Generation of transgene-free induced pluripotent mous transposon

Nature Methods 6, 363-369 DOI: 10.1038/nmeth.1323

Citation Report

#	Article	IF	CITATIONS
3	Induced pluripotent stem cells offer new approach to therapy in thalassemia and sickle cell anemia and option in prenatal diagnosis in genetic diseases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9826-9830.	3.3	200
4	Derivation of induced pluripotent stem cells from pig somatic cells. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10993-10998.	3.3	434
5	Genome 10K: A Proposal to Obtain Whole-Genome Sequence for 10 000 Vertebrate Species. Journal of Heredity, 2009, 100, 659-674.	1.0	504
6	Emerging potential of transposons for gene therapy and generation of induced pluripotent stem cells. Blood, 2009, 114, 1461-1468.	0.6	130
7	PiggyBac Transposon-based Inducible Gene Expression In Vivo After Somatic Cell Gene Transfer. Molecular Therapy, 2009, 17, 2115-2120.	3.7	63
8	Cord blood for tissue regeneration. Journal of Cellular Biochemistry, 2009, 108, 762-768.	1.2	20
9	Determinants of pluripotency: From avian, rodents, to primates. Journal of Cellular Biochemistry, 2010, 109, 16-25.	1.2	19
10	New strategies to generate induced pluripotent stem cells. Current Opinion in Biotechnology, 2009, 20, 516-521.	3.3	55
11	Induced pluripotent stem cells and the stability of the differentiated state. EMBO Reports, 2009, 10, 714-721.	2.0	33
12	Adult mice generated from induced pluripotent stem cells. Nature, 2009, 461, 91-94.	13.7	433
13	Transposon-mediated genome manipulation in vertebrates. Nature Methods, 2009, 6, 415-422.	9.0	280
14	Without a trace? PiggyBac-ing toward pluripotency. Nature Methods, 2009, 6, 329-330.	9.0	10
15	Five years of Methods. Nature Methods, 2009, 6, 724-725.	9.0	0
16	Differential cytotoxic effects of mono-(2-ethylhexyl) phthalate on blastomere-derived embryonic stem cells and differentiating neurons. Toxicology, 2009, 264, 145-154.	2.0	17
17	Could coâ€transplantation of iPS cells derived hepatocytes and MSCs cure endâ€stage liver disease?. Cell Biology International, 2009, 33, 1180-1183.	1.4	11
18	An Efficient and Reversible Transposable System for Gene Delivery and Lineage-Specific Differentiation in Human Embryonic Stem Cells. Cell Stem Cell, 2009, 5, 332-342.	5.2	161
20	Stable gene transfer and expression in cord blood–derived CD34+ hematopoietic stem and progenitor cells by a hyperactive Sleeping Beauty transposon system. Blood, 2009, 114, 1319-1330.	0.6	115
21	Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood, 2009, 114, 5473-5480.	0.6	364

	CITATION	Report	
#	Article	IF	CITATIONS
22	DNA Transposons: Nature and Applications in Genomics. Current Genomics, 2010, 11, 115-128.	0.7	317
23	Inducible pluripotent stem cells: not quite ready for prime time?. Current Opinion in Organ Transplantation, 2010, 15, 61-67.	0.8	33
24	Evolution of induced pluripotent stem cell technology. Current Opinion in Hematology, 2010, 17, 276-280.	1.2	42
25	Human Embryonic and Induced Pluripotent Stem Cells in Basic and Clinical Research in Cardiology. Current Stem Cell Research and Therapy, 2010, 5, 215-226.	0.6	12
26	Progress and Promise Towards Safe Induced Pluripotent Stem Cells for Therapy. Stem Cell Reviews and Reports, 2010, 6, 297-306.	5.6	61
27	Pluripotent Stem Cells: Origin, Maintenance and Induction. Stem Cell Reviews and Reports, 2010, 6, 633-649.	5.6	53
28	Multifunctional nanocomplexes for gene transfer and gene therapy. Cell Biology and Toxicology, 2010, 26, 69-81.	2.4	64
29	Collaboration between WNT and BMP signaling promotes hemoangiogenic cell development from human fibroblast-derived iPS cells. Stem Cell Research, 2010, 4, 223-231.	0.3	19
30	Genome modification in human embryonic stem cells. Journal of Cellular Physiology, 2010, 222, 278-281.	2.0	34
31	Achievements and challenges in bioartificial kidney development. Fibrogenesis and Tissue Repair, 2010, 3, 14.	3.4	37
32	Butyrate Greatly Enhances Derivation of Human Induced Pluripotent Stem Cells by Promoting Epigenetic Remodeling and the Expression of Pluripotency-Associated Genes. Stem Cells, 2010, 28, 713-720.	1.4	385
33	Generation of Transgene-Free Lung Disease-Specific Human Induced Pluripotent Stem Cells Using a Single Excisable Lentiviral Stem Cell Cassette Â. Stem Cells, 2010, 28, 1728-1740.	1.4	375
34	Novel Hyperactive Transposons for Genetic Modification of Induced Pluripotent and Adult Stem Cells: A Nonviral Paradigm for Coaxed Differentiation. Stem Cells, 2010, 28, 1760-1771.	1.4	42
35	Induced adult stem (iAS) cells and induced transit amplifying progenitor (iTAP) cells-a possible alternative to induced pluripotent stem (iPS) cells?. Journal of Tissue Engineering and Regenerative Medicine, 2010, 4, 159-162.	1.3	7
36	Single-gene transgenic mouse strains for reprogramming adult somatic cells. Nature Methods, 2010, 7, 56-59.	9.0	373
37	iPS cell technology in regenerative medicine. Annals of the New York Academy of Sciences, 2010, 1192, 38-44.	1.8	83
38	Slingshot: a PiggyBac based transposon system for tamoxifen-inducible â€~self-inactivating' insertional mutagenesis. Nucleic Acids Research, 2010, 38, e173-e173.	6.5	11
39	Generation of induced pluripotent stem cells using site-specific integration with phage integrase. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19467-19472.	3.3	41

#	Article	IF	CITATIONS
40	Exploring refined conditions for reprogramming cells by recombinant Oct4 protein. International Journal of Developmental Biology, 2010, 54, 1713-1721.	0.3	61
41	Generation and genetic modification of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2010, 10, 1089-1103.	1.4	21
42	Alternative Sources of Pluripotent Stem Cells: Ethical and Scientific Issues Revisited. Stem Cells and Development, 2010, 19, 1121-1129.	1.1	32
43	Recent Stem Cell Advances: Induced Pluripotent Stem Cells for Disease Modeling and Stem Cell–Based Regeneration. Circulation, 2010, 122, 80-87.	1.6	166
44	Potential of human induced pluripotent stem cells derived from blood and other postnatal cell types. Regenerative Medicine, 2010, 5, 521-530.	0.8	12
45	Multiplexed transposon-mediated stable gene transfer in human cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1343-1348.	3.3	76
46	Approaches for immunological tolerance induction to stem cell-derived cell replacement therapies. Expert Review of Clinical Immunology, 2010, 6, 435-448.	1.3	25
47	Comparative Analysis of Transposable Element Vector Systems in Human Cells. Molecular Therapy, 2010, 18, 1200-1209.	3.7	205
48	piggyBac Transposon-mediated Long-term Gene Expression in Mice. Molecular Therapy, 2010, 18, 707-714.	3.7	84
49	Spinal muscular atrophy: mechanisms and therapeutic strategies. Human Molecular Genetics, 2010, 19, R111-R118.	1.4	168
50	Induced pluripotent stem cells – alchemist's tale or clinical reality?. Expert Reviews in Molecular Medicine, 2010, 12, 25.	1.6	16
51	Promotion of direct reprogramming by transformation-deficient Myc. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 14152-14157.	3.3	351
52	Dental Pulp Cells for Induced Pluripotent Stem Cell Banking. Journal of Dental Research, 2010, 89, 773-778.	2.5	200
53	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
54	Experimental approaches for the generation of induced pluripotent stem cells. Stem Cell Research and Therapy, 2010, 1, 26.	2.4	32
55	Genome-Wide Forward Genetic Screens in Mouse ES Cells. Methods in Enzymology, 2010, 477, 217-242.	0.4	22
56	<i>PiggyBac</i> Transposon-Mediated, Reversible Gene Transfer in Human Embryonic Stem Cells. Stem Cells and Development, 2010, 19, 763-771.	1.1	36
57	Current Applications of Transposons in Mouse Genetics. Methods in Enzymology, 2010, 477, 53-70.	0.4	4

	CHAHON R		
#	Article	IF	CITATIONS
58	The mouse genetics toolkit: revealing function and mechanism. Genome Biology, 2011, 12, 224.	13.9	39
59	Induced pluripotent stem cells and regenerative medicine. Journal of Clinical Gerontology and Geriatrics, 2011, 2, 1-6.	0.7	8
60	Somatic Cloning and Epigenetic Reprogramming in Mammals. , 2011, , 129-158.		5
61	Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nature Protocols, 2011, 6, 1251-1273.	5.5	67
62	Translational Stem Cell Research. Pancreatic Islet Biology, 2011, , .	0.1	3
63	Targeted gene correction of α1-antitrypsin deficiency in induced pluripotent stem cells. Nature, 2011, 478, 391-394.	13.7	635
64	Generation of Induced Pluripotent Stem Cells from Somatic Cells. , 2011, , 71-82.		0
65	Noncell Autonomous Reprogramming to a Pluripotent State. , 2011, , 141-153.		0
66	Human pluripotent stem cells in pharmacological and toxicological screening: new perspectives for personalized medicine. Personalized Medicine, 2011, 8, 347-364.	0.8	8
67	Therapeutic Potential of Lung Epithelial Progenitor Cells Derived from Embryonic and Induced Pluripotent Stem Cells. Annual Review of Medicine, 2011, 62, 95-105.	5.0	38
68	Early Markers of Reprogramming in Induced Pluripotent Stem Cells (iPSCs): A Timeline of Key Steps in the Reprogramming Process. Fertility and Sterility, 2011, 95, S5.	0.5	1
69	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
70	Embryonic Stem Cell Derivatives for Cardiac Therapy: Advantages, Limitations, and Long-Term Prospects. , 2011, , 53-66.		0
71	iPS cells: A source of cardiac regeneration. Journal of Molecular and Cellular Cardiology, 2011, 50, 327-332.	0.9	152
72	Induced Pluripotent Stem Cells. , 2011, , 187-205.		0
73	Rapid and efficient reprogramming of somatic cells to induced pluripotent stem cells by retinoic acid receptor gamma and liver receptor homolog 1. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18283-18288.	3.3	224
74	Embryonic Stem Cells and the Germ Cell Lineage. , 2011, , .		4
75	From Pluripotent Stem Cells to Lineage-Specific Chondrocytes: Essential Signalling and Cellular Intermediates. , 0, , .		3

