Stretchable active-matrix organic light-emitting diode conductors

Nature Materials 8, 494-499

DOI: 10.1038/nmat2459

Citation Report

#	Article	IF	CITATIONS
4	Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Applied Physics Letters, 2009, 95, .	1.5	117
5	Fabrication of High Performance Organic Thin Film Transistor Arrays and Application to 5-inch Flexible Displays. Materials Research Society Symposia Proceedings, 2009, 1196, 52.	0.1	O
6	Controllable Change of Photoluminescence Spectra of Silicone Rubber Modified by 193 nm ArF Excimer Laser. Japanese Journal of Applied Physics, 2009, 48, 122503.	0.8	7
7	Photochemical Surface Modification of Silicone Rubber into Photoluminescent Material by 193 nm ArF Excimer Laser Irradiation. Japanese Journal of Applied Physics, 2009, 48, 102301.	0.8	9
8	Stretchable Supercapacitors Based on Buckled Singleâ€Walled Carbonâ€Nanotube Macrofilms. Advanced Materials, 2009, 21, 4793-4797.	11.1	627
10	Printed skin-like large-area flexible sensors and actuators. Procedia Chemistry, 2009, 1, 9-12.	0.7	18
11	Shaping liquid on a micrometre scale using microwrinkles as deformable open channel capillaries. Soft Matter, 2009, 5, 4658.	1.2	95
12	Printed organic transistors: Toward ambient electronics. , 2009, , .		7
13	Large-area stretchable sensors with integrating organic CMOS ICs with Si-CMOS LSIs. Proceedings of SPIE, $2010, $, .	0.8	0
14	54.2: Direct Printed Electrodes of Transparent Conductive Polymers for Flexible Electronic Papers. Digest of Technical Papers SID International Symposium, 2010, 41, 814.	0.1	3
15	Tailoring the Electrical Properties of Carbon Nanotube–Polymer Composites. Advanced Functional Materials, 2010, 20, 4062-4068.	7.8	125
16	New Frontiers in Materials Science Opened by Ionic Liquids. Advanced Materials, 2010, 22, 1196-1221.	11.1	803
17	Stretchable, Curvilinear Electronics Based on Inorganic Materials. Advanced Materials, 2010, 22, 2108-2124.	11.1	525
18	Stretchable, Largeâ€area Organic Electronics. Advanced Materials, 2010, 22, 2228-2246.	11.1	692
19	Arrays of Ultracompliant Electrochemical Dry Gel Cells for Stretchable Electronics. Advanced Materials, 2010, 22, 2065-2067.	11.1	151
20	Polymerâ€Embedded Carbon Nanotube Ribbons for Stretchable Conductors. Advanced Materials, 2010, 22, 3027-3031.	11.1	277
21	Threeâ€Dimensional Integration of Organic Resistive Memory Devices. Advanced Materials, 2010, 22, 5048-5052.	11.1	213
22	Synthesis and Characterization of Redâ€Emitting Poly(aryleneethynylene)s Based on 2,5â€Bis(2â€ethylhexyl)â€3,6â€di(thiophenâ€2â€yl)pyrrolo[3,4â€c]pyrroleâ€1,4(2H,5H)â€dione (DPP). Macrom Chemistry and Physics, 2010, 211, 1043-1053.	olecular	24

#	Article	IF	Citations
23	Organic thin film transistors on flexible polyimide substrates fabricated by full-wafer stencil lithography. Sensors and Actuators A: Physical, 2010, 162, 155-159.	2.0	34
24	Complementary organic thin film transistor circuits fabricated directly on silicone substrates. Organic Electronics, 2010, 11, 1815-1820.	1.4	20
25	Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Organic Electronics, 2010, 11, 1960-1965.	1.4	134
26	Gels of carbon nanotubes and a nonionic surfactant prepared by mechanical grinding. Carbon, 2010, 48, 293-299.	5.4	27
27	Waterproof AllnGaP optoelectronics on stretchable substrates with applications in biomedicine andÂrobotics. Nature Materials, 2010, 9, 929-937.	13.3	557
28	Tiny lamps to illuminate the body. Nature Materials, 2010, 9, 879-880.	13.3	44
29	Flexible organic transistors and circuits with extreme bending stability. Nature Materials, 2010, 9, 1015-1022.	13.3	1,142
30	Highly conductive, printable and stretchable composite films of carbon nanotubes and silver. Nature Nanotechnology, 2010, 5, 853-857.	15.6	771
31	Surface shape capture with boundary electrodes. , 2010, , .		0
32	Effect of surface bonding on semiconductor nanoribbon wiggling structure. Applied Physics Letters, 2010, 96, 111904.	1.5	8
33	Thermal stability of organic thin-film transistors with self-assembled monolayer dielectrics. Applied Physics Letters, 2010, 96, 053302.	1.5	48
34	Stretchable large-area electronics using organic transistor integrated circuits. , 2010, , .		1
35	Solution of the tunneling-percolation problem in the nanocomposite regime. Physical Review B, 2010, 81, .	1.1	203
36	ROOM TEMPERATURE DEPOSITION OF SINGLE-WALLED CARBON NANOTUBE THIN FILMS. Nano, 2010, 05, 319-324.	0.5	0
37	Large-scale assembly of highly flexible low-noise devices based on silicon nanowires. Nanotechnology, 2010, 21, 145302.	1.3	7
38	Printable magnetite and pyrrole treated magnetite based electrodes for supercapacitors. Journal of Materials Chemistry, 2010, 20, 7637.	6.7	102
39	Flexible organic light-emitting diodes with transparent carbon nanotube electrodes: problems and solutions. Nanotechnology, 2010, 21, 155202.	1.3	78
40	CNT-based photopatternable nanocomposites with high electrical conductivity and optical transparency. Journal of Micromechanics and Microengineering, 2010, 20, 025002.	1.5	13

#	ARTICLE	IF	Citations
41	Nanotubes on Display: How Carbon Nanotubes Can Be Integrated into Electronic Displays. ACS Nano, 2010, 4, 2975-2978.	7.3	47
42	Stretchable gold conductors embedded in PDMS and patterned by photolithography: fabrication and electromechanical characterization. Journal of Micromechanics and Microengineering, 2010, 20, 055025.	1.5	137
43	Printed electronics: the challenges involved in printing devices, interconnects, and contacts based on inorganic materials. Journal of Materials Chemistry, 2010, 20, 8446.	6.7	647
44	Morphological Transformation of a Liquid Micropattern on Dynamically Tunable Microwrinkles. Langmuir, 2010, 26, 6127-6132.	1.6	42
45	Fabrication and Evaluation of Solution-Processed Reduced Graphene Oxide Electrodes for p- and n-Channel Bottom-Contact Organic Thin-Film Transistors. ACS Nano, 2010, 4, 6343-6352.	7.3	69
46	Soft Glassy Colloidal Arrays in an Ionic Liquid: Colloidal Glass Transition, Ionic Transport, and Structural Color in Relation to Microstructure. Journal of Physical Chemistry B, 2010, 114, 13095-13103.	1.2	67
47	Design of analog circuits using organic field-effect transistors. , 2010, , .		8
48	Materials and Mechanics for Stretchable Electronics. Science, 2010, 327, 1603-1607.	6.0	4,135
49	Stretchable, Porous, and Conductive Energy Textiles. Nano Letters, 2010, 10, 708-714.	4.5	1,415
50	Solution processed organic field-effect transistors and their application in printed logic circuits. Journal of Materials Chemistry, 2010, 20, 7059.	6.7	82
51	Highly end-doped silicon nanowires for field-effect transistors on flexible substrates. Nanoscale, 2010, 2, 677.	2.8	9
52	Spin-coated ultrathin poly(vinylidene fluoride-co-trifluoroethylene) films for flexible and transparent electronics. Journal of Materials Chemistry, 2011, 21, 5057.	6.7	25
53	H-Bonding Tuned Self-Assembly of Phenyleneâ€"Thiopheneâ€"Thiopheneâ€"Phenylene Derivatives at Surfaces: Structural and Electrical Studies. Journal of Physical Chemistry C, 2011, 115, 9753-9759.	1.5	14
54	SnO ₂ Nanowire Logic Devices on Deformable Nonplanar Substrates. ACS Nano, 2011, 5, 10009-10016.	7.3	31
55	<i>In Situ</i> Patterning of High-Quality Crystalline Rubrene Thin Films for High-Resolution Patterned Organic Field-Effect Transistors. ACS Nano, 2011, 5, 8352-8356.	7.3	41
56	Printable and Stretchable Conductive Wirings Comprising Silver Flakes and Elastomers. IEEE Electron Device Letters, 2011, 32, 1424-1426.	2.2	99
57	Single-Walled Carbon Nanotubes/Polymer Composite Electrodes Patterned Directly from Solution. Langmuir, 2011, 27, 7330-7336.	1.6	14
58	Stretchable, elastic materials and devices for solar energy conversion. Energy and Environmental Science, 2011, 4, 3314.	15.6	356

#	Article	IF	CITATIONS
59	Effect of filament aspect ratio on the dielectric response of multiwalled carbon nanotube composites. Journal of Applied Physics, 2011, 109, 094109.	1.1	30
60	Electromechanical properties of CNT-coated cotton yarn for electronic textile applications. Smart Materials and Structures, 2011, 20, 015004.	1.8	59
61	The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. Nanoscale, 2011, 3, 839.	2.8	778
62	High stretchable MWNTs/polyurethane conductive nanocomposites. Journal of Materials Chemistry, 2011, 21, 7274.	6.7	143
63	Facilitated Ion Transport in All-Solid-State Flexible Supercapacitors. ACS Nano, 2011, 5, 7205-7213.	7.3	458
64	Chlorinated Indium Tin Oxide Electrodes with High Work Function for Organic Device Compatibility. Science, 2011, 332, 944-947.	6.0	574
65	Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nature Nanotechnology, 2011, 6, 788-792.	15.6	2,839
66	"Bucky gels―for tailoring electroactive materials and devices: the composites of carbon materials with ionic liquids. Chemical Communications, 2011, 47, 6757.	2.2	85
67	Unlocking the full potential of organic light-emitting diodes on flexible plastic. Nature Photonics, 2011, 5, 753-757.	15.6	362
68	Macroscopic Wall Number Analysis of Single-Walled, Double-Walled, and Few-Walled Carbon Nanotubes by X-ray Diffraction. Journal of the American Chemical Society, 2011, 133, 5716-5719.	6.6	62
69	High performance foldable polymer thin film transistors with a side gate architecture. Journal of Materials Chemistry, 2011, 21, 18804.	6.7	18
70	Ferroelectric Copolymer-Based Plastic Memory Transistors. , 0, , .		0
71	Prospects for Neuroprosthetics: Flexible Microelectrode Arrays with Polymer Conductors., 2011,,.		2
72	22.1: <i>Invited Paper</i> : Stretchable and Foldable Displays using Organic Transistors with High Mechanical Stability. Digest of Technical Papers SID International Symposium, 2011, 42, 276-279.	0.1	1
73	Polymer Dielectrics and Orthogonal Solvent Effects for High-Performance Inkjet-Printed Top-Gated P-Channel Polymer Field-Effect Transistors. ETRI Journal, 2011, 33, 887-896.	1.2	29
74	A stretchable carbon nanotube strain sensor for human-motion detection. Nature Nanotechnology, 2011, 6, 296-301.	15.6	2,836
75	Light-emitting diodes composed of n-ZnO and p-Si nanowires constructed on plastic substrates by dielectrophoresis. Solid State Sciences, 2011, 13, 1735-1739.	1.5	21
76	Catalyst-free growth of pyramidal zinc sulfide nanostructure arrays on single walled carbon nanotubes. Materials Letters, 2011, 65, 801-803.	1.3	0

#	Article	IF	CITATIONS
77	Bending characteristics of ferroelectric poly(vinylidene fluoride trifluoroethylene) capacitors fabricated on flexible polyethylene naphthalate substrate. Current Applied Physics, 2011, 11, S219-S224.	1.1	17
78	Air-Stable and High-Mobility Organic Semiconductors Based on Heteroarenes for Field-Effect Transistors. Heterocycles, 2011, 83, 1187.	0.4	34
79	lonogels, ionic liquid based hybrid materials. Chemical Society Reviews, 2011, 40, 907-925.	18.7	1,059
80	Functional block-like structures from electroactive tetra(aniline) oligomers. Journal of Materials Chemistry, 2011, 21, 18137.	6.7	67
81	Flexible, all-polymer microelectrode arrays for the capture of cardiac and neuronal signals. Biomaterials, 2011, 32, 1778-1786.	5.7	138
82	Tactile sensing for dexterous in-hand manipulation in robotics—A review. Sensors and Actuators A: Physical, 2011, 167, 171-187.	2.0	634
83	Review paper: Recent developments in light extraction technologies of organic light emitting diodes. Electronic Materials Letters, 2011, 7, 77-91.	1.0	162
84	Flexible Field Emission of Nitrogenâ€Doped Carbon Nanotubes/Reduced Graphene Hybrid Films. Small, 2011, 7, 95-100.	5.2	116
85	Stretchable Fieldâ€Effectâ€Transistor Array of Suspended SnO ₂ Nanowires. Small, 2011, 7, 1181-1185.	5.2	71
86	Crossâ€Stacked Superaligned Carbon Nanotube Films for Transparent and Stretchable Conductors. Advanced Functional Materials, 2011, 21, 2721-2728.	7.8	156
87	Organic Electronics on Banknotes. Advanced Materials, 2011, 23, 654-658.	11.1	197
88	Highly Flexible Silver Nanowire Electrodes for Shapeâ€Memory Polymer Lightâ€Emitting Diodes. Advanced Materials, 2011, 23, 664-668.	11.1	622
89	Stretchable GaAs Photovoltaics with Designs That Enable High Areal Coverage. Advanced Materials, 2011, 23, 986-991.	11.1	285
90	Stretchable Organic Solar Cells. Advanced Materials, 2011, 23, 1771-1775.	11.1	754
91	Singleâ€Walled Carbon Nanotube Aerogelâ€Based Elastic Conductors. Advanced Materials, 2011, 23, 2865-2869.	11.1	206
92	Tunneling Negative Differential Resistance in a Flexible Active Composite. Advanced Materials, 2011, 23, 2815-2818.	11.1	11
93	Intrinsically Stretchable Polymer Lightâ€Emitting Devices Using Carbon Nanotubeâ€Polymer Composite Electrodes. Advanced Materials, 2011, 23, 3989-3994.	11.1	490
94	Macroscale Elastomeric Conductors Generated from Hydrothermally Synthesized Metalâ€Polymer Hybrid Nanocable Sponges. Advanced Materials, 2011, 23, 3643-3647.	11.1	52

#	ARTICLE	IF	CITATIONS
95	Supramolecular Hydrogel of Bile Salts Triggered by Singleâ€Walled Carbon Nanotubes. Advanced Materials, 2011, 23, 4053-4057.	11.1	45
96	Flexible Inorganic Nanostructure Lightâ€Emitting Diodes Fabricated on Graphene Films. Advanced Materials, 2011, 23, 4614-4619.	11.1	210
97	All inkjet-printed, fully self-aligned transistors for low-cost circuit applications. Organic Electronics, 2011, 12, 249-256.	1.4	115
98	High-speed organic transistors fabricated using a novel hybrid-printing technique. Organic Electronics, 2011, 12, 1120-1125.	1.4	31
99	Highly reliable Si3N4â€"HfO2 stacked heterostructure to fully flexible poly-(3-hexylthiophene) thin-film transistor. Organic Electronics, 2011, 12, 1414-1421.	1.4	14
100	Abrupt heating-induced high-quality crystalline rubrene thin films for organic thin-film transistors. Organic Electronics, 2011, 12, 1446-1453.	1.4	68
101	Flexible and stable solution-processed organic field-effect transistors. Organic Electronics, 2011, 12, 1108-1113.	1.4	80
102	Electromechanical stability of buckled thin metal films on elastomer. Thin Solid Films, 2011, 519, 5511-5515.	0.8	1
103	Photopatterning the mechanical properties of polydimethylsiloxane films. Journal of Applied Physics, 2011, 109, 054905.	1.1	48
104	Stretchable fine fiber with high conductivity fabricated by injection forming. Applied Physics Letters, 2011, 98, .	1.5	28
105	Through silicone vias: Multilayer interconnects for stretchable electronics., 2011,,.		2
106	Flexible Nonvolatile Memory Thin-Film Transistor Using Ferroelectric Copolymer Gate Insulator and Oxide Semiconducting Channel. Journal of the Electrochemical Society, 2011, 158, H892.	1.3	17
107	Wearable tactile keypad with stretchable artificial skin. , 2011, , .		108
108	Next Generation Non-Vacuum, Maskless, Low Temperature Nanoparticle Ink Laser Digital Direct Metal Patterning for a Large Area Flexible Electronics. PLoS ONE, 2012, 7, e42315.	1.1	106
109	Effect of Void Volume and Silver Loading on Strain Response of Electrical Resistance in Silver Flakes/Polyurethane Composite for Stretchable Conductors. Japanese Journal of Applied Physics, 2012, 51, 11PD01.	0.8	3
110	Curvature effects on optical emission of flexible organic light-emitting diodes. Optics Express, 2012, 20, 7929.	1.7	7
111	A novel fully printed and flexible capacitive pressure sensor. , 2012, , .		47
112	PIEZORESISTIVE PROPERTIES OF MULTI-WALLED CARBON NANOTUBE–POLY(DIMETHYLSILOXANE) COMPOSITES FOR LOW-PRESSURE-SENSING APPLICATIONS. Nano, 2012, 07, 1250005.	0.5	5

#	Article	IF	CITATIONS
113	Flexible sound generator based on thermoacoustic effect., 2012,,.		2
114	Enhancing the Out-Coupling Efficiency of Organic Light-Emitting Diodes Using Two-Dimensional Periodic Nanostructures. Advances in Materials Science and Engineering, 2012, 2012, 1-9.	1.0	22
115	Ambient Electronics. Japanese Journal of Applied Physics, 2012, 51, 100001.	0.8	16
116	Stretchable Electronics. Nippon Gomu Kyokaishi, 2012, 85, 101-106.	0.0	1
117	Flexible GaN LED on a polyimide substrate for display applications. Proceedings of SPIE, 2012, , .	0.8	13
118	Microcontact Printing for Patterning Carbon Nanotube/Polymer Composite Films with Electrical Conductivity. ACS Applied Materials & Interfaces, 2012, 4, 4891-4897.	4.0	23
119	The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films. Nanoscale, 2012, 4, 1996.	2.8	413
120	Functionalization of Carbon Nanotubes with Ionic Liquids. , 2012, , 399-434.		2
121	Stretchable organic integrated circuits for large-area electronic skin surfaces. MRS Bulletin, 2012, 37, 236-245.	1.7	124
122	Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers, 2012, 4, 275-295.	2.0	517
123	Dynamic and Galvanic Stability of Stretchable Supercapacitors. Nano Letters, 2012, 12, 6366-6371.	4.5	182
124	Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nature Nanotechnology, 2012, 7, 803-809.	15.6	782
125	Mechanics of stretchable electronics with high fill factors. International Journal of Solids and Structures, 2012, 49, 3416-3421.	1.3	28
126	Stretchable electronics: materials, architectures and integrations. Journal Physics D: Applied Physics, 2012, 45, 103001.	1.3	145
127	Conductive Rubber Nanocomposites as Tensile and Pressure Sensors. Applied Mechanics and Materials, 2012, 217-219, 130-133.	0.2	3
128	Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer. Nanoscale, 2012, 4, 6613.	2.8	8
129	Acid-treated SWCNT/polyurethane nanoweb as a stretchable and transparent Conductor. RSC Advances, 2012, 2, 10717.	1.7	29
130	Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis. Soft Matter, 2012, 8, 7122.	1.2	64

#	Article	IF	CITATIONS
131	Effects of gate dielectrics and their solvents on characteristics of solution-processed N-channel polymer field-effect transistors. Journal of Materials Chemistry, 2012, 22, 21138.	6.7	46
132	Simultaneous characterization of mechanical and electrical performances of ultraflexible and stretchable organic integrated circuits. , 2012, , .		3
133	Locally Reinforced Polymer-Based Composites for Elastic Electronics. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2860-2864.	4.0	40
134	Role of Subsurface Diffusion and Ostwald Ripening in Catalyst Formation for Single-Walled Carbon Nanotube Forest Growth. Journal of the American Chemical Society, 2012, 134, 2148-2153.	6.6	113
135	Manipulation of Liquid Filaments on Photoresponsive Microwrinkles. ACS Applied Materials & Samp; Interfaces, 2012, 4, 2212-2217.	4.0	25
136	TIPS-pentacene crystalline thin film growth. Organic Electronics, 2012, 13, 2056-2062.	1.4	46
137	Extremely efficient flexible organic light-emitting diodes with modified graphene anode. Nature Photonics, 2012, 6, 105-110.	15.6	1,272
138	Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Materials, 2012, 4, e19-e19.	3.8	217
139	Field emission properties of carbon nanotubes in a stretchable polydimethylsiloxane matrix. Applied Surface Science, 2012, 258, 5191-5194.	3.1	13
140	Water-resistant flexible GaN LED on a liquid crystal polymer substrate for implantable biomedical applications. Nano Energy, 2012, 1, 145-151.	8.2	123
141	High mobility organic thin-film transistors on plastic substrate. Current Applied Physics, 2012, 12, e2-e5.	1.1	13
143	Polymer blends with semiconducting nanowires for organic electronics. Journal of Materials Chemistry, 2012, 22, 4244.	6.7	66
147	A Multilevel Memory Based on Proton-Doped Polyazomethine with an Excellent Uniformity in Resistive Switching. Journal of the American Chemical Society, 2012, 134, 17408-17411.	6.6	136
148	A Highly Elastic, Capacitive Strain Gauge Based on Percolating Nanotube Networks. Nano Letters, 2012, 12, 1821-1825.	4.5	447
150	Solderable and electroplatable flexible electronic circuit on a porous stretchable elastomer. Nature Communications, 2012, 3, 977.	5.8	199
151	Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy, environment and health sciences. Frontiers in Energy, 2012, 6, 311-340.	1.2	87
152	Solvent and polymer matrix effects on TIPS-pentacene/polymer blend organic field-effect transistors. Journal of Materials Chemistry, 2012, 22, 5531.	6.7	109
153	Roll-to-roll printed resistive WORM memory on a flexible substrate. Nanotechnology, 2012, 23, 305204.	1.3	19

#	Article	IF	CITATIONS
154	Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. Chemistry of Materials, 2012, 24, 373-382.	3.2	503
155	Green Solvents II., 2012,,.		48
156	Production of Flexible and Electrically Conductive Polyethylene–Carbon Nanotube Shish-Kebab Structures and Their Assembly into Thin Films. Industrial & Engineering Chemistry Research, 2012, 51, 5456-5460.	1.8	5
157	Horizontally-aligned carbon nanotubes arrays and their interactions with liquid crystal molecules: Physical characteristics and display applications. AIP Advances, 2012, 2, .	0.6	9
158	Imbricate Scales as a Design Construct for Microsystem Technologies. Small, 2012, 8, 901-906.	5.2	24
159	Stretchable Semiconductor Technologies with High Areal Coverages and Strainâ€Limiting Behavior: Demonstration in Highâ€Efficiency Dualâ€Junction GalnP/GaAs Photovoltaics. Small, 2012, 8, 1851-1856.	5.2	97
160	Stretchable Lightâ€Emitting Electrochemical Cells Using an Elastomeric Emissive Material. Advanced Materials, 2012, 24, 2673-2678.	11.1	130
161	Working temperature dependence of metal-ferroelectric-insulator-semiconductor capacitors using a poly(vinylidene fluoride-trifluoroethylene) copolymer for nonvolatile memory applications. Journal of the Korean Physical Society, 2012, 60, 65-71.	0.3	1
162	Flexible molecular-scale electronic devices. Nature Nanotechnology, 2012, 7, 438-442.	15.6	165
163	Nanostructured Hybrid Transparent Conductive Films with Antibacterial Properties. ACS Nano, 2012, 6, 5157-5163.	7.3	139
164	Highâ€Transconductance Organic Thinâ€Film Electrochemical Transistors for Driving Lowâ€Voltage Redâ€Greenâ€Blue Active Matrix Organic Lightâ€Emitting Devices. Advanced Functional Materials, 2012, 22, 1623-1631.	7.8	54
165	Highly Transparent and Conductive Stretchable Conductors Based on Hierarchical Reticulate Singleâ€Walled Carbon Nanotube Architecture. Advanced Functional Materials, 2012, 22, 5238-5244.	7.8	148
166	Optically Directed Mesoscale Assembly and Patterning of Electrically Conductive Organic–Inorganic Hybrid Structures. Advanced Materials, 2012, 24, OP242-6.	11.1	7
167	Carbonâ€Nanotube/Silver Networks in Nitrile Butadiene Rubber for Highly Conductive Flexible Adhesives. Advanced Materials, 2012, 24, 3344-3349.	11.1	94
168	Highly Stretchable Alkaline Batteries Based on an Embedded Conductive Fabric. Advanced Materials, 2012, 24, 5071-5076.	11.1	232
169	Stable Solutionâ€Processed Molecular <i>n</i> à€€hannel Organic Fieldâ€Effect Transistors. Advanced Materials, 2012, 24, 4445-4450.	11.1	67
170	Highly Conductive and Stretchable Silver Nanowire Conductors. Advanced Materials, 2012, 24, 5117-5122.	11.1	1,139
172	Discotic Ionic Liquid Crystals of Triphenylene as Dispersants for Orienting Singleâ€Walled Carbon Nanotubes. Angewandte Chemie - International Edition, 2012, 51, 8490-8494.	7.2	81

#	Article	IF	CITATIONS
173	Surfaceâ€Grafted Polymerâ€Assisted Electroless Deposition of Metals for Flexible and Stretchable Electronics. Chemistry - an Asian Journal, 2012, 7, 862-870.	1.7	61
174	Optically switchable transistor via energy-level phototuning in a bicomponent organic semiconductor. Nature Chemistry, 2012, 4, 675-679.	6.6	217
175	Establishing Dual Electrogenerated Chemiluminescence and Multicolor Electrochromism in Functional Ionic Transition-Metal Complexes. Journal of the American Chemical Society, 2012, 134, 968-978.	6.6	83
176	Three-dimensional nanonetworks for giant stretchability in dielectrics and conductors. Nature Communications, 2012, 3, 916.	5.8	292
177	Fluorescent Dendron–Cyclodextrin Nanotubes with Surface Peptide Spacer as a Recyclable Sensory Platform. Chemistry - A European Journal, 2012, 18, 7351-7356.	1.7	8
178	Axisymmetric thermo-mechanical analysis of laser-driven non-contact transfer printing. International Journal of Fracture, 2012, 176, 189-194.	1.1	37
179	Recent advances in flexible and stretchable electronics, sensors and power sources. Science China Chemistry, 2012, 55, 718-725.	4.2	54
180	Single-walled carbon nanotube/silicone rubber composites for compliant electrodes. Carbon, 2012, 50, 444-449.	5.4	116
181	Microwrinkles: Shape-tunability and applications. Journal of Colloid and Interface Science, 2012, 368, 1-8.	5.0	58
182	An analytical model for shear-enhanced adhesiveless transfer printing. Mechanics Research Communications, 2012, 43, 46-49.	1.0	52
183	Fabrication of organic semiconductor crystalline thin films and crystals from solution by confined crystallization. Organic Electronics, 2012, 13, 235-243.	1.4	34
184	Allâ€Organic Photopatterned One Diodeâ€One Resistor Cell Array for Advanced Organic Nonvolatile Memory Applications. Advanced Materials, 2012, 24, 828-833.	11.1	68
185	Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing. Journal of Materials Science, 2012, 47, 3233-3240.	1.7	9
186	Stretchable and self-healing polymers and devices for electronic skin. Progress in Polymer Science, 2013, 38, 1961-1977.	11.8	539
187	Advances in Elastomers II. Advanced Structured Materials, 2013, , .	0.3	15
188	Topographic substrates as strain relief features in stretchable organic thin film transistors. Organic Electronics, 2013, 14, 1636-1642.	1.4	55
189	Stretchable nanoparticle conductors with self-organized conductive pathways. Nature, 2013, 500, 59-63.	13.7	729
190	Fast low-voltage electroactive actuators using nanostructured polymer electrolytes. Nature Communications, 2013, 4, 2208.	5.8	172

#	Article	IF	CITATIONS
191	Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure. Journal of the American Chemical Society, 2013, 135, 11006-11014.	6.6	81
192	Ultrathin, highly flexible and stretchable PLEDs. Nature Photonics, 2013, 7, 811-816.	15.6	832
193	Air-breathing flexible Polydimethylsiloxane (PDMS)-based fuel cell. International Journal of Precision Engineering and Manufacturing, 2013, 14, 501-504.	1.1	21
194	Recyclable, Flexible, Lowâ€Power Oxide Electronics. Advanced Functional Materials, 2013, 23, 2153-2161.	7.8	124
195	Highly Stretchable Patterned Gold Electrodes Made of Au Nanosheets. Advanced Materials, 2013, 25, 2707-2712.	11.1	159
196	Fabrication of a Stretchable Solid-State Micro-Supercapacitor Array. ACS Nano, 2013, 7, 7975-7982.	7.3	244
197	Intrinsically Stretchable Supercapacitors Composed of Polypyrrole Electrodes and Highly Stretchable Gel Electrolyte. ACS Applied Materials & Samp; Interfaces, 2013, 5, 9008-9014.	4.0	190
198	Embracing the organics world. Nature Materials, 2013, 12, 591-591.	13.3	22
199	Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes. Nature Communications, 2013, 4, 2491.	5.8	65
200	Flexible and twistable non-volatile memory cell array with all-organic one diode–one resistor architecture. Nature Communications, 2013, 4, 2707.	5.8	156
201	Strain sensitivity and durability in p-type and n-type organic thin-film transistors with printed silver electrodes. Scientific Reports, 2013, 3, 2048.	1.6	50
202	Printed electrically conductive composites: conductive filler designs and surface engineering. Journal of Materials Chemistry C, 2013, 1, 4052.	2.7	120
203	Dispersing single-walled carbon nanotubes in ionic liquids: a quantitative analysis. RSC Advances, 2013, 3, 20034.	1.7	26
204	Influence of lengths of millimeter-scale single-walled carbon nanotube on electrical and mechanical properties of buckypaper. Nanoscale Research Letters, 2013, 8, 546.	3.1	52
205	Elastomeric substrates with embedded stiff platforms for stretchable electronics. Applied Physics Letters, 2013, 102, .	1.5	98
206	An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. Physical Chemistry Chemical Physics, 2013, 15, 8042.	1.3	97
207	Elastomeric polymer light-emitting devices and displays. Nature Photonics, 2013, 7, 817-824.	15.6	859
208	Graphene based field effect transistors: Efforts made towards flexible electronics. Solid-State Electronics, 2013, 89, 177-188.	0.8	85

