Mechanically controlled binary conductance switching

Nature Nanotechnology 4, 230-234

DOI: 10.1038/nnano.2009.10

Citation Report

#	Article	IF	Citations
6	Bistable hysteresis and resistance switching in hydrogen-gold junctions. Physical Review B, 2009, 80, .	3.2	25
7	Nanomechanically induced molecular conductance switch. Applied Physics Letters, 2009, 95, 232118.	3.3	14
8	Identifying molecular signatures in metal-molecule-metal junctions. Nanoscale, 2009, 1, 164.	5.6	37
9	Conductance and I-V characteristics of Au/BPY/Au single molecule junctions. Journal of Chemical Physics, 2009, 131 , .	3.0	11
10	Molecular electronics with single molecules in solid-state devices. Nature Nanotechnology, 2009, 4, 551-556.	31.5	356
11	Exploring the Tilt-Angle Dependence of Electron Tunneling across Molecular Junctions of Self-Assembled Alkanethiols. ACS Nano, 2009, 3, 2073-2080.	14.6	53
12	Oligoyne Single Molecule Wires. Journal of the American Chemical Society, 2009, 131, 15647-15654.	13.7	206
13	N-Silylamine Junctions for Molecular Wires to Gold: The Effect of Binding Atom Hybridization on the Electronic Transmission. Journal of Physical Chemistry C, 2009, 113, 20458-20462.	3.1	1
14	A Nanoelectromechanical Single-Atom Switch. Nano Letters, 2009, 9, 2940-2945.	9.1	67
15	Electrochemically Assisted Fabrication of Metal Atomic Wires and Molecular Junctions by MCBJ and STMâ€BJ Methods. ChemPhysChem, 2010, 11, 2745-2755.	2.1	38
16	Fundamentals of energy transport, energy conversion, and thermal properties in organic–inorganic heterojunctions. Chemical Physics Letters, 2010, 491, 109-122.	2.6	151
17	Formation and electronic transport properties of bimolecular junctions based on aromatic coupling. Journal of Physics Condensed Matter, 2010, 22, 325102.	1.8	5
18	Two-state conductance in single Zn porphyrin molecular junctions. Applied Physics Letters, 2010, 96, 243107.	3.3	24
19	Regular Atomic Narrowing of Ni, Fe, and V Nanowires Resolved by Two-Dimensional Correlation Analysis. Physical Review Letters, 2010, 105, 266805.	7.8	42
20	Spin entanglement in supramolecular structures. Nanotechnology, 2010, 21, 274009.	2.6	28
21	Molecular conductivity switching of two benzene rings under electric field. Applied Physics Letters, 2010, 97, 262114.	3.3	22
22	Conductive junctions with parallel graphene sheets. Journal of Chemical Physics, 2010, 132, 114703.	3.0	11
23	Charge transport through molecular switches. Journal of Physics Condensed Matter, 2010, 22, 133001.	1.8	250

#	Article	IF	CITATIONS
24	The Impact of $\langle i \rangle E \langle i \rangle \hat{a}^{\prime\prime} \langle i \rangle Z \langle i \rangle$ Photo-Isomerization on Single Molecular Conductance. Nano Letters, 2010, 10, 2019-2023.	9.1	76
25	Effect of Electrode Orientations on Charge Transport in Alkanedithiol Single-Molecule Junctions. ACS Nano, 2010, 4, 6404-6408.	14.6	48
26	Probing the Moleculeâ^'Electrode Interface of Single-Molecule Junctions by Controllable Mechanical Modulations. Journal of Physical Chemistry C, 2010, 114, 8587-8592.	3.1	26
27	Single Molecule Conductance of Bipyridyl Ethynes: The Role of Surface Binding Modesâ€. Journal of Physical Chemistry B, 2010, 114, 14189-14193.	2.6	5
28	Identifying Diversity in Nanoscale Electrical Break Junctions. Journal of the American Chemical Society, 2010, 132, 9157-9164.	13.7	124
29	Effects of Interface Roughness on Electronic Transport Properties of Nanotubeâ^'Moleculeâ^'Nanotube Junctions. Journal of Physical Chemistry C, 2010, 114, 12335-12340.	3.1	11
30	Conductance and Geometry of Pyridine-Linked Single-Molecule Junctions. Journal of the American Chemical Society, 2010, 132, 6817-6821.	13.7	186
31	The experimental determination of the conductance of single molecules. Physical Chemistry Chemical Physics, 2010, 12, 2801.	2.8	153
32	Energy exchange between electrons and phonons in quantum dot connected between pyramidal and abrupt transport nanojunctions. Journal of Applied Physics, 2010, 108, 013709.	2.5	1
33	Mechanically-controllable single molecule switch based on configuration specific electrical conductivity of metal–molecule–metal junctions. Chemical Science, 2010, 1, 247.	7.4	36
34	Influence of Binding Groups on Molecular Junction Formation. Journal of the American Chemical Society, 2011, 133, 14313-14319.	13.7	80
35	Single-Molecule Conductance of Pyridine-Terminated Dithienylethene Switch Molecules. ACS Nano, 2011, 5, 5115-5123.	14.6	95
36	Mechanics and Chemistry: Single Molecule Bond Rupture Forces Correlate with Molecular Backbone Structure. Nano Letters, 2011, 11, 1518-1523.	9.1	129
37	Linear Scaling Constrained Density Functional Theory in CONQUEST. Journal of Chemical Theory and Computation, 2011, 7, 884-889.	5.3	36
38	Conductance of Stretching Oligothiophene Single-Molecule Junctions: A First-Principles Study. Journal of Physical Chemistry C, 2011, 115, 25105-25108.	3.1	10
39	Intramolecular Torsion Based Molecular Switch Functionality Enhanced in π-Conjugated Oligomolecules by a π-Conjugated Pendant Group. Journal of Physical Chemistry C, 2011, 115, 13911-13918.	3.1	6
40	Thermopower of Amineâ^'Gold-Linked Aromatic Molecular Junctions from First Principles. ACS Nano, 2011, 5, 551-557.	14.6	87
41	Structural and Electrical Properties of Flip Chip Laminated Metal–Molecule–Silicon Structures Varying Molecular Backbone and Atomic Tether. Journal of Physical Chemistry C, 2011, 115, 24353-24365.	3.1	8

#	Article	IF	CITATIONS
42	A Single-Molecule Potentiometer. Nano Letters, 2011, 11, 1575-1579.	9.1	111
43	Directionally Oriented LB Films of an OPE Derivative: Assembly, Characterization, and Electrical Properties. Langmuir, 2011, 27, 3600-3610.	3.5	29
44	lonic Liquids As a Medium for STM-Based Single Molecule Conductance Determination: An Exploration Employing Alkanedithiols. Journal of Physical Chemistry C, 2011, 115, 21402-21408.	3.1	15
45	Nature of Electron Transport by Pyridine-Based Tripodal Anchors: Potential for Robust and Conductive Single-Molecule Junctions with Gold Electrodes. Journal of the American Chemical Society, 2011, 133, 3014-3022.	13.7	94
46	Organic-based molecular switches for molecular electronics. Nanoscale, 2011, 3, 4003.	5.6	91
47	Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nature Communications, 2011, 2, 305.	12.8	227
48	Charge Transport in Single Molecular Junctions at the Solid/Liquid Interface. Topics in Current Chemistry, 2011, 313, 121-188.	4.0	19
49	Tunneling Currents That Increase with Molecular Elongation. Journal of the American Chemical Society, 2011, 133, 15714-15720.	13.7	34
50	Dependence of Single-Molecule Conductance on Molecule Junction Symmetry. Journal of the American Chemical Society, 2011, 133, 11426-11429.	13.7	89
51	Tunable Tunneling Electroresistance in Ferroelectric Tunnel Junctions by Mechanical Loads. ACS Nano, 2011, 5, 1649-1656.	14.6	50
53	Mechanically Activated Molecular Switch through Single-Molecule Pulling. Journal of the American Chemical Society, 2011, 133, 2242-2249.	13.7	68
54	Atomic-scale engineering of electrodes for single-molecule contacts. Nature Nanotechnology, 2011, 6, 23-27.	31.5	128
55	Controlling single-molecule conductance through lateral coupling of π orbitals. Nature Nanotechnology, 2011, 6, 226-231.	31.5	138
56	Recent results on organic-based molecular memories. Current Applied Physics, 2011, 11, e49-e57.	2.4	16
57	An MCBJ case study: The influence of π-conjugation on the single-molecule conductance at a solid/liquid interface. Beilstein Journal of Nanotechnology, 2011, 2, 699-713.	2.8	157
58	Long-range electron tunnelling in oligo-porphyrin molecular wires. Nature Nanotechnology, 2011, 6, 517-523.	31.5	312
59	Orbital views of the electron transport through heterocyclic aromatic hydrocarbons. Theoretical Chemistry Accounts, 2011, 130, 765-774.	1.4	19
60	An electrochemically assisted mechanically controllable break junction approach for single molecule junction conductance measurements. Nano Research, 2011, 4, 1199-1207.	10.4	31

#	Article	IF	Citations
61	Organic Resistive Memory Devices: Performance Enhancement, Integration, and Advanced Architectures. Advanced Functional Materials, 2011, 21, 2806-2829.	14.9	432
62	Roomâ€Temperature Electrical Addressing of a Bistable Spinâ€Crossover Molecular System. Advanced Materials, 2011, 23, 1545-1549.	21.0	328
63	Single Molecule Electronic Devices. Advanced Materials, 2011, 23, 1583-1608.	21.0	426
65	Influence of the Chemical Structure on the Stability and Conductance of Porphyrin Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2011, 50, 11223-11226.	13.8	56
66	First-principles scheme for spectral adjustment in nanoscale transport. New Journal of Physics, 2011, 13, 053026.	2.9	20
67	Control of molecule-based transport for future molecular devices. Journal of Physics Condensed Matter, 2011, 23, 013001.	1.8	68
68	Mechanically-induced transport switching effect in graphene-based nanojunctions. Physical Review B, 2011, 83, .	3.2	7
69	Evaluation of conduction eigenchannels of an adatom probed by an STM tip. Physical Review B, 2011, 83,	3.2	15
70	Conductance of a photochromic molecular switch with graphene leads. Physical Review B, 2011, 84, .	3.2	21
71	Direct electrode-electrode tunneling in break-junction measurements of molecular conductance. Physical Review B, 2011, 84, .	3.2	22
72	All-electric-controlled spin current switching in single-molecule magnet-tunnel junctions. Chinese Physics B, 2011, 20, 047504.	1.4	4
73	Molecular Electronic Junction Transport: Some Pathways and Some Ideas. Topics in Current Chemistry, 2011, 313, 1-38.	4.0	22
74	Investigative Tools: Theory, Modeling, and Simulation. , 2011, , 29-69.		4
75	An approach to measure electromechanical properties of atomic and molecular junctions. Journal of Physics Condensed Matter, 2012, 24, 164210.	1.8	18
76	Memory effects in electrochemically gated metallic point contacts. Applied Physics Letters, 2012, 100, .	3.3	10
77	Anomalous length dependence of conductance of aromatic nanoribbons with amine anchoring groups. Physical Review B, 2012, 86, .	3.2	4
78	Semiempirical van der Waals interactions versus < i>ab initio < /i>nonlocal correlation effects in the thiophene-Cu(111) system. Physical Review B, 2012, 86, .	3.2	22
79	Extending the Newns-Anderson model to allow nanotransport studies through molecules with floppy degrees of freedom. Europhysics Letters, 2012, 99, 47002.	2.0	35

