Towards wafer-size graphene layers by atmospheric precarbide

Nature Materials 8, 203-207 DOI: 10.1038/nmat2382

Citation Report

#	Article	IF	Citations
7	The Computational Complexity of Approximation Algorithms for Robust Stability in Rank-Two Matrix Polytopes. , 1993, , .		1
8	Electrical properties of the graphene/ <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>4</mml:mn><mml:mi>H</mml:mi><mml:mtext>-SiC</mml:mtext>interface probed by scanning current spectroscopy. Physical Review B, 2009, 80, .</mml:mrow></mml:math>	nml:mrow>	
9	Graphene formation mechanisms on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"> <mml:mrow> <mml:mn> 4 </mml:mn> <mml:mi> H </mml:mi> <mml:mtext> -SiC </mml:mtext> <m Physical Review B, 2009, 80, .</m </mml:mrow></mml:math>	iml:nbnow>	<mntamo>(</m
10	Growth mechanism for epitaxial graphene on vicinal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow> <mml:mn> 6 </mml:mn> <mml:mi> H </mml:mi> <mml:mtext> -SiC </mml:mtext> <m A scanning tunneling microscopy study. Physical Review B, 2009, 80, .</m </mml:mrow></mml:math 	ıml:mrow>	<mn121 <mn1:mo>(< </mn1:mo></mn121
11	Hydrogen desorption from 6H-SiC(0001) surfaces during graphitization. Applied Physics Letters, 2009, 95, 094103.	1.5	11
12	Low temperature growth of epitaxial graphene on SiC induced by carbon evaporation. Applied Physics Letters, 2009, 95, .	1.5	76
13	Hall effect mobility of epitaxial graphene grown on silicon carbide. Applied Physics Letters, 2009, 95, .	1.5	175
14	Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions. Applied Physics Letters, 2009, 95, .	1.5	27
15	Half integer quantum Hall effect in high mobility single layer epitaxial graphene. Applied Physics Letters, 2009, 95, .	1.5	140
16	Local conductance measurements of double-layer graphene on SiC substrate. Nanotechnology, 2009, 20, 445704.	1.3	38
17	<i>In situ</i> observation of stress relaxation in epitaxial graphene. New Journal of Physics, 2009, 11, 113056.	1.2	107
18	Pentacene as protection layers of graphene on SiC surfaces. Applied Physics Letters, 2009, 95, 093107.	1.5	19
19	Lateral uniformity of the transport properties of graphene/4H-SiC (0001) interface by nanoscale current measurements. Materials Research Society Symposia Proceedings, 2009, 1205, 30201.	0.1	0
20	Soluble Graphene: Generation of Aqueous Graphene Solutions Aided by a Perylenebisimideâ€Based Bolaamphiphile. Advanced Materials, 2009, 21, 4265-4269.	11.1	196
22	Graphene: The New Twoâ€Dimensional Nanomaterial. Angewandte Chemie - International Edition, 2009, 48, 7752-7777.	7.2	3,668
23	Diffusivity of adatoms on plasma-exposed surfaces determined from the ionization energy approximation and ionic polarizability. Physics Letters, Section A: General, Atomic and Solid State Physics, 2009, 373, 2267-2272.	0.9	18
24	Trends in graphene research. Materials Today, 2009, 12, 34-37.	8.3	114
25	How silicon leaves the scene. Nature Materials, 2009, 8, 171-172.	13.3	330

TION RE

#	Article	IF	CITATIONS
26	Experimental studies of the electronic structure of graphene. Progress in Surface Science, 2009, 84, 380-413.	3.8	75
27	Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009, 9, 4268-4272.	4.5	1,397
28	Graphene: Status and Prospects. Science, 2009, 324, 1530-1534.	6.0	12,120
29	Graphene Oxide: Structural Analysis and Application as a Highly Transparent Support for Electron Microscopy. ACS Nano, 2009, 3, 2547-2556.	7.3	629
30	Quasiparticle Transformation during a Metal-Insulator Transition in Graphene. Physical Review Letters, 2009, 103, 056404.	2.9	208
31	Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009, 324, 1312-1314.	6.0	10,000
32	Anisotropic growth of long isolated graphene ribbons on the C face of graphite-capped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mn>6</mml:mn><mml:mi>H</mml:mi></mml:mrow>-SiC. Physical Review B, 2009, 80, .</mml:math 	1.1	88
33	Atomic-scale imaging and manipulation of ridges on epitaxial graphene on 6H-SiC(0001). Nanotechnology, 2009, 20, 355701.	1.3	81
34	First Direct Observation of a Nearly Ideal Graphene Band Structure. Physical Review Letters, 2009, 103, 226803.	2.9	399
35	Comparison of Epitaxial Graphene on Si-face and C-face 4H SiC Formed by Ultrahigh Vacuum and RF Furnace Production. Nano Letters, 2009, 9, 2605-2609.	4.5	140
36	Monolayer graphene growth on sputtered thin film platinum. Journal of Applied Physics, 2009, 106, .	1.1	89
37	High-Throughput Synthesis of Graphene by Intercalationâ^'Exfoliation of Graphite Oxide and Study of Ionic Screening in Graphene Transistor. ACS Nano, 2009, 3, 3587-3594.	7.3	263
38	Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009, 9, 4359-4363.	4.5	2,812
39	Quasi-Free-Standing Epitaxial Graphene on SiC Obtained by Hydrogen Intercalation. Physical Review Letters, 2009, 103, 246804.	2.9	921
40	Stacking domains of epitaxial few-layer graphene on SiC(0001). Physical Review B, 2009, 80, .	1.1	84
41	Epitaxial graphene on SiC(0001) and mathrm {SiC}(000ar {1}) : from surface reconstructions to carbon electronics. Journal of Physics Condensed Matter, 2009, 21, 134016.	0.7	138
42	Electronic structure of epitaxial graphene nanoribbons on SiC(0001). Applied Physics Letters, 2009, 95, 063111.	1.5	17
43	Step-edge instability during epitaxial growth of graphene from SiC(0001). Physical Review B, 2009, 80, .	1.1	71

	Сітатіс	on Report	
#	Article	IF	CITATIONS
44	Selecting a single orientation for millimeter sized graphene sheets. Applied Physics Letters, 2009, 95, .	1.5	101
45	Morphology characterization of argon-mediated epitaxial graphene on C-face SiC. Applied Physics Letters, 2010, 96, .	1.5	77
46	Increased size selectivity of Si quantum dots on SiC at low substrate temperatures: An ion-assisted self-organization approach. Journal of Applied Physics, 2010, 107, 024313.	1.1	10
47	Photoreduction of Graphene Oxide Nanosheet by UV-light Illumination under H2. Chemistry Letters, 2010, 39, 750-752.	0.7	22
48	Ultra-precision Figured 4H-SiC(0001) Surfaces. Hyomen Kagaku, 2010, 31, 466-473.	0.0	0
49	Free graphene films obtained from thermally expanded graphite. Technical Physics, 2010, 55, 1378-1381.	0.2	13
50	Synthesis of Graphene and Its Applications: A Review. Critical Reviews in Solid State and Materials Sciences, 2010, 35, 52-71.	6.8	1,443
51	Graphene Fieldâ€Effect Transistors: Electrochemical Gating, Interfacial Capacitance, and Biosensing Applications. Chemistry - an Asian Journal, 2010, 5, 2144-2153.	1.7	64
52	Strong phonon-plasmon coupled modes in the graphene/silicon carbide heterosystem. Physical Review B, 2010, 82, .	1.1	103
53	Graphene-based materials as supercapacitor electrodes. Journal of Materials Chemistry, 2010, 20, 5983.	6.7	1,338
54	Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sensors and Actuators B: Chemical, 2010, 150, 296-300.	4.0	226
55	Empirical Study of Hall Bars on Few-Layer Graphene on C-Face 4H-SiC. Journal of Electronic Materials, 2010, 39, 2696-2701.	1.0	11
56	Probing mechanical properties of graphene with Raman spectroscopy. Journal of Materials Science, 2010, 45, 5135-5149.	1.7	208
57	Graphene Based Electrochemical Sensors and Biosensors: A Review. Electroanalysis, 2010, 22, 1027-1036.	1.5	2,779
58	Nanotribology – Fundamental Studies of Friction and Plasticity. Advanced Engineering Materials, 2010, 12, 362-367.	1.6	3
59	Graphene Solutionâ€Gated Fieldâ€Effect Transistor Array for Sensing Applications. Advanced Functional Materials, 2010, 20, 3117-3124.	7.8	137
60	Chemically Derived Graphene Oxide: Towards Largeâ€Area Thinâ€Film Electronics and Optoelectronics. Advanced Materials, 2010, 22, 2392-2415.	11.1	2,018
61	Conjugated Carbon Monolayer Membranes: Methods for Synthesis and Integration. Advanced Materials, 2010, 22, 1072-1077.	11.1	50

#	Article	IF	CITATIONS
62	Epitaxial Graphene Growth by Carbon Molecular Beam Epitaxy (CMBE). Advanced Materials, 2010, 22, 4140-4145.	11.1	111
63	Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Advanced Materials, 2010, 22, 3906-3924.	11.1	8,959
65	From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angewandte Chemie - International Edition, 2010, 49, 9336-9344.	7.2	693
66	Searching for better plasmonic materials. Laser and Photonics Reviews, 2010, 4, 795-808.	4.4	1,700
67	Epitaxial growth of graphitic carbon on C-face SiC and sapphire by chemical vapor deposition (CVD). Journal of Crystal Growth, 2010, 312, 3219-3224.	0.7	69
68	Influence of the growth conditions of epitaxial graphene on the film topography and the electron transport properties. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 687-690.	1.3	15
69	Formation process of graphene on SiC (0001). Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 691-694.	1.3	117
70	Transport characteristics of a single-layer graphene field-effect transistor grown on 4H-silicon carbide. Physica E: Low-Dimensional Systems and Nanostructures, 2010, 42, 2792-2795.	1.3	8
71	Multilayer graphene films grown by molecular beam deposition. Solid State Communications, 2010, 150, 809-811.	0.9	35
72	Buffer layer free large area bi-layer graphene on SiC(0001). Surface Science, 2010, 604, L4-L7.	0.8	77
73	Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon, 2010, 48, 1088-1094.	5.4	333
74	Production, properties and potential of graphene. Carbon, 2010, 48, 2127-2150.	5.4	1,502
75	Seeing graphene-based sheets. Materials Today, 2010, 13, 28-38.	8.3	171
76	Effect of local doping on the electronic properties of epitaxial graphene on SiC. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 595-598.	0.8	5
77	Investigation of graphene–SiC interface by nanoscale electrical characterization. Physica Status Solidi (B): Basic Research, 2010, 247, 912-915.	0.7	10
78	Growth of fewâ€layer graphene by gasâ€source molecular beam epitaxy using cracked ethanol. Physica Status Solidi (B): Basic Research, 2010, 247, 916-920.	0.7	4
79	Local enhancement of inelastic tunnelling in epitaxial graphene on SiC(0001). Physica Status Solidi (B): Basic Research, 2010, 247, 2992-2996.	0.7	7
80	Automated preparation of highâ€quality epitaxial graphene on 6Hâ€&iC(0001). Physica Status Solidi (B): Basic Research, 2010, 247, 2924-2926.	0.7	62

#	Article	IF	Citations
81	Highâ€Throughput, Ultrafast Synthesis of Solution―Dispersed Graphene via a Facile Hydride Chemistry. Small, 2010, 6, 226-231.	5.2	102
82	Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbonâ€Based Materials. Small, 2010, 6, 711-723.	5.2	2,449
83	Patterned Growth of Graphene over Epitaxial Catalyst. Small, 2010, 6, 1226-1233.	5.2	35
84	Towards a quantum resistance standard based on epitaxial graphene. Nature Nanotechnology, 2010, 5, 186-189.	15.6	405
85	Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotechnology, 2010, 5, 727-731.	15.6	423
86	Graphene transistors. Nature Nanotechnology, 2010, 5, 487-496.	15.6	4,822
87	Graphene photonics and optoelectronics. Nature Photonics, 2010, 4, 611-622.	15.6	6,719
88	Strain and Charge in Epitaxial Graphene on Silicon Carbide Studied by Raman Spectroscopy. Materials Science Forum, 0, 645-648, 603-606.	0.3	11
89	Growth and Characterization of Epitaxial Graphene on SiC Induced by Carbon Evaporation. Materials Science Forum, 2010, 645-648, 593-596.	0.3	0
90	Graphene Growth on SiC and Metal Surfaces by Solid Source Carbon Deposition. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	1
91	Growth Rate and Thickness Uniformity of Epitaxial Graphene. Materials Science Forum, 0, 645-648, 569-572.	0.3	7
92	Bandstructure Manipulation of Epitaxial Graphene on SiC(0001) by Molecular Doping and Hydrogen Intercalation. Materials Research Society Symposia Proceedings, 2010, 1246, 1.	0.1	0
93	Structural Evaluation of Graphene/SiC (0001) Grown in Atmospheric Pressure. Materials Science Forum, 2010, 645-648, 573-576.	0.3	6
94	Analysis of the Formation Conditions for Large Area Epitaxial Graphene on SiC Substrates. Materials Science Forum, 0, 645-648, 565-568.	0.3	62
95	Transport Properties of Single-Layer Epitaxial Graphene on 6H-SiC (0001). Materials Science Forum, 2010, 645-648, 637-641.	0.3	5
96	Differences between Graphene Grown on Si-Face and C-Face. Materials Science Forum, 0, 645-648, 581-584.	0.3	2
97	Growth of monolayer graphene on 8° off-axis 4H–SiC (000–1) substrates with application to quantum transport devices. Applied Physics Letters, 2010, 97, 093107.	1.5	21
98	Hydrogen Intercalation below Epitaxial Graphene on SiC(0001). Materials Science Forum, 2010, 645-648, 623-628.	0.3	8

#	Article	IF	CITATIONS
99	Large homogeneous mono-/bi-layer graphene on 6H–SiC(0 0 0 1) and buffer layer elimination. Jo Physics D: Applied Physics, 2010, 43, 374010.	urnal 1.3	66
100	Uniformity of Epitaxial Graphene on On-Axis and Off-Axis SiC Probed by Raman Spectroscopy and Nanoscale Current Mapping. Materials Science Forum, 0, 645-648, 607-610.	0.3	5
101	Observation of the integer quantum Hall effect in high quality, uniform wafer-scale epitaxial graphene films. Applied Physics Letters, 2010, 97, 252101.	1.5	15
102	Large-scale graphitic thin films synthesized on Ni and transferred to insulators: Structural and electronic properties. Journal of Applied Physics, 2010, 107, .	1.1	83
103	Hot carrier diffusion in graphene. Physical Review B, 2010, 82, .	1.1	75
104	Structure of few-layer epitaxial graphene on 6H-SiC(0001) at atomic resolution. Applied Physics Letters, 2010, 97, 201905.	1.5	28
105	A simple alcohol-chemical vapor deposition synthesis of single-layer graphenes using flash cooling. Applied Physics Letters, 2010, 96, .	1.5	81
106	Resonant photoluminescent charging of epitaxial graphene. Applied Physics Letters, 2010, 96, 151913.	1.5	8
107	Growth kinetics of epitaxial graphene on SiC substrates. Physical Review B, 2010, 81, .	1.1	26
108	Quantum oscillations and quantum Hall effect in epitaxial graphene. Physical Review B, 2010, 81, .	1.1	168
109	Giant inelastic tunneling in epitaxial graphene mediated by localized states. Physical Review B, 2010, 81,	1.1	24
110	Role of carbon surface diffusion on the growth of epitaxial graphene on SiC. Physical Review B, 2010, 81, .	1.1	81
111	Plasmon-phonon strongly coupled mode in epitaxial graphene. Physical Review B, 2010, 81, .	1.1	131
112	Substrate doping effects on Raman spectrum of epitaxial graphene on SiC. Journal of Applied Physics, 2010, 107, 034305.	1.1	37
113	Roller-style electrostatic printing of prepatterned few-layer-graphenes. Applied Physics Letters, 2010, 96, 013109.	1.5	18
114	Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition. Applied Physics Letters, 2010, 97, .	1.5	70
115	Formation of epitaxial graphene on SiC(0001) using vacuum or argon environments. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C5C1-C5C7.	0.6	26
116	Large low-frequency resistance noise in chemical vapor deposited graphene. Applied Physics Letters, 2010, 97, 133504.	1.5	36

	Сітатіо	n Report	
#	Article	IF	CITATIONS
117	A BRIEF REVIEW ON GRAPHENE-NANOPARTICLE COMPOSITES. Cosmos, 2010, 06, 159-166.	0.4	24
118	Electron spin relaxation in graphene from a microscopic approach: Role of electron-electron interaction. Physical Review B, 2010, 82, .	1.1	36
119	Characteristics of solution gated field effect transistors on the basis of epitaxial graphene on silicon carbide. Journal Physics D: Applied Physics, 2010, 43, 345303.	1.3	47
120	Band-Bending at the Graphene–SiC Interfaces: Effect of the Substrate. Japanese Journal of Applied Physics, 2010, 49, 01AH05.	0.8	10
121	Electrostatic transfer of patterned epitaxial graphene from SiC(0001) to glass. New Journal of Physics, 2010, 12, 125016.	1.2	9
122	Interface structure of graphene on SiC: an ab initio and STM approach. Journal Physics D: Applied Physics, 2010, 43, 374008.	1.3	22
123	Current status of self-organized epitaxial graphene ribbons on the C face of 6H–SiC substrates. Journal Physics D: Applied Physics, 2010, 43, 374011.	1.3	29
124	Large-Diameter Graphene Nanotubes Synthesized Using Ni Nanowire Templates. Nano Letters, 2010, 10, 4844-4850.	4.5	101
125	Electro-oxidized Epitaxial Graphene Channel Field-Effect Transistors with Single-Walled Carbon Nanotube Thin Film Gate Electrode. Journal of the American Chemical Society, 2010, 132, 14429-14436.	6.6	38
126	Epitaxial Graphene on SiC(0001): More than Just Honeycombs. Physical Review Letters, 2010, 105, 085502	. 2.9	124
127	Graphene Synthesis on Cubic SiC/Si Wafers. Perspectives for Mass Production of Graphene-Based Electronic Devices. Nano Letters, 2010, 10, 992-995.	4.5	199
128	Novel Liquid Precursor-Based Facile Synthesis of Large-Area Continuous, Single, and Few-Layer Graphene Films. Chemistry of Materials, 2010, 22, 3457-3461.	3.2	239
129	Structural and electronic properties of epitaxial graphene on SiC(0 0 0 1): a review of growth, characterization, transfer doping and hydrogen intercalation. Journal Physics D: Applied Physics, 2010, 43, 374009.	1.3	437
130	Fabrication of graphene devices, issues and prospects. , 2010, , .		0
131	Structural and frictional properties of graphene films on SiC(0001) studied by atomic force microscopy. Physical Review B, 2010, 81, .	1.1	143
132	Transferable Graphene Oxide Films with Tunable Microstructures. ACS Nano, 2010, 4, 7367-7372.	7.3	135
133	Epitaxial few-layer graphene: towards single crystal growth. Journal Physics D: Applied Physics, 2010, 43, 374005.	1.3	106
134	A study of the synthetic methods and properties of graphenes. Science and Technology of Advanced Materials, 2010, 11, 054502.	2.8	164

#	ARTICLE	IF	CITATIONS
135	A roadmap to high quality chemically prepared graphene. Journal Physics D: Applied Physics, 2010, 43, 374015.	1.3	57
136	Epitaxial graphene electronic structure and transport. Journal Physics D: Applied Physics, 2010, 43, 374007.	1.3	119
137	Multilayer epitaxial graphene grown on the surface; structure and electronic properties. Journal Physics D: Applied Physics, 2010, 43, 374006.	1.3	66
138	Electron-electron interactions in decoupled graphene layers. Physical Review B, 2010, 82, .	1.1	58
139	Plasmon damping below the Landau regime: the role of defects in epitaxial graphene. New Journal of Physics, 2010, 12, 033017.	1.2	68
140	Facile and controllable electrochemical reduction of graphene oxide and its applications. Journal of Materials Chemistry, 2010, 20, 743-748.	6.7	787
141	Efficient Preparation of Large-Area Graphene Oxide Sheets for Transparent Conductive Films. ACS Nano, 2010, 4, 5245-5252.	7.3	869
142	Unzipping of Graphene by Fluorination. Journal of Physical Chemistry Letters, 2010, 1, 1394-1397.	2.1	16
143	Selective formation of ABC-stacked graphene layers on SiC(0001). Physical Review B, 2010, 81, .	1.1	97
144	Comparison of graphene formation on C-face and Si-face SiC {0001} surfaces. Physical Review B, 2010, 82, .	1.1	76
145	Layer-by-Layer Transfer of Multiple, Large Area Sheets of Graphene Grown in Multilayer Stacks on a Single SiC Wafer. ACS Nano, 2010, 4, 5591-5598.	7.3	65
146	Effects due to backscattering and pseudogap features in graphene nanoribbons with single vacancies. Physical Review B, 2010, 81, .	1.1	54
147	Surface transfer hole doping of epitaxial graphene using MoO3 thin film. Applied Physics Letters, 2010, 96, .	1.5	130
148	Electronic transport in chemical vapor deposited graphene synthesized on Cu: Quantum Hall effect and weak localization. Applied Physics Letters, 2010, 96, .	1.5	160
149	Anisotropic layer-by-layer growth of graphene on vicinal SiC(0001) surfaces. Physical Review B, 2010, 81, .	1.1	99
150	Fabrication and Evaluation of Solution-Processed Reduced Graphene Oxide Electrodes for p- and n-Channel Bottom-Contact Organic Thin-Film Transistors. ACS Nano, 2010, 4, 6343-6352.	7.3	69
151	Nucleation of Epitaxial Graphene on SiC(0001). ACS Nano, 2010, 4, 153-158.	7.3	159
152	Graphene/Polyurethane Nanocomposites for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials, 2010, 22, 3441-3450.	3.2	1,242

#	Article	IF	CITATIONS
153	Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process. Nano Letters, 2010, 10, 4328-4334.	4.5	896
154	Observation of Plasmarons in Quasi-Freestanding Doped Graphene. Science, 2010, 328, 999-1002.	6.0	375
155	Metal-Free Carbon Nanomaterials Become More Active than Metal Catalysts and Last Longer. Journal of Physical Chemistry Letters, 2010, 1, 2165-2173.	2.1	529
156	Solvent-Assisted Thermal Reduction of Graphite Oxide. Journal of Physical Chemistry C, 2010, 114, 14819-14825.	1.5	264
157	Nanocarbonic transparent conductive films. Chemical Society Reviews, 2010, 39, 2477.	18.7	43
158	Two-dimensional carbon nanostructures: Fundamental properties, synthesis, characterization, and potential applications. Journal of Applied Physics, 2010, 108, .	1.1	258
159	Atomic-scale observation of rotational misorientation in suspended few-layer graphene sheets. Nanoscale, 2010, 2, 700.	2.8	38
160	Selective adsorption and electronic interaction ofF16CuPcon epitaxial graphene. Physical Review B, 2010, 82, .	1.1	37
161	Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells. ACS Nano, 2010, 4, 1321-1326.	7.3	3,658
162	Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 2010, 10, 1542-1548.	4.5	439
163	Carbon Nanostructure-Based Field-Effect Transistors for Label-Free Chemical/Biological Sensors. Sensors, 2010, 10, 5133-5159.	2.1	145
164	Charge neutrality and band-gap tuning of epitaxial graphene on SiC by molecular doping. Physical Review B, 2010, 81, .	1.1	395
165	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432.	1.5	1,230
165 166	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432. Laser-Synthesized Epitaxial Graphene. ACS Nano, 2010, 4, 7524-7530.	1.5 7.3	1,2 30 79
165 166 167	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432. Laser-Synthesized Epitaxial Graphene. ACS Nano, 2010, 4, 7524-7530. Transmission electron microscopy investigations of epitaxial graphene on C-terminated 4H–SiC. Journal of Applied Physics, 2010, 108, .	1.5 7.3 1.1	1,230 79 35
165 166 167 168	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432. Laser-Synthesized Epitaxial Graphene. ACS Nano, 2010, 4, 7524-7530. Transmission electron microscopy investigations of epitaxial graphene on C-terminated 4H–SiC. Journal of Applied Physics, 2010, 108, . Graphene and its one-dimensional patterns: from basic properties towards applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 033001.	1.5 7.3 1.1 0.7	1,230 79 35 6
165 166 167 168 169	Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. Journal of Physical Chemistry C, 2010, 114, 6426-6432. Laser-Synthesized Epitaxial Graphene. ACS Nano, 2010, 4, 7524-7530. Transmission electron microscopy investigations of epitaxial graphene on C-terminated 4H–SiC. Journal of Applied Physics, 2010, 108, . Graphene and its one-dimensional patterns: from basic properties towards applications. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2010, 1, 033001. The evolution of graphene-based electronic devices. International Journal of Smart and Nano Materials, 2010, 1, 201-223.	1.5 7.3 1.1 0.7 2.0	1,230 79 35 6 40

		CITATION RE	PORT	
#	Article		IF	CITATIONS
171	Quasi-Freestanding Graphene on SiC(0001). Materials Science Forum, 0, 645-648, 629-	632.	0.3	46
172	Trends in low energy electron microscopy. Journal of Physics Condensed Matter, 2010,	22, 084017.	0.7	69
173	Epitaxial graphene on 3C-SiC(111) pseudosubstrate: Structural and electronic propertie Review B, 2010, 82, .	2s. Physical	1.1	57
174	Epitaxial graphene on silicon substrates. Journal Physics D: Applied Physics, 2010, 43, 3	74012.	1.3	107
175	Epitaxial Graphenes on Silicon Carbide. MRS Bulletin, 2010, 35, 296-305.		1.7	180
176	Charge transfer between epitaxial graphene and silicon carbide. Applied Physics Letters	, 2010, 97, .	1.5	145
177	Graphene on a Hydrophobic Substrate: Doping Reduction and Hysteresis Suppression L Conditions. Nano Letters, 2010, 10, 1149-1153.	nder Ambient	4.5	390
178	Conductance Anisotropy in Epitaxial Graphene Sheets Generated by Substrate Interacti Letters, 2010, 10, 1559-1562.	ons. Nano	4.5	97
179	Epitaxial graphene on 4H-SiC by pulsed electron irradiation. Chemical Communications,	2010, 46, 4917.	2.2	14
180	A critical review of growth of low-dimensional carbon nanostructures on SiC (0 0â4 growth environment. Journal Physics D: Applied Physics, 2010, 43, 374004.	E‰O 1): impact of	1.3	19
181	Quasiclassical cyclotron resonance of Dirac fermions in highly doped graphene. Physica 2010, 82, .	l Review B,	1.1	86
182	Room-temperature Fano resonance tunable by chemical doping in few-layer graphene s chemical-vapor deposition. Physical Review B, 2010, 82, .	ynthesized by	1.1	16
183	Wafer-scale epitaxial graphene growth on the Si-face of hexagonal SiC (0001) for high transistors. Journal of Vacuum Science and Technology B:Nanotechnology and Microele 2010, 28, 985-992.	requency ectronics,	0.6	95
184	Half-Integer Quantum Hall Effect in Gate-Controlled Epitaxial Graphene Devices. Applied Express, 2010, 3, 075102.	l Physics	1.1	64
185	Growth dynamics and kinetics of monolayer and multilayer graphene on a 6H-SiC(0001 Physical Chemistry Chemical Physics, 2010, 12, 13522.) substrate.	1.3	39
186	Transport in kinked bi-layer graphene interconnects. , 2011, , .			Ο
187	Simple and scalable route for the †bottom-up' synthesis of few-layer graphene pla Journal of Materials Chemistry, 2011, 21, 3378.	itelets and thin films.	6.7	56
188	Control of epitaxy of graphene by crystallographic orientation of a Si substrate toward applications. Journal of Materials Chemistry, 2011, 21, 17242.	device	6.7	37

#	Article	IF	CITATIONS
189	Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16900-16905.	3.3	395
190	Epitaxial Graphene Growth on 3C–SiC(111)/AlN(0001)/Si(100). Electrochemical and Solid-State Letters, 2011, 14, K13.	2.2	20
191	Layer Number Determination and Thickness-Dependent Properties of Graphene Grown on SiC. IEEE Nanotechnology Magazine, 2011, 10, 1196-1201.	1.1	12
192	Mapping of Local Electrical Properties in Epitaxial Graphene Using Electrostatic Force Microscopy. Nano Letters, 2011, 11, 2324-2328.	4.5	82
193	Multicomponent magneto-optical conductivity of multilayer graphene on SiC. Physical Review B, 2011, 84, .	1.1	44
194	110 GHz measurement of large-area graphene integrated in low-loss microwave structures. Applied Physics Letters, 2011, 99, .	1.5	96
195	Large-Scale Deposition of Graphene With Dielectrophoresis. , 2011, , .		0
197	Graphene formation on step-free 4H-SiC(0001). Journal of Applied Physics, 2011, 110, .	1.1	11
198	Characterization of Graphene Grown on Bulk and Thin Film Nickel. Langmuir, 2011, 27, 13748-13753.	1.6	17
199	Epitaxial Graphene Transistors: Enhancing Performance via Hydrogen Intercalation. Nano Letters, 2011, 11, 3875-3880.	4.5	150
200	Terahertz Radiation Driven Chiral Edge Currents in Graphene. Physical Review Letters, 2011, 107, 276601.	2.9	118
201	Large-area homogeneous quasifree standing epitaxial graphene on SiC(0001): Electronic and structural characterization. Physical Review B, 2011, 84, .	1.1	103
202	Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films. Nanotechnology, 2011, 22, 085601.	1.3	81
203	Graphene directly grown on SiO <inf>2</inf> -based insulators. , 2011, , .		3
204	Magnetotransport Properties of Quasi-Free-Standing Epitaxial Graphene Bilayer on SiC: Evidence for Bernal Stacking. Nano Letters, 2011, 11, 3624-3628.	4.5	39
205	Catalyst-Free Direct Growth of Triangular Nano-Graphene on All Substrates. Journal of Physical Chemistry C, 2011, 115, 14488-14493.	1.5	59
206	Effective screening and the plasmaron bands in graphene. Physical Review B, 2011, 84, .	1.1	85
207	Effect of Coated Platinum Thickness on Hydrogen Detection Sensitivity of Graphene-Based Sensors. Electrochemical and Solid-State Letters, 2011, 14, K43.	2.2	51

#	Article	IF	CITATIONS
208	Graphene on Ni(111): Coexistence of Different Surface Structures. Journal of Physical Chemistry Letters, 2011, 2, 759-764.	2.1	158
209	Defect-like Structures of Graphene on Copper Foils for Strain Relief Investigated by High-Resolution Scanning Tunneling Microscopy. ACS Nano, 2011, 5, 4014-4022.	7.3	186
210	Conductance of Epitaxial Graphene Nanoribbons: Influence of Size Effects and Substrate Morphology. Journal of Physical Chemistry C, 2011, 115, 10230-10235.	1.5	20
211	Effect of SiC wafer miscut angle on the morphology and Hall mobility of epitaxially grown graphene. Applied Physics Letters, 2011, 98, .	1.5	37
212	Electrochemical Unzipping of Multi-walled Carbon Nanotubes for Facile Synthesis of High-Quality Graphene Nanoribbons. Journal of the American Chemical Society, 2011, 133, 4168-4171.	6.6	203
213	Effect of Substrate Roughness and Feedstock Concentration on Growth of Wafer-Scale Graphene at Atmospheric Pressure. Chemistry of Materials, 2011, 23, 1441-1447.	3.2	277
214	Electrical measurement of non-destructively p-type doped graphene using molybdenum trioxide. Applied Physics Letters, 2011, 99, .	1.5	36
215	Highly p-doped epitaxial graphene obtained by fluorine intercalation. Applied Physics Letters, 2011, 98, .	1.5	141
216	Carbon-Based Materials: Growth, Properties, MEMS/NEMS Technologies, and MEM/NEM Switches. Critical Reviews in Solid State and Materials Sciences, 2011, 36, 66-101.	6.8	55
217	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786.	18.7	186
217 219	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786. Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900.	18.7 4.5	186 68
217 219 220	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786. Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900. Strong metal adatom–substrate interaction of Gd and Fe with graphene. Journal of Physics Condensed Matter, 2011, 23, 045005.	18.7 4.5 0.7	186 68 30
217 219 220 221	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786.Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900.Strong metal adatom–substrate interaction of Gd and Fe with graphene. Journal of Physics Condensed Matter, 2011, 23, 045005.Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion. ACS Nano, 2011, 5, 6102-6108.	18.7 4.5 0.7 7.3	186 68 30 56
217 219 220 221 222	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786.Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900.Strong metal adatom–substrate interaction of Gd and Fe with graphene. Journal of Physics Condensed Matter, 2011, 23, 045005.Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion. ACS Nano, 2011, 5, 6102-6108.Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617.	18.7 4.5 0.7 7.3 6.6	186 68 30 56 149
 217 219 220 221 222 222 223 	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786.Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900.Strong metal adatomâ€"substrate interaction of Gd and Fe with graphene. Journal of Physics Condensed Matter, 2011, 23, 045005.Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion. ACS Nano, 2011, 5, 6102-6108.Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617.Technology and Application Opportunities for SiC-FET Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2011, , 189-214.	 18.7 4.5 0.7 7.3 6.6 0.5 	 186 68 30 56 149 4
217 219 220 221 222 223 223	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786. Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900. Strong metal adatomãe ^{ce} substrate interaction of Cd and Fe with graphene. Journal of Physics Condensed Matter, 2011, 23, 045005. Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion. ACS Nano, 2011, 5, 6102-6108. Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617. Technology and Application Opportunities for SiC-FET Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2011, 189-214. Fabrication of Uniform Graphene Discs <i>via</i>	 18.7 4.5 0.7 7.3 6.6 0.5 7.3 	 186 68 30 56 149 4 24
 217 219 220 221 222 223 224 225 	Electronic conduction in polymers, carbon nanotubes and graphene. Chemical Society Reviews, 2011, 40, 3786. Single Terrace Growth of Graphene on a Metal Surface. Nano Letters, 2011, 11, 1895-1900. Strong metal adatomãé"substrate interaction of Cd and Fe with graphene. Journal of Physics Condensed Matter, 2011, 23, 045005. Scanning Tunneling Microscopy and X-ray Photoelectron Spectroscopy Studies of Graphene Films Prepared by Sonication-Assisted Dispersion. ACS Nano, 2011, 5, 6102-6108. Multivalent Binding Motifs for the Noncovalent Functionalization of Graphene. Journal of the American Chemical Society, 2011, 133, 17614-17617. Technology and Application Opportunities for SiC-FET Gas Sensors. Springer Series on Chemical Sensors and Biosensors, 2011, , 189-214. Fabrication of Uniform Graphene Discs Scanversion of Self-Assembled Monolayers into Nanocrystalline Graphene: Structure and Electric Transport. ACS Nano, 2011, 5, 3896-3904.	 18.7 4.5 0.7 7.3 6.6 0.5 7.3 7.3 	 186 68 30 56 149 4 24 97

#	Article	IF	CITATIONS
227	One step hydrothermal synthesis of TiO2-reduced graphene oxide sheets. Journal of Materials Chemistry, 2011, 21, 3415.	6.7	459
228	Controllable growth of shaped graphene domains by atmospheric pressure chemical vapour deposition. Nanoscale, 2011, 3, 4946.	2.8	37
229	Nonlocal Screening of Plasmons in Graphene by Semiconducting and Metallic Substrates: First-Principles Calculations. Physical Review Letters, 2011, 106, 146803.	2.9	73
230	Si diffusion path for pit-free graphene growth on SiC(0001). Physical Review B, 2011, 84, .	1.1	35
231	Synthesis of polymer-protected graphene by solvent-assisted thermal reduction process. Nanotechnology, 2011, 22, 345601.	1.3	30
233	Effects of substrate orientation on the structural and electronic properties of epitaxial graphene on SiC(0001). Applied Physics Letters, 2011, 98, .	1.5	19
234	High-transconductance graphene solution-gated field effect transistors. Applied Physics Letters, 2011, 99, .	1.5	78
235	Direct growth of nanographene on glass and postdeposition size control. Applied Physics Letters, 2011, 98, .	1.5	19
236	Room temperature ferromagnetism in partially hydrogenated epitaxial graphene. Applied Physics Letters, 2011, 98, .	1.5	126
237	High Throughput Preparation of Large Area Transparent Electrodes Using Non-Functionalized Graphene Nanoribbons. Chemistry of Materials, 2011, 23, 935-939.	3.2	22
238	Graphene: fabrication methods and thermophysical properties. Physics-Uspekhi, 2011, 54, 227-258.	0.8	135
239	Production of Extended Single-Layer Graphene. ACS Nano, 2011, 5, 1522-1528.	7.3	93
240	Polyelectrolyte-Induced Reduction of Exfoliated Graphite Oxide: A Facile Route to Synthesis of Soluble Graphene Nanosheets. ACS Nano, 2011, 5, 1785-1791.	7.3	293
241	Local Voltage Drop in a Single Functionalized Graphene Sheet Characterized by Kelvin Probe Force Microscopy. Nano Letters, 2011, 11, 3543-3549.	4.5	79
242	Sharp interface in epitaxial graphene layers on 3 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mi>C</mml:mi></mml:mrow>-SiC(100)/Si(100) wafers. Physical Review B, 2011, 83, .</mml:math 	1.1	45
243	Transparent Conductive Films Consisting of Ultralarge Graphene Sheets Produced by Langmuir–Blodgett Assembly. ACS Nano, 2011, 5, 6039-6051.	7.3	394
244	Atomic-Scale Characterization of Graphene Grown on Copper (100) Single Crystals. Journal of the American Chemical Society, 2011, 133, 12536-12543.	6.6	154
245	Graphenes Converted from Polymers. Journal of Physical Chemistry Letters, 2011, 2, 493-497.	2.1	158