#	Article	IF	CITATIONS
76	Application of Magnet-based Nanofection in Embryonic Stem Cell Research. , 2011, , .		0
77	Patient-Specific Pluripotent Stem Cells in Neurological Diseases. Stem Cells International, 2011, 2011, 1-17.	1.2	34
78	Induced Pluripotent Stem Cells. , 2011, , 203-215.		1
79	The Past, Present and Future of Induced Pluripotent Stem Cells. , 0, , .		0
80	New Techniques in the Generation of Induced Pluripotent Stem Cells. , 0, , .		0
81	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
82	Integration-Free iPS Cells Engineered Using Human Artificial Chromosome Vectors. PLoS ONE, 2011, 6, e25961.	1.1	66
83	Red blood cells from induced pluripotent stem cells: hurdles and developments. Current Opinion in Hematology, 2011, 18, 249-253.	1.2	40
84	Current perspective of stem cell therapies for cardiac regeneration. Therapy: Open Access in Clinical Medicine, 2011, 8, 69-82.	0.2	2
85	THE FUTURE OF STEM CELL APPLICATIONS: CHARTING THE SEA OF OPPORTUNITY. Technology and Innovation, 2011, 13, 63-74.	0.2	1
86	Late Passage Human Fibroblasts Induced to Pluripotency Are Capable of Directed Neuronal Differentiation. Cell Transplantation, 2011, 20, 193-204.	1.2	16
87	Stem Cells Therapies in Basic Science and Translational Medicine: Current Status and Treatment Monitoring Strategies. Current Pharmaceutical Biotechnology, 2011, 12, 469-487.	0.9	9
88	Building Mosaics of Therapeutic Plasmid Gene Vectors. Current Gene Therapy, 2011, 11, 466-478.	0.9	18
89	Optimization of Lentiviral Vectors Generation for Biomedical and Clinical Research Purposes: Contemporary Trends in Technology Development and Applications. Current Gene Therapy, 2011, 11, 144-153.	0.9	42
90	A proposal of a novel experimental procedure to genetically identify disease gene loci in humans. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 91-103.	1.6	0
91	Simple and efficient method for generation of induced pluripotent stem cells using piggyBac transposition of doxycycline-inducible factors and an EOS reporter system. Genes To Cells, 2011, 16, 815-825.	0.5	25
92	From stem cells to neural networks: recent advances and perspectives for neurodevelopmental disorders. Developmental Medicine and Child Neurology, 2011, 53, 13-17.	1.1	55
93	Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts. Journal of Periodontal Research, 2011, 46, 438-447.	1.4	112

#	Article	IF	CITATIONS
94	Methods for making induced pluripotent stem cells: reprogramming à la carte. Nature Reviews Genetics, 2011, 12, 231-242.	7.7	415
95	Transient expression of OCT4 is sufficient to allow human keratinocytes to change their differentiation pathway. Gene Therapy, 2011, 18, 294-303.	2.3	12
96	Manipulating piggyBac Transposon Chromosomal Integration Site Selection in Human Cells. Molecular Therapy, 2011, 19, 1636-1644.	3.7	66
97	New approaches for the generation of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2011, 11, 569-579.	1.4	24
98	Advancements in reprogramming strategies for the generation of induced pluripotent stem cells. Journal of Assisted Reproduction and Genetics, 2011, 28, 291-301.	1.2	30
99	Rederivation of transgenic mice from iPS cells derived from frozen tissue. Transgenic Research, 2011, 20, 167-175.	1.3	3
100	PET molecular imaging in stem cell therapy for neurological diseases. European Journal of Nuclear Medicine and Molecular Imaging, 2011, 38, 1926-1938.	3.3	16
101	Stem cells therapy for cardiovascular repair in ischemic heart disease: How to predict and secure optimal outcome?. EPMA Journal, 2011, 2, 107-117.	3.3	23
102	Mechanism and methods to induce pluripotency. Protein and Cell, 2011, 2, 792-799.	4.8	13
103	Genome-wide target profiling of piggyBac and Tol2in HEK 293: pros and cons for gene discovery and gene therapy. BMC Biotechnology, 2011, 11, 28.	1.7	66
104	Concise Review: Non-cell Autonomous Reprogramming: A Nucleic Acid-Free Approach to Induction of Pluripotency. Stem Cells, 2011, 29, 1013-1020.	1.4	9
105	Site-Specific Recombinase Strategy to Create Induced Pluripotent Stem Cells Efficiently with Plasmid DNA. Stem Cells, 2011, 29, 1696-1704.	1.4	37
106	Recombinant proteins to induce pluripotent stem cells: Promises for a safer and thriving step toward clinical trials. Movement Disorders, 2011, 26, 1409-1409.	2.2	1
107	Mechanistic insights into reprogramming to induced pluripotency. Journal of Cellular Physiology, 2011, 226, 868-878.	2.0	45
108	Transgene-Free Production of Pluripotent Stem Cells Using piggyBac Transposons. Methods in Molecular Biology, 2011, 767, 87-103.	0.4	50
109	Defining pluripotent stem cells through quantitative proteomic analysis. Expert Review of Proteomics, 2011, 8, 29-42.	1.3	26
110	Human Endometrial Cells Express Elevated Levels of Pluripotent Factors and Are More Amenable to Reprogramming into Induced Pluripotent Stem Cells. Endocrinology, 2011, 152, 1080-1089.	1.4	37
111	Development of an optimized backbone of FRET biosensors for kinases and GTPases. Molecular Biology of the Cell, 2011, 22, 4647-4656.	0.9	529

		CITATION RE	EPORT	
#	Article		IF	CITATIONS
112	Generation of iPS Cells from Human Skin Biopsy. Springer Protocols, 2011, , 231-247.		0.1	0
113	Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Researe148.	arch, 2011, 39,	6.5	141
114	A hyperactive <i>piggyBac</i> transposase for mammalian applications. Proceedings of Academy of Sciences of the United States of America, 2011, 108, 1531-1536.	of the National	3.3	603
115	Pharmacological response of human cardiomyocytes derived from virus-free induced p stem cells. Cardiovascular Research, 2011, 91, 577-586.	luripotent	1.8	88
116	Generation of Stable Pluripotent Stem Cells From NOD Mouse Tail-Tip Fibroblasts. Dial 1393-1398.	oetes, 2011, 60,	0.3	20
117	Pluripotent Stem Cells and Reprogrammed Cells in Farm Animals. Microscopy and Micr 17, 474-497.	roanalysis, 2011,	0.2	48
118	Somatic Genetics Empowers the Mouse for Modeling and Interrogating Developmenta Processes. PLoS Genetics, 2011, 7, e1002110.	ıl and Disease	1.5	7
119	Prospects and Challenges of Reprogrammed Cells in Hematology and Oncology. Pedia and Oncology, 2012, 29, 507-528.	tric Hematology	0.3	7
120	Basic principles in generating induced pluripotent stem cells. , 2012, , 49-63.			1
121	Activated Ras Protein Accelerates Cell Cycle Progression to Perturb Madin-Darby Canir Cystogenesis*. Journal of Biological Chemistry, 2012, 287, 31703-31711.	ne Kidney	1.6	20
122	Chimeric piggyBac transposases for genomic targeting in human cells. Nucleic Acids R 40, 6978-6991.	esearch, 2012,	6.5	46
123	Hyperactive <i>piggyBac</i> Gene Transfer in Human Cells and <i>In Vivo</i> . Human 23, 311-320.	Gene Therapy, 2012,	1.4	94
124	Axon Sorting within the Spinal Cord Marginal Zone via Robo-Mediated Inhibition of N-(Controls Spinocerebellar Tract Formation. Journal of Neuroscience, 2012, 32, 15377-1	Cadherin 5387.	1.7	38
125	Cellular Reprogramming Employing Recombinant Sox2 Protein. Stem Cells Internation 1-10.	al, 2012, 2012,	1.2	43
126	Advances in Induced Pluripotent Stem Cell Technologies. Stem Cells International, 201	2, 2012, 1-1.	1.2	0
127	MiR-25 Regulates Wwp2 and Fbxw7 and Promotes Reprogramming of Mouse Fibrobla PLoS ONE, 2012, 7, e40938.	st Cells to iPSCs.	1.1	65
128	A further analysis of olfactory cortex development. Frontiers in Neuroanatomy, 2012,	6, 35.	0.9	6
130	A poor imitation of a natural process. Cell Cycle, 2012, 11, 4536-4544.		1.3	13

#	Article	IF	CITATIONS
131	Recent developments in transposon-mediated gene therapy. Expert Opinion on Biological Therapy, 2012, 12, 841-858.	1.4	47
132	Induced pluripotent stem cells as a disease model for studying inherited arrhythmias: promises and hurdles. Drug Discovery Today: Disease Models, 2012, 9, e199-e207.	1.2	5
133	Generation of rabbit pluripotent stem cell lines. Theriogenology, 2012, 78, 1774-1786.	0.9	19
134	PiggyBac Transposon-Mediated Gene Transfer in Cashmere Goat Fetal Fibroblast Cells. Bioscience, Biotechnology and Biochemistry, 2012, 76, 933-937.	0.6	19
135	A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nature Communications, 2012, 3, 1085.	5.8	88
136	Induced pluripotent stem cells for cardiac repair. Cellular and Molecular Life Sciences, 2012, 69, 3285-3299.	2.4	37
137	Feeder-Free Derivation of Human Induced Pluripotent Stem Cells with Messenger RNA. Scientific Reports, 2012, 2, 657.	1.6	132
138	The potential of induced pluripotent stem cells as a translational model for neurotoxicological risk. NeuroToxicology, 2012, 33, 518-529.	1.4	40
139	Mutagenesis by imprecise excision of the piggyBac transposon in Drosophila melanogaster. Biochemical and Biophysical Research Communications, 2012, 417, 335-339.	1.0	15
140	Induced Pluripotent Stem Cells: Progress and Future Perspectives in the Stem Cell World. Cellular Reprogramming, 2012, 14, 459-470.	0.5	8
141	Increasing Doublecortin Expression Promotes Migration of Human Embryonic Stem Cell-Derived Neurons. Stem Cells, 2012, 30, 1852-1862.	1.4	20
142	Cellular reprogramming: a new approach to modelling Parkinson's disease. Biochemical Society Transactions, 2012, 40, 1152-1157.	1.6	21
143	PiggyBac Toolbox. Methods in Molecular Biology, 2012, 859, 241-254.	0.4	39
144	Generation of Induced Pluripotent Stem Cells from Somatic Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 1-26.	0.9	17
145	Functional cardiac tissue engineering. Regenerative Medicine, 2012, 7, 187-206.	0.8	98
146	Reprogramming of Somatic Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 51-82.	0.9	14
148	Advances in Induced Pluripotent Stem Cell Biology. , 2012, , 67-84.		0
150	Human Embryonic and Induced Pluripotent Stem Cells. Springer Protocols, 2012, , .	0.1	6