#	Article	IF	CITATIONS
80	Mechanically controlled molecular orbital alignment in single molecule junctions. Nature Nanotechnology, 2012, 7, 35-40.	31.5	184
81	The weak Ï€ â^ Ï€ interaction originated resonant tunneling and fast switching in the carbon based electronic devices. AIP Advances, 2012, 2, 012137.	1.3	8
82	Trimethylsilyl-Terminated Oligo(phenylene ethynylene)s: An Approach to Single-Molecule Junctions with Covalent Au \hat{a} & "C \hat{l} f-Bonds. Journal of the American Chemical Society, 2012, 134, 19425-19431.	13.7	163
83	Importance of Direct Metalâ^Ï€ Coupling in Electronic Transport Through Conjugated Single-Molecule Junctions. Journal of the American Chemical Society, 2012, 134, 20440-20445.	13.7	77
84	Configurational Behavior and Conductance of Alkanedithiol Molecular Wires from Accelerated Dynamics Simulations. Journal of Chemical Theory and Computation, 2012, 8, 4539-4545.	5.3	15
85	A multi-state single-molecule switch actuated by rotation of an encapsulated cluster within a fullerene cage. Chemical Physics Letters, 2012, 552, 1-12.	2.6	19
86	Electronic transport and mechanical stability of carboxyl linked single-molecule junctions. Physical Chemistry Chemical Physics, 2012, 14, 13841.	2.8	48
87	Pulling platinum atomic chains by carbon monoxide molecules. Nanoscale, 2012, 4, 4739.	5.6	16
88	Quantitative Current–Voltage Characteristics in Molecular Junctions from First Principles. Nano Letters, 2012, 12, 6250-6254.	9.1	72
89	Charge Transport Characteristics of Diarylethene Photoswitching Single-Molecule Junctions. Nano Letters, 2012, 12, 3736-3742.	9.1	163
90	Conductive Molecular Silicon. Journal of the American Chemical Society, 2012, 134, 4541-4544.	13.7	91
91	Dissecting Contact Mechanics from Quantum Interference in Single-Molecule Junctions of Stilbene Derivatives. Nano Letters, 2012, 12, 1643-1647.	9.1	161
92	Gold–sulfur bond breaking in Zn(II) tetraphenylporphyrin molecular junctions. Surface Science, 2012, 606, 1412-1415.	1.9	13
93	Van der Waals interactions at metal/organic interfaces at the single-molecule level. Nature Materials, 2012, 11, 872-876.	27.5	181
94	Probing the conductance superposition law in single-molecule circuits with parallel paths. Nature Nanotechnology, 2012, 7, 663-667.	31.5	302
95	Single Molecular Conductance of Tolanes: Experimental and Theoretical Study on the Junction Evolution Dependent on the Anchoring Group. Journal of the American Chemical Society, 2012, 134, 2292-2304.	13.7	381
96	First-principles study of repeated current switching in a bimolecular device. Computational Materials Science, 2012, 53, 294-297.	3.0	10
97	Vibrational heating in single-molecule switches: an energy-dependent density-of-states approach. Journal of Physics Condensed Matter, 2012, 24, 394003.	1.8	1

#	ARTICLE Single-molecule conductance determinations on	IF	CITATIONS
98	HS(CH ₂) ₄ O(CH ₂) ₄ SH and HS(CH ₂) ₂) <sub>>5(CH₂)<sub>5(CH₂)<sub>5(CH<sub>6(CH<sub>6)<sub>7(CH<sub>7(CH<sub)6(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(< td=""><td>1.8</td><td>9</td></sub)6(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(ch<sub)7(<></sub></sub></sub></sub></sub></sub></sub>	1.8	9
99	Conduction mechanisms in biphenyl dithiol single-molecule junctions. Physical Review B, 2012, 85, .	3.2	82
100	Enhancing Molecular Conductance of Oligo(p-phenylene ethynylene)s by Incorporating Ferrocene into Their Backbones. Journal of Physical Chemistry C, 2012, 116, 17853-17861.	3.1	36
101	Correlations between Molecular Structure and Single-Junction Conductance: A Case Study with Oligo(phenylene-ethynylene)-Type Wires. Journal of the American Chemical Society, 2012, 134, 5262-5275.	13.7	279
102	Controlled transport through a single molecule. Journal of Physics Condensed Matter, 2012, 24, 082201.	1.8	11
103	Functionality in single-molecule devices: Model calculations and applications of the inelastic electron tunneling signal in molecular junctions. Journal of Chemical Physics, 2012, 136, 064708.	3.0	11
104	Single Molecule Electronics and Devices. Sensors, 2012, 12, 7259-7298.	3.8	122
105	Simultaneous Determination of Conductance and Thermopower of Single Molecule Junctions. Nano Letters, 2012, 12, 354-358.	9.1	251
106	Revealing thermal effects in the electronic transport through irradiated atomic metal point contacts. Beilstein Journal of Nanotechnology, 2012, 3, 703-711.	2.8	7
107	Current–voltage characteristics of single-molecule diarylethene junctions measured with adjustable gold electrodes in solution. Beilstein Journal of Nanotechnology, 2012, 3, 798-808.	2.8	38
108	Redox-switchable devices based on functionalized graphene nanoribbons. Nanoscale, 2012, 4, 1350.	5.6	12
109	Correlation Analysis of Atomic and Single-Molecule Junction Conductance. ACS Nano, 2012, 6, 3411-3423.	14.6	80
110	Humidity effects on the electronic transport properties in carbon based nanoscale device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2012, 376, 869-874.	2.1	5
111	Comparison of the Conductance of Three Types of Porphyrinâ€Based Molecular Wires: ⟨iゝβ,meso,βâ€Fused Tapes, ⟨i⟩meso⟨i⟩â€Butadiyneâ€Linked and Twisted ⟨i⟩mesoâ€meso⟨ i⟩ Linked Oligo Advanced Materials, 2012, 24, 653-657.	n 2drs.	101
112	Single-Molecule Conductance of Functionalized Oligoynes: Length Dependence and Junction Evolution. Journal of the American Chemical Society, 2013, 135, 12228-12240.	13.7	277
113	Single-Molecule Conductance in a Series of Extended Viologen Molecules. Journal of Physical Chemistry Letters, 2013, 4, 589-595.	4.6	43
114	A current-driven single-atom memory. Nature Nanotechnology, 2013, 8, 645-648.	31.5	119
115	Impact of Molecular Symmetry on Single-Molecule Conductance. Journal of the American Chemical Society, 2013, 135, 11724-11727.	13.7	57

#	Article	IF	CITATIONS
116	Oligo(aryleneethynylene)s with Terminal Pyridyl Groups: Synthesis and Length Dependence of the Tunneling-to-Hopping Transition of Single-Molecule Conductances. Chemistry of Materials, 2013, 25, 4340-4347.	6.7	110
117	Conductance measurement of pyridyl-based single molecule junctions with Cu and Au contacts. Nanotechnology, 2013, 24, 465204.	2.6	18
118	Silicon Ring Strain Creates High-Conductance Pathways in Single-Molecule Circuits. Journal of the American Chemical Society, 2013, 135, 18331-18334.	13.7	42
119	Transition voltage spectroscopy reveals significant solvent effects on molecular transport and settles an important issue in bipyridine-based junctions. Nanoscale, 2013, 5, 9222.	5.6	47
120	Conformational change-induced switching behavior in pure-carbon systems. RSC Advances, 2013, 3, 16672.	3.6	17
121	Interface effects on tunneling magnetoresistance in organic spintronics with flexible amine–Au links. Nanotechnology, 2013, 24, 415201.	2.6	13
122	Molecular Switches and Motors on Surfaces. Annual Review of Physical Chemistry, 2013, 64, 605-630.	10.8	119
123	Elastic and inelastic electron transport in metal–molecule(s)–metal junctions. Physica E: Low-Dimensional Systems and Nanostructures, 2013, 47, 167-187.	2.7	12
124	Single molecule bridging between metal electrodes. Physical Chemistry Chemical Physics, 2013, 15, 2253-2267.	2.8	96
125	Tripodal M ^{III} Complexes on Au(111) Surfaces: Towards Molecular "Lunar Modules― European Journal of Inorganic Chemistry, 2013, 2013, 70-79.	2.0	11
126	Vibrationally induced decoherence in single-molecule junctions. Physical Review B, 2013, 87, .	3.2	39
127	Reflections on charge transport. Nature Nanotechnology, 2013, 8, 230-231.	31.5	12
128	Structure and Magnetism of the Iron(III) Spin-Crossover Complex [FeIII{N-ethyl-N-(2-aminoethyl)salicylaldiminate}2]ClO4. European Journal of Inorganic Chemistry, 2013, 2013, 894-901.	2.0	20
129	Charge Transport in Photoswitchable Dimethyldihydropyrene-Type Single-Molecule Junctions. Journal of the American Chemical Society, 2013, 135, 5974-5977.	13.7	142
130	Anchoring sites to the STM tip can explain multiple peaks in single molecule conductance histograms. Physical Chemistry Chemical Physics, 2013, 15, 1526-1531.	2.8	13
131	Molecule–electrode interfaces in molecular electronic devices. Chemical Society Reviews, 2013, 42, 5642.	38.1	248
132	Spin-Polarized Electron Transport Across Metal–Organic Molecules: A Density Functional Theory Approach. Journal of Chemical Theory and Computation, 2013, 9, 2801-2815.	5.3	43
133	Simultaneous Measurement of Force and Conductance Across Single Molecule Junctions. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 75-84.	0.5	0

#	ARTICLE	IF	CITATIONS
134	A Detailed Experimental and Theoretical Study into the Properties of C ₆₀ Dumbbell Junctions. Small, 2013, 9, 3812-3822.	10.0	11
135	Single-molecule junctions beyond electronic transport. Nature Nanotechnology, 2013, 8, 399-410.	31.5	725
136	Single-Molecule Conductance through Chiral Gold Nanotubes. Journal of Physical Chemistry C, 2013, 117, 13676-13680.	3.1	20
137	Rigidity of the conductance of an anchored dithioazobenzene optomechanical switch. Physical Review B, 2013, 87, .	3.2	3
138	Conductance of Molecular Junctions Formed with Silver Electrodes. Nano Letters, 2013, 13, 3358-3364.	9.1	86
139	Conductance and SERS Measurement of Benzenedithiol Molecules Bridging Between Au Electrodes. Journal of Physical Chemistry C, 2013, 117, 1791-1795.	3.1	47
140	Single Molecule Dynamics at a Mechanically Controllable Break Junction in Solution at Room Temperature. Journal of the American Chemical Society, 2013, 135, 1009-1014.	13.7	138
141	Mechanically controllable bi-stable states in a highly conductive single pyrazine molecular junction. Nanotechnology, 2013, 24, 315201.	2.6	23
142	Toward a new world of molecular devices: Making metallic contacts to molecules. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2013, 31, 050816.	2.1	21
143	Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages. Optical Materials Express, 2013, 3, 205.	3.0	12
144	Hydrogen bonding as the origin of the switching behavior in dithiolated phenylene-vinylene oligomers. Physical Review B, 2013, 88, .	3.2	4
145	Manipulating transport through a single-molecule junction. Journal of Chemical Physics, 2013, 139, 214709.	3.0	13
146	Characterizing molecular junctions through the mechanically controlled break-junction approach. Reports in Electrochemistry, 0 , , 1 .	0.3	6
147	Temperature Dependence of Conductance and Plateau Length for Single-Molecule Junctions Formed with Silver Electrodes. Journal of Physical Chemistry C, 2014, 118, 29962-29965.	3.1	5
149	GOLLUM: a next-generation simulation tool for electron, thermal and spin transport. New Journal of Physics, 2014, 16, 093029.	2.9	269
150	Electrochemical setup – a unique chance to simultaneously control orbital energies and vibrational properties of single-molecule junctions with unprecedented efficiency. Physical Chemistry Chemical Physics, 2014, 16, 25942-25949.	2.8	13
151	Mapping the Details of Contact Effect of Modulated Au-Octanedithiol-Au Break Junction by Forceâ€"Conductance Cross-Correlation. Journal of the American Chemical Society, 2014, 136, 17406-17409.	13.7	16
152	Orientationâ€Controlled Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2014, 53, 9771-9774.	13.8	35

