and Technology, 2011, 71, 1665-1670.	7.8	26
85	Chemically attached gold nanoparticle–carbon nanotube hybrids for highly sensitive SERS substrate. Chemical Physics Letters, 2011, 512, 237-242.	2.6	30
86	Modular Engineering of H-Bonded Supramolecular Polymers for Reversible Functionalization of Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 15412-15424.	13.7	79
87	Photothermally Enhanced Photodynamic Therapy Delivered by Nano-Graphene Oxide. ACS Nano, 2011, 5, 7000-7009.	14.6	987
88	Water Boiling Inside Carbon Nanotubes: Toward Efficient Drug Release. ACS Nano, 2011, 5, 5647-5655.	14.6	108
89	Making carbon nanotubes biocompatible and biodegradable. Chemical Communications, 2011, 47, 10182.	4.1	323
90	Single-Walled Carbon Nanotubes Deliver Peptide Antigen into Dendritic Cells and Enhance IgG Responses to Tumor-Associated Antigens. ACS Nano, 2011, 5, 5300-5311.	14.6	188
91	Single-walled carbon nanotubes in biomedical imaging. Journal of Materials Chemistry, 2011, 21, 586-598.	6.7	139
92	Barriers to Non-Viral Vector-Mediated Gene Delivery in the Nervous System. Pharmaceutical Research, 2011, 28, 1843-1858.	3.5	157
94	Optimization of surface chemistry on single-walled carbon nanotubes for in vivo photothermal ablation of tumors. Biomaterials, 2011, 32, 144-151.	11.4	391

#	ARTICLE	IF	CITATIONS
95	Carbon nanotube oupled cell adhesion peptides are nonâ€immunogenic: a promising step toward new biomedical devices. Journal of Peptide Science, 2011, 17, 139-142.	1.4	18
96	Ballâ€Milling Modification of Singleâ€Walled Carbon Nanotubes: Purification, Cutting, and Functionalization. Small, 2011, 7, 665-674.	10.0	60
97	Antibody Covalent Immobilization on Carbon Nanotubes and Assessment of Antigen Binding. Small, 2011, 7, 2179-2187.	10.0	40
98	Mitochondriaâ€Targeting Singleâ€Walled Carbon Nanotubes for Cancer Photothermal Therapy. Small, 2011, 7, 2727-2735.	10.0	145
99	Cellular Uptake and Cytotoxic Impact of Chemically Functionalized and Polymerâ€Coated Carbon Nanotubes. Small, 2011, 7, 3230-3238.	10.0	84
100	Cancer Nanotheranostics: Improving Imaging and Therapy by Targeted Delivery Across Biological Barriers. Advanced Materials, 2011, 23, H217-47.	21.0	432
102	Hyaluronan–Carbon Nanotube Derivatives: Synthesis, Conjugation with Model Drugs, and DOSY NMR Characterization. European Journal of Organic Chemistry, 2011, 2011, 5617-5625.	2.4	12
103	A Brief Summary of Carbon Nanotubes Science and Technology: A Health and Safety Perspective. ChemSusChem, 2011, 4, 905-911.	6.8	37
104	Surface Chemistry in the Process of Coating Mesoporous SiO ₂ onto Carbon Nanotubes Driven by the Formation of SiOC Bonds. Chemistry - A European Journal, 2011, 17, 3228-3237.	3.3	50
105	Oneâ€Pot Triple Functionalization of Carbon Nanotubes. Chemistry - A European Journal, 2011, 17, 3222-3227.	3.3	52
106	Folate and iron difunctionalized multiwall carbon nanotubes as dual-targeted drug nanocarrier to cancer cells. Carbon, 2011, 49, 1797-1805.	10.3	135
107	A theoretical analysis of frictional and defect characteristics of graphene probed by a capped single-walled carbon nanotube. Carbon, 2011, 49, 3687-3697.	10.3	71
108	Determinants of the thrombogenic potential of multiwalled carbon nanotubes. Biomaterials, 2011, 32, 5970-5978.	11.4	68
109	Structural and proactive safety aspects of oxidation debris from multiwalled carbon nanotubes. Journal of Hazardous Materials, 2011, 189, 391-396.	12.4	57
110	Understanding the interaction of multi-walled carbon nanotubes with mutagenic organic pollutants using computational modeling and biological experiments. TrAC - Trends in Analytical Chemistry, 2011, 30, 437-446.	11.4	23
111	Nanotechniques and Proteomics: An Integrated Platform for Diagnostics,Targeted Therapeutics and Personalized Medicine. Current Pharmacogenomics and Personalized Medicine, 2011, 9, 264-285.	0.2	2
112	Development of iron-containing multiwalled carbon nanotubes for MR-guided laser-induced thermotherapy. Nanomedicine, 2011, 6, 1341-1352.	3.3	38
113	Unveiling Stability Criteria of DNA-Carbon Nanotubes Constructs by Scanning Tunneling Microscopy and Computational Modeling. Journal of Drug Delivery, 2011, 2011, 1-9.	2.5	15

#	Article	IF	CITATIONS
114	Diameter and rigidity of multiwalled carbon nanotubes are critical factors in mesothelial injury and carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E1330-8.	7.1	437
115	Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10952-10957.	7.1	217
116	Toxicity and regulatory perspectives of carbon nanotubes. , 2011, , 621-653.		3
117	Statement of Retraction. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 129-129.	2.3	24
118	<i>Ex vivo</i> impact of functionalized carbon nanotubes on human immune cells. Nanomedicine, 2012, 7, 231-243.	3.3	71
119	Self-assembling nanoparticles for the release of bisphosphonates in the treatment of human cancers [WO2012042024]. Expert Opinion on Therapeutic Patents, 2012, 22, 1367-1375.	5.0	4
120	Electrophoretic Methods to Quantify Carbon Nanotubes in Biological Cells. World Scientific Series on Carbon Nanoscience, 2012, , 83-106.	0.1	4
121	Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications. Nanotechnology Reviews, 2012, 1, 17-29.	5.8	33
122	Functionalized multiwalled carbon nanotubes as ultrasound contrast agents. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16612-16617.	7.1	139
123	Functionalized carbon nanotubes: biomedical applications. International Journal of Nanomedicine, 2012, 7, 5361.	6.7	293
124	PEGylated single-walled carbon nanotubes activate neutrophils to increase production of hypochlorous acid, the oxidant capable of degrading nanotubes. Toxicology and Applied Pharmacology, 2012, 264, 131-142.	2.8	52
125	Carbon Nanotubes: Solution for the Therapeutic Delivery of siRNA?. Materials, 2012, 5, 278-301.	2.9	49
126	"Targeting―nanoparticles: The constraints of physical laws and physical barriers. Journal of Controlled Release, 2012, 164, 115-124.	9.9	164
127	Photodynamic and Photothermal Effects of Semiconducting and Metallic-Enriched Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2012, 134, 17862-17865.	13.7	163
128	Building an Ethical Foundation for First-in-Human Nanotrials. Journal of Law, Medicine and Ethics, 2012, 40, 802-808.	0.9	17
129	Quantifying the influence of polymer coatings on the serum albumin corona formation around silver and gold nanoparticles. Journal of Nanoparticle Research, 2012, 14, 1.	1.9	49
130	Minimally invasive cancer therapy using polyhydroxy fullerenes. European Journal of Radiology, 2012, 81, S51-S53.	2.6	12
131	Photo-controlled release of zinc metal ions by spiropyran receptors anchored to single-walled carbon nanotubes. Physical Chemistry Chemical Physics. 2012. 14. 6034.	2.8	26

	Сіт	ation Report	
#	Article	IF	CITATIONS
132	Quantum dot enabled thermal imaging of optofluidic devices. Lab on A Chip, 2012, 12, 2414.	6.0	27
133	Embedded Single-Walled Carbon Nanotubes Locally Perturb DOPC Phospholipid Bilayers. Journal of Physical Chemistry B, 2012, 116, 12769-12782.	2.6	18
134	Applications and Nanotoxicity of Carbon Nanotubes and Graphene in Biomedicine. Journal of Nanomaterials, 2012, 2012, 1-19.	2.7	125
135	Treatment of Acute Thromboembolism in Mice Using Heparin-Conjugated Carbon Nanocapsules. ACS Nano, 2012, 6, 6099-6107.	14.6	18
136	Gold Nanorods for Ovarian Cancer Detection with Photoacoustic Imaging and Resection Guidance <i>via</i> Raman Imaging in Living Mice. ACS Nano, 2012, 6, 10366-10377.	14.6	357
137	Nonionic, Water Self-Dispersible "Hairy-Rod―Poly(<i>p</i> -phenylene)- <i>g</i> -poly(ethylene glyc Copolymer/Carbon Nanotube Conjugates for Targeted Cell Imaging. Biomacromolecules, 2012, 13, 2680-2691.	ol) 5.4	31
138	Cell Cycle Regulation by Carboxylated Multiwalled Carbon Nanotubes through p53-Independent Induction of p21 under the Control of the BMP Signaling Pathway. Chemical Research in Toxicology, 2012, 25, 1212-1221.	3.3	20
139	Diagnostic applications of Raman spectroscopy. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 545-558.	3.3	171
140	Cooperative deformation of carboxyl groups in functionalized carbon nanotubes. International Journal of Solids and Structures, 2012, 49, 2418-2423.	2.7	14
141	Open and capped (5,5) armchair SWCNTs: A comparative study of DFT-based reactivity descriptors. Chemical Physics Letters, 2012, 541, 85-91.	2.6	46
142	Recent progress and perspectives on the toxicity of carbon nanotubes at organism, organ, cell, and biomacromolecule levels. Environment International, 2012, 40, 244-255.	10.0	229
143	Trojan-Horse Nanotube On-Command Intracellular Drug Delivery. Nano Letters, 2012, 12, 5475-5480.	9.1	89
144	Pulmonary surfactant coating of multi-walled carbon nanotubes (MWCNTs) influences their oxidative and pro-inflammatory potential in vitro. Particle and Fibre Toxicology, 2012, 9, 17.	6.2	76
145	Molecular Perspective on Diazonium Adsorption for Controllable Functionalization of Single-Walled Carbon Nanotubes in Aqueous Surfactant Solutions. Journal of the American Chemical Society, 2012, 134, 8194-8204.	13.7	29
146	Self assembly of bivalent glycolipids on single walled carbon nanotubes and their specific molecular recognition properties. RSC Advances, 2012, 2, 1329.	3.6	11
147	Carbon Nanomaterials: From Therapeutics to Regenerative Medicine. Journal of Nanomedicine & Biotherapeutic Discovery, 2012, 02, .	0.6	3
148	Modified carbon nanotubes: from nanomedicine to nanotoxicology. Proceedings of SPIE, 2012, , .	0.8	0
149	Nanocarriers as Nanomedicines. Frontiers of Nanoscience, 2012, 4, 337-440.	0.6	14

#	Article	IF	CITATIONS
150	Nano-Carbons as Theranostics. Theranostics, 2012, 2, 235-237.	10.0	121
151	Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity. Journal of Materials Chemistry, 2012, 22, 903-908.	6.7	91
154	A Solution to the PEG Dilemma: Efficient Bioconjugation of Large Gold Nanoparticles for Biodiagnostic Applications using Mixed Layers. Langmuir, 2012, 28, 15634-15642.	3.5	43
155	Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. International Journal of Nanomedicine, 2012, 7, 5901.	6.7	665
156	Investigating the relationship between nanomaterial hazard and physicochemical properties: Informing the exploitation of nanomaterials within therapeutic and diagnostic applications. Journal of Controlled Release, 2012, 164, 307-313.	9.9	61
157	Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treatment Reviews, 2012, 38, 566-579.	7.7	113
158	Multifunctional Branched Gold–Carbon Nanotube Hybrid for Cell Imaging and Drug Delivery. Langmuir, 2012, 28, 15900-15906.	3.5	71
159	Deriving TC50 Values of Nanoparticles from Electrochemical Monitoring of Lactate Dehydrogenase Activity Indirectly. Methods in Molecular Biology, 2012, 926, 113-130.	0.9	0
160	<i>In vivo</i> degradation of functionalized carbon nanotubes after stereotactic administration in the brain cortex. Nanomedicine, 2012, 7, 1485-1494.	3.3	104
162	Intercellular Carbon Nanotube Translocation Assessed by Flow Cytometry Imaging. Nano Letters, 2012, 12, 4830-4837.	9.1	39
163	The Use of Nanoparticles for Gene Therapy in the Nervous System. Journal of Alzheimer's Disease, 2012, 31, 697-710.	2.6	56
164	Therapeutic Applications. , 2012, , 285-313.		6
165	Cell Permeability, Migration, and Reactive Oxygen Species Induced by Multiwalled Carbon Nanotubes in Human Microvascular Endothelial Cells. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2012, 75, 112-128.	2.3	95
166	Role of Adsorbed Surfactant in the Reaction of Aryl Diazonium Salts with Single-Walled Carbon Nanotubes. Langmuir, 2012, 28, 1309-1321.	3.5	37
167	Biocompatibility and bone tissue compatibility of alumina ceramics reinforced with carbon nanotubes. Nanomedicine, 2012, 7, 981-993.	3.3	55
168	Subcellular Tracking of Drug Release from Carbon Nanotube Vehicles in Living Cells. Small, 2012, 8, 777-782.	10.0	52
169	Hemocompatibility and Macrophage Response of Pristine and Functionalized Graphene. Small, 2012, 8, 1251-1263.	10.0	314
170	Highly water soluble multi-layer graphene nanoribbons and related honey-comb carbon nanostructures. Chemical Communications, 2012, 48, 5602.	4.1	11