#	Article	IF	CITATIONS
209	Nanophotonics for plasma heating. Nature Photonics, 2013, 7, 771-772.	15.6	3
210	Light-emitting electronic skin. Nature Photonics, 2013, 7, 769-771.	15.6	82
211	Buckling in serpentine microstructures and applications in elastomer-supported ultra-stretchable electronics with high areal coverage. Soft Matter, 2013, 9, 8062.	1.2	248
212	Fabrication of Nano-branched Coaxial Polyaniline / Polyvinylidene Fluoride Fibers via Electrospinning for Strain Sensor. Advanced Materials Research, 0, 853, 79-82.	0.3	19
214	An analytical mechanics model for the island-bridge structure of stretchable electronics. Soft Matter, 2013, 9, 8476.	1.2	82
215	Stretchable conductive polyurethane elastomer in situ polymerized with multi-walled carbon nanotubes. Journal of Materials Chemistry C, 2013, 1, 2744.	2.7	52
216	Progress in organic single-crystal field-effect transistors. MRS Bulletin, 2013, 38, 51-56.	1.7	31
217	Fabrication and characterization of polyaniline based Schottky diode. , 2013, , .		1
218	Flexible and Stretchable Polymers with Embedded Magnetic Nanostructures. Advanced Materials, 2013, 25, 623-629.	11.1	51
219	A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale, 2013, 5, 1727.	2.8	1,037
220	The influence of bending on the performance of flexible carbon black/polymer composite gas sensors. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 329-336.	2.4	15
221	Twistable nonvolatile organic resistive memory devices. Organic Electronics, 2013, 14, 2087-2092.	1.4	27
222	Polymer Material Dependence in the Polymer/Small Molecule Metal-Base Organic Transistors. Molecular Crystals and Liquid Crystals, 2013, 580, 117-124.	0.4	2
223	Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Materialia, 2013, 61, 7816-7827.	3.8	183
224	A dispersion strategy: dendritic carbon nanotube network dispersion for advanced composites. Chemical Science, 2013, 4, 727-733.	3.7	52
225	Supercapacitors based on nanostructured carbon. Nano Energy, 2013, 2, 159-173.	8.2	505
226	Transparent, stretchable, carbon-nanotube-inlaid conductors enabled by standard replication technology for capacitive pressure, strain and touch sensors. Journal of Materials Chemistry A, 2013, 1, 3580.	5.2	123
227	Polymer in situ embedding for highly flexible, stretchable and water stable PEDOT:PSS composite conductors. RSC Advances, 2013, 3, 7219.	1.7	61

#	Article	IF	CITATIONS
228	Stretchable Conductors Based on Silver Nanowires: Improved Performance through a Binary Network Design. Angewandte Chemie - International Edition, 2013, 52, 1654-1659.	7.2	182
229	Highly Stretchable, Integrated Supercapacitors Based on Singleâ€Walled Carbon Nanotube Films with Continuous Reticulate Architecture. Advanced Materials, 2013, 25, 1058-1064.	11.1	496
230	Rubber Nanocomposites: Latest Trends and Concepts. Advanced Structured Materials, 2013, , 69-107.	0.3	18
231	Fabrication of Highly Stretchable Conductors via Morphological Control of Carbon Nanotube Network. Small, 2013, 9, 3620-3629.	5.2	74
232	Reversible Sliding in Networks of Nanowires. Nano Letters, 2013, 13, 2381-2386.	4.5	71
233	All-Inorganic Light-Emitting Diodes Based on Solution-Processed Nontoxic and Earth-Abundant Nanocrystals. IEEE Journal of Quantum Electronics, 2013, 49, 325-330.	1.0	9
235	Self-powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale, 2013, 5, 5576.	2.8	80
236	Pressure Sensing and Electronic Amplification with Functionalized Graphite–Silicone Composite. Advanced Functional Materials, 2013, 23, 5398-5402.	7.8	21
237	Intrinsically stretchable and rechargeable batteries for self-powered stretchable electronics. Journal of Materials Chemistry A, 2013, 1, 5505.	5.2	98
238	Semiconductor nanocrystals dispersed in imidazolium-based ionic liquids: a spectroscopic and morphological investigation. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	5
239	Synthesis of low-temperature-processable and highly conductive Ag ink by a simple ligand modification: the role of adsorption energy. Journal of Materials Chemistry C, 2013, 1, 1855.	2.7	33
240	Silicone rubber nanocomposites containing a small amount of hybrid fillers with enhanced electrical sensitivity. Materials & Design, 2013, 45, 548-554.	5.1	48
241	Efficiency Rollâ€Off in Organic Lightâ€Emitting Diodes. Advanced Materials, 2013, 25, 6801-6827.	11.1	882
242	25th Anniversary Article: The Evolution of Electronic Skin (Eâ€6kin): A Brief History, Design Considerations, and Recent Progress. Advanced Materials, 2013, 25, 5997-6038.	11.1	2,001
243	Stretchable copper interconnects with three-dimensional coiled structures. Journal of Micromechanics and Microengineering, 2013, 23, 127002.	1.5	10
244	Super-stretchable, Transparent Carbon Nanotube-Based Capacitive Strain Sensors for Human Motion Detection. Scientific Reports, 2013, 3, 3048.	1.6	573
245	A Highly Stretchable, Fiberâ€6haped Supercapacitor. Angewandte Chemie - International Edition, 2013, 52, 13453-13457.	7.2	458
246	Soft Conductive Elastomer Materials for Stretchable Electronics and Voltage Controlled Artificial Muscles. Advanced Materials, 2013, 25, 578-583.	11.1	176

#	Article	IF	CITATIONS
247	Breakthroughs in Photonics 2012: Large-Area Ultrathin Photonics. IEEE Photonics Journal, 2013, 5, 0700805-0700805.	1.0	2
248	Biaxially stretchable silver nanowire transparent conductors. Journal of Applied Physics, 2013, 113, .	1.1	48
249	ELASTOMER COMPOSITES BASED ON CARBON NANOTUBES AND IONIC LIQUID. Rubber Chemistry and Technology, 2013, 86, 367-400.	0.6	40
250	Polymeric Materials Reinforced with Multiwall Carbon Nanotubes: A Constitutive Material Model. Materials, 2013, 6, 2873-2891.	1.3	5
251	Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites. Polymers, 2013, 5, 847-872.	2.0	78
252	Lateral-crack-free, buckled, inkjet-printed silver electrodes on highly pre-stretched elastomeric substrates. Journal Physics D: Applied Physics, 2013, 46, 105305.	1.3	62
253	Free-standing nanocomposites with high conductivity and extensibility. Nanotechnology, 2013, 24, 165401.	1.3	21
254	Biaxially Stretchable Transparent Conductors That Use Metallic Single-Walled Carbon Nanotube Films. Materials Research Society Symposia Proceedings, 2013, 1505, 1.	0.1	0
255	High performance stretchable UV sensor arrays of SnO2 nanowires. Nanotechnology, 2013, 24, 315502.	1.3	39
256	Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) technique., 2013,, 377-397.		4
257	Three-dimensional elastic constitutive relations of aligned carbon nanotube architectures. Journal of Applied Physics, 2013, 114, .	1.1	29
258	A Novel Stretchable Coaxial NiTiâ€Sheath/Cuâ€Core Composite with High Strength and High Conductivity. Advanced Materials, 2013, 25, 1199-1202.	11.1	18
259	Batch fabricated flexible tactile sensor based on carbon nanotube-polymer composites. , 2013, , .		3
260	P(VDF-TrFE-CFE) terpolymer thin-film for high performance nonvolatile memory. Applied Physics Letters, 2013, 102, .	1.5	29
261	Planar patterned stretchable electrode arrays based on flexible printed circuits. Journal of Micromechanics and Microengineering, 2013, 23, 105004.	1.5	12
262	LEGO-like assembly of peelable, deformable components for integrated devices. NPG Asia Materials, 2013, 5, e66-e66.	3.8	12
263	Large-area, flexible imaging arrays constructed by light-charge organic memories. Scientific Reports, 2013, 3, 1080.	1.6	92
264	Stickerâ€Type Alq ₃ â€Based OLEDs Based on Printable Ultrathin Substrates in Periodically Anchored and Suspended Configurations. Advanced Materials, 2013, 25, 5626-5631.	11.1	17

#	Article	IF	CITATIONS
266	21pm1-A3 Particle Size Dependence on a Self-Healing Wire using an Electric Field Trapping of Gold Nanoparticles. The Proceedings of the Symposium on Micro-Nano Science and Technology, 2014, 2014.6, _21pm1-A321pm1-A3	0.0	0
267	Imperceptible Electronic Skin. Information Display, 2014, 30, 20-25.	0.1	4
268	Intrinsically Elastomeric Polymer Lightâ€Emitting Devices. Information Display, 2014, 30, 12-18.	0.1	0
269	Fabrication of conductive elastic nanocomposites via framing intact interconnected graphene networks. Composites Science and Technology, 2014, 100, 143-151.	3.8	77
270	Fabricating high-resolution offset color-filter black matrix by integrating heterostructured substrate with inkjet printing. Journal of Micromechanics and Microengineering, 2014, 24, 055008.	1.5	4
271	Highly stretchable pseudocapacitors based on buckled reticulate hybrid electrodes. Nano Research, 2014, 7, 1680-1690.	5. 8	47
272	Fabric-based stretchable electronics with mechanically optimized designs and prestrained composite substrates. Extreme Mechanics Letters, 2014, 1, 120-126.	2.0	27
273	Design, Fabrication and Failure Analysis of Stretchable Electrical Routings. Sensors, 2014, 14, 11855-11877.	2.1	55
274	All-organic self-contact transistors. Applied Physics Letters, 2014, 105, .	1.5	17
275	A strain-absorbing design for tissue–machine interfaces using a tunable adhesive gel. Nature Communications, 2014, 5, 5898.	5.8	120
276	Screen Printing as a Scalable and Low-Cost Approach for Rigid and Flexible Thin-Film Transistors Using Separated Carbon Nanotubes. ACS Nano, 2014, 8, 12769-12776.	7.3	179
277	An Intrinsically Stretchable Nanowire Photodetector with a Fully Embedded Structure. Advanced Materials, 2014, 26, 943-950.	11.1	163
278	A highly stretchable, helical copper nanowire conductor exhibiting a stretchability of 700%. NPG Asia Materials, 2014, 6, e132-e132.	3.8	126
279	Heteropolar Charging of Ferroelectrets for Flexible Keyboards and Tactile Sensors. Ferroelectrics, 2014, 472, 90-99.	0.3	1
280	Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes. Applied Physics Letters, 2014, 104, 043306.	1.5	6
281	High-Performance Flexible Organic Light-Emitting Diodes Using Embedded Silver Network Transparent Electrodes. ACS Nano, 2014, 8, 12796-12805.	7.3	154
282	Highâ€Performance, Stretchable, Wireâ€Shaped Supercapacitors. Angewandte Chemie - International Edition, 2015, 54, 618-622.	7.2	173
283	Room Temperature Fluorescent Conjugated Polymer Gums. Advanced Functional Materials, 2014, 24, 1928-1937.	7.8	45

#	Article	IF	CITATIONS
284	Inkjet-printed stretchable single-walled carbon nanotube electrodes with excellent mechanical properties. Applied Physics Letters, 2014, 104, .	1.5	58
285	A hierarchical computational model for stretchable interconnects with fractal-inspired designs. Journal of the Mechanics and Physics of Solids, 2014, 72, 115-130.	2.3	115
286	Spatial nonuniformity in heat transport across hybrid material interfaces. Physical Review B, 2014, 90,	1.1	12
287	Optimization on cell-library design for digital Application Specific Printed Electronics Circuits. , 2014,		2
288	Highly Sensitive Nonâ€Classical Strain Gauge Using Organic Heptazole Thinâ€Film Transistor Circuit on a Flexible Substrate. Advanced Functional Materials, 2014, 24, 4413-4419.	7.8	44
289	Characteristics and Applications of Carbon Nanotubes with Different Numbers of Walls. , 2014, , 313-339.		5
290	Fabrication of well-controlled wavy metal interconnect structures on stress-free elastomeric substrates. Microelectronic Engineering, 2014, 113, 55-60.	1.1	25
291	Progress on the morphological control of conductive network in conductive polymer composites and the use as electroactive multifunctional materials. Progress in Polymer Science, 2014, 39, 627-655.	11.8	553
292	Allâ€Elastomeric, Strainâ€Responsive Thermochromic Color Indicators. Small, 2014, 10, 1266-1271.	5.2	56
293	Progress in flexible lithium batteries and future prospects. Energy and Environmental Science, 2014, 7, 1307-1338.	15.6	1,312
294	Fractal design concepts for stretchable electronics. Nature Communications, 2014, 5, 3266.	5.8	821
295	Recent progress in metal–organic complexes for optoelectronic applications. Chemical Society Reviews, 2014, 43, 3259-3302.	18.7	996
296	Semiconducting channel self-imposed in metallic graphene using an oxygen ion reaction. Journal of the Korean Physical Society, 2014, 64, 283-288.	0.3	0
297	Crystal growth and characterization of fluorinated perylene diimides. Chemical Research in Chinese Universities, 2014, 30, 63-67.	1.3	4
298	Stretchable, Wearable Dye‧ensitized Solar Cells. Advanced Materials, 2014, 26, 2643-2647.	11.1	227
299	Highly Stretchable Transistors Using a Microcracked Organic Semiconductor. Advanced Materials, 2014, 26, 4253-4259.	11.1	200
300	Controlled Selfâ€Assembly for Highâ€Resolution Magnetic Printing. Small, 2014, 10, 1081-1085.	5.2	6
301	Systematic Reliability Study of Top-Gate p- and n-Channel Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3378-3386.	4.0	45

#	Article	IF	CITATIONS
302	Printed Transistors on Paper: Towards Smart Consumer Product Packaging. Advanced Functional Materials, 2014, 24, 5067-5074.	7.8	91
303	Alternative sintering methods compared to conventional thermal sintering for inkjet printed silver nanoparticle ink. Thin Solid Films, 2014, 556, 452-459.	0.8	154
304	Highly Stretchable Piezoresistive Graphene–Nanocellulose Nanopaper for Strain Sensors. Advanced Materials, 2014, 26, 2022-2027.	11.1	1,009
305	Molecularly Stretchable Electronics. Chemistry of Materials, 2014, 26, 3028-3041.	3.2	170
306	Polymer Microstructures Self-Assemble on Single-Walled Carbon Nanotube Thin Films. ACS Macro Letters, 2014, 3, 35-39.	2.3	1
307	An elastomeric transparent composite electrode based on copper nanowires and polyurethane. Journal of Materials Chemistry C, 2014, 2, 1298-1305.	2.7	123
308	Functional π-Gelators and Their Applications. Chemical Reviews, 2014, 114, 1973-2129.	23.0	1,548
309	Transparent and Stretchable High-Performance Supercapacitors Based on Wrinkled Graphene Electrodes. ACS Nano, 2014, 8, 1039-1046.	7.3	406
310	Hole-Transporting Spirothioxanthene Derivatives as Donor Materials for Efficient Small-Molecule-Based Organic Photovoltaic Devices. Chemistry of Materials, 2014, 26, 6585-6594.	3.2	42
311	Facile fabrication of high-performance InGaZnO thin film transistor using hydrogen ion irradiation at room temperature. Applied Physics Letters, 2014, 105, .	1.5	38
312	Solution-processed high-performance colloidal quantum dot tandem photodetectors on flexible substrates. Journal of Applied Physics, 2014, 116, 084303.	1.1	10
313	Negatively Strainâ€Dependent Electrical Resistance of Magnetically Arranged Nickel Composites: Application to Highly Stretchable Electrodes and Stretchable Lighting Devices. Advanced Materials, 2014, 26, 3094-3099.	11.1	54
314	3D Printed Quantum Dot Light-Emitting Diodes. Nano Letters, 2014, 14, 7017-7023.	4.5	371
315	Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells. Journal of Applied Physics, 2014, 116, 074506.	1.1	24
316	Molecular level controlled fabrication of highly transparent conductive reduced graphene oxide/silver nanowire hybrid films. RSC Advances, 2014, 4, 43270-43277.	1.7	16
317	Graphene-Based Conformal Devices. ACS Nano, 2014, 8, 7655-7662.	7.3	86
318	Geckoprinting: assembly of microelectronic devices on unconventional surfaces by transfer printing with isolated gecko setal arrays. Journal of the Royal Society Interface, 2014, 11, 20140627.	1.5	37
319	Solid state MEMS devices on flexible and semi-transparent silicon (100) platform. , 2014, , .		5

#	Article	IF	CITATIONS
320	Biaxially Stretchable, Integrated Array of High Performance Microsupercapacitors. ACS Nano, 2014, 8, 11639-11650.	7.3	143
321	A stretchable humidity sensor based on a wrinkled polyaniline nanostructure. RSC Advances, 2014, 4, 39767.	1.7	38
322	Room temperature curable silica ink. RSC Advances, 2014, 4, 47701-47707.	1.7	18
323	Stable charge storing in two-dimensional MoS ₂ nanoflake floating gates for multilevel organic flash memory. Nanoscale, 2014, 6, 12315-12323.	2.8	64
324	Towards tunable resistivity–strain behavior through construction of oriented and selectively distributed conductive networks in conductive polymer composites. Journal of Materials Chemistry A, 2014, 2, 10048-10058.	5.2	82
325	10 nm scale nanopatterning on flexible substrates by a secondary sputtering phenomenon and their applications in high performance, flexible and transparent conducting films. Journal of Materials Chemistry C, 2014, 2, 3527.	2.7	4
326	Stretchable Energyâ€Harvesting Tactile Electronic Skin Capable of Differentiating Multiple Mechanical Stimuli Modes. Advanced Materials, 2014, 26, 7324-7332.	11.1	481
327	Capacitive Energy Harvesting Using Highly Stretchable Silicone–Carbon Nanotube Composite Electrodes. Advanced Energy Materials, 2014, 4, 1300659.	10.2	30
328	Effect of Oxygen Plasma Alumina Treatment on Growth of Carbon Nanotube Forests. Journal of Physical Chemistry C, 2014, 118, 18683-18692.	1.5	9
329	Elastomer-Infiltrated Vertically Aligned Carbon Nanotube Film-Based Wavy-Configured Stretchable Conductors. ACS Applied Materials & Samp; Interfaces, 2014, 6, 12909-12914.	4.0	25
330	Cephalopod-inspired design of electro-mechano-chemically responsive elastomers for on-demand fluorescent patterning. Nature Communications, 2014, 5, 4899.	5.8	202
331	Stretchable Energy Storage and Conversion Devices. Small, 2014, 10, 3443-3460.	5. 2	126
332	Low operational voltage and high performance organic field effect memory transistor with solution processed graphene oxide charge storage media. Organic Electronics, 2014, 15, 2775-2782.	1.4	13
333	Gradual Controlling the Work Function of Metal Electrodes by Solutionâ€Processed Mixed Interlayers for Ambipolar Polymer Fieldâ€Effect Transistors and Circuits. Advanced Functional Materials, 2014, 24, 6484-6491.	7.8	32
334	Thermal Effects in a Bendable InGaN/GaN Quantum-Well Light-Emitting Diode. IEEE Photonics Technology Letters, 2014, 26, 1442-1445.	1.3	2
335	Conductivity enhancement of stretchable PEDOT:PSS nanowire interconnect fabricated by fountain-pen lithography. Materials Chemistry and Physics, 2014, 147, 1171-1174.	2.0	13
336	Highly deformable liquid-state heterojunction sensors. Nature Communications, 2014, 5, 5032.	5.8	221
337	Superstable Transparent Conductive Cu@Cu ₄ Ni Nanowire Elastomer Composites against Oxidation, Bending, Stretching, and Twisting for Flexible and Stretchable Optoelectronics. Nano Letters, 2014, 14, 6298-6305.	4.5	262

#	Article	IF	CITATIONS
338	Effect of wet jet milling of carbon nanotube on electrical properties of polymer nanocomposites. Materials Chemistry and Physics, 2014, 148, 1178-1183.	2.0	9
339	Microfluidic serpentine antennas with designed mechanical tunability. Lab on A Chip, 2014, 14, 4205-4212.	3.1	84
340	Highly Stretchable Carbon Nanotube Transistors with Ion Gel Gate Dielectrics. Nano Letters, 2014, 14, 682-686.	4.5	152
341	Knitted Fabrics Made from Highly Conductive Stretchable Fibers. Nano Letters, 2014, 14, 1944-1951.	4.5	153
342	Super-stretchy lithium-ion battery based on carbon nanotube fiber. Journal of Materials Chemistry A, 2014, 2, 11054.	5.2	167
343	Highly Conductive Stretchable and Biocompatible Electrode–Hydrogel Hybrids for Advanced Tissue Engineering. Advanced Healthcare Materials, 2014, 3, 1919-1927.	3.9	138
344	Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics. Advanced Functional Materials, 2014, 24, 2028-2037.	7.8	273
345	Highly Stretchable or Transparent Conductor Fabrication by a Hierarchical Multiscale Hybrid Nanocomposite. Advanced Functional Materials, 2014, 24, 5671-5678.	7.8	297
346	Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests. Carbon, 2014, 80, 396-404.	5.4	143
347	Negative differential conductance materials for flexible electronics. Journal of Applied Polymer Science, 2014, 131, .	1.3	5
348	Stretchable Carbon Nanotube/Ion–Gel Supercapacitors with High Durability Realized through Interfacial Microroughness. ACS Applied Materials & 13578-13586.	4.0	86
349	Materials and Structures for Stretchable Energy Storage and Conversion Devices. Advanced Materials, 2014, 26, 3592-3617.	11.1	363
350	Design of conductive composite elastomers for stretchable electronics. Nano Today, 2014, 9, 244-260.	6.2	246
351	Highly Stretchable Polymer Transistors Consisting Entirely of Stretchable Device Components. Advanced Materials, 2014, 26, 3706-3711.	11.1	157
352	Flexible Organic Light-Emitting Diodes with Enhanced Light Out-Coupling Efficiency Fabricated on a Double-Sided Nanotextured Substrate. ACS Applied Materials & Double-Sided Nanotextured Substrate.	4.0	28
353	Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers. Advanced Materials, 2014, 26, 6307-6312.	11.1	1,314
354	Simple and rapid micropatterning of conductive carbon composites and its application to elastic strain sensors. Carbon, 2014, 77, 199-207.	5.4	303
355	Laser-assisted replication of large-area nanostructures. Journal of Materials Processing Technology, 2014, 214, 2444-2449.	3.1	9

#	ARTICLE	IF	CITATIONS
356	Latex Polymer/Super Growth-Single-Walled Carbon Nanotube Composites with High Electroconductivity Fabricated by Wet Processing. Bulletin of the Chemical Society of Japan, 2014, 87, 1343-1348.	2.0	2
357	Screen printing of stretchable electrodes for large area LED matrix. Journal of Materials Research, 2015, 30, 2271-2278.	1.2	14
358	Ultraflexible organic electronics. MRS Bulletin, 2015, 40, 1130-1137.	1.7	17
359	Free-form 2.5D thermoplastic circuits using one-time stretchable interconnections. Materials Research Society Symposia Proceedings, 2015, 1798, 1.	0.1	4
360	The Flexible Interface Using a Stretch Sensor. Procedia Manufacturing, 2015, 3, 845-849.	1.9	1
361	Millimeter Thin and Rubberâ€Like Solidâ€State Lighting Modules Fabricated Using Rollâ€toâ€Roll Fluidic Selfâ€Assembly and Lamination. Advanced Materials, 2015, 27, 3661-3668.	11.1	28
362	Scalable Microaccordion Mesh for Deformable and Stretchable Metallic Films. Physical Review Applied, 2015, 4, .	1.5	14
363	A Fully Transparent Resistive Memory for Harsh Environments. Scientific Reports, 2015, 5, 15087.	1.6	17
364	A novel multifunctional NiTi/Ag hierarchical composite. Scientific Reports, 2014, 4, 5267.	1.6	19
365	Non Aqueous Synthesis of Titania Ink for Printed Electronics. Materials Science Forum, 2015, 830-831, 573-576.	0.3	0
366	Nanoscale Sensor Technologies for Disease Detection via Volatolomics. Small, 2015, 11, 6142-6164.	5.2	159
367	A Flexible, Stretchable and Shapeâ€Adaptive Approach for Versatile Energy Conversion and Selfâ€Powered Biomedical Monitoring. Advanced Materials, 2015, 27, 3817-3824.	11.1	227
368	Fully Printed Foldable Integrated Logic Gates with Tunable Performance Using Semiconducting Carbon Nanotubes. Advanced Functional Materials, 2015, 25, 5698-5705.	7.8	52
370	A Facile PDMSâ€Assisted Crystallization for the Crystalâ€Engineering of C ₆₀ Singleâ€Crystal Organic Fieldâ€Effect Transistors. Advanced Materials, 2015, 27, 4371-4376.	11.1	46
371	Spontaneously Formed Nanopatterns on Polymer Films for Flexible Organic Light-Emitting Diodes. Small, 2015, 11, 4480-4484.	5.2	34
372	Tunnelling conductive hybrid films of gold nanoparticles and cellulose and their applications as electrochemical electrodes. Nanotechnology, 2015, 26, 465708.	1.3	7
373	A Largeâ€Scale Flexible Plasmonic Nanorod Array with Multifunction of Strong Photoluminescence Emission and Radiation Enhancement. Advanced Optical Materials, 2015, 3, 1355-1361.	3 . 6	7
374	Transparent Electrodes Printed with Nanocrystal Inks for Flexible Smart Devices. Angewandte Chemie - International Edition, 2015, 54, 9760-9774.	7.2	135

#	Article	IF	CITATIONS
375	Stretchable Si Logic Devices with Graphene Interconnects. Small, 2015, 11, 6272-6277.	5.2	15
376	Thermally Controlled, Patterned Graphene Transfer Printing for Transparent and Wearable Electronic/Optoelectronic System. Advanced Functional Materials, 2015, 25, 7109-7118.	7.8	155
377	Mechanically Recoverable and Highly Efficient Perovskite Solar Cells: Investigation of Intrinsic Flexibility of Organic–Inorganic Perovskite. Advanced Energy Materials, 2015, 5, 1501406.	10.2	131
378	Conductive Polymeric Composites Based on Multiwalled Carbon Nanotubes and Linseed Oil Functionalized and Cross-Linked with Diacetylenes from Propargyl Alcohol. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	3
379	High Electro-conductive and High Durable Rubber Using with Long Single Wall Carbon Nanotubes: Dispersion Procedure and Composite Properties. Seikei-Kakou, 2015, 27, 388-393.	0.0	0
380	Fabrication of CNT Dispersion Fluid by Wet-Jet Milling Method for Coating on Bipolar Plate of Fuel Cell. Journal of Nanomaterials, 2015, 2015, 1-7.	1.5	5
381	Stretchable Strain Sensor Based on Areal Change of Carbon Nanotube Electrode. IEEE Sensors Journal, 2015, 15, 2212-2218.	2.4	37
382	Influence of matching solubility parameter of polymer matrix and CNT on electrical conductivity of CNT/rubber composite. Scientific Reports, 2014, 4, 7232.	1.6	53
383	Unidirectional coating technology for organic field-effect transistors: materials and methods. Semiconductor Science and Technology, 2015, 30, 054001.	1.0	32
384	Self-healing metal wire using an electric field trapping of gold nanoparticles for flexible devices. , 2015, , .		1
385	Stretchable Silver Nanowire–Elastomer Composite Microelectrodes with Tailored Electrical Properties. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13467-13475.	4.0	77
386	Mechanics of curvilinear electronics and optoelectronics. Current Opinion in Solid State and Materials Science, 2015, 19, 171-189.	5.6	36
387	Inorganic Materials and Assembly Techniques for Flexible and Stretchable Electronics. Proceedings of the IEEE, 2015, 103, 619-632.	16.4	58
388	Synthesis of Silver Nanowires and its Application on Stretchable Conductor. Applied Mechanics and Materials, 0, 731, 593-596.	0.2	0
389	From Printed Transistors to Printed Smart Systems. Proceedings of the IEEE, 2015, 103, 607-618.	16.4	78
390	Light extraction efficiency enhancement of top-emitting organic light-emitting diodes employing low-Q whispering gallery modes in spheres. Materials Research Express, 2015, 2, 096202.	0.8	7
391	Conjugated polymer sorting of semiconducting carbon nanotubes and their electronic applications. Nano Today, 2015, 10, 737-758.	6.2	111
392	An ABA triblock copolymer strategy for intrinsically stretchable semiconductors. Journal of Materials Chemistry C, 2015, 3, 3599-3606.	2.7	93

#	Article	IF	CITATIONS
393	Design and response performance of capacitance meter for stretchable strain sensor. , 2015, , .		5
394	Material Characterization and Transfer of Large-Area Ultra-Thin Polydimethylsiloxane Membranes. Journal of Microelectromechanical Systems, 2015, 24, 2170-2177.	1.7	10
395	Flexible and Stretchable Micromagnet Arrays for Tunable Biointerfacing. Advanced Materials, 2015, 27, 1083-1089.	11.1	20
396	Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain. Nanoscale, 2015, 7, 4566-4571.	2.8	23
397	Stretchable Graphene Thermistor with Tunable Thermal Index. ACS Nano, 2015, 9, 2130-2137.	7.3	293
398	Highly stretchable reduced graphene oxide (rGO)/single-walled carbon nanotubes (SWNTs) electrodes for energy storage devices. Electrochimica Acta, 2015, 163, 149-160.	2.6	37
399	Stretchable and Conformable Oxide Thinâ€Film Electronics. Advanced Electronic Materials, 2015, 1, 1400038.	2.6	78
400	3D-Stacked Carbon Composites Employing Networked Electrical Intra-Pathways for Direct-Printable, Extremely Stretchable Conductors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 4109-4117.	4.0	24
401	Ultrafast Atmospheric-Pressure-Plasma-Jet Sintering of Nanoporous TiO ₂ -SnO ₂ Composites with Features Defined by Screen-Printing. ECS Journal of Solid State Science and Technology, 2015, 4, P3020-P3025.	0.9	8
402	A simple and versatile approach to self-healing polymers and electrically conductive composites. RSC Advances, 2015, 5, 13261-13269.	1.7	17
403	Nanomaterialâ€Enabled Stretchable Conductors: Strategies, Materials and Devices. Advanced Materials, 2015, 27, 1480-1511.	11.1	594
404	Stretchable Conductive Composites Based on Metal Wools for Use as Electrical Vias in Soft Devices. Advanced Functional Materials, 2015, 25, 1418-1425.	7.8	35
407	Polythiophene Nanofibril Bundles Surfaceâ€Embedded in Elastomer: A Route to a Highly Stretchable Active Channel Layer. Advanced Materials, 2015, 27, 1255-1261.	11.1	166
408	Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Advances, 2015, 5, 10697-10702.	1.7	105
409	Largeâ€Area Compliant Tactile Sensors Using Printed Carbon Nanotube Activeâ€Matrix Backplanes. Advanced Materials, 2015, 27, 1561-1566.	11.1	198
410	Air-stable, non-volatile resistive memory based on hybrid organic/inorganic nanocomposites. Organic Electronics, 2015, 18, 17-23.	1.4	47
411	Directed self-assembly of rhombic carbon nanotube nanomesh films for transparent and stretchable electrodes. Journal of Materials Chemistry C, 2015, 3, 2319-2325.	2.7	39
412	Sprayable Elastic Conductors Based on Block Copolymer Silver Nanoparticle Composites. ACS Nano, 2015, 9, 336-344.	7.3	81