#	Article	IF	CITATIONS
153	Triazatriangulene as Binding Group for Molecular Electronics. Langmuir, 2014, 30, 14868-14876.	3.5	29
154	Configuration―and Conformationâ€Dependent Electronicâ€Structure Variations in 1,4â€Disubstituted Cyclohexanes Enabled by a Carbonâ€toâ€Silicon Exchange. Chemistry - A European Journal, 2014, 20, 9304-9311.	3.3	20
156	Transitions between Electron Transporting Mechanisms in Molecular Junctions and Transistors. Journal of the Chinese Chemical Society, 2014, 61, 101-114.	1.4	9
157	Highly-effective gating of single-molecule junctions: an electrochemical approach. Chemical Communications, 2014, 50, 15975-15978.	4.1	53
158	Molecular diodes enabled by quantum interference. Faraday Discussions, 2014, 174, 79-89.	3.2	29
159	Shot noise variation within ensembles of gold atomic break junctions at room temperature. Journal of Physics Condensed Matter, 2014, 26, 474204.	1.8	12
160	Direct measurement of time dependent diffusion for Ag and Au under ambient conditions. Journal of the Korean Physical Society, 2014, 65, 1825-1828.	0.7	0
162	Nanofabrication techniques of highly organized monolayers sandwiched between two electrodes for molecular electronics. Nanofabrication, 2014, 1 , .	1.1	15
163	Tunable Charge Transport in Single-Molecule Junctions via Electrolytic Gating. Nano Letters, 2014, 14, 1400-1404.	9.1	107
164	Single-molecule conductance of dipyridines binding to Ag electrodes measured by electrochemical scanning tunneling microscopy break junction. Nanoscale Research Letters, 2014, 9, 77.	5.7	6
166	Singleâ€Molecule Sensing of Environmental pHâ€"an STM Break Junction and NEGFâ€DFT Approach. Angewandte Chemie - International Edition, 2014, 53, 1098-1102.	13.8	82
167	The Synthesis of Functionalised Diaryltetraynes and Their Transport Properties in Singleâ€Molecule Junctions. Chemistry - A European Journal, 2014, 20, 4653-4660.	3.3	44
168	Break-junctions for investigating transport at the molecular scale. Journal of Physics Condensed Matter, 2014, 26, 474201.	1.8	56
169	Investigation on the Pyrazine Molecular Junction Studied by Conductance Measurement and Near Edge X-ray Absorption Fine Structure. Fullerenes Nanotubes and Carbon Nanostructures, 2014, 22, 166-172.	2.1	2
170	Precursor configurations and post-rupture evolution of Ag–CO–Ag single-molecule junctions. Nanoscale, 2014, 6, 14784-14791.	5.6	13
171	Fast Pirouetting Motion in a Pyridine Bisamineâ€Containing Copperâ€Complexed Rotaxane. Chemistry - A European Journal, 2014, 20, 6939-6950.	3.3	16
172	Promising anchoring groups for single-molecule conductance measurements. Physical Chemistry Chemical Physics, 2014, 16, 23529-23539.	2.8	106
173	Shifting Electronic Structure by Inherent Tension in Molecular Bottlebrushes with Polythiophene Backbones. ACS Macro Letters, 2014, 3, 738-742.	4.8	16

#	Article	IF	CITATIONS
174	Preparation of nascent molecular electronic devices from gold nanoparticles and terminal alkyne functionalised monolayer films. Journal of Materials Chemistry C, 2014, 2, 7348-7355.	5.5	36
175	Force and conductance molecular break junctions with time series crosscorrelation. Nanoscale, 2014, 6, 5657.	5.6	12
176	Control of Single-Molecule Junction Conductance of Porphyrins via a Transition-Metal Center. Nano Letters, 2014, 14, 5365-5370.	9.1	83
177	Stretching of BDT-gold molecular junctions: thiol or thiolate termination?. Nanoscale, 2014, 6, 14495-14507.	5.6	40
178	High-Conductance Conformers in Histograms of Single-Molecule Current–Voltage Characteristics. Journal of Physical Chemistry C, 2014, 118, 8316-8321.	3.1	12
179	Large negative differential conductance in single-molecule break junctions. Nature Nanotechnology, 2014, 9, 830-834.	31.5	170
180	Single-molecule electronics: from chemical design to functional devices. Chemical Society Reviews, 2014, 43, 7378-7411.	38.1	433
181	Single-Molecule Junctions Based on Bipyridine: Impact of an Unusual Reorganization on Charge Transport. Journal of Physical Chemistry C, 2014, 118, 8676-8684.	3.1	29
182	Isomer-Dependent Franck–Condon Blockade in Weakly Coupled Bipyridine Molecular Junctions. Journal of Physical Chemistry C, 2014, 118, 14853-14859.	3.1	15
183	Determination of Energy Level Alignment and Coupling Strength in 4,4′-Bipyridine Single-Molecule Junctions. Nano Letters, 2014, 14, 794-798.	9.1	112
184	Conductance of Tailored Molecular Segments: A Rudimentary Assessment by Landauer Formulation. Journal of the American Chemical Society, 2014, 136, 1832-1841.	13.7	41
185	Predictive DFT-Based Approaches to Charge and Spin Transport in Single-Molecule Junctions and Two-Dimensional Materials: Successes and Challenges. Accounts of Chemical Research, 2014, 47, 3250-3257.	15.6	41
186	Key Structure–Property Relationships in CO ₂ Capture by Supported Alkanolamines. Journal of Physical Chemistry C, 2014, 118, 19252-19258.	3.1	8
187	Charge transport and rectification in molecular junctions formed with carbon-based electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10928-10932.	7.1	95
188	Single Molecular Resistive Switch Obtained via Sliding Multiple Anchoring Points and Varying Effective Wire Length. Journal of the American Chemical Society, 2014, 136, 7327-7332.	13.7	101
189	Quantitative Bond Energetics in Atomic-Scale Junctions. ACS Nano, 2014, 8, 7522-7530.	14.6	17
190	Breakdown of Interference Rules in Azulene, a Nonalternant Hydrocarbon. Nano Letters, 2014, 14, 2941-2945.	9.1	113
191	Conductance of alkyl-based molecules with one, two and three chains measured by electrochemical STM break junction. Electrochemistry Communications, 2014, 45, 83-86.	4.7	18

#	Article	IF	CITATIONS
192	Effect of nonadiabatic electronic-vibrational interactions on the transport properties of single-molecule junctions. Physical Review B, 2015, 91, .	3.2	32
193	Resonant transport and electrostatic effects in single-molecule electrical junctions. Physical Review B, 2015, 91, .	3.2	28
194	Tight-binding model for amine-terminated oligophenyl molecular junctions formed with carbon electrodes. Journal of the Korean Physical Society, 2015, 66, 1499-1502.	0.7	0
195	Probing the rupture of a Ag atomic junction in a Ag-Au mixed electrode. Journal of the Korean Physical Society, 2015, 67, 827-831.	0.7	1
196	Threeâ€State Singleâ€Molecule Naphthalenediimide Switch: Integration of a Pendant Redox Unit for Conductance Tuning. Angewandte Chemie - International Edition, 2015, 54, 13586-13589.	13.8	49
197	Linkerâ€dependent Junction Formation Probability in Singleâ€Molecule Junctions. Bulletin of the Korean Chemical Society, 2015, 36, 265-268.	1.9	6
198	Pulling Speed Dependence of Single Molecular Plateau Length. Bulletin of the Korean Chemical Society, 2015, 36, 1645-1648.	1.9	0
200	Conductance through single biphenyl molecules: symmetric and asymmetric coupling to electrodes. Beilstein Journal of Nanotechnology, 2015, 6, 1690-1697.	2.8	8
201	Alternative types of molecule-decorated atomic chains in Au–CO–Au single-molecule junctions. Beilstein Journal of Nanotechnology, 2015, 6, 1369-1376.	2.8	9
202	Measuring Conductance of Phenylenediamine as a Molecular Sensor. Journal of Sensors, 2015, 2015, 1-6.	1.1	0
203	Impact of Electrode Density of States on Transport through Pyridine-Linked Single Molecule Junctions. Nano Letters, 2015, 15, 3716-3722.	9.1	68
204	Single-molecule diodes with high rectification ratios through environmental control. Nature Nanotechnology, 2015, 10, 522-527.	31.5	360
205	Thermoelectric Efficiency of Single-Molecule Junctions: Phase Diagram Constructed from First-Principles Calculations. Journal of Physical Chemistry C, 2015, 119, 28728-28736.	3.1	7
206	Electrical conductance and structure of copper atomic junctions in the presence of water molecules. Physical Chemistry Chemical Physics, 2015, 17, 32436-32442.	2.8	10
207	Thermopower distribution of single molecule junctions with different interaction types. Journal of the Korean Physical Society, 2015, 67, 1553-1557.	0.7	2
208	Mechanical Effects on the Electronic Properties of a Biphenyl-Based Molecular Switch. Journal of Physical Chemistry C, 2015, 119, 5090-5097.	3.1	5
209	Towards single molecule switches. Chemical Society Reviews, 2015, 44, 2998-3022.	38.1	306
210	Pulling and Stretching a Molecular Wire to Tune its Conductance. Journal of Physical Chemistry Letters, 2015, 6, 2987-2992.	4.6	17

#	ARTICLE	IF	CITATIONS
211	Reducing Gap Distance of Ag Electrodes by Oxygen Atomic Junction Formation. Journal of Physical Chemistry C, 2015, 119, 12703-12707.	3.1	4
212	Adsorption-Induced Solvent-Based Electrostatic Gating of Charge Transport through Molecular Junctions. Nano Letters, 2015, 15, 4498-4503.	9.1	34
213	Graphene-porphyrin single-molecule transistors. Nanoscale, 2015, 7, 13181-13185.	5.6	97
214	Ab initio quantum transport calculations using plane waves. Progress in Surface Science, 2015, 90, 292-318.	8.3	16
215	Single-Molecule Electronics: Chemical and Analytical Perspectives. Annual Review of Analytical Chemistry, 2015, 8, 389-417.	5.4	80
216	First-principles study of the electronic transport properties of a dihydroazulene-based molecular optical switch. Computational and Theoretical Chemistry, 2015, 1067, 114-118.	2.5	8
217	Rectifying Electron-Transport Properties through Stacks of Aromatic Molecules Inserted into a Self-Assembled Cage. Journal of the American Chemical Society, 2015, 137, 5939-5947.	13.7	126
218	Single Grain Boundary Break Junction for Suspended Nanogap Electrodes with Gapwidth Down to 1–2 nm by Focused Ion Beam Milling. Advanced Materials, 2015, 27, 3002-3006.	21.0	59
219	Mechanical tuning of conductance and thermopower in helicene molecular junctions. Nanoscale, 2015, 7, 8793-8802.	5.6	66
220	Length-dependent thermopower determination of amine-terminated oligophenyl single molecular junctions formed with Ag electrodes. Journal of the Korean Physical Society, 2015, 66, 602-606.	0.7	15
221	Temperature-Dependent and Bistable Current–Voltage Measurements in Zinc Porphyrin Molecular Junctions. ACS Applied Materials & Dependent and Bistable Current–Voltage Measurements in Zinc Porphyrin Molecular Junctions.	8.0	4
222	Unimolecular Electronics. Chemical Reviews, 2015, 115, 5056-5115.	47.7	416
223	A quantum circuit rule for interference effects in single-molecule electrical junctions. Nature Communications, 2015, 6, 6389.	12.8	164
224	Molecular Mechanochemistry: Engineering and Implications of Inherently Strained Architectures. Topics in Current Chemistry, 2015, 369, 1-36.	4.0	14
225	Contacts for organic switches with carbon-nanotube leads. Nanotechnology, 2015, 26, 245201.	2.6	3
226	Silver electrodes for reversible oxygen sensor applications. Journal of the Korean Physical Society, 2015, 67, 823-826.	0.7	0
227	Probe-based measurement of lateral single-electron transfer between individual molecules. Nature Communications, 2015, 6, 8353.	12.8	56
228	Realizing tunable molecular thermal devices based on photoisomerismâ€"Is it possible?. Journal of Applied Physics, 2015, 117, 025305.	2.5	4