#	Article	IF	CITATIONS
151	Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells. Current Protocols in Molecular Biology, 2012, 97, Unit-23.15	2.9	13
152	RNA Interference Is Responsible for Reduction of Transgene Expression after Sleeping Beauty Transposase Mediated Somatic Integration. PLoS ONE, 2012, 7, e35389.	1.1	8
153	MicroRNAs Are Indispensable for Reprogramming Mouse Embryonic Fibroblasts into Induced Stem Cell-Like Cells. PLoS ONE, 2012, 7, e39239.	1.1	26
154	Development of an All-in-One Inducible Lentiviral Vector for Gene Specific Analysis of Reprogramming. PLoS ONE, 2012, 7, e41007.	1.1	30
155	Pre-Evaluated Safe Human iPSC-Derived Neural Stem Cells Promote Functional Recovery after Spinal Cord Injury in Common Marmoset without Tumorigenicity. PLoS ONE, 2012, 7, e52787.	1.1	266
156	Towards Optimising the Production of and Expression from Polycistronic Vectors in Embryonic Stem Cells. PLoS ONE, 2012, 7, e48668.	1.1	20
157	Technological Progress in Generation of Induced Pluripotent Stem Cells for Clinical Applications. Scientific World Journal, The, 2012, 2012, 1-10.	0.8	12
158	Induced Pluripotent Stem Cells to Model and Treat Neurogenetic Disorders. Neural Plasticity, 2012, 2012, 1-15.	1.0	20
159	Translating 2A Research into Practice. , 0, , .		2
160	A Novel Assay for Quantifying the Number of Plasmids Encapsulated by Polymer Nanoparticles. Small, 2012, 8, 367-373.	5.2	56
161	Concise Review: The Magic Act of Generating Induced Pluripotent Stem Cells: Many Rabbits in the Hat. Stem Cells, 2012, 30, 28-32.	1.4	16
162	Neural Stem Cells Directly Differentiated from Partially Reprogrammed Fibroblasts Rapidly Acquire Gliogenic Competency. Stem Cells, 2012, 30, 1109-1119.	1.4	84
163	Stem Cell Sources for Vascular Tissue Engineering and Regeneration. Tissue Engineering - Part B: Reviews, 2012, 18, 405-425.	2.5	81
164	Delineating nuclear reprogramming. Protein and Cell, 2012, 3, 329-345.	4.8	3
165	Biological Impact of Human Embryonic Stem Cells. Advances in Experimental Medicine and Biology, 2012, 741, 217-230.	0.8	1
166	Non-viral iPSCs: a safe way for therapy?. Protein and Cell, 2012, 3, 241-245.	4.8	3
167	A method for stable transgenesis of radial glia lineage in rat neocortex by piggyBac mediated transposition. Journal of Neuroscience Methods, 2012, 207, 172-180.	1.3	126
168	Treatment with the cancer drugs decitabine and doxorubicin induces human skin keratinocytes to express Oct4 and the OCT4 regulator mirâ€145. Journal of Dermatology, 2012, 39, 617-624.	0.6	9

#	Article	IF	CITATIONS
169	Targeted disruption of exogenous <scp><i>EGFP</i></scp> gene in medaka using zincâ€finger nucleases. Development Growth and Differentiation, 2012, 54, 546-556.	0.6	32
170	Induced pluripotent stem cells and hepatic differentiation. Journal of the Chinese Medical Association, 2013, 76, 599-605.	0.6	13
171	Transgene Site-Specific Integration: Problems and Solutions. Topics in Current Genetics, 2013, , 3-39.	0.7	3
172	Fluorescence resonance energy transfer imaging of cell signaling from <i>in vitro</i> to <i>in vivo</i> : Basis of biosensor construction, live imaging, and image processing. Development Growth and Differentiation, 2013, 55, 515-522.	0.6	69
173	Engineering subtle targeted mutations into the mouse genome. Genesis, 2013, 51, 605-618.	0.8	38
174	Pluripotent Stem Cells. Methods in Molecular Biology, 2013, , .	0.4	5
175	Induced Pluripotent Stem Cell Technology and Direct Conversion: New Possibilities to Study and Treat Parkinson's Disease. Stem Cell Reviews and Reports, 2013, 9, 505-513.	5.6	11
176	RNA-Based Tools for Nuclear Reprogramming and Lineage-Conversion: Towards Clinical Applications. Journal of Cardiovascular Translational Research, 2013, 6, 956-968.	1.1	53
177	Technological progress and challenges towards cGMP manufacturing of human pluripotent stem cells based therapeutic products for allogeneic and autologous cell therapies. Biotechnology Advances, 2013, 31, 1600-1623.	6.0	80
178	The ROSA26-iPSC Mouse: A Conditional, Inducible, and Exchangeable Resource for Studying Cellular (De)Differentiation. Cell Reports, 2013, 3, 335-341.	2.9	35
179	Will Brain Cells Derived From Induced Pluripotent Stem Cells or Directly Converted From Somatic Cells (iNs) Be Useful for Schizophrenia Research?. Schizophrenia Bulletin, 2013, 39, 948-954.	2.3	2
180	Seamless genome editing in human pluripotent stem cells using custom endonuclease–based gene targeting and the piggyBac transposon. Nature Protocols, 2013, 8, 2061-2078.	5.5	80
181	Applying horizontal gene transfer phenomena to enhance non-viral gene therapy. Journal of Controlled Release, 2013, 172, 246-257.	4.8	6
182	A Hierarchy in Reprogramming Capacity in Different Tissue Microenvironments: What We Know and What We Need to Know. Stem Cells and Development, 2013, 22, 695-706.	1.1	22
183	The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 2013, 228, 267-275.	2.0	43
184	Somatic Cloning and Epigenetic Reprogramming in Mammals. , 2013, , 101-124.		0
185	Generation of induced pluripotent stem cells from human foetal fibroblasts using the Sleeping Beauty transposon gene delivery system. Differentiation, 2013, 86, 30-37.	1.0	43
186	The meaning of the anti-cancer antibody CLN-IgG (Pritumumab) generated by human×human hybridoma technology against the cyto-skeletal protein, vimentin, in the course of the treatment of malignancy. Medical Hypotheses, 2013, 81, 489-495.	0.8	6

ARTICLE IF CITATIONS Generation of Integration-free and Region-Specific Neural Progenitors from Primate Fibroblasts. Cell 187 2.9 98 Reports, 2013, 3, 1580-1591. Efficient <i>p53</i> gene targeting by homologous recombination in ratâ€induced pluripotent stem cells. Cell Proliferation, 2013, 46, 1-9. 188 2.4 189 Induced Pluripotent Stem Cells., 2013, , 197-218. 0 Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature, 335 2013, 497, 628-632. Generation and characterization of virus-free reprogrammed melanoma cells by the piggyBac 192 1.2 4 transposon. Journal of Cancer Research and Clinical Oncology, 2013, 139, 1591-1599. Generation of Transgene-Free iPSC Lines from Human Normal and Neoplastic Blood Cells Using 0.4 Episomal Vectors. Methods in Molecular Biology, 2013, 997, 163-176. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nature Protocols, 2013, 8, 194 5.5 180 568-582. Bio-applications Derived from Site-Directed Genome Modification Technologies. Topics in Current Genetics, 2013, , 353-384. Derivation and Characterization of <i>Sleeping Beauty</i>Transposon-Mediated Porcine Induced 196 1.1 76 Pluripotent Stem Cells. Stem Cells and Development, 2013, 22, 124-135. The protein coexpression problem in biotechnology and biomedicine: virus 2A and 2A-like sequences provide a solution. Future Virology, 2013, 8, 983-996. The <i>piggyBac</i> Transposon Displays Local and Distant Reintegration Preferences and Can Cause 198 77 1.1 Mutations at Noncanonical Integration Sites. Molecular and Cellular Biology, 2013, 33, 1317-1330. Sleeping Beauty transposon-based system for cellular reprogramming and targeted gene insertion in 199 6.5 induced pluripótent stem cells. Nucléic Acids Research, 2013, 41, 1829-1847. The parallel growth of motoneuron axons with the dorsal aorta depends on Vegfc/Vegfr3 signaling 200 1.2 30 in zebrafish. Development (Cambridge), 2013, 140, 4081-4090. Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for 1.2 Spinal Cord Injury. Cell Transplantation, 2013, 22, 571-617. Gene delivery techniques for adult stem cell-based regenerative therapy. Nanomedicine, 2013, 8, 202 12 1.7 1875-1891. Rap1 potentiates endothelial cell junctions by spatially controlling myosin II activity and actin organization. Journal of Cell Biology, 2013, 202, 901-916. 2.3 123 Lineage-Specific Purification of Neural Stem/Progenitor Cells From Differentiated Mouse Induced 204 1.6 4 Pluripotent Stem Cells. Stem Cells Translational Medicine, 2013, 2, 420-433. Stem cellâ€derived hepatocytes as a predictive model for drugâ€induced liver injury: are we there yet?. 1.1 68 British Journal of Clinical Pharmacology, 2013, 75, 885-896.