		LPOKI	
#	Article	IF	CITATIONS
171	Magnetic carbon nanostructures in medicine. Journal of Materials Chemistry, 2012, 22, 31-37.	6.7	33
172	Confinement by Carbon Nanotubes Drastically Alters the Boiling and Critical Behavior of Water Droplets. ACS Nano, 2012, 6, 2766-2773.	14.6	59
173	Targeting carbon nanotubes against cancer. Chemical Communications, 2012, 48, 3911.	4.1	248
174	Protamine Functionalized Singleâ€Walled Carbon Nanotubes for Stem Cell Labeling and In Vivo Raman/Magnetic Resonance/Photoacoustic Tripleâ€Modal Imaging. Advanced Functional Materials, 2012, 22, 2363-2375.	14.9	119
175	Hexahistidineâ€Tagged Singleâ€Walled Carbon Nanotubes (His ₆ â€ŧagSWNTs): A Multifunctional Hard Template for Hierarchical Directed Selfâ€Assembly and Nanocomposite Construction. Advanced Functional Materials, 2012, 22, 4009-4015.	14.9	9
176	Carbon Nanotubes Induce Bone Calcification by Bidirectional Interaction with Osteoblasts. Advanced Materials, 2012, 24, 2176-2185.	21.0	63
177	Hybrid Nanoparticles for Detection and Treatment of Cancer. Advanced Materials, 2012, 24, 3779-3802.	21.0	406
178	Probing the Structure of Lysozyme–Carbonâ€Nanotube Hybrids with Molecular Dynamics. Chemistry - A European Journal, 2012, 18, 4308-4313.	3.3	84
179	Saccharideâ€Modified Nanodiamond Conjugates for the Efficient Detection and Removal of Pathogenic Bacteria. Chemistry - A European Journal, 2012, 18, 6485-6492.	3.3	91
180	"Click―on Tubes: a Versatile Approach towards Multimodal Functionalization of SWCNTs. Chemistry - A European Journal, 2012, 18, 8454-8463.	3.3	32
181	Functionalized singleâ€walled carbon nanotubes containing traces of iron as new negative MRI contrast agents for <i>in vivo</i> imaging. Contrast Media and Molecular Imaging, 2012, 7, 153-159.	0.8	35
182	Noncovalent interactions between linear-dendritic copolymers and carbon nanotubes lead to liposome-like nanocapsules. Journal of Materials Chemistry, 2012, 22, 6947.	6.7	23
183	Application of carbon nanotubes in neurology: clinical perspectives and toxicological risks. Archives of Toxicology, 2012, 86, 1009-1020.	4.2	50
184	Upscaling potential of the CVD stacking growth method to produce dimensionally-controlled and catalyst-free multi-walled carbon nanotubes. Carbon, 2012, 50, 3585-3606.	10.3	15
185	Synthesis, dispersion, and cytocompatibility of graphene oxide and reduced graphene oxide. Colloids and Surfaces B: Biointerfaces, 2012, 89, 79-85.	5.0	354
186	Targeted therapy of SMMC-7721 liver cancer in vitro and in vivo with carbon nanotubes based drug delivery system. Journal of Colloid and Interface Science, 2012, 365, 143-149.	9.4	179
187	The cytotoxicity of cadmium-based quantum dots. Biomaterials, 2012, 33, 1238-1244.	11.4	602
188	Single walled carbon nanotubes as drug delivery vehicles: Targeting doxorubicin to tumors. Biomaterials, 2012, 33, 1689-1698.	11.4	301

#	Article	IF	CITATIONS
189	Antitumor immunologically modified carbon nanotubes for photothermal therapy. Biomaterials, 2012, 33, 3235-3242.	11.4	183
190	Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials, 2012, 33, 3334-3343.	11.4	224
191	Stepwise molecular display utilizing icosahedral and helical complexes of phage coat and decoration proteins in the development of robust nanoscale display vehicles. Biomaterials, 2012, 33, 5628-5637.	11.4	35
192	The journey of a drug-carrier in the body: An anatomo-physiological perspective. Journal of Controlled Release, 2012, 161, 152-163.	9.9	568
193	Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution. Journal of Controlled Release, 2012, 158, 148-155.	9.9	177
194	Differences and similarities between carbon nanotubes and asbestos fibers during mesothelial carcinogenesis: Shedding light on fiber entry mechanism. Cancer Science, 2012, 103, 1378-1390.	3.9	78
195	Lung deposition and toxicological responses evoked by multi-walled carbon nanotubes dispersed in a synthetic lung surfactant in the mouse. Archives of Toxicology, 2012, 86, 137-149.	4.2	36
196	Tunable Nanostructures as Photothermal Theranostic Agents. Annals of Biomedical Engineering, 2012, 40, 438-459.	2.5	107
197	Immobilization of Enzymes and Cells. Methods in Molecular Biology, 2013, , .	0.9	54
198	Design and Characterization of Functional Nanoparticles for Enhanced Bio-performance. Methods in Molecular Biology, 2013, 1051, 165-207.	0.9	1
199	Carbon nanotubes in hyperthermia therapy. Advanced Drug Delivery Reviews, 2013, 65, 2045-2060.	13.7	194
200	Influence of geometric nanoparticle rotation on cellular internalization process. Nanoscale, 2013, 5, 7998.	5.6	37
201	Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Advanced Drug Delivery Reviews, 2013, 65, 1899-1920.	13.7	206
202	Photothermally enhanced drug release by \hat{I}^2 -carrageenan hydrogels reinforced with multi-walled carbon nanotubes. RSC Advances, 2013, 3, 10828.	3.6	50
203	Advancing musculoskeletal research with nanoscience. Nature Reviews Rheumatology, 2013, 9, 614-623.	8.0	17
204	Structural and Dynamic Properties of Monoclonal Antibodies Immobilized on CNTs: A Computational Study. Chemistry - A European Journal, 2013, 19, 12281-12293.	3.3	24
205	Nanostructure-induced DNA condensation. Nanoscale, 2013, 5, 8288.	5.6	48
206	Multifunctional Polymer oated Carbon Nanotubes for Safe Drug Delivery. Particle and Particle Systems Characterization, 2013, 30, 365-373.	2.3	56

~		<u> </u>	
CITA	ATION	I RF	PORT

#	Article	IF	CITATIONS
207	Nanoparticles for improving cancer diagnosis. Materials Science and Engineering Reports, 2013, 74, 35-69.	31.8	94
208	Design of gold nanoparticle and DNA oligomer conjugates for enhancement or suppression of in vitro gene expression. Biochip Journal, 2013, 7, 89-94.	4.9	4
209	High-Throughput Screening of One-Bead–One-Compound Peptide Libraries Using Intact Cells. ACS Combinatorial Science, 2013, 15, 393-400.	3.8	32
210	Carbon nanotubes as vaccine scaffolds. Advanced Drug Delivery Reviews, 2013, 65, 2016-2022.	13.7	62
211	Multiplexed Optical Detection of Plasma Porphyrins Using DNA Aptamer-Functionalized Carbon Nanotubes. Analytical Chemistry, 2013, 85, 8391-8396.	6.5	22
212	Additive manufacturing (AM) and nanotechnology: promises and challenges. Rapid Prototyping Journal, 2013, 19, 353-364.	3.2	358
213	Molecular imaging with surface-enhanced Raman spectroscopy nanoparticle reporters. MRS Bulletin, 2013, 38, 625-630.	3.5	13
214	Carbon nanotubes for delivery of small molecule drugs. Advanced Drug Delivery Reviews, 2013, 65, 1964-2015.	13.7	498
216	Self-Assembled Carbon Nanotube Honeycomb Networks Using a Butterfly Wing Template as a Multifunctional Nanobiohybrid. ACS Nano, 2013, 7, 8736-8742.	14.6	40
217	Folateâ€Conjugated PEG on Single Walled Carbon Nanotubes for Targeting Delivery of Doxorubicin to Cancer Cells. Macromolecular Bioscience, 2013, 13, 735-744.	4.1	63
218	How do functionalized carbon nanotubes land on, bind to and pierce through model and plasma membranes. Nanoscale, 2013, 5, 10242.	5.6	61
219	Broadâ€ S pectrum Antibacterial Activity of Carbon Nanotubes to Human Gut Bacteria. Small, 2013, 9, 2735-2746.	10.0	236
220	Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy. Scientific Reports, 2013, 3, 1998.	3.3	137
221	Monte Carlo study of electron-beam penetration and backscattering in multi-walled carbon nanotube materials: The effect of different scattering models. Journal of Applied Physics, 2013, 113, .	2.5	11
222	Carbon Nanotubes in Tissue Engineering. Topics in Current Chemistry, 2013, 348, 181-204.	4.0	28
223	Single-walled carbon nanotubes mediated targeted tamoxifen delivery system using aspargine-glycine-arginine peptide. Journal of Drug Targeting, 2013, 21, 809-821.	4.4	18
224	Immunomodulatory properties of multi-walled carbon nanotubes in peripheral blood mononuclear cells from healthy subjects and allergic patients. Toxicology Letters, 2013, 217, 91-101.	0.8	46
225	Chirality Dependence of the Absorption Cross Section of Carbon Nanotubes. Physical Review Letters, 2013, 111, 137402.	7.8	37

#	Article	IF	CITATIONS
226	When carbon nanotubes encounter the immune system: Desirable and undesirable effects. Advanced Drug Delivery Reviews, 2013, 65, 2120-2126.	13.7	60
227	Hemotoxicity of carbon nanotubes. Advanced Drug Delivery Reviews, 2013, 65, 2127-2134.	13.7	41
228	Pharmacology of carbon nanotubes: Toxicokinetics, excretion and tissue accumulation. Advanced Drug Delivery Reviews, 2013, 65, 2111-2119.	13.7	82
230	Carbon nanotubes for biomedical imaging: The recent advances. Advanced Drug Delivery Reviews, 2013, 65, 1951-1963.	13.7	301
231	Carbon nanotubes as a novel tool for vaccination against infectious diseases and cancer. Journal of Nanobiotechnology, 2013, 11, 30.	9.1	49
232	NanoCarbon 2011. Carbon Nanostructures, 2013, , .	0.1	3
233	Interaction of Pristine and Functionalized Carbon Nanotubes with Lipid Membranes. Journal of Physical Chemistry B, 2013, 117, 12113-12123.	2.6	66
234	Carbon nanotube-protein carriers enhance size-dependent self-adjuvant antibody response to haptens. Journal of Controlled Release, 2013, 170, 242-251.	9.9	42
235	Self-assembly of carbon nanotubes and antibodies on tumours for targeted amplified delivery. Nature Nanotechnology, 2013, 8, 763-771.	31.5	99
236	Bio-functionalization of multi-walled carbon nanotubes. Physical Chemistry Chemical Physics, 2013, 15, 17158.	2.8	9
237	Supramolecular Chemistry of Carbon Nanotubes at Interfaces: Toward Applications. Structure and Bonding, 2013, , 193-218.	1.0	0
238	Theoretical study of amino derivatives and anticancer platinum drug grafted on various carbon nanostructures. Journal of Chemical Physics, 2013, 139, 174704.	3.0	12
239	Applications of Carbon Nanotubes in Oncology. Carbon Nanostructures, 2013, , 77-96.	0.1	0
240	Azobenzene-based supramolecular polymers for processing MWCNTs. Nanoscale, 2013, 5, 634-645.	5.6	16
241	Can Controversial Nanotechnology Promise Drug Delivery?. Chemical Reviews, 2013, 113, 1686-1735.	47.7	181
242	Asbestosâ€like Pathogenicity of Long Carbon Nanotubes Alleviated by Chemical Functionalization. Angewandte Chemie - International Edition, 2013, 52, 2274-2278.	13.8	153
243	Safety Considerations for Graphene: Lessons Learnt from Carbon Nanotubes. Accounts of Chemical Research, 2013, 46, 692-701.	15.6	285
244	Functionalized single-walled carbon nanotubes cause reversible acute lung injury and induce fibrosis in mice. Journal of Molecular Medicine, 2013, 91, 117-128.	3.9	23