#	Article	IF	CITATIONS
246	Preparation of Quasi-Free-Standing Graphene with a Super Large Interlayer Distance by Methane Intercalation. Journal of Physical Chemistry C, 2011, 115, 20538-20545.	1.5	9
247	Electron–electron interaction in high-quality epitaxial graphene. New Journal of Physics, 2011, 13, 113005.	1.2	6
248	Quasi-Free-Standing Epitaxial Graphene on SiC (0001) by Fluorine Intercalation from a Molecular Source. ACS Nano, 2011, 5, 7662-7668.	7.3	96
249	Graphene fixed-end beam arrays based on mechanical exfoliation. Applied Physics Letters, 2011, 98, .	1.5	49
251	Effects of Polycrystalline Cu Substrate on Graphene Growth by Chemical Vapor Deposition. Nano Letters, 2011, 11, 4547-4554.	4.5	426
252	Decorating graphene sheets with Pt nanoparticles using sodium citrate as reductant. Applied Surface Science, 2011, 257, 10758-10762.	3.1	47
253	Rational Design of Hybrid Graphene Films for High-Performance Transparent Electrodes. ACS Nano, 2011, 5, 6472-6479.	7.3	290
254	Helicity-dependent photocurrents in graphene layers excited by midinfrared radiation of a CO <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:msub><mml:mrow></mml:mrow><mml:mn>2</mml:mn></mml:msub></mml:math> laser. Physical Review B. 2011. 84	1.1	84
255	A role for graphene in silicon-based semiconductor devices. Nature, 2011, 479, 338-344.	13.7	667
256	Long-Range Ordered Single-Crystal Graphene on High-Quality Heteroepitaxial Ni Thin Films Grown on MgO(111). Nano Letters, 2011, 11, 79-84.	4.5	141
257	Wafer-Scale Graphene Integrated Circuit. Science, 2011, 332, 1294-1297.	6.0	812
258	Graphene oxide windows for in situ environmental cell photoelectron spectroscopy. Nature Nanotechnology, 2011, 6, 651-657.	15.6	197
259	Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology. IEEE Electron Device Letters, 2011, 32, 1343-1345.	2.2	80
260	Graphene on Ir(111) characterized by angle-resolved photoemission. Physical Review B, 2011, 84, .	1.1	97
261	Chemical Vapor Deposition and Etching of High-Quality Monolayer Hexagonal Boron Nitride Films. ACS Nano, 2011, 5, 7303-7309.	7.3	183
262	Comparison of Epitaxial Graphene on Si-face and C-face 6H-SiC. Materials Research Society Symposia Proceedings, 2011, 1284, 51.	0.1	0
264	Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, 2011, 332, 228-231.	6.0	997
265	Graphene Epitaxy by Chemical Vapor Deposition on SiC. Nano Letters, 2011, 11, 1786-1791.	4.5	296

		ITATION RE	PORT	
#	Article		IF	CITATIONS
266	Epitaxial Graphene on SiC(0001). Nanoscience and Technology, 2011, , 135-159.		1.5	1
267	GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES. International Journal of Modern Ph B, 2011, 25, 4107-4143.	ysics	1.0	25
268	Drop-Casted Self-Assembling Graphene Oxide Membranes for Scanning Electron Microscopy on We and Dense Gaseous Samples. ACS Nano, 2011, 5, 10047-10054.	t	7.3	115
269	From graphite oxide to highly water dispersible functionalized graphene by single step plant extract-induced deoxygenation. Green Chemistry, 2011, 13, 1990.		4.6	146
270	Graphene growth with giant domains using chemical vapor deposition. CrystEngComm, 2011, 13, 6	933.	1.3	19
271	High-throughput production of pristine graphene in an aqueous dispersion assisted by non-ionic surfactants. Carbon, 2011, 49, 1653-1662.		5.4	461
272	Supercritical Fluid Processing of Graphene and Graphene Oxide. , 2011, , .			3
273	Epitaxial Graphene on SiC(0001): More Than Just Honeycombs. , 0, , .			1
274	Synthesis of Graphenes with Arc-Discharge Method. , 0, , .			9
275	Chemical Vapor Deposition of Graphene. , 0, , .			16
276	Epitaxial Growth of Graphene on SiC Surfaces. Hyomen Kagaku, 2011, 32, 381-386.		0.0	0
277	Graphene: Synthesis, Functionalization and Properties. , 2011, , 1-32.			1
278	Investigation of Graphene Field Effect Transistors with Al ₂ O ₃ Gate Dielectrics Formed by Metal Oxidation. Japanese Journal of Applied Physics, 2011, 50, 070111.		0.8	5
279	Room Temperature Logic Inverter on Epitaxial Graphene-on-Silicon Device. Japanese Journal of Applic Physics, 2011, 50, 070113.	ed	0.8	31
280	Covalent bulk functionalization of graphene. Nature Chemistry, 2011, 3, 279-286.		6.6	596
281	Bottom-gated epitaxial graphene. Nature Materials, 2011, 10, 357-360.		13.3	74
282	Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nature Materials, 2011, 10, 443-449.		13.3	1,356
283	Giant Faraday rotation in single- and multilayer graphene. Nature Physics, 2011, 7, 48-51.		6.5	521

#	Article	IF	CITATIONS
284	Electrical properties and applications of carbon based nanocomposite materials: An overview. Surface and Coatings Technology, 2011, 206, 727-733.	2.2	71
285	Flame synthesis of graphene films in open environments. Carbon, 2011, 49, 5064-5070.	5.4	90
286	Fabrication of graphene films on TiO2 nanotube arrays for photocatalytic application. Carbon, 2011, 49, 5312-5320.	5.4	127
287	Graphene Sensors. IEEE Sensors Journal, 2011, 11, 3161-3170.	2.4	364
288	Solution processing of transparent conductors: from flask to film. Chemical Society Reviews, 2011, 40, 5406.	18.7	335
289	Graphene Formation by Decomposition of C ₆₀ . Journal of Physical Chemistry C, 2011, 115, 7472-7476.	1.5	29
290	Graphene nanosheet: synthesis, molecular engineering, thin film, hybrids, and energy and analytical applications. Chemical Society Reviews, 2011, 40, 2644.	18.7	1,195
291	Strain and charge carrier coupling in epitaxial graphene. Physical Review B, 2011, 84, .	1.1	54
292	Electronic transport in two-dimensional graphene. Reviews of Modern Physics, 2011, 83, 407-470.	16.4	2,857
293	GRAPHENE: SYNTHESIS, FUNCTIONALIZATION AND PROPERTIES. Modern Physics Letters B, 2011, 25, 427-451.	1.0	39
		1.0	
294	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321.	5.8	220
294 295	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321. Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611.	5.8	220 160
294 295 296	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321. Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611. Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates. Nanoscale Research Letters, 2011, 6, 141.	5.8 5.8 3.1	220 160 5
294 295 296 297	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321. Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611. Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates. Nanoscale Research Letters, 2011, 6, 141. Multiscale investigation of graphene layers on 6H-SiC(000-1). Nanoscale Research Letters, 2011, 6, 171.	 5.8 5.8 3.1 3.1 	220 160 5 17
294 295 296 297 298	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321. Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611. Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates. Nanoscale Research Letters, 2011, 6, 141. Multiscale investigation of graphene layers on 6H-SiC(000-1). Nanoscale Research Letters, 2011, 6, 171. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Research Letters, 2011, 6, 269.	 5.8 5.8 3.1 3.1 3.1 	 220 160 5 17 50
294 295 296 297 298	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321. Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611. Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates. Nanoscale Research Letters, 2011, 6, 141. Multiscale investigation of graphene layers on 6H-SiC(000-1). Nanoscale Research Letters, 2011, 6, 171. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Research Letters, 2011, 6, 269. Growth and characterization of graphene by chemical reduction of graphene oxide in solution. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2335-2338.	 5.8 5.8 3.1 3.1 3.1 0.8 	220 160 5 17 50
 294 295 296 297 298 299 300 	Catalyst-free growth of nanographene films on various substrates. Nano Research, 2011, 4, 315-321. Sodium citrate: A universal reducing agent for reduction / decoration of graphene oxide with au nanoparticles. Nano Research, 2011, 4, 599-611. Multidimensional characterization, Landau levels and Density of States in epitaxial graphene grown on SiC substrates. Nanoscale Research Letters, 2011, 6, 141. Multiscale investigation of graphene layers on 6H-SiC(000-1). Nanoscale Research Letters, 2011, 6, 171. Nanoscale structural characterization of epitaxial graphene grown on off-axis 4H-SiC (0001). Nanoscale Research Letters, 2011, 6, 269. Growth and characterization of graphene by chemical reduction of graphene oxide in solution. Physica Status Solidi (A) Applications and Materials Science, 2011, 208, 2335-2338. Growth temperature dependence of the electrical and structural properties of epitaxial graphene on SiC(0001). Physica Status Solidi (B): Basic Research, 2011, 248, 1908-1914.	 5.8 5.8 3.1 3.1 0.8 0.7 	 220 160 5 17 50 19 13

#	Article	IF	CITATIONS
302	Grapheneâ€Based Materials: Synthesis, Characterization, Properties, and Applications. Small, 2011, 7, 1876-1902.	5.2	2,239
303	Carbideâ€Derived Carbons – From Porous Networks to Nanotubes and Graphene. Advanced Functional Materials, 2011, 21, 810-833.	7.8	585
304	Functional Composite Materials Based on Chemically Converted Graphene. Advanced Materials, 2011, 23, 1089-1115.	11.1	973
305	Bandgap Engineering of Graphene by Physisorbed Adsorbates. Advanced Materials, 2011, 23, 2638-2643.	11.1	80
306	The Potential of Perylene Bisimide Derivatives for the Solubilization of Carbon Nanotubes and Graphene. Advanced Materials, 2011, 23, 2588-2601.	11.1	92
307	Metal Nanostructure Formation on Graphene: Weak versus Strong Bonding. Advanced Materials, 2011, 23, 2082-2087.	11.1	69
308	Inking Elastomeric Stamps with Microâ€Patterned, Single Layer Graphene to Create Highâ€Performance OFETs. Advanced Materials, 2011, 23, 3531-3535.	11.1	100
309	Evidence for a New Twoâ€Dimensional C ₄ Hâ€Type Polymer Based on Hydrogenated Graphene. Advanced Materials, 2011, 23, 4497-4503.	11.1	90
311	Towards Tunable Graphene/Phthalocyanine–PPV Hybrid Systems. Angewandte Chemie - International Edition, 2011, 50, 3561-3565.	7.2	122
312	Role of extended defected SiC interface layer on the growth of epitaxial graphene on SiC. Carbon, 2011, 49, 631-635.	5.4	17
313	Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon, 2011, 49, 4122-4130.	5.4	283
314	The production of SiC nanowalls sheathed with a few layers of strained graphene and their use in heterogeneous catalysis and sensing applications. Carbon, 2011, 49, 4911-4919.	5.4	31
315	Controlled growth of metal-free vertically aligned CNT arrays on SiC surfaces. Chemical Physics Letters, 2011, 503, 247-251.	1.2	9
316	Electrochemical reduction of graphene oxide in organic solvents. Electrochimica Acta, 2011, 56, 5363-5368.	2.6	88
317	New synthesis method for the growth of epitaxial graphene. Journal of Electron Spectroscopy and Related Phenomena, 2011, 184, 100-106.	0.8	79
318	Diameter controlled growth of single-walled carbon nanotubes from SiO2 nanoparticles. Carbon, 2011, 49, 3316-3324.	5.4	63
319	Synthesis of graphene oxide-based biocomposites through diimide-activated amidation. Journal of Colloid and Interface Science, 2011, 356, 543-549.	5.0	57
320	Wide-range temperature dependence of epitaxial graphene growth on 4H-SiC (000â^'1): A study of ridge structures formation dynamics associated with temperature. Journal of Crystal Growth, 2011, 318, 590-594.	0.7	9

#	Article	IF	CITATIONS
321	Theoretical Calculation of Optical Absorption Spectrum for Armchair Graphene Nanoribbon. Procedia Engineering, 2011, 8, 25-29.	1.2	16
322	Graphene based materials: Past, present and future. Progress in Materials Science, 2011, 56, 1178-1271.	16.0	3,063
323	Hydrogen detection using platinum coated graphene grown on SiC. Sensors and Actuators B: Chemical, 2011, 157, 500-503.	4.0	98
324	Transport properties of high-quality epitaxial graphene on 6H-SiC(0001). Solid State Communications, 2011, 151, 1061-1064.	0.9	20
325	Engineering and metrology of epitaxial graphene. Solid State Communications, 2011, 151, 1094-1099.	0.9	23
326	Electronic properties of grains and grain boundaries in graphene grown by chemical vapor deposition. Solid State Communications, 2011, 151, 1100-1104.	0.9	119
327	Adsorption and desorption of fullerene on graphene/SiC(0001). Surface Science, 2011, 605, 649-653.	0.8	3
328	Hydrogen intercalation of graphene grown on 6H-SiC(0001). Surface Science, 2011, 605, 1662-1668.	0.8	94
329	Formation of wide and atomically flat graphene layers on ultraprecision-figured 4H-SiC(0001) surfaces. Surface Science, 2011, 605, 597-605.	0.8	26
330	Nano-structures developing at the graphene/silicon carbide interface. Surface Science, 2011, 605, L6-L11.	0.8	7
331	Strain-induced pseudo-magnetic fields and charging effects on CVD-grown graphene. Surface Science, 2011, 605, 1649-1656.	0.8	57
332	Transmission Electron Microscopy and Raman-Scattering Spectroscopy Observation on the Interface Structure of Graphene Formed on Si Substrates with Various Orientations. Japanese Journal of Applied Physics, 2011, 50, 04DH02.	0.8	15
333	Quantum inductance and high frequency oscillators in graphene nanoribbons. Nanotechnology, 2011, 22, 165203.	1.3	13
334	Sheet plasmons in modulated graphene on Ir(111). New Journal of Physics, 2011, 13, 053006.	1.2	66
335	The influence of high dielectric constant aluminum oxide sputter deposition on the structure and properties of multilayer epitaxial graphene. Nanotechnology, 2011, 22, 205703.	1.3	14
336	Observation of Band Gap in Epitaxial Bilayer Graphene Field Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 04DN04.	0.8	16
337	Growth temperature dependent graphene alignment on Ir(111). Applied Physics Letters, 2011, 98, .	1.5	95
338	Selective graphene growth from DLC thin film patterned by focused-ion-beam chemical vapor deposition. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29. 06FG04.	0.6	7

#	Article	IF	Citations
339	Ambipolar doping in quasifree epitaxial graphene on SiC(0001) controlled by Ge intercalation. Physical Review B, 2011, 84, .	1.1	164
340	Carrier Scattering from Dynamical Magnetoconductivity in Quasineutral Epitaxial Graphene. Physical Review Letters, 2011, 107, 216603.	2.9	57
341	Large area quasi-free standing monolayer graphene on 3C-SiC(111). Applied Physics Letters, 2011, 99, .	1.5	62
342	Epitaxial growth of graphene on Ir(111) by liquid precursor deposition. Physical Review B, 2011, 84, .	1.1	22
343	Stacking of adjacent graphene layers grown on C-face SiC. Physical Review B, 2011, 84, .	1.1	53
344	The catalytic potential of high- $\hat{l}^{ m e}$ dielectrics for graphene formation. Applied Physics Letters, 2011, 98, .	1.5	63
345	Fabrication and performance of graphene nanoelectromechanical systems. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2011, 29, .	0.6	55
346	Influence of the silicon carbide surface morphology on the epitaxial graphene formation. Applied Physics Letters, 2011, 99, 111901.	1.5	52
347	Theory and hierarchical calculations of the structure and energetics of [0001] tilt grain boundaries in graphene. Physical Review B, 2011, 84, .	1.1	84
348	The quasi-free-standing nature of graphene on H-saturated SiC(0001). Applied Physics Letters, 2011, 99, .	1.5	232
349	Electrical characteristics of wrinkle-free graphene formed by laser graphitization of 4H-SiC. Applied Physics Letters, 2011, 99, 082111.	1.5	13
350	Surface morphology and transport studies of epitaxial graphene on SiC(0001̲). Physical Review B, 2011, 83, .	1.1	10
351	Carrier transport mechanism in graphene on SiC(0001). Physical Review B, 2011, 84, .	1.1	85
352	Quantum Hall Effect in Twisted Bilayer Graphene. Physical Review Letters, 2011, 107, 216602.	2.9	104
353	Formation mechanism of graphene layers on SiC (000 <mml:math) (<="" 0="" 10="" 192="" 50="" etqq0="" overlock="" rgbt="" td="" tf="" tj=""><td>xmlns:mm 1.1</td><td>ll="http://ww 52</td></mml:math)>	xmlns:mm 1.1	ll="http://ww 52
954	in a high-pressure argon atmosphere. Physical Review B, 2011, 84, . Model for the epitaxial growth of graphene on 6 < mml:math	11	9.9
- 334	display="inline"> <mml:mi>H</mml:mi> -SiC(0001). Physical Review B, 2011, 84, .	1.1	20
355	Role of covalent and metallic intercalation on the electronic properties of epitaxial graphene on SiC(0001). Physical Review B, 2011, 84, .	1.1	47
356	Atomic force microscopy at ambient and liquid conditions with stiff sensors and small amplitudes. Review of Scientific Instruments, 2011, 82, 093703.	0.6	38

#	Article	IF	CITATIONS
357	Kelvin probe microscopy and electronic transport in graphene on SiC(0001) in the minimum conductivity regime. Applied Physics Letters, 2011, 98, .	1.5	38
358	Initial stages of graphitization on SiC(000-1), as studied by phase atomic force microscopy. Journal of Applied Physics, 2011, 109, 054307.	1.1	13
359	Oxygen sensors made by monolayer graphene under room temperature. Applied Physics Letters, 2011, 99, 243502.	1.5	116
360	Epitaxial growth and characterization of graphene on free-standing polycrystalline 3C-SiC. Journal of Applied Physics, 2011, 110, 014308.	1.1	22
361	Single-layer metallicity and interface magnetism of epitaxial graphene on SiC(0001Â ⁻). Applied Physics Letters, 2011, 98, 023113.	1.5	8
362	Nanobaguettes Single Epitaxial Graphene Layers on SiC(11-20). Materials Science Forum, 0, 679-680, 781-784.	0.3	2
363	Graphene growth on SiC and other substrates using carbon sources. Materials Research Society Symposia Proceedings, 2011, 1284, 3.	0.1	0
364	Influence of Intercalated Silicon on the Transport Properties of Graphene. Materials Science Forum, 2011, 679-680, 793-796.	0.3	1
365	Electronic transport properties of top-gated monolayer and bilayer graphene devices on SiC. Materials Research Society Symposia Proceedings, 2011, 1283, 1.	0.1	2
366	Local Electrical Properties of the 4H-SiC(0001)/Graphene Interface. Materials Science Forum, 0, 679-680, 769-776.	0.3	3
367	Raman analysis of epitaxial graphene grown on 4H—SiC (0001) substrate under low pressure condition. Chinese Physics B, 2011, 20, 128101.	0.7	4
368	Low temperature CVD growth of graphene nano-flakes directly on high K dielectrics. Materials Research Society Symposia Proceedings, 2011, 1284, 19.	0.1	2
369	Nanoscale synthesis and characterization of graphene-based objects. Science and Technology of Advanced Materials, 2011, 12, 044611.	2.8	15
370	Raman analysis of epitaxial graphene on 6H-SiC (0001Ì") substrates under low pressure environment. Journal of Semiconductors, 2011, 32, 113003.	2.0	8
371	Cellular Interactions on Epitaxial Graphene on SiC (0001) Substrates. Materials Science Forum, 2011, 679-680, 831-834.	0.3	8
372	Transport Properties of Graphene with Nanoscale Lateral Resolution. Nanoscience and Technology, 2011, , 247-285.	1.5	9
373	Analysis of a Graphene/Ultrathin Graphite Heat Exchanger for Aerospace Thermal Management. , 2011, ,		0
374	Epitaxial graphene: A new electronic material for the 21st century. MRS Bulletin, 2011, 36, 632-639.	1.7	22

CITATION REPORT ARTICLE IF CITATIONS Fabrication of Li-intercalated bilayer graphene. AIP Advances, 2011, 1, . 0.6 98 Temperature Dependent Structural Evolution of Graphene Layers on 4H-SiC(0001). Materials Science 0.3 Forum, 0, 679-680, 797-800. A valley-filtering switch based on strained graphene. Journal of Physics Condensed Matter, 2011, 23, 0.7 33 385302. Semiconductor–Metal Transition and Band-Gap Tuning in Quasi-Free-Standing Epitaxial Bilayer Graphene on SiC. Journal of the Physical Society of Japan, 2011, 80, 024705. Current annealing and electrical breakdown of epitaxial graphene. Applied Physics Letters, 2011, 98, . 1.5 38 Mechanism of atomic-scale passivation and flattening of semiconductor surfaces by wet-chemical preparations. Journal of Physics Condensed Matter, 2011, 23, 394202. <i>Ab Initio</i>Study of Ge Intercalation in Epitaxial Graphene on SiC(0001). Applied Physics Express, 1.1 10 2011, 4, 125101. Structure and stability of the interface between graphene and 6H-SiC(0 0 0 â^1) (3Â×Â3): an STM and ab initio study. Journal Physics D: Applied Physics, 2012, 45, 154003. Diffusion of Si and C atoms on and between graphene layers. Journal Physics D: Applied Physics, 2012, 1.3 20 45, 455309. Large Area Quasi-Free Standing Monolayer Graphene on 3C-SiC(111). Materials Science Forum, 2012, 717-720, 617-620. Graphene on Carbon-Face SiÐ; {0001} Surfaces Formed in a Disilane Environment. Materials Science 0 0.3 Forum, 0, 717-720, 609-612. The structure of graphene grown on the SiC surface. Journal Physics D: Applied Physics, 2012, 45, 1.3 154002. Local Solid Phase Epitaxy of Few-Layer Graphene on Silicon Carbide. Materials Science Forum, 0, 0.3 3 717-720, 629-632. Almost Free Standing Graphene on SiC(000-1) and SiC(11-20). Materials Science Forum, 0, 711, 235-241. 0.3 Effect of surface morphology on the electron mobility of epitaxial graphene grown on O° and 8° 0.7 3 Si-terminated 4H-SiC substrates. Chinese Physics B, 2012, 21, 097304. Heat dissipation at a grapheneâ€"substrate interface. Journal of Physics Condensed Matter, 2012, 24, 48 475305. Rate of Belowground Carbon Allocation Differs with Successional Habit of Two Afromontane Trees.

Evidence of Electrochemical Graphene Functionalization by Raman Spectroscopy. Materials Science
 0.3 5
 Forum, 0, 717-720, 661-664.

1.1

11

PLoS ONE, 2012, 7, e45540.

#

375

376

377

378

379

381

383

384

385

387

389

	Сп	ration Report	
#	Article	IF	CITATIONS
394	The Registry of Graphene Layers Grown on SiC(000-1) Materials Science Forum, 0, 717-720, 613-616	. 0.3	0
395	Structural Characterization of Graphene Grown by Thermal Decomposition of Off-Axis 4H-SiC (0001). Materials Science Forum, 0, 711, 141-148.	0.3	3
396	Epitaxial Graphene on Si(111) Substrate Grown by Annealing 3C-SiC/Carbonized Silicon. Japanese Jour of Applied Physics, 2012, 51, 01AH05.	nal 0.8	6
397	Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions. Nanotechnology, 2012, 23, 395203.	1.3	4
398	Formation of graphene on SiC(0001 \hat{A}^-) surfaces in disilane and neon environments. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 04E102.	۱ 0.6	2
399	Phonon dispersion of quasi-freestanding graphene on Pt(111). Journal of Physics Condensed Matter, 2012, 24, 104025.	0.7	35
400	Manipulation of plasmon electron–hole coupling in quasi-free-standing epitaxial graphene layers. New Journal of Physics, 2012, 14, 103045.	1.2	13
401	Graphene layer growth on silicon substrates with nickel film by pulse arc plasma deposition. Applied Physics Letters, 2012, 101, .	1.5	24
402	The influence of substrate morphology on thickness uniformity and unintentional doping of epitaxial graphene on SiC. Applied Physics Letters, 2012, 100, .	1.5	45
403	Fabrication and photoluminescence of SiC quantum dots stemming from 3C, 6H, and 4H polytypes of bulk SiC. Applied Physics Letters, 2012, 101, .	1.5	68
404	Interface engineering of epitaxial graphene on SiC(0001Â ⁻) via fluorine intercalation: A first principles study. Applied Physics Letters, 2012, 100, .	1.5	14
405	Si intercalation/deintercalation of graphene on 6 <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>H</mml:mi>-SiC(0001). Physical Review B, 2012, 85, .</mml:math 	1.1	115
406	First-principles study of hydrogen and fluorine intercalation into graphene-SiC(0001) interface. Physical Review B, 2012, 86, .	1.1	33
407	Dynamics and modulation characteristics of graphene nanoribbon array lasers. , 2012, , .		0
408	Silicon intercalation into the graphene-SiC interface. Physical Review B, 2012, 85, .	1.1	28
409	Electrical Characterization of Bilayer Graphene Formed by Hydrogen Intercalation of Monolayer Graphene on SiC(0001). Japanese Journal of Applied Physics, 2012, 51, 02BN02.	0.8	17
410	Argon-assisted growth of epitaxial graphene on Cu(111). Physical Review B, 2012, 86, .	1.1	41
411	Buffer layer limited conductivity in epitaxial graphene on the Si face of SiC. Physical Review B, 2012, 8	6, 1.1	37

#	Article	IF	CITATIONS
412	Graphene functionalization and seeding for dielectric deposition and device integration. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2012, 30, 030801.	0.6	31
413	Anisotropic quantum Hall effect in epitaxial graphene on stepped SiC surfaces. Physical Review B, 2012, 85, .	1.1	38
414	First-principles calculation of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:msup><mml:mn>0</mml:mn><mml:mtext>th</mml:mtext></mml:msup>< graphene-like growth of C on SiC(0001). Physical Review B, 2012, 86, .</mml:mrow></mml:math>	/m mk mrov	w> ≰∲ mml:mat
415	Metal-to-Insulator Transition and Electron-Hole Puddle Formation in Disordered Graphene Nanoribbons. Physical Review Letters, 2012, 108, 066402.	2.9	29
416	Reversible hydrogenation of deuterium-intercalated quasi-free-standing graphene on SiC(0001). Physical Review B, 2012, 85, .	1.1	15
417	A switch for epitaxial graphene electronics: Utilizing the silicon carbide substrate as transistor channel. Applied Physics Letters, 2012, 100, 122102.	1.5	10
418	SELF-ASSEMBLY FABRICATION OF GRAPHENE-BASED MATERIALS WITH OPTICAL–ELECTRONIC, TRANSIENT OPTICAL AND ELECTROCHEMICAL PROPERTIES. International Journal of Nanoscience, 2012, 11, 1240032.	0.4	4
419	Metastable phase formation and structural evolution of epitaxial graphene grown on SiC(100) under a temperature gradient. Nanotechnology, 2012, 23, 175603.	1.3	3
420	Temperature dependence of the thickness and morphology of epitaxial graphene grown on SiC (0001) wafers. Chinese Physics B, 2012, 21, 046801.	0.7	5
421	Quantum Hall Effect and Carrier Scattering in Quasi-Free-Standing Monolayer Graphene. Applied Physics Express, 2012, 5, 125101.	1.1	28
422	Epitaxial growth of graphene on transition metal surfaces: chemical vapor deposition versus liquid phase deposition. Journal of Physics Condensed Matter, 2012, 24, 314204.	0.7	35
423	The physics of epitaxial graphene on SiC(0001). Journal of Physics Condensed Matter, 2012, 24, 314215.	0.7	23
424	Ca intercalated bilayer graphene as a thinnest limit of superconducting C ₆ Ca. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19610-19613.	3.3	132
425	Graphene Epitaxial growth on SiC(0001) for resistance standards. , 2012, , .		1
426	Layer-by-layer assembled transparent conductive graphene films for solar cells application. Materials Research Society Symposia Proceedings, 2012, 1451, 75-81.	0.1	0
427	Epitaxial graphene on silicon carbide: Introduction to structured graphene. MRS Bulletin, 2012, 37, 1138-1147.	1.7	56
428	Layer-by-Layer Assembled Transparent Conductive Graphene Films for Silicon Thin-Film Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 11PF01.	0.8	6
429	Experimental Review of Graphene. , 2012, 2012, 1-56.		404

TION

#	Article	IF	CITATIONS
430	Graphene: A Rising Star on the Horizon of Materials Science. International Journal of Electrochemistry, 2012, 2012, 1-12.	2.4	127
431	Graphene/SiC Interface Control Using Propane-Hydrogen CVD on 6H-SiC(0001) and 3C-SiC(111)/Si(111). Materials Science Forum, 2012, 711, 253-257.	0.3	4
432	CVD Growth of Graphene on 2'' 3C-SiC/Si Templates: Influence of Substrate Orientation and Wafer Homogeneity. Materials Science Forum, 0, 717-720, 621-624.	0.3	1
433	Gated Epitaxial Graphene Devices. Materials Science Forum, 2012, 717-720, 675-678.	0.3	0
434	Growth of large domain epitaxial graphene on the C-face of SiC. Journal of Applied Physics, 2012, 112, .	1.1	20
435	Comparison of the formation process and properties of epitaxial graphenes on Si- and C-face 6H—SiC substrates. Chinese Physics B, 2012, 21, 038102.	0.7	9
436	Low energy electron microscopy and photoemission electron microscopy investigation of graphene. Journal of Physics Condensed Matter, 2012, 24, 314209.	0.7	18
437	Progress in studies of graphene growth mechanism on transition-metal surfaces. Chinese Science Bulletin, 2012, 57, 987-994.	0.4	1
438	Nanoscale Control of Structural and Electronic Properties of Graphene through Substrate Interaction. Hyomen Kagaku, 2012, 33, 546-551.	0.0	0
439	Role of atomic terraces and steps in the electron transport properties of epitaxial graphene grown on SiC. AIP Advances, 2012, 2, .	0.6	21
440	Effect of e-beam irradiation on graphene layer grown by chemical vapor deposition. Journal of Applied Physics, 2012, 111, .	1.1	38
441	Graphene Photonics and Optoelectroncs. , 2012, , .		28
442	Graphene and Other Monolayer Structures. , 2012, , 271-288.		0
443	Preparation of Graphene Dispersion and Carbon Nanoscrolls. Chemistry Letters, 2012, 41, 606-608.	0.7	2
444	Direct Determination of the Chemical Bonding of Individual Impurities in Graphene. Physical Review Letters, 2012, 109, 206803.	2.9	222
445	Evidence for Interlayer Coupling and Moiré Periodic Potentials in Twisted Bilayer Graphene. Physical Review Letters, 2012, 109, 186807.	2.9	179
446	Graphene-based materials for energy applications. MRS Bulletin, 2012, 37, 1265-1272.	1.7	140
447	Engineering the electronic structure of epitaxial graphene by transfer doping and atomic intercalation. MRS Bulletin, 2012, 37, 1177-1186.	1.7	44

		CITATION R	EPORT	
#	Article		IF	CITATIONS
448	Graphene investigated by synchrotron radiation. MRS Bulletin, 2012, 37, 1203-1213.		1.7	5
449	Graphene from electrochemical exfoliation and its direct applications in enhanced ener devices. Chemical Communications, 2012, 48, 1239-1241.	rgy storage	2.2	131
450	An approach for synthesizing graphene with calcium carbonate and magnesium. Carbo 4939-4944.	ən, 2012, 50,	5.4	35
451	Electrochemical reduction of graphene oxide films: Preparation, characterization and t electrochemical properties. Science Bulletin, 2012, 57, 3045-3050.	heir	1.7	94
452	Epitaxial Graphene on 4H-SiC(0001) Grown under Nitrogen Flux: Evidence of Low Nitro High Charge Transfer. ACS Nano, 2012, 6, 10893-10900.	ogen Doping and	7.3	95
453	Growth and electronic structure of nitrogen-doped graphene on Ni(111). Physical Revi	ew B, 2012, 86, .	1.1	77
454	Electronic Transport in Graphene. , 2012, , 17-49.			0
455	Graphenes in chemical sensors and biosensors. TrAC - Trends in Analytical Chemistry, 2	.012, 39, 87-113.	5.8	190
456	Synthesis of Multilayer Graphene Balls by Carbon Segregation from Nickel Nanoparticl 2012, 6, 6803-6811.	es. ACS Nano,	7.3	160
457	Dispersible Graphene Oxide–Polymer Nanocomposites. RSC Nanoscience and Nanot 179-210.	echnology, 2012, ,	0.2	4
458	Synthesis of graphene-based nanomaterials and their application in energy-related and environmental-related areas. RSC Advances, 2012, 2, 9286.		1.7	226
459	Catalytic Growth of Graphene: Toward Large-Area Single-Crystalline Graphene. Journal Chemistry Letters, 2012, 3, 2228-2236.	of Physical	2.1	136
460	Large-Area and High-Quality Epitaxial Graphene on Off-Axis SiC Wafers. ACS Nano, 201	2, 6, 6075-6082.	7.3	97
461	A 3D Hexaporous Carbon Assembled from Single‣ayer Graphene as High Performand ChemSusChem, 2012, 5, 2159-2164.	ce Supercapacitor.	3.6	72
462	Friction and Wear on Single-Layer Epitaxial Graphene in Multi-Asperity Contacts. Tribol 2012, 48, 77-82.	ogy Letters,	1.2	98
463	Structured epitaxial graphene: growth and properties. Journal Physics D: Applied Physic 154010.	cs, 2012, 45,	1.3	36
465	Growth and electronic transport properties of epitaxial graphene on SiC. Journal Physic Physics, 2012, 45, 154008.	s D: Applied	1.3	38
466	Multilayer graphene growth by a metal-catalyzed crystallization of diamond-like carbor	n. , 2012, , .		0

#	Article	IF	Citations
467	Mechanism of Si intercalation in defective graphene on SiC. Journal of Materials Chemistry, 2012, 22, 23340.	6.7	25
468	Comparison of Epitaxial Graphene Growth on Polar and Nonpolar 6H-SiC Faces: On the Growth of Multilayer Films. Crystal Growth and Design, 2012, 12, 3379-3387.	1.4	30
469	Analysis of an Ultrathin Graphite-Based Compact Heat Exchanger. Heat Transfer Engineering, 2012, 33, 947-956.	1.2	9
470	Hydrogen silsesquioxane as a gate dielectric layer for SiC graphene FET. , 2012, , .		1
471	Tunable bands in biased multilayer epitaxial graphene. Nanoscale, 2012, 4, 2962.	2.8	17
472	Three-dimensional nano-foam of few-layer graphene grown by CVD for DSSC. Physical Chemistry Chemical Physics, 2012, 14, 7938.	1.3	106
473	Surface potential variations in epitaxial graphene devices investigated by Electrostatic Force Spectroscopy. , 2012, , .		7
474	Electronic transport at monolayer-bilayer junctions in epitaxial graphene on SiC. Physical Review B, 2012, 86, .	1.1	85
475	Origin of the relatively low transport mobility of graphene grown through chemical vapor deposition. Scientific Reports, 2012, 2, 337.	1.6	159
476	Interface Oxidative Structural Transitions in Graphene Growth on SiC (0001). Journal of Physical Chemistry C, 2012, 116, 15342-15347.	1.5	3
477	High Performance RF FETs Using High-k Dielectrics on Wafer-Scale Quasi-Free-Standing Epitaxial Graphene. Materials Science Forum, 2012, 717-720, 669-674.	0.3	0
478	Atmospheric Pressure, Temperature-Induced Conversion of Organic Monolayers into Nanocrystalline Graphene. Journal of Physical Chemistry C, 2012, 116, 12295-12303.	1.5	19
479	Microlitre scale solution processing for controlled, rapid fabrication of chemically derived graphene thin films. Journal of Materials Chemistry, 2012, 22, 3606.	6.7	48
480	Visible to vacuum ultraviolet dielectric functions of epitaxial graphene on 3C and 4H SiC polytypes determined by spectroscopic ellipsometry. Applied Physics Letters, 2012, 101, .	1.5	33
481	Single-layer behavior and slow carrier density dynamic of twisted graphene bilayer. Applied Physics Letters, 2012, 100, .	1.5	21
482	Micro- and Nano-Scale Electrical Characterization of Epitaxial Graphene on Off-Axis 4H-SiC (0001). Materials Science Forum, 0, 717-720, 637-640.	0.3	4
483	Plasma-Assisted Reduction of Graphene Oxide at Low Temperature and Atmospheric Pressure for Flexible Conductor Applications. Journal of Physical Chemistry Letters, 2012, 3, 772-777.	2.1	122
484	Competitive Growth and Etching of Epitaxial Graphene. Journal of Physical Chemistry C, 2012, 116, 26929-26931.	1.5	20

ARTICLE IF CITATIONS # Interplay of Wrinkles, Strain, and Lattice Parameter in Graphene on Iridium. Nano Letters, 2012, 12, 485 4.5 131 678-682. Graphene for energy harvesting/storage devices and printed electronics. Particuology, 2012, 10, 1-8. 486 Control of the degree of surface graphitization on 3C-SiC(100)/Si(100). Surface Science, 2012, 606, 487 0.8 19 217-220. Preservation of the Pt(100) surface reconstruction after growth of a continuous layer of graphene. 488 Surface Science, 2012, 606, 464-469. Scalable synthesis of graphene on single crystal Ir(111) films. Surface Science, 2012, 606, 1475-1480. 489 0.8 28 490 Highly ordered growth of PTCDA on epitaxial bilayer graphene. Surface Science, 2012, 606, 1709-1715. 0.8 Simultaneous electrochemical determination of uric acid, xanthine and hypoxanthine based on 491 2.9 127 poly(l-arginine)/graphene composite film modified electrode. Talanta, 2012, 93, 320-325. Effects of ambient conditions on the quality of graphene synthesized by chemical vapor deposition. 492 1.6 19 Vacuum, 2012, 86, 1867-1870. Enhanced ultraviolet response using graphene electrodes in organic solar cells. Applied Physics 493 1.5 8 Letters, 2012, 101, 063305. Identification of epitaxial graphene domains and adsorbed species in ambient conditions using 494 1.1 quantified topography measurements. Journal of Applied Physics, 2012, 112, 054308. Transfer-Free Electrical Insulation of Epitaxial Graphene from its Metal Substrate. Nano Letters, 2012, 495 120 4.512, 4503-4507. Polyaniline-Grafted Graphene Hybrid with Amide Groups and Its Use in Supercapacitors. Journal of 496 1.5 124 Phýsical Chemistry C, 2012, 116, 19699-19708. Observation of the quantum Hall effect in epitaxial graphene on SiC(0001) with oxygen adsorption. 497 1.5 30 Applied Physics Letters, 2012, 100, 253109. Surface modification of diamond-like carbon films to graphene under low energy ion beam irradiation. Applied Surface Science, 2012, 258, 2931-2934. 3.1 Spatial variation of the number of graphene layers formed on the scratched 6H–SiC(0001) surface. 499 3.15 Applied Surface Science, 2012, 258, 4672-4677. Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties. 3.1 Applied Surface Science, 2012, 258, 5299-5303. Growth mode and electric properties of graphene and graphitic phase grown by argon–propane assisted CVD on 3C–SiC/Si and 6H–SiC. Journal of Crystal Growth, 2012, 349, 27-35. 501 0.7 27 Band gap opening in methane intercalated graphene. Nanoscale, 2012, 4, 4443. 2.8