#	Article	IF	CITATIONS
206	Potential of Herpesvirus Saimiri-Based Vectors To Reprogram a Somatic Ewing's Sarcoma Family Tumor Cell Line. Journal of Virology, 2013, 87, 7127-7139.	1.5	2
207	Feederâ€Free Reprogramming of Human Fibroblasts with Messenger RNA. Current Protocols in Stem Cell Biology, 2013, 27, Unit 4A.6	3.0	18
208	<i>piggyBac</i> transposase tools for genome engineering. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2279-87.	3.3	186
209	Effective Targeted Gene Knockdown in Mammalian Cells Using the piggyBac Transposase-based Delivery System. Molecular Therapy - Nucleic Acids, 2013, 2, e137.	2.3	4
210	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
211	In vivo Reprogramming of Adult Somatic Cells to Pluripotency by Overexpression of Yamanaka Factors. Journal of Visualized Experiments, 2013, , e50837.	0.2	10
212	Therapeutic Transdifferentiation: Can we Generate Cardiac Tissue Rather Than Scar after Myocardial Injury?. Methodist DeBakey Cardiovascular Journal, 2013, 9, 210-212.	0.5	5
213	Multiple Paths to Reprogramming. , 2013, , .		О
214	An Overview of Pluripotent Stem Cells. , 2013, , .		5
215	ECM-Dependent HIF Induction Directs Trophoblast Stem Cell Fate via LIMK1-Mediated Cytoskeletal Rearrangement. PLoS ONE, 2013, 8, e56949.	1.1	31
216	A Universal Vector for High-Efficiency Multi-Fragment Recombineering of BACs and Knock-In Constructs. PLoS ONE, 2013, 8, e62054.	1.1	4
217	A Site-Specific Recombinase-Based Method to Produce Antibiotic Selectable Marker Free Transgenic Cattle. PLoS ONE, 2013, 8, e62457.	1.1	31
218	Nuclear Localization of the Mitochondrial Factor HIGD1A during Metabolic Stress. PLoS ONE, 2013, 8, e62758.	1.1	32
219	β-Catenin Functions Pleiotropically in Differentiation and Tumorigenesis in Mouse Embryo-Derived Stem Cells. PLoS ONE, 2013, 8, e63265.	1.1	15
220	Vector-Free and Transgene-Free Human iPS Cells Differentiate into Functional Neurons and Enhance Functional Recovery after Ischemic Stroke in Mice. PLoS ONE, 2013, 8, e64160.	1.1	69
221	Induced pluripotent stem cells. , 0, , 19-33.		0
222	Generation of Induced Pluripotent Stem Cells from Dental Pulp Somatic Cells. , 2013, , .		2
223	Transposons for Non-Viral Gene Transfer. , 2013, , .		1

# 224	ARTICLE Disease Models for the Genetic Cardiac Diseases. , 0, , .	IF	CITATIONS
225	A Nucleolus-Predominant piggyBac Transposase, NP-mPB, Mediates Elevated Transposition Efficiency in Mammalian Cells. PLoS ONE, 2014, 9, e89396.	1.1	5
226	A Systemic Evaluation of Cardiac Differentiation from mRNA Reprogrammed Human Induced Pluripotent Stem Cells. PLoS ONE, 2014, 9, e103485.	1.1	28
227	Myocardial Reprogramming Medicine: The Development, Application, and Challenge of Induced Pluripotent Stem Cells. New Journal of Science, 2014, 2014, 1-22.	1.0	2
228	Development of a FRET Biosensor with High Specificity for Akt. Cell Structure and Function, 2014, 39, 9-20.	0.5	36
229	Footprint-Free Human Induced Pluripotent Stem Cells From Articular Cartilage With Redifferentiation Capacity: A First Step Toward a Clinical-Grade Cell Source. Stem Cells Translational Medicine, 2014, 3, 433-447.	1.6	58
230	Cloning of Rabbits. , 2014, , 227-244.		1
231	Quantitative <i>In Vivo</i> Fluorescence Cross-Correlation Analyses Highlight the Importance of Competitive Effects in the Regulation of Protein-Protein Interactions. Molecular and Cellular Biology, 2014, 34, 3272-3290.	1.1	33
233	Removal of Reprogramming Transgenes Improves the Tissue Reconstitution Potential of Keratinocytes Generated From Human Induced Pluripotent Stem Cells. Stem Cells Translational Medicine, 2014, 3, 992-1001.	1.6	14
234	Minimal piggyBac vectors for chromatin integration. Gene Therapy, 2014, 21, 1-9.	2.3	22
235	CLoNe is a new method to target single progenitors and study their progeny in mouse and chick. Development (Cambridge), 2014, 141, 1589-1598.	1.2	63
236	Extracortical origin of some murine subplate cell populations. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 8613-8618.	3.3	68
237	Contribution of Mouse Embryonic Stem Cells and Induced Pluripotent Stem Cells to Chimeras through Injection and Coculture of Embryos. Stem Cells International, 2014, 2014, 1-9.	1.2	12
238	Hyperactive mariner transposons are created by mutations that disrupt allosterism and increase the rate of transposon end synapsis. Nucleic Acids Research, 2014, 42, 2637-2645.	6.5	31
239	piggyBac Transposon Mediated Reprogramming and Flow Cytometry Analysis of CD44 and ICAM1 Cell-Surface Marker Changes. Methods in Molecular Biology, 2014, 1357, 285-293.	0.4	1
240	Generation of precise point mutation mice by footprintless genome modification. Genesis, 2014, 52, 68-77.	0.8	4
241	Vectorology and Factor Delivery in Induced Pluripotent Stem Cell Reprogramming. Stem Cells and Development, 2014, 23, 1301-1315.	1.1	48
242	Nucleaseâ€mediated genome editing: At the frontâ€line of functional genomics technology. Development Growth and Differentiation, 2014, 56, 2-13.	0.6	60

#	Article	IF	CITATIONS
243	ApiggyBactransposon- and gateway-enhanced system for efficient BAC transgenesis. Developmental Dynamics, 2014, 243, C1-C1.	0.8	0
244	Hypoxia Promotes CEMP1 Expression and Induces Cementoblastic Differentiation of Human Dental Stem Cells in an HIF-1-Dependent Manner. Tissue Engineering - Part A, 2014, 20, 410-423.	1.6	25
245	Identification of Ccr4-Not Complex Components as Regulators of Transition from Partial to Genuine Induced Pluripotent Stem Cells. Stem Cells and Development, 2014, 23, 2170-2179.	1.1	9
246	Pluripotent State Induction in Mouse Embryonic Fibroblast Using mRNAs of Reprogramming Factors. International Journal of Molecular Sciences, 2014, 15, 21840-21864.	1.8	9
247	Modes of TAL effector-mediated repression. Nucleic Acids Research, 2014, 42, 13061-13073.	6.5	10
248	The H3K4 methyltransferase Setd1a is first required at the epiblast stage, whereas Setd1b becomes essential after gastrulation. Development (Cambridge), 2014, 141, 1022-1035.	1.2	166
249	Fluctuation of Rac1 activity is associated with the phenotypic and transcriptional heterogeneity of glioma cells. Journal of Cell Science, 2014, 127, 1805-1815.	1.2	21
250	Contribution of Tumor Heterogeneity in a New Animal Model of CNS Tumors. Molecular Cancer Research, 2014, 12, 742-753.	1.5	25
251	DNA transposition by protein transduction of the <i>piggyBac</i> transposase from lentiviral Gag precursors. Nucleic Acids Research, 2014, 42, e28-e28.	6.5	28
252	Generation and characterization of bat-induced pluripotent stem cells. Theriogenology, 2014, 82, 283-293.	0.9	22
253	Generation of Mouse Induced Pluripotent Stem Cells by Protein Transduction. Tissue Engineering - Part C: Methods, 2014, 20, 383-392.	1.1	35
254	Neuroprotection and Regeneration of the Spinal Cord. , 2014, , .		2
255	Scientific principles of regenerative medicine and their application in the female reproductive system. Maturitas, 2014, 77, 12-19.	1.0	22
256	Serumâ€free spheroid suspension culture maintains mesenchymal stem cell proliferation and differentiation potential. Biotechnology Progress, 2014, 30, 974-983.	1.3	71
257	Precise marker excision system using an animalâ€derived <i>piggyBac</i> transposon in plants. Plant Journal, 2014, 77, 454-463.	2.8	38
258	PLE-wu, a new member of piggyBac transposon family from insect, is active in mammalian cells. Journal of Bioscience and Bioengineering, 2014, 118, 359-366.	1.1	7
259	Stem Cells and Cell Therapy. Cell Engineering, 2014, , .	0.4	4
260	Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nature Biotechnology, 2014, 32, 267-273.	9.4	943

#	Article	IF	CITATIONS
261	Excision Efficiency Is Not Strongly Coupled to Transgenic Rate: Cell Type-Dependent Transposition Efficiency of <i>Sleeping Beauty</i> and <i>piggyBac</i> DNA Transposons. Human Gene Therapy Methods, 2014, 25, 241-252.	2.1	20
262	Induced Pluripotent Stem Cells in Dermatology: Potentials, Advances, and Limitations. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015164-a015164.	2.9	20
263	<i>PiggyBac</i> Transposon-Mediated Cellular Transgenesis in Mammalian Forebrain by In Utero Electroporation. Cold Spring Harbor Protocols, 2014, 2014, pdb.prot073650.	0.2	20
264	Reprogramming Somatic Cells to a Kidney Fate. Seminars in Nephrology, 2014, 34, 462-480.	0.6	7
265	Can Pluripotent Stem Cells Be Used in Cell-Based Therapy?. Cellular Reprogramming, 2014, 16, 98-107.	0.5	20
266	All Roads Lead to Induced Pluripotent Stem Cells: The Technologies of iPSC Generation. Stem Cells and Development, 2014, 23, 1285-1300.	1.1	87
267	A <i>piggyBac</i> transposon―and gatewayâ€enhanced system for efficient BAC transgenesis. Developmental Dynamics, 2014, 243, 1086-1094.	0.8	19
269	Efficient germ-line transmission obtained with transgene-free induced pluripotent stem cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10678-10683.	3.3	21
270	Selection Via Pluripotency-Related Transcriptional Screen Minimizes the Influence of Somatic Origin on iPSC Differentiation Propensity. Stem Cells, 2014, 32, 2350-2359.	1.4	10
271	Direct Interrogation of DNA Content Distribution in Nanoparticles by a Novel Microfluidics-Based Single-Particle Analysis. Nano Letters, 2014, 14, 4729-4735.	4.5	25
272	Stem cell therapies for treating osteoarthritis: Prescient or premature?. Veterinary Journal, 2014, 202, 416-424.	0.6	43
273	A modified piggybac transposon system mediated by exogenous mRNA to perform gene delivery in bovine mammary epithelial cells. Biotechnology and Bioprocess Engineering, 2014, 19, 350-362.	1.4	1
274	Glycoprotein profiling of stem cells using lectin microarray based on surface plasmon resonance imaging. Analytical Biochemistry, 2014, 465, 114-120.	1.1	20
275	Strategies for rapidly mapping proviral integration sites and assessing cardiogenic potential of nascent human induced pluripotent stem cell clones. Experimental Cell Research, 2014, 327, 297-306.	1.2	13
276	Toward establishing an efficient and versatile gene targeting system in higher plants. Biocatalysis and Agricultural Biotechnology, 2014, 3, 2-6.	1.5	11
277	Induced Pluripotent Stem Cells for Post–Myocardial Infarction Repair. Circulation Research, 2014, 114, 1328-1345.	2.0	119
278	Stem cells and the treatment of Parkinson's disease. Experimental Neurology, 2014, 260, 3-11.	2.0	22
279	Expanding the genetic editing tool kit: ZFNs, TALENs, and CRISPR-Cas9. Journal of Clinical Investigation, 2014, 124, 4154-4161.	3.9	369