#	Article	IF	CITATIONS
229	Mechanically activated switching of Si-based single-molecule junction as imaged with three-dimensional dynamic probe. Nature Communications, 2015, 6, 8465.	12.8	14
230	Searching the Hearts of Graphene-like Molecules for Simplicity, Sensitivity, and Logic. Journal of the American Chemical Society, 2015, 137, 11425-11431.	13.7	84
231	Tuning Electron Transport through Functionalized C ₂₀ H ₁₀ Molecular Junctions. Journal of Chemical Theory and Computation, 2015, 11, 4900-4910.	5.3	6
232	Impact of Anchoring Groups on Ballistic Transport: Single Molecule vs Monolayer Junctions. Journal of Physical Chemistry C, 2015, 119, 21198-21208.	3.1	40
233	Effect of Mechanical Strain on Electric Conductance of Molecular Junctions. Journal of Physical Chemistry C, 2015, 119, 19452-19457.	3.1	11
234	Thiophene-based Tripodal Anchor Units for Hole Transport in Single-Molecule Junctions with Gold Electrodes. Journal of Physical Chemistry Letters, 2015, 6, 3754-3759.	4.6	31
235	The spontaneous formation of single-molecule junctions via terminal alkynes. Nanotechnology, 2015, 26, 381001.	2.6	35
236	Incorporating single molecules into electrical circuits. The role of the chemical anchoring group. Chemical Society Reviews, 2015, 44, 920-942.	38.1	154
237	Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface. Nano Letters, 2015, 15, 275-280.	9.1	73
238	High probability of single molecule junction formation with Ag electrodes. Current Applied Physics, 2015, 15, 124-128.	2.4	5
239	Interplay between quantum interference and conformational fluctuations in single-molecule break junctions. Nanoscale, 2015, 7, 1096-1101.	5.6	21
240	Correlation between the electrical conductance and the mechanical deformation of a graphite surface. Materials Letters, 2015, 140, 83-86.	2.6	1
241	Length dependence of electron transport through molecular wires $\hat{a} \in \hat{a}$ a first principles perspective. Physical Chemistry Chemical Physics, 2015, 17, 77-96.	2.8	46
242	Tuning of Charge Transport Properties of Stacks of Aromatic Molecules. Hyomen Kagaku, 2016, 37, 342-347.	0.0	1
243	Dependence of the conductance change on the molecular orbitals in Ag and Au electrodes. Journal of the Korean Physical Society, 2016, 68, 279-282.	0.7	1
244	Revealing the Conformational Dynamics in a Single-Molecule Junction by Site- and Angle-Resolved Dynamic Probe Method. ACS Nano, 2016, 10, 11211-11218.	14.6	9
245	The energy level alignment at metal–molecule interfaces using Wannier–Koopmans method. Applied Physics Letters, 2016, 108, .	3.3	8
246	An approach to develop chemical intuition for atomistic electron transport calculations using basis set rotations. Journal of Chemical Physics, 2016, 144, 194111.	3.0	6

#	Article	IF	CITATIONS
247	Variation of energy level alignment in molecular junction elongation. Journal of the Korean Physical Society, 2016, 69, 1673-1676.	0.7	0
248	Influence of Schottky barrier on conductance of a metal-semiconductor atomic quantum point contact. Applied Physics Letters, 2016, 108, 043104.	3.3	3
249	Single-Molecule Electronics. , 2016, , .		14
250	Evidence for a hopping mechanism in metal single molecule metal junctions involving conjugated metalâ€"terpyridyl complexes; potential-dependent conductances of complexes [M(pyterpy) ₂] ²⁺ (M = Co and Fe; pyterpy = 4′-(pyridin-4-yl)-2,2′:6′,2′′-te ionic liquid. Faraday Discussions. 2016. 193. 113-131.	erpyridine)	$\frac{124}{100}$
251	Single Tripyridyl–Triazine Molecular Junction with Multiple Binding Sites. Journal of Physical Chemistry C, 2016, 120, 8936-8940.	3.1	14
252	Stretching-Induced Conductance Increase in a Spin-Crossover Molecule. Nano Letters, 2016, 16, 4733-4737.	9.1	96
253	Single-Atom Switches and Single-Atom Gaps Using Stretched Metal Nanowires. ACS Nano, 2016, 10, 9695-9702.	14.6	43
254	Single-Molecule Charge Transport and Electrochemical Gating in Redox-Active Perylene Diimide Junctions. Journal of Physical Chemistry C, 2016, 120, 22646-22654.	3.1	21
255	Experimental and Computational Studies of the Single-Molecule Conductance of Ru(II) and Pt(II) <i>trans</i> -Bis(acetylide) Complexes. Organometallics, 2016, 35, 2944-2954.	2.3	49
256	Ultrafast electron injection into photo-excited organic molecules. Physical Chemistry Chemical Physics, 2016, 18, 22140-22145.	2.8	11
257	Single-molecule junctions for molecular electronics. Journal of Materials Chemistry C, 2016, 4, 8842-8858.	5.5	88
258	Low variability of single-molecule conductance assisted by bulky metal–molecule contacts. RSC Advances, 2016, 6, 75111-75121.	3.6	18
259	Probing the Conductance of the Ïf-System of Bipyridine Using Destructive Interference. Journal of Physical Chemistry Letters, 2016, 7, 4825-4829.	4.6	43
260	Distinctive electron transport on pyridine-linked molecular junctions with narrow monolayer graphene nanoribbon electrodes compared with metal electrodes and graphene electrodes. Physical Chemistry Chemical Physics, 2016, 18, 28217-28226.	2.8	25
261	Electronic transport properties of silicon carbide molecular junctions: first-principles study. RSC Advances, 2016, 6, 91453-91462.	3.6	5
262	Estimating the Landauerâ^' $8\tilde{A}^{1}$ /ttiker transmission function from single molecule break junction experiments. Nanotechnology, 2016, 27, 425203.	2.6	6
263	Insensitivity of atomic point contact conductance to a moir \tilde{A} \otimes structure. Physical Review B, 2016, 93, .	3.2	6
264	Chemical principles of single-molecule electronics. Nature Reviews Materials, 2016, 1, .	48.7	442

#	Article	IF	CITATIONS
265	A method to study electronic transport properties of molecular junction: one-dimension transmission combined with three-dimension correction approximation (OTCTCA). Scientific Reports, 2016, 6, 21946.	3.3	20
266	Visualizing the Role of Molecular Orbitals in Charge Transport through Individual Diarylethene Isomers. ACS Nano, 2016, 10, 10555-10562.	14.6	32
267	Mapping the Transmission Functions of Single-Molecule Junctions. Nano Letters, 2016, 16, 3949-3954.	9.1	58
268	Stability of rectification of iron porphyrin molecular junctions. Materials Chemistry and Physics, 2016, 180, 161-165.	4.0	2
269	Metallic, magnetic and molecular nanocontacts. Nature Nanotechnology, 2016, 11, 499-508.	31.5	48
270	Driven Liouville von Neumann Approach for Time-Dependent Electronic Transport Calculations in a Nonorthogonal Basis-Set Representation. Journal of Physical Chemistry C, 2016, 120, 15052-15062.	3.1	27
271	Determination of the number of atoms present in nano contact based on shot noise measurements with highly stable nano-fabricated electrodes. Nanotechnology, 2016, 27, 295203.	2.6	2
272	Molecular electronic plasmonics. Applied Materials Today, 2016, 3, 73-86.	4.3	63
273	Methods to Determine Electrical Conductance of Single-Molecule Junctions., 2016,, 25-59.		0
274	Charge transport through dicarboxylic-acid-terminated alkanes bound to graphene–gold nanogap electrodes. Nanoscale, 2016, 8, 14507-14513.	5.6	16
275	A New Approach to Materials Discovery for Electronic and Thermoelectric Properties of Single-Molecule Junctions. Nano Letters, 2016, 16, 1308-1316.	9.1	41
276	Proton-triggered switch based on a molecular transistor with edge-on gate. Chemical Science, 2016, 7, 3137-3141.	7.4	45
277	Investigation of molecular junctions with inelastic electron tunneling spectroscopy. Applied Spectroscopy Reviews, 2016, 51, 603-620.	6.7	13
278	Tip-induced gating of molecular levels in carbene-based junctions. Nanotechnology, 2016, 27, 125702.	2.6	13
279	An In-Depth Study of Redox-Induced Conformational Changes in Charge Transport Characteristics of a Ferrocene-Alkanethiolate Molecular Electronic Junction: Temperature-Dependent Transition Voltage Spectroscopy Analysis. Journal of Physical Chemistry C, 2016, 120, 3564-3572.	3.1	20
280	Structure–Property Relationships in Atomic-Scale Junctions: Histograms and Beyond. Accounts of Chemical Research, 2016, 49, 452-460.	15.6	65
281	Field-induced conductance switching by charge-state alternation in organometallic single-molecule junctions. Nature Nanotechnology, 2016, 11, 170-176.	31.5	155
282	Atomic structure of water/Au, Ag, Cu and Pt atomic junctions. Physical Chemistry Chemical Physics, 2017, 19, 4673-4677.	2.8	8

#	Article	IF	CITATIONS
283	Highly Reproducible and Regulated Conductance Quantization in a Polymerâ€Based Atomic Switch. Advanced Functional Materials, 2017, 27, 1605104.	14.9	66
284	Modulation and Control of Charge Transport Through Single-Molecule Junctions. Topics in Current Chemistry, 2017, 375, 17.	5.8	39
285	Stereoelectronic Effect-Induced Conductance Switching in Aromatic Chain Single-Molecule Junctions. Nano Letters, 2017, 17, 856-861.	9.1	76
286	Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions. Nano Letters, 2017, 17, 1255-1261.	9.1	44
287	Energy level alignment at molecule-metal interfaces from an optimally tuned range-separated hybrid functional. Journal of Chemical Physics, 2017, 146, .	3.0	59
288	An electrically actuated molecular toggle switch. Nature Communications, 2017, 8, 14672.	12.8	77
289	Tuning the polarity of charge carriers using electron deficient thiophenes. Chemical Science, 2017, 8, 3254-3259.	7.4	23
291	Controlling the Electrical Property of Highly Conductive Pyrazine Single-Molecule Junction. Springer Theses, 2017, , 63-78.	0.1	0
292	Effect of Tunneling Electron Injection on the Dynamic Motion of Confined Molecules in Self-Assembled Molecular Corrals. Journal of Physical Chemistry C, 2017, 121, 4980-4988.	3.1	0
293	Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes. Journal of Chemical Physics, 2017, 146, 092329.	3.0	20
294	Switching Effects in Molecular Electronic Devices. Topics in Current Chemistry, 2017, 375, 56.	5.8	33
295	Designing a molecular magnetic button based on 4d and 5d transition-metal phthalocyanines. Scientific Reports, 2017, 7, 3647.	3.3	4
296	Energy Level Alignment at Hybridized Organic–Metal Interfaces: The Role of Many-Electron Effects. Journal of Physical Chemistry C, 2017, 121, 13125-13134.	3.1	23
297	Stably electro-switchable poly-allyloxy hydroxypropyl sulfonate branched brush towards reversible capture and release of proteins and cells. Sensors and Actuators B: Chemical, 2017, 251, 334-338.	7.8	2
298	Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. Journal of the American Chemical Society, 2017, 139, 8286-8294.	13.7	29
299	The Influence of Linkers on Quantum Interference: A Linker Theorem. Journal of Physical Chemistry C, 2017, 121, 14451-14462.	3.1	33
300	Uncovering hierarchical data structure in single molecule transport. Journal of Chemical Physics, 2017, 146, .	3.0	18
301	Temporal correlations and structural memory effects in break junction measurements. Journal of Chemical Physics, $2017, 146, \ldots$	3.0	9