#	Article	IF	Citations
503	Atomic-Scale Morphology and Electronic Structure of Manganese Atomic Layers Underneath Epitaxial Graphene on SiC(0001). ACS Nano, 2012, 6, 6562-6568.	7.3	53
504	Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication. Advanced Materials, 2012, 24, 5284-5318.	11.1	727
505	Graphene: An Emerging Electronic Material. Advanced Materials, 2012, 24, 5782-5825.	11.1	718
506	Grapheneâ€Based Electrodes. Advanced Materials, 2012, 24, 5979-6004.	11.1	829
507	New Routes to Graphene, Graphene Oxide and Their Related Applications. Advanced Materials, 2012, 24, 4924-4955.	11.1	329
508	Atomic Dopants Involved in the Structural Evolution of Thermally Graphitized Graphene. Chemistry - A European Journal, 2012, 18, 13466-13472.	1.7	20
509	Synthesis and Applications of Grapheneâ€Based TiO ₂ Photocatalysts. ChemSusChem, 2012, 5, 1868-1882.	3.6	226
510	Laser induced non-thermal deposition of ultrathin graphite. Applied Physics Letters, 2012, 100, .	1.5	16
511	Direct exfoliation of graphite with a porphyrin – creating functionalizable nanographene hybrids. Chemical Communications, 2012, 48, 8745.	2.2	56
512	Correlated conductivity and work function changes in epitaxial graphene. Applied Physics Letters, 2012, 100, .	1.5	30
513	Competition for Graphene: Graphynes with Direction-Dependent Dirac Cones. Physical Review Letters, 2012, 108, 086804.	2.9	995
514	Epitaxial graphene on single domain 3C-SiC(100) thin films grown on off-axis Si(100). Applied Physics Letters, 2012, 101, .	1.5	35
515	Improvement in Film Quality of Epitaxial Graphene on SiC(111)/Si(111) by SiH\$_{4}\$ Pretreatment. Japanese Journal of Applied Physics, 2012, 51, 06FD10.	0.8	4
516	Enabling graphene-based technologies: Toward wafer-scale production of epitaxial graphene. MRS Bulletin, 2012, 37, 1149-1157.	1.7	45
517	Graphene exfoliation in organic solvents and switching solubility in aqueous media with the aid of amphiphilic block copolymers. Journal of Materials Chemistry, 2012, 22, 21507.	6.7	77
519	Enhanced Lithiation of Doped 6H Silicon Carbide (0001) via High Temperature Vacuum Growth of Epitaxial Graphene. Journal of Physical Chemistry C, 2012, 116, 20949-20957.	1.5	37
520	Side-gate graphene field-effect transistors with high transconductance. Applied Physics Letters, 2012, 101, 093504.	1.5	29
521	Formation of Epitaxial Graphene. , 2012, , 137-165.		3

#	Article	IF	Citations
522	Atomic Layer Deposition of Dielectrics on Graphene. , 2012, , 235-257.		0
523	Micro-Raman spectroscopy of graphene grown on stepped 4H-SiC (0001) surface. Applied Physics Letters, 2012, 100, .	1.5	27
524	Epitaxy of Graphene on 3C-SiC(111) Thin Films on Microfabricated Si(111) Substrates. Japanese Journal of Applied Physics, 2012, 51, 06FD02.	0.8	4
525	Uniform Wafer-Scale Chemical Vapor Deposition of Graphene on Evaporated Cu (111) Film with Quality Comparable to Exfoliated Monolayer. Journal of Physical Chemistry C, 2012, 116, 24068-24074.	1.5	69
527	Production and processing of graphene and 2d crystals. Materials Today, 2012, 15, 564-589.	8.3	866
528	Graphene-based flexible and stretchable thin film transistors. Nanoscale, 2012, 4, 4870.	2.8	135
529	Graphene for radio frequency electronics. Materials Today, 2012, 15, 328-338.	8.3	112
530	Graphitization of boron predeposited 6H-SiC(0001) surface. Applied Surface Science, 2012, 261, 868-872.	3.1	1
531	Mechanical exfoliation of epitaxial graphene on Ir(111) enabled by Br2intercalation. Journal of Physics Condensed Matter, 2012, 24, 314208.	0.7	11
532	RECENT ADVANCES IN GRAPHENE-BASED NANOMATERIALS FOR BIOMEDICAL APPLICATIONS. Nano LIFE, 2012, 02, 1230001.	0.6	39
533	Quantitative multichannel NC-AFM data analysis of graphene growth on SiC(0001). Beilstein Journal of Nanotechnology, 2012, 3, 179-185.	1.5	18
534	Domain Structure and Boundary in Single-Layer Graphene Grown on Cu(111) and Cu(100) Films. Journal of Physical Chemistry Letters, 2012, 3, 219-226.	2.1	209
535	Electrophoretic deposition of high quality transparent conductive graphene films on insulating glass substrates. Journal of Physics: Conference Series, 2012, 352, 012003.	0.3	13
536	Protein-Decorated Reduced Oxide Graphene Composite and its Application to SERS. ACS Applied Materials & Interfaces, 2012, 4, 3278-3284.	4.0	46
537	Long-range atomic ordering and variable interlayer interactions in two overlapping graphene lattices with stacking misorientations. Physical Review B, 2012, 85, .	1.1	30
538	Transport properties of graphene nanoribbon transistors on chemical-vapor-deposition grown wafer-scale graphene. Applied Physics Letters, 2012, 100, .	1.5	55
539	How the Orientation of Graphene Is Determined during Chemical Vapor Deposition Growth. Journal of Physical Chemistry Letters, 2012, 3, 2822-2827.	2.1	106
540	Super-resolution Fluorescence Quenching Microscopy of Graphene. ACS Nano, 2012, 6, 9175-9181.	7.3	52

#	Article	IF	CITATIONS
541	Electron-Electron Interaction in the Magnetoresistance of Graphene. Physical Review Letters, 2012, 108, 106601.	2.9	77
542	Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chemical Society Reviews, 2012, 41, 97-114.	18.7	487
543	Implanted bottom gate for epitaxial graphene on silicon carbide. Journal Physics D: Applied Physics, 2012, 45, 154006.	1.3	6
544	Steady-state property and dynamics in graphene-nanoribbon-array lasers. Frontiers of Physics, 2012, 7, 527-532.	2.4	3
545	Focused ion beam milling of exfoliated graphene for prototyping of electronic devices. Microelectronic Engineering, 2012, 98, 313-316.	1.1	17
546	Graphene formed on SiC under various environments: comparison of Si-face and C-face. Journal Physics D: Applied Physics, 2012, 45, 154001.	1.3	44
547	Low-strain interface models for epitaxial graphene on SiC(0001). Diamond and Related Materials, 2012, 23, 178-183.	1.8	11
548	Solid State Gas Sensors - Industrial Application. Springer Series on Chemical Sensors and Biosensors, 2012, , .	0.5	15
549	Laser-induced etching of few-layer graphene synthesized by Rapid-Chemical Vapour Deposition on Cu thin films. SpringerPlus, 2012, 1, 52.	1.2	9
550	Graphene-based ambipolar electronics for radio frequency applications. Science Bulletin, 2012, 57, 2956-2970.	1.7	22
551	Unique synthesis of graphene-based materials for clean energy and biological sensing applications. Science Bulletin, 2012, 57, 3000-3009.	1.7	23
552	Wafer-scale graphene on 2 inch SiC with uniform structural and electrical characteristics. Science Bulletin, 2012, 57, 3022-3025.	1.7	7
553	Ge-intercalated graphene: The origin of the p-type to n-type transition. Europhysics Letters, 2012, 99, 57002.	0.7	10
554	Liquid phase growth of graphene on silicon carbide. Carbon, 2012, 50, 5076-5084.	5.4	18
555	Facile bottom-up synthesis of graphene nanofragments and nanoribbons by thermal polymerization of pentacenes. Nanoscale, 2012, 4, 6553.	2.8	14
556	Model and simulations of the epitaxial growth of graphene on non-planar 6H–SiC surfaces. Journal Physics D: Applied Physics, 2012, 45, 154007.	1.3	21
557	Electronic structure of epitaxial graphene grown on the C-face of SiC and its relation to the structure. New Journal of Physics, 2012, 14, 125007.	1.2	18
558	Enhanced Electrochemical Expansion of Graphite for <i>in Situ</i> Electrochemical Functionalization. Journal of the American Chemical Society, 2012, 134, 17896-17899.	6.6	163

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
559	Nonlinear optical properties of graphene-based materials. Science Bulletin, 2012, 57, 2971-2982.	1.7	144
560	Quasiparticle scattering off phase boundaries in epitaxial graphene. Nanotechnology, 2012, 23, 055706.	1.3	18
561	Analytical dispersion relations of three graphynes. Physica B: Condensed Matter, 2012, 407, 4387-4390.	1.3	14
562	Correlation between (in)commensurate domains of multilayer epitaxial graphene grown on SiC(\$0 0) Tj ETQq1 1	0.784314 1.3	4 rgBT /Over
563	Orbital selective coupling between Ni adatoms and graphene Dirac electrons. Physical Review B, 2012, 85, .	1.1	27
564	Direct Optical Characterization of Graphene Growth and Domains on Growth Substrates. Scientific Reports, 2012, 2, 707.	1.6	137
565	Tunable band gap in gold intercalated graphene. Physical Chemistry Chemical Physics, 2012, 14, 15991.	1.3	3
566	Decoupling the Graphene Buffer Layer from SiC(0001) via Interface Oxidation. Materials Science Forum, 0, 717-720, 649-652.	0.3	17
567	Adsorption Behaviors of Graphene and Graphene-related Materials. , 2012, , 435-467.		1
568	The facile transferral of graphene onto interdigitated electrodes for sensing applications. , 2012, , .		0
569	Raman Imaging. Springer Series in Optical Sciences, 2012, , .	0.5	40
570	AFM and Cell Staining to Assess the In Vitro Biocompatibility of Opaque Surfaces. , 0, , .		1
571	Carbon Based Materials on SiC for Advanced Biomedical Applications. , 2012, , 431-458.		6
572	Few″ayer epitaxial graphene with large domains on Câ€ŧerminated 6Hâ€ 6 iC. Surface and Interface Analysis, 2012, 44, 793-796.	0.8	13
573	Carbon Nanomaterials for Advanced Energy Conversion and Storage. Small, 2012, 8, 1130-1166.	5.2	1,304
574	Growth, Characterization, and Properties of Nanographene. Small, 2012, 8, 1429-1435.	5.2	88
575	Evidence of Plasmonic Coupling in Gallium Nanoparticles/Graphene/SiC. Small, 2012, 8, 2721-2730.	5.2	41
576	Effect of graphene/4H-SiC(0001) interface on electrostatic properties in graphene. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 993-996.	1.3	1

#	Article	IF	CITATIONS
577	Low-temperature, site selective graphitization of SiC via ion implantation and pulsed laser annealing. Applied Physics Letters, 2012, 100, .	1.5	19
578	Inkjet-Printed Graphene Electronics. ACS Nano, 2012, 6, 2992-3006.	7.3	1,018
579	Graphene-based composites. Chemical Society Reviews, 2012, 41, 666-686.	18.7	3,513
580	Deformation and Scattering in Graphene over Substrate Steps. Physical Review Letters, 2012, 108, 096601.	2.9	81
581	Graphene production by laser shot on graphene oxide: An <i>ab initio</i> prediction. Physical Review B, 2012, 85, .	1.1	34
582	Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications. Nanoscale, 2012, 4, 3558.	2.8	45
583	Synthesis of High Quality Monolayer Graphene at Reduced Temperature on Hydrogen-Enriched Evaporated Copper (111) Films. ACS Nano, 2012, 6, 2319-2325.	7.3	160
584	Long Spin Relaxation Times in Wafer Scale Epitaxial Graphene on SiC(0001). Nano Letters, 2012, 12, 1498-1502.	4.5	121
585	Bilayer Graphene Grown on 4H-SiC (0001) Step-Free Mesas. Nano Letters, 2012, 12, 1749-1756.	4.5	50
586	Intrinsic Terahertz Plasmons and Magnetoplasmons in Large Scale Monolayer Graphene. Nano Letters, 2012, 12, 2470-2474.	4.5	224
587	Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 2012, 100, 1486-1517.	16.4	822
588	Tailoring the graphene/silicon carbide interface for monolithic wafer-scale electronics. Nature Communications, 2012, 3, 957.	5.8	106
589	Electrodynamically Sprayed Thin Films of Aqueous Dispersible Graphene Nanosheets: Highly Efficient Cathodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2012, 4, 3500-3507.	4.0	85
590	Promoting Effect of Graphene on Dye-Sensitized Solar Cells. Industrial & Engineering Chemistry Research, 2012, 51, 10613-10620.	1.8	97
591	Precise control of epitaxy of graphene by microfabricating SiC substrate. Applied Physics Letters, 2012, 101, 041605.	1.5	40
592	Raman Imaging in Semiconductor Physics: Applications to Microelectronic Materials and Devices. Springer Series in Optical Sciences, 2012, , 39-83.	0.5	4
593	Raman spectroscopy of nonstacked graphene flakes produced by plasma microjet deposition. Journal of Raman Spectroscopy, 2012, 43, 884-888.	1.2	15
594	The electrocapacitive properties of graphene oxide reduced by urea. Energy and Environmental Science, 2012, 5, 6391-6399.	15.6	460

		CITATION RE	PORT	
#	Article		IF	CITATIONS
595	Graphene-based semiconductor photocatalysts. Chemical Society Reviews, 2012, 41, 7	782-796.	18.7	2,497
596	Angle-Resolved Photoemission Studies of Quantum Materials. Annual Review of Conde Physics, 2012, 3, 129-167.	ensed Matter	5.2	71
597	Two-dimensional materials with Dirac cones: Graphynes containing heteroatoms. Phys 2012, 86, .	ical Review B,	1.1	99
598	Drastic Change in Electrical Properties of Electrodeposited ZnO: Systematic Study by H Measurements. Journal of Physical Chemistry C, 2012, 116, 15925-15931.	Hall Effect	1.5	31
599	A Facile Approach to Chemically Modified Graphene and its Polymer Nanocomposites. Functional Materials, 2012, 22, 2735-2743.	Advanced	7.8	244
600	Evidences of electrochemical graphene functionalization and substrate dependence by scanning tunneling spectroscopies. Journal of Applied Physics, 2012, 111, 114306.	v Raman and	1.1	22
601	Graphene and its derivatives: switching ON and OFF. Chemical Society Reviews, 2012,	41, 4688.	18.7	257
602	Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal platinum. Nature Communications, 2012, 3, 699.	grains using	5.8	985
603	Interfacing Nanocarbons with Organic and Inorganic Semiconductors: From Nanocryst Dots to Extended Tetrathiafulvalenes. Langmuir, 2012, 28, 11662-11675.	:als/Quantum	1.6	18
604	Molecular n-doping of chemical vapor deposition grown graphene. Journal of Materials 2012, 22, 15168.	Chemistry,	6.7	59
605	Structural and Electronic Decoupling of C ₆₀ from Epitaxial Graphene on S Letters, 2012, 12, 3018-3024.	SiC. Nano	4.5	100
606	Terahertz Properties of Graphene. Journal of Infrared, Millimeter, and Terahertz Waves, 797-815.	, 2012, 33,	1.2	74
607	A brief review of graphene-based material synthesis and its application in environment management. Science Bulletin, 2012, 57, 1223-1234.	al pollution	1.7	162
608	Vapour-phase graphene epitaxy at low temperatures. Nano Research, 2012, 5, 258-264	4.	5.8	35
609	Direct formation of graphene layers on top of SiC during the carburization of Si substr Applied Physics, 2012, 12, 1088-1091.	ate. Current	1.1	7
610	The effect of growth parameters on the intrinsic properties of large-area single layer gr grown by chemical vapor deposition on Cu. Carbon, 2012, 50, 134-141.	aphene	5.4	92
611	Epitaxial growth of large-area single-layer graphene over Cu(1 1 1)/sapphire by atmosp CVD. Carbon, 2012, 50, 57-65.	heric pressure	5.4	252
612	A simple method to synthesize graphene at 633 K by dechlorination of hexachlorobenz Carbon, 2012, 50, 306-310.	zene on Cu foils.	5.4	29

#	ARTICLE Rapid synthesis of few-layer graphene over Cu foil. Carbon, 2012, 50, 1546-1553.	IF 5.4	Citations
614	Controllable growth of single-layer graphene on a Pd(111) substrate. Carbon, 2012, 50, 1674-1680.	5.4	33
615	Influence of Cu metal on the domain structure and carrier mobility in single-layer graphene. Carbon, 2012, 50, 2189-2196.	5.4	86
616	The effect of a SiC cap on the growth of epitaxial graphene on SiC in ultra high vacuum. Carbon, 2012, 50, 3026-3031.	5.4	23
617	Effect of feed rate on the production of nitrogen-doped graphene from liquid acetonitrile. Carbon, 2012, 50, 3659-3665.	5.4	18
618	Superior dispersion of highly reduced graphene oxide in N,N-dimethylformamide. Journal of Colloid and Interface Science, 2012, 376, 91-96.	5.0	76
619	Graphene: synthesis and applications. Materials Today, 2012, 15, 86-97.	8.3	798
620	Towards new graphene materials: Doped graphene sheets and nanoribbons. Materials Letters, 2012, 78, 209-218.	1.3	196
621	Synthesis of graphene on SiC substrate via Ni-silicidation reactions. Thin Solid Films, 2012, 520, 5215-5218.	0.8	31
622	Gyrotropy and Nonreciprocity of Graphene for Microwave Applications. IEEE Transactions on Microwave Theory and Techniques, 2012, 60, 901-914.	2.9	214
623	SiC surface orientation and Si loss rate effects on epitaxial graphene. Nanoscale Research Letters, 2012, 7, 186.	3.1	10
624	CO ₂ â€Laserâ€Induced Growth of Epitaxial Graphene on 6Hâ€SiC(0001). Advanced Functional Materials, 2012, 22, 113-120.	7.8	65
625	Studies of graphene-based nanoelectromechanical switches. Nano Research, 2012, 5, 82-87.	5.8	54
626	Carbon nanomaterials: controlled growth and field-effect transistor biosensors. Frontiers of Materials Science, 2012, 6, 26-46.	1.1	14
627	High sensitive quasi freestanding epitaxial graphene gas sensor on 6H-SiC. Applied Physics Letters, 2013, 103, .	1.5	19
628	Improved Chemical Detection and Ultra-Fast Recovery Using Oxygen Functionalized Epitaxial Graphene Sensors. IEEE Sensors Journal, 2013, 13, 2810-2817.	2.4	7
629	3D graphene–Fe3O4 nanocomposites with high-performance microwave absorption. Physical Chemistry Chemical Physics, 2013, 15, 13038.	1.3	305
630	Superconductivity in Ca-intercalated epitaxial graphene on silicon carbide. Applied Physics Letters, 2013, 103, .	1.5	58

#	Article	IF	CITATIONS
631	Toward tunable doping in graphene FETs by molecular self-assembled monolayers. Nanoscale, 2013, 5, 9640.	2.8	52
632	Supramolecular photocatalyst of RGO-cyclodextrin-TiO2. Journal of Alloys and Compounds, 2013, 580, 239-244.	2.8	15
633	Applications of Nanomaterials in Sensors and Diagnostics. Springer Series on Chemical Sensors and Biosensors, 2013, , .	0.5	37
634	Exploiting Multivalent Nanoparticles for the Supramolecular Functionalization of Graphene with a Nonplanar Recognition Motif. Chemistry - A European Journal, 2013, 19, 9843-9848.	1.7	15
635	Thermoelectric imaging of structural disorder in epitaxial graphene. Nature Materials, 2013, 12, 913-918.	13.3	55
636	Direct growth of quasi-free-standing epitaxial graphene on nonpolar SiC surfaces. Physical Review B, 2013, 88, .	1.1	43
637	Electrical and spectroscopic investigations on the reduction mechanism of graphene oxide. Carbon, 2013, 55, 126-132.	5.4	48
638	Nanomaterials for bio-functionalized electrodes: recent trends. Journal of Materials Chemistry B, 2013, 1, 4878.	2.9	302
639	Noncovalent Functionalization of Graphene by Molecular and Polymeric Adsorbates. Journal of Physical Chemistry Letters, 2013, 4, 2649-2657.	2.1	97
640	Transfer-free graphene synthesis on insulating substrates via agglomeration phenomena of catalytic nickel films. Applied Physics Letters, 2013, 103, 082112.	1.5	32
641	Site-Selective Epitaxy of Graphene on Si Wafers. Proceedings of the IEEE, 2013, 101, 1557-1566.	16.4	13
642	A novel approach to electrically and thermally conductive elastomers using graphene. Polymer, 2013, 54, 3663-3670.	1.8	124
643	Spin-resolved photoemission and <i>ab initio</i> theory of graphene/SiC. Physical Review B, 2013, 88, .	1.1	11
644	Continuous wafer-scale graphene on cubic-SiC(001). Nano Research, 2013, 6, 562-570.	5.8	31
645	Catalyst-free growth of readily detachable nanographene on alumina. Journal of Materials Chemistry C, 2013, 1, 6438.	2.7	10
646	Advances in semiconductor nanowire growth on graphene. Physica Status Solidi - Rapid Research Letters, 2013, 7, 713-726.	1.2	49
647	Nucleation of epitaxial graphene on SiC substrate by thermal annealing and chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2013, 112, 349-355.	1.1	2
648	Atomistic processes of grain boundary motion and annihilation in graphene. Journal of Physics Condensed Matter, 2013, 25, 155301.	0.7	6
#	ARTICLE	IF	Citations
-----	---	-----	-----------
649	Controlled and Selective Area Growth of Monolayer Graphene on 4H-SiC Substrate by Electron-Beam-Assisted Rapid Heating. Journal of Physical Chemistry C, 2013, 117, 19195-19202.	1.5	18
650	Understanding the adsorptive and photoactivity properties of Ag-graphene oxide nanocomposites. Journal of Hazardous Materials, 2013, 263, 52-60.	6.5	66
651	Graphene for energy solutions and its industrialization. Nanoscale, 2013, 5, 10108.	2.8	86
652	Core-level photoelectron spectroscopy study of interface structure of hydrogen-intercalated graphene onn-type 4H-SiC(0001). Physical Review B, 2013, 88, .	1.1	12
653	Transfer-free growth of graphene on SiO2 insulator substrate from sputtered carbon and nickel films. Carbon, 2013, 65, 349-358.	5.4	59
654	Preparation and characterization of a dual-layer carbon film on 6H-SiC wafer using carbide-derived carbon process with subsequent chemical vapor deposition. Surface and Coatings Technology, 2013, 235, 469-474.	2.2	9
655	Tuning the charge carriers in epitaxial graphene on SiC(0001) from electron to hole via molecular doping with C60F48. Applied Physics Letters, 2013, 102, .	1.5	29
656	Theoretical characterization of reduction dynamics for graphene oxide by alkaline-earth metals. Carbon, 2013, 52, 122-127.	5.4	30
657	Observation of 4 nm Pitch Stripe Domains Formed by Exposing Graphene to Ambient Air. ACS Nano, 2013, 7, 10032-10037.	7.3	48
658	Interlayer catalytic exfoliation realizing scalable production of large-size pristine few-layer graphene. Scientific Reports, 2013, 3, 1134.	1.6	83
659	Thermodynamic Equilibrium Conditions of Graphene Films on SiC. Physical Review Letters, 2013, 111, 065502.	2.9	34
660	Layer-Resolved Graphene Transfer via Engineered Strain Layers. Science, 2013, 342, 833-836.	6.0	174
661	High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science, 2013, 342, 836-840.	6.0	630
662	In situ high-resolution X-ray photoelectron spectroscopy – Fundamental insights in surface reactions. Surface Science Reports, 2013, 68, 446-487.	3.8	90
663	Quantum resistance metrology using graphene. Reports on Progress in Physics, 2013, 76, 104501.	8.1	79
664	Epitaxial Graphene and Graphene–Based Devices Studied by Electrical Scanning Probe Microscopy. Crystals, 2013, 3, 191-233.	1.0	69
665	Formation of graphene on SiC by chemical vapor deposition with liquid sources. Surface and Coatings Technology, 2013, 231, 189-192.	2.2	10
666	Chemically Resolved Interface Structure of Epitaxial Graphene on SiC(0001). Physical Review Letters, 2013, 111, 215501.	2.9	70

#	Article	IF	CITATIONS
667	Strong Plasmon Reflection at Nanometer-Size Gaps in Monolayer Graphene on SiC. Nano Letters, 2013, 13, 6210-6215.	4.5	121
668	Introduction to graphene electronics – a new era of digital transistors and devices. Contemporary Physics, 2013, 54, 233-251.	0.8	52
669	Interface-Induced Room-Temperature Ferromagnetism in Hydrogenated Epitaxial Graphene. Physical Review Letters, 2013, 111, 166101.	2.9	84
670	The mechanism of caesium intercalation of graphene. Nature Communications, 2013, 4, 2772.	5.8	184
672	Fabrication of graphene films with high transparent conducting characteristics. Nanoscale Research Letters, 2013, 8, 440.	3.1	20
673	Structure of Graphite Nanosheets Formed by Plasma Discharge in Liquid Ethanol. Powder Metallurgy and Metal Ceramics, 2013, 52, 278-290.	0.4	8
674	Evaporation of carbon atoms from the open surface of silicon carbide and through graphene cells: Semiempirical quantum-chemical modeling. Russian Journal of Physical Chemistry A, 2013, 87, 1830-1837.	0.1	4
675	From nanographene to monolayer graphene on 6H-SiC(0001) substrate. Applied Physics Letters, 2013, 102, 253108.	1.5	13
676	Practical and Fundamental Impact of Epitaxial Graphene on Quantum Metrology. Mapan - Journal of Metrology Society of India, 2013, 28, 239-250.	1.0	0
677	Graphene – Properties and Characterization. , 2013, , 39-82.		7
677 678	Graphene – Properties and Characterization. , 2013, , 39-82. Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103, .	1.5	7 22
677 678 679	Graphene – Properties and Characterization., 2013,, 39-82. Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103,. Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103,.	1.5	7 22 23
677 678 679 680	Craphene – Properties and Characterization., 2013,, 39-82. Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103,. Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103,. Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319.	1.5 1.5 1.5	7 22 23 20
 677 678 679 680 681 	Graphene – Properties and Characterization., 2013, 39-82. Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103, . Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103, . Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319. Epitaxial assembly of graphene on face (0001) of silicon carbide: Modeling by semiempirical methods. Russian Journal of Physical Chemistry A, 2013, 87, 1739-1748.	1.5 1.5 1.5 0.1	7 22 23 20 2
 677 678 679 680 681 682 	Graphene â€" Properties and Characterization., 2013,, 39-82.Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103, .Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103, .Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319.Epitaxial assembly of graphene on face (0001) of silicon carbide: Modeling by semiempirical methods. Russian Journal of Physical Chemistry A, 2013, 87, 1739-1748.Impact of carbon material on RF MEMS switch., 2013,	1.5 1.5 1.5 0.1	 7 22 23 20 2 2 2
 677 678 679 680 681 682 683 	Graphene âC" Properties and Characterization., 2013,, 39-82. Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103, . Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103, . Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319. Epitaxial assembly of graphene on face (0001) of silicon carbide: Modeling by semiempirical methods. Russian Journal of Physical Chemistry A, 2013, 87, 1739-1748. Impact of carbon material on RF MEMS switch., 2013, ,. Graphene chemical sensors for heliophysics applications. Radiation Effects and Defects in Solids, 2013, 168, 805-811.	1.5 1.5 0.1	 7 22 23 20 2 2 1
 677 678 679 680 681 682 683 684 	Graphene â€" Properties and Characterization., 2013,, 39-82. Isolation of high quality graphene from Ru by solution phase intercalation. Applied Physics Letters, 2013, 103, . Local transport measurements on epitaxial graphene. Applied Physics Letters, 2013, 103, . Structural Determination of Thermally and Hydrazine Treated Graphene Oxide Using Electron Spectroscopic Analysis. Journal of Physical Chemistry C, 2013, 117, 21312-21319. Epitaxial assembly of graphene on face (0001) of silicon carbide: Modeling by semiempirical methods. Russian Journal of Physical Chemistry A, 2013, 87, 1739-1748. Impact of carbon material on RF MEMS switch., 2013, ,. Graphene chemical sensors for heliophysics applications. Radiation Effects and Defects in Solids, 2013, 168, 805-811. Future of Biosensors: A Personal View. Advances in Biochemical Engineering/Biotechnology, 2013, 140, 1-28.	1.5 1.5 0.1 0.4	7 22 23 20 2 1 11

		CITATION R	EPORT	
#	ARTICLE	utic Effect of	IF	CITATIONS
686	Ultrathin 3C-SiC Nanocrystals. Journal of the Electrochemical Society, 2013, 160, H620-F	1623.	1.3	1
687	Synthesis of carbon nanotubes and graphene for photonic applications. , 2013, , 26-56.			1
688	A trigonal planar network in hydrogenated epitaxial graphene: a ferromagnetic semiconc Journal of Materials Chemistry C, 2013, 1, 2696.	luctor.	2.7	6
689	In situ observations of gas phase dynamics during graphene growth using solid-state car Physical Chemistry Chemical Physics, 2013, 15, 10446.	bon sources.	1.3	21
690	Wafer-scale synthesis and transfer of monolayer graphene. , 2013, , .			2
691	2D electronics: Graphene and beyond. , 2013, , .			17
692	Reststrahl band-assisted photocurrents in epitaxial graphene layers. Physical Review B, 24	013, 88, .	1.1	15
693	Graphene Nanoribbons Grown on Epitaxial Si _{<i>x</i>} C _{<i>y</i>} O _{<i>z</i>} Layer on Vicinal SiC by Chemical Vapor Deposition. Applied Physics Express, 2013, 6, 055102.	(0001) Surfaces	1.1	4
694	Second generation graphene: Opportunities and challenges for surface science. Surface 609, 1-5.	Science, 2013,	0.8	54
695	van der Waals Epitaxial Growth of Graphene on Sapphire by Chemical Vapor Deposition Metal Catalyst. ACS Nano, 2013, 7, 385-395.	without a	7.3	211
696	Graphene growth by molecular beam epitaxy. , 2013, , 547-557.			0
697	Methods for Obtaining Graphene. , 2013, , 129-228.			13
698	The edges of graphene. Nanoscale, 2013, 5, 2556.		2.8	91
699	Low energy two-dimensional plasmon in epitaxial graphene on Ni (111). Surface Science	, 2013, 608, 88-91.	0.8	28
700	Highly concentrated polycations-functionalized graphenenanosheets with excellent solu stability, and its fast, facile and controllable assembly of multiple nanoparticles. Nanosca 663-670.	bility and le, 2013, 5,	2.8	45
701	Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem Reviews, 2013, 42, 2824-2860.	ical Society	18.7	1,105
702	Local anodic oxidation kinetics of chemical vapor deposition graphene supported on a the buffered silicon template. Carbon, 2013, 54, 336-342.	in oxide	5.4	18
703	Decorating single layer graphene oxide with electron donor and acceptor molecules for t photoinduced electron transfer. Chemical Communications, 2013, 49, 2013.	he study of	2.2	35

#	Article	IF	CITATIONS
704	Revealing the atomic structure of the buffer layer between SiC(0 0 0 1) and epitaxial graphene. Carbon, 2013, 51, 249-254.	5.4	135
705	Synthesis of graphene together with undesired CuxO nanodots on copper foils by low-pressure chemical vapor deposition. Vacuum, 2013, 97, 9-14.	1.6	5
706	Looking behind the scenes: Raman spectroscopy of top-gated epitaxial graphene through the substrate. New Journal of Physics, 2013, 15, 113006.	1.2	24
707	A Comprehensive Review of Graphene Nanocomposites: Research Status and Trends. Journal of Nanomaterials, 2013, 2013, 1-14.	1.5	190
708	Reduction of graphene oxide at the interface between a Ni layer and a SiO2 substrate. Carbon, 2013, 59, 472-478.	5.4	29
709	Graphene oxide foams and their excellent adsorption ability for acetone gas. Materials Research Bulletin, 2013, 48, 3553-3558.	2.7	38
710	Mono- and few-layer nanocrystalline graphene grown on Al2O3(0 0 0 1) by molecular beam epitaxy. Carbon, 2013, 56, 339-350.	5.4	54
711	Friction and atomic-layer-scale wear of graphitic lubricants on SiC(0001) in dry sliding. Wear, 2013, 300, 78-81.	1.5	42
712	Molecular beam epitaxial growth of graphene using cracked ethylene. Journal of Crystal Growth, 2013, 378, 404-409.	0.7	2
713	Minimal single-particle Hamiltonian for charge carriers in epitaxial graphene on 4H-SiC(0001): Broken-symmetry states at Dirac points. Solid State Communications, 2013, 175-176, 83-89.	0.9	5
714	CVD growth of SiC on sapphire substrate and graphene formation from the epitaxial SiC. Journal of Crystal Growth, 2013, 366, 26-30.	0.7	11
715	Observation of Quantum Hall Effect and weak localization in p-type bilayer epitaxial graphene on SiC(0001). Solid State Communications, 2013, 175-176, 119-122.	0.9	5
716	High-quality graphene on SiC(000 <mml:math)="" 0="" 0<="" etqq0="" td="" tj="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>rgBT /Ov 1.1</td><td>erlock 10 Tf 15</td></mml:math>	rgBT /Ov 1.1	erlock 10 Tf 15
717	Graphene synthesis: relationship to applications. Nanoscale, 2013, 5, 38-51.	2.8	631
718	Carrier generation and recombination rate in armchair graphene nanoribbons. European Physical Journal B, 2013, 86, 1.	0.6	4
719	Scalable fabrication of graphene devices through photolithography. Applied Physics Letters, 2013, 102,	1.5	53
720	Local solid phase growth of few-layer graphene on silicon carbide from nickel silicide supersaturated with carbon. Journal of Applied Physics, 2013, 113, 114309.	1.1	26
721	Formation of high-quality quasi-free-standing bilayer graphene on SiC(0 0 0 1) by oxygen intercalation upon annealing in air. Carbon, 2013, 52, 83-89.	5.4	104

#	Article	IF	CITATIONS
722	Detailed studies of Na intercalation on furnace-grown graphene on 6H-SiC(0001). Surface Science, 2013, 613, 88-94.	0.8	28
723	Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chemical Reviews, 2013, 113, 3407-3424.	23.0	643
724	Methane as an effective hydrogen source for single-layer graphene synthesis on Cu foil by plasma enhanced chemical vapor deposition. Nanoscale, 2013, 5, 1221.	2.8	104
725	In Situ Polymerization on Graphene Surfaces. Journal of Physical Chemistry C, 2013, 117, 2817-2823.	1.5	26
726	Graphene Films for Flexible Organic and Energy Storage Devices. Journal of Physical Chemistry Letters, 2013, 4, 831-841.	2.1	65
727	Localized States Influence Spin Transport in Epitaxial Graphene. Physical Review Letters, 2013, 110, 067209.	2.9	61
728	Procedure of removing polymer residues and its influences on electronic and structural characteristics of graphene. Applied Physics Letters, 2013, 102, 091602.	1.5	87
729	Ultrathin rechargeable all-solid-state batteries based on monolayer graphene. Journal of Materials Chemistry A, 2013, 1, 3177.	5.2	60
730	Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod. Nano Energy, 2013, 2, 377-386.	8.2	200
731	Grapheneâ€Based Nanomaterials: Synthesis, Properties, and Optical and Optoelectronic Applications. Advanced Functional Materials, 2013, 23, 1984-1997.	7.8	257
732	Graphene nanoribbons on vicinal SiC surfaces by molecular beam epitaxy. Physical Review B, 2013, 87, .	1.1	24
733	Robust Graphene Membranes in a Silicon Carbide Frame. ACS Nano, 2013, 7, 4441-4448.	7.3	15
734	Graphene MEMS: AFM Probe Performance Improvement. ACS Nano, 2013, 7, 4164-4170.	7.3	74
735	Graphene-Based Chemical and Biosensors. Springer Series on Chemical Sensors and Biosensors, 2013, , 103-141.	0.5	9
736	Graphene Domains Synthesized on Electroplated Copper by Chemical Vapor Deposition. Chinese Physics Letters, 2013, 30, 028102.	1.3	3
737	The chemistry of pristine graphene. Chemical Communications, 2013, 49, 3721.	2.2	225
738	Manipulating the electronic and chemical properties of graphene via molecular functionalization. Progress in Surface Science, 2013, 88, 132-159.	3.8	157
739	Growth of large area monolayer graphene on 3C-SiC and a comparison with other SiC polytypes. Carbon, 2013, 57, 477-484.	5.4	100

#	Article	IF	CITATIONS
740	Annealing-induced magnetic moments detected by spin precession measurements in epitaxial graphene on SiC. Physical Review B, 2013, 87, .	1.1	24
741	A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Advances, 2013, 3, 11745.	1.7	142
742	Microscopy of Graphene Growth, Processing, and Properties. Advanced Functional Materials, 2013, 23, 2617-2634.	7.8	35
743	Direct Transformation of Amorphous Silicon Carbide into Graphene under Low Temperature and Ambient Pressure. Scientific Reports, 2013, 3, 1148.	1.6	34
744	Improved graphene growth in UHV: Pit-free surfaces by selective Si etching of SiC(0001)–Si with atomic hydrogen. Surface Science, 2013, 611, 25-31.	0.8	15
745	In situ processing of electrically conducting graphene/SiC nanocomposites. Journal of the European Ceramic Society, 2013, 33, 1665-1674.	2.8	105
746	Conductive Scanning Probe Characterization and Nanopatterning of Electronic and Energy Materials. Journal of Physical Chemistry C, 2013, 117, 7953-7963.	1.5	19
747	Synthesis and electronic properties of chemically functionalized graphene on metal surfaces. Journal of Physics Condensed Matter, 2013, 25, 043001.	0.7	8
748	Largeâ€Scale Production of Nanographene Sheets with a Controlled Mesoporous Architecture as Highâ€Performance Electrochemical Electrode Materials. ChemSusChem, 2013, 6, 1084-1090.	3.6	49
749	Evidence of atomically resolved 6×6 buffer layer with long-range order and short-range disorder during formation of graphene on 6H-SiC by thermal decomposition. Applied Physics Letters, 2013, 102, .	1.5	19
750	In situnitrogen-doped graphene grown from polydimethylsiloxane by plasma enhanced chemical vapor deposition. Nanoscale, 2013, 5, 600-605.	2.8	114
751	Organic Functionalization of Graphene in Dispersions. Accounts of Chemical Research, 2013, 46, 138-148.	7.6	229
752	Langmuir–Blodgett assembly of sulphonated graphene nanosheets into single- and multi-layered thin films. Chemical Physics Letters, 2013, 568-569, 101-105.	1.2	14
753	Modeling of the infrared photodetector based on multi layer armchair graphene nanoribbons. Journal of Applied Physics, 2013, 113, .	1.1	10
754	Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method. Nanoscale, 2013, 5, 4422.	2.8	38
755	Theoretical simulation of photovoltaic response of graphene-on-semiconductors. Applied Physics A: Materials Science and Processing, 2013, 111, 1159-1163.	1.1	16
756	Large-Area 2-D Electronics: Materials, Technology, and Devices. Proceedings of the IEEE, 2013, 101, 1638-1652.	16.4	46
757	Raman spectroscopy and electrical transport studies of free-standing epitaxial graphene: Evidence of an AB-stacked bilayer. Physical Review B, 2013, 87, .	1.1	5