#	Article	IF	CITATIONS
280	Efficient Generation Human Induced Pluripotent Stem Cells from Human Somatic Cells with Sendai-virus. Journal of Visualized Experiments, 2014, , .	0.2	10
281	A highly efficient method for generation of therapeutic quality human pluripotent stem cells by using naive induced pluripotent stem cells nucleus for nuclear transfer. SAGE Open Medicine, 2014, 2, 205031211455037.	0.7	6
282	Reprogramming rat embryonic fibroblasts into induced pluripotent stem cells using transposon vectors and their chondrogenic differentiation in vitro. Molecular Medicine Reports, 2015, 11, 989-994.	1.1	8
283	Epigenome rejuvenation: HP1β mobility as a measure of pluripotent and senescent chromatin ground states. Scientific Reports, 2014, 4, 4789.	1.6	36
284	Generation of induced pluripotent stem cells from domestic goats. Molecular Reproduction and Development, 2015, 82, 709-721.	1.0	32
285	Induced pluripotent stem cells: Mechanisms, achievements and perspectives in farm animals. World Journal of Stem Cells, 2015, 7, 315.	1.3	40
286	Induced Pluripotency and Gene Editing in Disease Modelling: Perspectives and Challenges. International Journal of Molecular Sciences, 2015, 16, 28614-28634.	1.8	19
287	Novel Genome-Editing Tools to Model and Correct Primary Immunodeficiencies. Frontiers in Immunology, 2015, 6, 250.	2.2	32
288	Spatiotemporal analyses of neural lineages after embryonic and postnatal progenitor targeting combining different reporters. Frontiers in Neuroscience, 2015, 9, 87.	1.4	13
289	Neuroprotective therapies in glaucoma: II. Genetic nanotechnology tools. Frontiers in Neuroscience, 2015, 9, 355.	1.4	14
290	Generation of NaÃ ⁻ ve Bovine Induced Pluripotent Stem Cells Using PiggyBac Transposition of Doxycycline-Inducible Transcription Factors. PLoS ONE, 2015, 10, e0135403.	1.1	54
291	Methods of induced pluripotent stem cells for clinical application. World Journal of Stem Cells, 2015, 7, 116.	1.3	60
292	Mon1-Ccz1 activates Rab7 only on late endosome and dissociates from lysosome in mammalian cells. Journal of Cell Science, 2015, 129, 329-40.	1.2	39
293	Reprogramming Roadblocks Are System Dependent. Stem Cell Reports, 2015, 5, 350-364.	2.3	34
294	HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. Cell Reports, 2015, 10, 891-899.	2.9	79
295	A practical guide to induced pluripotent stem cell research using patient samples. Laboratory Investigation, 2015, 95, 4-13.	1.7	58
296	Exogenous enzymes upgrade transgenesis and genetic engineering of farm animals. Cellular and Molecular Life Sciences, 2015, 72, 1907-1929.	2.4	31
297	mTORC1 upregulation via ERK-dependent gene expression change confers intrinsic resistance to MEK inhibitors in oncogenic KRas-mutant cancer cells. Oncogene, 2015, 34, 5607-5616.	2.6	35

#	ARTICLE	IF	CITATIONS
298	Sustained high level transgene expression in mammalian cells mediated by the optimized piggyBac transposon system. Genes and Diseases, 2015, 2, 96-105.	1.5	34
299	piggyBac-ing models and new therapeutic strategies. Trends in Biotechnology, 2015, 33, 525-533.	4.9	101
300	Simultaneous live imaging of the transcription and nuclear position of specific genes. Nucleic Acids Research, 2015, 43, e127-e127.	6.5	89
301	KLF4 N-Terminal Variance Modulates Induced Reprogramming to Pluripotency. Stem Cell Reports, 2015, 4, 727-743.	2.3	35
302	A Multifunctional Mutagenesis System for Analysis of Gene Function in Zebrafish. G3: Genes, Genomes, Genetics, 2015, 5, 1283-1299.	0.8	16
303	Preimplantation Embryo Development and Primordial Germ Cell Lineage Specification. , 2015, , 233-265.		3
304	Evaluating the potential for undesired genomic effects of the <i>piggyBac</i> transposon system in human cells. Nucleic Acids Research, 2015, 43, 1770-1782.	6.5	44
305	Induced pluripotent stem cells: applications in regenerative medicine, disease modeling, and drug discovery. Frontiers in Cell and Developmental Biology, 2015, 3, 2.	1.8	307
306	PiggyBac transposon-mediated gene delivery efficiently generates stable transfectants derived from cultured primary human deciduous tooth dental pulp cells (HDDPCs) and HDDPC-derived iPS cells. International Journal of Oral Science, 2015, 7, 144-154.	3.6	17
307	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	1.2	94
308	Huntington disease iPSCs show early molecular changes in intracellular signaling, the expression of oxidative stress proteins and the p53 pathway. DMM Disease Models and Mechanisms, 2015, 8, 1047-57.	1.2	58
309	Selective cell targeting and lineage tracing of human induced pluripotent stem cells using recombinant avian retroviruses. Cellular and Molecular Life Sciences, 2015, 72, 4671-4680.	2.4	1
310	The piggyBac Transposon as a Platform Technology for Somatic Cell Reprogramming Studies in Mouse. Methods in Molecular Biology, 2015, 1357, 1-22.	0.4	12
311	Inducible Transgene Expression in Human iPS Cells Using Versatile All-in-One piggyBac Transposons. Methods in Molecular Biology, 2015, 1357, 111-131.	0.4	84
312	THERAPY OF ENDOCRINE DISEASE: Islet transplantation for type 1 diabetes: so close and yet so far away. European Journal of Endocrinology, 2015, 173, R165-R183.	1.9	43
313	Combining TGF-Î ² signal inhibition and connexin43 silencing for iPSC induction from mouse cardiomyocytes. Scientific Reports, 2015, 4, 7323.	1.6	1
314	piggyBac Transposon-Based Insertional Mutagenesis in Mouse Haploid Embryonic Stem Cells. Methods in Molecular Biology, 2015, 1239, 15-28.	0.4	11
315	Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells. Scientific Reports, 2014, 4, 7125.	1.6	97

#	Article	IF	CITATIONS
316	Induced Pluripotent Stem Cells for Disease Modeling and Drug Discovery in Neurodegenerative Diseases. Molecular Neurobiology, 2015, 52, 244-255.	1.9	28
317	The piggyBac-Based Gene Delivery System Can Confer Successful Production of Cloned Porcine Blastocysts with Multigene Constructs. International Journal of Molecular Sciences, 2016, 17, 1424.	1.8	5
318	A Mammalian enhancer trap resource for discovering and manipulating neuronal cell types. ELife, 2016, 5, e13503.	2.8	57
319	Adult Olfactory Bulb Interneuron Phenotypes Identified by Targeting Embryonic and Postnatal Neural Progenitors. Frontiers in Neuroscience, 2016, 10, 194.	1.4	14
320	iPS Cells—The Triumphs and Tribulations. Dentistry Journal, 2016, 4, 19.	0.9	8
321	Retroviral vectors and transposons for stable gene therapy: advances, current challenges and perspectives. Journal of Translational Medicine, 2016, 14, 288.	1.8	89
322	DNA Transposition at Work. Chemical Reviews, 2016, 116, 12758-12784.	23.0	89
323	Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Research, 2016, 16, 662-672.	0.3	30
324	Induced Pluripotent Stem Cells in Regenerative Medicine. , 2016, , 51-75.		2
325	Regenerative Medicine - from Protocol to Patient. , 2016, , .		2
325 326	Regenerative Medicine - from Protocol to Patient. , 2016, , . Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796.	1.2	2
	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal	1.2	
326	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796. Live imaging of transforming growth factor $\hat{\epsilon}^2$ activated kinase 1 activation in Lewis lung carcinoma $3 < scp > LL < /scp >$ cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid.		20
326 328	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796. Live imaging of transforming growth factorâ€î² activated kinase 1 activation in Lewis lung carcinoma 3 <scp>LL</scp> cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. Cancer Science, 2016, 107, 644-652. New Trends in Clinical Applications of Induced Pluripotent Stem Cells. Stem Cells in Clinical	1.7	20
326 328 330	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796. Live imaging of transforming growth factorâ€î² activated kinase 1 activation in Lewis lung carcinoma 3 <scp>LL</scp> cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. Cancer Science, 2016, 107, 644-652. New Trends in Clinical Applications of Induced Pluripotent Stem Cells. Stem Cells in Clinical Applications, 2016, 77-98. Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression. Cell Structure	1.7 0.4	20 10 0
326 328 330 331	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796. Live imaging of transforming growth factorâ€î² activated kinase 1 activation in Lewis lung carcinoma 3 <scp>LL</scp> cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. Cancer Science, 2016, 107, 644-652. New Trends in Clinical Applications of Induced Pluripotent Stem Cells. Stem Cells in Clinical Applications, 2016, , 77-98. Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression. Cell Structure and Function, 2016, 41, 81-92. Endogenous Transposase Source in Human Cells Mobilizes piggyBac Transposons. Molecular Therapy,	1.7 0.4 0.5	20 10 0 80
326 328 330 331 333	Induced Pluripotent Stem Cells with Six Reprogramming Factors from Prairie Vole, Which is an Animal Model for Social Behaviors. Cell Transplantation, 2016, 25, 783-796. Live imaging of transforming growth factorâ€î² activated kinase 1 activation in Lewis lung carcinoma 3 <scp>LL</scp> cells implanted into syngeneic mice and treated with polyinosinic:polycytidylic acid. Cancer Science, 2016, 107, 644-652. New Trends in Clinical Applications of Induced Pluripotent Stem Cells. Stem Cells in Clinical Applications, 2016, , 77-98. Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression. Cell Structure and Function, 2016, 41, 81-92. Endogenous Transposase Source in Human Cells Mobilizes piggyBac Transposons. Molecular Therapy, 2016, 24, 851-854. Full biological characterization of human pluripotent stem cells will open the door to translational	1.7 0.4 0.5 3.7	20 10 0 80 14