		CITATION R	EPORT	
#	Article		IF	CITATIONS
245	Nanomaterials for (Nano)medicine. ACS Medicinal Chemistry Letters, 2013, 4, 147-149	Э.	2.8	105
246	Design and applications of gold nanoparticle conjugates by exploiting biomolecule– interactions. Nanoscale, 2013, 5, 2589.	gold nanoparticle	5.6	71
247	Fabrication and characterization of CdSe conjugated magnetic carbon nanotubes: A pr targeted and visualized drug delivery. Comptes Rendus Chimie, 2013, 16, 296-301.	°omise of	0.5	5
248	Uptake and intracellular distribution of collagen-functionalized single-walled carbon na Biomaterials, 2013, 34, 2472-2479.	notubes.	11.4	55
249	Carbon Nanotubes: Synthesis, Structure, Functionalization, and Characterization. Topi Chemistry, 2013, 350, 65-109.	cs in Current	4.0	10
250	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that I Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	Facilitate	47.7	1,173
251	Fused Porphyrin–Single-Walled Carbon Nanotube Hybrids: Efficient Formation and P Characterization. ACS Nano, 2013, 7, 3466-3475.	hotophysical	14.6	67
252	Endowing carbon nanotubes with superparamagnetic properties: applications for cell l cell tracking and magnetic manipulations. Nanoscale, 2013, 5, 4412.	abeling, MRI	5.6	57
253	Surface Charge and Cellular Processing of Covalently Functionalized Multiwall Carbon Determine Pulmonary Toxicity. ACS Nano, 2013, 7, 2352-2368.	Nanotubes	14.6	265
254	Carbon nanotubes in cancer therapy: a more precise look at the role of carbon nanotul interactions. Chemical Society Reviews, 2013, 42, 5231.	pe–polymer	38.1	129
255	Preparation of hybrid nanomaterials by supramolecular interactions between dendritic carbon nanotubes. Polymer Chemistry, 2013, 4, 669-674.	polymers and	3.9	25
256	Stable aqueous colloidal solutions of intact surfactant-free graphene nanoribbons and graphitic nanostructures. Chemical Communications, 2013, 49, 2613.	related	4.1	15
257	Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticle aspirin. Powder Technology, 2013, 236, 157-163.	s for delivery of	4.2	48
258	Graphene: Safe or Toxic? The Two Faces of the Medal. Angewandte Chemie - Internatic 52, 4986-4997.	nal Edition, 2013,	13.8	507
259	Photoluminescence microscopy and spectroscopy of individualized and aggregated sir nanotubes. Chemical Physics, 2013, 413, 112-115.	ıgle-wall carbon	1.9	15
260	Thermostable Luciferase from <i>Luciola cruciate</i> for Imaging of Carbon Nanotube Nanotubes Carrying Doxorubicin Using in Vivo Imaging System. Nano Letters, 2013, 1	s and Carbon 3, 1393-1398.	9.1	32
261	Functionalized Feâ€Filled Multiwalled Carbon Nanotubes as Multifunctional Scaffolds Magnetization of Cancer Cells. Advanced Functional Materials, 2013, 23, 3173-3184.	for	14.9	58
262	Nanobiotechnology meets plant cell biology: carbon nanotubes as organelle targeting RSC Advances, 2013, 3, 4856.	nanocarriers.	3.6	82

#	Article	IF	CITATIONS
263	Carbon nanostructures as multi-functional drug delivery platforms. Journal of Materials Chemistry B, 2013, 1, 401-428.	5.8	186
265	Double Functionalization of Carbon Nanotubes with Purine and Pyrimidine Derivatives. Chemistry - an Asian Journal, 2013, 8, 1472-1481.	3.3	15
266	Nanoparticle Interaction with Plasma Proteins as It Relates to Biodistribution. Frontiers in Nanobiomedical Research, 2013, , 151-172.	0.1	4
267	Biotemplated multichannel mesoporous bioactive glass microtubes as a drug carrier. Ceramics International, 2013, 39, 8521-8526.	4.8	8
268	PEGylated Single-Walled Carbon Nanotubes as Nanocarriers for Cyclosporin A Delivery. AAPS PharmSciTech, 2013, 14, 593-600.	3.3	28
269	High-resolution, serial intravital microscopic imaging of nanoparticle delivery and targeting in a small animal tumor model. Nano Today, 2013, 8, 126-137.	11.9	53
271	First-principles vdW-DF investigation on the interaction between the oxazepam molecule and C60 fullerene. Journal of Molecular Modeling, 2013, 19, 1929-1936.	1.8	17
272	Single-Walled Carbon Nanotubes Do Not Pierce Aqueous Phospholipid Bilayers at Low Salt Concentration. Journal of Physical Chemistry B, 2013, 117, 6749-6758.	2.6	9
273	Membrane Perturbation by Carbon Nanotube Insertion: Pathways to Internalization. Small, 2013, 9, 3639-3646.	10.0	64
275	A facile one-pot route to poly(carboxybetaine acrylamide) functionalized SWCNTs. Chemical Communications, 2013, 49, 6734.	4.1	17
276	The Devil and Holy Water: Protein and Carbon Nanotube Hybrids. Accounts of Chemical Research, 2013, 46, 2454-2463.	15.6	136
277	Surface Topography Effects in Protein Adsorption on Nanostructured Carbon Allotropes. Langmuir, 2013, 29, 4883-4893.	3.5	75
278	Albumin reduces thrombogenic potential of single-walled carbon nanotubes. Toxicology Letters, 2013, 221, 137-145.	0.8	25
279	Functionalizing Carbon Nanotubes: An Indispensible Step towards Applications. ECS Journal of Solid State Science and Technology, 2013, 2, M3040-M3045.	1.8	29
280	Carbon Nanotube Scaffolds Instruct Human Dendritic Cells: Modulating Immune Responses by Contacts at the Nanoscale. Nano Letters, 2013, 13, 6098-6105.	9.1	54
281	Carbon nanotubes functionalized with fibroblast growth factor accelerate proliferation of bone marrow-derived stromal cells and bone formation. Nanotechnology, 2013, 24, 435101.	2.6	35
282	Protective Roles of Singleâ€Wall Carbon Nanotubes in Ultrasonicationâ€Induced DNA Base Damage. Small, 2013, 9, 205-208.	10.0	32
283	Preparation of Magnetic Carbon Nanotubes (Mag-CNTs) for Biomedical and Biotechnological Applications. International Journal of Molecular Sciences, 2013, 14, 24619-24642.	4.1	88

#	Article	IF	Citations
284	Materials for implantable systems. , 2013, , 3-38.		6
285	Intraperitoneal administration of tangled multiwalled carbon nanotubes of 15 nm in diameter does not induce mesothelial carcinogenesis in rats. Pathology International, 2013, 63, 457-462.	1.3	47
286	Long-term biopersistence of tangled oxidized carbon nanotubes inside and outside macrophages in rat subcutaneous tissue. Scientific Reports, 2013, 3, 2516.	3.3	43
287	Localization and Relative Quantification of Carbon Nanotubes in Cells with Multispectral Imaging Flow Cytometry. Journal of Visualized Experiments, 2013, , e50566.	0.3	9
288	Photothermal effects of immunologically modified carbon nanotubes. Proceedings of SPIE, 2013, , .	0.8	0
289	Photoacoustic Imaging for Cancer Detection and Staging. Current Molecular Imaging, 2013, 2, 89-105.	0.7	197
290	Nanomaterials in the application of tumor vaccines: advantages and disadvantages. OncoTargets and Therapy, 2013, 6, 629.	2.0	10
291	Accelerated killing of cancer cells using a multifunctional single-walled carbon nanotube-based system for targeted drug delivery in combination with photothermal therapy. International Journal of Nanomedicine, 2013, 8, 2653.	6.7	61
293	Magnetic single-walled carbon nanotubes as efficient drug delivery nanocarriers in breast cancer murine model: noninvasive monitoring using diffusion-weighted magnetic resonance imaging as sensitive imaging biomarker. International Journal of Nanomedicine, 2015, 10, 157.	6.7	82
294	Immunomodulation of Nanoparticles in Nanomedicine Applications. BioMed Research International, 2014, 2014, 1-19.	1.9	82
295	Stealth nanotubes: strategies of shielding carbon nanotubes to evade opsonization and improve biodistribution. International Journal of Nanomedicine, 2014, 9 Suppl 1, 85.	6.7	15
296	Cognitive deficits and decreased locomotor activity induced by single-walled carbon nanotubes and neuroprotective effects of ascorbic acid. International Journal of Nanomedicine, 2014, 9, 823.	6.7	38
297	Mesoscopic modeling of cancer photothermal therapy using single-walled carbon nanotubes and near infrared radiation: insights through an off-lattice Monte Carlo approach. Nanotechnology, 2014, 25, 205101.	2.6	24
299	Nanoinformatics: Emerging Databases and Available Tools. International Journal of Molecular Sciences, 2014, 15, 7158-7182.	4.1	67
300	Mechanistic studies of systemic immune responses induced by laser-nanotechnology. , 2014, , .		0
301	Interaction Between Silicon–Carbide Nanotube and Cholesterol Domain. A Molecular Dynamics Simulation Study Journal of Physical Chemistry C, 2014, 118, 30115-30119.	3.1	16
302	Carbon nanomaterials as new tools for immunotherapeutic applications. Journal of Materials Chemistry B, 2014, 2, 6144-6156.	5.8	39
303	Immunological Responses Triggered by Photothermal Therapy with Carbon Nanotubes in Combination with Antiâ€CTLAâ€4 Therapy to Inhibit Cancer Metastasis. Advanced Materials, 2014, 26, 8154-8162.	21.0	485

		CITATION R	EPORT	
#	Article		IF	Citations
304	Inflammasome activation in airway epithelial cells after multi-walled carbon nanotube e mediates a profibrotic response in lung fibroblasts. Particle and Fibre Toxicology, 2014,	xposure 11, 28.	6.2	109
305	Synthetic nanowire/nanotube-based solid substrates for controlled cell growth. Nano C 2014, 1, .	onvergence,	12.1	10
306	Gold nanorods combine photoacoustic and Raman imaging for detection and treatmen cancer. , 2014, , .	t of ovarian		1
307	Special antitumor immune effects of laser immunotherapy with SWNT-GC. Proceedings	s of SPIE, 2014, , .	0.8	0
308	Silicon-Based Platform for Biosensing Applications. Springer Briefs in Molecular Science	, 2014, , 39-59.	0.1	2
309	Toxicity of carboxylated carbon nanotubes in endothelial cells is attenuated by stimulat autophagic flux with the release of nanomaterial in autophagic vesicles. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, e939-e948.	ion of the	3.3	59
310	Application and Future Challenges of Functional Nanocarbon Hybrids. Advanced Materi 2295-2318.	als, 2014, 26,	21.0	290
312	Quantum dot conjugated S. cerevisiae as smart nanotoxicity indicators for screening th nanomaterials. Journal of Materials Chemistry B, 2014, 2, 3618-3625.	ne toxicity of	5.8	6
313	Safe Clinical Use of Carbon Nanotubes as Innovative Biomaterials. Chemical Reviews, 2 6040-6079.	014, 114,	47.7	207
314	Predicting the size-dependent tissue accumulation of agents released from vascular tar nanoconstructs. Computational Mechanics, 2014, 53, 437-447.	geted	4.0	0
315	Exposure to multi-walled carbon nanotubes results in aggravation of airway inflammatic remodeling and in increased production of epithelium-derived innate cytokines in a mor asthma. Archives of Toxicology, 2014, 88, 489-499.	on and use model of	4.2	45
316	In vivo translocation and toxicity of multi-walled carbon nanotubes are regulated by mic Nanoscale, 2014, 6, 4275.	croRNAs.	5.6	66
317	Colloidal RBCâ€Shaped, Hydrophilic, and Hollow Mesoporous Carbon Nanocapsules for Biomedical Engineering. Advanced Materials, 2014, 26, 4294-4301.	· Highly Efficient	21.0	196
318	Synchrotron-based X-ray microscopic studies for bioeffects of nanomaterials. Nanomec Nanotechnology, Biology, and Medicine, 2014, 10, 515-524.	licine:	3.3	38
319	Immunotherapy applications of carbon nanotubes: from design to safe applications. Tre Biotechnology, 2014, 32, 198-209.	ends in	9.3	60
320	Tunable Epoxidation of Singleâ€Walled Carbon Nanotubes by Isolated Methyl(trifluoromethyl)dioxirane. European Journal of Organic Chemistry, 2014, 2014,	1666-1671.	2.4	23
321	Delivery of nitric oxide to the interior of mammalian cell by carbon nanotube: MD simul Archives of Biochemistry and Biophysics, 2014, 554, 6-10.	ation.	3.0	8
322	Therapeutic applications of low-toxicity spherical nanocarbon materials. NPG Asia Mate e84-e84.	rials, 2014, 6,	7.9	83