#	Article	IF	CITATIONS
758	Facile synthesis of reduced graphene oxide nanosheets by a sodium diphenylamine sulfonate reduction process and its electrochemical property. Materials Science and Engineering C, 2013, 33, 3811-3816.	3.8	22
759	Magnetic Coupling of Porphyrin Molecules Through Graphene. Advanced Materials, 2013, 25, 3473-3477.	11.1	72
760	Quantum Hall effect in graphene with twisted bilayer stripe defects. Physical Review B, 2013, 87, .	1.1	21
761	SYNTHETIC GRAPHENE GROWN BY CHEMICAL VAPOR DEPOSITION ON COPPER FOILS. International Journal of Modern Physics B, 2013, 27, 1341002.	1.0	30
762	High-Performance, Transparent, and Stretchable Electrodes Using Graphene–Metal Nanowire Hybrid Structures. Nano Letters, 2013, 13, 2814-2821.	4.5	607
763	Low-Temperature, Bottom-Up Synthesis of Graphene via a Radical-Coupling Reaction. Journal of the American Chemical Society, 2013, 135, 9050-9054.	6.6	63
764	Raman spectroscopy of four epitaxial graphene layers: Macro-island grown on 4H-SiC substrate and an associated strain distribution. Thin Solid Films, 2013, 539, 377-383.	0.8	16
765	Nanocarbons for the Development of Advanced Catalysts. Chemical Reviews, 2013, 113, 5782-5816.	23.0	1,163
766	Ultrafast Charge Transfer at Monolayer Graphene Surfaces with Varied Substrate Coupling. ACS Nano, 2013, 7, 4359-4366.	7.3	16
767	A brief review of graphene–metal oxide composites synthesis and applications in photocatalysis. Journal of the Chinese Advanced Materials Society, 2013, 1, 21-39.	0.7	135
768	Thermal Transformation of Carbon Hybrid Materials to Graphene Films. ACS Applied Materials & Interfaces, 2013, 5, 6522-6526.	4.0	3
769	Direct observation of charge transfer region at interfaces in graphene devices. Applied Physics Letters, 2013, 102, .	1.5	33
770	Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nature Communications, 2013, 4, 2096.	5.8	493
771	Chemical Vapor Deposition and Characterization of Aligned and Incommensurate Graphene/Hexagonal Boron Nitride Heterostack on Cu(111). Nano Letters, 2013, 13, 2668-2675.	4.5	113
772	Porous Co ₃ O ₄ Nanorods–Reduced Graphene Oxide with Intrinsic Peroxidase-Like Activity and Catalysis in the Degradation of Methylene Blue. ACS Applied Materials & Interfaces, 2013, 5, 3809-3815.	4.0	100
773	Functional Single‣ayer Graphene Sheets from Aromatic Monolayers. Advanced Materials, 2013, 25, 4146-4151.	11.1	56
774	Control of the graphene growth rate on capped SiC surface under strong Si confinement. Applied Surface Science, 2013, 264, 56-60.	3.1	7
775	The formation of nanographites supported by SiC particles. Materials Letters, 2013, 92, 379-381.	1.3	2

#	Article	IF	CITATIONS
776	Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition. Journal of Applied Physics, 2013, 113, .	1.1	36
777	Delaminated Graphene at Silicon Carbide Facets: Atomic Scale Imaging and Spectroscopy. ACS Nano, 2013, 7, 3045-3052.	7.3	73
778	A facile method for the large-scale continuous synthesis of graphene sheets using a novel catalyst. Scientific Reports, 2013, 3, 3037.	1.6	106
779	Transfer-Free Selective Area Synthesis of Graphene Using Solid-State Self-Segregation of Carbon In Cu/Ni Bilayers. ECS Journal of Solid State Science and Technology, 2013, 2, M17-M21.	0.9	14
780	Fabrication and characterization of graphene derived from SiC. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2386-2394.	2.0	5
781	Standardization of surface potential measurements of graphene domains. Scientific Reports, 2013, 3, 2597.	1.6	198
782	The study of the effects of cooling conditions on high quality graphene growth by the APCVD method. Nanoscale, 2013, 5, 5524.	2.8	28
783	Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013, 101, 1620-1637.	16.4	104
784	Graphene and its application in fuel cell catalysis: a review. Asia-Pacific Journal of Chemical Engineering, 2013, 8, 218-233.	0.8	71
785	Fabry-Perot enhanced Faraday rotation in graphene. Optics Express, 2013, 21, 24736.	1.7	47
786	Few layer graphene synthesized by filtered cathodic vacuum arc technique. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2013, 31, 040602.	0.6	18
787	Charged impurity-induced scatterings in chemical vapor deposited graphene. Journal of Applied Physics, 2013, 114, 233703.	1.1	16
788	Small scale rotational disorder observed in epitaxial graphene on SiC(0001). New Journal of Physics, 2013, 15, 023019.	1.2	8
789	Structural investigation of nanocrystalline graphene grown on (6â^š3 × 6â^š3)R30°-reconstructed SiC surfaces by molecular beam epitaxy. New Journal of Physics, 2013, 15, 123034.	1.2	16
790	Epitaxial Graphene Growth on 6H-SiC (0001) Substrate by Confinement Controlled Sublimation of Silicon Carbide. Advanced Materials Research, 2013, 709, 62-65.	0.3	0
791	Preparation and Property of Reduced Graphene for Hummers. Key Engineering Materials, 0, 591, 301-304.	0.4	0
792	Thickness Uniformity and Electron Doping in Epitaxial Graphene on SiC. Materials Science Forum, 0, 740-742, 153-156.	0.3	6
793	Contribution of the buffer layer to the Raman spectrum of epitaxial graphene on SiC(0001). New Journal of Physics, 2013, 15, 043031.	1.2	93

#	Article	IF	CITATIONS
794	Optimising the Growth of Few-Layer Graphene on Silicon Carbide by Nickel Silicidation. Materials Science Forum, 0, 740-742, 121-124.	0.3	1
795	Fabrication and its Transient Optical Properties of Graphene Thin Films. Materials Science Forum, 0, 743-744, 892-902.	0.3	2
796	Silicon Nitride as Top Gate Dielectric for Epitaxial Graphene. Materials Science Forum, 2013, 740-742, 149-152.	0.3	1
797	A DC Comparison Study between H-Intercalated and Native Epi-Graphenes on SiC Substrates. Materials Science Forum, 0, 740-742, 129-132.	0.3	2
798	Graphene Manipulation on 4H-SiC(0001) Using Scanning Tunneling Microscopy. Japanese Journal of Applied Physics, 2013, 52, 035104.	0.8	6
799	Large-scale uniform bilayer graphene prepared by vacuum graphitization of 6H-SiC(0001) substrates. Journal of Physics Condensed Matter, 2013, 25, 095002.	0.7	76
800	Prospects of graphene electrodes in photovoltaics. , 2013, , .		7
801	Carrier Density and Electric Field Dependent Nonlinear Transport of Chemical Vapor Deposition Graphene. Chinese Physics Letters, 2013, 30, 037201.	1.3	1
802	Fabrication of Thin Graphene Layers on a Stacked 6H-SiC Surface in a Graphite Enclosure. Chinese Physics Letters, 2013, 30, 018101.	1.3	3
803	Characterizing Edge and Stacking Structures of Exfoliated Graphene by Photoelectron Diffraction. Japanese Journal of Applied Physics, 2013, 52, 110110.	0.8	9
804	Significant photoelectrical response of epitaxial graphene grown on Si-terminated 6H-SiC. Chinese Physics B, 2013, 22, 076804.	0.7	2
805	Thickness Thinning of Epitaxial Graphene Grown on Carbon-Terminated 6H-SiC by Using Oxygen Plasma Etching. Advanced Materials Research, 2013, 702, 149-153.	0.3	0
806	Effect of 6H-SiC (112̄0) substrate on epitaxial graphene revealed by Raman scattering. Chinese Physics B, 2013, 22, 016301.	0.7	3
807	Argon annealing procedure for producing an atomically terraced 4H–SiC (0001) substrate and subsequent graphene growth. Journal of Materials Research, 2013, 28, 1-6.	1.2	18
808	A facile approach to fabricate elastomer/graphene platelets nanocomposites. , 2013, , .		1
809	Noncovalent Functionalization of Graphene in Suspension. ISRN Organic Chemistry, 2013, 2013, 1-7.	1.0	0
810	Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method. Journal of Chemical Physics, 2013, 139, 204702.	1.2	15
811	Detecting the local transport properties and the dimensionality of transport of epitaxial graphene by a multi-point probe approach. Applied Physics Letters, 2013, 102, 033110.	1.5	10

#	Article	IF	CITATIONS
812	Visualizing Atomic-Scale Negative Differential Resistance in Bilayer Graphene. Physical Review Letters, 2013, 110, 036804.	2.9	23
813	Direct evidence for a metallic interlayer band in Rb-intercalated bilayer graphene. Physical Review B, 2013, 87, .	1.1	20
814	Detection of polar chemical vapors using epitaxial graphene grown on SiC (0001). Applied Physics Letters, 2013, 102, .	1.5	8
815	Buffer layer induced band gap and surface low energy optical phonon scattering in epitaxial graphene on SiC(0001). Applied Physics Letters, 2013, 102, .	1.5	23
816	Structural investigations of hydrogenated epitaxial graphene grown on 4H-SiC (0001). Applied Physics Letters, 2013, 103, 241915.	1.5	25
817	Ultrafast dynamics of hot electrons and phonons in chemical vapor deposited graphene. Journal of Applied Physics, 2013, 113, 133511.	1.1	20
818	Graphene Epitaxial Growth on SiC(0001) for Resistance Standards. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 1454-1460.	2.4	37
819	Si-adatom kinetics in defect mediated growth of multilayer epitaxial graphene films on 6H-SiC. Journal of Applied Physics, 2013, 114, 164903.	1.1	7
820	Surface phonon scattering in epitaxial graphene on 6H-SiC. Physical Review B, 2013, 87, .	1.1	29
821	A density functional theory study of epitaxial graphene on the (3×3)-reconstructed C-face of SiC. Applied Physics Letters, 2013, 102, 093101.	1.5	13
822	A Datta-Das transistor and conductance switch based on a zigzag graphene nanoribbon. Journal of Applied Physics, 2013, 113, 054304.	1.1	4
823	Detection of the Kondo effect in the resistivity of graphene: Artifacts and strategies. Physical Review B, 2013, 88, .	1.1	17
824	Carbon flux assisted graphene layer growth on 6H-SiC(000-1) by thermal decomposition. Journal of Applied Physics, 2013, 113, .	1.1	2
825	Vertically oriented few-layer graphene as an electron field-emitter. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1817-1821.	0.8	22
826	High-Current Reliability and Growth Conditions of Multilayer Graphene Wire Obtained by Annealing Sputtered Amorphous Carbon. Japanese Journal of Applied Physics, 2013, 52, 04CB07.	0.8	9
827	GRAPHENE-BASED TRANSPARENT CONDUCTIVE FILMS. Nano, 2013, 08, 1330001.	0.5	52
829	First-principles study of H adsorption on graphene/SiC(0001). Physica Status Solidi (B): Basic Research, 2013, 250, 2523-2528.	0.7	4
830	Process simulation of hydrogen intercalation in epitaxial graphene on SiC(0001). Physica Status Solidi (B): Basic Research, 2013, 250, 1478-1482.	0.7	4

#	Article	IF	CITATIONS
831	Micro- and nanoscale electrical characterization of large-area graphene transferred to functional substrates. Beilstein Journal of Nanotechnology, 2013, 4, 234-242.	1.5	28
833	Graphene Formation on Metal Surfaces Investigated by In-situ STM. , 2013, , .		0
834	Investigation of structural and electronic properties of epitaxial graphene on 3C–SiC(100)/Si(100) substrates. Nanotechnology, Science and Applications, 2014, 7, 85.	4.6	10
835	Mechanism of Thin Layers Graphite Formation by 13C Implantation and Annealing. Applied Sciences (Switzerland), 2014, 4, 180-194.	1.3	8
836	Intercalated multilayer graphene wires and metal/multilayer graphene hybrid wires obtained by annealing sputtered amorphous carbon. Japanese Journal of Applied Physics, 2014, 53, 04EB05.	0.8	22
837	Polarization doping of graphene on silicon carbide. 2D Materials, 2014, 1, 035003.	2.0	84
838	Radio-frequency transistors from millimeter-scale graphene domains. Chinese Physics B, 2014, 23, 117201.	0.7	7
839	Structural features of epitaxial graphene on SiC {0 0 0 1} surfaces. Journal Physics D: Applied Physic 2014, 47, 094017.	^s 1.3	34
840	A simple and efficient electrochemical reductive method for graphene oxide. Bulletin of Materials Science, 2014, 37, 1529-1533.	0.8	11
841	Techniques for Production of Large Area Graphene for Electronic and Sensor Device Applications. Graphene and 2D Materials, 2014, 1, .	2.0	0
842	Influence of defects in SiC (0001) on epitaxial graphene. Chinese Physics B, 2014, 23, 086501.	0.7	4
843	Spectroscopic and scanning probe analysis on large-area epitaxial graphene grown under pressure of 4 mbar on 4H-SiC (0001) substrates. Chinese Physics B, 2014, 23, 076103.	0.7	1
844	Graphitized silicon carbide microbeams: wafer-level, self-aligned graphene on silicon wafers. Nanotechnology, 2014, 25, 325301.	1.3	39
845	Growth of graphene from SiC{0001} surfaces and its mechanisms. Semiconductor Science and Technology, 2014, 29, 064009.	1.0	35
846	SiC graphene FET with polydimethylglutharimide as a gate dielectric layer. , 2014, , .		1
847	Molecular dynamics simulation of graphene growth by surface decomposition of 6H-SiC(0001) and \$(000ar{1})\$. Japanese Journal of Applied Physics, 2014, 53, 065601.	0.8	6
848	A review of nanographene: growth and applications. Modern Physics Letters B, 2014, 28, 1430009.	1.0	9
849	In situ observation of step-edge in-plane growth of graphene in a STEM. Nature Communications, 2014, 5, 4055.	5.8	55

#	Article	IF	CITATIONS
850	Deuterium adsorption on (and desorption from) SiC(0 0 0 1)-(3 × 3), $(sqrt{sf 3} imes sqrt {sf} T graphene obtained by hydrogen intercalation. Journal Physics D: Applied Physics. 2014, 47, 094014.$	j ETQq0 (1.3	0 rgBT /Over 7
851	Quantum Hall effect of self-organized graphene monolayers on the C-face of 6H-SiC. Journal Physics D: Applied Physics, 2014, 47, 094009.	1.3	5
852	Excellent epitaxial graphene layers grown simply on SiC substrates and their characterisation. Electronics Letters, 2014, 50, 98-100.	0.5	0
853	Sequential oxygen and alkali intercalation of epitaxial graphene on Ir(111): enhanced many-body effects and formation of <i>pn</i> -interfaces. 2D Materials, 2014, 1, 025002.	2.0	36
854	Probing Electronic Properties of Graphene on the Atomic Scale by Scanning Tunneling Microscopy and Spectroscopy. Graphene and 2D Materials, 2014, 1, .	2.0	7
855	Preparation and Application of Grapheme. Applied Mechanics and Materials, 0, 670-671, 127-129.	0.2	0
856	Microwave-induced nucleation of conducting graphitic domains on silicon carbide surfaces. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2014, 32, 011215.	0.6	3
857	Epitaxial graphene FETs on sapphire substrate. , 2014, , .		0
858	Chemical Manipulation of Graphene in Dispersions. World Scientific Series on Carbon Nanoscience, 2014, , 185-217.	0.1	2
859	Optical axis misalignment detection by noncollinear second-harmonic generation. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 26.	0.9	2
860	Effect of buffer layer coupling on the lattice parameter of epitaxial graphene on SiC(0001). Physical Review B, 2014, 90, .	1.1	36
861	Electrical Nanocharacterization of Epitaxial Graphene/Silicon Carbide Schottky Contacts. Materials Science Forum, 2014, 778-780, 1142-1145.	0.3	5
862	Observing hot carrier distribution in an <i>n</i> -type epitaxial graphene on a SiC substrate. Applied Physics Letters, 2014, 104, .	1.5	65
863	Comprehensive study of graphene grown by chemical vapor deposition. Journal of Materials Science: Materials in Electronics, 2014, 25, 4333-4338.	1.1	9
864	Terahertz conductivity and ultrafast dynamics of photoinduced charge carriers in intrinsic 3C and 6H silicon carbide. Applied Physics Letters, 2014, 105, 032104.	1.5	7
865	Preparation and electrical transport properties of quasi free standing bilayer graphene on SiC (0001) substrate by H intercalation. Applied Physics Letters, 2014, 105, .	1.5	25
866	Short-range ordering of ion-implanted nitrogen atoms in SiC-graphene. Applied Physics Letters, 2014, 105, .	1.5	22
867	Identification of dominant scattering mechanism in epitaxial graphene on SiC. Applied Physics Letters, 2014, 104, .	1.5	11

#	Article	IF	CITATIONS
868	Ultrasonicated-ozone modification of exfoliated graphite for stable aqueous graphitic nanoplatelet dispersions. Nanotechnology, 2014, 25, 495607.	1.3	24
869	Controlled epitaxial graphene growth within removable amorphous carbon corrals. Applied Physics Letters, 2014, 105, .	1.5	14
870	Effects of a modular two-step ozone-water and annealing process on silicon carbide graphene. Applied Physics Letters, 2014, 105, 081602.	1.5	2
871	A versatile photoelectron spectrometer for pressures up to 30 mbar. Review of Scientific Instruments, 2014, 85, 075119.	0.6	41
872	Direct experimental evidence for the reversal of carrier type upon hydrogen intercalation in epitaxial graphene/SiC(0001). Applied Physics Letters, 2014, 104, 041908.	1.5	19
873	Etchant-free and damageless transfer of monolayer and bilayer graphene grown on SiC. Japanese Journal of Applied Physics, 2014, 53, 115101.	0.8	10
874	Understanding intercalation structures formed under graphene on Ir(111). Physical Review B, 2014, 90, .	1.1	36
875	Functionalized graphenes with polymer toughener as novel interface modifier for property-tailored polylactic acid/graphene nanocomposites. Polymer, 2014, 55, 6381-6389.	1.8	51
876	Adsorption on epitaxial graphene on SiC(0001). Journal of Materials Research, 2014, 29, 447-458.	1.2	8
877	Preferential sliding directions on graphite. Physical Review B, 2014, 89, .	1.1	32
877 878	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691.	1.1 1.2	32 6
877 878 879	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691. Controlled synthesis and decoupling of monolayer graphene on SiC(0001). Applied Physics Letters, 2014, 104, .	1.1 1.2 1.5	32 6 11
877 878 879 880	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691. Controlled synthesis and decoupling of monolayer graphene on SiC(0001). Applied Physics Letters, 2014, 104, . Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures. ACS Nano, 2014, 8, 11657-11665.	1.1 1.2 1.5 7.3	32 6 11 12
877 878 879 880 881	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691. Controlled synthesis and decoupling of monolayer graphene on SiC(0001). Applied Physics Letters, 2014, 104, . Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures. ACS Nano, 2014, 8, 11657-11665. Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). Applied Physics Letters, 2014, 105, .	1.1 1.2 1.5 7.3 1.5	32 6 11 12 49
877 878 879 880 881 882	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691. Controlled synthesis and decoupling of monolayer graphene on SiC(0001). Applied Physics Letters, 2014, 104, . Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures. ACS Nano, 2014, 8, 11657-11665. Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). Applied Physics Letters, 2014, 105, . Selective area growth of Bernal bilayer epitaxial graphene on 4H-SiC (0001) substrate by electron-beam irradiation. Applied Physics Letters, 2014, 105, 181601.	1.1 1.2 1.5 7.3 1.5 1.5	32 6 11 12 49 11
877 878 879 880 881 882 882	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691. Controlled synthesis and decoupling of monolayer graphene on SiC(0001). Applied Physics Letters, 2014, 104, . Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures. ACS Nano, 2014, 8, 11657-11665. Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). Applied Physics Letters, 2014, 105, . Selective area growth of Bernal bilayer epitaxial graphene on 4H-SiC (0001) substrate by electron-beam irradiation. Applied Physics Letters, 2014, 105, 181601. Bipolar gating of epitaxial graphene by intercalation of Ge. Applied Physics Letters, 2014, 104, .	1.1 1.2 1.5 7.3 1.5 1.5	 32 6 11 12 49 11 31
877 878 879 880 881 881 882 883	Preferential sliding directions on graphite. Physical Review B, 2014, 89, . Monolithic circuits with epitaxial graphene/silicon carbide transistors. Physica Status Solidi - Rapid Research Letters, 2014, 8, 688-691. Controlled synthesis and decoupling of monolayer graphene on SiC(0001). Applied Physics Letters, 2014, 104, . Designed Three-Dimensional Freestanding Single-Crystal Carbon Architectures. ACS Nano, 2014, 8, Structural consequences of hydrogen intercalation of epitaxial graphene on SiC(0001). Applied Physics Letters, 2014, 105, . Selective area growth of Bernal bilayer epitaxial graphene on 4H-SiC (0001) substrate by electron-beam irradiation. Applied Physics Letters, 2014, 105, 181601. Bipolar gating of epitaxial graphene by intercalation of Ge. Applied Physics Letters, 2014, 104, . Hydrogen intercalation of single and multiple layer graphene synthesized on Si-terminated SiC(0001) sufface. Journal of Applied Physics, 2014, 116, .	 1.1 1.2 1.5 1.5 1.5 1.5 1.1 	 32 6 11 12 49 11 31 14

#	Article	IF	CITATIONS
886	Multiple π-bands and Bernal stacking of multilayer graphene on C-face SiC, revealed by nano-Angle Resolved Photoemission. Scientific Reports, 2014, 4, 4157.	1.6	33
887	Energy Gap Induced by Friedel Oscillations Manifested as Transport Asymmetry at Monolayer-Bilayer Graphene Boundaries. Physical Review X, 2014, 4, .	2.8	39
888	Charge spill-out and work function of few-layer graphene on SiC(0 0 0 1). Journal Physics D: Applied Physics, 2014, 47, 295303.	1.3	13
889	Multiple breakdown model of carpet-bombing-like concaves formed during dielectric breakdown of silicon carbide metal–oxide–semiconductor capacitors. Japanese Journal of Applied Physics, 2014, 53, 08LA01.	0.8	3
890	Effects of hydrogen intercalation on transport properties of quasi-free-standing monolayer graphene. Japanese Journal of Applied Physics, 2014, 53, 04EN01.	0.8	20
891	Micro-Raman characterization of graphene grown on SiC(000-1). , 2014, , .		0
892	Nanoscale Characterization of SiC Interfaces and Devices. Materials Science Forum, 0, 778-780, 407-413.	0.3	4
893	Integration of multilayer graphene wires onto tungsten plugs for carbon/metal hybrid interconnects. Japanese Journal of Applied Physics, 2014, 53, 05GC01.	0.8	2
894	Optimizing the Vacuum Growth of Epitaxial Graphene on 6H-SiC. Materials Science Forum, 0, 778-780, 1154-1157.	0.3	2
895	Effects of Pretreatment on the Electronic Properties of Plasma Enhanced Chemical Vapor Deposition Hetero-Epitaxial Graphene Devices. Chinese Physics Letters, 2014, 31, 097301.	1.3	0
896	Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates. Chinese Physics Letters, 2014, 31, 078104.	1.3	3
897	Atomic oxidation of large area epitaxial graphene on 4H-SiC(0001). Applied Physics Letters, 2014, 104, 093109.	1.5	8
898	Backside Monitoring of Graphene on Silicon Carbide by Raman Spectroscopy. Materials Science Forum, 2014, 778-780, 1166-1169.	0.3	0
899	Graphene for Biosensor Applications. World Scientific Series on Carbon Nanoscience, 2014, , 83-145.	0.1	0
900	Properties of epitaxial graphene grown on C-face SiC compared to Si-face. Journal of Materials Research, 2014, 29, 426-438.	1.2	6
901	High-resolution x-ray analysis of graphene grown on 4H–SiC (000) at low pressures. Journal of Materials Research, 2014, 29, 439-446.	1.2	1
902	2. Synthesis, characterisation and properties of graphene. , 2014, , 25-42.		0
903	Raman Spectrum of Epitaxial Graphene Grown on Ion Beam Illuminated 6H-SiC (0001). Chinese Physics Letters, 2014, 31, 116801.	1.3	2

#	Article	IF	CITATIONS
904	Structural and electronic inhomogeneity for graphene grown on the C-face of SiC: Insights from ab initio calculations. Applied Surface Science, 2014, 291, 69-73.	3.1	6
905	Transition from Tubes to Sheets—A Comparison of the Properties and Applications of Carbon Nanotubes and Graphene. , 2014, , 519-568.		2
906	Electronic properties of epitaxial graphene residing on SiC facets probed by conductive atomic force microscopy. Applied Surface Science, 2014, 291, 53-57.	3.1	12
907	Buffer layer free graphene on SiC(0001) via interface oxidation in water vapor. Carbon, 2014, 70, 258-265.	5.4	42
908	Improvement of multilayer graphene quality by current stress during thermal CVD. Microelectronic Engineering, 2014, 120, 200-204.	1.1	16
909	Synthesis and characterization of graphene and carbon nanotubes: A review on the past and recent developments. Journal of Industrial and Engineering Chemistry, 2014, 20, 1171-1185.	2.9	307
910	Synthesis of novel carbon nanostructures by annealing of silicon-carbon nanoparticles at atmospheric pressure. Journal of Nanoparticle Research, 2014, 16, 1.	0.8	13
911	Intumescent flame retardant polyurethane/reduced graphene oxide composites with improved mechanical, thermal, and barrier properties. Journal of Materials Science, 2014, 49, 243-254.	1.7	121
912	Formation of a Buffer Layer for Graphene on C-Face SiC{0001}. Journal of Electronic Materials, 2014, 43, 819-827.	1.0	4
913	Three-dimensional graphene materials: preparation, structures and application in supercapacitors. Energy and Environmental Science, 2014, 7, 1850-1865.	15.6	773
914	Wafer-Scale Growth of Single-Crystal Monolayer Graphene on Reusable Hydrogen-Terminated Germanium. Science, 2014, 344, 286-289.	6.0	831
915	Epitaxial graphene on SiC{0001}: advances and perspectives. Physical Chemistry Chemical Physics, 2014, 16, 3501.	1.3	147
916	Grain Boundary Effect on Electrical Transport Properties of Graphene. Journal of Physical Chemistry C, 2014, 118, 2338-2343.	1.5	71
917	Structural Diversity of Bulky Graphene Materials. Small, 2014, 10, 2200-2214.	5.2	41
918	Mechanisms of Graphene Growth on Metal Surfaces: Theoretical Perspectives. Small, 2014, 10, 2136-2150.	5.2	73
919	Band-gap tuning of monolayer graphene by oxygen adsorption. Carbon, 2014, 73, 141-145.	5.4	33
920	Evolution of epitaxial graphene layers on 3C SiC/Si (1 1 1) as a function of annealing temperature in UHV. Carbon, 2014, 68, 563-572.	5.4	87
921	Molecular Selfâ€Assembly on Graphene. Small, 2014, 10, 1038-1049.	5.2	184

#	Article	IF	Citations
922	Selfâ€Assembly of Carbon Atoms on Transition Metal Surfaces—Chemical Vapor Deposition Growth Mechanism of Graphene. Advanced Materials, 2014, 26, 5488-5495.	11.1	52
923	Ultimate Permeation Across Atomically Thin Porous Graphene. Science, 2014, 344, 289-292.	6.0	738
924	Conductive Nanomaterials for Printed Electronics. Small, 2014, 10, 3515-3535.	5.2	707
925	Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014, 542, 195-295.	10.3	228
926	Exploring graphene formation on the C-terminated face of SiC by structural, chemical and electrical methods. Carbon, 2014, 69, 221-229.	5.4	21
927	Study on the effect of hexamethylene diamine functionalized graphene oxide on the curing kinetics of epoxy nanocomposites. European Polymer Journal, 2014, 52, 88-97.	2.6	93
928	Charged nano-domes and bubbles in epitaxial graphene. Nanotechnology, 2014, 25, 165704.	1.3	23
929	Two-step growth of graphene with separate controlling nucleation and edge growth directly on SiO2 substrates. Carbon, 2014, 72, 387-392.	5.4	45
930	Electrically conductive aluminosilicate/graphene nanocomposite. Journal of the European Ceramic Society, 2014, 34, 3111-3117.	2.8	15
931	Growth of non-concentric graphene ring on 6H-SiC (0001) surface. Applied Surface Science, 2014, 307, 136-141.	3.1	12
932	Photosensitive Graphene Transistors. Advanced Materials, 2014, 26, 5239-5273.	11.1	290
933	Graphene growth on AlN templates on silicon using propane-hydrogen chemical vapor deposition. Applied Physics Letters, 2014, 104, .	1.5	17
935	High-yield fabrication of nm-size gaps in monolayer CVD graphene. Nanoscale, 2014, 6, 7249-7254.	2.8	68
936	Carrier induced magnetic coupling transitions in phthalocyanine-based organometallic sheet. Nanoscale, 2014, 6, 328-333.	2.8	44
937	Synthesis of mono layer graphene oxide from sonicated graphite flakes and their Hall effect measurements. Materials Science-Poland, 2014, 32, 292-296.	0.4	5
938	Transparent conductors composed of nanomaterials. Nanoscale, 2014, 6, 5581-5591.	2.8	185
939	Graphene synthesis. Diamond and Related Materials, 2014, 46, 25-34.	1.8	215
940	Graphene synthesis and application for solar cells. Journal of Materials Research, 2014, 29, 299-319.	1.2	77

#	Article	IF	CITATIONS
941	Structural Origins of Potential Dependent Hysteresis at the Electrified Graphene/Ionic Liquid Interface. Journal of Physical Chemistry C, 2014, 118, 569-574.	1.5	111
942	Morphology and structure of epitaxial graphene grown on 6H–SiC (0001) substrates by modified argon-assisted epitaxial method. Materials Letters, 2014, 115, 144-146.	1.3	4
943	A universal transfer route for graphene. Nanoscale, 2014, 6, 889-896.	2.8	58
944	Graphene etching on SiC grains as a path to interstellar polycyclic aromatic hydrocarbons formation. Nature Communications, 2014, 5, 3054.	5.8	59
945	Biosensors Based on Aptamers and Enzymes. Advances in Biochemical Engineering/Biotechnology, 2014, , ,	0.6	8
946	High frequency electric field induced nonlinear effects in graphene. Physics Reports, 2014, 535, 101-138.	10.3	369
947	Multi-layer graphene obtained by high temperature carbon implantation into nickel films. Carbon, 2014, 66, 1-10.	5.4	31
948	Novel Hybrid Carbon Nanofiber/Highly Branched Graphene Nanosheet for Anode Materials in Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2014, 6, 18590-18596.	4.0	23
949	Intrinsic inhomogeneity in barrier height at monolayer graphene/SiC Schottky junction. Applied Physics Letters, 2014, 105, .	1.5	26
950	Quasi-Free-Standing Graphene Monolayer on a Ni Crystal through Spontaneous Na Intercalation. Physical Review X, 2014, 4, .	2.8	11
951	Magnetic scanning gate microscopy of graphene Hall devices (invited). Journal of Applied Physics, 2014, 115, .	1.1	22
953	Rotated domain network in graphene on cubic-SiC(001). Nanotechnology, 2014, 25, 135605.	1.3	14
954	Epitaxial growth of graphene on silicon carbide (SiC). , 2014, , 3-26.		17
955	A large-area smooth graphene film on a TiO2 nanotube array via a one-step electrochemical process. Journal of Materials Chemistry A, 2014, 2, 5187.	5.2	9
956	Scanning Tunneling Microscope and Photoemission Spectroscopy Investigations of Bismuth on Epitaxial Graphene on SiC(0001). Journal of Physical Chemistry C, 2014, 118, 24995-24999.	1.5	20
957	How good can CVD-grown monolayer graphene be?. Nanoscale, 2014, 6, 15255-15261.	2.8	48
958	Tip-Enhanced Raman Scattering of the Local Nanostructure of Epitaxial Graphene Grown on 4H-SiC (0001ì). Journal of Physical Chemistry C, 2014, 118, 25809-25815.	1.5	42
959	Preparation of Graphene with Large Area. , 2014, , 39-76.		3

#	Article	IF	CITATIONS
960	Low-cost Nanomaterials. Green Energy and Technology, 2014, , .	0.4	16
961	Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today, 2014, 9, 405-432.	6.2	93
962	Stretchable and Transparent Electrodes using Hybrid Structures of Graphene–Metal Nanotrough Networks with High Performances and Ultimate Uniformity. Nano Letters, 2014, 14, 6322-6328.	4.5	168
963	Resonant orbitals in fluorinated epitaxial graphene. Physical Chemistry Chemical Physics, 2014, 16, 18902.	1.3	11
964	A new oil/water interfacial assembly of sulphonated graphene into ultrathin films. RSC Advances, 2014, 4, 34566-34571.	1.7	13
965	Spiers Memorial Lecture : Advances of carbon nanomaterials. Faraday Discussions, 2014, 173, 9-46.	1.6	24
966	Quasi-freestanding epitaxial graphene transistor with silicon nitride top gate. Journal Physics D: Applied Physics, 2014, 47, 305103.	1.3	5
967	Epitaxial graphene as an electrode material: a transistor testbed for organic and all-carbon semiconductors. RSC Advances, 2014, 4, 34474.	1.7	1
968	FTO-free counter electrodes for dye-sensitized solar cells using carbon nanosheets synthesised from a polymeric carbon source. Physical Chemistry Chemical Physics, 2014, 16, 17595-17602.	1.3	11
969	Graphene-based hybrid structures combined with functional materials of ferroelectrics and semiconductors. Nanoscale, 2014, 6, 6346-6362.	2.8	83
970	From graphite oxide to nitrogen and sulfur co-doped few-layered graphene by a green reduction route via Chinese medicinal herbs. RSC Advances, 2014, 4, 17902.	1.7	28
971	A facile and fast electrochemical route to produce functional few-layer graphene sheets for lithium battery anode application. Journal of Materials Chemistry A, 2014, 2, 15298-15302.	5.2	17
972	The correlation of epitaxial graphene properties and morphology of SiC (0001). Journal of Applied Physics, 2014, 115, 043527.	1.1	12
973	High quality and large-scale manually operated monolayer graphene pasters. Nanotechnology, 2014, 25, 275704.	1.3	5
974	Plasmonic-enhanced Raman scattering of graphene on growth substrates and its application in SERS. Nanoscale, 2014, 6, 13754-13760.	2.8	55
975	Image-potential states and work function of graphene. Journal of Physics Condensed Matter, 2014, 26, 393001.	0.7	34
977	Graphene nanoelectromechanics (NEMS). , 2014, , 341-362.		5
978	Hot carriers in epitaxial graphene sheets with and without hydrogen intercalation: role of substrate coupling. Nanoscale, 2014, 6, 10562-10568.	2.8	4

	CITATION	N REPORT	
#	Article	IF	CITATIONS
979	Graphene's potential in materials science and engineering. RSC Advances, 2014, 4, 28987-29011.	1.7	60
980	Multi- and few-layer graphene on insulating substrate via pulsed laser deposition technique. Applied Surface Science, 2014, 317, 1004-1009.	3.1	50
981	A facile one-pot method to Au–SnO 2 -graphene ternary hybrid. Materials Research Bulletin, 2014, 59, 77-83.	2.7	5
982	<i>Colloquium</i> : Graphene spectroscopy. Reviews of Modern Physics, 2014, 86, 959-994.	16.4	220
983	Surface-Induced Hybridization between Graphene and Titanium. ACS Nano, 2014, 8, 7704-7713.	7.3	38
984	Synergistic effect of H2O and O2 on the decoupling of epitaxial monolayer graphene from SiC(0 0 0 1) via thermal treatments. Carbon, 2014, 78, 298-304.	5.4	23
985	Preparation of Pt-Co nanoparticles by galvanostatic pulse electrochemical codeposition on in situ electrochemical reduced graphene nanoplates based carbon paper electrode for oxygen reduction reaction in proton exchange membrane fuel cell. Applied Surface Science, 2014, 315, 222-234.	3.1	28
986	Epitaxial graphene on SiC: from carrier density engineering to quasi-free standing graphene by atomic intercalation. Journal Physics D: Applied Physics, 2014, 47, 094013.	1.3	50
987	High thermal stability quasi-free-standing bilayer graphene formed on 4H–SiC(0 0 0 1) via platinum intercalation. Carbon, 2014, 79, 631-635.	5.4	31
988	Scalable graphene synthesised by plasma-assisted selective reaction on silicon carbide for device applications. Nanoscale, 2014, 6, 13861-13869.	2.8	34
989	Toward 300 mm Wafer-Scalable High-Performance Polycrystalline Chemical Vapor Deposited Graphene Transistors. ACS Nano, 2014, 8, 10471-10479.	7.3	87
990	Laser-Induced Solid-Phase Doped Graphene. ACS Nano, 2014, 8, 7671-7677.	7.3	48
991	Scanning tunneling microscopy (STM) of graphene. , 2014, , 124-155.		1
992	Singular Sheet Etching of Graphene with Oxygen Plasma. Nano-Micro Letters, 2014, 6, 116-124.	14.4	53
993	Electronics based on two-dimensional materials. Nature Nanotechnology, 2014, 9, 768-779.	15.6	2,505
994	Aggregation of carbon atoms at SiO2/SiC(0 0 0 1) interface by plasma oxidation toward formation of pit-free graphene. Carbon, 2014, 80, 440-445.	5.4	5
995	Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil. Chinese Physics Letters, 2014, 31, 067202.	1.3	10
996	Insights into electrocatalytic activity of epitaxial graphene on SiC from cyclic voltammetry and ac impedance spectroscopy. Journal of Solid State Electrochemistry, 2014, 18, 2555-2562.	1.2	12

		CITATION REPO	RT	
#	Article	IF	F	CITATIONS
997	Carbon nanotubes and graphene towards soft electronics. Nano Convergence, 2014, 1, 15.	6	.3	112
998	Electronic transport in graphene: towards high mobility. , 2014, , 199-227.			22
999	Quantum Hall Effect and Quantum Point Contact in Bilayer-Patched Epitaxial Graphene. Nano 2014, 14, 3369-3373.	Letters, 4	.5	29
1000	On the Nature of Defects in Liquid-Phase Exfoliated Graphene. Journal of Physical Chemistry C 118, 15455-15459.	, 2014, 1	.5	139
1001	Epitaxial graphene formation on 3C-SiC/Si thin films. Journal Physics D: Applied Physics, 2014,	47, 094016. 1	.3	31
1002	The Bottom-up Growth of Edge Specific Graphene Nanoribbons. Nano Letters, 2014, 14, 6080	9-6086. 4	.5	22
1003	Principle of direct van der Waals epitaxy of single-crystalline films on epitaxial graphene. Natur Communications, 2014, 5, 4836.	re 5	.8	325
1004	Facile synthesis of Au@Fe3O4–graphene and Pt@Fe3O4–graphene ternary hybrid nanon their catalytic properties. RSC Advances, 2014, 4, 21909.	naterials and 1	.7	18
1005	Evolution of interfacial intercalation chemistry on epitaxial graphene/SiC by surface enhanced spectroscopy. Applied Surface Science, 2014, 320, 441-447.	Raman 3	.1	11
1006	Large-area graphene coating via superhydrophilic-assisted electro-hydrodynamic spraying dep Carbon, 2014, 79, 294-301.	osition. 5	.4	18
1007	Crystalline Si/Graphene Quantum Dots Heterojunction Solar Cells. Journal of Physical Chemist 2014, 118, 5164-5171.	ry C, 1	.5	125
1008	Heat treatment of 6H-SiC under different gaseous environments. Ceramics International, 201-4149-4154.	4, 40, 2	.3	4
1009	Synthesis and characterization of graphene: influence of synthesis variables. Physical Chemist Chemical Physics, 2014, 16, 2962.	ry 1	.3	40
1010	Electrochemistry of Graphene and Related Materials. Chemical Reviews, 2014, 114, 7150-718	8. 2	.3.0	968
1011	Density functional study of hydrogen adsorption and diffusion on Niâ€loaded graphene and g oxide. International Journal of Quantum Chemistry, 2014, 114, 879-884.	raphene 1	.0	8
1012	Graphene from Fingerprints: Exhausting the Performance of Liquid Precursor Deposition. Lang 2014, 30, 6114-6119.	muir, 1	.6	5
1013	High resolution study of structural and electronic properties of epitaxial graphene grown on off-axis 4H–SiC (0001). Journal of Crystal Growth, 2014, 393, 150-155.	C).7	11
1014	Influence of a parallel electric field on the dispersion relation of graphene – A new route to I logics. Journal of Crystal Growth, 2014, 401, 869-873.	Dirac c).7	2