#	Article	IF	CITATIONS
337	Fabrication of tissue-engineered vascular grafts with stem cells and stem cell-derived vascular cells. Expert Opinion on Biological Therapy, 2016, 16, 317-330.	1.4	20
338	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	16.1	684
339	Study of Transposable Elements and Their Genomic Impact. Methods in Molecular Biology, 2016, 1400, 1-19.	0.4	7
340	Pluripotent stem cells and livestock genetic engineering. Transgenic Research, 2016, 25, 289-306.	1.3	46
341	Locally excitable Cdc42 signals steer cells duringÂchemotaxis. Nature Cell Biology, 2016, 18, 191-201.	4.6	166
343	Current reprogramming systems in regenerative medicine: from somatic cells to induced pluripotent stem cells. Regenerative Medicine, 2016, 11, 105-32.	0.8	14
344	Three-dimensional cardiac tissue fabrication based on cell sheet technology. Advanced Drug Delivery Reviews, 2016, 96, 103-109.	6.6	75
345	Modeling Huntington× ³ s disease with patient-derived neurons. Brain Research, 2017, 1656, 76-87.	1.1	31
346	Intravital Förster resonance energy transfer imaging reveals osteopontinâ€mediated polymorphonuclear leukocyte activation by tumor cell emboli. Cancer Science, 2017, 108, 226-235.	1.7	16
347	Monitoring and visualizing microRNA dynamics during live cell differentiation using microRNA-responsive non-viral reporter vectors. Biomaterials, 2017, 128, 121-135.	5.7	23
348	Generation of a transgenic cashmere goat using the piggyBac transposition system. Theriogenology, 2017, 93, 1-6.	0.9	16
349	Induced pluripotent stem cells as a new getaway for bone tissue engineering: A systematic review. Cell Proliferation, 2017, 50, .	2.4	43
350	Induced Pluripotent Stem Cells 10 Years Later. Circulation Research, 2017, 120, 1958-1968.	2.0	218
351	Induced pluripotent stem cell models of lysosomal storage disorders. DMM Disease Models and Mechanisms, 2017, 10, 691-704.	1.2	23
352	Progress and biotechnological prospects in fish transgenesis. Biotechnology Advances, 2017, 35, 832-844.	6.0	23
353	Generation of non-viral, transgene-free hepatocyte like cells with piggyBac transposon. Scientific Reports, 2017, 7, 44498.	1.6	8
354	Effect of small molecules on cell reprogramming. Molecular BioSystems, 2017, 13, 277-313.	2.9	19
355	A new era of disease modeling and drug discovery using induced pluripotent stem cells. Archives of Pharmacal Research, 2017, 40, 1-12.	2.7	27

#	Article	IF	CITATIONS
356	Interface Oral Health Science 2016. , 2017, , .		2
357	Precise excision of a selectable marker gene in transgenic Coccomyxa strains by the piggyBac transposase. Algal Research, 2017, 27, 152-161.	2.4	11
358	Efficient synthesis of phycocyanobilin in mammalian cells for optogenetic control of cell signaling. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11962-11967.	3.3	76
359	CRISPR/Cas9 and piggyBac-mediated footprint-free LRRK2-G2019S knock-in reveals neuronal complexity phenotypes and α-Synuclein modulation in dopaminergic neurons. Stem Cell Research, 2017, 24, 44-50.	0.3	60
360	Derivation of Human Induced Pluripotent Stem Cell (iPSC) Lines and Mechanism of Pluripotency: Historical Perspective and Recent Advances. Stem Cell Reviews and Reports, 2017, 13, 757-773.	5.6	25
361	Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Laboratory Investigation, 2017, 97, 1133-1141.	1.7	33
362	Competing memories of mitogen and p53 signalling control cell-cycle entry. Nature, 2017, 549, 404-408.	13.7	188
363	Trap Seq : An RNA Sequencing-Based Pipeline for the Identification of Gene-Trap Insertions in Mammalian Cells. Journal of Molecular Biology, 2017, 429, 2780-2789.	2.0	10
364	A Highly Sensitive FRET Biosensor for AMPK Exhibits Heterogeneous AMPK Responses among Cells and Organs. Cell Reports, 2017, 21, 2628-2638.	2.9	57
365	Gene and Cell Therapy for β-Thalassemia and Sickle Cell Disease with Induced Pluripotent Stem Cells (iPSCs): The Next Frontier. Advances in Experimental Medicine and Biology, 2017, 1013, 219-240.	0.8	5
366	Gene and Cell Therapies for Beta-Globinopathies. Advances in Experimental Medicine and Biology, 2017, ,	0.8	4
367	Propagating Wave of ERK Activation Orients Collective Cell Migration. Developmental Cell, 2017, 43, 305-317.e5.	3.1	209
368	On-demand optogenetic activation of human stem-cell-derived neurons. Scientific Reports, 2017, 7, 14450.	1.6	23
369	Overexpression of WDFY2 inhibits prostate cancer cell growth and migration via inactivation of Akt pathway. Tumor Biology, 2017, 39, 101042831770482.	0.8	12
370	Comparative analysis of chimeric ZFP-, TALE- and Cas9-piggyBac transposases for integration into a single locus in human cells. Nucleic Acids Research, 2017, 45, 8411-8422.	6.5	37
371	<i>Sleeping Beauty</i> transposition: from biology to applications. Critical Reviews in Biochemistry and Molecular Biology, 2017, 52, 18-44.	2.3	40
372	A FRET Biosensor for ROCK Based on a Consensus Substrate Sequence Identified by KISS Technology. Cell Structure and Function, 2017, 42, 1-13.	0.5	23
373	The piggyBac Transposon as a Tool in Genetic Engineering. Applied Biochemistry and Microbiology, 2017, 53, 874-881.	0.3	5

#	Article	IF	CITATIONS
374	Recent Progress Using Pluripotent Stem Cells for Cardiac Regenerative Therapy. Circulation Journal, 2017, 81, 929-935.	0.7	13
375	The Generation of Mouse and Human Huntington Disease iPS Cells Suitable for In vitro Studies on Huntingtin Function. Frontiers in Molecular Neuroscience, 2017, 10, 253.	1.4	30
376	An optimized, broadly applicable <i>piggyBac</i> transposon induction system. Nucleic Acids Research, 2017, 45, gkw1290.	6.5	15
377	Selected small molecules as inductors of pluripotent stem cells. Acta Biochimica Polonica, 2017, 63, 709-716.	0.3	5
378	Immortalized prairie vole-derived fibroblasts (VMF-K4DTs) can be transformed into pluripotent stem cells and provide a useful tool with which to determine optimal reprogramming conditions. Journal of Reproduction and Development, 2017, 63, 311-318.	0.5	24
379	LanCL1 protects prostate cancer cells from oxidative stress via suppression of JNK pathway. Cell Death and Disease, 2018, 9, 197.	2.7	32
380	Sequence-specific DNA binding activity of the cross-brace zinc finger motif of the piggyBac transposase. Nucleic Acids Research, 2018, 46, 2660-2677.	6.5	22
381	Generation of Transplantable Retinal Photoreceptors from a Current Good Manufacturing Practice-Manufactured Human Induced Pluripotent Stem Cell Line. Stem Cells Translational Medicine, 2018, 7, 210-219.	1.6	51
382	Chick derived induced pluripotent stem cells by the poly istronic transposon with enhanced transcriptional activity. Journal of Cellular Physiology, 2018, 233, 990-1004.	2.0	15
383	Intravenous Delivery of piggyBac Transposons as a Useful Tool for Liver-Specific Gene-Switching. International Journal of Molecular Sciences, 2018, 19, 3452.	1.8	10
384	Patient-Derived Induced Pluripotent Stem Cells and Organoids for Modeling Alpha Synuclein Propagation in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2018, 12, 413.	1.8	9
385	Future Therapeutic Approaches for Alagille Syndrome. , 2018, , 167-193.		0
386	Alagille Syndrome. , 2018, , .		2
387	Cell-to-Cell Heterogeneity in p38-Mediated Cross-Inhibition of JNK Causes Stochastic Cell Death. Cell Reports, 2018, 24, 2658-2668.	2.9	74
388	Comparison of different methods to overexpress large genes. Journal of Biological Research (Italy), 2018, 91, .	0.0	2
389	Cellular Models: HD Patient-Derived Pluripotent Stem Cells. Methods in Molecular Biology, 2018, 1780, 41-73.	0.4	7
390	MicroRNA Regulation Along the Course of Cellular Reprogramming to Pluripotency. Current Molecular Medicine, 2018, 18, 58-64.	0.6	2
391	Emerging roles of Myc in stem cell biology and novel tumor therapies. Journal of Experimental and Clinical Cancer Research, 2018, 37, 173.	3.5	189