#	Article	IF	CITATIONS
323	Golden Single-Walled Carbon Nanotubes Prepared Using Double Layer Polysaccharides Bridge for Photothermal Therapy. ACS Applied Materials & Interfaces, 2014, 6, 4989-4996.	8.0	44
324	Biodistribution of PEGylated graphene oxide nanoribbons and their application in cancer chemo-photothermal therapy. Carbon, 2014, 74, 83-95.	10.3	69
325	Phenanthroline-functionalized MWCNTs as versatile platform for lanthanides complexation. Carbon, 2014, 70, 22-29.	10.3	1
326	Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chemical Society Reviews, 2014, 43, 744-764.	38.1	1,014
327	Nanotechnologies for Noninvasive Measurement of Drug Release. Molecular Pharmaceutics, 2014, 11, 24-39.	4.6	43
328	A review of ligand tethered surface engineered carbon nanotubes. Biomaterials, 2014, 35, 1267-1283.	11.4	145
329	Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes. Nanoscale, 2014, 6, 1552-1559.	5.6	16
330	Probing mechanical principles of cell–nanomaterial interactions. Journal of the Mechanics and Physics of Solids, 2014, 62, 312-339.	4.8	61
331	Impact of Protein Modification on the Protein Corona on Nanoparticles and Nanoparticle–Cell Interactions. ACS Nano, 2014, 8, 503-513.	14.6	347
332	Quantum study of boron nitride nanotubes functionalized with anticancer molecules. Physical Chemistry Chemical Physics, 2014, 16, 18425-18432.	2.8	54
333	Multifunctional carbon nanotubes in water treatment: The present, past and future. Desalination, 2014, 354, 160-179.	8.2	210
334	Endohedral confinement of a DNA dodecamer onto pristine carbon nanotubes and the stability of the canonical B form. Journal of Chemical Physics, 2014, 140, 225103.	3.0	17
335	Facile Synthesis of Highly Stable and Water-Soluble Magnetic MWCNT/α-Fe Nanocomposites. Journal of Physical Chemistry C, 2014, 118, 27861-27869.	3.1	8
336	Covalent Functionalization of Multiâ€walled Carbon Nanotubes with a Gadolinium Chelate for Efficient <i>T</i> ₁ â€Weighted Magnetic Resonance Imaging. Advanced Functional Materials, 2014, 24, 7173-7186.	14.9	31
337	Dispersion of single-walled carbon nanotubes into aqueous solutions using Poh's cyclotetrachromo-tropylene (CTCT). RSC Advances, 2014, 4, 31614-31617.	3.6	9
338	Off-Lattice Monte Carlo Simulation of Heat Transfer through Carbon Nanotube Multiphase Systems Taking into Account Thermal Boundary Resistances. Numerical Heat Transfer; Part A: Applications, 2014, 65, 1023-1043.	2.1	18
339	Experimental and theoretical studies on the mechanism for chemical oxidation of multiwalled carbon nanotubes. RSC Advances, 2014, 4, 28826-28831.	3.6	31
340	Immunomodulatory properties of carbon nanotubes are able to compensate immune function dysregulation caused by microgravity conditions. Nanoscale, 2014, 6, 9599-9603.	5.6	17

#	Article	IF	CITATIONS
341	Design of Covalently Functionalized Carbon Nanotubes Filled with Metal Oxide Nanoparticles for Imaging, Therapy, and Magnetic Manipulation. ACS Nano, 2014, 8, 11290-11304.	14.6	96
342	Free energy landscapes of the encapsulation mechanism of DNA nucleobases onto carbon nanotubes. RSC Advances, 2014, 4, 1310-1321.	3.6	15
343	A fluorescence–Raman dual-imaging platform based on complexes of conjugated polymers and carbon nanotubes. Nanoscale, 2014, 6, 1480-1489.	5.6	18
344	The relationship between the diameter of chemically-functionalized multi-walled carbon nanotubes and their organ biodistribution profiles inÂvivo. Biomaterials, 2014, 35, 9517-9528.	11.4	57
345	Drug-releasing implants: current progress, challenges and perspectives. Journal of Materials Chemistry B, 2014, 2, 6157-6182.	5.8	112
346	Instillation <i>versus</i> Inhalation of Multiwalled Carbon Nanotubes: Exposure-Related Health Effects, Clearance, and the Role of Particle Characteristics. ACS Nano, 2014, 8, 8911-8931.	14.6	64
347	Graphene devices for life. Nature Nanotechnology, 2014, 9, 744-745.	31.5	162
348	Convergence of Nanotechnology and Cancer Prevention: Are We There Yet?. Cancer Prevention Research, 2014, 7, 973-992.	1.5	11
349	Coating Mechanisms of Single-Walled Carbon Nanotube by Linear Polyether Surfactants: Insights from Computer Simulations. Journal of Physical Chemistry C, 2014, 118, 18069-18078.	3.1	14
350	A graphene quantum dot photodynamic therapy agent with high singlet oxygen generation. Nature Communications, 2014, 5, 4596.	12.8	1,141
352	Biological Application of Carbon Nanotubes and Graphene. , 2014, , 279-312.		10
354	Boron dipyrromethene (BODIPY) functionalized carbon nano-onions for high resolution cellular imaging. Nanoscale, 2014, 6, 13761-13769.	5.6	72
355	Impact of carbon nanotubes and graphene on immune cells. Journal of Translational Medicine, 2014, 12, 138.	4.4	104
356	C ₆₀ @Lysozyme: Direct Observation by Nuclear Magnetic Resonance of a 1:1 Fullerene Protein Adduct. ACS Nano, 2014, 8, 1871-1877.	14.6	70
357	Carbon Nanotube-Induced Loss of Multicellular Chirality on Micropatterned Substrate Is Mediated by Oxidative Stress. ACS Nano, 2014, 8, 2196-2205.	14.6	56
358	Carbon Nanotube Translocation to Distant Organs after Pulmonary Exposure: Insights fromin Situ14C-Radiolabeling and Tissue Radioimaging. ACS Nano, 2014, 8, 5715-5724.	14.6	81
359	Targeted Therapeutic Nanotubes Influence the Viscoelasticity of Cancer Cells to Overcome Drug Resistance. ACS Nano, 2014, 8, 4177-4189.	14.6	68
360	Targeted highly sensitive detection/eradication of multi-drug resistant Salmonella DT104 through gold nanoparticle–SWCNT bioconjugated nanohybrids. Analyst, The, 2014, 139, 3702-3705.	3.5	31

#	Article	IF	CITATIONS
361	Polymer-functionalized carbon nanotubes in cancer therapy: a review. Iranian Polymer Journal (English Edition), 2014, 23, 387-403.	2.4	26
362	Carbon and fullerene nanomaterials in plant system. Journal of Nanobiotechnology, 2014, 12, 16.	9.1	210
363	Ultrasmall Au _{10â^'12} (SG) _{10â^'12} Nanomolecules for High Tumor Specificity and Cancer Radiotherapy. Advanced Materials, 2014, 26, 4565-4568.	21.0	386
364	Pancreatic cancer gene therapy using an siRNA-functionalized single walled carbon nanotubes (SWNTs) nanoplex. Biomaterials Science, 2014, 2, 1244.	5.4	37
365	Functionalization of carbon nanotube by carboxyl group under radial deformation. Chemical Physics, 2014, 428, 117-120.	1.9	22
366	The inÂvitro and inÂvivo toxicity of graphene quantum dots. Biomaterials, 2014, 35, 5041-5048.	11.4	437
367	Chemical modification of multiwalled carbon nanotube with a bifunctional caged ligand for radioactive labelling. Acta Materialia, 2014, 64, 54-61.	7.9	13
368	MR imaging techniques for nano-pathophysiology and theranostics. Advanced Drug Delivery Reviews, 2014, 74, 75-94.	13.7	66
369	Fullerenes and Other Carbon-Rich Nanostructures. Structure and Bonding, 2014, , .	1.0	6
370	Carbon Nanostructures for Nanomedicine: Opportunities and Challenges. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 190-195.	2.1	36
371	Dose ranging, expanded acute toxicity and safety pharmacology studies for intravenously administered functionalized graphene nanoparticle formulations. Biomaterials, 2014, 35, 7022-7031.	11.4	115
372	Current approaches to enhance CNS delivery of drugs across the brain barriers. International Journal of Nanomedicine, 2014, 9, 2241.	6.7	246
373	Dialytic Separation of Bundled, Functionalized Carbon Nanotubes from Carbonaceous Impurities. Crystals, 2014, 4, 450-465.	2.2	1
374	Magnetic Nanoparticles for Drug Delivery. Frontiers in Nanobiomedical Research, 2014, , 595-620.	0.1	1
376	Novel MR imaging and theranostics using Nano-DDS. Drug Delivery System, 2015, 30, 47-53.	0.0	1
377	Highly Ordered 1D Fullerene Crystals for Concurrent Control of Macroscopic Cellular Orientation and Differentiation toward Largeâ€6cale Tissue Engineering. Advanced Materials, 2015, 27, 4020-4026.	21.0	119
378	Amalgamation of complex iron(III) ions and iron nanoclusters with MWCNTs as a route to potential T2 MRI contrast agents. International Journal of Nanomedicine, 2015, 10, 3581.	6.7	8
379	Recent Advancements in Carbon Nanofiber and Carbon Nanotube Applications in Drug Delivery and Tissue Engineering. Current Pharmaceutical Design, 2015, 21, 2037-2044.	1.9	34

#	Article	IF	CITATIONS
380	Nanodelivery Systems as New Tools for Immunostimulant or Vaccine Administration: Targeting the Fish Immune System. Biology, 2015, 4, 664-696.	2.8	53
381	Protein corona – from molecular adsorption to physiological complexity. Beilstein Journal of Nanotechnology, 2015, 6, 857-873.	2.8	108
382	Tunable Encapsulation Structure of Block Copolymer Coated Single-Walled Carbon Nanotubes in Aqueous Solution. Macromolecules, 2015, 48, 3475-3480.	4.8	13
383	Design of Cationic Multiwalled Carbon Nanotubes as Efficient siRNA Vectors for Lung Cancer Xenograft Eradication. Bioconjugate Chemistry, 2015, 26, 1370-1379.	3.6	58
384	Multi-scale Simulation of Carbon Nanotubes Interactions with Cell Membrane: DFT Calculations and Molecular Dynamic Simulation. , 2015, 11, 423-427.		8
385	Near-infrared light remote-controlled intracellular anti-cancer drug delivery using thermo/pH sensitive nanovehicle. Acta Biomaterialia, 2015, 17, 201-209.	8.3	145
386	Diameter-dependent release of a cisplatin pro-drug from small and large functionalized carbon nanotubes. Nanoscale, 2015, 7, 5383-5394.	5.6	39
387	Mass spectrometry imaging reveals the sub-organ distribution of carbon nanomaterials. Nature Nanotechnology, 2015, 10, 176-182.	31.5	164
388	Nanotechnology and Plant Sciences. , 2015, , .		79
389	A Heteroâ€Bifunctional Spacer for the Smart Engineering of Carbonâ€Based Nanostructures. ChemPlusChem, 2015, 80, 704-714.	2.8	10
390	Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discovery Today, 2015, 20, 750-759.	6.4	84
391	Carbon Nanotubes and Modern Nanoagriculture. , 2015, , 183-201.		14
392	Under the lens: carbon nanotube and protein interaction at the nanoscale. Chemical Communications, 2015, 51, 4347-4359.	4.1	90
393	Singleâ€walled carbon nanotubes as nearâ€infrared optical biosensors for life sciences and biomedicine. Biotechnology Journal, 2015, 10, 447-459.	3.5	79
394	Mechanisms of Colloidal Stabilization of Oxidized Nanocarbons in the Presence of Polymers: Obtaining Highly Stable Colloids in Physiological Media. Journal of Physical Chemistry C, 2015, 119, 18741-18752.	3.1	19
395	Mitochondria-acting hexokinase II peptides carried by short-length carbon nanotubes with increased cellular uptake, endosomal evasion, and enhanced bioactivity against cancer cells. Nanoscale, 2015, 7, 13907-13917.	5.6	15
396	Effect of multi-walled carbon nanotube additive on the microstructure and properties of pitch-derived carbon foams. Journal of Materials Science, 2015, 50, 7583-7590.	3.7	28
397	Multifunctional carbon nanomaterial hybrids for magnetic manipulation and targeting. Biochemical and Biophysical Research Communications, 2015, 468, 454-462.	2.1	39