#	Article	IF	CITATIONS
1015	Intercalation of H at the graphene/SiC(0001) interface: Structure and stability from first principles. Applied Surface Science, 2014, 291, 64-68.	3.1	10
1016	Chemistry with Graphene and Graphene Oxide—Challenges for Synthetic Chemists. Angewandte Chemie - International Edition, 2014, 53, 7720-7738.	7.2	741
1017	Chemical Routes to Graphene-Based Flexible Electrodes for Electrochemical Energy Storage. Green Energy and Technology, 2014, , 425-455.	0.4	1
1018	Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors. Physical Chemistry Chemical Physics, 2014, 16, 2280.	1.3	87
1019	Approaching Magnetic Ordering in Graphene Materials by FeCl ₃ Intercalation. Nano Letters, 2014, 14, 1751-1755.	4.5	68
1020	Graphene–silver nanowire hybrid films as electrodes for transparent and flexible loudspeakers. CrystEngComm, 2014, 16, 3532.	1.3	47
1021	Two-dimensional carbon leading to new photoconversion processes. Chemical Society Reviews, 2014, 43, 4281-4299.	18.7	214
1022	Graphene for Electron Devices: The Panorama of a Decade. IEEE Journal of the Electron Devices Society, 2014, 2, 77-104.	1.2	25
1023	An electronic structure perspective of graphene interfaces. Nanoscale, 2014, 6, 3444.	2.8	76
1024	Structure and transport properties of the interface between CVD-grown graphene domains. Nanoscale, 2014, 6, 7288.	2.8	52
1025	A highly efficient synthetic process of graphene films with tunable optical properties. Applied Surface Science, 2014, 314, 71-77.	3.1	24
1026	Effects of thermal treatment on the mechanical integrity of silicon carbide in HTR fuel up to 2200 °C. Journal of Nuclear Materials, 2014, 451, 168-178.	1.3	24
1027	Photonic Properties of Graphene Device. , 2014, , 291-308.		0
1028	Electronic Band Structure and Properties of Graphene. , 2014, , 23-46.		0
1029	Raman and Infrared Spectroscopic Characterization of Graphene. , 2014, , 165-194.		0
1030	Carbon at the Nanoscale. , 2014, , 15-50.		3
1031	Growth of protrusive graphene rings on Siâ€ŧerminated 6H–SiC (0001). Surface and Interface Analysis, 2014, 46, 1156-1159.	0.8	8
1032	Growth of Hexagonal Boron Nitride on Microelectronic Compatible Substrates. Materials Research Society Symposia Proceedings, 2015, 1781, 1-10.	0.1	2

#	Article	IF	CITATIONS
1033	Observation of anomalous Hanle spin precession line shapes resulting from interaction with localized states. Physical Review B, 2015, 91, .	1.1	3
1034	Interface disorder probed at the atomic scale for graphene grown on the C face of SiC. Physical Review B, 2015, 91, .	1.1	20
1035	Why graphene growth is very different on the C face than on the Si face of SiC: Insights from surface equilibria and the <mml:math< td=""><td></td><td></td></mml:math<>		

#	Article	IF	CITATIONS
1053	Carbonâ€Based Materials for Lithiumâ€lon Batteries, Electrochemical Capacitors, and Their Hybrid Devices. ChemSusChem, 2015, 8, 2284-2311.	3.6	259
1054	Graphene-based electrodes for flexible electronics. Polymer International, 2015, 64, 1676-1684.	1.6	33
1055	In Situ SR-XPS Observation of Ni-Assisted Low-Temperature Formation of Epitaxial Graphene on 3C-SiC/Si. Nanoscale Research Letters, 2015, 10, 421.	3.1	14
1057	Low Carrier Density Epitaxial Graphene Devices On SiC. Small, 2015, 11, 90-95.	5.2	59
1058	Tracing Ultrafast Carrier Dynamics in Graphene with Femtosecond Time-resolved Photoemission Spectroscopy. Hyomen Kagaku, 2015, 36, 418-423.	0.0	0
1059	Tip-Enhanced Raman Scattering of Nanomaterials. E-Journal of Surface Science and Nanotechnology, 2015, 13, 329-338.	0.1	2
1060	Synthesis of graphene films on Cu foils by thermal annealing without a carbon-containing chemical flow. Transactions of the Materials Research Society of Japan, 2015, 40, 417-420.	0.2	0
1061	Bifunctional effects of the ordered Si atoms intercalated between quasi-free-standing epitaxial graphene and SiC(0001): graphene doping and substrate band bending. New Journal of Physics, 2015, 17, 083058.	1.2	9
1063	Bifunctional Electrocatalytic Activity of Boronâ€Doped Graphene Derived from Boron Carbide. Advanced Energy Materials, 2015, 5, 1500658.	10.2	141
1064	The Covalent Functionalization of Graphene on Substrates. Angewandte Chemie - International Edition, 2015, 54, 10734-10750.	7.2	221
1065	Soft X-ray Exposure Promotes Na Intercalation in Graphene Grown on Si-Face SiC. Materials, 2015, 8, 4768-4777.	1.3	2
1066	Effect of Growth Pressure on Epitaxial Graphene Grown on 4H-SiC Substrates by Using Ethene Chemical Vapor Deposition. Materials, 2015, 8, 5586-5596.	1.3	9
1067	Surface Evolution of Nano-Textured 4H–SiC Homoepitaxial Layers after High Temperature Treatments: Morphology Characterization and Graphene Growth. Nanomaterials, 2015, 5, 1532-1543.	1.9	4
1069	Approaching Truiy Freestanding Graphene: The Structure of Hydrogen-Intercalated Graphene on <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mn>6</mml:mn><mml:mi>H</mml:mi></mml:mrow><mml:mt mathvariant="bold">(<mml:mn>0001</mml:mn><mml:mo) 0.784314="" 1="" 10<="" etqq1="" overlock="" rgbt="" td="" tj=""><td>ex±xâ^'Tf 50 207</td><td>nndamtext><i Td (mathvari</i </td></mml:mo)></mml:mt </mml:math>	ex ± xâ^'Tf 50 207	nn d amtext> <i Td (mathvari</i
1070	Direct Momentum-Resolved Observation of One-Dimensional Confinement of Externally Doped Electrons within a Single Subnanometer-Scale Wire. Nano Letters, 2015, 15, 281-288.	4.5	20
1071	Epitaxial graphene on SiC: modification of structural and electron transport properties by substrate pretreatment. Journal of Physics Condensed Matter, 2015, 27, 185303.	0.7	34
1072	Biosensors for Food Toxin Detection: Carbon Nanotubes and Graphene. Materials Research Society Symposia Proceedings, 2015, 1725, 24.	0.1	15
1073	High-quality, single-layered epitaxial graphene fabricated on 6H-SiC (0001) by flash annealing in Pb atmosphere and mechanism. Nanotechnology, 2015, 26, 105708.	1.3	15

		CITATION R	EPORT	
#	Article		IF	CITATIONS
1074	Epitaxial Growth of a Single-Crystal Hybridized Boron Nitride and Graphene Layer on a Wi Semiconductor. Journal of the American Chemical Society, 2015, 137, 6897-6905.	de-Band Gap	6.6	55
1075	Tip induced mechanical deformation of epitaxial graphene grown on reconstructed 6H†surface during scanning tunneling and atomic force microscopy studies. Nanotechnology 255704.	"SiC(0001) , 2015, 26,	1.3	5
1076	Photochemistry of Graphene. Structure and Bonding, 2015, , 213-238.		1.0	0
1077	Photofunctional Layered Materials. Structure and Bonding, 2015, , .		1.0	10
1078	Micro- and Nanotribology of Graphene. Nanoscience and Technology, 2015, , 453-461.		1.5	0
1079	Graphene Oxide. , 2015, , .			91
1080	Spectroscopy and Microscopy of Graphene Oxide and Reduced Graphene Oxide. , 2015, ,	29-60.		8
1081	Synthesis of ultra-thin carbon layers on SiC substrate by ion implantation. Carbon, 2015,	93, 230-241.	5.4	14
1082	Facile ultrasonic synthesis of graphene/SnO2 nanocomposite and its application to the si electrochemical determination of dopamine, ascorbic acid, and uric acid. Journal of Electr Chemistry, 2015, 749, 26-30.	multaneous oanalytical	1.9	62
1083	Room temperature performance analysis of bilayer graphene terahertz photodetector. Op 1156-1160.	otik, 2015, 126,	1.4	6
1084	Functionalized graphene and other two-dimensional materials for photovoltaic devices: d and processing. Chemical Society Reviews, 2015, 44, 5638-5679.	evice design	18.7	283
1085	Engineering electrical properties of graphene: chemical approaches. 2D Materials, 2015, 2	2, 042001.	2.0	46
1086	Challenges and opportunities for graphene as transparent conductors in optoelectronics. Today, 2015, 10, 681-700.	Nano	6.2	73
1087	Graphene-Based Glucose Sensors: A Brief Review. IEEE Transactions on Nanobioscience, 2	.015, 14, 818-834.	2.2	44
1088	Graphene Nanomesh Formation by Fluorine Intercalation. Journal of Physical Chemistry C 29193-29200.	, 2015, 119,	1.5	15
1089	Graphene growth under Knudsen molecular flow on a confined catalytic metal coil. Nanos 7, 1314-1324.	scale, 2015,	2.8	17
1090	Lattice Selective Growth of Graphene on Sapphire Substrate. Journal of Physical Chemistr 426-430.	y C, 2015, 119,	1.5	8
1091	Preparation of graphene on Cu foils by ion implantation with negative carbon clusters. Cl Physics B, 2015, 24, 018502.	hinese	0.7	2

#	Article	IF	CITATIONS
1092	Effects of UV light intensity on electrochemical wet etching of SiC for the fabrication of suspended graphene. Japanese Journal of Applied Physics, 2015, 54, 036502.	0.8	3
1093	A new dynamic-XPS end-station for beamline PO4 at PETRA III/DESY. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777, 189-193.	0.7	11
1094	Fluidizedâ€bed CVD of unstacked doubleâ€layer templated graphene and its application in supercapacitors. AICHE Journal, 2015, 61, 747-755.	1.8	48
1095	Graphene Growth on Pt(111) by Ethylene Chemical Vapor Deposition at Surface Temperatures near 1000 K. Journal of Physical Chemistry C, 2015, 119, 4759-4768.	1.5	59
1096	Numerical study of inhomogeneity effects on Hall measurements of graphene films. Solid-State Electronics, 2015, 106, 34-43.	0.8	2
1097	Comparing Graphene Growth on Cu(111) versus Oxidized Cu(111). Nano Letters, 2015, 15, 917-922.	4.5	107
1098	Progress in Large-Scale Production of Graphene. Part 2: Vapor Methods. Jom, 2015, 67, 44-52.	0.9	27
1099	Amorphous carbon coating for improving the field emission performance of SiC nanowire cores. Journal of Materials Chemistry C, 2015, 3, 658-663.	2.7	41
1100	Nonlinear subharmonic oscillation of orthotropic graphene-matrix composite. Computational Materials Science, 2015, 99, 164-172.	1.4	11
1101	Graphene synthesis, characterization and its applications in nanophotonics, nanoelectronics, and nanosensing. Journal of Materials Science: Materials in Electronics, 2015, 26, 4347-4379.	1.1	135
1102	Interfacial ionic â€~liquids': connecting static and dynamic structures. Journal of Physics Condensed Matter, 2015, 27, 032101.	0.7	67
1103	Assessment of H-intercalated graphene for microwave FETs through material characterization and electron transport studies. Carbon, 2015, 81, 96-104.	5.4	7
1104	Optimized growth of graphene on SiC: from the dynamic flip mechanism. Nanoscale, 2015, 7, 4522-4528.	2.8	9
1105	Easy preparation of ultrathin reduced graphene oxide sheets at a high stirring speed. Ceramics International, 2015, 41, 5798-5806.	2.3	130
1106	Controlledn-doping in chemical vapour deposition grown graphene by antimony. Journal Physics D: Applied Physics, 2015, 48, 015307.	1.3	6
1107	The photoelectric characteristics of a few-layer graphene/Si Schottky junction solar cell. International Journal of Modern Physics B, 2015, 29, 1450248.	1.0	2
1108	Study on transfer-free graphene synthesis process utilizing spontaneous agglomeration of catalytic Ni and Co metals. Materials Research Express, 2015, 2, 015602.	0.8	10
1109	Graphene for nanoelectronics. Japanese Journal of Applied Physics, 2015, 54, 040102.	0.8	31

#	Article	IF	CITATIONS
1110	Epitaxial growth of graphene on SiC by Si selective etching using SiF4in an inert ambient. Japanese Journal of Applied Physics, 2015, 54, 030304.	0.8	13
1111	Synthesis of Carbon/Sulfur Nanolaminates by Electrochemical Extraction of Titanium from Ti ₂ SC. Angewandte Chemie - International Edition, 2015, 54, 4810-4814.	7.2	100
1112	A comparative study of different types of reduced graphene oxides as electrochemical sensing platforms for hydroquinone and catechol. Journal of Solid State Electrochemistry, 2015, 19, 861-870.	1.2	31
1113	Valley polarized insulator-metal transition and valley filtering effect in graphene. European Physical Journal B, 2015, 88, 1.	0.6	1
1114	Redistribution of carbon atoms in Pt substrate for high quality monolayer graphene synthesis. Journal of Semiconductors, 2015, 36, 013005.	2.0	4
1115	Design, Synthesis, and Characterization of Graphene–Nanoparticle Hybrid Materials for Bioapplications. Chemical Reviews, 2015, 115, 2483-2531.	23.0	603
1116	Elastomeric composites based on carbon nanomaterials. Nanotechnology, 2015, 26, 112001.	1.3	119
1117	Recent developments in superhydrophobic graphene and graphene-related materials: from preparation to potential applications. Nanoscale, 2015, 7, 7101-7114.	2.8	144
1118	Thermal transport across graphene/SiC interface: effects of atomic bond and crystallinity of substrate. Applied Physics A: Materials Science and Processing, 2015, 119, 415-424.	1.1	62
1119	Studies on the mechanical stretchability of transparent conductive film based on graphene-metal nanowire structures. Nanoscale Research Letters, 2015, 10, 27.	3.1	47
1120	Chemical Vapor Deposition of Methane in the Presence of Cu/Si Nanoparticles as a Facile Method for Graphene Production. Fullerenes Nanotubes and Carbon Nanostructures, 2015, 23, 968-973.	1.0	7
1121	Synthesis and structure of high quality graphene prepared via solvothermal exfoliation of intercalated graphite flakes. Superlattices and Microstructures, 2015, 86, 270-274.	1.4	71
1122	Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper. Science Advances, 2015, 1, e1500222.	4.7	635
1123	Formation mechanism of graphene buffer layer on SiC(0 0 0 1). Carbon, 2015, 81, 63-72.	5.4	33
1124	Probing the electronic properties of graphene on C-face SiC down to single domains by nanoresolved photoelectron spectroscopies. Physical Review B, 2015, 92, .	1.1	12
1125	Large area CVD growth of graphene. Synthetic Metals, 2015, 210, 95-108.	2.1	182
1126	Graphene synthesis on SiC: Reduced graphitization temperature by C-cluster and Ar-ion implantation. Nuclear Instruments & Methods in Physics Research B, 2015, 356-357, 99-102.	0.6	14
1127	Synthesis and Development of Graphene–Inorganic Semiconductor Nanocomposites. Chemical Reviews, 2015, 115, 8294-8343.	23.0	227

#	Article	IF	CITATIONS
1128	Graphene for Transparent Conductors. , 2015, , .		38
1129	Graphene growth and properties on metal substrates. Journal of Physics Condensed Matter, 2015, 27, 303002.	0.7	86
1130	Synthesis of thiolated few-layered graphene by thermal chemical vapor deposition using solid precursor. Materials Letters, 2015, 159, 114-117.	1.3	4
1131	Effects of aluminum on epitaxial graphene grown on C-face SiC. Journal of Applied Physics, 2015, 117, 195306.	1.1	2
1132	Multilayered graphene films prepared at moderate temperatures using energetic physical vapour deposition. Carbon, 2015, 94, 378-385.	5.4	11
1133	Facile and green synthesis of graphene oxide by electrical exfoliation of pencil graphite and gold nanoparticle for non-enzymatic simultaneous sensing of ascorbic acid, dopamine and uric acid. RSC Advances, 2015, 5, 63513-63520.	1.7	36
1134	Growth and optical properties of Cu ₂ ZnSnS ₄ decorated reduced graphene oxide nanocomposites. Dalton Transactions, 2015, 44, 15031-15041.	1.6	30
1135	Thermal transport across atomic-layer material interfaces. Nanotechnology Reviews, 2015, 4, .	2.6	28
1136	Synthesis of quasi-free-standing bilayer graphene nanoribbons on SiC surfaces. Nature Communications, 2015, 6, 7632.	5.8	42
1137	CVD growth of large-area graphene over Cu foil by atmospheric pressure and its application in H2 evolution. Solid State Sciences, 2015, 46, 84-88.	1.5	11
1138	Bilayer-induced asymmetric quantum Hall effect in epitaxial graphene. Semiconductor Science and Technology, 2015, 30, 055007.	1.0	7
1139	Microscale study of frictional properties of graphene in ultra high vacuum. Friction, 2015, 3, 161-169.	3.4	37
1140	Thickness control of graphene deposited over polycrystalline nickel. New Journal of Chemistry, 2015, 39, 4414-4423.	1.4	17
1141	Probing patterned defects on graphene using differential interference contrast observation. Applied Physics Letters, 2015, 106, 081901.	1.5	6
1142	Synthesis of multi-layer graphene and multi-wall carbon nanotubes from direct decomposition of ethanol by microwave plasma without using metal catalysts. Plasma Sources Science and Technology, 2015, 24, 032005.	1.3	32
1143	Triangular Spin-Orbit-Coupled Lattice with Strong Coulomb Correlations: Sn Atoms on a SiC(0001) Substrate. Physical Review Letters, 2015, 114, 247602.	2.9	27
1144	Hydrogen desorption from hydrogen fluoride and remote hydrogen plasma cleaned silicon carbide (0001) surfaces. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2015, 33, .	0.9	7
1145	Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Communications, 2015, 6, 7393.	5.8	449

	CITATION	KLPOKI	
#	Article	IF	CITATIONS
1146	Terahertz response of patterned epitaxial graphene. New Journal of Physics, 2015, 17, 053045.	1.2	11
1147	Probing the Young's modulus and Poisson's ratio in graphene/metal interfaces and graphite: a comparative study. Nano Research, 2015, 8, 1847-1856.	5.8	130
1148	Effects of H2 annealing on polycrystalline copper substrates for graphene growth during low pressure chemical vapor deposition. Materials Letters, 2015, 153, 132-135.	1.3	17
1149	Enhanced Crystallinity of Epitaxial Graphene Grown on Hexagonal SiC Surface with Molybdenum Plate Capping. Scientific Reports, 2015, 5, 9615.	1.6	7
1150	Ballistic bipolar junctions in chemically gated graphene ribbons. Scientific Reports, 2015, 5, 9955.	1.6	22
1152	Gateless patterning of epitaxial graphene by local intercalation. Nanotechnology, 2015, 26, 025302.	1.3	7
1153	Vertical thinking in blue light emitting diodes: GaN-on-graphene technology. Proceedings of SPIE, 2015,	0.8	3
1154	Resistivity anisotropy measured using four probes in epitaxial graphene on silicon carbide. Applied Physics Express, 2015, 8, 036602.	1.1	8
1155	Structural properties and dielectric function of graphene grown by high-temperature sublimation on 4H-SiC(000-1). Journal of Applied Physics, 2015, 117, .	1.1	16
1156	Carbon nanomaterials for photovoltaic process. Nano Energy, 2015, 15, 490-522.	8.2	47
1157	Wafer-scale homogeneity of transport properties in epitaxial graphene on SiC. Carbon, 2015, 87, 409-414.	5.4	29
1158	Graphene Single Crystals: Size and Morphology Engineering. Advanced Materials, 2015, 27, 2821-2837.	11.1	99
1159	Nanobiosensors and Nanobioanalyses. , 2015, , .		10
1160	Fabrication of high quality graphene nanosheets via a spontaneous electrochemical reaction process. Carbon, 2015, 91, 527-534.	5.4	20
1161	Plasma treated graphene oxide films: structural and electrical studies. Journal of Materials Science: Materials in Electronics, 2015, 26, 4810-4815.	1.1	15
1162	CVD Growth of High-Quality Single-Layer Graphene. , 2015, , 3-20.		13
1163	Volatile Organic Compounds. Nanostructure Science and Technology, 2015, , 1023-1046.	0.1	1
1164	The transition from 3C SiC(111) to graphene captured by Ultra High Vacuum Scanning Tunneling Microscopy. Carbon, 2015, 91, 378-385.	5.4	36

		CITATION REPORT	f
#	Article	IF	CITATIONS
1165	Single-Molecule Junctions with Epitaxial Graphene Nanoelectrodes. Nano Letters, 2015, 15, 3	512-3518. 4.5	78
1166	Recent advances in electrochemical biosensing schemes using graphene and graphene-based nanocomposites. Carbon, 2015, 84, 519-550.	5.4	202
1167	Graphene, carbon nanotubes, zinc oxide and gold as elite nanomaterials for fabrication of bio for healthcare. Biosensors and Bioelectronics, 2015, 70, 498-503.	sensors 5.3	331
1168	Hydrogen assisted growth of high quality epitaxial graphene on the C-face of 4H-SiC. Applied Letters, 2015, 106, .	Physics 1.5	13
1169	Determination of quantitative structure-property and structure-process relationships for grap production in water. Nano Research, 2015, 8, 1865-1881.	hene 5.8	16
1170	In Situ Fabrication of Low-Friction Sandwich Sheets Through Functionalized Graphene Crossli Ionic Liquids. Tribology Letters, 2015, 58, 1.	nked by 1.2	26
1171	Synthesis and electronic structure of graphene on a nickel film adsorbed on graphite. Physics Solid State, 2015, 57, 1888-1894.	of the 0.2	11
1172	Role of substrate temperature at graphene synthesis in an arc discharge. Journal of Applied Pl 2015, 118, .	nysics, 1.1	22
1173	Characterization of SiC-grown epitaxial graphene microislands using tip-enhanced Raman spectroscopy. Physical Chemistry Chemical Physics, 2015, 17, 28993-28999.	1.3	14
1174	Sub-surface alloying largely influences graphene nucleation and growth over transition metal substrates. Physical Chemistry Chemical Physics, 2015, 17, 30270-30278.	1.3	4
1175	Controlled synthesis of graphene nanoribbons for field effect transistors. Journal of Alloys and Compounds, 2015, 649, 933-938.	3 2.8	7
1176	Selective growth of Pb islands on graphene/SiC buffer layers. Journal of Applied Physics, 2015 065304.	, 117, 1.1	11
1177	Non-vacuum growth of graphene films using solid carbon source. Applied Physics Letters, 202 221604.	15, 106, 1.5	8
1178	Growth and characterization of sidewall graphene nanoribbons. Applied Physics Letters, 2015	5, 106, . 1.5	29
1179	Large-scale aligned crystalline CH ₃ NH ₃ PbI ₃ perovskit Journal of Materials Chemistry A, 2015, 3, 18847-18851.	e array films. 5.2	19
1180	Graphene growth on SiC(000-1): optimization of surface preparation and growth conditions. Proceedings of SPIE, 2015, , .	0.8	1
1181	Electronic Structure Modification of Ion Implanted Graphene: The Spectroscopic Signatures c n-Type Doping. ACS Nano, 2015, 9, 11398-11407.	of p- and 7.3	75
1182	Synthesis, Structure, and Properties of Graphene and Graphene Oxide. , 2015, , 29-94.		18

#	Article	IF	Citations
1183	Transfer-free graphene synthesis on sapphire by catalyst metal agglomeration technique and demonstration of top-gate field-effect transistors. Applied Physics Letters, 2015, 107, 073102.	1.5	12
1184	Graphene/elastomer nanocomposites. Carbon, 2015, 95, 460-484.	5.4	308
1185	Examining the electrical and chemical properties of reduced graphene oxide with varying annealing temperatures in argon atmosphere. Applied Surface Science, 2015, 356, 719-725.	3.1	18
1186	Graphene FETs With Aluminum Bottom-Gate Electrodes and Its Natural Oxide as Dielectrics. IEEE Transactions on Electron Devices, 2015, 62, 2769-2773.	1.6	36
1187	The impact of substrate selection for the controlled growth of graphene by molecular beam epitaxy. Journal of Crystal Growth, 2015, 425, 274-278.	0.7	13
1188	Optimized geometry and electronic structure of three-dimensionalβ-graphyne. Journal of Semiconductors, 2015, 36, 072002.	2.0	0
1189	Waltzing with the Versatile Platform of Graphene to Synthesize Composite Photocatalysts. Chemical Reviews, 2015, 115, 10307-10377.	23.0	1,017
1190	Electrical Properties of Hydrogen Intercalated Epitaxial Graphene/SiC Interface Investigated by Nanoscale Current Mapping. Materials Science Forum, 0, 821-823, 929-932.	0.3	7
1191	Graphene Ohmic Contacts to n-Type Silicon Carbide (0001). Materials Science Forum, 0, 821-823, 933-936.	0.3	2
1192	A Study on Graphitization of 4H-SiC(0001) Surface under Low Pressure Oxygen Atmosphere and Effects of Pre-Oxidation Treatment. Materials Science Forum, 2015, 821-823, 949-952.	0.3	0
1193	Synthesis of 3-dimensional porous graphene nanosheets using electron cyclotron resonance plasma enhanced chemical vapour deposition. RSC Advances, 2015, 5, 84927-84935.	1.7	19
1194	Growth Mechanism and Properties of Multibranched ZnO Nano/Microstructure. Integrated Ferroelectrics, 2015, 164, 60-66.	0.3	0
1195	3D graphene based materials for energy storage. Current Opinion in Colloid and Interface Science, 2015, 20, 429-438.	3.4	77
1196	Nanoscale measurements of unoccupied band dispersion in few-layer graphene. Nature Communications, 2015, 6, 8926.	5.8	43
1197	New materials and advances in making electronic skin for interactive robots. Advanced Robotics, 2015, 29, 1359-1373.	1.1	155
1198	The favourable large misorientation angle grain boundaries in graphene. Nanoscale, 2015, 7, 20082-20088.	2.8	31
1199	Liquid-phase exfoliation of graphite for mass production of pristine few-layer graphene. Current Opinion in Colloid and Interface Science, 2015, 20, 311-321.	3.4	101
1200	A simple visible light photo-assisted method for assembling andÂcuring multilayer GO thin films. Materials Chemistry and Physics, 2015, 165, 125-133.	2.0	4

		CITATION REPORT		
#	Article		IF	Citations
1201	Tunable Carrier Multiplication and Cooling in Graphene. Nano Letters, 2015, 15, 326-3	31.	4.5	80
1202	Wettability effect of graphene-based surfaces on silicon carbide and their influence on hydrophobicity of nanocrystalline cerium oxide films. Journal of Colloid and Interface S 441, 71-77.	cience, 2015,	5.0	19
1203	Rebar Graphene from Functionalized Boron Nitride Nanotubes. ACS Nano, 2015, 9, 53	2-538.	7.3	29
1204	Synthesis of Two-Dimensional Materials by Selective Extraction. Accounts of Chemical 48, 128-135.	Research, 2015,	7.6	590
1205	Quasi-free-standing monolayer and bilayer graphene growth on homoepitaxial on-axis layers. Carbon, 2015, 82, 12-23.	4H-SiC(0 0 0 1)	5.4	16
1206	The role of copper pretreatment on the morphology of graphene grown by chemical va Microelectronic Engineering, 2015, 131, 1-7.	por deposition.	1.1	23
1208	Epitaxial Graphene. , 2015, , 755-783.			1
1209	Quantitative evaluation of delamination of graphite by wet media milling. Carbon, 201 Challenges to graphene growth on SiC(0 0 0 <mml:math) 0="" etqq0="" overlock<="" rgbt="" td="" tj=""><td>5, 81, 284-294. 10 Tf 50 442 Td (xmlns:m</td><td>5.4 ml="http:/</td><td>71 /www.w3.org</td></mml:math)>	5, 81, 284-294. 10 Tf 50 442 Td (xmlns:m	5.4 ml="http:/	71 /www.w3.org
1210			5.4	13
1211	hydrogen etching and growth ambient. Carbon, 2015, 81, 73-82. Flower-Shaped Domains and Wrinkles in Trilayer Epitaxial Graphene on Silicon Carbide Reports, 2014, 4, 4066.	Scientific	1.6	45
1212	Impact of graphene oxide on the structure and function of important multiple blood c doseâ€dependent pattern. Journal of Biomedical Materials Research - Part A, 2015, 10	omponents by a 3, 2006-2014.	2.1	30
1213	Visualisation of edge effects in side-gated graphene nanodevices. Scientific Reports, 20	014, 4, 5881.	1.6	34
1214	Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chem Deposition. Scientific Reports, 2014, 4, 4537.	ical Vapor	1.6	98
1215	Molecularly engineered graphene surfaces for sensing applications: A review. Analytica 2015, 859, 1-19.	Chimica Acta,	2.6	192
1216	Scanning probe microscopy investigations of the electrical properties of chemical vapo graphene grown on a 6H-SiC substrate. Micron, 2015, 68, 17-22.	or deposited	1.1	11
1217	Microstructures and Properties of Grapheneâ€Cu/Al Composite Prepared by a Novel Pr Clad Forming and Improving Wettability with Copper. Advanced Engineering Materials	ocess Through , 2015, 17, 663-668.	1.6	40
1218	High Electron Mobility in Epitaxial Graphene on 4H-SiC(0001) via post-growth annealir hydrogen. Scientific Reports, 2014, 4, 4558.	ıg under	1.6	135
1219	3D graphene/ZnO nanorods composite networks as supercapacitor electrodes. Journa Compounds, 2015, 620, 31-37.	of Alloys and	2.8	129

#	Article	IF	CITATIONS
1220	Scalable production of graphene via wet chemistry: progress and challenges. Materials Today, 2015, 18, 73-78.	8.3	265
1221	Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale, 2015, 7, 4598-4810.	2.8	2,452
1222	Inhomogeneous longitudinal distribution of Ni atoms on graphene induced by layer-number-dependent internal diffusion. Applied Physics Letters, 2016, 109, 111604.	1.5	1
1223	Optimization of the Synthesis Procedures of Graphene and Graphite Oxide. , 2016, , .		3
1224	Top-gated graphene field-effect transistors by low-temperature synthesized SiN _x insulator on SiC substrates. Japanese Journal of Applied Physics, 2016, 55, 06GF09.	0.8	3
1225	Charge Trapping in Monolayer and Multilayer Epitaxial Graphene. Journal of Nanomaterials, 2016, 2016, 1-4.	1.5	2
1226	Graphene-Oxide Nano Composites for Chemical Sensor Applications. Journal of Carbon Research, 2016, 2, 12.	1.4	33
1227	Epitaxial Graphene on SiC: A Review of Growth and Characterization. Crystals, 2016, 6, 53.	1.0	169
1228	A Novel Biomolecule-Mediated Reduction of Graphene Oxide: A Multifunctional Anti-Cancer Agent. Molecules, 2016, 21, 375.	1.7	62
1229	Synthesis and applications of carbon nanomaterials for energy generation and storage. Beilstein Journal of Nanotechnology, 2016, 7, 149-196.	1.5	118
1230	Graphene-Based Junction Devices for Hydrogen Sensors. , 0, , .		1
1232	Graphene growth on silicon carbide: A review. Physica Status Solidi (A) Applications and Materials Science, 2016, 213, 2277-2289.	0.8	188
1233	Effects of Pb Intercalation on the Structural and Electronic Properties of Epitaxial Graphene on SiC. Small, 2016, 12, 3956-3966.	5.2	39
1234	Atomically Resolved Elucidation of the Electrochemical Covalent Molecular Grafting Mechanism of Single Layer Graphene. Advanced Materials Interfaces, 2016, 3, 1600196.	1.9	11
1235	A Facile Graphene Nanosheetsâ€based Electrochemical Sensor for Sensitive Detection of Honokiol in Traditional Chinese Medicine. Electroanalysis, 2016, 28, 508-515.	1.5	7
1236	Few layer graphene synthesis via SiC decomposition at low temperature and low vacuum. Journal Physics D: Applied Physics, 2016, 49, 165301.	1.3	4
1237	Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice. 2D Materials, 2016, 3, 035003.	2.0	30
1238	Direct Conversion of Greenhouse Gas CO ₂ into Graphene via Molten Salts Electrolysis. ChemSusChem, 2016, 9, 588-594.	3.6	80

#	Article	IF	CITATIONS
1239	Layer Controllable Graphene Using Graphite Intercalation Compounds with Different Stage Numbers through Li Conversion Reaction. Advanced Materials Interfaces, 2016, 3, 1500496.	1.9	4
1240	Determining the number of layers in graphene films synthesized by filtered cathodic vacuum arc technique. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 725-731.	1.0	10
1241	Insight into the mechanisms of chemical doping of graphene on silicon carbide. Nanotechnology, 2016, 27, 072502.	1.3	5
1242	Improvement of multilayer graphene crystallinity by solid-phase precipitation with current stress application during annealing. Japanese Journal of Applied Physics, 2016, 55, 06JH02.	0.8	0
1243	Quasi-free-standing bilayer epitaxial graphene field-effect transistors on 4H-SiC (0001) substrates. Applied Physics Letters, 2016, 108, .	1.5	24
1244	Laser-induced phase separation of silicon carbide. Nature Communications, 2016, 7, 13562.	5.8	75
1245	Self-Heating and Failure in Scalable Graphene Devices. Scientific Reports, 2016, 6, 26457.	1.6	18
1246	Tip-enhanced Raman spectroscopy of nanostructures on epitaxial graphene and graphene microisland. , 2016, , .		0
1247	Challenges in graphene integration for high-frequency electronics. AIP Conference Proceedings, 2016,	0.3	2
1248	Epitaxial graphene on SiC formed by the surface structure control technique. Japanese Journal of Applied Physics, 2016, 55, 06GF03.	0.8	17
1249	Universal classification of twisted, strained and sheared graphene moiré superlattices. Scientific Reports, 2016, 6, 25670.	1.6	48
1250	Growth and characterization of Al2O3 films on fluorine functionalized epitaxial graphene. Journal of Applied Physics, 2016, 120, .	1.1	6
1251	An experimental study of nonlinear behaviour of capacitance in graphene/carbon nanotube hybrid films. EPJ Applied Physics, 2016, 74, 30401.	0.3	0
1252	Tip-Enhanced Raman Scattering of Local Nanostructure on Large Sheet and Microisland Epitaxial Graphene Grown on 4H–SiC (0001). ACS Symposium Series, 2016, , 227-245.	0.5	0
1253	Low temperature CVD growth of ultrathin carbon films. AIP Advances, 2016, 6, 055310.	0.6	7
1254	Comeback of epitaxial graphene for electronics: large-area growth of bilayer-free graphene on SiC. 2D Materials, 2016, 3, 041002.	2.0	135
1255	Solution processed simple and scalable graphene patterning method for nanodevices application. Materials Research Express, 2016, 3, 125011.	0.8	2
1256	Graphene/SiC(0001) interface structures induced by Si intercalation and their influence on electronic properties of graphene. Physical Review B, 2016, 94, .	1.1	17

#	Article	IF	Citations
1257	Photo-controllable memristive behavior of graphene/diamond heterojunctions. Applied Physics Letters, 2016, 108, 222102.	1.5	14
1258	Rashba splitting of 100 meV in Au-intercalated graphene on SiC. Applied Physics Letters, 2016, 108, .	1.5	24
1259	Synthesis of graphene by cobalt-catalyzed decomposition of methane in plasma-enhanced CVD: Optimization of experimental parameters with Taguchi method. Journal of Applied Physics, 2016, 120, .	1.1	27
1260	Graphene-assisting photo-electrochemical etching of 4H-SiC. , 2016, , .		0
1261	Large-area uniform epitaxial graphene on SiC by optimizing temperature field. , 2016, , .		0
1262	Tuning a Schottky barrier of epitaxial graphene/4H-SiC (0001) by hydrogen intercalation. Applied Physics Letters, 2016, 108, .	1.5	18
1263	The Interaction between Graphene and the SiC Substrate: <i>Ab Initio</i> Calculations for Polar and Nonpolar Surfaces. Materials Science Forum, 2016, 858, 1125-1128.	0.3	0
1264	<i>In situ</i> SEM/STM observations and growth control of monolayer graphene on SiC (0001) wide terraces. Surface and Interface Analysis, 2016, 48, 1221-1225.	0.8	6
1265	Nematic phase formation in suspensions of graphene oxide. Series in Sof Condensed Matter, 2016, , 797-815.	0.1	1
1266	Direct growth of nano-crystalline graphite films using pulsed laser deposition with <i>in-situ</i> monitoring based on reflection high-energy electron diffraction technique. Applied Physics Letters, 2016, 108, .	1.5	6
1267	Flexible 2D Crystals of Polycyclic Aromatics Stabilized by Static Distortion Waves. ACS Nano, 2016, 10, 6474-6483.	7.3	23
1268	Single-pixel camera with one graphene photodetector. Optics Express, 2016, 24, 400.	1.7	22
1269	Modulating doping and interface magnetism of epitaxial graphene on SiC(0001). Chinese Physics B, 2016, 25, 017302.	0.7	2
1270	Demonstration of enhanced the photocatalytic effect with PtSe2 and TiO2 treated large area graphene obtained by CVD method. Materials Science in Semiconductor Processing, 2016, 48, 106-114.	1.9	20
1271	The nanofiller effect on properties of experimental graphene dental nanocomposites. Journal of Adhesion Science and Technology, 2016, 30, 1779-1794.	1.4	26
1272	Structural Stability and Electronic Structures of a Curved Graphene Sheet on Stepped SiC(0001) Surface. Journal of the Physical Society of Japan, 2016, 85, 034707.	0.7	0
1273	Graphene nanosheets: Mechanisms for large-area thin films production. Scripta Materialia, 2016, 115, 145-149.	2.6	6
1274	Device applications of epitaxial graphene on silicon carbide. Vacuum, 2016, 128, 186-197.	1.6	30