#	Article	IF	CITATIONS
302	Design and Control of Highly Conductive Single-Molecule Junctions. Springer Theses, 2017, , .	0.1	0
303	Controlling the formation process and atomic structures of single pyrazine molecular junction by tuning the strength of the metal–molecule interaction. Physical Chemistry Chemical Physics, 2017, 19, 9843-9848.	2.8	10
304	A ligand design with a modified naphthyridylamide for achieving the longest EMACs: the 1st single-molecule conductance of an undeca-nickel metal string. Chemical Communications, 2017, 53, 4673-4676.	4.1	38
305	Enhancing the conductivity of molecular electronic devices. Journal of Chemical Physics, 2017, 146, .	3.0	39
306	Temperature dependent tunneling conductance of single molecule junctions. Journal of Chemical Physics, 2017, 146, .	3.0	23
307	Inorganic and Organometallic Molecular Wires for Singleâ€Molecule Devices. Chemistry - A European Journal, 2017, 23, 4741-4749.	3.3	65
308	Influence of surface coverage on the formation of 4,4 \hat{a} \in 2-bipyridinium (viologen) single molecular junctions. Journal of Materials Chemistry C, 2017, 5, 11717-11723.	5. 5	13
309	A reversible single-molecule switch based on activated antiaromaticity. Science Advances, 2017, 3, eaao2615.	10.3	94
310	Observation of Single Molecule Plasmon-Driven Electron Transfer in Isotopically Edited 4,4′-Bipyridine Gold Nanosphere Oligomers. Journal of the American Chemical Society, 2017, 139, 15212-15221.	13.7	61
311	Conformational Smear Characterization and Binning of Single-Molecule Conductance Measurements for Enhanced Molecular Recognition. Journal of the American Chemical Society, 2017, 139, 15420-15428.	13.7	12
312	Sideâ€Groupâ€Mediated Mechanical Conductance Switching in Molecular Junctions. Angewandte Chemie - International Edition, 2017, 56, 15378-15382.	13.8	74
313	Sideâ€Groupâ€Mediated Mechanical Conductance Switching in Molecular Junctions. Angewandte Chemie, 2017, 129, 15580-15584.	2.0	12
314	Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing. Topics in Current Chemistry, 2017, 375, 79.	5.8	2
315	Single quantum dot rectifying diode with tunable threshold voltage. Journal of Materials Chemistry C, 2017, 5, 9792-9798.	5.5	10
316	Voltage Dependence of Molecule–Electrode Coupling in Biased Molecular Junctions. Journal of Physical Chemistry C, 2017, 121, 21136-21144.	3.1	24
317	The low-bias conducting mechanism of single-molecule junctions constructed with methylsulfide linker groups and gold electrodes. Journal of Chemical Physics, 2017, 147, 054702.	3.0	10
318	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie - International Edition, 2017, 56, 13061-13065.	13.8	66
319	Studies on the Plasmon-Induced Photoexcitation Processes of Molecules on Metal Surfaces. Springer Theses, 2017, , .	0.1	0

#	Article	IF	CITATIONS
320	Simultaneous Measurement of Surface-Enhanced Raman Scattering and Conductance Using Mechanically Controllable Break Junction Technique. Springer Theses, 2017, , 29-36.	0.1	0
321	Radicalâ€Enhanced Charge Transport in Singleâ€Molecule Phenothiazine Electrical Junctions. Angewandte Chemie, 2017, 129, 13241-13245.	2.0	18
322	Distinctive electronic transport in pyridine-based devices with narrow graphene nanoribbon electrodes. RSC Advances, 2017, 7, 53696-53705.	3.6	6
323	Effect of the substitution of F on the photoswitching behavior in single molecular device. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 2748-2753.	2.1	9
324	Insulated molecular wires: inhibiting orthogonal contacts in metal complex based molecular junctions. Nanoscale, 2017, 9, 9902-9912.	5.6	30
325	Many-body correlations and coupling in benzene-dithiol junctions. Physical Review B, 2017, 95, .	3.2	6
326	Frontier molecular orbitals of a single molecule adsorbed on thin insulating films supported by a metal substrate: electron and hole attachment energies. Journal of Physics Condensed Matter, 2017, 29, 355002.	1.8	12
327	Theoretical study on the mechanism of reactions of CX3 radicals (XÂ=ÂH, F, Cl and Br) with C20H20 and C20F20 fullerenes. Journal of Molecular Structure, 2017, 1127, 296-302.	3.6	1
328	Governing the Metal–Molecule Interface: Towards New Functionality in Single-Molecule Junctions. Bulletin of the Chemical Society of Japan, 2017, 90, 1-11.	3.2	26
329	Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions. Journal of Chemical Physics, 2017, 147, 184110.	3.0	12
330	Fluctuation in Interface and Electronic Structure of Single-Molecule Junctions Investigated by Current versus Bias Voltage Characteristics. Journal of the American Chemical Society, 2018, 140, 3760-3767.	13.7	42
331	Distinguishing Diketopyrrolopyrrole Isomers in Single-Molecule Junctions via Reversible Stimuli-Responsive Quantum Interference. Journal of the American Chemical Society, 2018, 140, 6531-6535.	13.7	78
332	HOMO Level Pinning in Molecular Junctions: Joint Theoretical and Experimental Evidence. Journal of Physical Chemistry Letters, 2018, 9, 2394-2403.	4.6	45
333	On-Demand Final State Control of a Surface-Bound Bistable Single Molecule Switch. Nano Letters, 2018, 18, 2950-2956.	9.1	11
334	Electron Transport Through Homopeptides: Are They Really Good Conductors?. ACS Omega, 2018, 3, 3778-3785.	3.5	26
335	The effect of nitrogen lone-pair interaction on the conduction in a single-molecule junction with amine-Au bonding. Scientific Reports, 2018, 8, 5222.	3.3	8
336	The organic–2D transition metal dichalcogenide heterointerface. Chemical Society Reviews, 2018, 47, 3241-3264.	38.1	158
337	Impact of junction formation processes on single molecular conductance. Physical Chemistry Chemical Physics, 2018, 20, 7947-7952.	2.8	11

#	Article	IF	CITATIONS
338	Dual Control of Molecular Conductance through pH and Potential in Single-Molecule Devices. Nano Letters, 2018, 18, 1317-1322.	9.1	49
339	The Role of Oligomeric Gold–Thiolate Units in Single-Molecule Junctions of Thiol-Anchored Molecules. Journal of Physical Chemistry C, 2018, 122, 3211-3218.	3.1	41
340	Single-molecule junction of an overcrowded ethylene with binary conductance states. Japanese Journal of Applied Physics, 2018, 57, 03EG05.	1.5	6
341	Pentanuclear Heterometallic String Complexes with Highâ€Bondâ€order Units [Ni ₂ ³⁺ â^'Mo ₂ ⁴⁺ â^'Ni ²⁺ (bna) ₄ X <s (X = Cl, NCS). Journal of the Chinese Chemical Society, 2018, 65, 122-132.</s 	ub.≱2 <td>b»] < sup > 3 +</td>	b »] < sup > 3 +
342	Detecting Mechanochemical Atropisomerization within an STM Break Junction. Journal of the American Chemical Society, 2018, 140, 710-718.	13.7	38
343	Robust Organic Radical Molecular Junctions Using Acetylene Terminated Groups for C–Au Bond Formation. Journal of the American Chemical Society, 2018, 140, 1691-1696.	13.7	79
344	Molecular Rectification Enhancement Based On Conformational and Chemical Modifications. Journal of Physical Chemistry C, 2018, 122, 2053-2063.	3.1	15
345	Challenges for single molecule electronic devices with nanographene and organic molecules. Do single molecules offer potential as elements of electronic devices in the next generation?. Physica Scripta, 2018, 93, 053001.	2.5	10
346	Thermoelectricity in single-molecule devices. Materials Science and Technology, 2018, 34, 1275-1286.	1.6	7
347	Ruthenium Trisâ€bipyridine Singleâ€Molecule Junctions with Multiple Joint Configurations. Chemistry - an Asian Journal, 2018, 13, 1297-1301.	3.3	6
348	Precise tuning of single molecule conductance in an electrochemical environment. Nanoscale, 2018, 10, 7026-7032.	5.6	15
349	Transition voltage spectroscopy analysis of charge transport through molecular nanojunctions. Applied Spectroscopy Reviews, 2018, 53, 246-263.	6.7	6
350	Quantum interference effect in the charge transport through single-molecule benzene dithiol junction at room temperature: An experimental investigation. Chinese Chemical Letters, 2018, 29, 147-150.	9.0	17
351	First-principles study of the electronic transport properties of a 1,3-diazabicyclo[3.1.0]hex-3-ene molecular optical switch. Optik, 2018, 153, 135-143.	2.9	14
352	Real-time decay of fluorinated fullerene molecules on Cu(001) surface controlled by initial coverage. Nano Research, 2018, 11, 2069-2082.	10.4	13
353	Spin Control Induced by Molecular Charging in a Transport Junction. Nano Letters, 2018, 18, 88-93.	9.1	31
354	Origin and mechanism analysis of asymmetric current fluctuations in single-molecule junctions. RSC Advances, 2018, 8, 39408-39413.	3.6	1
355	Studies on single-molecule bridging metal electrodes: development of new characterization technique and functionalities. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2018, 94, 350-359.	3.8	4

#	ARTICLE	IF	CITATIONS
356	Influence of spatial distribution of molecule on the switching behavior: A first-principles study. Journal of Theoretical and Computational Chemistry, 2018, 17, 1850038.	1.8	2
357	The Rate of Charge Tunneling in EGaln Junctions Is Not Sensitive to Halogen Substituents at the Self-Assembled Monolayer//Ga ₂ O ₃ Interface. ACS Nano, 2018, 12, 10221-10230.	14.6	17
358	Probing Lewis acid–base interactions in single-molecule junctions. Nanoscale, 2018, 10, 18131-18134.	5.6	17
359	Electrostatic Gate Control in Molecular Transistors. Topics in Current Chemistry, 2018, 376, 37.	5 . 8	5
360	Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl. Journal of Physical Chemistry Letters, 2018, 9, 5364-5372.	4.6	33
361	Effects of different electrodes and substituent groups on molecular switching. Theoretical Chemistry Accounts, 2018, 137, 1.	1.4	8
362	Fabricating Atom-Sized Gaps by Field-Aided Atom Migration in Nanoscale Junctions. Physical Review Applied, $2018,9,.$	3.8	31
363	Reversibly Switching Molecular Spectra. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23247-23253.	8.0	2
364	Electric-field induced bistability in single-molecule conductance measurements for boron coordinated curcuminoid compounds. Chemical Science, 2018, 9, 6988-6996.	7.4	16
365	A computational study on a multimode spin conductance switching by coordination isomerization in organometallic single-molecule junctions. Physical Chemistry Chemical Physics, 2018, 20, 20280-20286.	2.8	3
366	Electronic Properties of Single Atom and Molecule Junctions. ChemElectroChem, 2018, 5, 2508-2517.	3.4	5
367	DNA-Based Single-Molecule Electronics: From Concept to Function. Journal of Functional Biomaterials, 2018, 9, 8.	4.4	49
368	Side-Group Effect on Electron Transport of Single Molecular Junctions. Micromachines, 2018, 9, 234.	2.9	7
369	Investigation on Single-Molecule Junctions Based on Current–Voltage Characteristics. Micromachines, 2018, 9, 67.	2.9	17
370	Large Conductance Variations in a Mechanosensitive Single-Molecule Junction. Nano Letters, 2018, 18, 5981-5988.	9.1	69
371	Spectroscopic interrogation and charge transport properties of molecular transistors. Applied Spectroscopy Reviews, 2019, 54, 803-828.	6.7	2
372	Single molecule vs. large area design of molecular electronic devices incorporating an efficient 2-aminepyridine double anchoring group. Nanoscale, 2019, 11, 15871-15880.	5.6	20
373	Photoinduced anomalous Coulomb blockade and the role of triplet states in electron transport through an irradiated molecular transistor. II. Effects of electron-phonon coupling and vibrational relaxation. Journal of Chemical Physics, 2019, 151, 054704.	3.0	3