ARTICLE IF CITATIONS # Mechanical, Tribological Properties and Surface Characteristics of Developed Polymeric Materials 398 0.2 6 Reinforced by CNTs. SAE International Journal of Fuels and Lubricants, 0, 8, 35-40. Theoretical study of the interaction between carbon nanotubes and carboplatin anticancer 399 2.7 molecules. Analýtical Methods, 2015, 7, 10145-10150. Properties of ultrathin cholesterol and phospholipid layers surrounding silicon-carbide nanotube: 400 3.0 9 MD simulations. Archives of Biochemistry and Biophysics, 2015, 580, 22-30. A dual wavelength-activatable gold nanorod complex for synergistic cancer treatment. Nanoscale, 2015, 7, 12096-12103. Structures of water molecules in carbon nanotubes under electric fields. Journal of Chemical 402 3.0 45 Physics, 2015, 142, 124701. Blocking the Passage: C₆₀ Geometrically Clogs K⁺ Channels. ACS Nano, 2015, 9, 4827-4834. 14.6 Payload drug vs. nanocarrier biodegradation by myeloperoxidase- and peroxynitrite-mediated 404 5.6 15 oxidations: pharmacokinetic implications. Nanoscale, 2015, 7, 8689-8694. Room-temperature phosphorescence logic gates developed from nucleic acid functionalized carbon 405 5.6 dots and graphene oxide. Nanoscale, 2015, 7, 8289-8293. 406 Radionuclide-labeled nanostructures for In Vivo imaging of cancer. Nano Convergence, 2015, 2, . 12.1 13 Eu³⁺:Y₂O₃@CNTsâ€"a rare earth filled carbon nanotube nanomaterial with low toxicity and good photoluminescence properties. RSC Advances, 2015, 5, 3.6 21634-21639. Photo-nano immunotherapy for metastatic breast cancer using synergistic single-walled carbon 408 0 nanotubes and glycated chitosan., 2015,,. Recent applications of carbon nanomaterials in fluorescence biosensing and bioimaging. Chemical 409 4.1 182 Communications, 2015, 51, 11346-11358. Nanoscopic Characterization of DNA within Hydrophobic Pores: Thermodynamics and Kinetics. 410 3.6 9 Biochemical Engineering Journal, 2015, 104, 41-47. Preferential magnetic targeting of carbon nanotubes to cancer sites: noninvasive tracking using MRI in a murine breast cancer model. Nanomedicine, 2015, 10, 931-948. 3.3 Co₉Se₈ Nanoplates as a New Theranostic Platform for Photoacoustic/Magnetic Resonance Dualâ€Modalâ€Imagingâ€Guided Chemoâ€Photothermal Combination 412 21.0 265 Therapy. Advanced Materials, 2015, 27, 3285-3291. Carbon nanotubes: Properties, biomedical applications, advantages and risks in patients and occupationally-exposed workers. International Journal of Immunopathology and Pharmacology, 2015, 59 28, 4-13. Theoretical demonstration of the potentiality of boron nitride nanotubes to encapsulate anticancer 414 2.8 25 molecule. Physical Chemistry Chemical Physics, 2015, 17, 30057-30064. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology, 2015, 9, 983-993.

CITAT	LON	DEDODT	
U.I.I.A	HON.	KEPORI	

#	Article	IF	CITATIONS
416	Polarisation dependence of the squash mode in the extreme low frequency vibrational region of single walled carbon nanotubes. Applied Physics Letters, 2015, 106, 201902.	3.3	7
417	Biotechnological promises of Fe-filled CNTs for cell shepherding and magnetic fluid hyperthermia applications. Nanoscale, 2015, 7, 20474-20488.	5.6	18
418	Targeting breast cancer with sugar-coated carbon nanotubes. Nanomedicine, 2015, 10, 2481-2497.	3.3	35
419	Comparative assessment of the in vitro toxicity of some functionalized carbon nanotubes and fullerenes. RSC Advances, 2015, 5, 68446-68453.	3.6	17
420	Nuclear molecular imaging with nanoparticles: radiochemistry, applications and translation. British Journal of Radiology, 2015, 88, 20150185.	2.2	27
421	Study of Biomolecules Imaging Using Molecular Dynamics Simulations. Nano, 2015, 10, 1550096.	1.0	3
422	Functionalized carbon nanotubes: revolution in brain delivery. Nanomedicine, 2015, 10, 2639-2642.	3.3	40
423	Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8337-8347.	5.8	12
424	Carbon nanotubes: potential medical applications and safety concerns. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 371-386.	6.1	61
425	Nanomaterials, Inflammation, and Tissue Engineering. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2015, 7, 355-370.	6.1	84
426	Carbon nanomaterials combined with metal nanoparticles for theranostic applications. British Journal of Pharmacology, 2015, 172, 975-991.	5.4	72
427	Fabrication of Graphene-isolated-Au-nanocrystal Nanostructures for Multimodal Cell Imaging and Photothermal-enhanced Chemotherapy. Scientific Reports, 2014, 4, 6093.	3.3	95
428	Nanotoxicology: Contemporary Issues and Future Directions. Advances in Delivery Science and Technology, 2015, , 733-781.	0.4	3
429	The winding road for carbon nanotubes in nanomedicine. Materials Today, 2015, 18, 12-19.	14.2	115
430	Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chemical Reviews, 2015, 115, 327-394.	47.7	1,063
431	Carbon nanomaterials: multi-functional agents for biomedical fluorescence and Raman imaging. Chemical Society Reviews, 2015, 44, 4672-4698.	38.1	220
432	Bio-mimetic Nanostructure Self-assembled from Au@Ag Heterogeneous Nanorods and Phage Fusion Proteins for Targeted Tumor Optical Detection and Photothermal Therapy. Scientific Reports, 2014, 4, 6808.	3.3	60
433	Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam. Scientific Reports, 2014, 4, 5106.	3.3	24

#	Article	IF	CITATIONS
434	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	5.6	2,452
435	Radiolabeling, whole-body single photon emission computed tomography/computed tomography imaging, and pharmacokinetics of carbon nanohorns in mice. International Journal of Nanomedicine, 2016, Volume 11, 3317-3330.	6.7	9
436	Defect density in multiwalled carbon nanotubes influences ovalbumin adsorption and promotes macrophage activation and CD4 ⁺ T-cell proliferation. International Journal of Nanomedicine, 2016, Volume 11, 4357-4371.	6.7	31
437	A dioxaborine cyanine dye as a photoluminescence probe for sensing carbon nanotubes. Beilstein Journal of Nanotechnology, 2016, 7, 1991-1999.	2.8	5
438	Theoretical investigations of interactions between boron nitride nanotubes and drugs. , 2016, , 59-77.		9
439	Targeting Pattern Recognition Receptors (PRRs) in Nano- Adjuvants: Current Perspectives. Current Bionanotechnology, 2016, 2, 47-59.	0.6	9
440	Diagnosis and Treatment of Neurological and Ischemic Disorders Employing Carbon Nanotube Technology. Journal of Nanomaterials, 2016, 2016, 1-19.	2.7	24
441	Multiwalled Carbon Nanotubes Inhibit Tumor Progression in a Mouse Model. Advanced Healthcare Materials, 2016, 5, 1080-1087.	7.6	30
442	Nanomaterials, Autophagy, and Lupus Disease. ChemMedChem, 2016, 11, 166-174.	3.2	9
444	DNA Walkerâ€Regulated Cancer Cell Growth Inhibition. ChemBioChem, 2016, 17, 1138-1141.	2.6	20
445	Ultra-low frequency Raman spectroscopy of SWNTs under high pressure. Proceedings of SPIE, 2016, , .	0.8	0
446	Tailoring folic acid and methotrexate-attributed quantum dots for integrated cancer cell imaging and therapy. AIP Conference Proceedings, 2016, , .	0.4	1
447	Physico-chemical properties based differential toxicity of graphene oxide/reduced graphene oxide in human lung cells mediated through oxidative stress. Scientific Reports, 2016, 6, 39548.	3.3	96
448	Ultrasonic Machining. , 2016, , 4290-4297.		2
449	Nanoparticles for brain-specific drug and genetic material delivery, imaging and diagnosis. Nanomedicine, 2016, 11, 833-849.	3.3	95
450	Can Carbon Nanotubes Deliver on Their Promise in Biology? Harnessing Unique Properties for Unparalleled Applications. ACS Central Science, 2016, 2, 190-200.	11.3	91
451	Dynamic bio-adhesion of polymer nanoparticles on MDCK epithelial cells and its impact on bio-membranes, endocytosis and paracytosis. Nanoscale, 2016, 8, 6129-6145.	5.6	8
452	Nanoparticle Interaction with Plasma Proteins as It Relates to Biodistribution. Frontiers in Nanobiomedical Research, 2016, , 1-22.	0.1	0

#	Article	IF	CITATIONS
453	Nanovectorization of DNA Through Cells Using Protamine Complexation. Journal of Membrane Biology, 2016, 249, 493-501.	2.1	5
454	Unique nanotubes from polynorbornene derived graphene sheets. RSC Advances, 2016, 6, 40691-40697.	3.6	5
455	Enriched surface acidity for surfactant-free suspensions of carboxylated carbon nanotubes purified by centrifugation. Analytical Chemistry Research, 2016, 8, 26-33.	2.0	5
456	Two- and Three-Dimensional All-Carbon Nanomaterial Assemblies for Tissue Engineering and Regenerative Medicine. Annals of Biomedical Engineering, 2016, 44, 2020-2035.	2.5	34
457	Photothermal Therapy of Glioblastoma Multiforme Using Multiwalled Carbon Nanotubes Optimized for Diffusion in Extracellular Space. ACS Biomaterials Science and Engineering, 2016, 2, 963-976.	5.2	70
458	Principles of Nanotoxicology. , 2016, , 171-227.		2
459	Conformational Thermodynamics of DNA Strands in Hydrophilic Nanopores. Journal of Physical Chemistry C, 2016, 120, 20357-20367.	3.1	5
460	Functionalized Carbon Nanotubes. , 2016, , 431-444.		0
461	Multiwalled Carbon Nanotube Functionalization with High Molecular Weight Hyaluronan Significantly Reduces Pulmonary Injury. ACS Nano, 2016, 10, 7675-7688.	14.6	41
462	Encapsulation capacity and natural payload delivery of an anticancer drug from boron nitride nanotube. Physical Chemistry Chemical Physics, 2016, 18, 24994-25001.	2.8	49
463	Conformational Thermodynamics of DNA Strands in Hydrophilic Nanopores. Journal of Physical Chemistry B, 2016, , .	2.6	0
466	Toxicology Study of Single-walled Carbon Nanotubes and Reduced Graphene Oxide in Human Sperm. Scientific Reports, 2016, 6, 30270.	3.3	49
468	Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets. Scientific Reports, 2016, 6, 26508.	3.3	111
469	Mitochondria-Mediated Protein Regulation Mechanism of Polymorphs-Dependent Inhibition of Nanoselenium on Cancer Cells. Scientific Reports, 2016, 6, 31427.	3.3	20
470	Graphene and graphene-based nanocomposites: biomedical applications and biosafety. Journal of Materials Chemistry B, 2016, 4, 7813-7831.	5.8	140
471	Photothermal therapy with immune-adjuvant nanoparticles together with checkpoint blockade for effective cancer immunotherapy. Nature Communications, 2016, 7, 13193.	12.8	1,270
472	Functionalization of Single-walled Carbon Nanotubes with Thermo-reversible Block Copolymers and Characterization by Small-angle Neutron Scattering. Journal of Visualized Experiments, 2016, , .	0.3	2
473	Effects of Multiwalled Carbon Nanotube Surface Modification and Purification on Bovine Serum Albumin Binding and Biological Responses. Journal of Nanomaterials, 2016, 2016, 1-10.	2.7	22

ARTICLE IF CITATIONS Investigation of different methods for cisplatin loading using single-walled carbon nanotube. 474 5.6 15 Chemical Engineering Research and Design, 2016, 112, 56-63. Structure of Carbon Nanotube Porins in Lipid Bilayers: An in Situ Small-Angle X-ray Scattering (SAXS) 9.1 Study. Nano Letters, 2016, 16, 4019-4024. Advantages and limitations of nanoparticle labeling for early diagnosis of infection. Expert Review of 476 3.116 Molecular Diagnostics, 2016, 16, 883-895. Use of Raman spectroscopy to identify carbon nanotube contamination at an analytical balance workstation. Journal of Occupational and Environmental Hygiene, 2016, 13, 915-923. Systematic sorption studies of camptothecin on oxidized single-walled carbon nanotubes. Colloids 478 4.7 11 and Surfaces A: Physicochemical and Engineering Aspects, 2016, 490, 121-132. Synthesis of water-soluble Fe-decorated multi-walled carbon nanotubes: A study on thermo-physical properties of ferromagnetic nanofluid. Journal of the Taiwan Institute of Chemical Engineers, 2016, 479 5.3 60, 547-554. A comparative study on the enzymatic biodegradability of covalently functionalized double- and 480 10.3 30 multi-walled carbon nanotubes. Carbon, 2016, 100, 367-374. Theoretical use of boron nitride nanotubes as a perfect container for anticancer molecules. 2.7 Analytical Methods, 2016, 8, 1367-1372. 482 Bioengineering Applications of Carbon Nanostructures. Nanomedicine and Nanotoxicology, 2016, , . 0.2 5 Interactions between carbon nanotubes and bioactives: a drug delivery perspective. Drug Discovery 6.4 Today, 2016, 21, 585-597. In Situ formation of pH-/thermo-sensitive nanohybrids via friendly-assembly of 484 12 3.6 poly(N-vinylpyrrolidone) onto LAPONITE®. RSC Advances, 2016, 6, 31816-31823. Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Letters, 2016, 375, 256-262. Preparation of multiâ€walled carbon nanotubes/SiO ₂ coreâ€"shell nanocomposites by a 486 1.3 2 twoâ€step Stöber process. Micro and Nano Letters, 2016, 11, 67-70. A sensing mechanism for the detection of carbon nanotubes using selective photoluminescent probes 16.6 44 based on ionic complexes with organic dyes. Light: Science and Applications, 2016, 5, e16028-e16028. Stem cell secretome-rich nanoclay hydrogel: a dual action therapy for cardiovascular regeneration. 488 77 5.6 Nanoscale, 2016, 8, 7371-7376. Lipid Bilayer Membrane Perturbation by Embedded Nanopores: A Simulation Study. ACS Nano, 2016, 10, 489 14.6 44 3693-3701. 490 Nanotoxicology of Carbon-Based Nanomaterials. Nanomedicine and Nanotoxicology, 2016, , 105-137. 0.2 2