#	Article	IF	Citations
413	Flexible, stretchable, and patchable organic devices integrated on freestanding polymeric substrates. Journal of Polymer Science, Part B: Polymer Physics, 2015, 53, 453-460.	2.4	42
414	Direct Transfer of Magnetic Sensor Devices to Elastomeric Supports for Stretchable Electronics. Advanced Materials, 2015, 27, 1333-1338.	11.1	69
415	Stretchable electronics based on Ag-PDMS composites. Scientific Reports, 2014, 4, 7254.	1.6	234
416	High performance printed organic transistors using a novel scanned thermal annealing technology. Organic Electronics, 2015, 20, 150-157.	1.4	11
417	Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50 nm. Applied Physics Letters, 2015, 106, .	1.5	50
418	Flexible thermoelectric rubber polymer composites based on single-walled carbon nanotubes. Japanese Journal of Applied Physics, 2015, 54, 04DN03.	0.8	10
419	Construction of silver nanochains on DNA template for flexible electrical conductive composites. Materials Letters, 2015, 147, 109-112.	1.3	7
420	Multifunctional nano-accordion structures for stretchable transparent conductors. Materials Horizons, 2015, 2, 486-494.	6.4	29
421	Biaxially stretchable supercapacitors based on the buckled hybrid fiber electrode array. Nanoscale, 2015, 7, 12492-12497.	2.8	53
422	Stretchable biofuel cell with enzyme-modified conductive textiles. Biosensors and Bioelectronics, 2015, 74, 947-952.	5.3	67
423	Chemically Driven, Water-Soluble Composites of Carbon Nanotubes and Silver Nanoparticles as Stretchable Conductors. ACS Macro Letters, 2015, 4, 769-773.	2.3	14
424	Printable elastic conductors with a high conductivity for electronic textile applications. Nature Communications, 2015, 6, 7461.	5.8	677
425	Highly Stretchable and Mechanically Stable Transparent Electrode Based on Composite of Silver Nanowires and Polyurethane–Urea. ACS Applied Materials & 1, 15214-15222.	4.0	92
426	Soft electronics for soft robotics. Proceedings of SPIE, 2015, , .	0.8	10
427	Hierarchically buckled sheath-core fibers for superelastic electronics, sensors, and muscles. Science, 2015, 349, 400-404.	6.0	447
428	Single-walled carbon nanotube networks for flexible and printed electronics. Semiconductor Science and Technology, 2015, 30, 074001.	1.0	91
429	Stacked Bilayer Graphene and Redox-Active Interlayer for Transparent and Flexible High-Performance Supercapacitors. Chemistry of Materials, 2015, 27, 3621-3627.	3.2	50
430	Capacitive Soft Strain Sensors via Multicore–Shell Fiber Printing. Advanced Materials, 2015, 27, 2440-2446.	11.1	372

#	Article	IF	CITATIONS
431	Ag Nanowire Reinforced Highly Stretchable Conductive Fibers for Wearable Electronics. Advanced Functional Materials, 2015, 25, 3114-3121.	7.8	493
432	The mechanism of alkylamine-stabilized copper fine particles towards improving the electrical conductivity of copper films at low sintering temperature. Journal of Materials Chemistry C, 2015, 3, 5890-5895.	2.7	43
433	Flexible electroluminescent fiber fabricated from coaxially wound carbon nanotube sheets. Journal of Materials Chemistry C, 2015, 3, 5621-5624.	2.7	69
434	Wearable red–green–blue quantum dot light-emitting diode array using high-resolution intaglio transfer printing. Nature Communications, 2015, 6, 7149.	5.8	536
435	Review on application of PEDOTs and PEDOT:PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 2015, 26, 4438-4462.	1.1	464
436	A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nature Photonics, 2015, 9, 233-238.	15.6	372
437	Highly Stretchable, Global, and Distributed Local Strain Sensing Line Using GaInSn Electrodes for Wearable Electronics. Advanced Functional Materials, 2015, 25, 3806-3813.	7.8	131
438	Stretchableâ€Rubberâ€Based Triboelectric Nanogenerator and Its Application as Selfâ€Powered Body Motion Sensors. Advanced Functional Materials, 2015, 25, 3688-3696.	7.8	320
440	Current progress in 3D printing for cardiovascular tissue engineering. Biomedical Materials (Bristol), 2015, 10, 034002.	1.7	139
441	Toward organic electronics with properties inspired by biological tissue. Journal of Materials Chemistry B, 2015, 3, 4947-4952.	2.9	44
442	Highly Conductive and Ultrastretchable Electric Circuits from Covered Yarns and Silver Nanowires. ACS Nano, 2015, 9, 3887-3895.	7.3	133
443	Highly Stretchable and Selfâ€Deformable Alternating Current Electroluminescent Devices. Advanced Materials, 2015, 27, 2876-2882.	11.1	238
444	Flexible structured high-frequency film bulk acoustic resonator for flexible wireless electronics. Journal of Micromechanics and Microengineering, 2015, 25, 055003.	1.5	25
445	Free-Standing and Transparent Graphene Membrane of Polyhedron Box-Shaped Basic Building Units Directly Grown Using a NaCl Template for Flexible Transparent and Stretchable Solid-State Supercapacitors. Nano Letters, 2015, 15, 3195-3203.	4.5	164
446	Interfacing Liquid Metals with Stretchable Metal Conductors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 7920-7926.	4.0	42
447	Water-soluble conjugated polymers as active elements for organic nonvolatile memories. RSC Advances, 2015, 5, 30542-30548.	1.7	11
448	Solvent-dependent electrical properties improvement of organic field-effect transistor based on disordered conjugated polymer/insulator blends. Organic Electronics, 2015, 27, 160-166.	1.4	30
449	Supramolecular Polymers (Host-Guest Interactions). , 2015, , 2402-2406.		0

#	Article	IF	CITATIONS
450	Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. ACS Nano, 2015, 9, 9974-9985.	7.3	361
451	Highly Stretchable Conductive Fibers from Few-Walled Carbon Nanotubes Coated on Poly(<i>m</i> -phenylene isophthalamide) Polymer Core/Shell Structures. ACS Nano, 2015, 9, 10252-10257.	7.3	58
452	Thermally induced variations of strain condition and emission behavior in flat and bendable light-emitting diodes on different substrates. Optics Express, 2015, 23, 15491.	1.7	2
453	Facile metal transfer method for fabricating unconventional metamaterial devices. Optical Materials Express, 2015, 5, 733.	1.6	6
454	Self-healing metal wire using electric field trapping of metal nanoparticles. Japanese Journal of Applied Physics, 2015, 54, 06FP03.	0.8	16
455	Anomalous Stretchable Conductivity Using an Engineered Tricot Weave. ACS Nano, 2015, 9, 12214-12223.	7. 3	35
456	Carbon Nanotube Flexible and Stretchable Electronics. Nanoscale Research Letters, 2015, 10, 1013.	3.1	119
457	MoS2 graphene fiber based gas sensing devices. Carbon, 2015, 95, 34-41.	5.4	124
458	Robust and Soft Elastomeric Electronics Tolerant to Our Daily Lives. Nano Letters, 2015, 15, 5716-5723.	4.5	56
459	A novel strain sensor based on 3D printing technology and 3D antenna design. , 2015, , .		34
460	Lateral buckling and mechanical stretchability of fractal interconnects partially bonded onto an elastomeric substrate. Applied Physics Letters, 2015, 106, .	1.5	44
461	Patchable thin-film strain gauges based on pentacene transistors. Organic Electronics, 2015, 26, 355-358.	1.4	9
462	Extraordinarily High Conductivity of Stretchable Fibers of Polyurethane and Silver Nanoflowers. ACS Nano, 2015, 9, 10876-10886.	7. 3	153
463	Synthesis of Star Polymers. , 2015, , 2459-2484.		1
464	Self-Decomposing Dendrimers., 2015,, 2203-2209.		0
465	Starch and Dextran. , 2015, , 2249-2254.		4
466	Highly stable flexible printed organic thin-film transistor devices under high strain conditions using semiconducting polymers. Japanese Journal of Applied Physics, 2015, 54, 04DK10.	0.8	13
467	Inkjet-printed copper electrodes using photonic sintering and their application to organic thin-film transistors. Organic Electronics, 2015, 25, 131-134.	1.4	52

#	Article	IF	CITATIONS
468	Optically Transparent Carbon Nanotube Film Electrode for Thin Layer Spectroelectrochemistry. Analytical Chemistry, 2015, 87, 9687-9695.	3.2	21
469	Imaging the Phase Separation Between PEDOT and Polyelectrolytes During Processing of Highly Conductive PEDOT:PSS Films. ACS Applied Materials & English (2015), 7, 19764-19773.	4.0	185
470	A Self-Assembled, Low-Cost, Microstructured Layer for Extremely Stretchable Gold Films. ACS Applied Materials & Samp; Interfaces, 2015, 7, 20745-20752.	4.0	36
471	Alignment Control of Patterned Organic Semiconductor Crystals in Short-Channel Transistor Using Unidirectional Solvent Evaporation Process. IEEE Transactions on Electron Devices, 2015, 62, 2306-2312.	1.6	6
472	Fabrication of a high-resolution roll for gravure printing of 2μm features. Proceedings of SPIE, 2015, , .	0.8	14
473	Shape memory fiber supercapacitors. Nano Energy, 2015, 17, 330-338.	8.2	67
474	Mechanics of mechanochemically responsive elastomers. Journal of the Mechanics and Physics of Solids, 2015, 82, 320-344.	2.3	82
475	High-resolution gravure printed lines: proximity effects and design rules. , 2015, , .		3
476	Highly stretchable carbon nanotube transistors enabled by buckled ion gel gate dielectrics. Applied Physics Letters, 2015, 107, .	1.5	29
477	Dynamic Electrochemical Properties of Extremely Stretchable Electrochemical Capacitor Using Reduced Graphene Oxide/Single-Wall Carbon Nanotubes Composite. Journal of the Electrochemical Society, 2015, 162, A2351-A2355.	1.3	4
478	Fractal dendrite-based electrically conductive composites for laser-scribed flexible circuits. Nature Communications, 2015, 6, 8150.	5.8	73
479	Surface Charge Reversal Method for Highâ€Resolution Inkjet Printing of Functional Waterâ€Based Inks. Advanced Functional Materials, 2015, 25, 768-775.	7.8	11
480	Toward Flexible and Wearable Humanâ€Interactive Healthâ€Monitoring Devices. Advanced Healthcare Materials, 2015, 4, 487-500.	3.9	289
482	Super flexible, highly conductive electrical compositor hybridized from polyvinyl alcohol and silver nano wires. RSC Advances, 2015, 5, 7200-7207.	1.7	12
483	Rational Design of a Printable, Highly Conductive Siliconeâ€based Electrically Conductive Adhesive for Stretchable Radioâ€Frequency Antennas. Advanced Functional Materials, 2015, 25, 464-470.	7.8	109
484	4K-bit and microlithographic integration of organic nonvolatile resistive memory devices. Organic Electronics, 2015, 17, 192-197.	1.4	16
486	Controlling exfoliation in order to minimize damage during dispersion of long SWCNTs for advanced composites. Scientific Reports, 2014, 4, 3907.	1.6	68
488	Highâ€Performance Magnetic Sensorics for Printable and Flexible Electronics. Advanced Materials, 2015, 27, 880-885.	11.1	87

#	Article	IF	CITATIONS
489	Broadband Light Outâ€Coupling Enhancement of Flexible Organic Lightâ€Emitting Diodes Using Biomimetic Quasirandom Nanostructures. Advanced Optical Materials, 2015, 3, 203-210.	3.6	43
490	Advances of flexible pressure sensors toward artificial intelligence and health care applications. Materials Horizons, 2015, 2, 140-156.	6.4	995
491	High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets. Scientific Reports, 2014, 4, 3612.	1.6	252
492	High performance organic transistor active-matrix driver developed on paper substrate. Scientific Reports, 2014, 4, 6430.	1.6	110
493	Controlled Mechanical Cracking of Metal Films Deposited on Polydimethylsiloxane (PDMS). Nanomaterials, 2016, 6, 168.	1.9	16
494	Design of highly efficient RGB top-emitting organic light-emitting diodes using finite element method simulations. Optics Express, 2016, 24, 24018.	1.7	5
495	Silver Nanowire-Based Stretchable and Transparent Electrodes. Journal of Japan Institute of Electronics Packaging, 2016, 19, 228-233.	0.0	1
496	Selfâ€assembled Ultrathin Gold Nanowires as Highly Transparent, Conductive and Stretchable Supercapacitor. Electroanalysis, 2016, 28, 1298-1304.	1.5	73
497	Design and fabrication of a shielded interdigital sensor for noninvasive <i>In situ</i> real-time production monitoring of polymers. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 2028-2037.	2.4	18
498	Reinventing Butyl Rubber for Stretchable Electronics. Advanced Functional Materials, 2016, 26, 5222-5229.	7.8	30
499	CMOSâ€Technologyâ€Enabled Flexible and Stretchable Electronics for Internet of Everything Applications. Advanced Materials, 2016, 28, 4219-4249.	11.1	179
500	Bright Stretchable Alternating Current Electroluminescent Displays Based on High Permittivity Composites. Advanced Materials, 2016, 28, 7200-7203.	11.1	106
501	Highly Stretchable Conductors Made by Laser Drawâ€Casting of Ultralong Metal Nanowires. Advanced Electronic Materials, 2016, 2, 1600003.	2.6	3
502	Expedient floating process for ultra-thin InGaZnO thin-film-transistors and their high bending performance. RSC Advances, 2016, 6, 63418-63424.	1.7	9
503	Conducting Polymer Dough for Deformable Electronics. Advanced Materials, 2016, 28, 4455-4461.	11.1	241
504	Mechanical and Electronic Properties of Thinâ€Film Transistors on Plastic, and Their Integration in Flexible Electronic Applications. Advanced Materials, 2016, 28, 4266-4282.	11.1	218
505	Recent Progress in Materials and Devices toward Printable and Flexible Sensors. Advanced Materials, 2016, 28, 4415-4440.	11.1	643
506	Thermoelectric Polymers and their Elastic Aerogels. Advanced Materials, 2016, 28, 4556-4562.	11.1	157

#	ARTICLE	IF	CITATIONS
507	A Waterâ€Based Silverâ€Nanowire Screenâ€Print Ink for the Fabrication of Stretchable Conductors and Wearable Thinâ€Film Transistors. Advanced Materials, 2016, 28, 5986-5996.	11.1	418
508	Smart Electronic Textiles. Angewandte Chemie - International Edition, 2016, 55, 6140-6169.	7.2	460
509	A Redoxâ€Active Dinuclear Platinum Complex Exhibiting Multicolored Electrochromism and Luminescence. Chemistry - A European Journal, 2016, 22, 491-495.	1.7	37
510	Highly Emissive, Waterâ€Repellent, Soft Materials: Hydrophobic Wrapping and Fluorescent Plasticizing of Conjugated Polyelectrolyte via Electrostatic Selfâ€Assembly. Advanced Functional Materials, 2016, 26, 4501-4510.	7.8	19
511	Charge Transport in Organic and Polymeric Semiconductors for Flexible and Stretchable Devices. Advanced Materials, 2016, 28, 4513-4523.	11.1	185
512	Monitoring of Vital Signs with Flexible and Wearable Medical Devices. Advanced Materials, 2016, 28, 4373-4395.	11.1	1,033
513	Downsized Sheath–Core Conducting Fibers for Weavable Superelastic Wires, Biosensors, Supercapacitors, and Strain Sensors. Advanced Materials, 2016, 28, 4998-5007.	11.1	131
514	Flexible Transparent Molybdenum Trioxide Nanopaper for Energy Storage. Advanced Materials, 2016, 28, 6353-6358.	11.1	194
515	Particle size dependence on self-healing metal wire using an electric field trapping of metal nanoparticles. Transactions of the JSME (in Japanese), 2016, 82, 15-00470-15-00470.	0.1	0
516	Direct Laser Writing-Based Programmable Transfer Printing via Bioinspired Shape Memory Reversible Adhesive. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35628-35633.	4.0	97
517	Ultra-smooth glassy graphene thin films for flexible transparent circuits. Science Advances, 2016, 2, e1601574.	4.7	59
518	Multilayer Patterning of High Resolution Intrinsically Stretchable Electronics. Scientific Reports, 2016, 6, 25641.	1.6	30
519	Conductive network formation of carbon nanotubes in elastic polymer microfibers and its effect on the electrical conductance: Experiment and simulation. Journal of Chemical Physics, 2016, 144, 194903.	1.2	11
520	Low amplified spontaneous emission threshold and suppression of electroluminescence efficiency roll-off in layers doped with ter(9,9â \in 2-spirobifluorene). Applied Physics Letters, 2016, 108, .	1.5	32
521	Creation of additional electrical pathways for the robust stretchable electrode by using UV irradiated CNT-elastomer composite. Applied Physics Letters, 2016, 109, 171901.	1.5	2
522	Multicolor Emission from Poly(<i>p</i> -Phenylene)/Nanoporous ZnMnO Organic–Inorganic Hybrid Light-Emitting Diode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 35435-35439.	4.0	12
523	High performance indium tin oxide-free solution-processed organic light emitting diodes based on inkjet-printed fine silver grid lines. Flexible and Printed Electronics, 2016, 1, 035004.	1.5	22
524	An antireflection transparent conductor with ultralow optical loss (<2 %) and electrical resistance (<6 Π©â€‰sqâ^¹1). Nature Communications, 2016, 7, 13771.	5.8	116

#	Article	IF	Citations
525	Stretchis. , 2016, , .		56
526	Strain sensing conductive polymer composites: Sensitivity and stability. AIP Conference Proceedings, 2016, , .	0.3	4
527	Temperature dependence of contact resistance at metal/MWNT interface. Applied Physics Letters, 2016, 109, 021605.	1.5	5
528	High performance, flexible CMOS circuits and sensors toward wearable healthcare applications. , 2016, , .		10
529	A highly stretchable strain sensor based on a graphene/silver nanoparticle synergic conductive network and a sandwich structure. Journal of Materials Chemistry C, 2016, 4, 4304-4311.	2.7	207
530	Stretchable Bioelectronics for Medical Devices and Systems. Microsystems and Nanosystems, 2016, , .	0.1	90
531	Liquid Metals for Soft and Stretchable Electronics. Microsystems and Nanosystems, 2016, , 3-30.	0.1	15
532	Soft Biosensor Systems Using Flexible and Stretchable Electronics Technology. Microsystems and Nanosystems, 2016, , 133-149.	0.1	2
533	High-Performance Wearable Bioelectronics Integrated with Functional Nanomaterials. Microsystems and Nanosystems, $2016, 151-171$.	0.1	2
534	Printable UV personal dosimeter: sensitivity as a function of DoD parameters and number of layers of a functional photonic ink. Materials Research Express, 2016, 3, 045701.	0.8	8
535	Improved carrier balance and polarized in-plane light emission at full-channel area in ambipolar heterostructure polymer light-emitting transistors. Organic Electronics, 2016, 32, 213-219.	1.4	13
536	Nanomaterials for Stretchable Energy Storage and Conversion Devices. Nanoscience and Technology, 2016, , 159-191.	1.5	3
537	High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation. Journal of Materials Chemistry A, 2016, 4, 9311-9318.	5.2	99
538	Macroscopic Alignment of One-Dimensional Conjugated Polymer Nanocrystallites for High-Mobility Organic Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13484-13491.	4.0	58
539	Highly Effective Electromagnetic Interference Shielding Materials based on Silver Nanowire/Cellulose Papers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 13123-13132.	4.0	241
540	Stretchable electronics for wearable and high-current applications. Proceedings of SPIE, 2016, , .	0.8	1
541	Stretchable and Transparent Organic Semiconducting Thin Film with Conjugated Polymer Nanowires Embedded in an Elastomeric Matrix. Advanced Electronic Materials, 2016, 2, 1500250.	2.6	154
542	Modeling and Experimental Investigation of the Maximum Stresses Due to Bending in a Tubular-Shaped Artificial Skin Sensor. IEEE Sensors Journal, 2016, 16, 1549-1556.	2.4	7

#	Article	IF	CITATIONS
543	Fast and Efficient Fabrication of Intrinsically Stretchable Multilayer Circuit Boards by Wax Pattern Assisted Filtration. Small, 2016, 12, 180-184.	5.2	72
544	Paper-Based Triboelectric Nanogenerators Made of Stretchable Interlocking Kirigami Patterns. ACS Nano, 2016, 10, 4652-4659.	7.3	197
545	Characterization of PI:PCBM organic nonvolatile resistive memory devices under thermal stress. Organic Electronics, 2016, 33, 48-54.	1.4	22
546	Nanomaterials-Based Skin-Like Electronics for the Unconscious and Continuous Monitoring of Body Status. Microsystems and Nanosystems, 2016, , 227-254.	0.1	1
547	Microcrystallization of a Solution-Processable Organic Semiconductor in Capillaries for High-Performance Ambipolar Field-Effect Transistors. ACS Applied Materials & Samp; Interfaces, 2016, 8, 17574-17582.	4.0	18
548	Magical Allotropes of Carbon: Prospects and Applications. Critical Reviews in Solid State and Materials Sciences, 2016, 41, 257-317.	6.8	167
549	Omnidirectionally Stretchable High-Performance Supercapacitor Based on Isotropic Buckled Carbon Nanotube Films. ACS Nano, 2016, 10, 5204-5211.	7.3	220
550	A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors. Journal of Materials Chemistry A, 2016, 4, 8769-8776.	5.2	238
551	A mechanically and electrically self-healing graphite composite dough for stencil-printable stretchable conductors. Journal of Materials Chemistry C, 2016, 4, 4150-4154.	2.7	47
552	Graphene oxide/graphene vertical heterostructure electrodes for highly efficient and flexible organic light emitting diodes. Nanoscale, 2016, 8, 10714-10723.	2.8	49
553	From stretchable to reconfigurable inorganic electronics. Extreme Mechanics Letters, 2016, 9, 245-268.	2.0	52
554	All-Solid-State Stretchable Pseudocapacitors Enabled by Carbon Nanotube Film-Capped Sandwich-like Electrodes. ACS Applied Materials & Samp; Interfaces, 2016, 8, 25243-25250.	4.0	11
555	Recent advances in flexible organic light-emitting diodes. Journal of Materials Chemistry C, 2016, 4, 9116-9142.	2.7	254
556	Carbon nanotube based transparent conductive films: progress, challenges, and perspectives. Science and Technology of Advanced Materials, 2016, 17, 493-516.	2.8	125
557	Bifunctional Heterocyclic Spiro Derivatives for Organic Optoelectronic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 24782-24792.	4.0	32
558	Silicon Valley meets the ivory tower: Searchable data repositories for experimental nanomaterials research. Current Opinion in Solid State and Materials Science, 2016, 20, 338-343.	5.6	14
559	Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability. Advanced Materials, 2016, 28, 9881-9919.	11.1	407
560	Electric Eelâ€Skinâ€Inspired Mechanically Durable and Superâ€Stretchable Nanogenerator for Deformable Power Source and Fully Autonomous Conformable Electronicâ€Skin Applications. Advanced Materials, 2016, 28, 10024-10032.	11.1	273

#	Article	IF	CITATIONS
561	Developing the Surface Chemistry of Transparent Butyl Rubber for Impermeable Stretchable Electronics. Langmuir, 2016, 32, 10206-10212.	1.6	14
562	Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. Journal of Materials Chemistry C, 2016, 4, 10061-10068.	2.7	119
563	Analysis of light leakage between the adjacent pixels in a color-filter stacked white OLED display. Displays, 2016, 45, 6-13.	2.0	16
564	Pseudocapacitive Transparent/Flexible Supercapacitor based on Graphene wrapped Ni(OH) 2 Nanosheet Transparent Film Produced using Scalable Bio-inspired Methods. Electrochimica Acta, 2016, 219, 61-69.	2.6	26
565	Electrical and mechanical self-healing membrane using gold nanoparticles as localized "nano-heaters― Journal of Materials Chemistry C, 2016, 4, 10018-10025.	2.7	40
566	A Stretchable Multicolor Display and Touch Interface Using Photopatterning and Transfer Printing. Advanced Materials, 2016, 28, 9770-9775.	11.1	135
567	Polymer-Based Organic Batteries. Chemical Reviews, 2016, 116, 9438-9484.	23.0	919
568	A stretchable sensor platform based on simple and scalable lift-off micropatterning of metal nanowire network. RSC Advances, 2016, 6, 74418-74425.	1.7	13
569	ENGINEERING APPLICATIONS OF OFETs IN FLEXIBLE AND STRETCHABLE ELECTRONICS. Materials and Energy, 2016, , 85-114.	2.5	0
570	A Stretchable Nanogenerator with Electric/Light Dualâ€Mode Energy Conversion. Advanced Energy Materials, 2016, 6, 1600829.	10.2	74
571	Omnidirectionally and Highly Stretchable Conductive Electrodes Based on Noncoplanar Zigzag Mesh Silver Nanowire Arrays. Advanced Electronic Materials, 2016, 2, 1600158.	2.6	41
572	Flexible Photodetectors Based on 1D Inorganic Nanostructures. Advanced Science, 2016, 3, 1500287.	5.6	131
573	Stretchable Organic Semiconductor Devices. Advanced Materials, 2016, 28, 9243-9265.	11.1	188
574	Fully Printed Stretchable Thin-Film Transistors and Integrated Logic Circuits. ACS Nano, 2016, 10, 11459-11468.	7.3	118
575	Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature, 2016, 539, 411-415.	13.7	1,030
576	An Elastic Transparent Conductor Based on Hierarchically Wrinkled Reduced Graphene Oxide for Artificial Muscles and Sensors. Advanced Materials, 2016, 28, 9491-9497.	11.1	147
577	High-performance stretchable resistive memories using donor–acceptor block copolymers with fluorene rods and pendent isoindigo coils. NPG Asia Materials, 2016, 8, e298-e298.	3.8	40
578	Emerging Progress of Inkjet Technology in Printing Optical Materials. Advanced Optical Materials, 2016, 4, 1915-1932.	3.6	84

#	Article	IF	CITATIONS
580	Electric Detection of Phosphate Anions in Water by an Extended-gate-type Organic Field-effect Transistor Functionalized with a Zinc(II)–Dipicolylamine Derivative. Chemistry Letters, 2016, 45, 371-373.	0.7	17
581	Efficient Dispersion of "Super-Growth―Single-Walled Carbon Nanotubes Using a Copolymer of Naphathalene Diimide and Poly(dimethylsiloxane). Bulletin of the Chemical Society of Japan, 2016, 89, 183-191.	2.0	9
582	Novel graphene-based composite as binder-free high-performance electrodes for energy storage systems. Journal of Materiomics, 2016, 2, 291-308.	2.8	16
583	Highly Stretchable Microsupercapacitor Arrays with Honeycomb Structures for Integrated Wearable Electronic Systems. ACS Nano, 2016, 10, 9306-9315.	7.3	118
584	High-resolution electrohydrodynamic inkjet printing of stretchable metal oxide semiconductor transistors with high performance. Nanoscale, 2016, 8, 17113-17121.	2.8	97
585	Non-volatile organic ferroelectric memory transistors fabricated using rigid polyimide islands on an elastomer substrate. Journal of Materials Chemistry C, 2016, 4, 4485-4490.	2.7	25
586	Extremely stretchable conductors based on hierarchically-structured metal nanowire network. RSC Advances, 2016, 6, 56896-56902.	1.7	5
587	Examining the structural contribution to the electrical character of single wall carbon nanotube forest by a height dependent study. Carbon, 2016, 108, 106-111.	5.4	0
588	Inkjet printed multiwall carbon nanotube electrodes for dielectric elastomer actuators. Smart Materials and Structures, 2016, 25, 055009.	1.8	25
589	Flexible and Stretchable Oxide Electronics. Advanced Electronic Materials, 2016, 2, 1600105.	2.6	42
590	Stretchable and transparent electrodes based on patterned silver nanowires by laser-induced forward transfer for non-contacted printing techniques. Nanotechnology, 2016, 27, 45LT02.	1.3	32
591	Organic TFTs: Vacuum-Deposited Small-Molecule Semiconductors. , 2016, , 1051-1072.		0
592	Improved charge carrier transport in ultrathin poly(3-hexylthiophene) films via solution aggregation. Journal of Materials Chemistry C, 2016, 4, 11488-11498.	2.7	44
593	Enhancement of memory margins in the polymer composite of [6,6]-phenyl-C ₆₁ -butyric acid methyl ester and polystyrene. Physical Chemistry Chemical Physics, 2016, 18, 30808-30814.	1.3	7
594	High-performance Transparent and Flexible Asymmetric Supercapacitor based on Graphene-wrapped Amorphous FeOOH Nanowire and Co(OH) 2 Nanosheet Transparent Films Produced at air-water interface. Electrochimica Acta, 2016, 220, 618-627.	2.6	49
595	Synergetic electrode architecture for efficient graphene-based flexible organic light-emitting diodes. Nature Communications, 2016, 7, 11791.	5.8	163
596	Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nature Communications, 2016, 7, 11573.	5.8	182
597	Two-Dimensional Stretchable Organic Light-Emitting Devices with High Efficiency. ACS Applied Materials & Samp; Interfaces, 2016, 8, 31166-31171.	4.0	60