#	Article	IF	CITATIONS
392	Generation of a human induced pluripotent stem cell–based model for tauopathies combining three microtubuleâ€associated protein TAU mutations which displays several phenotypes linked to neurodegeneration. Alzheimer's and Dementia, 2018, 14, 1261-1280.	0.4	41
393	A Modified Monomeric Red Fluorescent Protein Reporter for Assessing CRISPR Activity. Frontiers in Cell and Developmental Biology, 2018, 6, 54.	1.8	6
394	The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. Journal of Neuroscience, 2018, 38, 5237-5250.	1.7	74
395	PiggyBac Transposon-Mediated Transgenesis in the Pacific Oyster (Crassostrea gigas) – First Time in Mollusks. Frontiers in Physiology, 2018, 9, 811.	1.3	10
396	Introduction of Exogenous HSV-TK Suicide Gene Increases Safety of Keratinocyte-Derived Induced Pluripotent Stem Cells by Providing Genetic "Emergency Exit―Switch. International Journal of Molecular Sciences, 2018, 19, 197.	1.8	30
397	Gene Therapy Methods and Their Applications in Neurological Disorders. , 2018, , 3-39.		4
398	A platform of BRET-FRET hybrid biosensors for optogenetics, chemical screening, and in vivo imaging. Scientific Reports, 2018, 8, 8984.	1.6	57
399	In Vivo Piggybac-Based Gene Delivery towards Murine Pancreatic Parenchyma Confers Sustained Expression of Gene of Interest. International Journal of Molecular Sciences, 2019, 20, 3116.	1.8	3
400	Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed <i>In Vivo</i> Gene Delivery of Transposons in Mice. Stem Cells International, 2019, 2019, 1-12.	1.2	2
401	The role of clonal communication and heterogeneity in breast cancer. BMC Cancer, 2019, 19, 666.	1.1	36
402	Human iPSC banking: barriers and opportunities. Journal of Biomedical Science, 2019, 26, 87.	2.6	142
403	Application of iPSC to Modelling of Respiratory Diseases. Advances in Experimental Medicine and Biology, 2019, 1237, 1-16.	0.8	14
404	Lzts1 controls both neuronal delamination and outer radial glial-like cell generation during mammalian cerebral development. Nature Communications, 2019, 10, 2780.	5.8	27
405	Modeling blood diseases with human induced pluripotent stem cells. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	23
406	Non-coding cis-element of Period2 is essential for maintaining organismal circadian behaviour and body temperature rhythmicity. Nature Communications, 2019, 10, 2563.	5.8	25
407	Recent Updates on Induced Pluripotent Stem Cells in Hematological Disorders. Stem Cells International, 2019, 2019, 1-15.	1.2	25
408	A piggyBac-based toolkit for inducible genome editing in mammalian cells. Rna, 2019, 25, 1047-1058.	1.6	30
409	iPS-Cell Technology and the Problem of Genetic Instability—Can It Ever Be Safe for Clinical Use?. Journal of Clinical Medicine, 2019, 8, 288.	1.0	54

#	Article	IF	CITATIONS
410	Single-cell quantification of the concentrations and dissociation constants of endogenous proteins. Journal of Biological Chemistry, 2019, 294, 6062-6072.	1.6	19
412	Human stem cell–derived monocytes and microgliaâ€like cells reveal impaired amyloid plaque clearance upon heterozygous or homozygous loss of TREM2. Alzheimer's and Dementia, 2019, 15, 453-464.	0.4	55
413	An insight into non-integrative gene delivery approaches to generate transgene-free induced pluripotent stem cells. Gene, 2019, 686, 146-159.	1.0	77
414	OVOL1 Influences the Determination and Expansion of iPSC Reprogramming Intermediates. Stem Cell Reports, 2019, 12, 319-332.	2.3	12
415	SMAD4 Is Essential for Human Cardiac Mesodermal Precursor Cell Formation. Stem Cells, 2019, 37, 216-225.	1.4	11
416	A common molecular logic determines embryonic stem cell selfâ€renewal and reprogramming. EMBO Journal, 2019, 38, .	3.5	34
417	Acute compressive stress activates RHO/ROCK-mediated cellular processes. Small GTPases, 2020, 11, 354-370.	0.7	45
418	HNF1B-mediated repression of SLUG is suppressed by EZH2 in aggressive prostate cancer. Oncogene, 2020, 39, 1335-1346.	2.6	32
419	Advances in Pluripotent Stem Cells: History, Mechanisms, Technologies, and Applications. Stem Cell Reviews and Reports, 2020, 16, 3-32.	1.7	292
420	A single amino acid switch converts the Sleeping Beauty transposase into an efficient unidirectional excisionase with utility in stem cell reprogramming. Nucleic Acids Research, 2020, 48, 316-331.	6.5	11
421	Human-induced pluripotent stem cells (iPSC) as a source of insulin-producing cells. , 2020, , 381-396.		0
422	Modelling multiple sclerosis using induced pluripotent stem cells. Journal of Neuroimmunology, 2020, 349, 577425.	1.1	7
423	Single-Cell Information Analysis Reveals That Skeletal Muscles Incorporate Cell-to-Cell Variability as Information Not Noise. Cell Reports, 2020, 32, 108051.	2.9	12
424	Structural basis of seamless excision and specific targeting by piggyBac transposase. Nature Communications, 2020, 11, 3446.	5.8	53
425	Genetic dissection of Ragulator structure and function in amino acid-dependent regulation of mTORC1. Journal of Biochemistry, 2020, 168, 621-632.	0.9	1
426	Insulin/Glucose-Responsive Cells Derived from Induced Pluripotent Stem Cells: Disease Modeling and Treatment of Diabetes. Cells, 2020, 9, 2465.	1.8	17
427	Coordination between Cell Motility and Cell Cycle Progression in Keratinocyte Sheets via Cell-Cell Adhesion and Rac1. IScience, 2020, 23, 101729.	1.9	9
428	Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics. ACS Chemical Biology, 2020, 15, 2896-2906.	1.6	22

#	Article	IF	CITATIONS
429	A Comparative Approach of Cellular Reprogramming in the Rodentia Order. Cellular Reprogramming, 2020, 22, 227-235.	0.5	2
430	MCM8IP activates the MCM8-9 helicase to promote DNA synthesis and homologous recombination upon DNA damage. Nature Communications, 2020, 11, 2948.	5.8	28
431	Generation of HIV-1-infected patients' gene-edited induced pluripotent stem cells using feeder-free culture conditions. Aids, 2020, 34, 1127-1139.	1.0	6
432	Engineering Orthogonal, Plasma Membrane-Specific SLIPT Systems for Multiplexed Chemical Control of Signaling Pathways in Living Single Cells. ACS Chemical Biology, 2020, 15, 1004-1015.	1.6	22
433	Principles of Genetic Engineering. Genes, 2020, 11, 291.	1.0	41
434	iPSC-Derived Intestinal Organoids from Cystic Fibrosis Patients Acquire CFTR Activity upon TALEN-Mediated Repair of the p.F508del Mutation. Molecular Therapy - Methods and Clinical Development, 2020, 17, 858-870.	1.8	35
435	Booster, a Red-Shifted Genetically Encoded Förster Resonance Energy Transfer (FRET) Biosensor Compatible with Cyan Fluorescent Protein/Yellow Fluorescent Protein-Based FRET Biosensors and Blue Light-Responsive Optogenetic Tools. ACS Sensors, 2020, 5, 719-730.	4.0	37
436	Non-viral reprogramming and induced pluripotent stem cells for cardiovascular therapy. Differentiation, 2020, 112, 58-66.	1.0	2
437	Induced Pluripotent Stem Cells: Reprogramming Platforms and Applications in Cell Replacement Therapy. BioResearch Open Access, 2020, 9, 121-136.	2.6	50
438	Induced pluripotent stem cells derived from the developing striatum as a potential donor source for cell replacement therapy for Huntington disease. Cytotherapy, 2021, 23, 111-118.	0.3	10
439	PiggyBac vectors in pluripotent stem cell research and applications. , 2021, , 55-78.		0
440	Altered microRNA expression in animal models of Huntington's disease and potential therapeutic strategies. Neural Regeneration Research, 2021, 16, 2159.	1.6	17
441	Establishment of induced pluripotent stem cells from prairie vole-derived fibroblast. , 2021, , 165-186.		0
443	Induced pluripotent stem cell derived from postmortem tissue in neurodegenerative disease research. , 2021, , 221-249.		1
444	Chemogenetic Control of Protein Localization and Mammalian Cell Signaling by SLIPT. Methods in Molecular Biology, 2021, 2312, 237-251.	0.4	2
445	Suppression of α-catenin and adherens junctions enhances epithelial cell proliferation and motility via TACE-mediated TGF-α autocrine/paracrine signaling. Molecular Biology of the Cell, 2021, 32, 348-361.	0.9	7
446	CD36 and LC3B initiated autophagy in B cells regulates the humoral immune response. Autophagy, 2021, 17, 3577-3591.	4.3	28
447	Synthetic Protein Condensates That Inducibly Recruit and Release Protein Activity in Living Cells. Journal of the American Chemical Society, 2021, 143, 6434-6446.	6.6	46

#	Article	IF	CITATIONS
450	Induced pluripotent stem cells for generating lung airway stem cells and modelling respiratory disease. , 2021, , 190-204.		3
451	Establishment of a reverse genetics system for SARS-CoV-2 using circular polymerase extension reaction. Cell Reports, 2021, 35, 109014.	2.9	102
452	Recent advances in the induced pluripotent stem cellâ€based skin regeneration. Wound Repair and Regeneration, 2021, 29, 697-710.	1.5	9
454	Induced Pluripotent Stem Cells (iPSCs) Provide a Potentially Unlimited T Cell Source for CAR-T Cell Development and Off-the-Shelf Products. Pharmaceutical Research, 2021, 38, 931-945.	1.7	18
455	Cognate restriction of transposition by <i>piggyBac-</i> like proteins. Nucleic Acids Research, 2021, 49, 8135-8144.	6.5	8
456	Clinically compatible advances in blood-derived endothelial progenitor cell isolation and reprogramming for translational applications. New Biotechnology, 2021, 63, 1-9.	2.4	3
458	Chemo-optogenetic Protein Translocation System Using a Photoactivatable Self-Localizing Ligand. ACS Chemical Biology, 2021, 16, 1557-1565.	1.6	8
459	Applications of piggyBac Transposons for Genome Manipulation in Stem Cells. Stem Cells International, 2021, 2021, 1-13.	1.2	5
460	Industrially Compatible Transfusable iPSC-Derived RBCs: Progress, Challenges and Prospective Solutions. International Journal of Molecular Sciences, 2021, 22, 9808.	1.8	9
461	Types and Classification of Stem Cells. Pancreatic Islet Biology, 2021, , 25-49.	0.1	2
462	Integration-Free Reprogramming of Human Somatic Cells to Induced Pluripotent Stem Cells (iPSCs) Without Viral Vectors, Recombinant DNA, and Genetic Modification. Methods in Molecular Biology, 2014, 1151, 75-94.	0.4	18
463	Synthetic mRNA Reprogramming of Human Fibroblast Cells. Methods in Molecular Biology, 2015, 1330, 17-28.	0.4	8
464	Industrial Applications of Stem Cells. Pancreatic Islet Biology, 2011, , 91-102.	0.1	2
465	CRISPR/Cas9 Editing in Induced Pluripotent Stem Cells: A Way Forward for Treating Cystic Fibrosis?. , 2019, , 153-178.		2
466	Gene Delivery and Expression Systems in Induced Pluripotent Stem Cells. , 2017, , 121-133.		5
473	Use of the 2A Peptide for Generation of Multi-Transgenic Pigs through a Single Round of Nuclear Transfer. PLoS ONE, 2011, 6, e19986.	1.1	69
474	Mesenchymal to Epithelial Transition Induced by Reprogramming Factors Attenuates the Malignancy of Cancer Cells. PLoS ONE, 2016, 11, e0156904.	1.1	49
475	Cell Density-Dependent Increase in Tyrosine-Monophosphorylated ERK2 in MDCK Cells Expressing Active Ras or Raf. PLoS ONE, 2016, 11, e0167940.	1.1	16