#	Article	IF	CITATIONS
1275	An <i>ab initio</i> study of the nickel-catalyzed transformation of amorphous carbon into graphene in rapid thermal processing. Nanoscale, 2016, 8, 9746-9755.	2.8	25
1276	Tuning electronic transport in epitaxial graphene-based van der Waals heterostructures. Nanoscale, 2016, 8, 8947-8954.	2.8	21
1277	Functionalization of chemically derived graphene for improving its electrocapacitive energy storage properties. Energy and Environmental Science, 2016, 9, 1891-1930.	15.6	205
1278	Low-temperature quantum transport in CVD-grown single crystal graphene. Nano Research, 2016, 9, 1823-1830.	5.8	15
1279	Large-area layer-by-layer controlled and fully bernal stacked synthesis of graphene. Carbon, 2016, 105, 205-213.	5.4	18
1280	Solid-Phase Coalescence of Electrochemically Exfoliated Graphene Flakes into a Continuous Film on Copper. Chemistry of Materials, 2016, 28, 3360-3366.	3.2	28
1281	Supercapacitor Electrodes Made of Exhausted Activated Carbon-Derived SiC Nanoparticles Coated by Graphene. Industrial & Engineering Chemistry Research, 2016, 55, 6025-6035.	1.8	26
1282	Transfer-Free Fabrication of Graphene Scaffolds on High-k Dielectrics from Metal–Organic Oligomers. ACS Applied Materials & Interfaces, 2016, 8, 25469-25475.	4.0	1
1283	AC-Impedance Spectroscopic Analysis on the Charge Transport in CVD-Grown Graphene Devices with Chemically Modified Substrates. ACS Applied Materials & amp; Interfaces, 2016, 8, 27421-27425.	4.0	5
1284	Effects of outgassing on graphene synthesis by plasma treatment. Carbon, 2016, 108, 351-355.	5.4	4
1285	Nanostructured Catalysts. , 2016, , 285-327.		0
1286	(Invited) Realizing 2D Materials Via MOCVD. ECS Transactions, 2016, 75, 725-731.	0.3	2
1287	Wafer-Scale Graphene on 4-Inch SiC. Materials Science Forum, 2016, 858, 1133-1136.	0.3	1
1288	Recent Development of Transparent Conducting Oxideâ€Free Flexible Thinâ€Film Solar Cells. Advanced Functional Materials, 2016, 26, 8855-8884.	7.8	82
1289	Multilayer graphene structure of carbon in short-period superlattices. JETP Letters, 2016, 103, 341-344.	0.4	3
1290	Manifestation of nonlocal electron-electron interaction in graphene. Physical Review B, 2016, 94, .	1.1	14
1291	Using Visible Laser-Based Raman Spectroscopy to Identify the Surface Polarity of Silicon Carbide. Journal of Physical Chemistry C, 2016, 120, 18228-18234.	1.5	3
1292	3D-AFM-Hyperfine Imaging of Graphene Monolayers Deposit on YBCO-Superconducting Surface. , 2016, , 277-287.		0

ARTICLE IF CITATIONS 1293 Graphene Heterostructures., 2016,, 3-20. 0 Controllable Synthesis of Graphene by Plasmaâ€Enhanced Chemical Vapor Deposition and Its Related 1294 5.6 147 Applications. Ádvanced Science, 2016, 3, 1600003. 1295 Synthesis, Classification, and Properties of Nanomaterials., 2016, , 83-133. 20 Progress and Challenges in Transfer of Largeâ€Area Graphene Films. Advanced Science, 2016, 3, 1500343. 1296 271 Two-dimensional gallium nitride realized via grapheneÂencapsulation. Nature Materials, 2016, 15, 1298 13.3 626 1166-1171. Epitaxial Graphene: Progress on Synthesis and Device Integration. Series in Materials Science and 1299 0.1 Engineering, 2016, , 37-52. Noble-metal intercalation process leading to a protected adatom in a graphene hollow site. Physical 1300 1.1 14 Review B, 2016, 94, . An industrialized prototype of the rechargeable Al/AlCl 3 -[EMIm]Cl/graphite battery and recycling of 5.4 129 the graphitic cathode into graphene. Carbon, 2016, 109, 276-281. Nanolaminated composite materials: structure, interface role and applications. RSC Advances, 2016, 6, 1302 1.7 50 109361-109385. Integrated Nanoelectronics. Nanoscience and Technology, 2016, , . 1.5 Synthesis of Few-Layer Graphene on Copper Using a Low-Cost Atmospheric Thermal Chemical Vapour 1304 0.3 0 Deposition System with Methane and Forming Gas. Nano Hybrids, 2016, 10, 1-13. Graphene and its derivatives for laser protection. Progress in Materials Science, 2016, 84, 118-157. 16.0 128 Wetting behavior of water on silicon carbide polar surfaces. Physical Chemistry Chemical Physics, 1306 1.3 27 2016, 18, 28033-28039. GrapheneGraphene -Based Nanoelectronics. Nanoscience and Technology, 2016, , 303-311. 1.5 Sustainable Feasibility of the Environmental Pollutant Soot to Few-Layer Photoluminescent Graphene 1308 Nanosheets for Multifunctional Applications. ACS Sustainable Chemistry and Engineering, 2016, 4, 3.2 60 6399-6408. Fluid dynamics: an emerging route for the scalable production of graphene in the last five years. RSC 1309 39 Advances, 2016, 6, 72525-72536. Fabrication Methods of Graphene Nanoribbons., 2016, , 151-166. 1310 0 Functionalized Graphene: Synthesis and Its Applications in Electrochemistry., 2016, , 167-188.
~	<u> </u>	
(ΊΤΔΤ	REDU	DL
CITAL		IX I

#	Article	IF	CITATIONS
1312	Electrophoretic Deposition of Graphene-Based Materials and Their Energy-Related Applications. , 2016, , 191-204.		1
1313	Synthesis of Reduced Graphene Oxide Obtained from Multiwalled Carbon Nanotubes and Its Electrocatalytic Properties. , 2016, , 223-244.		0
1314	High-Quality Graphene Sheets from Graphene Oxide Hot Pressing and Its Applications. , 2016, , 393-402.		1
1315	Direct growth of graphene film on piezoelectric La ₃ Ga _{5.5} Ta _{0.5} O ₁₄ crystal. Physica Status Solidi - Rapid Research Letters, 2016, 10, 639-644.	1.2	8
1316	Nanomaterials in Advanced Batteries and Supercapacitors. Nanostructure Science and Technology, 2016, , .	0.1	34
1317	Terahertz ratchet effects in graphene with a lateral superlattice. Physical Review B, 2016, 93, .	1.1	77
1318	New family of graphene-based organic semiconductors: An investigation of photon-induced electronic structure manipulation in half-fluorinated graphene. Physical Review B, 2016, 93, .	1.1	5
1319	Structural and electronic properties of Li-intercalated graphene on SiC(0001). Physical Review B, 2016, 93, .	1.1	44
1320	Evidencing the need for high spatial resolution in angle-resolved photoemission experiments. Physical Review B, 2016, 93, .	1.1	4
1321	Band alignment of two-dimensional semiconductors for designing heterostructures with momentum space matching. Physical Review B, 2016, 94, .	1.1	347
1322	Simulating structural transitions with kinetic Monte Carlo: The case of epitaxial graphene on SiC. Physical Review E, 2016, 93, 033304.	0.8	10
1323	Robust Phonon-Plasmon Coupling in Quasifreestanding Graphene on Silicon Carbide. Physical Review Letters, 2016, 116, 106802.	2.9	30
1324	Sublattice Interference as the Origin of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Ïf</mml:mi>Band Kinks in Graphene. Physical Review Letters, 2016, 116. 186802</mml:math 	2.9	13
1325	Carbon Materials for Supercapacitors. Nanostructure Science and Technology, 2016, , 271-315.	0.1	7
1326	Origin of ambipolar graphene doping induced by the ordered Ge film intercalated on SiC(0001). Carbon, 2016, 108, 154-164.	5.4	14
1327	Electron transition pathways of photoluminescence from 3C-SiC nanocrystals unraveled by steady-state, blinking and time-resolved photoluminescence measurements. Journal Physics D: Applied Physics, 2016, 49, 275107.	1.3	9
1328	Enhancement of electron–phonon coupling in Cs-overlayered intercalated bilayer graphene. Journal of Physics Condensed Matter, 2016, 28, 204001.	0.7	4
1329	Graphene Synthesis. , 2016, , 19-61.		2

	Сітат	ION REPORT	
#	Article	IF	CITATIONS
1330	Direct growth of few layer graphene on SiO ₂ substrate by low energy carbon ion implantation. RSC Advances, 2016, 6, 101347-101352.	1.7	8
1331	Atomic and electronic structure of trilayer graphene/SiC(0001): Evidence of Strong Dependence on Stacking Sequence and charge transfer. Scientific Reports, 2016, 6, 33487.	1.6	16
1332	Changes in work function due to <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>NO</mml:mi> <mml:mn>2 < adsorption on monolayer and bilayer epitaxial graphene on SiC(0001). Physical Review B, 2016, 94, .</mml:mn></mml:msub></mml:math 	:/mml:mn 1.1 /mml:r	n sø b>
1333	Chapter 6 Graphene: A New Star Nanomaterial in Energy and Environment Applications. , 2016, , 273-306		0
1334	Large-Area Growth of Turbostratic Graphene on Ni(111) via Physical Vapor Deposition. Scientific Reports, 2016, 6, 19804.	1.6	103
1335	Synthesis of Freestanding Graphene on SiC by a Rapid-Cooling Technique. Physical Review Letters, 2016, 117, 205501.	2.9	36
1336	Controlled growth of high-quality graphene using hot-filament chemical vapor deposition. Applied Physics A: Materials Science and Processing, 2016, 122, 1.	1.1	8
1337	The effect of the surface energy and structure of the SiC substrate on epitaxial graphene growth. RSC Advances, 2016, 6, 100908-100915.	1.7	13
1338	Metal-induced rapid transformation of diamond into single and multilayer graphene on wafer scale. Nature Communications, 2016, 7, 12099.	5.8	70
1339	Graphene on C-terminated face of 4H-SiC observed by noncontact scanning nonlinear dielectric potentiometry. Japanese Journal of Applied Physics, 2016, 55, 08NB02.	0.8	2
1340	Sequential control of step-bunching during graphene growth on SiC (0001). Applied Physics Letters, 2016, 109, .	1.5	32
1342	Growth of thickness-controlled epitaxial graphene on on-axis 6H-SiC (C-face) substrate in graphite enclosure. Journal of Materials Science: Materials in Electronics, 2016, 27, 6242-6248.	1.1	1
1343	Growth and low-energy electron microscopy characterizations of graphene and hexagonal boron nitride. Progress in Crystal Growth and Characterization of Materials, 2016, 62, 155-176.	1.8	20
1344	A first principles study on the CVD graphene growth on copper surfaces: A carbon atom incorporation to graphene edges. Surface Science, 2016, 653, 123-129.	0.8	11
1345	Printed Graphene-Based Electrochemical Sensors. , 2016, , 163-178.		0
1346	Fabrication techniques and applications of flexible graphene-based electronic devices. Journal of Semiconductors, 2016, 37, 041001.	2.0	25
1347	Surface and interface structure of quasi-free standing graphene on SiC. 2D Materials, 2016, 3, 025023.	2.0	21
1348	The emergence of quantum capacitance in epitaxial graphene. Journal of Materials Chemistry C, 2016, 4, 5829-5838.	2.7	13

ARTICLE IF CITATIONS Indirect Coupling between Localized Magnetic Moments in Graphene Nanostructures., 2016, , 91-108. 0 1349 Graphene-Based Sensors: Current Status and Future Trends., 2016, , 211-234. Design and Applications of Graphene- and Biomolecule-Based Nanosensors and Nanodevices. , 2016, , 1351 0 21-30. Some Mechanical Properties of Graphene and Their Role in Forming Polymer Nanocomposites., 2016, 93-104. Novel synthesis of quaternary nanocomposites based on chemical vapor grown graphene for 1353 photocatalytic hydrogen evolution. Fullerenes Nanotubes and Carbon Nanostructures, 2016, 24, 1.0 0 487-493. Growth of graphene monolayer by "internal solid-state carbon source†Electronic structure, morphology and Au intercalation. Materials and Design, 2016, 104, 284-291. 1354 3.3 Formation mechanism of concave by dielectric breakdown on silicon carbide 1355 0.9 3 metal-oxide-semiconductor capacitor. Microelectronics Reliability, 2016, 58, 185-191. Atomic-Scale Mapping of Layer-by-Layer Hydrogen Etching and Passivation of SiC(0001) Substrates. 1.5 20 Journal of Physical Chemistry C, 2016, 120, 10361-10367 Quantitative Subsurface Atomic Structure Fingerprint for 2D Materials and Heterostructures by 1357 7.3 23 First-Principles-Calibrated Contact-Resonance Atomic Force Microscopy. ACS Nano, 2016, 10, 6491-6500. Ultra-thin Graphitic Film: Synthesis and Physical Properties. Nanoscale Research Letters, 2016, 11, 54. 3.1 Effects of substrate on the domains and electrical properties of epitaxial graphene formed on on-axis 1359 1.1 1 C-face 4H-SiC. Journal of Materials Science: Materials in Electronics, 2016, 27, 7595-7602. Metal Oxide/Graphene Composites for Supercapacitive Electrode Materials. Chemistry - an Asian Journal, 2016, 11, 949-9<u>64.</u> Current-Driven Hydrogen Desorption from Graphene: Experiment and Theory. Journal of Physical 1361 2.1 8 Chemistry Letters, 2016, 7, 486-494. Characterization of graphene-on-insulator films formed using plasma based surface chemistry. 5.4 Carbon, 2016, 99, 212-221. 1363 From graphene to silicon carbide: ultrathin silicon carbide flakes. Nanotechnology, 2016, 27, 075602. 1.3 66 Rotationally Commensurate Growth of MoS₂ on Epitaxial Graphene. ACS Nano, 2016, 10, 1364 1067-1075. Time evolution of graphene growth on SiC as a function of annealing temperature. Carbon, 2016, 98, 1365 5.420 307-312. Quantitative investigation of the fragmentation process and defect density evolution of 5.4 oxo-functionalized graphene due to ultrasonication and milling. Carbon, 2016, 96, 897-903.

#	Article	IF	CITATIONS
1367	SiC Homoepitaxy, Etching and Graphene Epitaxial Growth on SiC Substrates Using a Novel Fluorinated Si Precursor Gas (SiF4). Journal of Electronic Materials, 2016, 45, 2019-2024.	1.0	5
1368	Graphene Functionalization forÂBiosensor Applications. , 2016, , 85-141.		43
1369	Effect of glass surface treatments on the deposition of highly transparent reduced graphene oxide films by dropcasting method. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 498, 231-238.	2.3	19
1370	A facile chemical method for the synthesis of 3C–SiC nanoflakes. RSC Advances, 2016, 6, 21795-21801.	1.7	24
1371	Role of silicon dangling bonds in the electronic properties of epitaxial graphene on silicon carbide. Nanotechnology, 2016, 27, 125705.	1.3	12
1372	Graphene-based materials with tailored nanostructures for energy conversion and storage. Materials Science and Engineering Reports, 2016, 102, 1-72.	14.8	221
1373	Optical observation of different conformational isomers in rubrene ultra-thin molecular films on epitaxial graphene. Thin Solid Films, 2016, 598, 271-275.	0.8	15
1374	Clean graphene interfaces by selective dry transfer for large area silicon integration. Nanoscale, 2016, 8, 7523-7533.	2.8	35
1375	Direct preparation of high quality graphene on dielectric substrates. Chemical Society Reviews, 2016, 45, 2057-2074.	18.7	88
1376	Toward Label-Free Biosensing With Silicon Carbide: A Review. IEEE Access, 2016, 4, 477-497.	2.6	19
1377	Understanding the STM images of epitaxial graphene on a reconstructed 6H-SiC(0001) surface: the role of tip-induced mechanical distortion of graphene. Physical Chemistry Chemical Physics, 2016, 18, 14264-14272.	1.3	3
1378	Silica-assisted bottom-up synthesis of graphene-like high surface area carbon for highly efficient ultracapacitor and Li-ion hybrid capacitor applications. Journal of Materials Chemistry A, 2016, 4, 5578-5591.	5.2	60
1379	Recent progress in fabrication techniques of graphene nanoribbons. Materials Horizons, 2016, 3, 186-207.	6.4	127
1380	Nano-Bioelectronics. Chemical Reviews, 2016, 116, 215-257.	23.0	530
1381	Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability. Nano Letters, 2016, 16, 471-478.	4.5	265
1382	Direct delamination of graphite ore into defect-free graphene using a biphasic solvent system under pressurized ultrasound. RSC Advances, 2016, 6, 6008-6015.	1.7	11
1383	Electro-exfoliating graphene from graphite for direct fabrication of supercapacitor. Applied Surface Science, 2016, 360, 213-223.	3.1	55
1384	Defect driven tailoring of colossal dielectricity of Reduced Graphene Oxide. Materials Research Bulletin, 2016, 74, 465-471.	2.7	18

	C	itation Rei	PORT	
#	Article		IF	CITATIONS
1385	Literature Review and Research Background. Springer Theses, 2016, , 1-49.		0.0	2
1386	CVD growth of 1D and 2D sp2 carbon nanomaterials. Journal of Materials Science, 2016, 51, 640-66	7.	1.7	70
1387	Direct formation of graphene layers on diamond by high-temperature annealing with a Cu catalyst. Diamond and Related Materials, 2016, 63, 148-152.		1.8	35
1388	Low-Cost Synthesis of Smart Biocompatible Graphene Oxide Reduced Species by Means of GFP. App Biochemistry and Biotechnology, 2016, 178, 462-473.	ied	1.4	3
1389	Layer like porous materials with hierarchical structure. Chemical Society Reviews, 2016, 45, 3400-34	38.	18.7	196
1390	Real-time observation of graphene oxidation on Pt(111) by low-energy electron microscopy. Surface Science, 2016, 644, 165-169.		0.8	12
1391	A fast transfer-free synthesis of high-quality monolayer graphene on insulating substrates by a simple rapid thermal treatment. Nanoscale, 2016, 8, 2594-2600.	2	2.8	20
1392	Growth protocols and characterization of epitaxial graphene on SiC elaborated in a graphite enclosure. Physica E: Low-Dimensional Systems and Nanostructures, 2016, 75, 7-14.		1.3	19
1393	Introduction and Literature Background. Springer Theses, 2017, , 1-37.		0.0	1
1394	High temperature annealing and CVD growth of few-layer graphene on bulk AlN and AlN templates. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600436.		0.8	10
1395	High crystallinity graphene synthesis from graphene oxide. Carbon, 2017, 114, 750.		5.4	5
1396	Facile and large-scale synthesis of high quality few-layered graphene nano-platelets via methane decomposition over unsupported iron family catalysts. Materials Chemistry and Physics, 2017, 191, 75-85.		2.0	38
1397	Mechanical and electromechanical properties of graphene and their potential application in MEMS. Journal Physics D: Applied Physics, 2017, 50, 053003.		1.3	73
1398	Self-forming graphene/Ni patterns on sapphire utilizing the pattern-controlled catalyst metal agglomeration technique. Applied Physics Letters, 2017, 110, .		1.5	5
1399	Evidence for negative charge near large area supported graphene in water: A study of silica microsphere interactions. Journal of Colloid and Interface Science, 2017, 492, 15-24.		5.0	2
1400	Ambient atomic resolution atomic force microscopy with qPlus sensors: Part 1. Microscopy Research and Technique, 2017, 80, 50-65.		1.2	4
1401	Graphene-based Composites for Electrochemical Energy Storage. Springer Theses, 2017, , .		0.0	10
1402	The investigation of cobalt intercalation underneath epitaxial graphene on 6H-SiC(0 0 0 1). Nanotechnology, 2017, 28, 075701.		1.3	14

		CITATION REPO	RT	
#	Article	IF		CITATIONS
1403	Twoâ€Dimensional Nanomaterials for Cancer Nanotheranostics. Small, 2017, 13, 1603446.	5.	2	130
1404	Solid source growth of graphene with Ni–Cu catalysts: towards high quality <i>in situ</i> gra on silicon. Journal Physics D: Applied Physics, 2017, 50, 095302.	phene 1.	3	20
1405	Electronic transport across metal-graphene edge contact. 2D Materials, 2017, 4, 025033.	2.	0	4
1406	Graphene-containing thin films prepared by calcination of polyaniline/montmorillonite nanocomposite. Thin Solid Films, 2017, 625, 148-154.	0.	.8	5
1407	High quality epitaxial graphene by hydrogen-etching of 3C-SiC(111) thin-film on Si(111). Nano 2017, 28, 115601.	technology, 1.	3	11
1408	High-performance Bi-stage process in reduction of graphene oxide for transparent conductive electrodes. Optical Materials, 2017, 64, 366-375.	1.	7	15
1409	Spontaneous formation of graphene on diamond (111) driven by B-doping induced surface reconstruction. Carbon, 2017, 115, 388-393.	5.	4	18
1410	Effects of graphene oxide and chemically reduced graphene oxide on the curing kinetics of epc amine composites. Journal of Applied Polymer Science, 2017, 134, .	xy 1.	3	31
1411	Adsorption of CO ₂ on Graphene: A Combined TPD, XPS, and vdW-DF Study. Jourr Physical Chemistry C, 2017, 121, 2807-2814.	ial of 1.	5	76
1412	Work function of graphene multilayers on SiC(0001). 2D Materials, 2017, 4, 015043.	2.	0	58
1413	Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly of Si/SiO _x by Chemical Vapor Deposition. ACS Nano, 2017, 11, 1946-1956.	over 7.	3	108
1414	A review on mechanics and mechanical properties of 2D materials—Graphene and beyond. Ex Mechanics Letters, 2017, 13, 42-77.	treme 2.	0	920
1415	Multi-scale investigation of interface properties, stacking order and decoupling of few layer graphene on C-face 4H-SiC. Carbon, 2017, 116, 722-732.	5.	4	23
1416	Controlled synthesis and characterization of multilayer graphene films on the Câ€face of silico carbide. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600721.	n o.	.8	14
1417	The effect of the SiC(0001) surface morphology on the growth of epitaxial mono-layer grapher nanoribbons. Carbon, 2017, 115, 162-168.	1e 5.	4	21
1418	Tuning epitaxial graphene sensitivity to water by hydrogen intercalation. Nanoscale, 2017, 9, 3	440-3448. 2.	8	19
1419	Induced inhomogeneity in graphene work function due to graphene - TiO 2 /Ag/glass substrate interaction. Thin Solid Films, 2017, 628, 43-49.	0.	.8	11
1420	Direct observation of the band structure in bulk hexagonal boron nitride. Physical Review B, 20	17, 95, . 1.	1	65

	CITATION RE	PORT	
#	Article	IF	CITATIONS
1421	Graphene Films Prepared Using Energetic Physical Vapor Deposition. MRS Advances, 2017, 2, 117-122.	0.5	0
1422	Electrical and thermal response of silicon oxycarbide materials obtained by spark plasma sintering. Journal of the European Ceramic Society, 2017, 37, 2011-2020.	2.8	37
1423	Low-temperature growth of graphene on iron substrate by molecular beam epitaxy. Thin Solid Films, 2017, 627, 39-43.	0.8	15
1424	High mobility and large domain decoupled epitaxial graphene on SIC (000 <mml:math) 0.784314="" 1="" etqq1="" ij="" rgbt<="" td=""><td>1.3</td><td>6</td></mml:math)>	1.3	6
1425	surface obtained by nearly balanced hydrogen etching. Materials Letters, 2017, 195, 82-85. From bulk to cellular structures: A review on ceramic/graphene filler composites. Journal of the European Ceramic Society, 2017, 37, 3649-3672.	2.8	128
1426	The direct measurement of the electronic density of states of graphene using metastable induced electron spectroscopy. 2D Materials, 2017, 4, 025068.	2.0	15
1427	Effect of graphene grains size on the microwave electromagnetic shielding effectiveness of graphene/polymer multilayers. Journal of Nanophotonics, 2017, 11, 032511.	0.4	3
1428	A novel synthesis route of graphene via microwave assisted intercalation-exfoliation of graphite. Materials Letters, 2017, 200, 39-42.	1.3	28
1429	A method for selective bromination of graphene and its use for subsequent functionalization with aromatic molecules. Materials Research Express, 2017, 4, 045601.	0.8	3
1430	Doping of graphene induced by boron/silicon substrate. Nanotechnology, 2017, 28, 215701.	1.3	11
1431	Xenon Flash Lampâ€Induced Ultrafast Multilayer Graphene Growth. Particle and Particle Systems Characterization, 2017, 34, 1600429.	1.2	26
1432	Low-energy electron potentiometry. Ultramicroscopy, 2017, 181, 74-80.	0.8	2
1433	Growth of low doped monolayer graphene on SiC(0001) via sublimation at low argon pressure. Physical Chemistry Chemical Physics, 2017, 19, 15833-15841.	1.3	9
1434	Graphene: Synthesis and Functionalization. Nanostructure Science and Technology, 2017, , 101-132.	0.1	2
1435	Magnetotransport on the nano scale. Nature Communications, 2017, 8, 15283.	5.8	15
1436	Ultralow friction of ink-jet printed graphene flakes. Nanoscale, 2017, 9, 7612-7624.	2.8	20
1437	Graphene on cubic-SiC. Progress in Materials Science, 2017, 89, 1-30.	16.0	30
1438	van der Waals epitaxy of CdS thin films on single-crystalline graphene. Applied Physics Letters, 2017, 110, .	1.5	24

#	Article	IF	CITATIONS
1439	Synthesis of Magnetic Molecular Complexes with Fullerene Anchor Groups. European Journal of Organic Chemistry, 2017, 2017, 790-798.	1.2	8
1440	Uniform coverage of quasi-free standing monolayer graphene on SiC by hydrogen intercalation. Journal of Materials Science: Materials in Electronics, 2017, 28, 3884-3890.	1.1	8
1441	Graphene on silicon dioxide via carbon ion implantation in copper with PMMA-free transfer. Applied Physics Letters, 2017, 110, .	1.5	4
1442	How Oxygen ontaining Groups on Graphene Influence the Antibacterial Behaviors. Advanced Materials Interfaces, 2017, 4, 1700228.	1.9	51
1443	Morphological imperfections of epitaxial graphene: from a hindrance to the generation of new photo-responses in the visible domain. Nanoscale, 2017, 9, 11463-11474.	2.8	11
1444	Gas sensing in 2D materials. Applied Physics Reviews, 2017, 4, .	5.5	600
1445	Stretchable electronic devices using graphene and its hybrid nanostructures. FlatChem, 2017, 3, 71-91.	2.8	34
1446	Prospective Life Cycle Assessment of Epitaxial Graphene Production at Different Manufacturing Scales and Maturity. Journal of Industrial Ecology, 2017, 21, 1153-1164.	2.8	37
1447	CMOS- compatible fabrication method of graphene-based micro devices. Materials Science in Semiconductor Processing, 2017, 67, 92-97.	1.9	16
1448	The Way towards Ultrafast Growth of Single rystal Graphene on Copper. Advanced Science, 2017, 4, 1700087.	5.6	40
1449	Laser-assisted chemical vapor deposition setup for fast synthesis of graphene patterns. Review of Scientific Instruments, 2017, 88, 053907.	0.6	5
1450	Substrate independent approach for synthesis of graphene platelet networks. Nanotechnology, 2017, 28, 255604.	1.3	2
1451	High-quality graphene synthesis on amorphous SiC through a rapid thermal treatment. Carbon, 2017, 124, 105-110.	5.4	10
1452	Electrode and electrolyte materials for electrochemical capacitors. International Journal of Hydrogen Energy, 2017, 42, 25565-25587.	3.8	93
1453	Unveiling the carrier transport mechanism in epitaxial graphene for forming wafer-scale, single-domain graphene. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4082-4086.	3.3	34
1454	Monitoring of epitaxial graphene anodization. Electrochimica Acta, 2017, 238, 91-98.	2.6	18
1455	Role of embedded 3d transition metal atoms on the electronic and magnetic properties of defective bilayer graphene. Carbon, 2017, 118, 376-383.	5.4	16
1456	An embedded-PVA@Ag nanofiber network for ultra-smooth, high performance transparent conducting electrodes. Journal of Materials Chemistry C, 2017, 5, 4198-4205.	2.7	35

ARTICLE IF CITATIONS # Selective Nanoscale Mass Transport across Atomically Thin Single Crystalline Graphene Membranes. 1457 11.1 46 Advanced Materials, 2017, 29, 1605896. Live cell biosensing platforms using graphene-based hybrid nanomaterials. Biosensors and 1458 5.3 Bioelectronics, 2017, 94, 485-499 1459 Carbon Materials. , 2017, , 429-462. 2 Formation of graphene/SiC/AlN multilayers synthesized by pulsed laser deposition on Si(110) 1460 substrates. Journal of Crystal Growth, 2017, 460, 27-36. One step electrochemical deposition and reduction of graphene oxide on screen printed electrodes 1461 4.0 41 for impedance detection of glucose. Sensors and Actuators B: Chemical, 2017, 244, 290-298. Graphene as initiator/catalyst in polymerization chemistry. Progress in Polymer Science, 2017, 67, 48-76. 11.8 Porphyrin molecules boost the sensitivity of epitaxial graphene for NH₃detection. Journal 1463 0.7 9 of Physics Condensed Matter, 2017, 29, 065001. One-step growth of multilayer-graphene hollow nanospheres via the self-elimination of SiC nuclei 1464 1.6 templates. Scientific Reports, 2017, 7, 13774. Graphene and derivatives $\hat{a} \in \mathcal{C}$ Synthesis techniques, properties and their energy applications. Energy, 1465 4.5 119 2017, 140, 766-778. Graphene Ingestion and Regrowth on "Carbon-Starved―Metal Electrodes. ACS Nano, 2017, 11, 7.3 1466 10575-10582 Reprint of Low-energy electron potentiometry. Ultramicroscopy, 2017, 183, 8-14. 1467 0.8 0 Atomic-scale characterization of the interfacial phonon in graphene/SiC. Physical Review B, 2017, 96, . 1468 1.1 19 Effect of hydrogen passivation on the decoupling of graphene on SiC(0001) substrate: First-principles 1469 1.6 4 calculations. Scientific Reports, 2017, 7, 8461. Effect of intermittent oxygen exposure on chemical vapor deposition of graphene. MRS Communications, 2017, 7, 826-831. 1470 0.8 Electronic properties of single-layer tungsten disulfide on epitaxial graphene on silicon carbide. 1471 39 2.8 Nanoscale, 2017, 9, 16412-16419. Growth and Intercalation of Graphene on Silicon Carbide Studied by Lowâ€Energy Electron Microscopy. 1472 Annalen Der Physik, 2017, 529, 1700046. Efficient utilization of multilayer graphene towards thermionic convertors. International Journal of 1474 2.6 8 Thermal Sciences, 2017, 121, 358-368. Graphene Growth by Conversion of Aromatic Selfâ€Assembled Monolayers. Annalen Der Physik, 2017, 529, 1475 1700168.

#	Article	IF	CITATIONS
1476	Single-step rubbing method for mass production of large-size and defect-free 2D materials. Translational Materials Research, 2017, 4, 025001.	1.2	5
1477	Subâ€Monolayer Growth of Titanium, Cobalt, and Palladium on Epitaxial Graphene. Annalen Der Physik, 2017, 529, 1700031.	0.9	4
1478	Interface and interaction of graphene layers on SiC(0001Ì") covered with TiC(111) intercalation. Physical Chemistry Chemical Physics, 2017, 19, 26765-26775.	1.3	1
1479	Li-intercalated graphene on SiC(0001): An STM study. Physical Review B, 2017, 96, .	1.1	37
1480	Graphene Ribbon Growth on Structured Silicon Carbide. Annalen Der Physik, 2017, 529, 1700052.	0.9	11
1481	Native point defects on hydrogen-passivated 4H–SiC (0001) surface and the effects on metal adsorptions. Journal of Chemical Physics, 2017, 147, 024707.	1.2	6
1482	Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 2017, 90, 75-127.	16.0	1,682
1483	Terahertz Electric Field Driven Electric Currents and Ratchet Effects in Graphene. Annalen Der Physik, 2017, 529, 1600406.	0.9	22
1484	Chargeâ€Carrier Transport in Largeâ€Area Epitaxial Graphene. Annalen Der Physik, 2017, 529, 1700048.	0.9	2
1485	Electrical properties and applications of graphene, hexagonal boron nitride (h-BN), and graphene/h-BN heterostructures. Materials Today Physics, 2017, 2, 6-34.	2.9	305
1486	Effect of ion-beam irradiation on the epitaxial growth of graphene via the SiC surface decomposition method. Japanese Journal of Applied Physics, 2017, 56, 085104.	0.8	20
1487	Graphene Nanoribbons for Electronic Devices. Annalen Der Physik, 2017, 529, 1700033.	0.9	39
1488	Revealing the Crystalline Integrity of Wafer-Scale Graphene on SiO ₂ /Si: An Azimuthal RHEED Approach. ACS Applied Materials & Interfaces, 2017, 9, 23081-23091.	4.0	27
1489	Advancements in 2D flexible nanoelectronics: from material perspectives to RF applications. Flexible and Printed Electronics, 2017, 2, 043001.	1.5	37
1490	Self-limited growth of large-area monolayer graphene films by low pressure chemical vapor deposition for graphene-based field effect transistors. Ceramics International, 2017, 43, 15010-15017.	2.3	11
1492	Graphene balls for lithium rechargeable batteries with fast charging and high volumetric energy densities. Nature Communications, 2017, 8, 1561.	5.8	151
1493	Deposition of topological silicene, germanene and stanene on graphene-covered SiC substrates. Scientific Reports, 2017, 7, 15700.	1.6	36
1494	Modulating the electronic and magnetic properties of graphene. RSC Advances, 2017, 7, 51546-51580.	1.7	53

#	Article	IF	CITATIONS
1495	Acousto-electric transport in MgO/ZnO-covered graphene on SiC. Journal Physics D: Applied Physics, 2017, 50, 464008.	1.3	8
1496	Structure and electronic states of a graphene double vacancy with an embedded Si dopant. Journal of Chemical Physics, 2017, 147, 194702.	1.2	9
1497	Structure and evolution of semiconducting buffer graphene grown on SiC(0001). Physical Review B, 2017, 96, .	1.1	26
1498	Manipulation of Dirac cones in intercalated epitaxial graphene. Carbon, 2017, 123, 93-98.	5.4	25
1499	Improved thermal and mechanical properties of polynorbornene upon covalent attachment with graphene sheets. Polymer, 2017, 123, 321-333.	1.8	9
1500	Carrier doping effect of humidity for single-crystal graphene on SiC. Japanese Journal of Applied Physics, 2017, 56, 085102.	0.8	8
1501	Low-temperature synthesis of graphene by chemical vapor deposition and its applications. FlatChem, 2017, 5, 40-49.	2.8	55
1502	Cholesterol immobilization on chemical vapor deposition grown graphene nanosheets for biosensors and bioFETs with enhanced electrical performance. Sensors and Actuators B: Chemical, 2017, 253, 559-565.	4.0	14
1503	Molecular Beam Epitaxy of GaN Nanowires on Epitaxial Graphene. Nano Letters, 2017, 17, 5213-5221.	4.5	72
1504	Metal-dielectric transition in Sn-intercalated graphene on SiC(0001). Ultramicroscopy, 2017, 183, 49-54.	0.8	20
1505	Growth and electronic structure of graphene on semiconducting Ge(110). Carbon, 2017, 122, 428-433.	5.4	25
1506	Nonlinear transport of graphene in the quantum Hall regime. 2D Materials, 2017, 4, 015003.	2.0	4
1507	General overview of graphene: Production, properties and application in polymer composites. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2017, 215, 9-28.	1.7	289
1508	Scalable exfoliation and dispersion of two-dimensional materials – an update. Physical Chemistry Chemical Physics, 2017, 19, 921-960.	1.3	261
1509	Graphene integration with nitride semiconductors for high power and high frequency electronics. Physica Status Solidi (A) Applications and Materials Science, 2017, 214, 1600460.	0.8	38
1510	Graphene reinforced metal and ceramic matrix composites: a review. International Materials Reviews, 2017, 62, 241-302.	9.4	458
1511	Graphene papers: smart architecture and specific functionalization for biomimetics, electrocatalytic sensing and energy storage. Materials Chemistry Frontiers, 2017, 1, 37-60.	3.2	67
1512	Advances in Graphene/Graphene Composite Based Microbial Fuel/Electrolysis Cells. Electroanalysis, 2017, 29, 652-661.	1.5	12

#	Article	IF	CITATIONS
1513	Time evolution of the growth of single graphene crystals and high resolution isotope labeling. Carbon, 2017, 111, 173-181.	5.4	6
1514	Liquid-phase growth of few-layered graphene on sapphire substrates using SiC micropowder source. Journal of Crystal Growth, 2017, 468, 175-178.	0.7	1
1515	Advances in scalable gas-phase manufacturing and processing of nanostructured solids: A review. Particuology, 2017, 30, 15-39.	2.0	31
1516	High Degree Reduction of Graphene Oxide toward a High Carrier Mobility. Journal of the Vacuum Society of Japan, 2017, 60, 300-306.	0.3	1
1517	Transport properties of graphene films grown by thermodestruction of SiC (0001) surface in argon medium. Technical Physics Letters, 2017, 43, 849-852.	0.2	3
1518	Graphene $\hat{a} \in \mathbb{C}$ Nanowire hybrid photomixer for continuous-wave terahertz generation. , 2017, , .		6
1519	<i>In Situ </i> Study on Oxygen Etching of Surface Buffer Layer on SiC(0001) Terraces. E-Journal of Surface Science and Nanotechnology, 2017, 15, 13-18.	0.1	3
1520	7 Graphene/Polymer Composite Materials: Processing, Properties and Applications. , 2017, , 349-419.		19
1521	Application of Graphene Gas Sensors in Online Monitoring of SF6 Insulated Equipment. , 0, , .		0
1522	Room-Temperature H2 Gas Sensing Characterization of Graphene-Doped Porous Silicon via a Facile Solution Dropping Method. Sensors, 2017, 17, 2750.	2.1	24
1523	Flexible Transparent Electrode of Hybrid Ag-Nanowire/Reduced-Graphene-Oxide Thin Film on PET Substrate Prepared Using H2/Ar Low-Damage Plasma. Polymers, 2017, 9, 28.	2.0	8
1524	Recent Advances in Graphene Based TiO2 Nanocomposites (GTiO2Ns) for Photocatalytic Degradation of Synthetic Dyes. Catalysts, 2017, 7, 305.	1.6	124
1525	Synthesis of Graphene on Metal/SiC Structure. , 2017, , .		0
1526	Effect of substrate on the growth and properties of thin 3R NbS2 films grown by chemical vapor deposition. Journal of Crystal Growth, 2018, 486, 137-141.	0.7	19
1527	The graphene/n-Ge(110) interface: structure, doping, and electronic properties. Nanoscale, 2018, 10, 6088-6098.	2.8	28
1528	CNT Applications in Drug and Biomolecule Delivery. , 2018, , 61-64.		12
1529	Synthesis and Chemical Modification of Graphene. , 2018, , 107-119.		0
1530	Graphene Applications in Sensors. , 2018, , 125-132.		0

#	Article	IF	CITATIONS
1532	Medical and Pharmaceutical Applications of Graphene. , 2018, , 149-150.		2
1533	Graphene Applications in Specialized Materials. , 2018, , 151-154.		0
1534	Miscellaneous Applications of Graphene. , 2018, , 155-155.		0
1535	Basic Electrochromics of CPs. , 2018, , 251-282.		0
1536	Batteries and Energy Devices. , 2018, , 575-600.		0
1537	Brief, General Overview of Applications. , 2018, , 43-44.		0
1538	CNT Applications in Batteries and Energy Devices. , 2018, , 49-52.		1
1539	Magnetic Dipole Resonance and Coupling Effects Directly Enhance the Raman Signals of As-Grown Graphene on Copper Foil by over One Hundredfold. Chemistry of Materials, 2018, 30, 1472-1483.	3.2	3
1540	Comparisons of electrical and optical properties between graphene and silicene — A review. Chinese Physics B, 2018, 27, 023201.	0.7	10
1541	Unraveling the Structural and Electronic Properties at the WSe ₂ –Graphene Interface for a Rational Design of van der Waals Heterostructures. ACS Applied Nano Materials, 2018, 1, 1131-1140.	2.4	19
1542	Engineering Anisotropically Curved Nitrogenâ€Doped Carbon Nanosheets with Recyclable Binary Flux for Sodiumâ€Ion Storage. ChemSusChem, 2018, 11, 1334-1343.	3.6	10
1543	High directivity plasmonic graphene-based patch array antennas with tunable THz band communications. Optik, 2018, 168, 440-445.	1.4	27
1544	The chemistry of CVD graphene. Journal of Materials Chemistry C, 2018, 6, 6082-6101.	2.7	95
1545	Ultrasonication-induced sp3 hybridization defects in Langmuir–Schaefer layers of turbostratic graphene. Physical Chemistry Chemical Physics, 2018, 20, 12777-12784.	1.3	12
1546	Growth of single-layer graphene on Ge (1 0 0) by chemical vapor deposition. Applied Surface Science, 2018, 447, 816-821.	3.1	20
1547	Comparative analysis of graphene grown on copper and nickel sheet by microwave plasma chemical vapor deposition. Vacuum, 2018, 153, 48-52.	1.6	9
1548	Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique. Nuclear Instruments & Methods in Physics Research B, 2018, 418, 27-33.	0.6	1
1549	The growth and assembly of organic molecules and inorganic 2D materials on graphene for van der Waals heterostructures. Carbon, 2018, 131, 246-257.	5.4	21

ARTICLE IF CITATIONS Thickness dependent Raman spectra and interfacial interaction between Ag and epitaxial graphene on 1550 1.3 6 6H-SiC(0001). Physical Chemistry Chemical Physics, 2018, 20, 5964-5974. Tip-Enhanced Raman Scattering of Nanocarbons., 2018, , 323-360. Ultrafast Laserâ€Shockâ€Induced Confined Metaphase Transformation for Direct Writing of Black 1552 11.1 17 Phosphorus Thin Films. Advanced Materials, 2018, 30, 1704405. Patterned tungsten disulfide/graphene heterostructures for efficient multifunctional 28 optoelectronic devices. Nanoscale, 2018, 10, 4332-4338. Selective fabrication of free-standing ABA and ABC trilayer graphene with/without Dirac-cone energy 1554 3.8 23 bands. NPG Asia Materials, 2018, 10, e466-e466. A review of theoretical study of graphene chemical vapor deposition synthesis on metals: nucleation, 8.1 growth, and the role of hydrogen and oxygen. Reports on Progress in Physics, 2018, 81, 036501. Formation of graphene on amorphous SiC film by surface-confined heating with electron beam 1556 1.1 2 irradiation. Current Applied Physics, 2018, 18, 335-339. Plasmonic patch antenna based on graphene with tunable terahertz band communications. Optik, 2018, 1.4 20 158, 617-622. In situ atomic-scale observation of monolayer graphene growth from SiC. Nano Research, 2018, 11, 1558 5.8 21 2809-2820. Bio-inspired unprecedented synthesis of reduced graphene oxide: a catalytic probe for 1559 electro-/chemical reduction of nitro groups in an aqueous medium. New Journal of Chemistry, 2018, 1.4 42, 2067-2073. Zinc Oxide Based Composite Materials for Advanced Supercapacitors. ChemistrySelect, 2018, 3, 550-565. 1560 0.7 48 Defect mediated van der Waals epitaxy of hexagonal boron nitride on graphene. 2D Materials, 2018, 5, 1561 2.0 26 025004. A table-top formation of bilayer quasi-free-standing epitaxial-graphene on SiC(0001) by microwave 1562 5.4 14 annealing in air. Carbon, 2018, 130, 792-798. Simple device for the growth of micrometer-sized monocrystalline single-layer graphene on SiC(0001). Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2018, 36, . Potential Dependence of the Buckling Structure of the Interfacial Water Bilayer on a Graphene 1564 1.5 4 Electrode. Journal of Physical Chemistry C, 2018, 122, 7795-7800. First-principles study of electronic structure modulations in graphene on Ru(0001) by Au 1.1 intercalation. Physical Review B, 2018, 97, . High degree reduction and restoration of graphene oxide on SiO₂at low temperature via 1566 1.37 remote Cu-assisted plasma treatment. Nanotechnology, 2018, 29, 245603. Single- to Few-Layered, Graphene-Based Separation Membranes. Annual Review of Chemical and 3.3 24 Biomolecular Engineering, 2018, 9, 17-39.