#	Article	IF	CITATIONS
374	Singleâ€Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angewandte Chemie - International Edition, 2019, 58, 14534-14538.	13.8	27
375	Singleâ€Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angewandte Chemie, 2019, 131, 14676-14680.	2.0	7
376	Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics. Angewandte Chemie, 2019, 131, 16736-16742.	2.0	3
377	Controlling Contact Configuration of Carboxylic Acid-Based Molecular Junctions Through Side Group. Nanoscale Research Letters, 2019, 14, 253.	5.7	4
378	Tuning spin filtering by anchoring groups in benzene derivative molecular junctions. Journal of Physics Condensed Matter, 2019, 31, 405301.	1.8	5
379	Analytical modeling of the junction evolution in single-molecule break junctions: towards quantitative characterization of the time-dependent process. Science China Chemistry, 2019, 62, 1245-1256.	8.2	9
380	Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics. Angewandte Chemie - International Edition, 2019, 58, 16583-16589.	13.8	26
381	Transmission mechanism and quantum interference in fused thienoacenes coupling to Au electrodes through the thiophene rings. Physical Chemistry Chemical Physics, 2019, 21, 16293-16301.	2.8	3
382	In Situ Coupling of Single Molecules Driven by Gold atalyzed Electrooxidation. Angewandte Chemie, 2019, 131, 16154-16158.	2.0	3
383	Deep Molecular Orbital Driven High-Temperature Hydrogen Tautomerization Switching. Journal of Physical Chemistry Letters, 2019, 10, 6755-6761.	4.6	12
384	Single-molecule level control of host-guest interactions in metallocycle-C60 complexes. Nature Communications, 2019, 10, 4599.	12.8	44
385	Electric-Field-Controllable Conductance Switching of an Overcrowded Ethylene Self-Assembled Monolayer. Journal of the American Chemical Society, 2019, 141, 18544-18550.	13.7	17
386	Role of Density Functional Theory in "Ribocomputing Devices―, 0, , .		0
387	Enhanced coupling through π-stacking in imidazole-based molecular junctions. Chemical Science, 2019, 10, 9998-10002.	7.4	38
388	Crossover in the inelastic electron tunneling spectra of conjugated molecules with direct Au–C links. Physical Chemistry Chemical Physics, 2019, 21, 1564-1571.	2.8	1
389	Force–conductance spectroscopy of a single-molecule reaction. Chemical Science, 2019, 10, 3249-3256.	7.4	14
390	Effects of Molecular Combination and Side Groups for Thiophene-Benzene-Based Nanodevices. Journal of Physical Chemistry C, 2019, 123, 2766-2774.	3.1	6
391	In Situ Coupling of Single Molecules Driven by Gold atalyzed Electrooxidation. Angewandte Chemie - International Edition, 2019, 58, 16008-16012.	13.8	23

#	Article	IF	Citations
392	Accelerating <i>GW</i> -Based Energy Level Alignment Calculations for Molecule–Metal Interfaces Using a Substrate Screening Approach. Journal of Chemical Theory and Computation, 2019, 15, 4218-4227.	5.3	34
393	Experimental investigation of quantum interference in charge transport through molecular architectures. Journal of Materials Chemistry C, 2019, 7, 12790-12808.	5.5	40
394	Stretch dependent electronic structure and vibrational energy of the bipyridine single molecule junction. Physical Chemistry Chemical Physics, 2019, 21, 16910-16913.	2.8	7
395	Quantum and Phonon Interference-Enhanced Molecular-Scale Thermoelectricity. Journal of Physical Chemistry C, 2019, 123, 12556-12562.	3.1	17
396	Enhanced Separation Concept (ESC): Removing the Functional Subunit from the Electrode by Molecular Design. European Journal of Organic Chemistry, 2019, 2019, 5334-5343.	2.4	11
397	Highly Reproducible Formation of a Polymer Singleâ€Molecule Junction for a Wellâ€Defined Current Signal. Angewandte Chemie - International Edition, 2019, 58, 9109-9113.	13.8	8
398	Highly Reproducible Formation of a Polymer Singleâ€Molecule Junction for a Wellâ€Defined Current Signal. Angewandte Chemie, 2019, 131, 9207-9211.	2.0	0
399	Paving the way to single-molecule chemistry through molecular electronics. Physical Chemistry Chemical Physics, 2019, 21, 9641-9650.	2.8	11
400	Six state molecular revolver mounted on a rigid platform. Nanoscale, 2019, 11, 9015-9022.	5.6	11
401	First-Principles Approach to the Conductance of Covalently Bound Molecular Junctions. Journal of Physical Chemistry C, 2019, 123, 6379-6387.	3.1	10
402	Hierarchical quantum master equation approach to charge transport in molecular junctions with time-dependent molecule-lead coupling strengths. European Physical Journal: Special Topics, 2019, 227, 1981-1994.	2.6	9
403	Evolution of local conductance pathways in a single-molecule junction studied using the three-dimensional dynamic probe method. Nanoscale, 2019, 11, 5951-5959.	5.6	6
404	Side-group chemical gating via reversible optical and electric control in a single molecule transistor. Nature Communications, 2019, 10, 1450.	12.8	96
405	Electrically transmissive alkyne-anchored monolayers on gold. Nanoscale, 2019, 11, 7976-7985.	5.6	16
406	Concepts in the design and engineering of single-molecule electronic devices. Nature Reviews Physics, 2019, 1, 211-230.	26.6	327
407	Structural and electronic transport properties of a SiC chain encapsulated inside a SiC nanotube: first-principles study. Physical Chemistry Chemical Physics, 2019, 21, 25548-25557.	2.8	4
408	Nonlinear and Nonsymmetric Single-Molecule Electronic Properties Towards Molecular Information Processing. Topics in Current Chemistry Collections, 2019, , 107-135.	0.5	0
409	Transition from Tunneling Leakage Current to Molecular Tunneling in Single-Molecule Junctions. CheM, 2019, 5, 390-401.	11.7	56

#	Article	IF	CITATIONS
410	In-situ formation of one-dimensional coordination polymers in molecular junctions. Nature Communications, 2019, 10, 262.	12.8	30
411	Mechanical Deformation Distinguishes Tunneling Pathways in Molecular Junctions. Journal of the American Chemical Society, 2019, 141, 497-504.	13.7	21
412	Theoretical study of electron transport properties of SimCn /Cn clusters tethered on graphene nanoribbon. Ceramics International, 2019, 45, 530-538.	4.8	7
413	Doping-induced negative differential conductance enhancement in single-molecule junction. Physica E: Low-Dimensional Systems and Nanostructures, 2019, 106, 270-276.	2.7	17
414	Electric-Field-Induced Connectivity Switching in Single-Molecule Junctions. IScience, 2020, 23, 100770.	4.1	34
415	Electrical and spin switches in singleâ€molecule junctions. InformaÄnÃ-Materiály, 2020, 2, 92-112.	17.3	47
416	Identifying the Conformational Isomers of Single-Molecule Cyclohexane at Room Temperature. CheM, 2020, 6, 2770-2781.	11.7	40
417	Folding a Single-Molecule Junction. Nano Letters, 2020, 20, 7980-7986.	9.1	35
418	Design principles of dual-functional molecular switches in solid-state tunnel junctions. Applied Physics Letters, 2020, 117, .	3.3	20
420	Photoswitching Molecular Junctions: Platforms and Electrical Properties. ChemPhysChem, 2020, 21, 2368-2383.	2.1	17
421	Unsupervised Segmentation-Based Machine Learning as an Advanced Analysis Tool for Single Molecule Break Junction Data. Journal of Physical Chemistry C, 2020, 124, 18302-18315.	3.1	17
422	Mechanically Tunable Quantum Interference in Ferrocene-Based Single-Molecule Junctions. Nano Letters, 2020, 20, 6381-6386.	9.1	52
423	Single-Molecule Plasmonic Optical Trapping. Matter, 2020, 3, 1350-1360.	10.0	53
424	Electric Field-Induced Assembly in Single-Stacking Terphenyl Junctions. Journal of the American Chemical Society, 2020, 142, 19101-19109.	13.7	61
425	Detection of an alcohol-associated cancer marker by single-molecule quantum sequencing. Chemical Communications, 2020, 56, 14299-14302.	4.1	8
426	Organic cage supported metal nanoparticles for applications. Dalton Transactions, 2020, 49, 15574-15586.	3.3	10
429	Voltage-Controlled Binary Conductance Switching in Gold–4,4′-Bipyridine–Gold Single-Molecule Nanowires. Journal of Physical Chemistry Letters, 2020, 11, 8053-8059.	4.6	11
430	Combining Molecular Spintronics with Electron Paramagnetic Resonance: The Path Towards Single-Molecule Pulsed Spin Spectroscopy. Applied Magnetic Resonance, 2020, 51, 1357-1409.	1.2	9

#	Article	IF	CITATIONS
431	pH-Activated Single Molecule Conductance and Binding Mechanism of Imidazole on Gold. Nano Letters, 2020, 20, 4687-4692.	9.1	29
432	Electrical conductance measurement of Hg ^{II} -mediated DNA duplex in buffered aqueous solution. Nucleosides, Nucleotides and Nucleic Acids, 2020, 39, 1083-1087.	1.1	3
433	A Chemically Soldered Polyoxometalate Singleâ€Molecule Transistor. Angewandte Chemie, 2020, 132, 12127-12132.	2.0	13
434	Ballistic transport and quantum unfurling in molecular junctions via minimal representations of quantum master equations. Journal of Chemical Physics, 2020, 152, 184112.	3.0	2
435	Single-molecule functionality in electronic components based on orbital resonances. Physical Chemistry Chemical Physics, 2020, 22, 12849-12866.	2.8	17
436	Reliably Probing the Conductance of a Molecule in a Cavity via van der Waals Contacts. Journal of Physical Chemistry C, 2020, 124, 16143-16148.	3.1	15
437	Iron in a Cage: Fixation of a Fe(II)tpy ₂ Complex by Fourfold Interlinking. Angewandte Chemie - International Edition, 2020, 59, 15947-15952.	13.8	16
438	Iron in a Cage: Fixation of a Fe(II)tpy 2 Complex by Fourfold Interlinking. Angewandte Chemie, 2020, 132, 16081-16086.	2.0	4
439	Simulating Electron Dynamics in Open Quantum Systems under Magnetic Fields. Journal of Physical Chemistry C, 2020, 124, 8652-8662.	3.1	4
440	Single molecule switch devices: A minireview. Instrumentation Science and Technology, 2020, 48, 518-538.	1.8	6
441	Gold–Carbon Contacts from Oxidative Addition of Aryl Iodides. Journal of the American Chemical Society, 2020, 142, 7128-7133.	13.7	31
442	Unsupervised feature recognition in single-molecule break junction data. Nanoscale, 2020, 12, 8355-8363.	5.6	21
443	Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating. Matter, 2020, 2, 378-389.	10.0	43
444	First principle investigations on transport properties in porphyrin, hexaphyrin, and hexathia[26Ï€]annulene molecular junction devices. Applied Physics Letters, 2020, 116, .	3.3	2
445	Organic Spintronics: A Theoretical Investigation of a Graphene-Porphyrin Based Nanodevice. Magnetochemistry, 2020, 6, 27.	2.4	1
446	Angstrom-Scale Ruler Using Single Molecule Conductance Signatures. Journal of Physical Chemistry C, 2020, 124, 13427-13433.	3.1	13
447	Time-resolved neurotransmitter detection in mouse brain tissue using an artificial intelligence-nanogap. Scientific Reports, 2020, 10, 11244.	3.3	18
448	Tolerance to Stretching in Thiol-Terminated Single-Molecule Junctions Characterized by Surface-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2020, 11, 6712-6717.	4.6	15