#	Article	IF	CITATIONS
476	Transposon-Mediated Gene Transfer into Adult and Induced Pluripotent Stem Cells. Current Gene Therapy, 2011, 11, 406-413.	0.9	24
477	Rational Development of A Polycistronic Plasmid with A CpG-Free Bacterial Backbone as A Potential Tool for Direct Reprogramming. Cell Journal, 2017, 18, 565-581.	0.2	1
478	Generation of a dual-color reporter mouse line to monitor spermatogenesis in vivo. Frontiers in Cell and Developmental Biology, 2014, 2, 30.	1.8	9
479	Induced pluripotent stem (iPS) cells: an up-to-the-minute review. F1000 Biology Reports, 2009, 1, 84.	4.0	10
480	PiggyBac transposon vectors: the tools of the human gene encoding. Translational Lung Cancer Research, 2016, 5, 120-5.	1.3	36
481	Patient-specific Induced Pluripotent Stem Cells as a Platform for Disease Modeling, Drug Discovery and Precision Personalized Medicine. Journal of Stem Cell Research & Therapy, 2012, 01, .	0.3	9
482	Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background. World Journal of Stem Cells, 2009, 1, 22.	1.3	16
483	Potential of transposon-mediated cellular reprogramming towards cell-based therapies. World Journal of Stem Cells, 2020, 12, 527-544.	1.3	14
484	Baboon induced pluripotent stem cell generation bypiggyBactransposition of reprogramming factors. Primate Biology, 2019, 6, 75-86.	0.6	11
486	Redundant roles of ECFR ligands in the ERK activation waves during collective cell migration. Life Science Alliance, 2022, 5, e202101206.	1.3	18
487	Stem cell therapy for hemophilia A. Japanese Journal of Thrombosis and Hemostasis, 2009, 20, 292-300.	0.1	0
488	Induced pluripotent stem cells: the long-expected revolution in medical science and practice?. Journal of Nucleic Acids Investigation, 2010, 1, 1.	0.5	1
489	Generation and clinical application of human T cell-derived induced pluripotent stem cells. Inflammation and Regeneration, 2011, 31, 393-398.	1.5	0
491	MicroRNAs in Development, Stem Cell Differentiation, and Regenerative Medicine. , 2012, , 409-442.		0
492	Updated Information on Stem Cells for the Neonatologist. , 2012, , 1-13.		0
493	Generation of Patient Specific Stem Cells: A Human Model System. , 0, , .		1
494	Human iPS Cell Generation Methods for Clinical Usage. , 2013, , 20-34.		0
495	Blood Cell Bioprocessing: The Haematopoietic System and Current Status of In-Vitro Production of Red Blood Cells. Cell Engineering, 2014, , 97-128.	0.4	0

#	Article	IF	CITATIONS
497	Epigenetic Reprogramming of Adult Mammalian Cells into Induced Pluripotent Stem Cells (iPSCs) - An Emerging Paradigm. Journal of Animal Research, 2014, 4, 103.	0.1	0
498	Regenerative Medicine for Spinal Cord Injury Utilizing iPS Cells. , 2014, , 229-245.		0
499	The Minipig $\hat{a} \in \mathbb{C}^{n}$ A New Tool in Stem Cell Research. , 0, , .		0
501	Visualization of Intracellular Signaling with Fluorescence Resonance Energy Transfer-Based Biosensors. , 2015, , 31-41.		1
503	Induced Pluripotent Stem Cell, a Rising Star in Regenerative Medicine. Translational Medicine Research, 2015, , 85-109.	0.0	0
504	Induced Pluripotent Stem-cell Lines in the Clinic - Still a Long Road Ahead. Journal of Human Virology & Retrovirology, 2015, 2, .	0.1	0
505	1 Human-Induced Pluripotent Stem Cells: Derivation. , 2017, , 1-22.		0
507	Transfection of FcγRIIIa (CD16) Alone Can Be Sufficient To Enable Human αβTCR T Lymphocytes To Mediate Antibody-Dependent Cellular Cytotoxicity. ImmunoHorizons, 2017, 1, 63-70.	0.8	2
509	Nanotechnology-Based Stem Cell Tissue Engineering with a Focus on Regeneration of Cardiovascular Systems. , 2019, , 1-67.		1
513	Somatic Reprogramming—Above and Beyond Pluripotency. Cells, 2021, 10, 2888.	1.8	11
514	Generation of transgene-free induced pluripotent stem cells from cardiac fibroblasts of goat embryos. Journal of Stem Cells and Regenerative Medicine, 2020, 16, 34-43.	2.2	3
515	A Dual Promoter System to Monitor IFN-γ Signaling <i>in vivo</i> at Single-cell Resolution. Cell Structure and Function, 2021, 46, 103-111.	0.5	1
517	MicroRNAs in Development, Stem Cell Differentiation, and Regenerative Medicine. , 2012, , 409-442.		0
519	Induced Pluripotent Stem Cells: Problems and Advantages when Applying them in Regenerative Medicine. Acta Naturae, 2010, 2, 18-28.	1.7	81
520	No factor left behind: generation of transgene-free induced pluripotent stem cells. American Journal of Stem Cells, 2012, 1, 75-80.	0.4	9
521	Utilization of Site-Specific Recombination in Biopharmaceutical Production. Iranian Biomedical Journal, 2016, 20, 68-76.	0.4	4
522	CMD kinetics and regenerative medicine. American Journal of Translational Research (discontinued), 2016, 8, 1615-24.	0.0	1
523	Directional reorientation of migrating neutrophils is limited by suppression of receptor input signaling at the cell rear through myosin II activity. Nature Communications, 2021, 12, 6619.	5.8	27

#	Article	IF	CITATIONS
524	Optogenetic control of receptors reveals distinct roles for actin- and Cdc42-dependent negative signals in chemotactic signal processing. Nature Communications, 2021, 12, 6148.	5.8	14
525	Generation of Primordial Germ Cell-like Cells from iPSCs Derived from Turner Syndrome Patients. Cells, 2021, 10, 3099.	1.8	3
526	8. Différenciation cellulaire et cellules souches. , 2017, , 309-360.		0
527	Single cell transfection of human-induced pluripotent stem cells using a droplet-based microfluidic system. Royal Society Open Science, 2022, 9, 211510.	1.1	2
528	RNA-Based Strategies for Cell Reprogramming toward Pluripotency. Pharmaceutics, 2022, 14, 317.	2.0	7
529	Functional visualization of NK cell-mediated killing of metastatic single tumor cells. ELife, 2022, 11, .	2.8	18
533	Quantitative live-cell imaging of GPCR downstream signaling dynamics. Biochemical Journal, 2022, 479, 883-900.	1.7	4
534	Generation of Sheep Induced Pluripotent Stem Cells With Defined DOX-Inducible Transcription Factors via piggyBac Transposition. Frontiers in Cell and Developmental Biology, 2021, 9, 785055.	1.8	4
540	Efficient suppression of endogenous CFTR nonsense mutations using anticodon-engineered transfer RNAs. Molecular Therapy - Nucleic Acids, 2022, 28, 685-701.	2.3	29
542	Advances in RNA Viral Vector Technology to Reprogram Somatic Cells: The Paramyxovirus Wave. Molecular Diagnosis and Therapy, 2022, 26, 353-367.	1.6	2
543	"Cutting the Mustard―with Induced Pluripotent Stem Cells: An Overview and Applications in Healthcare Paradigm. Stem Cell Reviews and Reports, 2022, 18, 2757-2780.	1.7	5
544	A chemogenetic platform for controlling plasma membrane signaling and synthetic signal oscillation. Cell Chemical Biology, 2022, 29, 1446-1464.e10.	2.5	7
545	Probing cell identity hierarchies by fate titration and collision during direct reprogramming. Molecular Systems Biology, 2022, 18, .	3.2	9
547	A feedback loop between lamellipodial extension and HGF-ERK signaling specifies leader cells during collective cell migration. Developmental Cell, 2022, 57, 2290-2304.e7.	3.1	11
548	Modified expi293 cell culture system using piggyBac transposon enables efficient production of human FVIII. International Journal of Hematology, 2023, 117, 56-67.	0.7	1
550	MSCs vs. iPSCs: Potential in therapeutic applications. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	16
552	Transposase N-terminal phosphorylation and asymmetric transposon ends inhibit <i>piggyBac</i> transposition in mammalian cells. Nucleic Acids Research, 2022, 50, 13128-13142.	6.5	3
553	Using a modified <scp>piggyBac</scp> transposonâ€combined Cre/ <scp>loxP</scp> system to produce selectable reporterâ€free transgenic bovine mammary epithelial cells for somatic cell nuclear transfer. Genesis, 2023, 61, .	0.8	0

#	Article	IF	CITATIONS
554	Impaired factor V–related anticoagulant mechanisms and deep vein thrombosis associated with A2086D and W1920R mutations. Blood Advances, 2023, 7, 2831-2842.	2.5	2
557	Stem cells in the treatment of Alzheimer's disease – Promises and pitfalls. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166712.	1.8	1