#	Article	IF	Citations
598	A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring. Science Advances, 2016, 2, e1501624.	4.7	274
599	Toward Scalable Flexible Nanomanufacturing for Photonic Structures and Devices. Advanced Materials, 2016, 28, 10353-10380.	11.1	76
600	Revisit to three-dimensional percolation theory: Accurate analysis for highly stretchable conductive composite materials. Scientific Reports, 2016, 6, 34632.	1.6	25
601	Elastomeric Light Emitting Polymer Enhanced by Interpenetrating Networks. ACS Applied Materials & amp; Interfaces, 2016, 8, 32504-32511.	4.0	38
602	An extremely highly selective flexible compliant tactile touch sensor sheet. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2345-2351.	0.8	4
603	Design of Strainâ€Limiting Substrate Materials for Stretchable and Flexible Electronics. Advanced Functional Materials, 2016, 26, 5345-5351.	7.8	92
604	Extremely Stretchable Electroluminescent Devices with Ionic Conductors. Advanced Materials, 2016, 28, 4490-4496.	11.1	193
605	Printed Carbon Nanotube Electronics and Sensor Systems. Advanced Materials, 2016, 28, 4397-4414.	11.1	369
606	Recent Advances in Stretchable and Transparent Electronic Materials. Advanced Electronic Materials, 2016, 2, 1500407.	2.6	245
607	Stretchable Electrochemical Sensor for Realâ€√ime Monitoring of Cells and Tissues. Angewandte Chemie, 2016, 128, 4613-4617.	1.6	13
608	Stretchable Figures of Merit in Deformable Electronics. Advanced Materials, 2016, 28, 4180-4183.	11.1	106
609	Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin. Advanced Materials, 2016, 28, 930-935.	11.1	364
610	Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits. ACS Applied Materials & Stretchable Circuits. ACS Applied Materials & Stretchable Circuits. ACS Applied Materials & Stretchable Circuits.	4.0	103
611	Printable and stretchable elastic composites with highly electrical conductivity based on core-shell fillers. , 2016, , .		1
612	Stretchable carbon nanotube conductors and their applications. Korean Journal of Chemical Engineering, 2016, 33, 2771-2787.	1.2	23
613	Million-Fold Decrease in Polymer Moisture Permeability by a Graphene Monolayer. ACS Nano, 2016, 10, 6501-6509.	7.3	42
614	Gravure-printed electronics: recent progress in tooling development, understanding of printing physics, and realization of printed devices. Flexible and Printed Electronics, 2016, 1, 023002.	1.5	160
615	Soluble salt-driven matrix swelling of a block copolymer for rapid fabrication of a conductive elastomer toward highly stretchable electronics. Materials and Design, 2016, 100, 263-270.	3.3	11

#	ARTICLE	IF	CITATIONS
616	Low cost and highly conductive elastic composites for flexible and printable electronics. Journal of Materials Chemistry C, 2016, 4, 5839-5848.	2.7	64
617	A finite deformation model of planar serpentine interconnects for stretchable electronics. International Journal of Solids and Structures, 2016, 91, 46-54.	1.3	83
618	Transport performance in novel elastomer nanocomposites: Mechanism, design and control. Progress in Polymer Science, 2016, 61, 29-66.	11.8	128
619	Formation of metal interconnects and their resistance-change behavior during tensile stretching for stretchable packaging applications. , 2016, , .		2
620	Flexible GaN Lightâ€Emitting Diodes Using GaN Microdisks Epitaxial Laterally Overgrown on Graphene Dots. Advanced Materials, 2016, 28, 7688-7694.	11.1	75
621	Fully Highâ€Speed Gravure Printed, Lowâ€Variability, Highâ€Performance Organic Polymer Transistors with Subâ€5 V Operation. Advanced Electronic Materials, 2016, 2, 1500328.	2.6	77
622	Smarte elektronische Textilien. Angewandte Chemie, 2016, 128, 6248-6277.	1.6	11
623	Stretchable Electrochemical Sensor for Realâ€Time Monitoring of Cells and Tissues. Angewandte Chemie - International Edition, 2016, 55, 4537-4541.	7.2	92
624	A transparent bending-insensitive pressure sensor. Nature Nanotechnology, 2016, 11, 472-478.	15.6	680
625	Enhanced Electrical Networks of Stretchable Conductors with Small Fraction of Carbon Nanotube/Graphene Hybrid Fillers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3319-3325.	4.0	97
626	High Performance Metal Oxide Field-Effect Transistors with a Reverse Offset Printed Cu Source/Drain Electrode. ACS Applied Materials & Samp; Interfaces, 2016, 8, 1156-1163.	4.0	25
627	Frustrated total internal reflection in organic light-emitting diodes employing sphere cavity embedded in polystyrene. Journal of Optics (United Kingdom), 2016, 18, 025403.	1.0	12
628	Facile fabrication of stretchable Ag nanowire/polyurethane electrodes using high intensity pulsed light. Nano Research, 2016, 9, 401-414.	5.8	128
629	An extremely low-index photonic crystal layer for enhanced light extraction from organic light-emitting diodes. Nanoscale, 2016, 8, 4113-4120.	2.8	33
630	A facile way of fabricating a flexible and conductive cotton fabric. Journal of Materials Chemistry C, 2016, 4, 1320-1325.	2.7	44
631	Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array. Nano Energy, 2016, 19, 401-414.	8.2	179
632	Direct Pen Writing of Adhesive Particle-Free Ultrahigh Silver Salt-Loaded Composite Ink for Stretchable Circuits. ACS Nano, 2016, 10, 396-404.	7.3	78
633	Highly stretchable and sensitive piezoresistive carbon nanotube/elastomeric triisocyanate-crosslinked polytetrahydrofuran nanocomposites. Journal of Materials Chemistry C, 2016, 4, 460-467.	2.7	26

#	Article	IF	CITATIONS
634	Deformable devices with integrated functional nanomaterials for wearable electronics. Nano Convergence, 2016, 3, 4.	6.3	54
635	The brain's functional network architecture reveals human motives. Science, 2016, 351, 1074-1078.	6.0	111
636	Electronic Structures of Quaterthiophene and Septithiophene on Cu(111): Spatial Distribution of Adsorption-Induced States Studied by STM and DFT Calculation. Journal of Physical Chemistry C, 2016, 120, 6681-6688.	1.5	8
637	High Performance and Stable Flexible Memory Thin-Film Transistors Using In–Ga–Zn–O Channel and ZnO Charge-Trap Layers on Poly(Ethylene Naphthalate) Substrate. IEEE Transactions on Electron Devices, 2016, 63, 1557-1564.	1.6	30
638	Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016, 351, 1071-1074.	6.0	1,106
639	Seamless growth of a supramolecular carpet. Nature Communications, 2016, 7, 10653.	5.8	13
640	Plasmonic nanostructures for organic photovoltaic devices. Journal of Optics (United Kingdom), 2016, 18, 033001.	1.0	38
641	Fabrication and design of metal nano-accordion structures using atomic layer deposition and interference lithography. Nanoscale, 2016, 8, 4984-4990.	2.8	4
642	A robust, gravure-printed, silver nanowire/metal oxide hybrid electrode for high-throughput patterned transparent conductors. Journal of Materials Chemistry C, 2016, 4, 3248-3255.	2.7	60
643	Simple method for high-performance stretchable composite conductors with entrapped air bubbles. Nanoscale Research Letters, 2016, 11, 14.	3.1	8
644	The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes. Nanoscale, 2016, 8, 6463-6467.	2.8	19
645	Stretchable Strain Sensor With Anisotropy and Application for Joint Angle Measurement. IEEE Sensors Journal, 2016, 16, 3572-3579.	2.4	40
646	Stretchable microsupercapacitor arrays with a composite honeycomb structure., 2016,,.		1
647	Synthesis and characterization of all-conjugated hard-soft-hard ABA triblock copolythiophenes. Microsystem Technologies, 2016, 22, 3-10.	1.2	14
648	Quasi In Situ Polymerization To Fabricate Copper Nanowire-Based Stretchable Conductor and Its Applications. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9297-9304.	4.0	44
649	Large-area, stretchable, super flexible and mechanically stable thermoelectric films of polymer/carbon nanotube composites. Journal of Materials Chemistry C, 2016, 4, 526-532.	2.7	152
650	Highly Transparent and Stretchable Conductors Based on a Directional Arrangement of Silver Nanowires by a Microliter-Scale Solution Process. Langmuir, 2016, 32, 366-373.	1.6	50
651	Bio-recognitive photonics of a DNA-guided organic semiconductor. Nature Communications, 2016, 7, 10234.	5.8	27

#	Article	IF	CITATIONS
652	Patterned, highly stretchable and conductive nanofibrous PANI/PVDF strain sensors based on electrospinning and in situ polymerization. Nanoscale, 2016, 8, 2944-2950.	2.8	129
653	Approaches to Stretchable Polymer Active Channels for Deformable Transistors. Macromolecules, 2016, 49, 433-444.	2.2	58
654	A model for the non-isothermal drying of particle-laden pastes. International Journal of Heat and Mass Transfer, 2016, 92, 558-571.	2.5	2
655	Progress and Prospects in Stretchable Electroluminescent Devices. Nanophotonics, 2017, 6, 435-451.	2.9	35
656	Freeform Compliant CMOS Electronic Systems for Internet of Everything Applications. IEEE Transactions on Electron Devices, 2017, 64, 1894-1905.	1.6	17
657	Threshold voltage control for organic thin-film transistors using a tri-gate structure with capacitive coupling. Japanese Journal of Applied Physics, 2017, 56, 04CL01.	0.8	2
658	Highly Stretchable and Waterproof Electroluminescence Device Based on Superstable Stretchable Transparent Electrode. ACS Applied Materials & Samp; Interfaces, 2017, 9, 5486-5494.	4.0	63
659	Highly Stretchable and Self-Healable Supercapacitor with Reduced Graphene Oxide Based Fiber Springs. ACS Nano, 2017, 11, 2066-2074.	7.3	413
660	Compact graphene/MoS ₂ composite films for highly flexible and stretchable all-solid-state supercapacitors. Journal of Materials Chemistry A, 2017, 5, 3267-3273.	5.2	123
661	Printable stretchable interconnects. Flexible and Printed Electronics, 2017, 2, 013003.	1.5	141
662	Stretchable, alternating-current-driven white electroluminescent device based on bilayer-structured quantum-dot-embedded polydimethylsiloxane elastomer. RSC Advances, 2017, 7, 8816-8822.	1.7	19
663	A Low-Cost, Micropattern Transfer Process for Thick-Film Metallization of PDMS. Journal of the Electrochemical Society, 2017, 164, B3067-B3076.	1.3	6
665	Single Crystal Flexible Electronics Enabled by 3D Spalling. Advanced Materials, 2017, 29, 1606638.	11.1	15
666	Ultraflexible Organic Electronics and Photonics. Nano-optics and Nanophotonics, 2017, , 123-142.	0.2	0
667	Printed high-frequency RF identification antenna on ultrathin polymer film by simple production process for soft-surface adhesive device. Japanese Journal of Applied Physics, 2017, 56, 05EC01.	0.8	7
668	Patterning of Stretchable Organic Electrochemical Transistors. Chemistry of Materials, 2017, 29, 3126-3132.	3.2	116
669	Stretchable Conjugated Rod–Coil Poly(3-hexylthiophene)- <i>block</i> -poly(butyl acrylate) Thin Films for Field Effect Transistor Applications. Macromolecules, 2017, 50, 1442-1452.	2.2	83
670	Heterogeneous Configuration of a Ag Nanowire/Polymer Composite Structure for Selectively Stretchable Transparent Electrodes. ACS Applied Materials & Stretchable Transparent Electrodes. ACS Applied Materials & Stretchable Transparent Electrodes. ACS Applied Materials & Stretchable Transparent Electrodes.	4.0	36

#	Article	IF	CITATIONS
671	Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. ACS Applied Materials & Diterfaces, 2017, 9, 9763-9771.	4.0	48
672	An air gap moderates the performance of nanowire array transistors. Nanotechnology, 2017, 28, 125204.	1.3	4
673	Stretchable electronic device with repeat self-healing ability of metal wire. , 2017, , .		1
674	Strategies for stretchable polymer semiconductor layers. MRS Bulletin, 2017, 42, 98-102.	1.7	12
675	Stretchable Active Matrix Inorganic Lightâ€Emitting Diode Display Enabled by Overlayâ€Aligned Rollâ€Transfer Printing. Advanced Functional Materials, 2017, 27, 1606005.	7.8	124
676	A flexible two dimensional force sensor using PDMS nanocomposite. Microelectronic Engineering, 2017, 174, 64-69.	1.1	38
677	Inkjet printing wearable electronic devices. Journal of Materials Chemistry C, 2017, 5, 2971-2993.	2.7	415
678	Electronic Skin with Multifunction Sensors Based on Thermosensation. Advanced Materials, 2017, 29, 1606151.	11.1	194
679	Microplasma-Induced in Situ Formation of Patterned, Stretchable Electrical Conductors. ACS Macro Letters, 2017, 6, 194-199.	2.3	16
680	Large-area fluidic assembly of single-walled carbon nanotubes through dip-coating and directional evaporation. Micro and Nano Systems Letters, 2017, 5, .	1.7	8
681	A pre-strain strategy for developing a highly stretchable and foldable one-dimensional conductive cord based on a Ag nanowire network. Nanoscale, 2017, 9, 5773-5778.	2.8	41
682	UVâ€Blocking Photoluminescent Silicon Nanocrystal/Polydimethylsiloxane Composites. Advanced Optical Materials, 2017, 5, 1700237.	3.6	17
683	Stretchable and Soft Electronics using Liquid Metals. Advanced Materials, 2017, 29, 1606425.	11.1	1,222
684	Oneâ€Pot Fabrication of Hollow Polymer@Ag Nanospheres for Printable Translucent Conductive Coatings. Advanced Materials Interfaces, 2017, 4, 1601198.	1.9	23
685	Crumpled Graphene Triboelectric Nanogenerators: Smaller Devices with Higher Output Performance. Advanced Materials Technologies, 2017, 2, 1700044.	3.0	78
686	Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes. Nature Materials, 2017, 16, 834-840.	13.3	578
687	Review of flexible and transparent thin-film transistors based on zinc oxide and related materials. Chinese Physics B, 2017, 26, 047307.	0.7	46
688	Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5107-5112.	3.3	347

#	Article	IF	CITATIONS
689	Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward "Invisible―Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Advanced Functional Materials, 2017, 27, 1700845.	7.8	257
690	Enhanced photoresponsivity in organic field effect transistors by silver nanoparticles. Organic Electronics, 2017, 46, 270-275.	1.4	11
691	Transfer method of crumpled graphene and its application for human strain monitoring. Sensors and Actuators A: Physical, 2017, 260, 153-160.	2.0	8
692	Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates. Scientific Reports, 2017, 7, 46739.	1.6	74
693	PPN (poly-peri-naphthalene) film as a narrow-bandgap organic thermoelectric material. Journal of Materials Chemistry A, 2017, 5, 9891-9896.	5.2	14
694	A general strategy for high performance stretchable conductors based on carbon nanotubes and silver nanowires. RSC Advances, 2017, 7, 20167-20171.	1.7	5
695	Fabrication of Conductive Silver Microtubes Using Natural Catkin as a Template. ACS Omega, 2017, 2, 1738-1745.	1.6	19
696	Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Composites Communications, 2017, 3, 1-6.	3.3	76
697	Foldable All-Solid-State Supercapacitors Integrated with Photodetectors. Advanced Functional Materials, 2017, 27, 1604639.	7.8	83
698	NaCl multistage-recrystallization-induced formation of 3D micro-structured ribbon-like graphene based films for high performance flexible/transparent supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14595-14603.	5 . 2	21
699	Optically Invisible Antenna Integrated Within an OLED Touch Display Panel for IoT Applications. IEEE Transactions on Antennas and Propagation, 2017, 65, 3750-3755.	3.1	57
700	All-dielectric resonant cavity-enabled metals with broadband optical transparency. Nanotechnology, 2017, 28, 235202.	1.3	1
701	Flexible Nanowire Cluster as a Wearable Colorimetric Humidity Sensor. Small, 2017, 13, 1700109.	5.2	46
702	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	2.8	34
703	Self-assembled three dimensional network designs for soft electronics. Nature Communications, 2017, 8, 15894.	5.8	325
704	Printed Nonvolatile Resistive Memories Based on a Hybrid Organic/Inorganic Functional Ink. Advanced Materials Technologies, 2017, 2, 1700058.	3.0	6
705	Curving silver nanowires using liquid droplets for highly stretchable and durable percolation networks. Nanoscale, 2017, 9, 8938-8944.	2.8	19
706	Intrinsically Stretchable Electrochromic Display by a Composite Film of Poly(3,4-ethylenedioxythiophene) and Polyurethane. ACS Applied Materials & Interfaces, 2017, 9, 19513-19518.	4.0	78

#	Article	IF	CITATIONS
707	A rollable ultra-light polymer electrolyte membrane fuel cell. NPG Asia Materials, 2017, 9, e384-e384.	3.8	34
708	Paperâ€Based Electrodes for Flexible Energy Storage Devices. Advanced Science, 2017, 4, 1700107.	5.6	361
709	5â€2: <i>Invited Paper</i> : Ultrathin Stretchable Oxide Thin Film Transistor and Active Matrix Organic Lightâ€Emitting Diode Displays. Digest of Technical Papers SID International Symposium, 2017, 48, 33-35.	0.1	3
710	Stretchable and robust transistor of single wall carbon nanotube, gel and elastomeric materials. , 2017, , .		0
712	Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics. Chemical Reviews, 2017, 117, 6467-6499.	23.0	624
713	Stretchable electromagnetic-interference shielding materials made of a long single-walled carbon-nanotube–elastomer composite. RSC Advances, 2017, 7, 10841-10847.	1.7	66
714	Stretchable Lightâ€Emitting Diodes with Organometalâ€Halideâ€Perovskite–Polymer Composite Emitters. Advanced Materials, 2017, 29, 1607053.	11.1	147
715	Effect of the surface curvature and volume fraction of AuPs on the AuP-matrix interface. Computational Materials Science, 2017, 134, 58-66.	1.4	6
716	Fully printable, strain-engineered electronic wrap for customizable soft electronics. Scientific Reports, 2017, 7, 45328.	1.6	56
717	Large reduction in electrical contact resistance of flexible carbon nanotube/silicone rubber composites by trifluoroacetic acid treatment. Composites Science and Technology, 2017, 143, 98-105.	3.8	14
718	Bend, stretch, and touch: Locating a finger on an actively deformed transparent sensor array. Science Advances, 2017, 3, e1602200.	4.7	283
719	Advanced Materials for Printed Wearable Electrochemical Devices: A Review. Advanced Electronic Materials, 2017, 3, 1600260.	2.6	358
720	Soft Elastomers with Ionic Liquidâ€Filled Cavities as Strain Isolating Substrates for Wearable Electronics. Small, 2017, 13, 1602954.	5.2	82
721	Oneâ€Dimensional Nanomaterials for Soft Electronics. Advanced Electronic Materials, 2017, 3, 1600314.	2.6	271
722	An All-Organic Composite System for Resistive Change Memory via the Self-Assembly of Plastic-Crystalline Molecules. ACS Applied Materials & Interfaces, 2017, 9, 2730-2738.	4.0	10
723	A stretchable and sensitive light-emitting fabric. Journal of Materials Chemistry C, 2017, 5, 4139-4144.	2.7	40
724	Designing Thin, Ultrastretchable Electronics with Stacked Circuits and Elastomeric Encapsulation Materials. Advanced Functional Materials, 2017, 27, 1604545.	7.8	42
725	Simulating charge transport in organic semiconductors and devices: a review. Reports on Progress in Physics, 2017, 80, 026502.	8.1	56

#	Article	IF	CITATIONS
726	Printed Neuromorphic Devices Based on Printed Carbon Nanotube Thinâ€Film Transistors. Advanced Functional Materials, 2017, 27, 1604447.	7.8	147
727	Recent Progress of Selfâ€Powered Sensing Systems for Wearable Electronics. Small, 2017, 13, 1701791.	5.2	223
728	Microsphereâ€Assisted Robust Epidermal Strain Gauge for Static and Dynamic Gesture Recognition. Small, 2017, 13, 1702108.	5.2	26
729	Wrinkled 2D Materials: A Versatile Platform for Lowâ€Threshold Stretchable Random Lasers. Advanced Materials, 2017, 29, 1703549.	11.1	85
730	Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors. Angewandte Chemie - International Edition, 2017, 56, 16180-16185.	7.2	35
731	Facile Supramolecular Processing of Carbon Nanotubes and Polymers for Electromechanical Sensors. Angewandte Chemie, 2017, 129, 16398-16403.	1.6	10
732	A highly deformable conducting traces for printed antennas and interconnects: silver/fluoropolymer composite amalgamated by triethanolamine. Flexible and Printed Electronics, 2017, 2, 045001.	1.5	30
733	Inorganic semiconducting materials for flexible and stretchable electronics. Npj Flexible Electronics, 2017, 1, .	5.1	144
734	High-performance stretchable electrodes prepared from elastomeric current collectors and binders. Journal of Materials Chemistry A, 2017, 5, 21550-21559.	5.2	14
735	High-Performance Polymer Semiconductor-Based Nonvolatile Memory Cells with Nondestructive Read-Out. Journal of Physical Chemistry C, 2017, 121, 24352-24357.	1.5	7
736	Onâ€Skin Triboelectric Nanogenerator and Selfâ€Powered Sensor with Ultrathin Thickness and High Stretchability. Small, 2017, 13, 1702929.	5.2	108
737	Modular Elastomer Photoresins for Digital Light Processing Additive Manufacturing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 39708-39716.	4.0	99
738	Fabrication and characterization of stretchable copper electrodes on poly(dimethylsiloxane) substrate by direct deposition. Japanese Journal of Applied Physics, 2017, 56, 115801.	0.8	6
739	Wearable Electrocardiogram Monitor Using Carbon Nanotube Electronics and Color-Tunable Organic Light-Emitting Diodes. ACS Nano, 2017, 11, 10032-10041.	7. 3	197
740	Transparent Large-Area MoS ₂ Phototransistors with Inkjet-Printed Components on Flexible Platforms. ACS Nano, 2017, 11, 10273-10280.	7.3	72
741	Research Update: Synthesis of sub-15-nm diameter silver nanowires through a water-based hydrothermal method: Fabrication of low-haze 2D conductive films. APL Materials, 2017, 5, .	2.2	18
742	High-Yield Functional Molecular Electronic Devices. ACS Nano, 2017, 11, 6511-6548.	7.3	136
743	Ultrathin Quantum Dot Display Integrated with Wearable Electronics. Advanced Materials, 2017, 29, 1700217.	11.1	187

#	Article	IF	Citations
744	Conformal Electronics Wrapped Around Daily Life Objects Using an Original Method: Water Transfer Printing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 29424-29429.	4.0	51
745	Versatile Interpenetrating Polymer Network Approach to Robust Stretchable Electronic Devices. Chemistry of Materials, 2017, 29, 7645-7652.	3.2	101
746	Direct fabrication of electrochromic devices with complex patterns on three-dimensional substrates using polymeric stencil films. RSC Advances, 2017, 7, 43283-43288.	1.7	12
747	Electrically and thermally conductive underwater acoustically absorptive graphene/rubber nanocomposites for multifunctional applications. Nanoscale, 2017, 9, 14476-14485.	2.8	70
748	Hybrid 3D Printing of Soft Electronics. Advanced Materials, 2017, 29, 1703817.	11.1	501
749	N,N-Diethyl-diaminopropane-copper(<scp>ii</scp>) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals. Dalton Transactions, 2017, 46, 12487-12493.	1.6	6
750	Experimental investigation on the mechanical buckling of one-dimensional Si nanoribbons with a thickness contrast. Thin Solid Films, 2017, 640, 33-37.	0.8	3
751	Ultrastretchable Analog/Digital Signal Transmission Line with Carbon Nanotube Sheets. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26286-26292.	4.0	13
752	Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 26483-26491.	4.0	32
753	Role of Graphene in Reducing Fatigue Damage in Cu/Gr Nanolayered Composite. Nano Letters, 2017, 17, 4740-4745.	4.5	63
754	Mechanical Analyses and Structural Design Requirements for Flexible Energy Storage Devices. Advanced Energy Materials, 2017, 7, 1700535.	10.2	170
755	Transparent, Flexible Strain Sensor Based on a Solution-Processed Carbon Nanotube Network. ACS Applied Materials & Details & Applied Materials & Details & D	4.0	134
756	Graphene-hollow-cubes with network-faces assembled a 3D micro-structured transparent and free-standing film for high performance supercapacitors. Journal of Materials Chemistry A, 2017, 5, 16803-16811.	5.2	22
757	Investigating Limiting Factors in Stretchable All-Carbon Transistors for Reliable Stretchable Electronics. ACS Nano, 2017, 11, 7925-7937.	7.3	52
758	Conductive Textiles via Vapor-Phase Polymerization of 3,4-Ethylenedioxythiophene. ACS Applied Materials & Diterfaces, 2017, 9, 29038-29046.	4.0	26
759	Balancing Hole and Electron Conduction in Ambipolar Split-Gate Thin-Film Transistors. Scientific Reports, 2017, 7, 5015.	1.6	30
760	Flexible and integrated supercapacitor with tunable energy storage. Nanoscale, 2017, 9, 12324-12329.	2.8	48
761	Flexible transparent electrodes made of core-shell-structured carbon/metal hybrid nanofiber mesh films fabricated via electrospinning and electroplating. Current Applied Physics, 2017, 17, 1401-1408.	1.1	12

#	Article	IF	CITATIONS
762	Real-Time, Wearable, Biomechanical Movement Capture of Both Humans and Robots with Metal-Free Electrodes. ACS Omega, 2017, 2, 4132-4142.	1.6	15
763	Highly stretchable, transparent, and colorless electrodes from a diblock copolymer electrolyte. Journal of Materials Chemistry C, 2017, 5, 9865-9872.	2.7	5
764	Kirigami-patterned highly stretchable conductors from flexible carbon nanotube-embedded polymer films. Journal of Materials Chemistry C, 2017, 5, 8714-8722.	2.7	63
767	High electrochemical performance flexible solid-state supercapacitor based on Co-doped reduced graphene oxide and silk fibroin composites. Energy, 2017, 141, 1982-1988.	4.5	22
768	Highly Stretchable Conductors Based on Expanded Graphite Macroconfined in Tubular Rubber. ACS Applied Materials & Samp; Interfaces, 2017, 9, 43239-43249.	4.0	15
769	Highly stretchable metallic silver electrodes on poly(dimethylsiloxane) substrate. AIP Advances, 2017, 7, .	0.6	2
770	Easily fabricated and lightweight PPy/PDA/AgNW composites for excellent electromagnetic interference shielding. Nanoscale, 2017, 9, 18318-18325.	2.8	137
771	Characterization of stretchable SWCNTs/Lycra fabric electrode with dyeing process. Journal of Materials Science: Materials in Electronics, 2017, 28, 4279-4287.	1.1	14
772	Synthesis of nanobelt-like 1-dimensional silver/nanocarbon hybrid materials for flexible and wearable electronics. Scientific Reports, 2017, 7, 4931.	1.6	23
773	Principle of topography-directed inkjet printing for functional micro-tracks in flexible substrates. Journal of Applied Physics, 2017, 121, 244902.	1.1	6
774	Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy, 2017, 39, 101-110.	8.2	120
775	Multiaxial wavy top-emission organic light-emitting diodes on thermally prestrained elastomeric substrates. Organic Electronics, 2017, 48, 314-322.	1.4	14
776	Electronic Polymer Composite. , 2017, , 107-149.		2
777	Recent Progress on Stretchable Electronic Devices with Intrinsically Stretchable Components. Advanced Materials, 2017, 29, 1603167.	11.1	367
778	Optimal topology design for stress-isolation of soft hyperelastic composite structures under imposed boundary displacements. Structural and Multidisciplinary Optimization, 2017, 55, 1747-1758.	1.7	4
779	Assembly and Electronic Applications of Colloidal Nanomaterials. Advanced Materials, 2017, 29, 1603895.	11.1	98
780	Dissolvable tattoo sensors: from science fiction to a viable technology. Physica Scripta, 2017, 92, 013001.	1.2	20
781	Flexible Hybrid Electronic Circuits and Systems. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2017, 7, 27-37.	2.7	21

#	Article	IF	Citations
782	Advanced Mechatronics and MEMS Devices II. Microsystems and Nanosystems, 2017, , .	0.1	10
783	Carbon Nanotubes for Displaying. , 2017, , 101-127.		2
784	Flexible Electronic Devices for Biomedical Applications. Microsystems and Nanosystems, 2017, , 341-366.	0.1	4
785	Carbon Nanotube Fibers for Wearable Devices. , 2017, , 347-379.		1
786	Mechanical strain induced changes in electrical characteristics of flexible, non-volatile ferroelectric OFET based memory. Organic Electronics, 2017, 40, 30-35.	1.4	29
787	Wearable human–machine interface based on PVDF piezoelectric sensor. Transactions of the Institute of Measurement and Control, 2017, 39, 398-403.	1.1	56
788	Organic strain sensor comprised of heptazole-based thin film transistor and Schottky diode. Organic Electronics, 2017, 40, 24-29.	1.4	7
789	Structure and design of polymers for durable, stretchable organic electronics. Polymer Journal, 2017, 49, 41-60.	1.3	80
790	Inorganic and Organic Solution-Processed Thin Film Devices. Nano-Micro Letters, 2017, 9, 3.	14.4	152
791	Flexible Electronic Devices Based on Polymers. , 2017, , 325-354.		7
792	Industrial Internet of Things. Springer Series in Wireless Technology, 2017, , .	1.1	172
793	High efficient vacuum deposited red organic light-emitting diodes compared with their solution-processed counterpart. Molecular Crystals and Liquid Crystals, 2017, 654, 73-82.	0.4	3
794	Hybrid structure of stretchable interconnect for reliable E-skin application. , 2017, , .		2
795	Fabrication and test of a tube shaped e-skin sensor on a colon simulator. , 2017, , .		0
796	A printable and flexible conductive polymer composite with sandwich structure for stretchable conductor and strain sensor applications. , 2017, , .		2
798	Comparison of Flip-Chip Bonding Characteristics on Rigid, Flexible, and Stretchable Substrates: Part I. Flip-Chip Bonding on Rigid Substrates. Materials Transactions, 2017, 58, 1212-1216.	0.4	1
799	Femtosecond-laser-based fabrication of metal/PDMS composite microstructures for mechanical force sensing. Optical Materials Express, 2017, 7, 4203.	1.6	19
800	Flexible Piezoresistive Sensors Embedded in 3D Printed Tires. Sensors, 2017, 17, 656.	2.1	40