CITATION REPORT

491	Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine, 2016, 34, 957-967.	3.8	30
-----	---	-----	----

#

#	Article	IF	CITATIONS
492	Design of antibody-functionalized carbon nanotubes filled with radioactivable metals towards a targeted anticancer therapy. Nanoscale, 2016, 8, 12626-12638.	5.6	28
493	Specific targeting and noninvasive imaging of breast cancer stem cells using single-walled carbon nanotubes as novel multimodality nanoprobes. Nanomedicine, 2016, 11, 31-46.	3.3	50
494	International standardized procedures for <i>in vivo</i> evaluation of multi-walled carbon nanotube toxicity in water. Toxicological and Environmental Chemistry, 2016, 98, 829-847.	1.2	7
495	Gold-Based Nanomaterials for Applications in Nanomedicine. Topics in Current Chemistry, 2016, 370, 169-202.	4.0	56
496	Magnetic Targeting and Delivery of Drug-Loaded SWCNTs Theranostic Nanoprobes to Lung Metastasis in Breast Cancer Animal Model: Noninvasive Monitoring Using Magnetic Resonance Imaging. Molecular Imaging and Biology, 2016, 18, 315-324.	2.6	24
498	pH-sensitive nanocarrier based on gold/silver core–shell nanoparticles decorated multi-walled carbon manotubes for tracing drug release in living cells. Biosensors and Bioelectronics, 2016, 75, 446-451.	10.1	53
499	Functionalized single-walled carbon nanotubes for the improved solubilization and delivery of curcumin. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 13-19.	2.1	15
500	Multifunctional hybrid-carbon nanotubes: new horizon in drug delivery and targeting. Journal of Drug Targeting, 2016, 24, 294-308.	4.4	41
501	Toxicity of singleâ€wall carbon nanotubes functionalized with polyethylene glycol in zebrafish (<i>Danio rerio</i>) embryos. Journal of Applied Toxicology, 2017, 37, 214-221.	2.8	50
502	Boron nitride nanotubes and nanoplatelets as reinforcing agents of polymeric matrices for bone tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2017, 105, 406-419.	3.4	49
504	Biological Surface Adsorption Index of Nanomaterials: Modelling Surface Interactions of Nanomaterials with Biomolecules. Advances in Experimental Medicine and Biology, 2017, 947, 207-253.	1.6	8
505	An Integrinâ€Targeting RGDKâ€Tagged Nanocarrier: Anticancer Efficacy of Loaded Curcumin. ChemMedChem, 2017, 12, 738-750.	3.2	16
506	DFT, NBO and molecular docking studies of the adsorption of fluoxetine into and on the surface of simple and sulfur-doped carbon nanotubes. Applied Surface Science, 2017, 420, 267-275.	6.1	21
507	Encapsulation of methotrexate and cyclophosphamide in interpolymer complexes formed between poly acrylic acid and poly ethylene glycol on multi-walled carbon nanotubes as drug delivery systems. Materials Science and Engineering C, 2017, 79, 841-847.	7.3	39
508	Perturbation of the pulmonary surfactant monolayer by single-walled carbon nanotubes: a molecular dynamics study. Nanoscale, 2017, 9, 10193-10204.	5.6	41
509	Ultrasound-promoted direct functionalization of multi-walled carbon nanotubes in water via Diels-Alder "click chemistry― Ultrasonics Sonochemistry, 2017, 39, 321-329.	8.2	38
510	Significance of Optimization of Phospholipid Poly(Ethylene Glycol) Quantity for Coating Carbon Nanohorns to Achieve Low Cytotoxicity. Bulletin of the Chemical Society of Japan, 2017, 90, 662-666.	3.2	12
511	Design and development of multi-walled carbon nanotube-liposome drug delivery platforms. International Journal of Pharmaceutics, 2017, 528, 429-439.	5.2	25

#	Article	IF	CITATIONS
512	Coarse Grained Molecular Dynamic Simulations of the interaction a Carbon Nanotube with a Bilayer Membrane. MRS Advances, 2017, 2, 2603-2608.	0.9	0
513	Advanced Photoacoustic Imaging Applications of Nearâ€Infrared Absorbing Organic Nanoparticles. Small, 2017, 13, 1700710.	10.0	238
514	A precision-guided MWNT mediated reawakening the sunk synergy in RAS for anti-angiogenesis lung cancer therapy. Biomaterials, 2017, 139, 75-90.	11.4	40
515	Single Nearâ€Infrared Emissive Polymer Nanoparticles as Versatile Phototheranostics. Advanced Science, 2017, 4, 1700085.	11.2	53
516	Supramolecular chemotherapy based on host–guest molecular recognition: a novel strategy in the battle against cancer with a bright future. Chemical Society Reviews, 2017, 46, 7021-7053.	38.1	556
517	Boron and nitrogen co-doped single-layered graphene quantum dots: a high-affinity platform for visualizing the dynamic invasion of HIV DNA into living cells through fluorescence resonance energy transfer. Journal of Materials Chemistry B, 2017, 5, 8719-8724.	5.8	48
518	Solubility of functionalized single-wall carbon nanotubes in water: a theoretical study. Theoretical Chemistry Accounts, 2017, 136, 1.	1.4	4
519	Neural differentiation on aligned fullerene C ₆₀ nanowhiskers. Chemical Communications, 2017, 53, 11024-11027.	4.1	42
520	Behavior of Supramolecular Assemblies of Radiometal-Filled and Fluorescent Carbon Nanocapsules InÂVitro and InÂVivo. CheM, 2017, 3, 437-460.	11.7	22
521	Aggregated Single-Walled Carbon Nanotubes Absorb and Deform Dopamine-Related Proteins Based on Molecular Dynamics Simulations. ACS Applied Materials & Interfaces, 2017, 9, 32452-32462.	8.0	24
522	Three-Dimensional Electroconductive Hyaluronic Acid Hydrogels Incorporated with Carbon Nanotubes and Polypyrrole by Catechol-Mediated Dispersion Enhance Neurogenesis of Human Neural Stem Cells. Biomacromolecules, 2017, 18, 3060-3072.	5.4	144
523	Single-walled carbon nanotubes (SWCNTs) inhibit heat shock protein 90 (HSP90) signaling in human lung fibroblasts and keratinocytes. Toxicology and Applied Pharmacology, 2017, 329, 347-357.	2.8	12
524	The Synthesis, Application, and Related Neurotoxicity of Carbon Nanotubes. , 2017, , 259-284.		12
525	Functional carbon nanodots for multiscale imaging and therapy. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2017, 9, e1436.	6.1	48
527	Photodynamic Action of Single-Walled Carbon Nanotubes. Chemical and Pharmaceutical Bulletin, 2017, 65, 629-636.	1.3	6
528	Photoacoustic Drug Delivery. Sensors, 2017, 17, 1400.	3.8	33
529	Current applications and future prospects of nanomaterials in tumor therapy. International Journal of Nanomedicine, 2017, Volume 12, 1815-1825.	6.7	71
530	Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. Biosensors, 2017, 7, 9.	4.7	114

ARTICLE IF CITATIONS Nanoparticles as Theranostic Vehicles in Experimental and Clinical Applicationsâ€"Focus on Prostate 531 4.1 59 and Breast Cancer. International Journal of Molecular Sciences, 2017, 18, 1102. Future of graphene revolution and roadmap., 2017, , 207-213. The Advances of Carbon Nanotubes in Cancer Diagnostics and Therapeutics. Journal of Nanomaterials, 533 2.7 68 2017, 2017, 1-13. Systemic and immunotoxicity of pristine and PEGylated multi-walled carbon nanotubes in an intravenous 28 days repeated dose toxicity study. International Journal of Nanomedicine, 2017, Volume 534 39 12, 1539-1554. BiofuNctionalized nanomaterials for targeting cancer cells., 2017, , 51-86. 535 4 Engineering of Mesoporous Silica Coated Carbonâ€Based Materials Optimized for an Ultrahigh Doxorubicin Payload and a Drug Release Activated by pH, <i>T</i>, and NIRâ€light. Advanced Functional Materials, 2018, 28, 1706996. Peptide-based nanoprobes for molecular imaging and disease diagnostics. Chemical Society Reviews, 537 38.1 127 2018, 47, 3490-3529. Advancement in Photothermal Effect of Carbon Nanotubes by Grafting of Poly(amidoamine) and Deposition of CdS Nanocrystallites. Industrial & amp; Engineering Chemistry Research, 2018, 57, 538 3.7 19 7826-7833. Translocation of Bioactive Molecules through Carbon Nanotubes Embedded in the Lipid Membrane. 540 8.0 35 ACS Applied Materials & amp; Interfaces, 2018, 10, 6168-6179. Semiconducting polymer nanoparticles for amplified photoacoustic imaging. Wiley Interdisciplinary 541 6.1 Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1510. Iron-engineered mesoporous silica nanocatalyst with biodegradable and catalytic framework for 542 11.4 144 tumor-specific therapy. Biomaterials, 2018, 163, 1-13. Design of Proteinâ€Coated Carbon Nanotubes Loaded with Hydrophobic Drugs through Sacrificial 3.3 Templating of Mesoporous Silica Shells. Chemistry - A Europeán Journal, 2018, 24, 4662-4670. Optimum morphology of gold nanorods for light-induced hyperthermia. Nanoscale, 2018, 10, 2632-2638. 544 5.6 39 Bio-based nanostructured materials., 2018, , 17-39. 545 Osteogenic differentiation of human adipose derived stem cells on chemically crosslinked carbon 546 4.0 4 nanomaterial coatings. Journal of Biomedical Materials Research - Part A, 2018, 106, 1189-1199. A New Coâ€P Nanocomposite with Ultrahigh Relaxivity for In Vivo Magnetic Resonance Imagingâ€Guided 547 29 Tumor Eradication by Chemo/Photothermal Synergistic Therapy. Small, 2018, 14, 1702431. The encapsulation of the gemcitabine anticancer drug into grapheme nest: a theoretical study. Journal 548 1.8 16 of Molecular Modeling, 2018, 24, 102. Proficient surface modification of CdSe quantum dots for highly luminescent and biocompatible probes for bioimaging: A comparative experimental investigation. Journal of Luminescence, 2018, 199, 549 3.1 . 174-182.

#	Article	IF	CITATIONS
550	Highly biological active antibiofilm, anticancer and osteoblast adhesion efficacy from MWCNT/PPy/Pd nanocomposite. Applied Surface Science, 2018, 434, 400-411.	6.1	48
551	Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine. Artificial Cells, Nanomedicine and Biotechnology, 2018, 46, 1314-1330.	2.8	58
552	Mode of PEG Coverage on Carbon Nanotubes Affects Binding of Innate Immune Protein C1q. Journal of Physical Chemistry B, 2018, 122, 757-763.	2.6	7
553	Carbon nanotubes as nanovectors for intracellular delivery of laronidase in Mucopolysaccharidosis type I. Nanoscale, 2018, 10, 657-665.	5.6	13
554	Biomedical Applications and Toxicological Aspects of Functionalized Carbon Nanotubes. Critical Reviews in Therapeutic Drug Carrier Systems, 2018, 35, 293-330.	2.2	39
555	Selective Transport through the Ultrashort Carbon Nanotubes Embedded in Lipid Bilayers. Journal of Physical Chemistry C, 2018, 122, 27681-27688.	3.1	14
556	Molecular Dynamics Simulations of Waterâ€Mediated Cholesterol Capture within an Openâ€Ended Singleâ€Walled Carbon Nanotube. ChemPhysChem, 2018, 20, 142-147.	2.1	2
557	EMERGING NOVEL NANOPHARMACEUTICALS FOR DRUG DELIVERY. Asian Journal of Pharmaceutical and Clinical Research, 2018, 11, 35.	0.3	12
558	Understanding the structure, electronic properties, solubility in water, and protein interactions of three novel nano-devices against ovarian cancer: a computational study. Journal of Nanoparticle Research, 2018, 20, 1.	1.9	7
559	Titanium dioxide nanoparticles induce mitochondria-associated apoptosis in HepG2 cells. RSC Advances, 2018, 8, 31764-31776.	3.6	15
560	Nanomedicine in cancer stem cell therapy: from fringe to forefront. Cell and Tissue Research, 2018, 374, 427-438.	2.9	28
561	Threshold Rigidity Values for the Asbestos-like Pathogenicity of High-Aspect-Ratio Carbon Nanotubes in a Mouse Pleural Inflammation Model. ACS Nano, 2018, 12, 10867-10879.	14.6	20
562	An Immunologically Modified Nanosystem Based on Noncovalent Binding Between Single-Walled Carbon Nanotubes and Glycated Chitosan. Technology in Cancer Research and Treatment, 2018, 17, 153303381880231.	1.9	3
563	Unique Photochemo-Immuno-Nanoplatform against Orthotopic Xenograft Oral Cancer and Metastatic Syngeneic Breast Cancer. Nano Letters, 2018, 18, 7092-7103.	9.1	59
564	Pharmaceutical perspectives of selection criteria and toxicity profiling of nanotheranostic agents. , 2018, , 45-74.		3
565	Quantitative characterization of targeted nanoparticulate formulations for prediction of clinical efficacy. , 2018, , 397-440.		0
566	Biomedical applications of carbon nanotubes with improved properties. , 2018, , 31-65.		1
567	Emergence in the functionalized carbon nanotubes as smart nanocarriers for drug delivery applications. , 2018, , 105-133.		24