#	Article	IF	Citations
449	Nanoscale First-Principles Electronic Structure Simulations of Materials Relevant to Organic Electronics. , 2020, , 89-131.		1
450	Paramagnetic Metal–Metal Bonded Heterometallic Complexes. Chemical Reviews, 2020, 120, 2409-2447.	47.7	92
451	Molecular modelling and simulation for the design of molecular diodes using density functional theory. Molecular Simulation, 2020, 46, 460-467.	2.0	5
452	Design and optimization of a heat engine based on a porphyrin single-molecule junction with graphene electrodes. Physical Review B, 2020, 101 , .	3.2	6
453	Selective formation of molecular junctions with high and low conductance states by tuning the velocity of electrode displacement. Physical Chemistry Chemical Physics, 2020, 22, 4544-4548.	2.8	2
454	Systematic Modulation of Charge Transport in Molecular Devices through Facile Control of Molecule–Electrode Coupling Using a Double Self-Assembled Monolayer Nanowire Junction. Journal of the American Chemical Society, 2020, 142, 9708-9717.	13.7	28
455	A Chemically Soldered Polyoxometalate Singleâ€Molecule Transistor. Angewandte Chemie - International Edition, 2020, 59, 12029-12034.	13.8	49
456	Coenzyme Coupling Boosts Charge Transport through Single Bioactive Enzyme Junctions. IScience, 2020, 23, 101001.	4.1	16
457	Hybrid Molecular Junctions Using Au–S and Auâ^Ï€ Bindings. Journal of Physical Chemistry C, 2020, 124, 9261-9268.	3.1	7
458	<i>In situ</i> formation of H-bonding imidazole chains in break-junction experiments. Nanoscale, 2020, 12, 7914-7920.	5 . 6	23
459	Enhanced charge transport <i>via</i> d(Î)â \in "p(Ï \in) conjugation in Mo ₂ -integrated single-molecule junctions. Nanoscale, 2020, 12, 10320-10327.	5.6	10
460	Oxidative vaporization etching for molybdenum tip formation in air. Applied Surface Science, 2021, 542, 148642.	6.1	3
461	Singleâ€Molecule Conductance of a Ï€â€Hybridized Tripodal Anchor while Maintaining Electronic Communication. Small, 2021, 17, 2006709.	10.0	3
462	Towards Responsive <scp>Singleâ€Molecule</scp> Device. Chinese Journal of Chemistry, 2021, 39, 421-439.	4.9	7
463	Does the Seebeck coefficient of a single-molecule junction depend on the junction configuration?. Journal of Materials Chemistry A, 2021, 9, 17512-17520.	10.3	4
464	Conformation-dependent charge transport through short peptides. Nanoscale, 2021, 13, 3002-3009.	5.6	18
465	Ï€ -Conjugated organosilanes at the nexus of single-molecule electronics and imaging. Journal of Materials Chemistry C, 2021, 9, 11605-11618.	5. 5	6
466	Principles of Molecular Devices Operated by Electric Fields. RSC Theoretical and Computational Chemistry Series, 2021, , 147-194.	0.7	7

#	Article	IF	CITATIONS
467	Electric field-induced switching among multiple conductance pathways in single-molecule junctions. Chemical Communications, 2021, 57, 7160-7163.	4.1	8
468	Electromigrated nanogaps: A review on the fabrications and applications. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	1.2	5
469	Electronic Structure and Transport Properties of Single-Molecule Junctions with Different Sizes of π-Conjugated System. Journal of Physical Chemistry C, 2021, 125, 3472-3479.	3.1	6
470	Examining conductance values in the biphenyl molecular switch with reduced density matrices. International Journal of Quantum Chemistry, 2021, 121, e26633.	2.0	3
471	Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society, 2021, 143, 2886-2895.	13.7	43
472	Spectral Clustering to Analyze the Hidden Events in Single-Molecule Break Junctions. Journal of Physical Chemistry C, 2021, 125, 3623-3630.	3.1	28
473	Structural Memory Effects in Gold–4,4′-Bipyridine–Gold Single-Molecule Nanowires. Journal of Physical Chemistry Letters, 2021, 12, 1759-1764.	4.6	6
474	Noise spectroscopy of molecular electronic junctions. Applied Physics Reviews, 2021, 8, .	11.3	10
475	From molecular to supramolecular electronics. Nature Reviews Materials, 2021, 6, 804-828.	48.7	169
476	Inelastic Electron Tunneling Spectroscopy: Investigation of Bulk Dielectrics and Molecules. IEEE Transactions on Electron Devices, 2021, 68, 1411-1419.	3.0	2
477	Voltage–current behavior of 4-phenylamino-3-penten-2-one and its derivatives molecular switch: a first-principles study. Molecular Simulation, 2021, 47, 730-737.	2.0	4
478	Controllable Spin Switching in a Single-Molecule Magnetic Tunneling Junction. Nanoscale Research Letters, 2021, 16, 77.	5.7	4
479	Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. Journal of the American Chemical Society, 2021, 143, 8476-8487.	13.7	25
480	Single-molecule thermoelectric properties susceptibility to environment molecules. Molecular Simulation, 2021, 47, 1059-1065.	2.0	2
481	Probing Interfacial Electronic Effects on Singleâ€Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie - International Edition, 2021, 60, 15452-15458.	13.8	31
482	Water Splitting Induced by Visible Light at a Copperâ€Based Singleâ€Molecule Junction. Small, 2021, 17, e2008109.	10.0	3
483	Probing Interfacial Electronic Effects on Singleâ€Molecule Adsorption Geometry and Electron Transport at Atomically Flat Surfaces. Angewandte Chemie, 2021, 133, 15580-15586.	2.0	1
485	Single Molecules in Strong Optical Fields: A Variable-Temperature Molecular Junction Spectroscopy Setup. Analytical Chemistry, 2021, 93, 9853-9859.	6.5	2

#	Article	IF	CITATIONS
489	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie, 2021, 133, 21040-21046.	2.0	0
490	Sub-nanometer supramolecular rectifier based on the symmetric building block with destructive $\ddot{l}f$ -interference. Science China Chemistry, 2021, 64, 1426-1433.	8.2	8
491	Modulating the charge transport in metalâ",moleculeâ",metal junctions via electrochemical gating. Electrochimica Acta, 2021, 388, 138540.	5.2	6
492	Single Dynamic Covalent Bond Tailored Responsive Molecular Junctions. Angewandte Chemie - International Edition, 2021, 60, 20872-20878.	13.8	27
493	Hard–Soft Chemistry Design Principles for Predictive Assembly of Single Molecule-Metal Junctions. Journal of the American Chemical Society, 2021, 143, 16439-16447.	13.7	23
494	Probing metal-molecule contact at the atomic scale via conductance jumps. Physical Review B, 2021, 104, .	3.2	8
495	Device design based on the covalent homocoupling of porphine molecules*. Chinese Physics B, 2021, 30, 098504.	1.4	0
496	Ronald C.D. Breslow (1931–2017): A career in review. Bioorganic Chemistry, 2021, 115, 104868.	4.1	1
497	Role of the Binding Motifs in the Energy Level Alignment and Conductance of Amine-Gold Linked Molecular Junctions within DFT and DFT + Σ. Applied Sciences (Switzerland), 2021, 11, 802.	2.5	6
498	Atomic, molecular, charge manipulation and application of atomic force microscopy. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 136802-136802.	0.5	3
499	Oligothiophene molecular wires at graphene-based molecular junctions. Physical Chemistry Chemical Physics, 2021, 23, 21163-21171.	2.8	1
500	Mechanical single-molecule potentiometers with large switching factors from ortho-pentaphenylene foldamers. Nature Communications, 2021, 12, 167.	12.8	39
502	Binary DNA Nanostructures for Data Encryption. PLoS ONE, 2012, 7, e44212.	2.5	38
503	Design and Development of New Functional Units towards Single-Molecule Electronics. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2016, 74, 676-688.	0.1	1
504	Molecular junction stretching and interface recognition: Decode the mystery of high/low conductance switching in stretching process of 4, 4′-bipyridine molecular junction. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 208502.	0.5	7
505	Richness of molecular junction configurations revealed by tracking a full pull-push cycle. Nanoscale, 2021, 13, 18434-18440.	5 . 6	5
506	Computational Tools to Study and Predict the Long-Term Stability of Nanowires , 0, , .		0
507	Switching Mechanisms for Single-Molecule Logic Gates. Advances in Atom and Single Molecule Machines, 2013, , 55-69.	0.0	0

#	ARTICLE	IF	CITATIONS
508	Conductance of a Single Molecule Junction Formed with Ni, Au, and Ag Electrodes. Journal of the Korean Chemical Society, 2014, 58, 513-516.	0.2	0
509	CHAPTER 8. Non-Volatile Memory Properties of Donor–Acceptor Block Copolymers. RSC Polymer Chemistry Series, 2015, , 256-294.	0.2	0
510	Time-Resolved Studies of Induced Torsional Motion. Springer Theses, 2016, , 155-183.	0.1	0
511	Electron transport measurements and structure elucidation of single-molecule junctions. Denki Kagaku, 2020, 88, 217-222.	0.0	1
512	Nearfield Trapping Increases Lifetime of Single-Molecule Junction by One Order of Magnitude. SSRN Electronic Journal, 0, , .	0.4	0
513	Mechanically Induced Switching between Two Discrete Conductance States: A Potential Single-Molecule Variable Resistor. ACS Applied Materials & Early; Interfaces, 2021, 13, 57646-57653.	8.0	16
514	Voltage- and Redox State-Triggered Oxygen Adatom Conductance Switch. Journal of Physical Chemistry C, 2021, 125, 26801-26807.	3.1	2
515	Calculation of Energy Level Alignment and Interface Electronic Structure in Molecular Junctions beyond DFT. Journal of Physical Chemistry C, 2021, 125, 25825-25831.	3.1	4
516	Charge Transport Characteristics of Molecular Electronic Junctions Studied by Transition Voltage Spectroscopy. Materials, 2022, 15, 774.	2.9	5
517	Scanning Probe Lithography: State-of-the-Art and Future Perspectives. Micromachines, 2022, 13, 228.	2.9	17
518	Visualizing an Electrochemically Induced Radical Cation of Bipyridine at $Au(111)/Ionic$ Liquid Interfaces toward a Single-Molecule Switch. Analytical Chemistry, 2022, 94, 1823-1830.	6.5	9
519	Destructive quantum interference phenomenon in series-coupled double quantum dots. Physica E: Low-Dimensional Systems and Nanostructures, 2022, 138, 115097.	2.7	2
520	Mechanoresistive single-molecule junctions. Nanoscale, 2022, 14, 2874-2884.	5.6	10
521	Mechanistic Investigation and Conductance Modulation of a Metalâ€Moleculeâ€Metal Junction via Extra Acid Addition. ChemPhysChem, 2022, 23, .	2.1	1
522	Tuning the binding configurations of single-molecule junctions by molecular co-assembly. Chemical Communications, 2022, 58, 4962-4965.	4.1	3
523	A one-pot synthesis of oligo(arylene–ethynylene)-molecular wires and their use in the further verification of molecular circuit laws. Australian Journal of Chemistry, 2022, 75, 506-522.	0.9	3
524	Light-Driven Charge Transport and Optical Sensing in Molecular Junctions. Nanomaterials, 2022, 12, 698.	4.1	10
525	Large random arrowhead matrices: Multifractality, semilocalization, and protected transport in disordered quantum spins coupled to a cavity. Physical Review A, 2022, 105, .	2.5	18

#	Article	IF	CITATIONS
526	The fabrication, characterization and functionalization in molecular electronics. International Journal of Extreme Manufacturing, 2022, 4, 022003.	12.7	23
527	Formation and Evolution of Metallocene Single-Molecule Circuits with Direct Gold-ï€ Links. Journal of the American Chemical Society, 2022, 144, 6504-6515.	13.7	13
528	Controlled Hysteresis of Conductance in Molecular Tunneling Junctions. ACS Nano, 2022, 16, 4206-4216.	14.6	3
529	Redoxâ€Addressable Singleâ€Molecule Junctions Incorporating a Persistent Organic Radical**. Angewandte Chemie - International Edition, 2022, 61, .	13.8	25
530	Redoxâ€Addressable Singleâ€Molecule Junctions Incorporating a Persistent Organic Radical**. Angewandte Chemie, 0, , .	2.0	0
531	Molecular spin switch triggered by voltage and magnetic field: towards DNA-based molecular devices. Physica Scripta, 2022, 97, 055005.	2.5	5
532	Decoding Forming Processes of Different Contact Configurations in Au- and Ag-Electrode Single-Molecule Junctions. Journal of Physical Chemistry C, 2021, 125, 27290-27297.	3.1	5
533	Strain of Supramolecular Interactions in Singleâ€Stacking Junctions. Angewandte Chemie, 2022, 134, .	2.0	4
534	Strain of Supramolecular Interactions in Singleâ€Stacking Junctions. Angewandte Chemie - International Edition, 2022, 61, .	13.8	10
535	Beyond electrical conductance: progress and prospects in single-molecule junctions. Journal of Materials Chemistry C, 2022, 10, 13717-13733.	5.5	3
537	Control of molecular conductance by pH. Journal of Materials Chemistry C, 2022, 10, 13483-13498.	5.5	4
538	Trusting our machines: validating machine learning models for single-molecule transport experiments. Chemical Society Reviews, 2022, 51, 6875-6892.	38.1	10
539	Mechanical compression in cofacial porphyrin cyclophane pincers. Chemical Science, 2022, 13, 8017-8024.	7.4	7
540	Key advances in electrochemically-addressable single-molecule electronics. Current Opinion in Electrochemistry, 2022, 35, 101083.	4.8	1
541	Charge transport in molecular junctions: General physical pictures, electrical measurement techniques, and their challenges. Journal of the Chinese Chemical Society, 0, , .	1.4	1
542	Theoretical Study on the Isomerization Mechanism of Azobenzene Derivatives under Electric Field. Acta Chimica Sinica, 2022, 80, 781.	1.4	1
543	2,7- and 4,9-Dialkynyldihydropyrene Molecular Switches: Syntheses, Properties, and Charge Transport in Single-Molecule Junctions. Journal of the American Chemical Society, 2022, 144, 12698-12714.	13.7	12
544	Switching the conductance of a single molecule: Lessons from molecular junctions. MRS Communications, 2022, 12, 495-509.	1.8	6