#	Article	IF	CITATIONS
801	The Boom in 3D-Printed Sensor Technology. Sensors, 2017, 17, 1166.	2.1	235
802	Low-cost and versatile integration of microwire electrodes and optical waveguides into silicone elastomeric devices using modified xurographic methods. Microsystems and Nanoengineering, 2017, 3, 17040.	3.4	9
803	Rapid Prototyping Human Interfaces Using Stretchable Strain Sensor. Journal of Sensors, 2017, 2017, 1-9.	0.6	7
804	Transparent Conducting Film Fabricated by Metal Mesh Method with Ag and Cu@Ag Mixture Nanoparticle Pastes. Metals, 2017, 7, 176.	1.0	11
805	Designing Neat and Composite Carbon Nanotube Materials by Porosimetric Characterization. Nanoscale Research Letters, 2017, 12, 616.	3.1	12
806	OTFTs compact models: analysis, comparison, and insights. IET Circuits, Devices and Systems, 2017, 11, 409-420.	0.9	15
807	Conductive Polymer Composites Synthesized from Diacetylene-Functionalized Linseed Oil and MWCNT: Gamma Irradiation and Organic Vapor Sensing. Journal of Renewable Materials, 2017, 5, 132-144.	1.1	1
808	3D printed stretchable capacitive sensors for highly sensitive tactile and electrochemical sensing. Nanotechnology, 2018, 29, 185501.	1.3	57
809	Printable Superelastic Conductors with Extreme Stretchability and Robust Cycling Endurance Enabled by Liquidâ€Metal Particles. Advanced Materials, 2018, 30, e1706157.	11.1	208
812	Direct growth of vanadium nitride nanosheets on carbon nanotube fibers as novel negative electrodes for high-energy-density wearable fiber-shaped asymmetric supercapacitors. Journal of Power Sources, 2018, 382, 122-127.	4.0	75
816	Highâ€Density Stretchable Electrode Grids for Chronic Neural Recording. Advanced Materials, 2018, 30, e1706520.	11.1	211
817	Electrically conductive PDMS-grafted CNTs-reinforced silicone elastomer. Composites Science and Technology, 2018, 159, 208-215.	3.8	40
818	Flexible active-matrix organic light-emitting diode display enabled by MoS ₂ thin-film transistor. Science Advances, 2018, 4, eaas8721.	4.7	163
820	HCI meets Material Science. , 2018, , .		67
821	Highly flexible, transparent, and conductive silver nanowire-attached bacterial cellulose conductors. Cellulose, 2018, 25, 3189-3196.	2.4	28
822	Superstretchable, Selfâ€Healing Polymeric Elastomers with Tunable Properties. Advanced Functional Materials, 2018, 28, 1800741.	7.8	162
823	Defectâ€Free, Highly Uniform Washable Transparent Electrodes Induced by Selective Light Irradiation. Small, 2018, 14, e1800676.	5.2	16
824	Polymer composites with lychee-like core covered by segregated conducting and flexible networks: unique morphology, high flexibility, stretchability and thermoelectric performance. Composites Science and Technology, 2018, 161, 16-21.	3.8	25

#	Article	IF	CITATIONS
825	Two-Stage Electrical Percolation of Metal Nanoparticle–Polymer Nanocomposites. Journal of Physical Chemistry C, 2018, 122, 8614-8620.	1.5	19
826	An Ultralight Graphene Honeycomb Sandwich for Stretchable Lightâ€Emitting Displays. Advanced Functional Materials, 2018, 28, 1707043.	7.8	61
827	Highly Sensitive Multifilament Fiber Strain Sensors with Ultrabroad Sensing Range for Textile Electronics. ACS Nano, 2018, 12, 4259-4268.	7.3	207
828	Flexible quantum dot light-emitting diodes for next-generation displays. Npj Flexible Electronics, 2018, 2, .	5.1	261
829	Electrical percolation of nanoparticle-polymer composites. Computational Materials Science, 2018, 150, 102-106.	1.4	34
830	Highly Stretchable Supercapacitors Enabled by Interwoven CNTs Partially Embedded in PDMS. ACS Applied Energy Materials, 2018, 1, 2048-2055.	2.5	57
831	Additive effect for organic solar cell fabrication by multi-layer inking and stamping. Journal of Science: Advanced Materials and Devices, 2018, 3, 221-225.	1.5	5
832	Recent developments of truly stretchable thin film electronic and optoelectronic devices. Nanoscale, 2018, 10, 5764-5792.	2.8	91
833	Test of a Tube-Shaped Artificial Skin Sensor Array for Colonoscopies. IEEE Sensors Journal, 2018, 18, 2291-2298.	2.4	3
834	Deformable conductors for human–machine interface. Materials Today, 2018, 21, 508-526.	8.3	163
835	Conjugated Polymers for Flexible Energy Harvesting and Storage. Advanced Materials, 2018, 30, e1704261.	11.1	161
836	Visually Imperceptible Liquidâ€Metal Circuits for Transparent, Stretchable Electronics with Direct Laser Writing. Advanced Materials, 2018, 30, e1706937.	11.1	161
837	Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates. Japanese Journal of Applied Physics, 2018, 57, 03DB02.	0.8	7
838	Flexible Interconnects for Electronic Textiles. Advanced Materials Technologies, 2018, 3, 1700277.	3.0	109
839	Auxetic Mechanical Metamaterials to Enhance Sensitivity of Stretchable Strain Sensors. Advanced Materials, 2018, 30, e1706589.	11.1	349
840	Rational Molecular Design for Deepâ€Blue Thermally Activated Delayed Fluorescence Emitters. Advanced Functional Materials, 2018, 28, 1706023.	7.8	195
841	High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. Journal of Materials Chemistry A, 2018, 6, 4432-4442.	5.2	82
842	Graphene-based stretchable and transparent moisture barrier. Nanotechnology, 2018, 29, 125705.	1.3	19

#	Article	IF	CITATIONS
843	Solution Deposition of Conformal Gold Coatings on Knitted Fabric for Eâ€₹extiles and Electroluminescent Clothing. Advanced Materials Technologies, 2018, 3, 1700292.	3.0	48
844	A one-dimensional soft and color-programmable light-emitting device. Journal of Materials Chemistry C, 2018, 6, 1328-1333.	2.7	27
845	Nitrogen-Doped Carbon Nanodots-Ionogels: Preparation, Characterization, and Radical Scavenging Activity. ACS Nano, 2018, 12, 1296-1305.	7.3	77
846	Research Advances of Bio-Inspired Carbon Nanotubes-Based Sensors. MRS Advances, 2018, 3, 1-11.	0.5	8
847	A flexible RF energy harvester using a hybrid printing technology for â€~stand-alone' wireless sensor platforms. Flexible and Printed Electronics, 2018, 3, 015004.	1.5	2
848	A highly stretchable humidity sensor based on spandex covered yarns and nanostructured polyaniline. RSC Advances, 2018, 8, 1078-1082.	1.7	40
849	Flexible supercapacitors based on carbon nanotubes. Chinese Chemical Letters, 2018, 29, 571-581.	4.8	88
850	Ultraconformable Temporary Tattoo Electrodes for Electrophysiology. Advanced Science, 2018, 5, 1700771.	5.6	136
851	Effect of surfactants on MWNT filled elastomer composites by latex mixing. Polymer Engineering and Science, 2018, 58, 1843-1848.	1.5	8
852	Printable Skinâ€Driven Mechanoluminescence Devices via Nanodoped Matrix Modification. Advanced Materials, 2018, 30, e1800291.	11.1	178
853	Flexible transparent conducting films with embedded silver networks composed of bimodal-sized nanoparticles for heater application. Nanotechnology, 2018, 29, 255302.	1.3	6
854	Ambipolar organic phototransistors based on 6,6′-dibromoindigo. RSC Advances, 2018, 8, 14747-14752.	1.7	13
855	Textile Display for Electronic and Brainâ€Interfaced Communications. Advanced Materials, 2018, 30, e1800323.	11.1	145
856	Stretchable Conductive Composites from Cu–Ag Nanowire Felt. ACS Nano, 2018, 12, 3689-3698.	7.3	57
857	Inkjet printing for the fabrication of flexible/stretchable wearable electronic devices and sensors. Sensor Review, 2018, 38, 438-452.	1.0	60
858	Spray-Processed Composites with High Conductivity and Elasticity. ACS Applied Materials & Samp; Interfaces, 2018, 10, 13953-13962.	4.0	10
859	Stretchable V $<$ sub $>$ 2 $<$ /sub $>$ 0 $<$ sub $>$ 5 $<$ /sub $>$ /PEDOT supercapacitors: a modular fabrication process and charging with triboelectric nanogenerators. Nanoscale, 2018, 10, 7719-7725.	2.8	26
860	Smart Passivation Materials with a Liquid Metal Microcapsule as Selfâ∈Healing Conductors for Sustainable and Flexible Perovskite Solar Cells. Advanced Functional Materials, 2018, 28, 1800110.	7.8	80

#	Article	lF	CITATIONS
861	Ultra-thin chips for high-performance flexible electronics. Npj Flexible Electronics, 2018, 2, .	5.1	249
862	Soft electronics on asymmetrical porous conducting membranes by molecular layer-by-layer assembly. Sensors and Actuators B: Chemical, 2018, 254, 916-925.	4.0	17
863	Extremely Vivid, Highly Transparent, and Ultrathin Quantum Dot Lightâ€Emitting Diodes. Advanced Materials, 2018, 30, 1703279.	11.1	157
864	A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Research, 2018, 11, 1938-1955.	5.8	99
865	Electrical and photoelectrical characterization of organic-inorganic heterostructures based on Ru-N-heterocyclic carbene complexes. Optik, 2018, 156, 514-521.	1.4	7
866	Ag-Doped PEDOT:PSS/CNT composites for thin-film all-solid-state supercapacitors with a stretchability of 480%. Journal of Materials Chemistry A, 2018, 6, 941-947.	5.2	107
867	Enhanced Oxidation-Resistant Cu@Ni Core–Shell Nanoparticles for Printed Flexible Electrodes. ACS Applied Materials & Diterfaces, 2018, 10, 1059-1066.	4.0	59
868	Highly Stretchable, Durable, and Printable Textile Conductor., 2018,,.		1
869	Geometries of Au nanoparticle-chains control their percolation in polymer. Applied Physics Letters, 2018, 113, .	1.5	7
870	Materials and Structures toward Soft Electronics. Advanced Materials, 2018, 30, e1801368.	11.1	445
871	Fabrication of Si/graphene/Si Double Heterostructures by Semiconductor Wafer Bonding towards Future Applications in Optoelectronics. Nanomaterials, 2018, 8, 1048.	1.9	10
872	Selective Intense Light-Induced High-Performance Washable Transparent Electrodes. , 2018, , .		0
874	Liquids on Shape-Tunable Wrinkles. Biologically-inspired Systems, 2018, , 133-168.	0.4	0
875	Flexible MgO-Based Magnetic Tunnel Junctions on Silicon Substrate. , 2018, , .		0
876	Impedance spectroscopy and equivalent circuits of metal-dielectric composites around the percolation threshold. Applied Physics Letters, $2018,113,$.	1.5	10
877	Recent Development of Flexible and Stretchable Antennas for Bio-Integrated Electronics. Sensors, 2018, 18, 4364.	2.1	42
878	Surface Modification of Fluoropolymer Using Open-Air Plasma Treatment at Atmospheric Pressure with Ar, Arï¼·O ₂ , and Arï¼·H ₂ for Application in HighAdhesion Metal Wiring Patterns. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2018, 69, 155-162.	0.1	2
879	Efficient and stable sky-blue delayed fluorescence organic light-emitting diodes with CIEy below 0.4. Nature Communications, 2018, 9, 5036.	5.8	113

#	Article	IF	CITATIONS
880	Fabrication of a Bilayer Structure of Cu and Polyimide To Realize Circuit Microminiaturization and High Interfacial Adhesion in Flexible Electronic Devices. ACS Applied Materials & https://www.acs.com/acs/sec.c	4.0	16
881	Bright Stretchable Electroluminescent Devices based on Silver Nanowire Electrodes and High-k Thermoplastic Elastomers. ACS Applied Materials & Interfaces, 2018, 10, 44760-44767.	4.0	65
882	A simple and robust approach to reducing contact resistance in organic transistors. Nature Communications, 2018, 9, 5130.	5.8	96
883	Stretchable active matrix of oxide thin-film transistors with monolithic liquid metal interconnects. Applied Physics Express, 2018, 11, 126501.	1.1	17
884	Flashâ€Induced Stretchable Cu Conductor via Multiscaleâ€Interfacial Couplings. Advanced Science, 2018, 5, 1801146.	5.6	36
885	Interface Design Strategy for the Fabrication of Highly Stretchable Strain Sensors. ACS Applied Materials & Strategy Interfaces, 2018, 10, 36483-36492.	4.0	57
886	3D Printed Robotic Assembly Enabled Reconfigurable Display with Higher Resolution. Advanced Materials Technologies, 2018, 3, 1800344.	3.0	10
887	Air-stable, transparent flexible ambipolar organic thin film transistors based on CuPc-F16CuPc bi-channel structure. AIP Advances, 2018, 8, 075304.	0.6	1
888	Mechanically Responsive Crystalline Coordination Polymers with Controllable Elasticity. Angewandte Chemie, 2018, 130, 15017-15021.	1.6	24
889	Mechanically Responsive Crystalline Coordination Polymers with Controllable Elasticity. Angewandte Chemie - International Edition, 2018, 57, 14801-14805.	7.2	80
890	Tunable Adhesion for Bio-Integrated Devices. Micromachines, 2018, 9, 529.	1.4	15
891	Gelatin Hydrogel-Based Organic Electrochemical Transistors and Their Integrated Logic Circuits. ACS Applied Materials & Description (2018), 10, 39083-39090.	4.0	71
892	Industrial Grade, Bendingâ€Insensitive, Transparent Nanoforce Touch Sensor via Enhanced Percolation Effect in a Hierarchical Nanocomposite Film. Advanced Functional Materials, 2018, 28, 1804721.	7.8	50
893	Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano, 2018, 12, 9742-9749.	7.3	130
894	A New Wireless Communication Paradigm through Software-Controlled Metasurfaces. IEEE Communications Magazine, 2018, 56, 162-169.	4.9	799
895	Surface-Treated Poly(dimethylsiloxane) as a Gate Dielectric in Solution-Processed Organic Field-Effect Transistors. ACS Omega, 2018, 3, 11278-11285.	1.6	28
896	3D‧tructured Stretchable Strain Sensors for Outâ€ofâ€Plane Force Detection. Advanced Materials, 2018, 30, e1707285.	11.1	86
897	Monolithic Flexible Vertical GaN Lightâ€Emitting Diodes for a Transparent Wireless Brain Optical Stimulator. Advanced Materials, 2018, 30, e1800649.	11.1	88

#	Article	IF	CITATIONS
898	High- <i>k</i> Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chemical Reviews, 2018, 118, 5690-5754.	23.0	530
899	Review on flexible photonics/electronics integrated devices and fabrication strategy. Science China Information Sciences, $2018, 61, 1$.	2.7	72
900	3D Multifunctional Composites Based on Largeâ€Area Stretchable Circuit with Thermoforming Technology. Advanced Electronic Materials, 2018, 4, 1800071.	2.6	27
901	Fractal Gold Nanoframework for Highly Stretchable Transparent Strain-Insensitive Conductors. Nano Letters, 2018, 18, 3593-3599.	4.5	62
902	Mechanically robust stretchable organic optoelectronic devices built using a simple and universal stencil-pattern transferring technology. Light: Science and Applications, 2018, 7, 35.	7.7	77
903	Direction-dependent stretchability of AgNW electrodes on microprism-mediated elastomeric substrates. AIP Advances, 2018, 8, 065227.	0.6	1
904	Wafer-scale, stretchable nanomeshes from an ultrathin-support-layer assisted transfer. Applied Physics Letters, 2018, 112, .	1.5	8
905	A Composite Elastic Conductor with High Dynamic Stability Based on 3D alabash Bunch Conductive Network Structure for Wearable Devices. Advanced Electronic Materials, 2018, 4, 1800137.	2.6	57
906	A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chemical Engineering Journal, 2018, 352, 29-38.	6.6	259
907	Facile Fabrication of Stretchable Electrodes by Sedimentation of Ag Nanoparticles in PDMS Matrix. Journal of Nanomaterials, 2018, 2018, 1-6.	1.5	2
908	Potential of Graphene for Miniature Sensors and Conducting Devices for Biomedical Applications. , 2018, , .		0
909	Controlled Crumpling of Two-Dimensional Titanium Carbide (MXene) for Highly Stretchable, Bendable, Efficient Supercapacitors. ACS Nano, 2018, 12, 8048-8059.	7. 3	136
910	Ionic Gels and Their Applications in Stretchable Electronics. Macromolecular Rapid Communications, 2018, 39, e1800246.	2.0	112
911	Flexible and Stretchable Smart Display: Materials, Fabrication, Device Design, and System Integration. Advanced Functional Materials, 2018, 28, 1801834.	7.8	357
912	Femtosecond Laser-Based Modification of PDMS to Electrically Conductive Silicon Carbide. Nanomaterials, 2018, 8, 558.	1.9	26
913	Tunable flexible artificial synapses: a new path toward a wearable electronic system. Npj Flexible Electronics, 2018, 2, .	5.1	32
914	Robotic Flexible Electronics with Self-Bendable Films. Soft Robotics, 2018, 5, 710-717.	4.6	13
915	Highly stretchable and conductive conductors based on Ag flakes and polyester composites. Microelectronic Engineering, 2018, 199, 16-23.	1.1	20

#	ARTICLE	IF	CITATIONS
916	Highâ€Performance Flexible Magnetic Tunnel Junctions for Smart Miniaturized Instruments. Advanced Engineering Materials, 2018, 20, 1800471.	1.6	24
917	Deformable liquid metal polymer composites with tunable electronic and mechanical properties. Journal of Materials Research, 2018, 33, 2443-2453.	1.2	44
918	Soft Display Using Photonic Crystals on Dielectric Elastomers. ACS Applied Materials & Elastomers, 2018, 10, 24758-24766.	4.0	40
920	Process optimization for microstructure-dependent properties in thin film organic electronics. Materials Discovery, 2018, 11, 6-13.	3.3	10
921	A Stretchable Alternating Current Electroluminescent Fiber. Materials, 2018, 11, 184.	1.3	43
922	Crack-Configuration Analysis of Metal Conductive Track Embedded in Stretchable Elastomer. Micromachines, 2018, 9, 130.	1.4	6
923	Recent Advances in Tactile Sensing Technology. Micromachines, 2018, 9, 321.	1.4	67
924	Real Time Analysis of Bioanalytes in Healthcare, Food, Zoology and Botany. Sensors, 2018, 18, 5.	2.1	32
925	Fabrication of a flexible and stretchable three-dimensional conductor based on Au–Ni@graphene coated polyurethane sponge by electroless plating. Journal of Materials Chemistry C, 2018, 6, 8135-8143.	2.7	21
926	Self-healing and superstretchable conductors from hierarchical nanowire assemblies. Nature Communications, 2018, 9, 2786.	5.8	195
927	Rapid Self-Recoverable Hydrogels with High Toughness and Excellent Conductivity. ACS Applied Materials & Con	4.0	85
928	Organic Fieldâ€Effect Transistor for Energyâ€Related Applications: Lowâ€Powerâ€Consumption Devices, Nearâ€Infrared Phototransistors, and Organic Thermoelectric Devices. Advanced Energy Materials, 2018, 8, 1801003.	10.2	95
929	Reverseâ€Offset Printed Ultrathin Ag Mesh for Robust Conformal Transparent Electrodes for Highâ€Performance Organic Photovoltaics. Advanced Materials, 2018, 30, e1707526.	11.1	59
930	Assembly of Advanced Materials into 3D Functional Structures by Methods Inspired by Origami and Kirigami: A Review. Advanced Materials Interfaces, 2018, 5, 1800284.	1.9	195
931	Nanofabrication of Conductive Metallic Structures on Elastomeric Materials. Scientific Reports, 2018, 8, 6607.	1.6	8
932	lonic Gel Modulation of RKKY Interactions in Synthetic Antiâ€Ferromagnetic Nanostructures for Low Power Wearable Spintronic Devices. Advanced Materials, 2018, 30, e1800449.	11.1	49
933	Soft Electronically Functional Polymeric Composite Materials for a Flexible and Stretchable Digital Future. Advanced Materials, 2018, 30, e1802560.	11.1	140
934	Voltage Control of Magnetic Anisotropy through Ionic Gel Gating for Flexible Spintronics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29750-29756.	4.0	16

#	Article	IF	CITATIONS
935	Influence of different Nâ€'benzoyl derivatives of isoleucine on electrochemical properties and pseudocapacitance performance of conductive polymer electroactive film: Electrochemical and theoretical study. Journal of Electroanalytical Chemistry, 2018, 826, 65-75.	1.9	14
936	Post-Deposition Wetting and Instabilities in Organic Thin Films by Supersonic Molecular Beam Deposition. Scientific Reports, 2018, 8, 12015.	1.6	7
937	Mechanochromic Stretchable Electronics. ACS Applied Materials & Samp; Interfaces, 2018, 10, 29918-29924.	4.0	72
938	Color-stable WRGB emission from blue OLEDs with quantum dots-based patterned down-conversion layer. Organic Electronics, 2018, 62, 407-411.	1.4	13
939	Macroscopic Interfacial Property as a Determining Parameter for Reliable Prediction of Charge Mobility in Organic Transistors. Journal of Physical Chemistry C, 2018, 122, 17695-17705.	1.5	7
940	Ultrahigh energy fiber-shaped supercapacitors based on porous hollow conductive polymer composite fiber electrodes. Journal of Materials Chemistry A, 2018, 6, 12250-12258.	5.2	45
941	Highly stretchable and transparent electrode film based on SWCNT/Silver nanowire hybrid nanocomposite. Composites Part B: Engineering, 2018, 151, 1-7.	5.9	62
942	Flexible Conductive Composite Integrated with Personal Earphone for Wireless, Real-Time Monitoring of Electrophysiological Signs. ACS Applied Materials & Electrophysiological Signs. ACS Applied Materials & Electrophysiological Signs. ACS Applied Materials & Electrophysiological Signs.	4.0	52
943	Low-Voltage Control of (Co/Pt) _{<i>x</i>} Perpendicular Magnetic Anisotropy Heterostructure for Flexible Spintronics. ACS Nano, 2018, 12, 7167-7173.	7.3	53
944	AuNP-PE interface/phase and its effects on the tensile behaviour of AuNP-PE composites. Journal of Applied Physics, 2018, 123, .	1.1	3
945	Enhanced Electrical and Mechanical Properties of a Printed Bimodal Silver Nanoparticle Ink for Flexible Electronics. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800007.	0.8	21
946	Printable Metal-Polymer Conductors for Highly Stretchable Bio-Devices. IScience, 2018, 4, 302-311.	1.9	119
947	Soft human–machine interfaces: design, sensing and stimulation. International Journal of Intelligent Robotics and Applications, 2018, 2, 313-338.	1.6	55
948	High-Performance Strain Sensors Based on Spirally Structured Composites with Carbon Black, Chitin Nanocrystals, and Natural Rubber. ACS Sustainable Chemistry and Engineering, 2018, 6, 10595-10605.	3.2	42
949	Recent Advances in Biointegrated Optoelectronic Devices. Advanced Materials, 2018, 30, e1800156.	11.1	76
950	Nonlinear Dynamics in Computational Neuroscience. PoliTO Springer Series, 2019, , .	0.3	4
951	Nanomaterials-based flexible and stretchable bioelectronics. MRS Bulletin, 2019, 44, 643-656.	1.7	30
952	Design of Mechanized Nanocomposites for Exploring New Chemical Motions. Asian Journal of Organic Chemistry, 2019, 8, 1601-1609.	1.3	2

#	Article	IF	CITATIONS
953	A general strategy for optimizing composite properties by evaluating the interfacial surface area of dispersed carbon nanotubes by fractal dimension. Carbon, 2019, 154, 457-465.	5.4	15
954	A wireless body area sensor network based on stretchable passive tags. Nature Electronics, 2019, 2, 361-368.	13.1	421
955	Interfaces in organic electronics. Nature Reviews Materials, 2019, 4, 627-650.	23.3	237
956	Self-Healing Metal Interconnect for Flexible Electronic Device. , 2019, , .		1
957	Endowing recyclability to anti-adhesion materials <i>via</i> designing physically crosslinked polyurethane. Journal of Materials Chemistry A, 2019, 7, 22903-22911.	5.2	10
958	Stretchable Conductive Ink Based on Polysiloxane–Silver Composite and Its Application as a Frequency Reconfigurable Patch Antenna for Wearable Electronics. ACS Applied Materials & Electronics. ACS Applied Materials & Electronics. 11, 28033-28042.	4.0	33
959	Soft elastomeric composite materials with skin-inspired mechanical properties for stretchable electronic circuits. Lab on A Chip, 2019, 19, 2709-2717.	3.1	25
960	Recent progress in stretchable organic field-effect transistors. Science China Technological Sciences, 2019, 62, 1255-1276.	2.0	18
961	Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. Npj Flexible Electronics, $2019, 3, \ldots$	5.1	67
962	Highly stretchable electrochromic hydrogels for use in wearable electronic devices. Journal of Materials Chemistry C, 2019, 7, 9481-9486.	2.7	38
963	Inkjet Printing of Polyacrylic Acid-Coated Silver Nanoparticle Ink onto Paper with Sub-100 Micron Pixel Size. Materials, 2019, 12, 2277.	1.3	9
964	Highly Stretchable Metallic Nanowire Networks Reinforced by the Underlying Randomly Distributed Elastic Polymer Nanofibers via Interfacial Adhesion Improvement. Advanced Materials, 2019, 31, e1903446.	11.1	106
965	Shearâ€Driven Directâ€Write Printing of Roomâ€Temperature Galliumâ€Based Liquid Metal Alloys. Advanced Engineering Materials, 2019, 21, 1900400.	1.6	37
966	Stretchable liquid metal electromagnetic interference shielding coating materials with superior effectiveness. Journal of Materials Chemistry C, 2019, 7, 10331-10337.	2.7	58
967	Coreâ€"shell structured graphene sphere-silver nanowire hybrid filler embedded polydimethylsiloxane nanocomposites for stretchable conductor. Nanotechnology, 2019, 30, 445706.	1.3	11
968	A Flexible and Highly Sensitive Pressure Sensor Based on AgNWs/NRLF for Hand Motion Monitoring. Nanomaterials, 2019, 9, 945.	1.9	18
969	Electroresponsive Stretchable Liquidâ€Crystal Device with Deformable Gel Network. Advanced Electronic Materials, 2019, 5, 1900373.	2.6	16
970	Liquid Metal Covered with Thermoplastic Conductive Composites for High Electrical Stability and Negligible Electromechanical Coupling at Large Strains. ACS Applied Materials & Interfaces, 2019, 11, 26204-26212.	4.0	15

#	Article	IF	CITATIONS
971	Freeâ€Standing Buckleâ€Delaminated 2D Organic Nanosheets with Enhanced Mechanical Properties and Multifunctionality. Advanced Materials Interfaces, 2019, 6, 1900561.	1.9	9
972	Catalyst-Free [2,3]-Sigmatropic Rearrangement Reactions of Photochemically Generated Ammonium Ylides. Synthesis, 2019, 51, 4348-4358.	1.2	9
973	Narrowband Organic Lightâ€Emitting Diodes for Fluorescence Microscopy and Calcium Imaging. Advanced Materials, 2019, 31, 1903599.	11.1	20
974	Stretchable High-Permittivity Nanocomposites for Epidermal Alternating-Current Electroluminescent Displays., 2019, 1, 511-518.		66
975	Influence of ionic liquids on rheological behaviors of polyisoprene rubber/silica compounds. Polymer, 2019, 183, 121898.	1.8	19
976	Converting an Organic Light-Emitting Diode from Blue to White with Bragg Modes. ACS Photonics, 2019, 6, 2655-2662.	3.2	12
977	Design, mechanics, and operation of spiral-interconnect based networked sensor for stretchable electronics. Applied Physics Letters, $2019,115,.$	1.5	8
978	Textile-Friendly Interconnection between Wearable Measurement Instrumentation and Sensorized Garments—Initial Performance Evaluation for Electrocardiogram Recordings. Sensors, 2019, 19, 4426.	2.1	10
979	All-printed large-scale integrated circuits based on organic electrochemical transistors. Nature Communications, 2019, 10, 5053.	5.8	156
980	Flexible Conductive Composites with Programmed Electrical Anisotropy Using Acoustophoresis. Advanced Materials Technologies, 2019, 4, 1900586.	3.0	30
981	Ultrastretchable and conductive core/sheath hydrogel fibers with multifunctionality. Journal of Polymer Science, Part B: Polymer Physics, 2019, 57, 272-280.	2.4	26
982	Silver-Coated Poly(dimethylsiloxane) Beads for Soft, Stretchable, and Thermally Stable Conductive Elastomer Composites. ACS Applied Materials & Elastomer Composites. ACS Applied Materials & Elastomer Composites.	4.0	23
983	Advanced functional materials for soft robotics: tuning physicochemical properties beyond rigidity control. Multifunctional Materials, 2019, 2, 042001.	2.4	13
984	Tactile Sensors for Advanced Intelligent Systems. Advanced Intelligent Systems, 2019, 1, 1900090.	3.3	80
985	Impact of Polyimide Film Thickness for Improving the Mechanical Robustness of Stretchable InGaZnO Thin-Film Transistors Prepared on Wavy-Dimensional Elastomer Substrates. ACS Applied Materials & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS APPLIED & ACS ACS ACS ACS APPLIED & ACS ACS ACS APPLIED & ACS	4.0	21
986	Printed flexible thin-film transistors based on different types of modified liquid metal with good mobility. Science China Information Sciences, 2019, 62, 1.	2.7	13
987	Stretchable Conductive Adhesives with Superior Electrical Stability as Printable Interconnects in Washable Textile Electronics. ACS Applied Materials & Interfaces, 2019, 11, 37043-37050.	4.0	35
988	Conductive silicone elastomers electrodes processable by screen printing. Scientific Reports, 2019, 9, 13331.	1.6	29