~	_
	DEDODT
CHAI	REPORT

#	Article	IF	CITATIONS
568	CNTs modified graphitic C 3 N 4 with enhanced visibleâ€ŀight photocatalytic activity for the degradation of organic pollutants. Micro and Nano Letters, 2018, 13, 752-757.	1.3	7
569	Carrageenan based hydrogels for drug delivery, tissue engineering and wound healing. Carbohydrate Polymers, 2018, 198, 385-400.	10.2	306
570	Scanning Techniques for Nanobioconjugates of Carbon Nanotubes. Scanning, 2018, 2018, 1-19.	1.5	7
571	Mesoporous Carbon Nanospheres as a Multifunctional Carrier for Cancer Theranostics. Theranostics, 2018, 8, 663-675.	10.0	99
572	Multifunctional hybrid nanoparticles for theranostics * *All authors have contributed equally to this work , 2018, , 177-244.		2
573	Electromagnetic Nanoparticles for Sensing and Medical Diagnostic Applications. Materials, 2018, 11, 603.	2.9	96
574	Epoxidation of Carbon Nanocapsules: Decoration of Single-Walled Carbon Nanotubes Filled with Metal Halides. Nanomaterials, 2018, 8, 137.	4.1	8
575	Nanocarbon-Based Glycoconjugates as Multivalent Inhibitors of Ebola Virus Infection. Journal of the American Chemical Society, 2018, 140, 9891-9898.	13.7	61
576	Mesoporous Carbon Nanospheres as Broadband Saturable Absorbers for Pulsed Laser Generation. Advanced Optical Materials, 2018, 6, 1800606.	7.3	23
577	Understanding and utilizing the biomolecule/nanosystems interface. , 2018, , 207-297.		19
578	Nanomaterials for Healthcare, Energy and Environment. Advanced Structured Materials, 2019, , .	0.5	5
579	Toxicity of Two-Dimensional Layered Materials and Their Heterostructures. Bioconjugate Chemistry, 2019, 30, 2287-2299.	3.6	49
580	Graphene-Based Nanomaterials: From Production to Integration With Modern Tools in Neuroscience. Frontiers in Systems Neuroscience, 2019, 13, 26.	2.5	25
581	Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte Chemie, 2019, 131, 18084-18095.	2.0	8
582	Carbon nanotube micropillars trigger guided growth of complex human neural stem cells networks. Nano Research, 2019, 12, 2894-2899.	10.4	27
583	Thermo Mechanical Properties of Carbon Nanotube Composites. , 2019, 23, 90-103.		2
584	Carbonaceous nanomaterials stimulate extracellular enzyme release by the fungus Cladosporium sp. and enhance extracellular electron transfer to facilitate lignin biodegradation. Science of the Total Environment, 2019, 696, 134072.	8.0	12
585	Biofriendly and Regenerable Emotional Monitor from Interfacial Ultrathin 2D PDA/AuNPs Cross-linking Films. ACS Applied Materials & Interfaces, 2019, 11, 36259-36269.	8.0	24

#	Article	IF	CITATIONS
586	Self-assembling Collagen/Alginate hybrid hydrogels for combinatorial photothermal and immuno tumor therapy. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 577, 570-575.	4.7	85
587	Elevated internalization and cytotoxicity of polydispersed single-walled carbon nanotubes in activated B cells can be basis for preferential depletion of activated B cells in vivo. Nanotoxicology, 2019, 13, 849-860.	3.0	13
588	Carbon-Based Nanomaterials for the Development of Sensitive Nanosensor Platforms. , 2019, , 1-25.		9
589	Chemical Functionalization of Nanodiamonds: Opportunities and Challenges Ahead. Angewandte Chemie - International Edition, 2019, 58, 17918-17929.	13.8	83
590	Designing inorganic nanomaterials for vaccines and immunotherapies. Nano Today, 2019, 27, 73-98.	11.9	102
591	Nanotechnology and nanomaterials in dentistry. , 2019, , 477-505.		22
592	Multifunctional Ultra‧mall Nanocomplexes Capping Mesoporous Silica Nanoparticles for Multimodal Imaging and Chemoâ€Photothermal Therapy. ChemNanoMat, 2019, 5, 1115-1122.	2.8	9
593	Functionalized graphene-based nanomaterials for drug delivery and biomedical applications in cancer chemotherapy. , 2019, , 429-460.		6
594	Identification and preparation of stable water dispersions of protein - Carbon nanotube hybrids and efficient design of new functional materials. Carbon, 2019, 147, 70-82.	10.3	30
595	Influence of nanotube section on carboplatin confinement. Journal of Molecular Modeling, 2019, 25, 72.	1.8	7
596	Graphene nano-ribbon based high potential and efficiency for DNA, cancer therapy and drug delivery applications. Drug Metabolism Reviews, 2019, 51, 91-104.	3.6	44
597	Intranasal Delivery of Nanotherapeutics/ Nanobiotherapeutics for the Treatment of Alzheimer's Disease: A Proficient Approach. Critical Reviews in Therapeutic Drug Carrier Systems, 2019, 36, 373-447.	2.2	12
598	PEGylated reduced-graphene oxide hybridized with Fe ₃ O ₄ nanoparticles for cancer photothermal-immunotherapy. Journal of Materials Chemistry B, 2019, 7, 7406-7414.	5.8	68
599	Carbon Nanotubes Translocation through a Lipid Membrane and Transporting Small Hydrophobic and Hydrophilic Molecules. Applied Sciences (Switzerland), 2019, 9, 4271.	2.5	9
600	Carbon Nanomaterials for Targeted Cancer Therapy Drugs: A Critical Review. Chemical Record, 2019, 19, 502-522.	5.8	63
601	Effect of polyethylene glycol surface charge functionalization of SWCNT on the in vitro and in vivo nanotoxicity and biodistribution monitored noninvasively using MRI. Toxicology Mechanisms and Methods, 2019, 29, 233-243.	2.7	8
602	Shape-Controlled Hybrid Nanostructures for Cancer Theranostics. , 2019, , 209-227.		2
603	Natural payload delivery of the doxorubicin anticancer drug from boron nitride oxide nanosheets. Applied Surface Science, 2019, 475, 666-675.	6.1	42

#	Article	IF	CITATIONS
604	Biological Response to Carbon-Family Nanomaterials: Interactions at the Nano-Bio Interface. Frontiers in Bioengineering and Biotechnology, 2019, 7, 4.	4.1	47
606	Applications of Carbon Nanotubes in Drug Delivery. , 2019, , 113-135.		51
607	Hydrogel nanotubes with ice helices as exotic nanostructures for diabetic wound healing. Materials Horizons, 2019, 6, 274-284.	12.2	17
608	Carbon Nanotubes as Biological Transporters and Tissue-Engineering Scaffolds. , 2019, , 135-156.		4
609	Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 116, 113726.	2.7	13
610	Amorphization of carbon nanotubes in water by electron beam radiation. Carbon, 2020, 156, 313-319.	10.3	3
611	Carbon nanomaterials integrated molecularly imprinted polymers for biological sample analysis: A critical review. Materials Chemistry and Physics, 2020, 239, 121966.	4.0	71
612	Theoretical study of encapsulation of Floxuridine anticancer drug into BN (9,9-7) nanotube for medical application. Phosphorus, Sulfur and Silicon and the Related Elements, 2020, 195, 293-306.	1.6	13
613	Recent Advances in Multifunctional Graphitic Nanocapsules for Raman Detection, Imaging, and Therapy. Small Methods, 2020, 4, 1900440.	8.6	13
614	Supramolecular Photothermal Nanomedicine Mediated Distant Tumor Inhibition via PD-1 and TIM-3 Blockage. Frontiers in Chemistry, 2020, 8, 1.	3.6	434
615	Folic acid onjugated raloxifene hydrochloride carbon nanotube for targeting breast cancer cells. Drug Development Research, 2020, 81, 305-314.	2.9	14
616	Carbon nanomaterials: fundamental concepts, biological interactions, and clinical applications. , 2020, , 223-242.		7
617	The combination of Diels-Alder reaction and redox polymerization for preparation of functionalized CNTs for intracellular controlled drug delivery. Materials Science and Engineering C, 2020, 109, 110442.	7.3	14
618	Conducting nanocomposites of polypyrrole-co-polyindole doped with carboxylated CNT: Synthesis approach and anticorrosion/antibacterial/antioxidation property. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2020, 261, 114673.	3.5	17
619	Nanomaterial Additives for Fabrication of Stimuliâ€Responsive Skeletal Muscle Tissue Engineering Constructs. Advanced Healthcare Materials, 2020, 9, e2000730.	7.6	23
620	Near infra-red light responsive carbon nanotubes@mesoporous silica for photothermia and drug delivery to cancer cells. Materials Today Chemistry, 2020, 17, 100308.	3.5	23
621	Blood exposure to graphene oxide may cause anaphylactic death in non-human primates. Nano Today, 2020, 35, 100922.	11.9	29
622	Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. Journal of Controlled Release, 2020, 327, 198-224.	9.9	50

#	Article	IF	CITATIONS
623	Targeting G Protein oupled Receptors with Magnetic Carbon Nanotubes: The Case of the A 3 Adenosine Receptor. ChemMedChem, 2020, 15, 1909-1920.	3.2	4
624	Application of Nanomaterials in Biomedical Imaging and Cancer Therapy. Nanomaterials, 2020, 10, 1700.	4.1	216
625	Recent Advances in Nanocarrier-Assisted Therapeutics Delivery Systems. Pharmaceutics, 2020, 12, 837.	4.5	99
626	Toxicity of Carbon Nanomaterials and Their Potential Application as Drug Delivery Systems: In Vitro Studies in Caco-2 and MCF-7 Cell Lines. Nanomaterials, 2020, 10, 1617.	4.1	54
627	Evaluation of the Skin Sensitization Potential of Carbon Nanotubes Using Alternative In Vitro and In Vivo Assays. Toxics, 2020, 8, 122.	3.7	7
628	Modulation of Efficient Diiodo-BODIPY in vitro Phototoxicity to Cancer Cells by Carbon Nano-Onions. Frontiers in Chemistry, 2020, 8, 573211.	3.6	13
629	Cellular Toxicity Study of Silicon Nanowires. Dose-Response, 2020, 18, 155932582091876.	1.6	3
630	CdSe/ZnS quantum dots induced spermatogenesis dysfunction via autophagy activation. Journal of Hazardous Materials, 2020, 398, 122327.	12.4	26
631	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie - International Edition, 2020, 59, 14957-14964.	13.8	44
632	Protein and mRNA Delivery Enabled by Cholesterylâ€Based Biodegradable Lipidoid Nanoparticles. Angewandte Chemie, 2020, 132, 15067-15074.	2.0	15
633	Inhibition of α-chymotrypsin by pristine single-wall carbon nanotubes: Clogging up the active site. Journal of Colloid and Interface Science, 2020, 571, 174-184.	9.4	22
634	Fullerene (C ₆₀) Nanowires: The Preparation, Characterization, and Potential Applications. Energy and Environmental Materials, 2020, 3, 469-491.	12.8	22
635	Effect of galvanotaxic graphene oxide on chloroplast activity: Interaction quantified with Biolayer-Interferometry coupled confocal microscopy. Carbon, 2020, 162, 147-156.	10.3	15
636	The effects of functionalization of carbon nanotubes on toxicological parameters in mice. Human and Experimental Toxicology, 2020, 39, 1147-1167.	2.2	30
637	3D electronic and photonic structures as active biological interfaces. InformaÄnÃ-Materiály, 2020, 2, 527-552.	17.3	17
638	Graphene and other 2D materials: a multidisciplinary analysis to uncover the hidden potential as cancer theranostics. Theranostics, 2020, 10, 5435-5488.	10.0	80
639	Functionalized (4,0) or (8,0) SWCNT as novel carriers of the anticancer drug 5-FU; A first-principle investigation. Applied Surface Science, 2021, 536, 147718.	6.1	8
640	Toxicity of Carbon Nanotubes: Molecular Mechanisms, Signaling Cascades, and Remedies in Biomedical Applications. Chemical Research in Toxicology, 2021, 34, 24-46.	3.3	59