#	ARTICLE	IF	Citations
1568	simulations based on a new charge-transfer bond-order type potential. Physical Review B, 2018, 97, .	1.1	13
1569	Optical contrast for identifying the thickness of two-dimensional materials. Optics Communications, 2018, 406, 128-138.	1.0	41
1570	3D graphene-Ni microspheres with excellent microwave absorption and corrosion resistance properties. Journal of Materials Science: Materials in Electronics, 2018, 29, 2421-2433.	1.1	42
1571	Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy, 2018, 49, 46-53.	1.2	22
1572	Growth of defect-engineered graphene on manganese oxides for Li-ion storage. Energy Storage Materials, 2018, 12, 110-118.	9.5	26
1573	Recent development of novel membranes for desalination. Desalination, 2018, 434, 37-59.	4.0	183
1574	Role of Cu foil in-situ annealing in controlling the size and thickness of CVD graphene domains. Carbon, 2018, 129, 270-280.	5.4	61
1575	Laser Irradiationâ€Induced SiC@Graphene Subâ€Microspheres: A Bioinspired Core–Shell Structure for Enhanced Tribology Properties. Advanced Materials Interfaces, 2018, 5, 1700839.	1.9	10
1576	Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene. 2D Materials, 2018, 5, 011011.	2.0	24
1577	Water on graphene: review of recent progress. 2D Materials, 2018, 5, 022001.	2.0	119
1578	Direct exfoliation of graphite into graphene in aqueous solution using a novel surfactant obtained from used engine oil. Journal of Materials Science, 2018, 53, 2484-2496.	1.7	33
1579	Intercalation Compounds of Bilayer Graphene. Springer Theses, 2018, , 93-113.	0.0	2
1581	Increase of photoluminescence blinking frequency of 3C–SiC nanocrystals with excitation power. Chinese Physics B, 2018, 27, 127804.	0.7	1
1582	Study of properties and development of sensors based on graphene films grown on SiC (0001) by thermal destruction method. Journal of Physics: Conference Series, 2018, 951, 012007.	0.3	6
1584	"Y―shaped BP/PbS/PbSe nano-devices based on silicon carbide nanoribbons. RSC Advances, 2018, 8, 35050-35055.	1.7	5
1585	Structural characterization of Graphene Oxide and Reduced Graphene Oxide used as counter electrode in flexible DSSC. , 2018, , .		0
1586	Analysis of the interaction energies between and within graphite particles during mechanical exfoliation. New Carbon Materials, 2018, 33, 449-459.	2.9	3
1587	Extremely flat band in bilayer graphene. Science Advances, 2018, 4, eaau0059.	4.7	89

#	Article	IF	CITATIONS
1589	Epitaxial Graphene for High-Current QHE Resistance Standards. , 2018, , .		1
1590	Electrical Properties of GaAs Nanowires Grown on Graphene/SiC Hybrid Substrates. Semiconductors, 2018, 52, 1611-1615.	0.2	3
1591	Coherent Electron Trajectory Control in Graphene. Physical Review Letters, 2018, 121, 207401.	2.9	79
1592	2D Material Membranes for Operando Atmospheric Pressure Photoelectron Spectroscopy. Topics in Catalysis, 2018, 61, 2085-2102.	1.3	26
1593	Growth of Millimeter-Sized Graphene Single Crystals on Al ₂ O ₃ (0001)/Pt(111) Template Wafers Using Chemical Vapor Deposition. ECS Journal of Solid State Science and Technology, 2018, 7, M195-M200.	0.9	20
1594	High Quality Graphene Grown by Sublimation on 4H-SiC (0001). Semiconductors, 2018, 52, 1882-1885.	0.2	9
1595	Investigation of inhomogeneous barrier height for Au/n-type 6H-SiC Schottky diodes in a wide temperature range. Superlattices and Microstructures, 2018, 124, 30-40.	1.4	26
1596	Observation of curling effects in tubular and planar graphene-like structures by pyrolysis of ferrocene/dichlorobenzene mixtures. Materials Today Chemistry, 2018, 10, 120-127.	1.7	2
1597	Optical and electrical properties of the MoSe ₂ /graphene heterostructures. Journal of Physics: Conference Series, 2018, 1092, 012002.	0.3	6
1598	Si beam-assisted graphitization of SiC (0001). Applied Physics A: Materials Science and Processing, 2018, 124, 1.	1.1	5
1599	Inelastic electron tunneling spectroscopy by STM of phonons at solid surfaces and interfaces. Progress in Surface Science, 2018, 93, 131-145.	3.8	8
1600	Controlled generation of intrinsic near-infrared color centers in 4H-SiC via proton irradiation and annealing. Applied Physics Letters, 2018, 113, .	1.5	37
1601	Controllable conversion of liquid silicon from high-density to low-density towards amorphous silicon nanospheres on a wafer scale. Chemical Communications, 2018, 54, 12694-12697.	2.2	1
1602	Epitaxial graphene for quantum resistance metrology. Metrologia, 2018, 55, R27-R36.	0.6	33
1603	Epitaxial two-layer graphene under pressure: Diamene stiffer than Diamond. FlatChem, 2018, 10, 8-13.	2.8	36
1604	Limit Cycle Oscillation in Digitally Controlled DC Microgrid. , 2018, , .		Ο
1605	Improved Sampling Efficiency in Particle Filter for Systems with Multi-Step Randomly Delayed Measurements. , 2018, , .		0
1606	Effects of surface and confinement on the optical vibrational modes and dielectric function of 3C porous silicon carbide: An ab-initio study. Physica B: Condensed Matter, 2018, 550, 420-427.	1.3	7

#	Article	IF	CITATIONS
1607	Calcium intercalation underneath N-layer graphene on 6H-SiC(0001). Chemical Physics Letters, 2018, 703, 33-38.	1.2	9
1608	Chemical vapor deposition graphene of high mobility by gradient growth method on an 4H-SiC (0â€ ⁻ 0â€ ⁻ 0â€ ⁻ 1) substrate. Applied Surface Science, 2018, 454, 68-73.	3.1	14
1609	Ï€-Like band structure observed for coronene monolayers deposited on Ag(111). Journal of Electron Spectroscopy and Related Phenomena, 2018, 227, 40-43.	0.8	3
1610	Surface modification of single-crystalline silicon carbide by laser irradiation for microtribological applications. Precision Engineering, 2018, 54, 198-205.	1.8	1
1611	Local Anodic Oxidation of Graphene Layers on SiC. Technical Physics Letters, 2018, 44, 381-383.	0.2	10
1612	One Second Formation of Large Area Graphene on a Conical Tip Surface via Direct Transformation of Surface Carbide. Small, 2018, 14, e1801288.	5.2	3
1613	Biomedical Applications of Graphene Nanomaterials and Beyond. ACS Biomaterials Science and Engineering, 2018, 4, 2653-2703.	2.6	161
1614	Size dependence of electronic property in CVD-grown single-crystal graphene. Materials Research Express, 2018, 5, 075005.	0.8	3
1615	Graphene Platelets and Their Polymer Composites: Fabrication, Structure, Properties, and Applications. Advanced Functional Materials, 2018, 28, 1706705.	7.8	183
1616	Facile synthesis of graphene-phthalocyanine composites as oxygen reduction electrocatalysts in microbial fuel cells. Applied Catalysis B: Environmental, 2018, 237, 699-707.	10.8	89
1617	Graphene a promising electrode material for supercapacitors-A review. International Journal of Energy Research, 2018, 42, 4284-4300.	2.2	111
1618	Two dimensional monolayer rhombic silicene on the diamond (111) surface. Physical Chemistry Chemical Physics, 2018, 20, 21699-21704.	1.3	5
1619	Effect of plasma power on reduction of printable graphene oxide thin films on flexible substrates. Materials Research Express, 2018, 5, 056405.	0.8	10
1620	Intercalation of Iron Atoms under Graphene Formed on Silicon Carbide. Physics of the Solid State, 2018, 60, 1439-1446.	0.2	11
1621	Graphene-based nanopore approaches for DNA sequencing: A literature review. Biosensors and Bioelectronics, 2018, 119, 191-203.	5.3	63
1622	Detection of Ultralow Concentration NO ₂ in Complex Environment Using Epitaxial Graphene Sensors. ACS Sensors, 2018, 3, 1666-1674.	4.0	45
1623	Nanoscale electrical mapping of two-dimensional materials by conductive atomic force microscopy for transistors applications. AIP Conference Proceedings, 2018, , .	0.3	4
1624	Graphene as 2D Nano-Theranostic Materials for Cancer. , 2018, , 97-124.		2

#	Article	IF	CITATIONS
1625	Enhancement of CO2 adsorption on oxygen-functionalized epitaxial graphene surface under near-ambient conditions. Physical Chemistry Chemical Physics, 2018, 20, 19532-19538.	1.3	19
1626	Study of Electronic Structure, Thermal Conductivity, Elastic and Optical Properties of α, β, γ-Graphyne. Materials, 2018, 11, 188.	1.3	65
1627	Multimodal spectromicroscopy of monolayer WS ₂ enabled by ultra-clean van der Waals epitaxy. 2D Materials, 2018, 5, 045010.	2.0	40
1628	Synthesis of large area AB stacked bilayer graphene by SiC epitaxy and transfer. Nano Futures, 2018, 2, 035001.	1.0	5
1629	One-step room-temperature exfoliation of graphite to 100% few-layer graphene with high quality and large size. Journal of Materials Chemistry C, 2018, 6, 8343-8348.	2.7	14
1630	Substitutional mechanism for growth of hexagonal boron nitride on epitaxial graphene. Applied Physics Letters, 2018, 113, .	1.5	6
1632	Factors affecting barrier performance of composite anti-corrosion coatings prepared by using electrochemically exfoliated few-layer graphene as filler. Composites Part B: Engineering, 2018, 155, 1-10.	5.9	38
1633	Molecular Beam Epitaxy of Graphene and Hexagonal Boron Nitride. , 2018, , 487-513.		2
1634	Bioelectronics with nanocarbons. Journal of Materials Chemistry B, 2018, 6, 7159-7178.	2.9	36
1635	Fabricating Quasi-Free-Standing Graphene on a SiC(0001) Surface by Steerable Intercalation of Iron. Journal of Physical Chemistry C, 2018, 122, 21484-21492.	1.5	23
1636	Flat-Band Electronic Structure and Interlayer Spacing Influence in Rhombohedral Four-Layer Graphene. Nano Letters, 2018, 18, 5862-5866.	4.5	20
1637	Vertical Transistors Based on 2D Materials: Status and Prospects. Crystals, 2018, 8, 70.	1.0	71
1638	Elimination of step bunching in the growth of large-area monolayer and multilayer graphene on off-axis 3C SiC (111). Carbon, 2018, 140, 533-542.	5.4	14
1639	Thermal Growth of Graphene: A Review. Coatings, 2018, 8, 40.	1.2	47
1640	Channel materials. , 2018, , 105-124.		1
1641	Interfacial carrier dynamics of graphene on SiC, traced by the full-range time-resolved core-level photoemission spectroscopy. Applied Physics Letters, 2018, 113, .	1.5	6
1642	Biomedical Applications of Graphene. , 2018, , 215-232.		15
1643	Multi-layered graphenic structures as the effect of chemical modification of thermally treated anthracite. Fullerenes Nanotubes and Carbon Nanostructures, 2018, 26, 405-416.	1.0	7

#	Article	IF	CITATIONS
1644	A comparative study of graphene growth on SiC by hydrogen-CVD or Si sublimation through thermodynamic simulations. CrystEngComm, 2018, 20, 3702-3710.	1.3	8
1645	Synthesis of Graphene-like Films by Electrochemical Reduction of Polyhalogenated Aromatic Compounds and their Electrochemical Capacitor Applications. Langmuir, 2018, 34, 7958-7970.	1.6	16
1646	Novel Hollow Graphene Flowers Synthesized by Cuâ€Assisted Chemical Vapor Deposition. Advanced Materials Interfaces, 2018, 5, 1800347.	1.9	4
1647	TOPSIS based Taguchi design optimization for CVD growth of graphene using different carbon sources: Graphene thickness, defectiveness and homogeneity. Chinese Journal of Chemical Engineering, 2019, 27, 685-694.	1.7	15
1648	Interaction of carrier envelope phase-stable laser pulses with graphene: the transition from the weak-field to the strong-field regime. New Journal of Physics, 2019, 21, 045003.	1.2	36
1649	An efficient Terahertz rectifier on the graphene/SiC materials platform. Scientific Reports, 2019, 9, 11205.	1.6	20
1650	Unprecedented Piezoresistance Coefficient in Strained Silicon Carbide. Nano Letters, 2019, 19, 6569-6576.	4.5	62
1651	Graphene/metal oxide–based nanocomposite as photocatalyst for degradation of water pollutants. , 2019, , 221-240.		5
1652	Scalable production of few layered graphene by soft ball-microsphere rolling transfer. Carbon, 2019, 154, 402-409.	5.4	11
1653	How Substitutional Point Defects in Two-Dimensional WS ₂ Induce Charge Localization, Spin–Orbit Splitting, and Strain. ACS Nano, 2019, 13, 10520-10534.	7.3	86
1654	Improvements in graphene growth on 4H-SiC(0001) using plasma induced surface oxidation. Journal of Applied Physics, 2019, 126, 065301.	1.1	2
1655	Cobalt Intercalation of Graphene on Silicon Carbide. Physics of the Solid State, 2019, 61, 1316-1326.	0.2	10
1656	Tuning the doping level of graphene in the vicinity of the Van Hove singularity via ytterbium intercalation. Physical Review B, 2019, 100, .	1.1	47
1657	Epitaxial graphene/silicon carbide intercalation: a minireview on graphene modulation and unique 2D materials. Nanoscale, 2019, 11, 15440-15447.	2.8	85
1658	Conductive AFM of 2D Materials and Heterostructures for Nanoelectronics. Nanoscience and Technology, 2019, , 303-350.	1.5	7
1659	Reactive intercalation and oxidation at the buried graphene-germanium interface. APL Materials, 2019, 7, .	2.2	16
1660	In Situ Exfoliation of Graphite into Graphene Nanosheets in Elastomer Composites Based on Diels–Alder Reaction during Melt Blending. Industrial & Engineering Chemistry Research, 2019, 58, 13182-13189.	1.8	9
1661	Fractional Quantum Conductance Plateaus in Mosaicâ€Like Conductors and Their Similarities to the Fractional Quantum Hall Effect. Annalen Der Physik, 2019, 531, 1800188.	0.9	1

#	Article	IF	CITATIONS
1662	Studying the Formation of Single-Layer Graphene on the Surface of SiC. Journal of Surface Investigation, 2019, 13, 395-399.	0.1	0
1663	Graphene synthesis on SiO2 using pulsed laser deposition with bilayer predominance. Materials Chemistry and Physics, 2019, 238, 121905.	2.0	13
1665	Direct Growth of Graphene on Insulator Using Liquid Precursor Via an Intermediate Nanostructured State Carbon Nanotube. Nanoscale Research Letters, 2019, 14, 107.	3.1	7
1666	Bioelectrocatalysis on Anodized Epitaxial Graphene and Conventional Graphitic Interfaces. ChemElectroChem, 2019, 6, 3791-3796.	1.7	2
1668	Low-temperature synthesis of sp2 carbon nanomaterials. Science Bulletin, 2019, 64, 1817-1829.	4.3	18
1670	Direct synthesis and characterization of graphene layers on silica glass substrates. Materials Today: Proceedings, 2019, 10, 400-407.	0.9	1
1671	State-of-the-art advancements in studies and applications of graphene: a comprehensive review. Materials Today Sustainability, 2019, 6, 100026.	1.9	8
1672	Top-down bottom-up graphene synthesis. Nano Futures, 2019, 3, 042003.	1.0	39
1675	SiC-based electronics (100th anniversary of the loffe Institute). Physics-Uspekhi, 2019, 62, 754-794.	0.8	11
1677	Waferâ€Scale Synthesis of Graphene on Sapphire: Toward Fabâ€Compatible Graphene. Small, 2019, 15, e1904906.	5.2	61
1678	Two-Dimensional Carbon: A Review of Synthesis Methods, and Electronic, Optical, and Vibrational Properties of Single-Layer Graphene. Journal of Carbon Research, 2019, 5, 67.	1.4	38
1681	All-carbon hybrids for high-performance electronics, optoelectronics and energy storage. Science China Information Sciences, 2019, 62, 1.	2.7	6
1682	3D graphene-containing structures for tissue engineering. Materials Today Chemistry, 2019, 14, 100199.	1.7	23
1683	Facile and highly efficient preparation of semi-transparent, patterned and large-sized reduced graphene oxide films by electrochemical reduction on indium tin oxide glass surface. Thin Solid Films, 2019, 692, 137626.	0.8	3
1684	Effect of a SiC seed layer grown at different temperatures on SiC film deposition on top of an AIN/Si(110) substrate. Japanese Journal of Applied Physics, 2019, 58, SIIA18.	0.8	1
1685	Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. , 2019, 1, 173-199.		213
1686	Electronic States at the Zigzag Edges of Graphene Terraces. Physica Status Solidi - Rapid Research Letters, 2019, 13, 1900513.	1.2	0
1687	An ultra-stable setup for measuring electrical and thermoelectrical properties of nanojunctions. Applied Physics Letters, 2019, 115, 083108.	1.5	5

ARTICLE IF CITATIONS # Recent Advances in Seeded and Seed-Layer-Free Atomic Layer Deposition of High-K Dielectrics on 1688 1.4 20 Graphene for Electronics. Journal of Carbon Research, 2019, 5, 53. MoSe₂/graphene/6H-SiC heterojunctions: energy band diagram and photodegradation. 1689 1.0 Semiconductor Science and Technology, 2019, 34, 125007. Next-generation crossover-free quantum Hall arrays with superconducting interconnections. 1690 0.6 30 Metrologia, 2019, 56, 065002. Introducing strong correlation effects into graphene by gadolinium intercalation. Physical Review B, 1.1 2019, 100, . Diffraction paradox: An unusually broad diffraction background marks high quality graphene. 1692 1.1 15 Physical Review B, 2019, 100, . Multifunctional silicon carbide matrix composites optimized by three-dimensional graphene scaffolds. 5.4 Carbon, 2019, 155, 215-222. Polymer-encapsulated molecular doped epigraphene for quantum resistance metrology. Metrologia, 1694 0.6 17 2019, 56, 045004. Fabrication of InN on epitaxial graphene using RF-MBE. Journal of Applied Physics, 2019, 126, . 1.1 Effect of TiO2 nanoparticles on electrical properties of chemical vapor deposition grown single layer 1696 2.1 17 graphene. Synthetic Metals, 2019, 256, 116155. The morphological transformation of carbon materials from nanospheres to graphene nanoflakes by 5.4 thermal plasma. Carbon, 2019, 155, 521-530. A review on exfoliation, characterization, environmental and energy applications of graphene and 1698 7.0 74 graphene-based composites. Advances in Colloid and Interface Science, 2019, 273, 102036. Optimization of a nanoscale field emission cell with a planar blade-shaped multilayer graphene/SiC emitter. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2019, 37, 0.6 012201. Graphene–dye hybrid optical sensors. Nano Structures Nano Objects, 2019, 17, 194-217. 1700 1.9 22 Analysis of the low-temperature restoration process of graphene oxide based on <i>in situ</i> 1701 2.7 conductivity measurement. Journal of Materials Chemistry C, 2019, 7, 2583-2588. Graphene on the oxidized SiC surface and the impact of the metal intercalation. Carbon, 2019, 145, 1702 9 5.4603-613. Selective soluble polymer–assisted electrochemical delamination of chemical vapor deposition 1703 1.2 graphene. Journal of Solid State Electrochemistry, 2019, 23, 943-951. Towards topological quasifreestanding stanene via substrate engineering. Physical Review B, 2019, 99, . 1704 1.1 17 Kapitza thermal resistance characterization of epitaxial graphene–SiC(0001) interface. Applied Physics 1705 1.5 Letters, 2019, 114, .

\circ	P		_
		הטפי	DT
CITAT			

#	Article	IF	CITATIONS
1706	Effects of Annealing Parameters on Epitaxial Graphene on SiC Substrates. Materials Science Forum, 0, 954, 14-20.	0.3	2
1707	Observation of the interaction between avidin and iminobiotin using a graphene FET on a SiC substrate. Japanese Journal of Applied Physics, 2019, 58, SDDD02.	0.8	7
1708	Integration of bulk materials with two-dimensional materials for physical coupling and applications. Nature Materials, 2019, 18, 550-560.	13.3	211
1709	Synthesis challenges for graphene industry. Nature Materials, 2019, 18, 520-524.	13.3	389
1710	A novel â€~bottom-up' synthesis of few- and multi-layer graphene platelets with partial oxidation via cavitation. Ultrasonics Sonochemistry, 2019, 56, 466-473.	3.8	11
1711	Antibacterial Properties of Graphene-Based Nanomaterials. Nanomaterials, 2019, 9, 737.	1.9	301
1712	Nanoscale imaging of electric pathways in epitaxial graphene nanoribbons. Nano Research, 2019, 12, 1697-1702.	5.8	3
1713	Precise estimation of doping-dependent Raman effect in inorganic solids. Indian Journal of Physics, 2019, 93, 1359-1368.	0.9	4
1714	Seed‣ayerâ€Free Atomic Layer Deposition of Highly Uniform Al ₂ O ₃ Thin Films onto Monolayer Epitaxial Graphene on Silicon Carbide. Advanced Materials Interfaces, 2019, 6, 1900097.	1.9	24
1715	Reversible/Irreversible Photobleaching of Fluorescent Surface Defects of SiC Quantum Dots: Mechanism and Sensing of Solar UV Irradiation. Advanced Materials Interfaces, 2019, 6, 1900272.	1.9	3
1716	Noninvasive coupling of PbPc monolayers to epitaxial graphene on SiC(0001). Surface Science, 2019, 686, 45-51.	0.8	6
1717	Electronic and structural properties of H-intercalated graphene-SiC (0001) interface. Japanese Journal of Applied Physics, 2019, 58, 035001.	0.8	1
1718	Anodization study of epitaxial graphene: insights on the oxygen evolution reaction of graphitic materials. Nanotechnology, 2019, 30, 285701.	1.3	2
1719	Nanophotocatalysis and Environmental Applications. Environmental Chemistry for A Sustainable World, 2019, , .	0.3	7
1720	Origin of the <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mi>Ï€</mml:mi> -band replicas in the electronic structure of graphene grown on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mn>4</mml:mn> <mml:mi>H<td>1.1 > <td>14 row></td></td></mml:mi></mml:mrow></mml:math </mml:math 	1.1 > <td>14 row></td>	14 row>
1721	-SiC(0001). Physical Review B, 2019, 99, . Plasma Exfoliated Graphene: Preparation via Rapid, Mild Thermal Reduction of Graphene Oxide and Application in Lithium Batteries. Materials, 2019, 12, 707.	1.3	7
1722	Probing the uniformity of hydrogen intercalation in quasi-free-standing epitaxial graphene on SiC by micro-Raman mapping and conductive atomic force microscopy. Nanotechnology, 2019, 30, 284003.	1.3	23
1723	Physics of Graphene: Basic to FET Application. , 2019, , 29-63.		0

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1724	Gas-surface interactions on two-dimensional crystals. Surface Science Reports, 2019, 7	4, 141-177.	3.8	16
1725	AgNWs-graphene transparent conductor for heat and sensing applications. Materials R Express, 2019, 6, 066312.	esearch	0.8	8
1726	Synthesizing a LiFePO4/graphene composite with electrochemically prepared few-layer Journal of Energy Storage, 2019, 22, 373-377.	graphene.	3.9	12
1727	Graphene and Allies as a Part of Metallic Photocatalysts. Environmental Chemistry for A World, 2019, , 211-220.	Sustainable	0.3	0
1728	Direct synthesis of bilayer graphene on silicon dioxide substrates. Diamond and Related 2019, 95, 71-76.	l Materials,	1.8	6
1729	One-step production of pyrene-1-boronic acid functionalized graphene for dopamine de Materials Chemistry and Physics, 2019, 231, 286-291.	etection.	2.0	53
1730	A facile route for processing of silicon-based anode with high capacity and performance 2019, 6, 100314.	2. Materialia,	1.3	7
1731	Continuous synthesis of graphene nano-flakes by a magnetically rotating arc at atmosp Carbon, 2019, 148, 394-402.	pheric pressure.	5.4	35
1732	Formation of submicron thickness films under processing graphite by proton beam. Jou Physics: Conference Series, 2019, 1147, 012088.	Irnal of	0.3	1
1733	Thickness identification of 2D hexagonal boron nitride thin flakes by optical imaging in method. Materials Research Express, 2019, 6, 075042.	dry transfer	0.8	1
1734	Recent Progress of Graphene-Based Photoelectrode Materials for Dye-Sensitized Solar (International Journal of Photoenergy, 2019, 2019, 1-16.	Cells.	1.4	31
1736	Engineered Recombinant Proteins for Aqueous Ultrasonic Exfoliation and Dispersion of Biofunctionalized 2D Materials. Chemistry - A European Journal, 2019, 25, 7991-7997.		1.7	6
1737	Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem, 2019, 6,	31-59.	1.7	46
1738	Bi-layer Graphene: Structure, Properties, Preparation and Prospects. Current Graphene 2, 97-105.	Science, 2019,	0.5	3
1739	High radiation efficiency of coupled plasmonic graphene-based THz patch antenna utili ground plane removal. Optik, 2019, 182, 1082-1087.	zing strip slot	1.4	21
1740	Bismuth mediated defect engineering of epitaxial graphene on SiC(0001). Carbon, 201	9, 146, 313-319.	5.4	12
1741	A Novel Preparation Method of Multiâ€Layer Graphene with Highâ€Crystallinity Based e Exfoliation Method by Using Expandable Graphite. Physica Status Solidi (B): Basic Rese 1800657.	on Liquid arch, 2019, 256,	0.7	1
1742	Controlled synthesis of monolayer graphene with a high quality by pyrolysis of silicon c Materials Letters, 2019, 244, 171-174.	arbide.	1.3	20

#	Article	IF	CITATIONS
1743	Graphene-Based Ammonia Sensors Functionalised with Sub-Monolayer V2O5: A Comparative Study of Chemical Vapour Deposited and Epitaxial Graphene â€. Sensors, 2019, 19, 951.	2.1	20
1744	Lattice Structure and Bandgap Control of 2D GaN Grown on Graphene/Si Heterostructures. Small, 2019, 15, e1802995.	5.2	58
1745	Fundamentals of Fascinating Graphene Nanosheets: A Comprehensive Study. Nano, 2019, 14, 1930003.	0.5	13
1746	Study of Implantation Defects in CVD Graphene by Optical and Electrical Methods. Applied Sciences (Switzerland), 2019, 9, 544.	1.3	16
1747	ECAISS 2019 Organizing Committee. , 2019, , .		0
1748	Simulation modelling for productivity improvement of sorting process in a ceramic plant. , 2019, , .		0
1749	Grating Coupler Biosensor with a Low Refractive Index Buffer Layer for Bulk and Surface Sensitivity Enhancements. , 2019, , .		0
1750	Computational Comparison Between MPC and SR-MPC For Fast Dynamic System in Presence of Hard Constraints. , 2019, , .		1
1751	Electron beam processing of 6H-SiC substrate to obtain graphene-like carbon films. IOP Conference Series: Materials Science and Engineering, 2019, 699, 012017.	0.3	1
1753	Propagation Process of Streamers and Time History of Reduced Electric Field During Nanosecond Pulsed Discharge in Coaxial Electrode in Atmospheric Air. , 2019, , .		0
1754	Symposium on Services Computing Program Committee. , 2019, , .		0
1755	Non-Planarization Cu-Cu Direct Bonding and Gang Bonding with Low Temperature and Short Duration in Ambient Atmosphere. , 2019, , .		3
1756	Counting Devices: Revisiting Existing Approaches in Todayâ \in Ms Settings. , 2019, , .		3
1757	Quasiâ€Freestanding Graphene on SiC(0001) by Arâ€Mediated Intercalation of Antimony: A Route Toward Intercalation of Highâ€Vaporâ€Pressure Elements. Annalen Der Physik, 2019, 531, 1900199.	0.9	17
1758	Template Synthesis of Graphene. Doklady Physical Chemistry, 2019, 488, 154-157.	0.2	8
1759	Functionalization of Carbon Nanomaterials for Biomedical Applications. Journal of Carbon Research, 2019, 5, 72.	1.4	47
1760	Group-IV 2D materials beyond graphene on nonmetal substrates: Challenges, recent progress, and future perspectives. Applied Physics Reviews, 2019, 6, .	5.5	34
1761	Structural Strain in Single Layer Graphene Fabricated on SiC. Materials Science Forum, 2019, 963, 161-165.	0.3	0

#	Article	IF	Citations
1763	Controllable Synthesis of Few-Layer Graphene on \hat{I}^2 -SiC(001). , 0, , .		0
1764	Room temperature strain-induced Landau levels in graphene on a wafer-scale platform. Science Advances, 2019, 5, eaaw5593.	4.7	65
1765	Induced growth of quasi-free-standing graphene on SiC substrates. RSC Advances, 2019, 9, 32226-32231.	1.7	6
1766	Simulative Parametric Study on Heterojunction Thin Film Solar Cells Incorporating Interfacial Nanoclusters Layer. Energy Harvesting and Systems, 2019, 6, 23-28.	1.7	1
1767	Growth of Nanocrystalline MoSe 2 Monolayers on Epitaxial Graphene from Amorphous Precursors. Physica Status Solidi (B): Basic Research, 2019, 256, 1800283.	0.7	1
1768	An improved method to null-fill H-plane radiation pattern of graphene patch THz antenna utilizing branch feeding microstrip line. Optik, 2019, 181, 21-27.	1.4	21
1769	Laser-derived graphene: A three-dimensional printed graphene electrode and its emerging applications. Nano Today, 2019, 24, 81-102.	6.2	138
1770	Millimeter-Scale Growth of Single-Oriented Graphene on a Palladium Silicide Amorphous Film. ACS Nano, 2019, 13, 1127-1135.	7.3	1
1771	Effect of growth pressure on graphene direct growth on r-plane and c-plane sapphires by low-pressure CVD. Japanese Journal of Applied Physics, 2019, 58, SAAE04.	0.8	5
1772	Homogeneous Large-Area Quasi-Free-Standing Monolayer and Bilayer Graphene on SiC. ACS Applied Nano Materials, 2019, 2, 844-852.	2.4	24
1773	Complementary Schottky diode formation with carbon buffer and p-doped single layer graphene on intrinsic SiC via fluorine intercalation. Carbon, 2019, 142, 254-260.	5.4	3
1774	Structural, chemical, and magnetic properties of cobalt intercalated graphene on silicon carbide. Nanotechnology, 2019, 30, 025702.	1.3	15
1775	Electron effective attenuation length in epitaxial graphene on SiC. Nanotechnology, 2019, 30, 025704.	1.3	6
1776	Graphene based functional devices: A short review. Frontiers of Physics, 2019, 14, 1.	2.4	114
1777	Layer-by-Layer Graphene Growth on β-SiC/Si(001). ACS Nano, 2019, 13, 526-535.	7.3	14
1778	DNA hybridisation sensors for product authentication and tracing: State of the art and challenges. South African Journal of Chemical Engineering, 2019, 27, 16-34.	1.2	4
1779	WSe ₂ homojunctions and quantum dots created by patterned hydrogenation of epitaxial graphene substrates. 2D Materials, 2019, 6, 021001.	2.0	7
1780	Structural characterization of as-grown and quasi-free standing graphene layers on SiC. Applied Surface Science, 2019, 466, 51-58.	3.1	8

#	Article	IF	CITATIONS
1781	Transport Measurement. , 2019, , 159-197.		1
1782	SYNTHESES OF LARGE-SIZED SINGLE CRYSTAL GRAPHENE: A REVIEW OF RECENT DEVELOPMENTS. Surface Review and Letters, 2019, 26, 1830007.	0.5	4
1783	Plasmonic wave propagation mode analysis of single and multi-layer graphene-pec structures. Optik, 2020, 200, 163365.	1.4	1
1784	Charge-neutral epitaxial graphene on 6H–SiC(0001) via FeSi intercalation. Carbon, 2020, 156, 187-193.	5.4	12
1785	Tuning electronic properties of epitaxial multilayer-graphene/4H–SiC(0001) by Joule heating decomposition in hydrogen. Journal of Physics and Chemistry of Solids, 2020, 137, 109224.	1.9	5
1786	An ultraviolet photoelectron spectroscopy study on bandgap broadening of epitaxial graphene on SiC with surface doping. Carbon, 2020, 157, 340-349.	5.4	7
1787	Van der Waals Epitaxy of Illâ€Nitride Semiconductors Based on 2D Materials for Flexible Applications. Advanced Materials, 2020, 32, e1903407.	11.1	83
1788	Graphene and graphene oxide-reinforced 3D and 4D printable composites. , 2020, , 259-296.		4
1789	2D Materials for Terahertz Modulation. Advanced Optical Materials, 2020, 8, 1900550.	3.6	59
1790	High Stability of Epitaxial Graphene on a SiC Substrate. Physica Status Solidi (B): Basic Research, 2020, 257, 1900357.	0.7	1
1791	Graphene based polymer electrolyte membranes for electro-chemical energy applications. International Journal of Hydrogen Energy, 2020, 45, 17029-17056.	3.8	37
1792	Scanning tunneling microscopic investigations for studying conformational change of underlying Cu(111) and Ni(111) during graphene growth. Surface Science, 2020, 693, 121526.	0.8	6
1793	Extensive Fermiâ€Level Engineering for Graphene through the Interaction with Aluminum Nitrides and Oxides. Physica Status Solidi - Rapid Research Letters, 2020, 14, 1900399.	1.2	5
1794	Crystalline transformation from ta-C to graphene induced by a catalytic Ni layer during annealing. Diamond and Related Materials, 2020, 101, 107556.	1.8	5
1795	Environmental friendly approach for facile synthesis of graphene-like nanosheets for photocatalytic activity. Journal of Alloys and Compounds, 2020, 823, 153696.	2.8	9
1796	H ₂ Oâ€Etchantâ€Promoted Synthesis of Highâ€Quality Graphene on Glass and Its Application in Seeâ€Through Thermochromic Displays. Small, 2020, 16, e1905485.	5.2	20
1797	Two-step synthesis of few layer graphene using plasma etching and atmospheric pressure rapid thermal annealing. Diamond and Related Materials, 2020, 101, 107568.	1.8	1
1799	Stark Tuning of the Silicon Vacancy in Silicon Carbide. Nano Letters, 2020, 20, 658-663.	4.5	25