#	Article	IF	CITATIONS
989	3D Printer-Based Encapsulated Origami Electronics for Extreme System Stretchability and High Areal Coverage. ACS Nano, 2019, 13, 12500-12510.	7. 3	27
990	Enhanced Charge Injection Properties of Organic Fieldâ€Effect Transistor by Molecular Implantation Doping. Advanced Materials, 2019, 31, e1806697.	11.1	60
991	Bio-Integrated Wearable Systems: A Comprehensive Review. Chemical Reviews, 2019, 119, 5461-5533.	23.0	822
992	Multi-dimensional nanocomposites for stretchable thermoelectric applications. Applied Physics Letters, 2019, 114, .	1.5	20
993	Fully Printed Infrared Photodetectors from PbS Nanocrystals with Perovskite Ligands. ACS Nano, 2019, 13, 2389-2397.	7.3	30
994	Bioinspiriertes Design und additive Fertigung von weichen Materialien, Maschinen, Robotern und haptischen Schnittstellen. Angewandte Chemie, 2019, 131, 11300-11324.	1.6	5
995	Bioâ€inspired Design and Additive Manufacturing of Soft Materials, Machines, Robots, and Haptic Interfaces. Angewandte Chemie - International Edition, 2019, 58, 11182-11204.	7.2	120
996	Stretchable Organometalâ€Halideâ€Perovskite Quantumâ€Dot Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1807516.	11.1	79
997	Highly stretchable patternable conductive circuits and wearable strain sensors based on polydimethylsiloxane and silver nanoparticles. Nanotechnology, 2019, 30, 185501.	1.3	28
998	Stimuli-responsive materials: a web themed collection. Materials Chemistry Frontiers, 2019, 3, 10-11.	3.2	21
999	Triplet exciton harvesting by multi-process energy transfer in fluorescent organic light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 977-985.	2.7	29
1000	Effect of AuNP-AuNP vdW interaction on the mechanics and piezoresistivity of AuNP-polymer nanocomposite. AIP Advances, 2019, 9, 055212.	0.6	1
1001	3Dâ€Printed Flexible Tactile Sensor Mimicking the Texture and Sensitivity of Human Skin. Advanced Materials Technologies, 2019, 4, 1900147.	3.0	30
1002	Stretchable Transparent Conductors: from Micro/Macromechanics to Applications. Advanced Materials, 2019, 31, e1900756.	11.1	52
1003	Large-area, kirigami topology structure-induced highly stretchable and flexible interconnects: Directly printing preparation and mechanic mechanism. Science China Materials, 2019, 62, 1412-1422.	3.5	13
1004	Multifunctional Two-Dimensional PtSe ₂ -Layer Kirigami Conductors with 2000% Stretchability and Metallic-to-Semiconducting Tunability. Nano Letters, 2019, 19, 7598-7607.	4.5	59
1005	Highly Durable Nanofiber-Reinforced Elastic Conductors for Skin-Tight Electronic Textiles. ACS Nano, 2019, 13, 7905-7912.	7.3	103
1006	A review on inkjet printing of nanoparticle inks for flexible electronics. Journal of Materials Chemistry C, 2019, 7, 8771-8795.	2.7	303

#	Article	IF	CITATIONS
1007	Wearable high-powered biofuel cells using enzyme/carbon nanotube composite fibers on textile cloth. Biosensors and Bioelectronics, 2019, 141, 111471.	5 . 3	76
1008	Resistance Change Mechanism of Electronic Component Mounting through Contact Pressure Using Elastic Adhesive. Micromachines, 2019, 10, 396.	1.4	2
1009	Solution-processed organic light-emitting diode in high-resolution line patterns by scalable wetting modification. Organic Electronics, 2019, 73, 332-336.	1.4	9
1010	Stretchable and Ambient Stable Perovskite/Polymer Luminous Hybrid Nanofibers of Multicolor Fiber Mats and Their White LED Applications. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23605-23615.	4.0	63
1011	Oxide Electronics Transferred on Stiff-Stripe/PDMS Substrate for High-Resolution Stretchable Displays. IEEE Transactions on Electron Devices, 2019, 66, 2971-2978.	1.6	13
1012	Characterization on the operation stability of mechanically flexible memory thin-film transistors using engineered ZnO charge-trap layers. Journal Physics D: Applied Physics, 2019, 52, 325106.	1.3	10
1013	Metal nanowire networks: Recent advances and challenges for new generation photovoltaics. Materials Today Energy, 2019, 13, 152-185.	2.5	29
1014	Flexible Transparent Sliced Veneer for Alternating Current Electroluminescent Devices. ACS Sustainable Chemistry and Engineering, 2019, 7, 11464-11473.	3.2	32
1015	Pâ€195: Lateâ€News Poster: Switch Array Type Gate Drive Circuit Using Aâ€IGZO TFT for Stretchable Display. Digest of Technical Papers SID International Symposium, 2019, 50, 1341-1344.	0.1	0
1016	Pâ€196: Lateâ€News Poster: Stretching Compensation Pixel Circuit for AMOLED. Digest of Technical Papers SID International Symposium, 2019, 50, 1345-1348.	0.1	3
1017	Heat-activated separation transfer for multi-purpose digital fabrication of paper and polymer electronics. Microelectronic Engineering, 2019, 216, 111020.	1.1	0
1018	Improvement of light extraction efficiency in GaN-based light-emitting diodes by addition of complex photonic crystal structure. Materials Research Express, 2019, 6, 086201.	0.8	13
1019	Elastic carbon dot/polymer films for fluorescent tensile sensing and mechano-optical tuning. Carbon, 2019, 152, 363-371.	5.4	42
1020	Materials and structural designs of stretchable conductors. Chemical Society Reviews, 2019, 48, 2946-2966.	18.7	367
1021	Stretchable elastomer composites with segregated filler networks: effect of carbon nanofiller dimensionality. Nanoscale Advances, 2019, 1, 2337-2347.	2.2	32
1022	Rapid and Inexpensive Method for Fabrication and Integration of Electrodes in Microfluidic Devices. Journal of Microelectromechanical Systems, 2019, 28, 597-605.	1.7	18
1023	Scalable manufacturing and applications of nanofibers. Materials Today, 2019, 28, 98-113.	8.3	101
1024	Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests. Advanced Energy Materials, 2019, 9, 1900618.	10.2	74

#	Article	IF	CITATIONS
1025	Assembly and applications of 3D conformal electronics on curvilinear surfaces. Materials Horizons, 2019, 6, 642-683.	6.4	141
1026	Characterization of a Soft Pressure Sensor on the Basis of Ionic Liquid Concentration and Thickness of the Piezoresistive Layer. IEEE Sensors Journal, 2019, 19, 6076-6084.	2.4	21
1027	Status review on the MEMS-based flexible supercapacitors. Journal of Micromechanics and Microengineering, 2019, 29, 093001.	1.5	11
1028	A novel optical 3D force and displacement sensor – Towards instrumenting the PapillArray tactile sensor. Sensors and Actuators A: Physical, 2019, 291, 174-187.	2.0	33
1029	Printable Thermoelectric Materials and Applications. Frontiers in Materials, 2019, 6, .	1.2	10
1030	Coexistence of Antiadhesion Performance, Intrinsic Stretchability, and Transparency. ACS Applied Materials & Samp; Interfaces, 2019, 11, 16914-16921.	4.0	8
1031	Semitransparent, Flexible, and Selfâ€Powered Photodetectors Based on Ferroelectricityâ€Assisted Perovskite Nanowire Arrays. Advanced Functional Materials, 2019, 29, 1901280.	7.8	78
1032	Flexible 64 \tilde{A} — 64 Pixel AMOLED Displays Driven by Uniform Carbon Nanotube Thin-Film Transistors. ACS Applied Materials & Driven School (1998) 11, 11699-11705.	4.0	33
1033	Elastomer Composites with a Tailored Interface Network toward Tunable Piezoresistivity: Effect of Elastomer Particle Size. ACS Applied Polymer Materials, 2019, 1, 714-721.	2.0	22
1034	Solventâ€Free Luminous Molecular Liquids. Advanced Optical Materials, 2019, 7, 1900176.	3.6	49
1035	Stretchable Electroluminescent Display Enabled by Graphene-Based Hybrid Electrode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 14222-14228.	4.0	69
1036	Enhancing performance of nonvolatile transistor memories via electronâ€accepting composition in triphenylamineâ€based random copolymers. Journal of Polymer Science Part A, 2019, 57, 1113-1121.	2.5	9
1037	Semiconductor–Metal Transition in Poly(3,4â€Ethylenedioxythiophene): Poly(Styrenesulfonate) and its Electrical Conductivity While Being Stretched. Polymer Engineering and Science, 2019, 59, 1051-1056.	1.5	4
1038	Recent advances in micro-supercapacitors. Nanoscale, 2019, 11, 5807-5821.	2.8	87
1039	Functional nanomaterials to augment photosynthesis: evidence and considerations for their responsible use in agricultural applications. Interface Focus, 2019, 9, 20180048.	1.5	60
1040	The development of a highly stretchable, durable, and printable textile electrode. Textile Reseach Journal, 2019, 89, 4104-4113.	1.1	16
1041	Three-Dimensionally Printed Stretchable Conductors from Surfactant-Mediated Composite Pastes. ACS Applied Materials & Diterfaces, 2019, 11, 12622-12631.	4.0	22
1042	Stretchable sensors for environmental monitoring. Applied Physics Reviews, 2019, 6, .	5.5	83

#	Article	IF	CITATIONS
1043	Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chemical Engineering Journal, 2019, 371, 452-460.	6.6	135
1044	Low-resistance stretchable electrodes using a thick silver layer and a PDMS-PDMS bonding technique. AIP Advances, 2019, 9, .	0.6	4
1045	Humanâ€Interactive, Activeâ€Matrix Displays for Visualization of Tactile Pressures. Advanced Materials Technologies, 2019, 4, 1900082.	3.0	53
1046	Highly conductive and stretchable film fabricated by efficient transfer of silver nanowires. High Performance Polymers, 2019, 31, 1153-1161.	0.8	3
1047	PEDOT:PSS/Polyacrylamide Nanoweb: Highly Reliable Soft Conductors with Swelling Resistance. ACS Applied Materials & Samp; Interfaces, 2019, 11, 10099-10107.	4.0	13
1048	Conductivity measurements of organic materials using field-effect transistors (FETs) and space-charge-limited current (SCLC) techniques., 2019,, 453-487.		12
1049	Water Transfer Printing Enhanced by Waterâ€Induced Pattern Expansion: Toward Largeâ€Area 3D Electronics. Advanced Materials Technologies, 2019, 4, 1800600.	3.0	29
1050	Matrix-Independent Highly Conductive Composites for Electrodes and Interconnects in Stretchable Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 8567-8575.	4.0	89
1051	Experimental study of laser lift-off of ultra-thin polyimide film for flexible electronics. Science China Technological Sciences, 2019, 62, 233-242.	2.0	30
1052	Hybrid Printed Energy Harvesting Technology for Self-Sustainable Autonomous Sensor Application. Sensors, 2019, 19, 728.	2.1	14
1053	Pencil-on-paper flexible electronics for daily sensing applications. Circuit World, 2019, 45, 189-195.	0.7	6
1054	Minimally invasive medical catheter with highly flexible FDSOI-based integrated circuits. , 2019, , .		2
1055	Reliability investigation of Via-bridges for flexible electronics. , 2019, , .		0
1056	Requirements for Durability Improvement of Conductive Patterns Permeated in Textiles under Cyclic Tensile Deformation. Micromachines, 2019, 10, 721.	1.4	6
1057	Highly Stretchable Conductor by Self-Assembling and Mechanical Sintering of a 2D Liquid Metal on a 3D Polydopamine-Modified Polyurethane Sponge. ACS Applied Materials & Eamp; Interfaces, 2019, 11, 48321-48330.	4.0	35
1058	Compositional and structural engineering of inorganic nanowires toward advanced properties and applications. InformaÄnÃ-MateriA¡ly, 2019, 1, 496-524.	8.5	18
1059	Photo-patternable, stretchable and electrically conductive graft copolymers of poly(3-hexylthiophene). Polymer Chemistry, 2019, 10, 6278-6289.	1.9	7
1060	Digitally printed stretchable electronics: a review. Journal of Materials Chemistry C, 2019, 7, 14035-14068.	2.7	93

#	Article	IF	CITATIONS
1061	3.2: <i>Invited Paper:</i> Solutionâ€Processed Organic Lightâ€Emitting Diode Array Integrated with Organic Thinâ€Filmâ€Transistors. Digest of Technical Papers SID International Symposium, 2019, 50, 28-30.	0.1	0
1062	Lubricant-Added Conductive Composite for Direct Writing of a Stretchable Electrode. ACS Applied Materials & Samp; Interfaces, 2019, 11, 48459-48465.	4.0	15
1063	Fabrication of conductive and printable nano carbon ink for wearable electronic and heating fabrics. Journal of Colloid and Interface Science, 2019, 539, 95-106.	5.0	32
1064	Block Copolymer Elastomers for Stretchable Electronics. Accounts of Chemical Research, 2019, 52, 63-72.	7.6	85
1065	Implementing Inkjetâ€Printed Transparent Conductive Electrodes in Solutionâ€Processed Organic Electronics. Advanced Materials Technologies, 2019, 4, 1800474.	3.0	18
1066	A Reconfigurable Color Reflector by Selective Phase Change of GeTe in a Multilayer Structure. Advanced Optical Materials, 2019, 7, 1801214.	3.6	34
1067	Highly Conductive Flexible Metal–Ceramic Nanolaminate Electrode for High-Performance Soft Electronics. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2211-2217.	4.0	10
1068	Crack propagation design in transparent polymeric conductive films via carbon nanotube fiber-reinforcement and its application for highly sensitive and mechanically durable strain sensors. Smart Materials and Structures, 2019, 28, 025008.	1.8	14
1069	Stretchable spin valve with strain-engineered wrinkles grown on elastomeric polydimethylsiloxane. Journal Physics D: Applied Physics, 2019, 52, 095003.	1.3	14
1070	Direct printing of highly sensitive, stretchable, and durable strain sensor based on silver nanoparticles/multi-walled carbon nanotubes composites. Composites Part B: Engineering, 2019, 161, 395-401.	5.9	99
1071	Stretchable, Bifacial Si-Organic Hybrid Solar Cells by Vertical Array of Si Micropillars Embedded into Elastomeric Substrates. ACS Applied Materials & Elastomeric Substrates. ACS Applied Materials & Elastomeric Substrates.	4.0	13
1072	Flexible Crossbarâ€Structured Phase Change Memory Array via Moâ€Based Interfacial Physical Liftâ€Off. Advanced Functional Materials, 2019, 29, 1806338.	7.8	31
1073	Nanocellulose-templated assembly of polyaniline in natural rubber-based hybrid elastomers toward flexible electronic conductors. Industrial Crops and Products, 2019, 128, 94-107.	2.5	163
1074	Investigation of hydrogen-bonding mediated molecular packing of diketopyrrolopyrrole based donor-acceptor oligomers in the solid state. Polymer, 2019, 160, 238-245.	1.8	16
1075	Metamorphic Stretchable Touchpad. Advanced Materials Technologies, 2019, 4, 1800446.	3.0	4
1076	Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy, 2019, 58, 304-311.	8.2	92
1077	A Generic Soft Encapsulation Strategy for Stretchable Electronics. Advanced Functional Materials, 2019, 29, 1806630.	7.8	83
1078	Highly conductive, transparent and metal-free electrodes with a PEDOT:PSS/SWNT bilayer for high-performance organic thin film transistors. Organic Electronics, 2019, 67, 26-33.	1.4	20

#	Article	IF	CITATIONS
1079	Invited Article: Emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Materials, 2019, 7, 031301.	2.2	37
1080	Solution-processed thin films of semiconducting carbon nanotubes and their application to soft electronics. Nanotechnology, 2019, 30, 132001.	1.3	32
1081	Elastomer-Free, Stretchable, and Conformable Silver Nanowire Conductors Enabled by Three-Dimensional Buckled Microstructures. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6541-6549.	4.0	30
1082	Patterning Vertically Grown Gold Nanowire Electrodes for Intrinsically Stretchable Organic Transistors. Advanced Electronic Materials, 2019, 5, 1800509.	2.6	48
1083	Facile Design of Conductive Ag-PDMS Electrodes for Stretchable Electrodes. Journal of Electronic Materials, 2019, 48, 79-84.	1.0	8
1084	Recent Developments in Flexible Organic Lightâ€Emitting Devices. Advanced Materials Technologies, 2019, 4, 1800371.	3.0	104
1085	Electrochemical performances of highly stretchable polyurethane (PU) supercapacitors based on nanocarbon materials composites. Journal of Alloys and Compounds, 2019, 777, 67-72.	2.8	25
1086	Multi-Wavelength Photoplethysmography Enabling Continuous Blood Pressure Measurement With Compact Wearable Electronics. IEEE Transactions on Biomedical Engineering, 2019, 66, 1514-1525.	2.5	76
1087	A Stretchableâ€Hybrid Lowâ€Power Monolithic ECG Patch with Microfluidic Liquidâ€Metal Interconnects and Stretchable Carbonâ€Black Nanocomposite Electrodes for Wearable Heart Monitoring. Advanced Electronic Materials, 2019, 5, 1800463.	2.6	44
1088	High-performance stretchable conductive nanocomposites: materials, processes, and device applications. Chemical Society Reviews, 2019, 48, 1566-1595.	18.7	400
1089	Low power stretchable active-matrix red, green, blue (RGB) electrochromic device array of poly(3-methylthiophene)/Prussian blue. Applied Surface Science, 2019, 471, 300-308.	3.1	44
1090	Stretchable electronics: functional materials, fabrication strategies and applications. Science and Technology of Advanced Materials, 2019, 20, 187-224.	2.8	245
1091	Highly stretchable sensors for wearable biomedical applications. Journal of Materials Science, 2019, 54, 5187-5223.	1.7	49
1092	Structural design and physical characteristics of modified ring-spun yarns intended for e-textiles: A comparative study. Textile Reseach Journal, 2019, 89, 121-132.	1.1	18
1093	Structural evolution and predictive modeling for nonlinear tensile behavior of tri-component elastic-conductive composite yarn during stretch. Textile Reseach Journal, 2019, 89, 487-497.	1.1	6
1094	Flexible Hybrid Electronics for Digital Healthcare. Advanced Materials, 2020, 32, e1902062.	11.1	345
1095	Transfer printing of polymer light-emitting devices with a small molecular seeding layer featuring thermally activated delayed fluorescence for triplet harvesting. Nanoscale Horizons, 2020, 5, 144-149.	4.1	11
1096	Materialâ€Based Approaches for the Fabrication of Stretchable Electronics. Advanced Materials, 2020, 32, e1902743.	11.1	243

#	ARTICLE	IF	CITATIONS
1097	Mimicking Human and Biological Skins for Multifunctional Skin Electronics. Advanced Functional Materials, 2020, 30, 1904523.	7.8	247
1098	Advanced materials of printed wearables for physiological parameter monitoring. Materials Today, 2020, 32, 147-177.	8.3	110
1099	Superior wear resistance of boron phenolic resin-based composites using fluorine rubber micro powder as high-performance additive. Tribology International, 2020, 142, 106001.	3.0	10
1100	A review of highly reliable flexible encapsulation technologies towards rollable and foldable OLEDs. Journal of Information Display, 2020, 21, 19-32.	2.1	86
1101	Flexible electronics based on oneâ€dimensional and twoâ€dimensional hybrid nanomaterials. InformaÄnÃ- Materiály, 2020, 2, 33-56.	8.5	81
1102	An ambient-stable and stretchable ionic skin with multimodal sensation. Materials Horizons, 2020, 7, 477-488.	6.4	103
1103	Telecommunications and Data Processing in Flexible Electronic Systems. Advanced Materials Technologies, 2020, 5, .	3.0	25
1104	Flexible and stretchable inorganic electronics: Conductive materials, fabrication strategy, and applicable devices., 2020,, 199-252.		2
1105	Nanomaterialâ€Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Advanced Materials, 2020, 32, e1902343.	11.1	198
1106	LL1, a novel and highly selective STAT3 inhibitor, displays antiâ€colorectal cancer activities <i>in v</i> iro and <i>in vivo</i> . British Journal of Pharmacology, 2020, 177, 298-313.	2.7	18
1107	Toward a Stretchable Organic Lightâ€Emitting Diode on 3D Microstructured Elastomeric Substrate and Transparent Hybrid Anode. Advanced Materials Technologies, 2020, 5, 1900995.	3.0	24
1108	High-performance, biaxially stretchable conductor based on Ag composites and hierarchical auxetic structure. Journal of Materials Chemistry C, 2020, 8, 1556-1561.	2.7	19
1109	Recent advances in organic light-emitting diodes: toward smart lighting and displays. Materials Chemistry Frontiers, 2020, 4, 788-820.	3.2	290
1110	Copper nanowires in recent electronic applications: progress and perspectives. Journal of Materials Chemistry C, 2020, 8, 849-872.	2.7	53
1111	Electrospinning-induced elastomeric properties of conjugated polymers for extremely stretchable nanofibers and rubbery optoelectronics. Journal of Materials Chemistry C, 2020, 8, 873-882.	2.7	35
1112	Highly Oriented and Ordered Water-Soluble Semiconducting Polymers in a DNA Matrix. Chemistry of Materials, 2020, 32, 688-696.	3.2	16
1113	A New Frontier of Printed Electronics: Flexible Hybrid Electronics. Advanced Materials, 2020, 32, e1905279.	11.1	475
1114	An ultraflexible polyurethane yarn-based wearable strain sensor with a polydimethylsiloxane infiltrated multilayer sheath for smart textiles. Nanoscale, 2020, 12, 4110-4118.	2.8	75

#	Article	IF	Citations
1115	A transparent, self-healing and high- \hat{l}^2 dielectric for low-field-emission stretchable optoelectronics. Nature Materials, 2020, 19, 182-188.	13.3	183
1116	Low-power-consumption organic field-effect transistors. JPhys Materials, 2020, 3, 014009.	1.8	22
1117	Rollerâ€Assisted Adhesion Imprinting for Highâ€Throughput Manufacturing of Wearable and Stretchable Organic Lightâ€Emitting Devices. Advanced Optical Materials, 2020, 8, 1901525.	3.6	20
1118	Ink Development and Printing of Conducting Polymers for Intrinsically Stretchable Interconnects and Circuits. Advanced Electronic Materials, 2020, 6, 1900681.	2.6	67
1119	Emerging Soft Conductors for Bioelectronic Interfaces. Advanced Functional Materials, 2020, 30, 1907184.	7.8	70
1120	Wireless Monitoring Using a Stretchable and Transparent Sensor Sheet Containing Metal Nanowires. Advanced Materials, 2020, 32, e1902684.	11.1	75
1121	Flexible Electronics: Status, Challenges and Opportunities. Frontiers in Electronics, 2020, 1, .	2.0	133
1122	Sustainable Advanced Manufacturing of Printed Electronics: An Environmental Consideration., 0,,.		6
1123	High-barrier polyimide containing fluorenol moiety: Gas barrier properties and molecular simulations. Reactive and Functional Polymers, 2020, 157, 104747.	2.0	10
1124	Fully Screen-Printed, Multicolor, and Stretchable Electroluminescent Displays for Epidermal Electronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 47902-47910.	4.0	47
1125	Electrical properties of carbon nanotube/liquid metal/rubber nanocomposites. AIP Advances, 2020, 10, 105106.	0.6	3
1126	Study on Dispersant of Hydrogen Peroxide-Oxalic Acid Polishing Slurry in Chemical Mechanical Polishing of 304 Stainless Steel. Journal of Physics: Conference Series, 2020, 1622, 012097.	0.3	2
1127	Recent progress in electrode and electrolyte materials for flexible sodium-ion batteries. Journal of Materials Chemistry A, 2020, 8, 22507-22543.	5.2	56
1128	Organic-based inverters: basic concepts, materials, novel architectures and applications. Chemical Society Reviews, 2020, 49, 7627-7670.	18.7	48
1129	Highly Stretchable Semiconducting Polymers for Field-Effect Transistors through Branched Soft–Hard–Soft Type Triblock Copolymers. Macromolecules, 2020, 53, 7496-7510.	2.2	36
1130	Rippled Metallicâ€Nanowire/Graphene/Semiconductor Nanostack for a Gateâ€Tunable Ultrahighâ€Performance Stretchable Phototransistor. Advanced Optical Materials, 2020, 8, 2000859.	3.6	5
1131	Enhancing packing density and maximum elongation of 2D stretchable wavy circuit: Effect of section tilting. Mechanics of Advanced Materials and Structures, 2022, 29, 148-153.	1.5	5
1132	Analysis of Mechanical and Electrical Origins of Degradations in Device Durability of Flexible InGaZnO Thin-Film Transistors. ACS Applied Electronic Materials, 2020, 2, 2113-2122.	2.0	10

#	Article	IF	CITATIONS
1133	Progress in wearable electronics/photonics—Moving toward the era of artificial intelligence and internet of things. InformaÄnÃ-MateriÃįly, 2020, 2, 1131-1162.	8.5	343
1134	Facile and Rapid Method for Fabricating Liquid Metal Electrodes with Highly Precise Patterns via Oneâ€Step Coating. Advanced Functional Materials, 2020, 30, 2003694.	7.8	49
1135	Fabrication and Patterning Methods of Flexible Sensors Using Carbon Nanomaterials on Polymers. Advanced Intelligent Systems, 2020, 2, 1900179.	3.3	13
1136	Highâ€Resolution Printable and Elastomeric Conductors from Strainâ€Adaptive Assemblies of Metallic Nanoparticles with Low Aspect Ratios. Small, 2020, 16, 2004793.	5.2	13
1137	Strain-Induced Photocurrent Enhancement in Photodetectors Based on Nanometer-Thick ZnO Films on Flexible Polydimethylsiloxane Substrates. ACS Applied Nano Materials, 2020, 3, 10922-10930.	2.4	11
1138	Porous perovskite films integrated with Au–Pt nanowire-based electrodes for highly flexible large-area photodetectors. Npj Flexible Electronics, 2020, 4, .	5.1	12
1139	Electrolessâ€Plated Gold Contacts for Highâ€Performance, Low Contact Resistance Organic Thin Film Transistors. Advanced Functional Materials, 2020, 30, 2003977.	7.8	14
1140	Thermally activated delayed fluorescent polymer- assisted morphological control on perfluorinated ionomer enriched surface and exciton harvesting for phosphorescent organic light-emitting devices. Dyes and Pigments, 2020, 183, 108718.	2.0	4
1141	Highly conductive, stretchable, and breathable epidermal electrode based on hierarchically interactive nano-network. Nanoscale, 2020, 12, 16053-16062.	2.8	26
1142	Stretchable transparent conductive elastomers for skin-integrated electronics. Journal of Materials Chemistry C, 2020, 8, 15105-15111.	2.7	18
1143	Carbon Nanotube/Poly(dimethylsiloxane) Composite Materials to Reduce Bacterial Adhesion. Antibiotics, 2020, 9, 434.	1.5	20
1144	Improvement of Electrical Conductivity in Conjugated Polymers through Cascade Doping with Smallâ€Molecular Dopants. Advanced Materials, 2020, 32, e2005129.	11.1	26
1145	Investigation of electrical characteristics of flexible CMOS devices fabricated with thickness-controlled spalling process. Solid-State Electronics, 2020, 173, 107901.	0.8	5
1146	Deep Learning Total Energies and Orbital Energies of Large Organic Molecules Using Hybridization of Molecular Fingerprints. Journal of Chemical Information and Modeling, 2020, 60, 5971-5983.	2.5	23
1147	Failure of Stretchable Organic Solar Cells under Monotonic and Cyclic Loading. Macromolecular Materials and Engineering, 2020, 305, 2000369.	1.7	6
1148	Modification of an ultrathin C ₆₀ interlayer on the electronic structure and molecular packing of C8-BTBT on HOPG. Physical Chemistry Chemical Physics, 2020, 22, 25264-25271.	1.3	4
1149	Synergistic combination of carbon-black and graphene for 3D printable stretchable conductors. Materials Technology, 2020, , 1-10.	1.5	10
1150	White-Light-Emitting AIE/Eu ³⁺ -Doped Ion Gel with Multistimuli-Responsive Properties. ACS Applied Materials & Double of the Company	4.0	22

#	Article	IF	CITATIONS
1151	Exploring Wholly Doped Conjugated Polymer Films Based on Hybrid Doping: Strategic Approach for Optimizing Electrical Conductivity and Related Thermoelectric Properties. Advanced Functional Materials, 2020, 30, 2004598.	7.8	32
1152	Performance Analysis of Intelligent Reflective Surfaces for Wireless Communication., 2020,,.		80
1153	Realizing Stretchable OLEDs: A Hybrid Platform Based on Rigid Island Arrays on a Stressâ€Relieving Bilayer Structure. Advanced Materials Technologies, 2020, 5, 2000494.	3.0	23
1154	A Comparative Study of the Semiconductor Behavior of Organic Thin Films: TCNQ-Doped Cobalt Phthalocyanine and Cobalt Octaethylporphyrin. Molecules, 2020, 25, 5800.	1.7	2
1155	Ultra-stretchable supercapacitors based on biaxially pre-strained super-aligned carbon nanotube films. Nanoscale, 2020, 12, 24259-24265.	2.8	9
1156	Alternating Current Electroluminescent Devices with Inorganic Phosphors for Deformable Displays. Cell Reports Physical Science, 2020, 1, 100213.	2.8	22
1157	A multi-model, large range and anti-freezing sensor based on a multi-crosslinked poly(vinyl alcohol) hydrogel for human-motion monitoring. Journal of Materials Chemistry B, 2020, 8, 11010-11020.	2.9	66
1158	Biostable conductive nanocomposite for implantable subdermal antenna. APL Materials, 2020, 8, .	2.2	9
1159	Selection on Measuring Points of the Surface Roughness on Large Size Ultra-Thin Stainless Steel. Journal of Physics: Conference Series, 2020, 1622, 012035.	0.3	0
1160	Highly transparent, ultraâ€thin flexible, fullâ€color miniâ€LED display with indium–gallium–zinc oxide thinâ€film transistor substrate. Journal of the Society for Information Display, 2020, 28, 926-935.	0.8	17
1161	Performance of OLED under mechanical strain: a review. Journal of Materials Science: Materials in Electronics, 2020, 31, 20688-20729.	1.1	52
1162	Unraveling Doping Capability of Conjugated Polymers for Strategic Manipulation of Electric Dipole Layer toward Efficient Charge Collection in Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001560.	7.8	38
1163	Direct writing of stretchable metal flake conductors: improved stretchability and conductivity by combining differently sintered materials. Flexible and Printed Electronics, 2020, 5, 025005.	1.5	4
1164	F4â€₹CNQ as an Additive to Impart Stretchable Semiconductors with High Mobility and Stability. Advanced Electronic Materials, 2020, 6, 2000251.	2.6	54
1165	Fabrication Techniques for Curved Electronics on Arbitrary Surfaces. Advanced Materials Technologies, 2020, 5, 2000093.	3.0	47
1166	Distortionâ€Free Stretchable Lightâ€Emitting Diodes via Imperceptible Microwrinkles. Advanced Materials Technologies, 2020, 5, 2000231.	3.0	24
1167	All-Soft Supercapacitors Based on Liquid Metal Electrodes with Integrated Functionalized Carbon Nanotubes. ACS Nano, 2020, 14, 5659-5667.	7. 3	57
1168	Recent Advances in Flexible and Stretchable Sensing Systems: From the Perspective of System Integration. ACS Nano, 2020, 14, 6449-6469.	7.3	82