#	Article	IF	CITATIONS
545	$\ddot{l}f$ -dominated charge transport in sub-nanometer molecular junctions. Fundamental Research, 2022, , .	3.3	1
546	2,5-Diaryl 6-hydroxyphenalenones for Single Molecule Junctions. Organic Materials, 0, , .	2.0	0
547	Electrostatic Fermi level tuning in large-scale self-assembled monolayers of oligo(phenylene–ethynylene) derivatives. Nanoscale Horizons, 2022, 7, 1201-1209.	8.0	7
548	Electrochemically controlled rectification in symmetric single-molecule junctions. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	7.1	5
549	Mechanically Tuned Thermopower of Singleâ€Molecule Junctions. Advanced Electronic Materials, 2022, 8, .	5.1	2
550	Switchable single-molecule electronic and thermoelectric device induced by light in a designed diarylethene molecule. Physical Review B, 2022, 106, .	3.2	4
551	Conductance Modulation in an \hat{l}_{\pm} -Terthiophene Molecular Junction Characterized by Surface-Enhanced Raman Scattering. E-Journal of Surface Science and Nanotechnology, 2022, , .	0.4	0
552	Theoretical study on mechanical evolution process of interface between gold electrode and pyridyl anchor group. Wuli Xuebao/Acta Physica Sinica, 2023, 72, 048504.	0.5	2
553	An experimental set-up to probe the quantum transport through a single atomic\$\$/\$\$molecular junction at room temperature. Pramana - Journal of Physics, 2023, 97, .	1.5	2
554	Reactions in single-molecule junctions. Nature Reviews Materials, 2023, 8, 165-185.	48.7	20
555	Atomically precise binding conformations of adenine and its variants on gold using single molecule conductance signatures. Journal of Chemical Physics, 2022, 157, .	3.0	4
556	An artificial synapse based on molecular junctions. Nature Communications, 2023, 14, .	12.8	14
557	In Vivo Electrochemical Biosensors: Recent Advances in Molecular Design, Electrode Materials, and Electrochemical Devices. Analytical Chemistry, 2023, 95, 388-406.	6.5	24
558	Voltage-Modulated van der Waals Interaction in Single-Molecule Junctions. Nano Letters, 2023, 23, 567-572.	9.1	5
559	Utilizing Noncovalent Conformational Locks to Create Through-Space Charge Transport. Journal of Physical Chemistry C, 2023, 127, 2518-2523.	3.1	4
560	Exploring Relationships Between Chemical Structure and Molecular Conductance: From $\hat{l}\pm,\hat{l}$ %-Functionalised Oligoynes to Molecular Circuits. Nanoscale, 0, , .	5.6	0
561	Single-molecule conductance studies on quasi- and metallaaromatic dibenzoylmethane coordination compounds and their aromatic analogs. Nanoscale, 2023, 15, 5305-5316.	5.6	1
562	Modulating single-molecule charge transport through external stimulus. EScience, 2023, 3, 100115.	41.6	2

#	Article	IF	CITATIONS
563	Interface-Assisted Room-Temperature Magnetoresistance in Cu-Phenalenyl-Based Magnetic Tunnel Junctions. ACS Applied Electronic Materials, 2023, 5, 1471-1477.	4.3	2
564	Dynamical Screening of Local Spin Moments at Metal–Molecule Interfaces. ACS Nano, 2023, 17, 5974-5983.	14.6	2
565	Switching Quantum Interference in Singleâ€Molecule Junctions by Mechanical Tuning. Angewandte Chemie, 2023, 135, .	2.0	1
566	Switching Quantum Interference in Singleâ€Molecule Junctions by Mechanical Tuning. Angewandte Chemie - International Edition, 2023, 62, .	13.8	8
567	Electric field-driven folding of single molecules. Chinese Chemical Letters, 2024, 35, 108404.	9.0	1
568	Single-molecule measurement at the solid-liquid interfaces. , 2024, , 565-582.		0
569	Not So Innocent After All: Interfacial Chemistry Determines Chargeâ€Transport Efficiency in Singleâ€Molecule Junctions. Angewandte Chemie - International Edition, 2023, 62, .	13.8	5
570	Not So Innocent After All: Interfacial Chemistry Determines Chargeâ€Transport Efficiency in Singleâ€Molecule Junctions. Angewandte Chemie, 2023, 135, .	2.0	2
571	Effects of Electrode Materials on Electron Transport for Single-Molecule Junctions. International Journal of Molecular Sciences, 2023, 24, 7277.	4.1	1
572	Hydration shell effects in ac-driven single-molecule junctions. Physical Review B, 2023, 107, .	3.2	0
573	Sheathed Molecular Junctions for Unambiguous Determination of Chargeâ€Transport Properties. Advanced Materials Interfaces, 2023, 10, .	3.7	2
574	Structural Regulation of Mechanical Gating in Molecular Junctions. Nano Letters, 2023, 23, 3775-3780.	9.1	1
575	The pivotal role of non-covalent interactions in single-molecule charge transport. Materials Chemistry Frontiers, 0, , .	5.9	1
576	Machine learning and analytical methods for single-molecule conductance measurements. Chemical Communications, 2023, 59, 6796-6810.	4.1	3
577	Configuration-Specific Insight into Single-Molecule Conductance and Noise Data Revealed by the Principal Component Projection Method. Journal of Physical Chemistry Letters, 2023, 14, 5109-5118.	4.6	2
578	Local cation-tuned reversible single-molecule switch in electric double layer. Nature Communications, 2023, 14, .	12.8	3
579	Single-Molecule Junction Formation in Deep Eutectic Solvents with Highly Effective Gate Coupling. Journal of Physical Chemistry C, 0, , .	3.1	0
580	The Conductance of Pyridine-Based Molecules Measured in Ambient Air and Electrolyte Solution: Effect of Surrounding. International Journal of Electrochemical Science, 2015, 10, 2931-2938.	1.3	4

#	Article	IF	CITATIONS
581	Decoding the mechanical conductance switching behaviors of dipyridyl molecular junctions. Nanoscale, 2023, 15, 12586-12597.	5.6	3
582	Strong Beâ^'N Interaction Induced Complementary Chemical Tuning to Design a Dualâ€gated Single Molecule Junction. Chemistry - A European Journal, 2023, 29, .	3.3	2
583	Evaluation of the 5-ethynyl-1,3,3-trimethyl-3H-indole ligand for molecular materials applications. Australian Journal of Chemistry, 2023, 76, 209-230.	0.9	0
584	Radical Single-Molecule Junctions. Journal of the American Chemical Society, 2023, 145, 18182-18204.	13.7	3
585	Robust Single-Supermolecule Switches Operating in Response to Two Different Noncovalent Interactions. Journal of the American Chemical Society, 2023, 145, 18800-18811.	13.7	2
586	Functional Design of a Reconfigurable Molecular Nanomachine: A Promising Domain for Optically Propelled Molecular Motors. Journal of Physical Chemistry C, 2023, 127, 18574-18585.	3.1	0
587	Controlling piezoresistance in single molecules through the isomerisation of bullvalenes. Nature Communications, 2023, 14 , .	12.8	1
588	Regulating the orientation of a single coordinate bond by the synergistic action of mechanical forces and electric field. Chemical Science, 2023, 14, 11456-11465.	7.4	4
589	Supramolecular Transistors with Quantum Interference Effect. Journal of the American Chemical Society, 2023, 145, 21679-21686.	13.7	2
590	Towards smart scanning probe lithography: a framework accelerating nano-fabrication process with in-situ characterization via machine learning. Microsystems and Nanoengineering, 2023, 9, .	7.0	1
591	An Orthogonal Conductance Pathway in Spiropyrans for Wellâ€Defined Electrosteric Switching Singleâ€Molecule Junctions. Small, 2024, 20, .	10.0	2
592	Electron Dynamics in Open Quantum Systems: The Driven Liouville-von Neumann Methodology within Time-Dependent Density Functional Theory. Journal of Chemical Theory and Computation, 0, , .	5.3	0
593	Deciphering <i>l–V</i> characteristics in molecular electronics with the benefit of an analytical model. Physical Chemistry Chemical Physics, 2023, 25, 32305-32316.	2.8	1
594	Microscopic theory, analysis, and interpretation of conductance histograms in molecular junctions. Nature Communications, 2023, 14, .	12.8	1
595	Coupling effects in bipyridines linked to carbon nanowires. Journal of Molecular Structure, 2024, 1299, 137130.	3.6	0
596	Remoteâ€Controllable Interfacial Electron Tunneling at Heterogeneous Molecular Junctions via Tipâ€Induced Optoelectrical Engineering. Advanced Science, 0, , .	11.2	0
597	Large area arrays of discrete single-molecule junctions derived from host–guest complexes. Nanoscale, 0, , .	5.6	0
598	Mechanical Manipulation of Quantum Interference in Singleâ€Molecule Junctions. Small, 0, , .	10.0	0

#	Article	IF	CITATIONS
599	Total variation denoising-based method of identifying the states of single molecules in break junction data. , 2024, 19 , .		0
600	Influence of Peripheral Alkyl Groups on Junction Configurations in Single-Molecule Electronics. Journal of Physical Chemistry C, 2024, 128, 1413-1422.	3.1	O
601	Evolution of Single-Molecule Electronic Interfaces. Langmuir, 2024, 40, 1988-2004.	3.5	0
602	Nanoscale memristor devices: materials, fabrication, and artificial intelligence. Journal of Materials Chemistry C, 2024, 12, 3770-3810.	5.5	1
603	Determining Transmission Characteristics from Shot-Noise-Driven Electroluminescence in Single-Molecule Junctions. Nano Letters, 2024, 24, 1931-1935.	9.1	0
604	Intramolecular London Dispersion Interactions in Single-Molecule Junctions. Journal of the American Chemical Society, 2024, 146, 4716-4726.	13.7	O
605	Photooxidation driven formation of Fe-Au linked ferrocene-based single-molecule junctions. Nature Communications, $2024,15,15$	12.8	0
606	Tuning charge transport by manipulating concentration dependent single-molecule absorption configurations. IScience, 2024, 27, 109292.	4.1	O
607	Conductance Evolution of Photoisomeric Single-Molecule Junctions under Ultraviolet Irradiation and Mechanical Stretching. Journal of the American Chemical Society, 2024, 146, 6856-6865.	13.7	0
608	Spintronics on Demand: Optically Tunable Kondo-Type Phenomena in Germanene-Azobenzene Single-Molecule Junctions. Journal of Physical Chemistry C, 2024, 128, 4687-4698.	3.1	0
609	Molecular dimer junctions forming: Role of disulfide bonds and electrodeâ€compressionâ€time. SmartMat, 0, , .	10.7	O