#	Article	IF	CITATIONS
641	Recent advances in graphene nanoribbons for biosensing and biomedicine. Journal of Materials Chemistry B, 2021, 9, 6129-6143.	5.8	19
643	Carbon-Based Nanomaterials for Delivery of Biologicals and Therapeutics: A Cutting-Edge Technology. Journal of Carbon Research, 2021, 7, 19.	2.7	26
644	Enhanced osteogenic potential of unzipped carbon nanotubes for tissue engineering. Journal of Biomedical Materials Research - Part A, 2021, 109, 1869-1880.	4.0	12
645	Surfactant-assisted regulation of polydivinylbenzene nanofibers morphology. Materials Today Chemistry, 2021, 20, 100486.	3.5	6
647	Purification use and toxicity of paramagnetic short multi-walled carbon nanotubes. Fullerenes Nanotubes and Carbon Nanostructures, 2022, 30, 232-241.	2.1	4
648	The Application of Inorganic Optical Nanoprobes in Bacterial Infection. Journal of Innovative Optical Health Sciences, 0, , 2130004.	1.0	5
649	Radiolabeled carbon-based nanostructures: New radiopharmaceuticals for cancer therapy?. Coordination Chemistry Reviews, 2021, 440, 213974.	18.8	22
650	Quantum Defects in Fluorescent Carbon Nanotubes for Sensing and Mechanistic Studies. Journal of Physical Chemistry C, 2021, 125, 18341-18351.	3.1	28
651	Optimization of self heating properties of Fe3O4 using PEG and amine functionalized MWCNT. Journal of Alloys and Compounds, 2021, 882, 160653.	5.5	10
652	A judicious approach of exploiting polyurethane-urea based electrospun nanofibrous scaffold for stimulated bone tissue regeneration through functionally nobbled nanohydroxyapatite. Chemical Engineering Journal, 2022, 429, 132179.	12.7	16
653	Carbon dots for cancer nanomedicine: a bright future. Nanoscale Advances, 2021, 3, 5183-5221.	4.6	37
654	Self-assemblies, dendrimers, and nanoparticles. , 2021, , 151-189.		1
655	Nanomaterials and Their Applications in Bioimaging. Nanotechnology in the Life Sciences, 2019, , 429-450.	0.6	6
656	Nanomaterials: A Promising Tool for Drug Delivery. Environmental Chemistry for A Sustainable World, 2020, , 1-49.	0.5	4
657	Silicon Nanostructures. Springer Briefs in Molecular Science, 2014, , 19-38.	0.1	2
658	Nanoparticles for Drug Delivery. Advanced Structured Materials, 2019, , 175-197.	0.5	3
659	Carbon Nanotubes in Vaccine Delivery. SpringerBriefs in Applied Sciences and Technology, 2019, , 69-73.	0.4	6
660	Synchrotron soft X-ray microscopy and XRF to image Single-walled carbon nanotubes in epithelial cells. Nuclear Instruments & Methods in Physics Research B. 2020. 465. 79-84.	1.4	2

		CITATION REPORT		
#	Article		IF	CITATIONS
661	Carbon Nanomaterials in Optical Detection. RSC Detection Science, 2018, , 105-149.		0.0	1
662	Photothermal therapies to improve immune checkpoint blockade for cancer. Internation Hyperthermia, 2020, 37, 34-49.	onal Journal of	2.5	23
663	Hybrid material of structural DNA with inorganic compound: synthesis, applications, ar Nano Convergence, 2020, 7, 2.	nd perspective.	12.1	11
664	Carbon Nanotubes and Infectious Diseases. , 2011, , .			7
665	Cytotoxicity of cadmium-based quantum dots. Chinese Science Bulletin, 2013, 58, 139	93-1402.	0.7	3
666	Biosafety of Non-Surface Modified Carbon Nanocapsules as a Potential Alternative to C Nanotubes for Drug Delivery Purposes. PLoS ONE, 2012, 7, e32893.	Carbon	2.5	21
667	Insertion of Short Amino-Functionalized Single-Walled Carbon Nanotubes into Phosph Occurs by Passive Diffusion. PLoS ONE, 2012, 7, e40703.	olipid Bilayer	2.5	67
668	Fibrillous Carbon Nanotube: An Unexpected Journey. Critical Reviews in Oncogenesis, 2	2014, 19, 261-268.	0.4	7
669	Dendrimers and the Development of New Complex Nanomaterials for Biomedical Appli Medicinal Chemistry, 2012, 19, 4913-4928.	ications. Current	2.4	19
670	Polymer-Based Cancer Nanotheranostics: Retrospectives of Multi-Functionalities and Pharmacokinetics. Current Drug Metabolism, 2013, 14, 661-674.		1.2	15
671	Integrating Nanotechnology into the Life Sciences: Lessons Learned. International Jour Pharmaceutical Sciences and Nanotechnology, 2012, 5, 1583-1596.	nal of	0.2	2
672	An <i>In Vitro</i> Study on the Cytotoxicity and Genotoxicity of Silver Sulfic Dots Coated with Meso-2,3-dimercaptosuccinic Acid. Turkish Journal of Pharmaceutica 16, 282-291.	le Quantum I Sciences, 2019,	1.4	10
673	Gdn3+@CNTs-PEG versus Gadovist®: In Vitro Assay. Oman Medical Journal, 2019, 34	, 147-155.	1.0	3
674	Nanobiomaterials Administration in Modernization of Biological Science: Current Statu Potential. , 2021, , 1-49.	is and Future		0
675	Synthesis of ultrafine polymer nanofibers. Materials Advances, 2021, 2, 7366-7368.		5.4	2
678	The Biological Significance of "Nano―interactions. Springer Series in Biophysics, 2	2013, , 1-20.	0.4	0
680	Carbon Nanotubes in Cancer and Stem Cell Therapeutics. Regenerative Medicine, Artif Nanomedicine, 2013, , 505-530.	icial Cells and	0.1	1
683	Carbon Nanotubes for Drug Delivery Applications. , 2014, , 233-248.			0

#	Article	IF	CITATIONS
684	The Promises and Perils of Medical Nanotechnology. Science and Fiction, 2016, , 361-388.	0.0	0
686	Ultrashort Carbon Nanotubes. , 2016, , 4282-4290.		0
687	Immunotherapy and Vaccines. , 2016, , 441-464.		0
688	Biological prospectives of hybrid nanostructures. , 2020, , 33-55.		0
689	Comparison of theoretical effects of encapsulation floxuridine anticancer drug with boron nitride nanotube and carbon nanotube with NBO and QTAIM studies. Medical Sciences Journal, 2020, 30, 363-375.	0.0	0
690	Azobenzene dyads containing fullerene, porphyrin and pyrene chromophores: Molecular design and optical properties. Dyes and Pigments, 2022, 197, 109858.	3.7	10
691	Carbon nanotube-based nanohybrids for agricultural and biological applications. , 2020, , 505-535.		2
692	Clinical Milestones in Nanotherapeutics: Current Status and Future Prospects. , 2021, , 194-245.		0
693	Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications. Nanotechnology Reviews, 0, ,	5.8	0
695	Evaluation of Family Gene Expression under the Influence of Single-Walled and Multi-Walled Carboxylated Carbon Nanotubes in Jurkat Cell Line and Rat. Iranian Journal of Biotechnology, 2021, 19, e2717.	0.3	0
696	Dynamics of Cobalt Oxide Nanoparticles in the Activation of Reactive Oxygen Species Induced Inflammation and Immunomodulation. , 2021, , 1-17.		1
697	Commercial utilities and future perspective of nanomedicines. PeerJ, 2021, 9, e12392.	2.0	11
698	Hyper-branched multifunctional carbon nanotubes carrier for targeted liver cancer therapy. Arabian Journal of Chemistry, 2022, 15, 103649.	4.9	13
699	Dynamics of Cobalt Oxide Nanoparticles in the Activation of Reactive Oxygen Species-Induced Inflammation and Immunomodulation. , 2022, , 2541-2557.		0
700	Fabrication of nanomaterials for biomedical imaging. , 2022, , 81-100.		1
701	Near-infrared responsive nanocomposite hydrogels made from enzyme-coated carbon nanotubes@ large pore mesoporous silica for remotely triggered drug delivery. Materialia, 2022, 22, 101414.	2.7	5
702	Recent progress on carbon-based composites in multidimensional applications. Composites Part A: Applied Science and Manufacturing, 2022, 157, 106906.	7.6	48
703	Vitamin C-Reduced Graphene Oxide Coatings Improve the Performance and Stability of Multimodal Microelectrodes for Neural Recording, Stimulation, and Dopamine Sensing. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	Citations
706	Unveiling the Bio-corona Fingerprinting of Potential Anticancer Carbon Nanotubes Coupled with d-Amino Acid Oxidase. Molecular Biotechnology, 2022, 64, 1164-1176.	2.4	2
709	<i>In vitro</i> toxicity of carbon nanotubes: a systematic review. RSC Advances, 2022, 12, 16235-16256.	3.6	30
710	Porphyrin-decorated ZnO nanowires as nanoscopic injectors for phototheragnosis of cancer cells. New Journal of Chemistry, 0, , .	2.8	2
711	Vitamin C-reduced graphene oxide improves the performance and stability of multimodal neural microelectrodes. IScience, 2022, 25, 104652.	4.1	5
712	The Application of Carbon Nanomaterials in Sensing, Imaging, Drug Delivery and Therapy for Gynecologic Cancers: An Overview. Molecules, 2022, 27, 4465.	3.8	10
713	A review on carbon-based molecularly-imprinted polymers (CBMIP) for detection of hazardous pollutants in aqueous solutions. Chemosphere, 2022, 308, 136471.	8.2	43
714	Nanoformulations for neurodegenerative disorders. , 2022, , 419-439.		0
715	Brain targeting drug delivery systems for the management of brain disorders. , 2022, , 289-345.		0
716	Numerical Computation of Hybrid Carbon Nanotubes Flow over a Stretching/Shrinking Vertical Cylinder in Presence of Thermal Radiation and Hydromagnetic. Mathematics, 2022, 10, 3551.	2.2	6
717	Surface Modified Carbon Nanotubes in Imaging and Cancer Therapy. ACS Symposium Series, 0, , 47-69.	0.5	0
718	Nanobiomaterials Administration in Modernization of Biological Science: CurrentÂStatus and Future Potential. , 2022, , 729-777.		0
719	Engineered nanostructures: an introduction. , 2023, , 1-43.		1
720	Theranostic nanostructures as nanomedicines. , 2023, , 3-24.		2
721	Drug delivery aspects of carbon nanotubes. , 2023, , 119-155.		1
722	Application of functionalized carbon nanomaterials in therapeutic formulations. , 2023, , 55-74.		0
723	Assessment of synthesized chitosan/halloysite nanocarrier modified by carbon nanotube for pH-sensitive delivery of curcumin to cancerous media. International Journal of Biological Macromolecules, 2023, 237, 123937.	7.5	12
724	Pristine/folate-functionalized graphene oxide as two intrinsically radioiodinated nano-theranostics: self/dual in vivo targeting comparative study. Cancer Nanotechnology, 2023, 14, .	3.7	1
727	Nanotechnology for point-of-care (POC) diagnostics. , 2023, , 249-272.		0

39

#	Article	IF	CITATIONS
728	Synthesis of Carbon Nanotubes with Merocyanine Dyes Decorated Carbon Nanotubes for Biomedical Imaging Devices. Materials Horizons, 2023, , 1127-1150.	0.6	0
729	Biomedical Application of Porous Carbon and Its Future in Precision Medical Devices. Materials Horizons, 2023, , 449-491.	0.6	0
730	Folic acid–maltodextrin polymer coated magnetic graphene oxide as a NIR-responsive nano-drug delivery system for chemo-photothermal synergistic inhibition of tumor cells. RSC Advances, 2023, 13, 12609-12617.	3.6	4
731	Bioinspired Hierarchical Carbon Structures as Potential Scaffolds for Wound Healing and Tissue Regeneration Applications. Nanomaterials, 2023, 13, 1791.	4.1	1
732	Medical Applications of Activated Carbon. , 2023, , 42-54.		0
733	Excitonic Resonances in Coherent Anti-Stokes Raman Scattering from Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2023, 127, 20438-20444.	3.1	0
734	Anticancer and antibacterial properties of carbon nanotubes are governed by their functional groups. Nanoscale, 0, , .	5.6	0
735	Enhancing in vitro photothermal therapy using plasmonic gold nanorod decorated multiwalled carbon nanotubes. Biomedical Optics Express, 2023, 14, 6629.	2.9	0
736	Neurotoxicity with the use of nanomaterials. , 2024, , 421-438.		0
737	A Review on Carbon Nanotubes Family of Nanomaterials and Their Health Field. ACS Omega, 2024, 9, 8687-8708.	3.5	0
738	Polymer-derived Biosilicate-C composite foams: In-vitro bioactivity, biocompatibility and antibacterial	5.7	0

activity. Journal of the European Ceramic Society, 2024, 44, 6124-6134.