#	Article	IF	CITATIONS
1169	Electrically Healable and Mechanoâ€Sensitive Gel Composites of Carbon Nanotubes and Conducting Polymers. ChemElectroChem, 2020, 7, 3229-3232.	1.7	2
1170	Largeâ€Scale Patterning of Reactive Surfaces for Wearable and Environmentally Deployable Sensors. Advanced Materials, 2020, 32, e2001258.	11.1	37
1171	Miuraâ€ori Metastructure Enhanced Conductive Elastomers. Advanced Materials Technologies, 2020, 5, 2000249.	3.0	8
1172	Mechanical and Optical Properties of Stretchable Silicon Nanocrystal/Polydimethylsiloxane Nanocomposites. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 2000015.	0.8	8
1173	Omnidirectionally Stretchable Metal Films with Preformed Radial Nanocracks for Soft Electronics. ACS Applied Nano Materials, 2020, 3, 7192-7200.	2.4	7
1174	Enabling Deformable and Stretchable Batteries. Advanced Energy Materials, 2020, 10, 2001424.	10.2	136
1175	High specific energy flexible CuO thin film cathode for thermal batteries. Journal of Power Sources, 2020, 463, 228237.	4.0	23
1176	Bosonic Charge Carriers in Necklace-like Graphene Nanoribbons. Journal of Physical Chemistry Letters, 2020, 11, 5538-5543.	2.1	1
1177	Thermally and Mechanically Stable Polyimides as Flexible Substrates for Organic Field-Effect Transistors. ACS Applied Polymer Materials, 2020, 2, 3422-3432.	2.0	32
1178	Wearable Triboelectric/Aluminum Nitride Nanoâ€Energyâ€Nanoâ€System with Selfâ€Sustainable Photonic Modulation and Continuous Force Sensing. Advanced Science, 2020, 7, 1903636.	5.6	66
1179	Translational Neuroelectronics. Advanced Functional Materials, 2020, 30, 1909165.	7.8	44
1180	Wettabilityâ€Guided Screen Printing of Perovskite Microlaser Arrays for Currentâ€Driven Displays. Advanced Materials, 2020, 32, e2001999.	11.1	66
1181	Damage-free Metal Electrode Transfer to Monolayer Organic Single Crystalline Thin Films. Scientific Reports, 2020, 10, 4702.	1.6	17
1182	Stretchable electrolytes for stretchable/flexible energy storage systems – Recent developments. Energy Storage Materials, 2020, 28, 315-324.	9.5	27
1183	Morphology and properties of PEDOT:PSS/soft polymer blends through hydrogen bonding interaction and their pressure sensor application. Journal of Materials Chemistry C, 2020, 8, 6013-6024.	2.7	44
1184	A supertough electro-tendon based on spider silk composites. Nature Communications, 2020, 11, 1332.	5.8	73
1185	A new insight into the temperature induced molecular aggregations in tris(8-hydroxyquinoline) metals. Journal of Materials Research and Technology, 2020, 9, 4558-4565.	2.6	9
1186	Ag flake/silicone rubber composite with high stability and stretching speed insensitive resistance via conductive bridge formation. Scientific Reports, 2020, 10, 5036.	1.6	13

#	Article	IF	CITATIONS
1187	Perovskite Transparent Conducting Oxide for the Design of a Transparent, Flexible, and Self-Powered Perovskite Photodetector. ACS Applied Materials & Samp; Interfaces, 2020, 12, 16462-16468.	4.0	52
1188	Geometrically Structured Nanomaterials for Nanosensors, NEMS, and Nanosieves. Advanced Materials, 2020, 32, e1907082.	11.1	26
1189	Highly transparent and flexible graphitic C3N4 nanowire/PVA/PEDOT:PSS supercapacitors for transparent electronic devices. Functional Materials Letters, 2020, 13, 2051006.	0.7	0
1190	Reviewâ€"Recent Advances in the Development of Carbon Nanotubes Based Flexible Sensors. Journal of the Electrochemical Society, 2020, 167, 047506.	1.3	36
1191	Stretchable Cephalopodâ€Inspired Multimodal Camouflage Systems. Advanced Materials, 2020, 32, e1905717.	11.1	62
1192	Nanomaterial Patterning in 3D Printing. Advanced Materials, 2020, 32, e1907142.	11.1	144
1193	High Performance Flexible Transparent Electrode via Oneâ€Step Multifunctional Treatment for Ag Nanonetwork Composites Semiâ€Embedded in Lowâ€Temperatureâ€Processed Substrate for Highly Performed Organic Photovoltaics. Advanced Energy Materials, 2020, 10, 1903919.	10.2	58
1194	Recent advances in printable thermoelectric devices: materials, printing techniques, and applications. RSC Advances, 2020, 10, 8421-8434.	1.7	46
1195	Light Outâ€Coupling Management in Perovskite LEDsâ€"What Can We Learn from the Past?. Advanced Functional Materials, 2020, 30, 2002570.	7.8	52
1196	Photoresponsive Dithienylethene-Containing Tris(8-hydroxyquinolinato)aluminum(III) Complexes with Photocontrollable Electron-Transporting Properties for Solution-Processable Optical and Organic Resistive Memory Devices. Journal of the American Chemical Society, 2020, 142, 12193-12206.	6.6	42
1197	Fully stretchable active-matrix organic light-emitting electrochemical cell array. Nature Communications, 2020, 11, 3362.	5.8	106
1198	Full-color active-matrix organic light-emitting diode display on human skin based on a large-area MoS ₂ backplane. Science Advances, 2020, 6, eabb5898.	4.7	91
1199	Recent advances in materials and device technologies for soft active matrix electronics. Journal of Materials Chemistry C, 2020, 8, 10719-10731.	2.7	9
1200	Recent Progress in 3D Printed Mold-Based Sensors. Sensors, 2020, 20, 703.	2.1	37
1201	Wireless Epidermal Electromyogram Sensing System. Electronics (Switzerland), 2020, 9, 269.	1.8	12
1202	Process-dependent effects of water on the chemistry of aluminum oxide and aromatic polyimide interface in composite materials. Applied Surface Science, 2020, 513, 145708.	3.1	5
1203	Dimensional scaling of high-speed printed organic transistors enabling high-frequency operation. Flexible and Printed Electronics, 2020, 5, 014013.	1.5	16
1204	Printed gas sensors. Chemical Society Reviews, 2020, 49, 1756-1789.	18.7	216

#	Article	IF	CITATIONS
1205	Nanofabrication for all-soft and high-density electronic devices based on liquid metal. Nature Communications, 2020, 11, 1002.	5.8	101
1206	A Skin-Conformal, Stretchable, and Breathable Fiducial Marker Patch for Surgical Navigation Systems. Micromachines, 2020, 11, 194.	1.4	4
1207	Highly Stretchable Polymer Composite with Strainâ€Enhanced Electromagnetic Interference Shielding Effectiveness. Advanced Materials, 2020, 32, e1907499.	11.1	242
1208	Versatile Phosphole Derivatives with Photovoltaic, Light-Emitting, and Resistive Memory Properties. ACS Applied Energy Materials, 2020, 3, 3059-3070.	2.5	14
1209	Flexible room-temperature gas sensor based on poly (para-phenylene terephthalamide) fibers substrate coupled with composite NiO@CuO sensing materials for ammonia detection. Ceramics International, 2020, 46, 13827-13834.	2.3	16
1210	Facile Fabrication of Stretchable Touch-Responsive Perovskite Light-Emitting Diodes Using Robust Stretchable Composite Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 14408-14415.	4.0	46
1211	Electroplating of Multiple Materials in Parallel Using Patterned Gels with Applications in Electrochemical Sensing. Sensors, 2020, 20, 886.	2.1	4
1212	Self-Integratable, Healable, and Stretchable Electroluminescent Device Fabricated via Dynamic Urea Bonds Equipped in Polyurethane. ACS Applied Materials & Samp; Interfaces, 2020, 12, 10949-10958.	4.0	17
1213	Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. ACS Applied Materials & Samp; Interfaces, 2020, 12, 6112-6118.	4.0	113
1214	Solution-processed PDMS/SWCNT porous electrodes with high mass loading: toward high performance all-stretchable-component lithium ion batteries. Sustainable Energy and Fuels, 2020, 4, 2718-2726.	2.5	17
1215	Development of Real-Time Measurement Platform for Stretchable and Rollable Functions of Flexible Electronics under Multiple Dynamic Loads. Micromachines, 2020, 11, 106.	1.4	1
1216	E-skin and wearable systems for health care. , 2020, , 133-178.		9
1217	A kirigami-inspired island-chain design for wearable moistureproof perovskite solar cells with high stretchability and performance stability. Nanoscale, 2020, 12, 3646-3656.	2.8	26
1218	Highly stretchable, solution-processable, and crosslinkable poly(3,4-ethylenedioxithiophene)-based conjugated polymers. European Polymer Journal, 2020, 125, 109508.	2.6	7
1219	Eco-designed Conformable Inorganic Electronics to Improve the End of Life of Smart Objects: Sensor Processing and Applications. ACS Applied Electronic Materials, 2020, 2, 563-570.	2.0	1
1220	Dispersions of High-Quality Carbon Nanotubes with Narrow Aggregate Size Distributions by Viscous Liquid for Conducting Polymer Composites. ACS Applied Nano Materials, 2020, 3, 1391-1399.	2.4	16
1221	Geometric and Electronic Behavior of C60 on PTCDA Hydrogen Bonded Network. Chemical Research in Chinese Universities, 2020, 36, 81-85.	1.3	0
1222	Poly(octadecyl acrylate)-Grafted Multiwalled Carbon Nanotube Composites for Wearable Temperature Sensors. ACS Applied Nano Materials, 2020, 3, 2288-2301.	2.4	16

#	Article	IF	CITATIONS
1223	Biocompatible and Biodegradable Organic Transistors Using a Solidâ€State Electrolyte Incorporated with Cholineâ€Based Ionic Liquid and Polysaccharide. Advanced Functional Materials, 2020, 30, 1909707.	7.8	53
1224	Highly Elastic and >200% Reversibly Stretchable Downâ€Conversion White Lightâ€Emitting Diodes Based on Quantum Dot Gel Emitters. Advanced Optical Materials, 2020, 8, 1901972.	3.6	23
1225	Mirror-symmetry controlled mechanical response of interconnects for stretchable electronics. Extreme Mechanics Letters, 2020, 35, 100639.	2.0	4
1226	Stretchable and Wearable Resistive Switching Randomâ€Access Memory. Advanced Intelligent Systems, 2020, 2, 2000007.	3.3	24
1227	Long wavy copper stretchable interconnects fabricated by continuous microcorrugation process for wearable applications. Engineering Reports, 2020, 2, e12143.	0.9	4
1228	Liquid metal circuit based magnetoresistive strain sensor with discriminating magnetic and mechanical sensitivity. Sensors and Actuators B: Chemical, 2020, 314, 128095.	4.0	59
1229	Stretchable and High-performance Sensor films Based on Nanocomposite of Polypyrrole/SWCNT/Silver Nanowire. Nanomaterials, 2020, 10, 696.	1.9	17
1230	Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy, 2020, 73, 104752.	8.2	58
1231	A flexible strain sensor based on CNTs/PDMS microspheres for human motion detection. Sensors and Actuators A: Physical, 2020, 306, 111959.	2.0	66
1232	Fabrication of flexible AlGaInP LED. Journal of Semiconductors, 2020, 41, 032302.	2.0	2
1233	Cost-Efficient Flexible Supercapacitive Tactile Sensor With Superior Sensitivity and High Spatial Resolution for Human-Robot Interaction. IEEE Access, 2020, 8, 64836-64845.	2.6	16
1234	Electronic Skins for Robotics and Wearables. , 2020, , .		1
1235	An Effect of a Needle Electrode for the Ohmic Contact Between an Electrode and Liquid Metal Droplet in Electrical Switching. , 2020, , .		1
1236	Supramolecular Polymerization: A Conceptual Expansion for Innovative Materials. Progress in Polymer Science, 2020, 105, 101250.	11.8	164
1237	Tattooing Plastics with Reversible and Irreversible Encryption. Advanced Science, 2020, 7, 1903785.	5.6	11
1238	Organic heterostructures composed of one- and two-dimensional polymorphs for photonic applications. Science China Chemistry, 2020, 63, 1477-1482.	4.2	46
1239	Application of carbon nanomaterials in the electronic industry. , 2020, , 421-450.		5
1240	Elastic Single-Ion Conducting Polymer Electrolytes: Toward a Versatile Approach for Intrinsically Stretchable Functional Polymers. Macromolecules, 2020, 53, 3591-3601.	2.2	41

#	Article	IF	Citations
1241	Topological structures of transition metal dichalcogenides: A review on fabrication, effects, applications, and potential. Informa \ddot{A} n \ddot{A} -Materi \ddot{A} ily, 2021, 3, 133-154.	8.5	29
1242	A flexible adhesive with a conductivity of 5240 S/cm. Science Bulletin, 2021, 66, 657-660.	4.3	2
1243	Storage Mechanisms of Polyimideâ€Molybdenum Disulfide Quantum Dot Based, Highly Stable, Writeâ€Onceâ€Readâ€Manyâ€Times Memristive Devices. Advanced Electronic Materials, 2021, 7, .	2.6	10
1244	Stretchable electrodes for highly flexible electronics. , 2021, , 479-500.		2
1245	Design Criteria for Horseshoe and Spiralâ€Based Interconnects for Highly Stretchable Electronic Devices. Advanced Functional Materials, 2021, 31, 2007445.	7.8	12
1246	Stretchable Electronics Based on PDMS Substrates. Advanced Materials, 2021, 33, e2003155.	11.1	319
1247	Programmed Molecular Assembly of Abrupt Crystalline Organic/Organic Heterointerfaces Yielding Metalâ€Organic Framework Diodes with Large Onâ€Off Ratios. Advanced Science, 2021, 8, 2001884.	5.6	18
1248	Circuit-on-Display: A Flexible, Invisible Hybrid Electromagnetic Sensor Concept. IEEE Journal of Microwaves, 2021, 1, 550-559.	4.9	9
1249	Triple-shape memory, magneto-response, and piezo-resistive flexible composites: multiple-sensing and switchable actuating. Journal of Materials Chemistry C, 2021, 9, 6568-6578.	2.7	10
1250	Influence of the metal phthalocyanine molecular orientation on charge separation at the organic donor/acceptor interface. Journal of Materials Chemistry C, 2021, 9, 2156-2164.	2.7	6
1251	Functionalized Elastomers for Intrinsically Soft and Biointegrated Electronics. Advanced Healthcare Materials, 2021, 10, e2002105.	3.9	36
1252	Unconventional Imageâ€Sensing and Lightâ€Emitting Devices for Extended Reality. Advanced Functional Materials, 2021, 31, 2009281.	7.8	23
1253	Tissue adhesive hydrogel bioelectronics. Journal of Materials Chemistry B, 2021, 9, 4423-4443.	2.9	129
1254	Design and Modeling of a Flexible Conductive Fabric Antenna Integrated in an OLED Light Source for WIMAX Wireless Communication Systems. Optics and Photonics Journal, 2021, 11, 413-429.	0.3	1
1255	Carbon Nanostructures and Polysaccharides for Biomedical Materials. RSC Nanoscience and Nanotechnology, 2021, , 98-152.	0.2	0
1256	Structural Analysis and Thermal Properties of Graphene and Biocomposite Potential Application in Various Sensors., 2021,, 407-427.		2
1257	The role of uniformly distributed ZnO nanoparticles on cellulose nanofibers in flexible solid state symmetric supercapacitors. Journal of Materials Chemistry A, 2021, 9, 11580-11594.	5.2	58
1258	Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nature Materials, 2021, 20, 851-858.	13.3	203

#	Article	IF	CITATIONS
1259	Interface Design for Stretchable Electronic Devices. Advanced Science, 2021, 8, 2004170.	5.6	44
1260	Permeable superelastic liquid-metal fibre mat enables biocompatible and monolithic stretchable electronics. Nature Materials, 2021, 20, 859-868.	13.3	407
1261	Highly transparent and conductive ITO substrates for near infrared applications. APL Materials, 2021, 9, .	2.2	24
1262	Large Area Emission in p-Type Polymer-Based Light-Emitting Field-Effect Transistors by Incorporating Charge Injection Interlayers. Materials, 2021, 14, 901.	1.3	1
1263	Intrinsically stretchable organic light-emitting diodes. Science Advances, 2021, 7, .	4.7	76
1264	Metal–Organic Framework for Efficient Electron Injection. Advanced Optical Materials, 2021, 9, 2002053.	3.6	2
1265	Highly stretchable large area woven, knitted and robust braided textile based interconnection for stretchable electronics. Scientific Reports, 2021, 11, 4038.	1.6	7
1266	Flexible Sensors Based on Organic–Inorganic Hybrid Materials. Advanced Materials Technologies, 2021, 6, 2000889.	3.0	43
1267	Skin Electronics: Nextâ€Generation Device Platform for Virtual and Augmented Reality. Advanced Functional Materials, 2021, 31, 2009602.	7.8	100
1268	Rapid Formation of Selfâ€Supporting Polydimethylsiloxane Sheets with Periodic Clusters of Embedded Nickel Nanoparticles. Advanced Materials Interfaces, 2021, 8, 2002216.	1.9	1
1269	Enhancing the Light Extraction Efficiency in Microâ€Organic Lightâ€Emitting Diodes with Metalens. Advanced Photonics Research, 2021, 2, 2000145.	1.7	6
1270	Effect of Viscosity on the Formation of Porous Polydimethylsiloxane for Wearable Device Applications. Molecules, 2021, 26, 1471.	1.7	3
1271	Polymer Molecular Engineering Enables Rapid Electron/Ion Transport in Ultraâ€Thick Electrode for Highâ€Energyâ€Density Flexible Lithiumâ€Ion Battery. Advanced Functional Materials, 2021, 31, .	7.8	27
1272	Synthesis of silver nanoparticles embedded with single-walled carbon nanotubes for printable elastic electrodes and sensors with high stability. Scientific Reports, 2021, 11, 5140.	1.6	9
1273	Self-Reducing Silver Ink on Polyurethane Elastomers for the Manufacture of Thin and Highly Stretchable Electrical Circuits. Chemistry of Materials, 2021, 33, 2742-2755.	3.2	18
1274	Multiple crossâ€linked networks enhanced <scp>ENR</scp> â€based composite with excellent selfâ€healing properties. Polymers for Advanced Technologies, 2021, 32, 2856-2865.	1.6	13
1275	Electrospun nanofiber-based soft electronics. NPG Asia Materials, 2021, 13, .	3.8	127
1276	Solutionâ€Processed Stretchable Ag ₂ S Semiconductor Thin Films for Wearable Selfâ€Powered Nonvolatile Memory. Advanced Materials, 2021, 33, e2100066.	11.1	30

#	Article	IF	CITATIONS
1277	Materials and devices for flexible and stretchable photodetectors and light-emitting diodes. Nano Research, 2021, 14, 2919-2937.	5.8	34
1278	25 Years of Lightâ€Emitting Electrochemical Cells: A Flexible and Stretchable Perspective. Advanced Materials, 2021, 33, e2006863.	11.1	44
1279	Transfer and Amplification of Iodine-Based Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles to Anisotropic Optical Properties by Uniaxial Orientation in Thin Films. ACS Applied Materials & Diacetylene Amphiphiles Diacetylene Amphiphiles Diacetylene Amphiphiles Diacetylene Amphiphiles Diacetylene Amphiphiles Diacetylene Amphiphiles Diacetylene Dia	4.0	2
1280	54â€1: Stretchable Display in the Era of the 4th Industrial Revolution. Digest of Technical Papers SID International Symposium, 2021, 52, 741-742.	0.1	1
1281	Highly efficient, heat dissipating, stretchable organic light-emitting diodes based on a MoO3/Au/MoO3 electrode with encapsulation. Nature Communications, 2021, 12, 2864.	5.8	42
1282	Design and Fabrication of Transparent and Stretchable Zinc Ion Batteries. ACS Applied Energy Materials, 2021, 4, 6166-6179.	2.5	25
1283	Embedded Reverse-Offset Printing of Silver Nanowires and Its Application to Double-Stacked Transparent Electrodes with Microscale Patterns. ACS Applied Materials & Emp; Interfaces, 2021, 13, 26601-26609.	4.0	8
1284	Materials and Fabrication Strategies for Biocompatible and Biodegradable Conductive Polymer Composites toward Bioâ€Integrated Electronic Systems. Advanced Sustainable Systems, 2022, 6, 2100075.	2.7	20
1285	19â€1: <i>Invited Paper:</i> Stable Pureâ€Blue Hyperfluorescence OLEDs. Digest of Technical Papers SID International Symposium, 2021, 52, 224-227.	0.1	1
1286	Rupture stress of liquid metal nanoparticles and their applications in stretchable conductors and dielectrics. Npj Flexible Electronics, $2021, 5, \ldots$	5.1	37
1287	Self-healable, Stretchable, and Highly Luminous Electroluminescent Elastomeric Film Using a Reversibly Crosslinkable Polyurethane. Electronic Materials Letters, 2021, 17, 385-391.	1.0	4
1288	Stick-and-play system based on interfacial adhesion control enhanced by micro/nanostructures. Nano Research, 2021, 14, 3143-3158.	5.8	10
1289	Review of flexible microelectromechanical system sensors and devices. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2021, 4, 025001.	1.7	23
1290	Printed Stretchable Single-Nanofiber Interconnections for Individually-Addressable Highly-Integrated Transparent Stretchable Field Effect Transistor Array. Nano Letters, 2021, 21, 5819-5827.	4.5	10
1291	Paper-based Electronics: Passive Components and Low Pass Filters Using Solvent-free Eco-friendly Fabrication., 2021,,.		0
1292	Stretchable Transparent Light-Emitting Diodes Based on InGaN/GaN Quantum Well Microwires and Carbon Nanotube Films. Nanomaterials, 2021, 11, 1503.	1.9	10
1293	A design strategy for high mobility stretchable polymer semiconductors. Nature Communications, 2021, 12, 3572.	5.8	94
1294	Self-healing liquid metal composite for reconfigurable and recyclable soft electronics. Communications Materials, 2021, 2, .	2.9	63

#	Article	IF	Citations
1295	Effect of macroscale mesh design of metal nanowire networks on the conductive properties for stretchable electrodes. Applied Physics Letters, 2021, 118, .	1.5	7
1296	Inkjet-Deposited Single-Wall Carbon Nanotube Micropatterns on Stretchable PDMS-Ag Substrate–Electrode Structures for Piezoresistive Strain Sensing. ACS Applied Materials & Deposition of the Interfaces, 2021, 13, 27284-27294.	4.0	19
1297	Highly Sensitive Flexible Tactile Sensor Mimicking the Microstructure Perception Behavior of Human Skin. ACS Applied Materials & Skin. ACS Applied Materials	4.0	36
1299	Design, fabrication and applications of soft network materials. Materials Today, 2021, 49, 324-350.	8.3	36
1300	Broadband Transparent Electrode in Visible/Near-Infrared Regions. ACS Photonics, 2021, 8, 2203-2210.	3.2	4
1301	Flexible and Stretchable Capacitive Sensors with Different Microstructures. Advanced Materials, 2021, 33, e2008267.	11.1	196
1302	Mechanical reliability of self-similar serpentine interconnect for fracture-free stretchable electronic devices. Journal of Applied Physics, 2021, 130, .	1.1	4
1303	Pushing the Limits of Flexibility and Stretchability of Solar Cells: A Review. Advanced Materials, 2021, 33, e2101469.	11.1	51
1305	Changes in the chemical state of metallic Cr during deposition on a polyimide substrate: Full soft XPS and ToF-SIMS depth profiles. Applied Surface Science, 2021, 553, 149437.	3.1	17
1306	Biomaterial-Based Nonvolatile Resistive Memory Devices toward Ecofriendliness and Biocompatibility. ACS Applied Electronic Materials, 2021, 3, 2832-2861.	2.0	42
1307	Wearable Biosupercapacitor: Harvesting and Storing Energy from Sweat. Advanced Functional Materials, 2021, 31, 2102915.	7.8	47
1308	Synthesis, photophysical, thermal properties and X-Ray studies of novel organic dyes bearing Inden-1-ylidene and fluorene. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 416, 113311.	2.0	0
1309	Light extraction enhancement in organic light-emitting diodes through polyimide/porous silica hybrid films. Organic Electronics, 2021, 95, 106213.	1.4	6
1310	Ga Based Particles, Alloys and Composites: Fabrication and Applications. Nanomaterials, 2021, 11, 2246.	1.9	9
1311	Unconventional Thermoelectric Materials for Energy Harvesting and Sensing Applications. Chemical Reviews, 2021, 121, 12465-12547.	23.0	186
1312	Highly conductive and elastic nanomembrane for skin electronics. Science, 2021, 373, 1022-1026.	6.0	186
1313	Stretchable anisotropic conductive film (S-ACF) for electrical interfacing in high-resolution stretchable circuits. Science Advances, 2021, 7, .	4.7	43
1314	Recent Advances in Flexible Tactile Sensors for Intelligent Systems. Sensors, 2021, 21, 5392.	2.1	47

#	Article	IF	CITATIONS
1315	MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy, 2021, 86, 106077.	8.2	44
1316	Stable pure-blue hyperfluorescence OLEDs. , 2021, , .		O
1317	Balance of surface energy difference between wetting and dewetting regions for patterning solution-processed organic light-emitting diode. Organic Electronics, 2021, 95, 106203.	1.4	5
1318	Can TDDFT render the electronic excited states ordering of Azine derivative? A closer investigation with DLPNO-STEOM-CCSD. Chemical Physics Letters, 2021, 779, 138827.	1.2	21
1319	A New Pixel Circuit Compensating for Strain-Induced Luminance Reduction in Stretchable Active-Matrix Organic Light Emitting Diode Displays. IEEE Electron Device Letters, 2021, 42, 1350-1353.	2.2	6
1320	Tunable and foldable paper-based passive electronic components and filter circuits. Cellulose, 2021, 28, 9959-9970.	2.4	8
1321	Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. IScience, 2021, 24, 103174.	1.9	103
1322	Mobility enhancement of DNTT and BTBT derivative organic thin-film transistors by triptycene molecule modification. Organic Electronics, 2021, 96, 106219.	1.4	18
1323	Recent Progress in Bionic Skin Based on Conductive Polymer Gels. Macromolecular Rapid Communications, 2021, 42, e2100480.	2.0	29
1324	Flashlight-material interaction for wearable and flexible electronics. Materials Today, 2021, 51, 525-551.	8.3	23
1325	Flexible Organic Thin-Film Transistors With High Mechanical Stability on Polyimide Substrate by Chemically Plated Silver Electrodes. IEEE Transactions on Electron Devices, 2021, 68, 5120-5126.	1.6	7
1326	Modeling electromechanical coupling of liquid metal embedded elastomers while accounting stochasticity in 3D percolation. Extreme Mechanics Letters, 2021, 48, 101443.	2.0	18
1327	Stretchable organic optoelectronic devices: Design of materials, structures, and applications. Materials Science and Engineering Reports, 2021, 146, 100631.	14.8	48
1328	Stretchable conductive elastomer composites based on a processing of Ag+ swelling, in situ reduction, and drying shrinkage. Composites Part A: Applied Science and Manufacturing, 2021, 149, 106565.	3.8	3
1329	Wavy graphene foam reinforced elastomeric composites for large-strain stretchable conductors. Composites Part B: Engineering, 2021, 224, 109179.	5. 9	10
1330	Self-healable organic light-emitting devices based on electronic textiles. Nano Energy, 2021, 89, 106481.	8.2	3
1331	Design of flexible curved sensor array for wind pressure monitoring of train bogie. Sensors and Actuators A: Physical, 2021, 331, 112873.	2.0	0
1332	Stretchable vertical organic transistors and their applications in neurologically systems. Nano Energy, 2021, 90, 106497.	8.2	26

#	Article	IF	CITATIONS
1333	Stretchable array of CdSe/ZnS quantum-dot light emitting diodes for visual display of bio-signals. Chemical Engineering Journal, 2022, 427, 130858.	6.6	27
1334	Highly conductive and stretching-insensitive films for wearable accurate pressure perception. Chemical Engineering Journal, 2022, 429, 132488.	6.6	16
1335	Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy and Environmental Science, 2021, 14, 1854-1896.	15.6	252
1336	Stable pure-blue hyperfluorescence organic light-emitting diodes with high-efficiency and narrow emission. Nature Photonics, 2021, 15, 203-207.	15.6	449
1337	Nanoporous graphitic carbon for efficient supercapacitors and related energy applications. , 2021, , 143-178.		1
1338	Nanotechnology-enabled polymer-based flexible electronics and their potential applications. , 2021, , 321-340.		1
1339	Recent advances in stretchable field-effect transistors. Journal of Materials Chemistry C, 2021, 9, 7796-7828.	2.7	15
1341	Effect of packing density on maximum stretch ratio of stretchable wavy circuit. Mechanics of Advanced Materials and Structures, 0 , , 1 - 7 .	1.5	1
1342	Stretchable transistors and functional circuits for human-integrated electronics. Nature Electronics, 2021, 4, 17-29.	13.1	153
1344	Conducting Polymers and Their Composites. Engineering Materials, 2021, , 147-178.	0.3	1
1345	A graphite nanoplatelet-based highly sensitive flexible strain sensor. Carbon, 2020, 166, 316-327.	5.4	34
1346	High conductive graphene assembled films with porous micro-structure for freestanding and ultra-low power strain sensors. Science Bulletin, 2020, 65, 1363-1370.	4.3	38
1347	Emerging 2D Organic-Inorganic Heterojunctions. Cell Reports Physical Science, 2020, 1, 100166.	2.8	23
1349	High conductivity and stretchability of 3D welded silver nanowire filled graphene aerogel hybrid nanocomposites. Journal of Materials Chemistry C, 2017, 5, 8211-8218.	2.7	31
1350	Modelling and experimental validation of the effect of the elastic properties of fabrics on the durability of screen printed e-textiles. Smart Materials and Structures, 2018, 27, 075046.	1.8	12
1351	Improved Inkjet-Printed Pattern Fidelity: Suppressing Bulges by Segmented and Symmetric Drop Placement. Journal of Micro and Nano-Manufacturing, 2020, 8, .	0.8	5
1353	MPTMS Treated Au/PDMS Membrane for Flexible and Stretchable Strain Sensors. Journal of Sensor Science and Technology, 2016, 25, 247-251.	0.1	3
1354	Transparent Photovoltaic Device using Two-dimensional Transition-metal Dichalcogenides. Journal of the Korean Institute of Surface Engineering, 2016, 49, 186-190.	0.1	1

#	Article	IF	CITATIONS
1355	White Light Emission with Quantum Dots: A Review. Applied Science and Convergence Technology, 2016, 25, 1-6.	0.3	8
1356	Variation of Elastic Stiffness of Polydimethylsiloxane (PDMS) Stretchable Substrates for Wearable Packaging Applications. Journal of the Microelectronics and Packaging Society, 2014, 21, 125-131.	0.1	10
1357	Elastic Modulus of Locally Stiffness-variant Polydimethylsiloxane Substrates for Stretchable Electronic Packaging Applications. Journal of the Microelectronics and Packaging Society, 2015, 22, 91-98.	0.1	4
1358	Review on stretchable and flexible inorganic electronics. Wuli Xuebao/Acta Physica Sinica, 2014, 63, 014201.	0.2	11
1359	Ambient Electronics. Japanese Journal of Applied Physics, 2012, 51, 100001.	0.8	31
1360	Effect of Void Volume and Silver Loading on Strain Response of Electrical Resistance in Silver Flakes/Polyurethane Composite for Stretchable Conductors. Japanese Journal of Applied Physics, 2012, 51, 11PD01.	0.8	14
1361	Deformable coloring element using an electroactive hydrogel with bottom-arranged electrodes. Japanese Journal of Applied Physics, 2015, 54, 06FP06.	0.8	5
1362	Structures and Materials in Stretchable Electroluminescent Devices. Advanced Materials, 2022, 34, e2106184.	11.1	40
1363	Electromagnetic interference shielding property of silver nanowires/polymer foams with low thermal conductivity. Journal of Materials Science: Materials in Electronics, 2021, 32, 28394-28405.	1,1	8
1364	A perspective on flexible sensors in developing diagnostic devices. Applied Physics Letters, 2021, 119, .	1.5	23
1365	Material and structural design of microsupercapacitors. Journal of Solid State Electrochemistry, 2022, 26, 313-334.	1,2	7
1366	Recent advances in ink-based additive manufacturing for porous structures. Additive Manufacturing, 2021, 48, 102405.	1.7	14
1367	A review of mechanochromic polymers and composites: From material design strategy to advanced electronics application. Composites Part B: Engineering, 2021, 227, 109434.	5.9	35
1369	1. Ambient Displays and Stretchable Organic Transistor Integrated Curcuits. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2010, 64, 1426-1431.	0.0	0
1370	Flexible Display Driver Chips., 2011,, 413-424.		0
1371	ãf—ãfªãf³ãf†ãffãf‰ãf»ã,¨ãf¬ã,¯ãf°ãfãf∢ã,¯ã,¹ã®ãŸã,ã®ä½Žæ¸©é…ç∙šæŠ€è¡". Journal of Japan Institute of El	eo oro nics	Pa z kaging, 2
1372	Beyond Conventional CMOS Technology: Challenges for New Design Concepts., 2012,, 279-301.		0
1373	Mass-production Process of Single Wall Carbon Nanotubes and their Applications. Seikei-Kakou, 2012, 24, 308-311.	0.0	0

#	Article	IF	CITATIONS
1375	Organic TFTs: Vacuum-Deposited Small-Molecule Semiconductors. , 2012, , 677-695.		1
1376	Device Technologies for Electrical Power Generation from Biochemical Resources. IEEJ Transactions on Sensors and Micromachines, 2013, 133, 242-247.	0.0	O
1377	A Do-It-Yourself (DIY) Guide to Using Carbon Nanotubes for Stretchable Electronics and Sensors. Lecture Notes in Nanoscale Science and Technology, 2013, , 225-244.	0.4	0
1378	Flip Chip Process on CNT-Ag Composite Pads for Stretchable Electronic Packaging. Journal of the Microelectronics and Packaging Society, 2013, 20, 17-23.	0.1	3
1379	Organic TFTs: Vacuum-Deposited Small-Molecule Semiconductors. , 2014, , 1-19.		0
1380	Structure of Liquid Crystal Display. , 2014, , 1-9.		O
1381	Other Applications. RSC Nanoscience and Nanotechnology, 2014, , 268-291.	0.2	0
1382	Recent Progress in Flexible/Wearable Electronics. Journal of Welding and Joining, 2014, 32, 34-42.	0.6	3
1385	Effect of CNT-Ag Composite Pad on the Contact Resistance of Flip-Chip Joints Processed with Cu/Au Bumps. Journal of the Microelectronics and Packaging Society, 2015, 22, 39-44.	0.1	0
1386	Deformation Behavior of Locally Stiffness-variant Stretchable Substrates Consisting of the Island Structure. Journal of the Microelectronics and Packaging Society, 2015, 22, 117-123.	0.1	0
1387	2.ã, ãf«ãf°ãf©ãf•ãf¬ã,ã,·ãf—ãf«ãf»ã,¹ãf°ãf¬ãffãfãf£ãf—ãf«ã,»ãf³ã,µãf¼. Electrochemistry, 2016, 84,	1 64 6168.	0
1388	Nonvolatile Ferroelectric Memory Thin-Film Transistors Using a Poly(Vinylidene Fluoride) Tj ETQq1 1 0.784314 rgB Physics, 2016, , 203-223.	T /Overloc 0.4	ck 10 Tf 50 O
1389	Transfer Printing for Cyber-Manufacturing Systems. Springer Series in Wireless Technology, 2017, , 671-690.	1,1	1
1390	Ionic Liquids in Wearable Chemical Sensors. RSC Smart Materials, 2017, , 416-455.	0.1	O
1391	Preface to Special Issue on Recent Trend of Organic Soft Material for Lasers and Optoelectronics. The Review of Laser Engineering, 2018, 46, 4.	0.0	0
1392	Interfacial characterization of flexible hybrid electronics. , 2018, , .		4
1393	Nanotechnologies for Neurosciences. PoliTO Springer Series, 2019, , 81-98.	0.3	0
1394	Processing and Perspective of Multifunctional Composite Materials. Seikei-Kakou, 2018, 30, 321-325.	0.0	O

#	Article	IF	CITATIONS
1395	Effect of Storage Time of a Ceramic Primer on Microshear Bond Strength to Zirconia. Journal of Dentistry of Tehran University of Medical Sciences, 0, , .	0.4	0
1396	Femtosecond laser-based formation of electrically conductive silicon carbide on PDMS., 2019,,.		0
1397	High Performance IGTO Transistors with Stretchable Gate Dielectric Layer. Proceedings of the International Display Workshops, 2019, , 1578.	0.1	0
1398	Print-and-Spray Electromechanical Metamaterials. Soft Robotics, 2021, , .	4.6	0
1399	Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection. International Journal of Biological Macromolecules, 2021, 193, 629-637.	3.6	32
1400	Performance Analysis of Distributed Intelligent Reflective Surface Aided Communications. , 2020, , .		24
1401	Tribological properties of vertically aligned carbon nanotube arrays and carbon nanotube sponge. AIP Advances, 2020, 10, 125209.	0.6	1
1402	Carbon Nanotube Synthesis and Applications. RSC Smart Materials, 2020, , 174-213.	0.1	0
1403	Soft and Stretchable Electronics Design. , 2023, , 258-286.		2
1404	Nonvolatile Ferroelectric Memory Thin-Film Transistors Using a Poly(Vinylidene Fluoride) Tj ETQq1 1 0.784314 rg Physics, 2020, , 241-261.	BT /Overlo 0.4	ock 10 Tf 50 O
1405	Recent progress on stretchable conductors. Wuli Xuebao/Acta Physica Sinica, 2020, 69, 177401.	0.2	5
1406	Optically Transparent Electrodes for Electrocapacitive Energy Storage and Integrated Systems. , 2022, , 703-721.		0
1407	Realizing Diketopyrrolopyrrole Polymerâ€Based Uniform Largeâ€Area Transistors for Active Circuit via Protonic Acid Mediated Molecular Selfâ€Assembly. Advanced Electronic Materials, 0, , 2100881.	2.6	3
1408	Inverse design of organic light-emitting diode structure based on deep neural networks. Nanophotonics, 2021, 10, 4533-4541.	2.9	8
1409	Selection on Surfactant in Polishing Slurry for Chemical Mechanical Polishing 304 Stainless Steel. Key Engineering Materials, 0, 866, 125-134.	0.4	0
1410	Selection of Abrasive for Chemical Mechanical Polishing of the 304 Stainless Steel. Journal of Physics: Conference Series, 2020, 1681, 012011.	0.3	2
1411	Multi-scale modeling of fatigue damage in a metal wire film with the thickness effect. Journal of Materials Research, 2020, 35, 3170-3179.	1.2	1
1412	Effect of Storage Time of a Ceramic Primer on Microshear Bond Strength to Zirconia. Journal of Dentistry of Tehran University of Medical Sciences, 2018, 15, 375-381.	0.4	0

#	Article	IF	CITATIONS
1413	Hybrid Thin-Film Materials Combinations for Complementary Integration Circuit Implementation. Membranes, 2021, 11, 931.	1.4	2
1414	Hybridâ€type stretchable interconnects with doubleâ€layered liquid metalâ€onâ€polyimide serpentine structure. ETRI Journal, 2022, 44, 147-154.	1.2	5
1415	Dopant-dependent thermoelectric performance of indoloindole-selenophene based conjugated polymer. Chemical Engineering Journal, 2022, 431, 133779.	6.6	13
1416	Flexible Wearables for Plants. Small, 2021, 17, e2104482.	5.2	34
1417	Curved display based on programming origami tessellations. Microsystems and Nanoengineering, 2021, 7, 101.	3.4	9
1418	Designable Integration of Silicide Nanowire Springs as Ultra ompact and Stretchable Electronic Interconnections. Small, 2022, 18, e2104690.	5.2	8
1419	Copper phosphotungstate as low cost, solution-processed, stable inorganic anode interfacial material enables organic photovoltaics with over 18% efficiency. Nano Energy, 2022, 94, 106923.	8.2	20
1420	Light-material interfaces for self-powered optoelectronics. Journal of Materials Chemistry A, 2021, 9, 25694-25705.	5.2	4
1421	Stretchable Inorganic LED Displays with Double-Layer Modular Design for High Fill Factor. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4344-4351.	4.0	14
1422	Precise Synthesis of Organic Heterostructures via the Synergy Approach of Polymorphism and Cocrystal Engineering for Optical Applications. Chinese Journal of Chemistry, 2022, 40, 1149-1155.	2.6	5
1423	Development of stretchable electrodes for wearables using vacuum thermal pressure. Journal of the Textile Institute, 2022, 113, 2732-2741.	1.0	1
1424	On the Origin of Seebeck Coefficient Inversion in Highly Doped Conducting Polymers. Advanced Functional Materials, 2022, 32, .	7.8	18
1425	How Materials and Device Factors Determine the Performance: A Unified Solution for Transistors with Nontrivial Gates and Transistor–Diode Hybrid Integration. Advanced Science, 2022, 9, e2104896.	5.6	12
1426	Flexible InP–ZnO nanowire heterojunction light emitting diodes. Nanoscale Horizons, 2022, 7, 446-454.	4.1	8
1427	Soft stretchable conductive nanocomposites for biointegrated electronics., 2023,, 306-321.		1
1428	Auxetic Metaâ€Display: Stretchable Display without Image Distortion. Advanced Functional Materials, 2022, 32, .	7.8	37
1429	Study of the polishing slurry dispersant for chemical mechanical polishing of 304 stainless steel. International Journal of Modern Physics B, O, , .	1.0	0
1430	Strain-induced alignment of printed silver nanowires for stretchable electrodes. Flexible and Printed Electronics, 2022, 7, 024003.	1.5	4

#	Article	IF	CITATIONS
1432	High-brightness all-polymer stretchable LED with charge-trapping dilution. Nature, 2022, 603, 624-630.	13.7	170
1433	Ultraâ€robust stretchable electrode for eâ€skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic waterâ€toâ€net interaction. InformaÄnÃ-Materiály, 2022, 4, .	8.5	47
1434	Annealing-induced enhancement of electrical conductivity and electromagnetic interference shielding in injection-molded CNT polymer composites. Polymer, 2022, 245, 124680.	1.8	11
1435	An intrinsically stretchable aqueous Zn-MnO2 battery based on microcracked electrodes for self-powering wearable electronics. Energy Storage Materials, 2022, 47, 386-393.	9.5	15
1436	Printed graphene and hybrid conductive inks for flexible, stretchable, and wearable electronics: Progress, opportunities, and challenges. Journal of Science: Advanced Materials and Devices, 2022, 7, 100435.	1.5	36
1437	Electrodeposited Ni-W coatings as the effective reaction barrier at Ga-21.5In-10Sn/Cu interfaces. Surfaces and Interfaces, 2022, 30, 101838.	1.5	7
1438	Skin-Driven Ultrasensitive Mechanoluminescence Sensor Inspired by Spider Leg Joint Slits. ACS Applied Materials & Interfaces, 2021, 13, 60689-60696.	4.0	12
1439	Flexible and Stretchable Strategies for Electronic Skins: Materials, Structure, and Integration. ACS Applied Electronic Materials, 2022, 4, 1-26.	2.0	20
1440	Microâ€Lightâ€Emitting Diodes Based on InGaN Materials with Quantum Dots. Advanced Materials Technologies, 2022, 7, .	3.0	15
1441	Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity. ACS Nano, 2022, 16, 541-553.	7.3	43
1442	Origins of strain localization in a silver-based flexible ink under tensile load. Flexible and Printed Electronics, 2021, 6, 045017.	1.5	0
1444	Hybrid Photovoltaic/Thermal (PVT) Collector Systems With Different Absorber Configurations For Thermal Management – A Review. Energy and Environment, 2023, 34, 690-735.	2.7	10
1445	Prospects and Challenges of Flexible Stretchable Electrodes for Electronics. Coatings, 2022, 12, 558.	1.2	28
1446	High-Efficiency Semitransparent Light-Emitting Diodes with Perovskite Nanocrystals. ACS Applied Materials & Samp; Interfaces, 2022, 14, 19697-19703.	4.0	8
1447	Printable inks and deformable electronic array devices. Nanoscale Horizons, 2022, 7, 663-681.	4.1	4
1448	Intrinsically flexible displays: key materials and devices. National Science Review, 2022, 9, .	4.6	40
1449	The Effect of Complex Periodic Ellipsoid Arrays on Light Extraction Efficiency of GaN Based LED. Russian Journal of Physical Chemistry A, 2022, 96, 907-911.	0.1	2
1450	A Selfâ€Assembled 3D Penetrating Nanonetwork for Highâ€Performance Intrinsically Stretchable Polymer Lightâ€Emitting Diodes. Advanced Materials, 2022, 34, e2201844.	11.1	19

#	Article	IF	CITATIONS
1451	Thermocells-enabled low-grade heat harvesting: challenge, progress, and prospects. Materials Today Energy, 2022, 27, 101032.	2.5	19
1452	Brightness-enhanced electroluminescence driven by triboelectric nanogenerators through permittivity manipulation and impedance matching. Nano Energy, 2022, 98, 107308.	8.2	10
1453	Materials and design strategies for stretchable electroluminescent devices. Nanoscale Horizons, 2022, 7, 801-821.	4.1	22
1454	Octopus-Like Carbon Nanomaterial for Double High Stretchable Conductor. SSRN Electronic Journal, 0, , .	0.4	0
1455	A Transient Supercapacitor with a Water-Dissolvable Ionic Gel for Sustainable Electronics. ACS Applied Materials & Samp; Interfaces, 2022, 14, 26595-26603.	4.0	18
1456	Recent progress in strain-engineered elastic platforms for stretchable thin-film devices. Materials Horizons, 2022, 9, 2053-2075.	6.4	16
1457	Highly stretchable and stretch-induced fluorescence chromism self-healing materials based on boroxine and dynamic imine bond. Journal of Materials Chemistry C, 2022, 10, 10895-10901.	2.7	16
1458	Modeling the effect of surface roughness for screen-printed silver ink on flexible substrates. , 2022, , .		1
1459	Nanoscale plasmonic wires with maximal figure of merits as a superior flexible transparent conducting electrode for RGB colors. Scientific Reports, 2022, 12, .	1.6	0
1460	41â€1: <i>Invited Paper:</i> Technical Advances in Stretchable Displays for High Pixel Density and High Stretchability. Digest of Technical Papers SID International Symposium, 2022, 53, 514-516.	0.1	1
1461	Highly stretchable islandâ€structure metal oxide thinâ€film transistor arrays using acrylic adhesive for deformable display applications. Journal of the Society for Information Display, 0, , .	0.8	6
1462	Pâ€26: <i>Student Poster:</i> AMOLED Pixel Circuit Compensating for Stretching and Iâ€R Drop. Digest of Technical Papers SID International Symposium, 2022, 53, 1134-1136.	0.1	0
1463	Large Scale Exchange Coupled Metallic Multilayers by Rollâ€ŧoâ€Roll (R2R) Process for Advanced Printed Magnetoelectronics. Advanced Materials Technologies, 2022, 7, .	3.0	2
1464	High-Performance Deep Red Colloidal Quantum Well Light-Emitting Diodes Enabled by the Understanding of Charge Dynamics. ACS Nano, 2022, 16, 10840-10851.	7.3	21
1465	Recent progress in the fabrication and applications of flexible capacitive and resistive pressure sensors. Sensors and Actuators A: Physical, 2022, 344, 113770.	2.0	24
1466	N-heterocyclic carbene platinum-butadiyne Click/iClick complexes. Towards blue-violet phosphorescence. Journal of Organometallic Chemistry, 2022, 976, 122440.	0.8	0
1467	Manipulating Whiteâ€Light Generation in Adamantaneâ€Like Molecules via Functional Group Substitution. ChemPhotoChem, 0, , .	1.5	0
1468	A Biaxially Stretchable and Washable LED Display Enabled by a Wavy-Structured Metal Grid. Journal of Microelectromechanical Systems, 2022, 31, 771-776.	1.7	4

#	Article	IF	CITATIONS
1469	Engineering Intramolecular Ï€â€Stacking Interactions of Throughâ€Space Chargeâ€Transfer TADF Emitters for Highly Efficient OLEDs with Improved Color Purity. Advanced Optical Materials, 2022, 10, .	3.6	10
1470	Combination of Micro-Corrugation Process and Pre-Stretched Method for Highly Stretchable Vertical Wavy Structured Metal Interconnects. Micromachines, 2022, 13, 1210.	1.4	4
1471	Efficient TADF-based blue OLEDs with 100% stretchability using titanium particle-embedded indium zinc oxide mesh electrodes. NPG Asia Materials, 2022, 14, .	3.8	4
1472	The stretched AMOLED display technology based on island–bridge structure. Scientia Sinica Chimica, 2022, , .	0.2	0
1473	Recent advances in flexible force sensors and their applications: a review. Flexible and Printed Electronics, 2022, 7, 033002.	1.5	6
1474	Octopus-like carbon nanomaterial for double high stretchable conductor. Carbon, 2022, 199, 200-207.	5.4	1
1475	Highly conductive, stretchable, durable, breathable electrodes based on electrospun polyurethane mats superficially decorated with carbon nanotubes for multifunctional wearable electronics. Chemical Engineering Journal, 2023, 451, 138549.	6.6	66
1476	Common Metals as Electrodes for Leakâ€Free Organic Lightâ€Emitting Devices Using Extraordinary Thick Phosphotungstic Acid Buffer Layers. Advanced Optical Materials, 0, , 2201185.	3.6	1
1477	Recent advances in soft electronic materials for intrinsically stretchable optoelectronic systems. Opto-Electronic Advances, 2022, 5, 210131-210131.	6.4	14
1478	Materials development in stretchable iontronics. Soft Matter, 2022, 18, 6487-6510.	1.2	8
1479	Mechanical properties and structures under the deformation of thiophene copolymers with cyclic siloxane units. Polymer Chemistry, 2022, 13, 5536-5544.	1.9	1
1480	Fatigue of Flexible and Stretchable Electronic Structures. , 2022, , .		0
1481	Printed Low-Hysteresis Stretchable Strain Sensor Based on a Self-Segregating Conductive Composite., 2023, 1, 50-58.		11
1482	A Review of Various Attempts on Multi-Functional Encapsulation Technologies for the Reliability of OLEDs. Micromachines, 2022, 13, 1478.	1.4	10
1483	Ionic Liquids as Additives to Improve the Stretchability of Fluorine Rubber/Metal Filler Conductive Elastomers: a Miscibility Study. ACS Applied Polymer Materials, 2022, 4, 6871-6879.	2.0	1
1484	Light-emitting crystals of aptamer-hybrid organic semiconductor signaling on human cells expressing EpCAM. Journal of Industrial and Engineering Chemistry, 2022, , .	2.9	0
1486	Precursor sources dependent formation of colloidal CdSe quantum dots for UV-LED applications. Particulate Science and Technology, 0, , 1-9.	1.1	0
1487	Stretchable printed circuit board integrated with Ag-nanowire-based electrodes and organic transistors toward imperceptible electrophysiological sensing. Flexible and Printed Electronics, 2022, 7, 044002.	1.5	4

#	Article	IF	CITATIONS
1488	The role of printed electronics and related technologies in the development of smart connected products. Flexible and Printed Electronics, 2022, 7, 043001.	1.5	12
1489	Recent Progress of Noncovalent Interactionâ€Driven Selfâ€Assembly of Photonic Organic Microâ€/Nanostructures. Advanced Optical Materials, 2023, 11, .	3.6	4
1490	Self-Reporting Joule Heating Modulated Stiffness of Polymeric Nanocomposites for Shape Reconfiguration. ACS Nano, 2022, 16, 16833-16842.	7.3	0
1491	Engineering the Cracking Patterns in Stretchable Copper Films Using Acid-Oxidized Poly(dimethylsiloxane) Substrates. ACS Applied Electronic Materials, 2022, 4, 5565-5572.	2.0	2
1492	A Piezoresistive Sensor with High Sensitivity and Flexibility Based on Porous Sponge. Nanomaterials, 2022, 12, 3833.	1.9	5
1493	Elastic Fibers/Fabrics for Wearables and Bioelectronics. Advanced Science, 2022, 9, .	5.6	19
1494	Flexible Thin-Film Speaker Integrated with an Array of Quantum-Dot Light-Emitting Diodes for the Interactive Audiovisual Display of Multi-functional Sensor Signals. ACS Applied Materials & Samp; Interfaces, 2022, 14, 48844-48856.	4.0	7
1495	High-efficiency and stable blue hyperfluorescence organic light-emitting diode. , 2022, , .		0
1496	Universal assembly of liquid metal particles in polymers enables elastic printed circuit board. Science, 2022, 378, 637-641.	6.0	99
1497	Ultra-fast self-healable stretchable bio-based elastomer/graphene ink using fluid dynamics process for printed wearable sweat-monitoring sensor. Chemical Engineering Journal, 2023, 454, 140443.	6.6	13
1498	Advanced Stretchable Photodetectors: Strategies, Materials and Devices. Chemistry - A European Journal, 2023, 29, .	1.7	4
1499	Intelligent wearable devices based on nanomaterials and nanostructures for healthcare. Nanoscale, 2023, 15, 405-433.	2.8	16
1500	Recent advances in wearable electromechanical sensorsâ€"Moving towards machine learning-assisted wearable sensing systems. Nano Energy, 2023, 105, 108041.	8.2	27
1501	Stretchable conductors for stretchable field-effect transistors and functional circuits. Chemical Society Reviews, 2023, 52, 795-835.	18.7	18
1502	3Dâ€Printed Silicone Substrates as Highly Deformable Electrodes for Stretchable Liâ€Ion Batteries. Small, 2023, 19, .	5.2	7
1503	An Organic Electrochemical Transistor Integrated Photodetector for High Quality Photoplethysmogram Signal Acquisition. Advanced Functional Materials, 2023, 33, .	7.8	10
1504	Fabrication of Intrinsic, Elastic, Self-healing, and Luminescent CsPbBr ₃ Quantum Dot-Polymer Composites via Thiol–Ene Cross-Linking. ACS Applied Polymer Materials, 2022, 4, 8987-8995.	2.0	1
1505	A multi-scale model of film/substrate interface damage due to the evolution of vacancy concentration inside the film. Mechanics of Advanced Materials and Structures, 0, , 1-11.	1.5	3

#	Article	IF	CITATIONS
1507	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
1508	Rapid Preparation of Patterned Conductive Films Based on In Situ Voltaic Cell Templated 3D Controllable Metal Deposition. Advanced Materials Technologies, 0, , 2201223.	3.0	0
1509	Progress and Prospects of Nanoscale Emitter Technology for AR/VR Displays. Advanced Materials Technologies, 2023, 8, .	3.0	5
1510	Ultrasensitive Strain Sensor Utilizing a AgF–AgNW Hybrid Nanocomposite for Breath Monitoring and Pulmonary Function Analysis. ACS Applied Materials & Interfaces, 2022, 14, 55402-55413.	4.0	15
1511	Effects of Solvent Dielectric on Thermally Activated Delayed Fluorescence: A Predictive Computational Polarization Consistent Approach. Journal of Physical Chemistry A, 2023, 127, 216-223.	1.1	0
1512	Two-Dimensional Non-Carbon Materials-Based Electrochemical Printed Sensors: An Updated Review. Sensors, 2022, 22, 9358.	2.1	8
1513	Structurally Regulated Carbazole–Pyridine Derivatives Based on Space-Crowded Theory for Efficient Narrowband Ultraviolet Nondoped Organic Light-Emitting Diodes from the High-Lying Reverse Intersystem Crossing Process. ACS Applied Materials & Samp; Interfaces, 2022, 14, 57092-57101.	4.0	2
1514	Twisting of Porphyrin by Assembly in a Metalâ€Organic Framework yielding Chiral Photoconducting Films for Circularlyâ€Polarizedâ€Light Detection. Angewandte Chemie, 0, , .	1.6	1
1515	Understanding resistance increase in composite inks under monotonic and cyclic stretching. Flexible and Printed Electronics, 2022, 7, 045010.	1.5	1
1516	Applications of Flexible Electronics. , 2022, , 381-412.		2
1517	Effect of incident molecular temperature on the elementary processes in thin film growth of long-chain molecules during vacuum deposition. Japanese Journal of Applied Physics, 0, , .	0.8	0
1518	Toward a new generation of permeable skin electronics. Nanoscale, 2023, 15, 3051-3078.	2.8	16
1519	Quantum dot displays: group Il–VI compound materials and technology. , 2023, , 139-153.		0
1520	Highly Sensitive Strain Sensor Based on Microfiber Coupler for Wearable Photonics Healthcare. Advanced Intelligent Systems, 2023, 5, .	3.3	3
1521	Advances in wearable flexible electrochemical sensors for sweat monitoring: A mini-review. International Journal of Electrochemical Science, 2023, 18, 13-19.	0.5	7
1522	A Tunable Polarization Field for Enhanced Performance of Flexible BaTiO ₃ @TiO ₂ Nanofiber Photodetector by Suppressing Dark Current to pA Level. Advanced Functional Materials, 2023, 33, .	7.8	36
1523	Highly Stretchable Graphene Scrolls Transistors for Self-Powered Tribotronic Non-Mechanosensation Application. Nanomaterials, 2023, 13, 528.	1.9	1
1524	Recent Progress in Printing Conductive Materials for Stretchable Electronics. , 2022, 1, 137-153.		1

#	Article	IF	CITATIONS
1525	Materials for Developing Future Flexible Electronic Device. , 2023, , 517-526.		1
1526	Capacitive energy harvesting from 132kV high-voltage transmission lines fields in Iraq. AIP Conference Proceedings, 2023, , .	0.3	O
1527	Hydrogelâ€Based Multifunctional Soft Electronics with Distributed Sensing Units: A Review. , 2023, 2, .		3
1528	High-efficiency stretchable light-emitting polymers from thermally activated delayed fluorescence. Nature Materials, 2023, 22, 737-745.	13.3	28
1529	Ultrastretchable alternating current electroluminescent panels for arbitrary luminous patterns. Applied Materials Today, 2023, 31, 101764.	2.3	1
1530	Crystallization and photophysical dynamics of Tris(8-hydroxyquinoline) aluminum crystals fabricated by micro-spacing sublimation method. Chemical Physics, 2023, 568, 111848.	0.9	1
1531	Modeling resistance increase in a composite ink under cyclic loading. Flexible and Printed Electronics, 2023, 8, 015014.	1.5	0
1532	The Effect of Pre-Stretched Substrate on the Electrical Resistance of Printed Ag Nanowires. Nanomaterials, 2023, 13, 719.	1.9	0
1533	Towards the Future of Polymeric Hybrids of Two-Dimensional Black Phosphorus or Phosphorene: From Energy to Biological Applications. Polymers, 2023, 15, 947.	2.0	1
1534	Wearable Electronics Based on Stretchable Organic Semiconductors. Small, 2023, 19, .	5.2	24
1535	Smart Wearable Systems for Health Monitoring. Sensors, 2023, 23, 2479.	2.1	17
1536	Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping. Advanced Materials, 2023, 35, .	11.1	3
1537	Epidermal Bioelectronics for Management of Chronic Diseases: Materials, Devices and Systems. , 2023, 2, .		2
1538	Highâ€efficiency stretchable organic lightâ€emitting diodes based on ultraâ€flexible printed embedded metal composite electrodes. InformaÄnÃ-Materiály, 2023, 5, .	8.5	15
1539	Fabrication of practical deformable displays: advances and challenges. Light: Science and Applications, 2023, 12, .	7.7	11
1540	Single-vat single-cure grayscale digital light processing 3D printing of materials with large property difference and high stretchability. Nature Communications, 2023, 14, .	5.8	22
1542	Highly Sensitive Piezoelectric Eâ€6kin Design Based on Electromechanical Coupling Concept. Advanced Electronic Materials, 2023, 9, .	2.6	4
1543	Cu layer derived by accelerated microparticles on ZnO:Al/p-Si heterojunction. Journal of Materials Science: Materials in Electronics, 2023, 34, .	1.1	O

#	Article	IF	CITATIONS
1544	The Effect of Size and Strain on Micro Stripe Magnetic Domain Structure of CoFeB Thin Films. Metals, 2023, 13, 678.	1.0	1
1545	A Review of Skin-Wearable Sensors for Non-Invasive Health Monitoring Applications. Sensors, 2023, 23, 3673.	2.1	7
1561	A Neural Network-based Low-cost Soft Sensor for Touch Recognition and Deformation Capture. , 2023, , .		1
1564	Conductive hydrogels for bioelectronics: molecular structures, design principles, and operation mechanisms. Journal of Materials Chemistry C, 2023, 11, 10785-10808.	2.7	1
1570	PEDOT:PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. Journal of Materials Chemistry A, 2023, 11, 18561-18591.	5.2	7
1572	Wearable sensor platform in real time monitoring and early warning of metabolic disorders in human health. Analyst, The, 0 , , .	1.7	0
1577	PEDOT and PEDOT:PSS thin-film electrodes: patterning, modification and application in stretchable organic optoelectronic devices. Journal of Materials Chemistry C, 2023, 11, 10435-10454.	2.7	7
1600	Body-conformable light-emitting materials and devices. Nature Photonics, 2024, 18, 114-126.	15.6	1
1606	Material and structural approaches for human-machine interfaces. , 2024, , 227-290.		0
1607	Wearable and Implantable Light-Emitting Diodes and Their Biomedical Applications. Korean Journal of Chemical Engineering, 2024, 41, 1-24.	1.2	0
1612	Ultra-Flexible Organic Electronics. , 2024, , 185-219.		0
1613	Viton and Liquid Metal Composite Material Systems for In-Space Applications and Additive Manufacturing. , 2024, , .		O