#	Article	IF	CITATIONS
1800	Energetics of the surface step and its morphology on the 3C-SiC(111) surface clarified by the density-functional theory. Applied Physics Express, 2020, 13, 015506.	1.1	7
1801	Surface morphology control of the SiC (0001) substrate during the graphene growth. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 281-285.	1.0	5
1802	Quantitative analysis of spectroscopic low energy electron microscopy data: High-dynamic range imaging, drift correction and cluster analysis. Ultramicroscopy, 2020, 213, 112913.	0.8	8
1803	Bottom-up synthesis of graphene via hydrothermal cathodic reduction. Carbon, 2020, 158, 131-136.	5.4	20
1804	Ambipolar charge transport in quasi-free-standing monolayer graphene on SiC obtained by gold intercalation. Physical Review B, 2020, 102, .	1.1	9
1805	Van der Waals Epitaxy of III-Nitrides and Its Applications. Materials, 2020, 13, 3835.	1.3	4
1806	Electrochemical sensors and biosensors using laser-derived graphene: A comprehensive review. Biosensors and Bioelectronics, 2020, 168, 112565.	5.3	113
1807	Overdoping Graphene Beyond the van Hove Singularity. Physical Review Letters, 2020, 125, 176403.	2.9	83
1808	Formation of Iron Silicides Under Graphene Grown on the Silicon Carbide Surface. Physics of the Solid State, 2020, 62, 1944-1948.	0.2	1
1809	Stress–strain in electron-beam activated polymeric micro-actuators. Journal of Applied Physics, 2020, 128, 115104.	1.1	3
1810	Recent advances in preparation and application of laser-induced graphene in energy storage devices. Materials Today Energy, 2020, 18, 100569.	2.5	43
1811	Structure, Properties, and Electrochemical Sensing Applications of Grapheneâ€Based Materials. ChemElectroChem, 2020, 7, 4508-4525.	1.7	34
1812	Broadband optical power limiting with the decoration of TiO2 nanoparticles on graphene oxide. Optical Materials, 2020, 109, 110366.	1.7	11
1813	Aluminum oxide nucleation in the early stages of atomic layer deposition on epitaxial graphene. Carbon, 2020, 169, 172-181.	5.4	22
1814	Sodium hydroxide mediated alumina nanoparticles from waste aluminum foil sheets – Biological impact and photo-catalytic efficacy on commercial dyes. Materials Today: Proceedings, 2020, 33, 2366-2374.	0.9	2
1815	Interfacial coupled design of epitaxial Graphene@SiC Schottky junction with built-in electric field for high-performance anodes of lithium ion batteries. Nano Energy, 2020, 77, 105092.	8.2	71
1816	Synthesis of graphene. , 2020, , 181-221.		2
1817	Wetting-Induced Fabrication of Graphene Hybrid with Conducting Polymers for High-Performance Flexible Transparent Electrodes. ACS Applied Materials & Interfaces, 2020, 12, 55372-55381.	4.0	19

#	Article	IF	CITATIONS
1818	Graphene Synthesis by Ultrasound Energy-Assisted Exfoliation of Graphite in Various Solvents. Crystals, 2020, 10, 1037.	1.0	8
1819	Photocatalytic nanomaterials for degradation of organic pollutants and heavy metals. , 2020, , 119-138.		23
1820	Electronic interface and charge carrier density in epitaxial graphene on silicon carbide. A review on metal–graphene contacts and electrical gating. APL Materials, 2020, 8, .	2.2	6
1821	A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Materials, 2020, 35, 193-208.	2.9	70
1822	Single- versus Dual-Ion Conductors for Electric Double Layer Gating: Finite Element Modeling and Hall-Effect Measurements. ACS Applied Materials & Interfaces, 2020, 12, 40850-40858.	4.0	6
1823	Silica-graphene oxide nanohybrids as reinforcing filler for natural rubber. Journal of Polymer Research, 2020, 27, 1.	1.2	25
1824	Electronic and Transport Properties of Epitaxial Graphene on SiC and 3C-SiC/Si: A Review. Applied Sciences (Switzerland), 2020, 10, 4350.	1.3	11
1825	Twistronics in Graphene, from Transfer Assembly to Epitaxy. Applied Sciences (Switzerland), 2020, 10, 4690.	1.3	9
1826	A combination of hydrothermal, intercalation and electrochemical methods for the preparation of high-quality graphene: Characterization and using to prepare graphene-polyurethane nanocomposite. Journal of Alloys and Compounds, 2020, 848, 156495.	2.8	12
1827	Engineering of Thermoplastic Elastomer with Graphene and Other Anisotropic Nanofillers. Engineering Materials, 2020, , .	0.3	6
1828	The Application of Graphene Derivatives in Perovskite Solar Cells. Small Methods, 2020, 4, 2000507.	4.6	35
1829	A Flexible Electrochemical Sensor Based on L-Arginine Modified Chemical Vapor Deposition Graphene Platform Electrode for Selective Determination of Xanthine. Chinese Journal of Analytical Chemistry, 2020, 48, 1149-1159.	0.9	7
1830	Surfactant-Mediated Epitaxial Growth of Single-Layer Graphene in an Unconventional Orientation on SiC. Physical Review Letters, 2020, 125, 106102.	2.9	13
1831	Photo- and Nanoelectronics Based on Two-Dimensional Materials. Part I. Two-Dimensional Materials: Properties and Synthesis. Journal of Communications Technology and Electronics, 2020, 65, 1062-1104.	0.2	9
1832	Plasticized Polystyrene by Addition of -Diene Based Molecules for Defect-Less CVD Graphene Transfer. Polymers, 2020, 12, 1839.	2.0	4
1833	Electrically driven photon emission from individual atomic defects in monolayer WS ₂ . Science Advances, 2020, 6, .	4.7	53
1834	High-Mobility Epitaxial Graphene on Ge/Si(100) Substrates. ACS Applied Materials & Interfaces, 2020, 12, 43065-43072.	4.0	16
1835	High Layer Uniformity of Two-Dimensional Materials Demonstrated Surprisingly from Broad Features in Surface Electron Diffraction. Journal of Physical Chemistry Letters, 2020, 11, 8937-8943.	2.1	9

#	Article	IF	CITATIONS
1836	Enhancing the photoelectrical performance of graphene/4H-SiC/graphene detector by tuning a Schottky barrier by bias. Applied Physics Letters, 2020, 117, .	1.5	11
1837	Current State of Porous Carbon for Wastewater Treatment. Processes, 2020, 8, 1651.	1.3	36
1838	Carbon Nanomaterials for Electro-Active Structures: A Review. Polymers, 2020, 12, 2946.	2.0	17
1839	Stacking and curvature-dependent behaviors of electronic transport and molecular adsorptions of graphene: A comparative study of bilayer graphene and carbon nanotube. Applied Surface Science Advances, 2020, 1, 100028.	2.9	5
1840	Hydrogenâ€Intercalated Graphene on SiC as Platform for Hybrid Superconductor Devices. Advanced Quantum Technologies, 2020, 3, 2000082.	1.8	4
1841	Scalable Substitutional Reâ€Doping and its Impact on the Optical and Electronic Properties of Tungsten Diselenide. Advanced Materials, 2020, 32, e2005159.	11.1	32
1842	Preparation of Few‣ayer Porous Graphene by a Soft Mechanical Method with a Short Rolling Transfer Process. ChemPlusChem, 2020, 85, 2482-2486.	1.3	1
1843	Density functional calculations for structures and energetics of atomic steps and their implication for surface morphology on Si-face SiC polar surfaces. Physical Review B, 2020, 101, .	1.1	11
1844	Large-area synthesis of a semiconducting silver monolayer via intercalation of epitaxial graphene. Physical Review B, 2020, 101, .	1.1	21
1845	Manipulating electronic structure of graphene for producing ferromagnetic graphene particles by Leidenfrost effect-based method. Scientific Reports, 2020, 10, 6874.	1.6	11
1846	Direct evidence for efficient ultrafast charge separation in epitaxial WS ₂ /graphene heterostructures. Science Advances, 2020, 6, eaay0761.	4.7	64
1847	Synthesis of graphene-like carbon from agricultural side stream with magnesiothermic reduction coupled with atmospheric pressure induction annealing. Nano Express, 2020, 1, 010014.	1.2	7
1848	Synthesis of graphene flakes using a non-thermal plasma based on magnetically stabilized gliding arc discharge. Fullerenes Nanotubes and Carbon Nanostructures, 2020, 28, 846-856.	1.0	17
1849	Influence of induction-annealing temperature on the morphology of barley-straw-derived Si@C and SiC@graphite for potential application in Li-ion batteries. Nanotechnology, 2020, 31, 335709.	1.3	7
1850	Semiconductor to metal transition in two-dimensional gold and its van der Waals heterostack with graphene. Nature Communications, 2020, 11, 2236.	5.8	52
1851	Oxygen intercalated graphene on SiC(0001): Multiphase SiOx layer formation and its influence on graphene electronic properties. Carbon, 2020, 167, 746-759.	5.4	9
1852	Towards low- loss on-chip nanophotonics with coupled graphene and silicon carbide: a review. JPhys Materials, 2020, 3, 032005.	1.8	15
1853	Nanoscale profiling of multilayer graphene films on silicon carbide by a focused ion beam. Diamond and Related Materials, 2020, 108, 107969.	1.8	3

#	Article	IF	CITATIONS
1854	Role of anions on electrochemical exfoliation of graphite into graphene in aqueous acids. Carbon, 2020, 167, 816-825.	5.4	54
1855	The performance limits of epigraphene Hall sensors doped across the Dirac point. Applied Physics Letters, 2020, 116, .	1.5	5
1856	Intercalation Synthesis of Cobalt Silicides under Graphene Grown on Silicon Carbide. Physics of the Solid State, 2020, 62, 519-528.	0.2	5
1857	Length-dependence of light-induced currents in graphene. Journal of Physics B: Atomic, Molecular and Optical Physics, 2020, 53, 154001.	0.6	12
1858	Reversible graphitization of SiC: A route towards high-quality graphene on a minimally step bunched substrate. Applied Surface Science, 2020, 528, 146917.	3.1	14
1859	Synthesis of Active Graphene with Para-Ester on Cotton Fabrics for Antistatic Properties. Nanomaterials, 2020, 10, 1147.	1.9	8
1860	Authentication Protocols in Internet of Vehicles: Taxonomy, Analysis, and Challenges. IEEE Access, 2020, 8, 54314-54344.	2.6	73
1861	Epitaxial Graphene Growth on the Stepâ€Structured Surface of Offâ€Axis Câ€Face 3Câ€SiC(1Â⁻1Â⁻1Â⁻). Physica Status Solidi (B): Basic Research, 2020, 257, 1900718.	0.7	1
1862	Inkjet-printed graphene Hall mobility measurements and low-frequency noise characterization. Nanoscale, 2020, 12, 6708-6716.	2.8	14
1863	Output-Constrained Robust Sliding Mode Based Nonlinear Active Suspension Control. IEEE Transactions on Industrial Electronics, 2020, 67, 10652-10662.	5.2	42
1864	Multidimensional graphene structures and beyond: Unique properties, syntheses and applications. Progress in Materials Science, 2020, 113, 100665.	16.0	61
1865	Twoâ€dimensional materials of groupâ€ŀVA boosting the development of energy storage and conversion. , 2020, 2, 54-71.		73
1866	A Decomposition-Based Local Search for Large-Scale Many-Objective Vehicle Routing Problems With Simultaneous Delivery and Pickup and Time Windows. IEEE Systems Journal, 2020, 14, 5253-5264.	2.9	9
1867	Resonant and bound states of charged defects in two-dimensional semiconductors. Physical Review B, 2020, 101, .	1.1	23
1868	Poly(methyl methacrylate)â€Assisted Exfoliation of Graphite and Its Use in Acrylonitrileâ€Butadieneâ€Styrene Composites. Chemistry - A European Journal, 2020, 26, 6715-6725.	1.7	2
1869	A comparative study for producing few-layer graphene sheets via electrochemical and microwave-assisted exfoliation from graphite powder. Journal of Materials Science: Materials in Electronics, 2020, 31, 7022-7034.	1.1	12
1870	Low cost flexible pressure sensor using laser scribed GO/RGO periodic structure for electronic skin applications. Superlattices and Microstructures, 2020, 140, 106470.	1.4	10
1871	Highly stable multi-layered silicon-intercalated graphene anodes for lithium-ion batteries. MRS Communications, 2020, 10, 25-31.	0.8	4

#	Article	IF	CITATIONS
1872	Surface-enhanced Raman scattering from buffer layer under graphene on SiC in a wide energy range from visible to near-infrared. Japanese Journal of Applied Physics, 2020, 59, 040902.	0.8	6
1873	Synthesis of few-layer graphene flakes by magnetically rotating arc plasma: effects of input power and feedstock injection position. Applied Physics A: Materials Science and Processing, 2020, 126, 1.	1.1	13
1874	Scanning nonlinear dielectric potentiometry for measurement of the potential induced by atomic dipole moments. , 2020, , 113-140.		0
1875	Effects of hydrogen/carbon molar ratio on graphene nano-flakes synthesis by a non-thermal plasma process. Diamond and Related Materials, 2020, 108, 107932.	1.8	6
1876	Surface modification of silicon carbide. , 2020, , 143-157.		1
1877	Synthesis of heterostructures based on two-dimensional materials. , 2020, , 265-287.		2
1878	Highâ€Responsivity Graphene/4H‣iC Ultraviolet Photodetector Based on a Planar Junction Formed by the Dual Modulation of Electric and Light Fields. Advanced Optical Materials, 2020, 8, 2000559.	3.6	19
1879	Green Preparation of Few‣ayer Graphene Sheet Materials Using Naturally Occurring Calcium Carbonate and Plant Leaves. ChemistrySelect, 2020, 5, 7517-7520.	0.7	2
1880	A Novel Route to High-Quality Graphene Quantum Dots by Hydrogen-Assisted Pyrolysis of Silicon Carbide. Nanomaterials, 2020, 10, 277.	1.9	14
1881	Revisiting the Feld's Friendship Paradox in Online Social Networks. IEEE Access, 2020, 8, 24062-24071.	2.6	0
1882	Van der Waals epitaxy and composition control of layered SnS _{<i>x</i>} Se _{2â^'<i>x</i>} alloy thin films. Journal of Materials Research, 2020, 35, 1386-1396.	1.2	2
1883	Review—Recent Advances in Carbon Nanomaterials as Electrochemical Biosensors. Journal of the Electrochemical Society, 2020, 167, 037555.	1.3	272
1884	Graphene nanoplatelets-reinforced magnesium metal matrix nanocomposites with superior mechanical and corrosion performance for biomedical applications. Journal of Magnesium and Alloys, 2020, 8, 269-290.	5.5	87
1885	Tuning the optoelectronic properties of the rGO-AuNPs hybrid film by pre-decoration and AuNPs-assisted thermal reduction. Materials Science in Semiconductor Processing, 2020, 112, 105017.	1.9	13
1886	Synthesis of graphene-related carbon nanoparticles from a liquid isopropanol precursor by a one-step atmospheric plasma process. Applied Surface Science, 2020, 514, 145926.	3.1	6
1887	A chemically modified laser-induced porous graphene based flexible and ultrasensitive electrochemical biosensor for sweat glucose detection. Sensors and Actuators B: Chemical, 2020, 311, 127866.	4.0	178
1888	Controlled edge dependent stacking of WS2-WS2 Homo- and WS2-WSe2 Hetero-structures: A Computational Study. Scientific Reports, 2020, 10, 1648.	1.6	19
1889	Wafer-scale transfer-free process of multi-layered graphene grown by chemical vapor deposition. Materials Research Express, 2020, 7, 035001.	0.8	3

		CITATION REPORT		
#	Article		IF	CITATIONS
1890	Removing contaminants from transferred CVD graphene. Nano Research, 2020, 13, 59	99-610.	5.8	43
1891	Effects of Buffer Gases on Graphene Flakes Synthesis in Thermal Plasma Process at Atr Pressure. Nanomaterials, 2020, 10, 309.	nospheric	1.9	21
1892	Solution-Processed Transparent Electrodes for Emerging Thin-Film Solar Cells. Chemica 2020, 120, 2049-2122.	al Reviews,	23.0	152
1893	Materials, systems, and devices for wearable bioelectronics. , 2020, , 1-48.			0
1894	Detachment of epitaxial graphene from SiC substrate by XUV laser radiation. Carbon, 2	2020, 161, 36-43.	5.4	3
1895	Renormalization of Dirac Cones by Correlation Effects in Heavily-Doped Graphene. Jour Korean Physical Society, 2020, 76, 44-48.	rnal of the	0.3	2
1896	Review—Graphene-Based Water Quality Sensors. Journal of the Electrochemical Soci 037539.	ety, 2020, 167,	1.3	40
1897	Growth Mechanism of InN Nucleation Layers on Epitaxial Graphene Using Metal Organ Epitaxy and Radio-Frequency Molecular Beam Epitaxy. Crystal Growth and Design, 202	ic Vapor Phase 0, 20, 1415-1421.	1.4	12
1898	A comparative study on theoretical and experimental methods using basic electrical pa Au/CNTs/lnP/Au–Ge diodes. Journal of Alloys and Compounds, 2020, 824, 153899.	arameters of	2.8	5
1899	Substrate induced nanoscale resistance variation in epitaxial graphene. Nature Commu 11, 555.	unications, 2020,	5.8	19
1900	Optical dielectric function of two-dimensional WS2 on epitaxial graphene. 2D Material 025024.	s, 2020, 7,	2.0	10
1901	Review—Non-Enzymatic Hydrogen Peroxide Electrochemical Sensors Based on Reduc Oxide. Journal of the Electrochemical Society, 2020, 167, 037531.	ced Graphene	1.3	97
1902	Comparison of graphene films grown on 6 <i>H</i> -SiC and 4 <i>H</i> -SiC substrates. I Nanotubes and Carbon Nanostructures, 2020, 28, 321-324.	-ullerenes	1.0	2
1903	Production and processing of graphene and related materials. 2D Materials, 2020, 7, 0	22001.	2.0	333
1904	Electron-phonon coupling in the ordered phase of Rb on monolayer graphene. Current Physics, 2020, 20, 484-488.	Applied	1.1	7
1905	Graphene research and their outputs: Status and prospect. Journal of Science: Advance Devices, 2020, 5, 10-29.	ed Materials and	1.5	318
1906	An Integro-Differential Time-Domain Scheme for Electromagnetic Field Modeling in HTS Transactions on Magnetics, 2020, 56, 1-4.	S Materials. IEEE	1.2	1
1907	Electromechanical Behaviors of Graphene Reinforced Polymer Composites: A Review. N 13, 528.	Лaterials, 2020,	1.3	11

#	Article	IF	CITATIONS
1908	Batch synthesis of transfer-free graphene with wafer-scale uniformity. Nano Research, 2020, 13, 1564-1570.	5.8	22
1909	Laser-induced growth of large-area epitaxial graphene with low sheet resistance on 4H-SiC(0001). Applied Surface Science, 2020, 514, 145938.	3.1	11
1910	Unit-Cell-Thick Oxide Synthesis by Film-Based Scavenging. Journal of Physical Chemistry C, 2020, 124, 8394-8400.	1.5	4
1911	Low-temperature chemical vapor deposition growth of graphene films enabled by ultrathin alloy catalysts. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2020, 38, 032202.	0.6	5
1912	Atomic Layer Deposition of High-k Insulators on Epitaxial Graphene: A Review. Applied Sciences (Switzerland), 2020, 10, 2440.	1.3	15
1913	Realization of 5he2 with graphene quantum Hall resistance array. Applied Physics Letters, 2020, 116, .	1.5	13
1914	Buffer layers inhomogeneity and coupling with epitaxial graphene unravelled by Raman scattering and graphene peeling. Carbon, 2020, 163, 224-233.	5.4	17
1915	Spin splitting and strain in epitaxial monolayer <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>WSe</mml:mi><mml:mn>2on graphene. Physical Review B, 2020, 101, .</mml:mn></mml:msub></mml:math 	l:m n1 <td>nl:113:ub></td>	nl: 113 :ub>
1916	Theoretical prediction of eliminating the buffer layer and achieving charge neutrality for epitaxial graphene on 6H–SiC(0001) via boron compound intercalations. Carbon, 2020, 161, 323-330.	5.4	3
1917	Nanostructured graphene materials utilization in fuel cells and batteries: A review. Journal of Energy Storage, 2020, 29, 101386.	3.9	50
1918	Using Hybridized techniques for Prediction of Software Maintainability using Imbalanced data. , 2020, ,		2
1919	Raman 2D Peak Line Shape in Epigraphene on SiC. Applied Sciences (Switzerland), 2020, 10, 2354.	1.3	4
1920	Antenna-Coupled Graphene Field-Effect Transistors as a Terahertz Imaging Array. IEEE Transactions on Terahertz Science and Technology, 2021, 11, 70-78.	2.0	7
1921	A graphite enclosure assisted synthesis of high-quality patterned graphene on 6H–SiC by ion implantation. Carbon, 2021, 172, 353-359.	5.4	12
1922	Synthesis methods of borophene, graphene-loaded polypyrrole nanocomposites and their benefits for energy storage applications: A brief overview. FlatChem, 2021, 26, 100211.	2.8	33
1923	Ways to eliminate PMMA residues on graphene —— superclean graphene. Carbon, 2021, 173, 609-636.	5.4	53
1924	The influence of contact engineering on siliconâ€based anode for liâ€ion batteries. Nano Select, 2021, 2, 468-491.	1.9	11
1925	Fast high-shear exfoliation of natural flake graphite with temperature control and high yield. Carbon, 2021, 174, 123-131.	5.4	35

#	Article	IF	CITATIONS
1926	CVD growth of high-quality graphene over Ge (100) by annihilation of thermal pits. Carbon, 2021, 174, 214-226.	5.4	7
1927	Role of oxygen in surface kinetics of SiO2 growth on single crystal SiC at elevated temperatures. Ceramics International, 2021, 47, 1855-1864.	2.3	6
1928	Pressure-dependent synthesis of graphene nanoflakes using Ar/H2/CH4 non-thermal plasma based on rotating arc discharge. Diamond and Related Materials, 2021, 111, 108176.	1.8	11
1929	RF-MBE growth and orientation control of GaN on epitaxial graphene. Results in Physics, 2021, 20, 103714.	2.0	3
1930	Resolving mobility anisotropy in quasi-free-standing epitaxial graphene by terahertz optical Hall effect. Carbon, 2021, 172, 248-259.	5.4	4
1931	Transport of Lipophilic Antiâ€Tuberculosis Drug Benzothiazoneâ€043 in Ca 3 (PO 4) 2 Nanocontainers. ChemNanoMat, 2021, 7, 7-16.	1.5	3
1932	Advances in Carbon-Based Nanocomposites for Deep Adsorptive Desulfurization. , 2021, , 1809-1831.		0
1933	Solution-processed two-dimensional materials for next-generation photovoltaics. Chemical Society Reviews, 2021, 50, 11870-11965.	18.7	96
1934	A short review on electrochemical exfoliation of graphene and graphene quantum dots. Carbon Letters, 2021, 31, 371-388.	3.3	45
1935	Atomic and electronic structure of graphene. , 2021, , 15-26.		1
1936	Manufacturing Graphene and Graphene-based Nanocomposite for Piezoelectric Pressure Sensor Application: A Review. Nano Biomedicine and Engineering, 2021, 13, .	0.3	6
1937	Case studies of electrical characterisation of graphene by terahertz time-domain spectroscopy. 2D Materials, 0, , .	2.0	11
1938	The complementary graphene growth and etching revealed by large-scale kinetic Monte Carlo simulation. Npj Computational Materials, 2021, 7, .	3.5	20
1939	Molybdenum Disulfide and Tungsten Disulfide as Novel Two-Dimensional Nanomaterials in Separation Science. Springer Series on Polymer and Composite Materials, 2021, , 193-217.	0.5	1
1940	Graphene-Based Photocatalytic Materials: An Overview. , 2021, , 433-454.		1
1941	Scanning tunneling microscopy (STM) of graphene. , 2021, , 345-379.		1
1942	Stacking Relations and Substrate Interaction of Graphene on Copper Foil. Advanced Materials Interfaces, 2021, 8, 2002025.	1.9	4
1943	Critical View on Buffer Layer Formation and Monolayer Graphene Properties in High-Temperature Sublimation. Applied Sciences (Switzerland), 2021, 11, 1891.	1.3	3

#	Article	IF	CITATIONS
1944	Low-Temperature Growth of Graphene on a Semiconductor. Journal of Physical Chemistry C, 2021, 125, 4243-4252.	1.5	6
1945	High-Quality Few-Layer Graphene on Single-Crystalline SiC thin Film Grown on Affordable Wafer for Device Applications. Nanomaterials, 2021, 11, 392.	1.9	10
1946	Nanostructured Graphene on β-SiC/Si(001): Atomic and Electronic Structures, Magnetic and Transport Properties (Brief Review). JETP Letters, 2021, 113, 176-193.	0.4	3
1947	Preparation and Characterization of Graphene from Refined Benzene Extracted from Low-Rank Coal: Based on the CVD Technology. Molecules, 2021, 26, 1900.	1.7	7
1948	Electron-phonon coupling of epigraphene at millikelvin temperatures measured by quantum transport thermometry. Applied Physics Letters, 2021, 118, 103102.	1.5	1
1949	Advanced synthesis and application of Nano SiC@ β-glucosidase@ Fe3O4 composite. IOP Conference Series: Earth and Environmental Science, 2021, 692, 032105.	0.2	0
1950	Interlayer Coupling and Ultrafast Hot Electron Transfer Dynamics in Metallic VSe ₂ /Graphene van der Waals Heterostructures. ACS Nano, 2021, 15, 7756-7764.	7.3	22
1951	Scalable chemical vapor deposited graphene field-effect transistors for bio/chemical assay. Applied Physics Reviews, 2021, 8, .	5.5	10
1952	Elucidating the electronic and magnetic properties of epitaxial graphene grown on SiC with a defective buffer layer. Journal of Materials Science, 2021, 56, 11386-11401.	1.7	1
1953	A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings. Critical Reviews in Solid State and Materials Sciences, 2022, 47, 309-355.	6.8	45
1954	Toward Large-Scale Ga ₂ O ₃ Membranes via Quasi-Van Der Waals Epitaxy on Epitaxial Graphene Layers. ACS Applied Materials & Interfaces, 2021, 13, 13410-13418.	4.0	17
1955	Ultrafast Charge Separation in Bilayer WS2/Graphene Heterostructure Revealed by Time- and Angle-Resolved Photoemission Spectroscopy. Frontiers in Physics, 2021, 9, .	1.0	9
1956	Preparation of graphene on SiC by laser-accelerated pulsed ion beams*. Chinese Physics B, 2021, 30, 116106.	0.7	3
1957	Carbon Nanomaterials: Synthesis, Functionalization and Sensing Applications. Nanomaterials, 2021, 11, 967.	1.9	132
1958	Ambipolar Behavior of Ge-Intercalated Graphene: Interfacial Dynamics and Possible Applications. Frontiers in Physics, 2021, 9, .	1.0	6
1959	Observation of Yu–Shiba–Rusinov States in Superconducting Graphene. Advanced Materials, 2021, 33, e2008113.	11.1	10
1960	Systematic THz study of the substrate effect in limiting the mobility of graphene. Scientific Reports, 2021, 11, 8729.	1.6	13
1961	Laser-assisted graphene growth directly on silicon. Nanotechnology, 2021, 32, 305601.	1.3	7

#	Article	IF	CITATIONS
1962	Growth of single crystalline Si on graphene using RF-MBE: Orientation control with an AlN interface layer. Applied Surface Science, 2021, 548, 149295.	3.1	3
1963	Magneto-Optical Effects in Various Crystalline Materials, Films, and Meso- and Nanostructures. Crystallography Reports, 2021, 66, 323-348.	0.1	5
1964	Hydrogen-Mediated CVD Epitaxy of Graphene on SiC: Implications for Microelectronic Applications. ACS Applied Nano Materials, 2021, 4, 4462-4473.	2.4	7
1966	Charge carrier modulation in dual-gated graphene field effect transistor using honey as polar organic gate dielectric. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	3
1967	Deposition of graphene–copper composite film by cold spray from particles with graphene grown on copper particles. Diamond and Related Materials, 2021, 116, 108384.	1.8	11
1968	Electric field analysis, polarization, excitation wavelength dependence, and novel applications of tipâ€enhanced Raman scattering. Journal of Raman Spectroscopy, 2021, 52, 1997-2017.	1.2	7
1969	Removing the orientational degeneracy of the TS defect in 4H–SiC by electric fields and strain. New Journal of Physics, 2021, 23, 073002.	1.2	4
1970	The effect of spray cycles on the morphological, structural, and optical properties of rGO thin film deposited using spray pyrolysis technique. Materials Science in Semiconductor Processing, 2021, 127, 105655.	1.9	5
1971	Fabrication of Reduced Graphene Oxide Thin Films on Corona Treated Silicon Substrates. Thin Solid Films, 2021, 728, 138693.	0.8	4
1972	Non-conventional bell-shaped diffuse scattering in low-energy electron diffraction from high-quality epitaxial 2D-materials. Applied Physics Letters, 2021, 118, .	1.5	5
1973	Modification of hydrothermal synthesis using microwave irradiation for ZnO/graphene nanocomposite. Journal of Physics: Conference Series, 2021, 1918, 022019.	0.3	0
1974	Survival of Floquet–Bloch States in the Presence of Scattering. Nano Letters, 2021, 21, 5028-5035.	4.5	41
1975	Controllable Synthesis of Wafer‣cale Graphene Films: Challenges, Status, and Perspectives. Small, 2021, 17, e2008017.	5.2	23
1976	Transfer-free graphene synthesis by nickel catalyst dewetting using rapid thermal annealing. Applied Surface Science, 2021, 555, 149492.	3.1	10
1977	Surface etching during epitaxial h-BN growth on graphene. APL Materials, 2021, 9, 071107.	2.2	1
1978	Study on characterization of Ni/N-rGO catalyst and its hydrogenation performance of phenol. Journal of Fuel Chemistry and Technology, 2021, 49, 1042-1048.	0.9	6
1979	Nanoscale surface morphology modulation of graphene – i-SiC heterostructures. Materials Today: Proceedings, 2022, 53, 289-292.	0.9	2
1980	A Simplified Method for Patterning Graphene on Dielectric Layers. ACS Applied Materials & Interfaces, 2021, 13, 37510-37516.	4.0	0
#	Article	IF	CITATIONS
------	--	-----	-----------
1981	Wafer-scale integration of graphene for waveguide-integrated optoelectronics. Applied Physics Letters, 2021, 119, 050501.	1.5	7
1982	Modified-edge-support heat treatment method of polyimide for crystalline, large-area, and self-standing ultrathin graphite films. Carbon, 2021, 181, 348-357.	5.4	4
1983	Beyond graphene: Clean, hydrogenated and halogenated silicene, germanene, stanene, and plumbene. Progress in Surface Science, 2021, 96, 100615.	3.8	42
1984	Large-area van der Waals epitaxy and magnetic characterization of Fe ₃ GeTe ₂ films on graphene. 2D Materials, 2021, 8, 041001.	2.0	13
1985	Conversion of silicon carbide fibers to continuous graphene fibers by vacuum annealing. Carbon, 2021, 182, 435-444.	5.4	12
1986	Growth, domain structure, and atomic adsorption sites of hBN on the Ni(111) surface. Physical Review Materials, 2021, 5, .	0.9	5
1987	A review of assembly techniques for fabricating twisted bilayer graphene. Journal of Micromechanics and Microengineering, 2021, 31, 114004.	1.5	5
1988	A Review of Graphene: Material Synthesis from Biomass Sources. Waste and Biomass Valorization, 2022, 13, 1385-1429.	1.8	34
1989	Nanomaterials: Applications in Electronics. International Journal of Advanced Engineering and Nano Technology, 2021, 4, 7-19.	0.4	2
1990	Hydrogen etching of the SiC(0001) surface at moderate temperature. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2021, 39, .	0.6	2
1991	Development progress, performance enhancement routes, and applications of paper-based triboelectric nanogenerators. Chemical Engineering Journal, 2022, 430, 132559.	6.6	13
1992	Correlation between the response performance of epitaxial graphene/SiC UV-photodetectors and the number of carriers in graphene. Carbon, 2021, 183, 590-599.	5.4	12
1993	Influence of surface and subsurface Co–Ir alloy on the electronic properties of graphene. Carbon, 2021, 183, 251-258.	5.4	2
1994	Polypyrrole/montmorillonite and polypyrrole/ghassoul intercalates as a source of graphite and multi-layer graphene: Preparation of nanocomposites exhibiting strongly anisotropic electrical conductivity. Materials Research Bulletin, 2021, 142, 111429.	2.7	4
1995	Effect of staged methane flow on morphology and growth rate of graphene monolayer domains by low-pressure chemical vapor deposition. Thin Solid Films, 2021, 736, 138921.	0.8	6
1996	Recent progress in III-nitride nanosheets: properties, materials and applications. Semiconductor Science and Technology, 2021, 36, 123002.	1.0	8
1997	Processing and properties of silicon anode materials. , 2022, , 373-407.		0
1999	Nanostructures: categories, formation procedures, and synthesis. , 2021, , 105-145.		Ο

#	Article	IF	CITATIONS
2000	Synthesis of graphene and other two-dimensional materials. , 2021, , 1-79.		4
2001	Molecular Dynamics Simulation of the Stability Behavior of Graphene in Glycerol/Urea Solvents in Liquid-Phase Exfoliation. Acta Chimica Sinica, 2021, 79, 530.	0.5	1
2002	Electronic band structure of Bi-intercalate layers in graphene and SiC(0001). Journal of the Korean Physical Society, 2021, 78, 157-163.	0.3	2
2003	THE EFFECT OF IRON ON THE SURFACE GRAPHITIZATION OF SILICON CARBIDE. Surface Review and Letters, 2021, 28, 2150009.	0.5	0
2004	Hybrid Nanocomposites Based on Graphene and Its Derivatives: From Preparation to Applications. Composites Science and Technology, 2021, , 261-281.	0.4	9
2007	Synthesis of Multilayer Graphene by Filtered Cathodic Vacuum Arc Technique. Environmental Science and Engineering, 2014, , 651-654.	0.1	1
2008	The Phantom Force. Nanoscience and Technology, 2015, , 71-92.	1.5	2
2009	CNT Applications in Microelectronics, "Nanoelectronics,―and "Nanobioelectronics― , 2018, , 65-72.		1
2010	CNT Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 73-75.		1
2011	Graphene Applications in Electronics, Electrical Conductors, and Related Uses. , 2018, , 141-146.		4
2012	Characterization Methods. , 2018, , 403-488.		2
2013	Microwave- and Conductivity-Based Technologies. , 2018, , 655-669.		3
2014	CNT Applications in Sensors and Actuators. , 2018, , 53-60.		3
2015	The electronic band structure of graphene. , 2018, , 674-682.		1
2016	Electrochemical Exfoliation Synthesis of Graphene. Springer Theses, 2017, , 39-50.	0.0	6
2017	Site specific nitrogen incorporation in reduced graphene oxide using imidazole as a novel reducing agent for efficient oxygen reduction reaction and improved supercapacitive performance. Carbon, 2020, 166, 361-373.	5.4	16
2018	Plasma Enhanced Chemical Vapor Deposition synthesis of graphene-like structures from plasma state of CO2 gas. Carbon, 2020, 167, 132-139.	5.4	14
2019	Conduction mechanisms in epitaxial NiO/Graphene gas sensors. Sensors and Actuators B: Chemical, 2020, 325, 128797.	4.0	14

#	Article		CITATIONS
2020	Electronic Structure of Double-Layer Epitaxial Graphene on SiC(0001) Modified by Gd Intercalation. Journal of Physical Chemistry C, 2020, 124, 28132-28138.	1.5	8
2021	Growth of Millimeter-Size Single Crystal Graphene on Cu Foils by Circumfluence Chemical Vapor Deposition. , 0, .		1
2022	CHAPTER 14. Graphene-Based Biosensors for Food Analysis. Food Chemistry, Function and Analysis, 2016, , 327-353.	0.1	1
2023	Carbon-based Nanomaterials in Analytical Chemistry. RSC Detection Science, 2018, , 1-36.	0.0	10
2024	Transfer-Free Graphene Growth on Dielectric Substrates: A Review of the Growth Mechanism. Critical Reviews in Solid State and Materials Sciences, 2019, 44, 157-209.	6.8	17
2025	Epitaxial graphene growth on FIB patterned 3C-SiC nanostructures on Si (111): reducing milling damage. Nanotechnology, 2017, 28, 345602.	1.3	9
2026	Effect of Ag nanoparticles on wafer-scale quasi-free-standing graphene characterization by surface enhanced Raman spectroscopy. Materials Research Express, 2020, 7, 106412.	0.8	2
2027	Probing the structural transition from buffer layer to quasifreestanding monolayer graphene by Raman spectroscopy. Physical Review B, 2019, 99, .	1.1	13
2028	Measuring the local mobility of graphene on semiconductors. Physical Review Materials, 2018, 2, .	0.9	2
2029	Electronic structure of exfoliated and epitaxial hexagonal boron nitride. Physical Review Materials, 2018, 2, .	0.9	19
2030	Intrinsic stacking domains in graphene on silicon carbide: A pathway for intercalation. Physical Review Materials, 2018, 2, .	0.9	27
2031	Formation of graphene atop a Si adlayer on the C-face of SiC. Physical Review Materials, 2019, 3, .	0.9	3
2032	Epitaxial graphene on 6H–SiC(0001) : Defects in SiC investigated by STEM. Physical Review Materials, 2019, 3, .	0.9	3
2033	Thermal origin of light emission in nonresonant and resonant nanojunctions. Physical Review Research, 2020, 2, .	1.3	9
2034	Nonreciprocal interactions induced by water in confinement. Physical Review Research, 2020, 2, .	1.3	29
2035	Study of the crystal and electronic structure of graphene films grown on 6H-SiC (0001). Semiconductors, 2017, 51, 1072-1080.	0.2	44
2036	Simultaneous Determination of Benzenediols Isomers Using Copper Nanoparticles/Poly (Glycine)/Graphene Oxide Nanosheets Modified Glassy Carbon Electrode. Journal of the Electrochemical Society, 2020, 167, 167504.	1.3	6
2038	Research Progress in Preparation Technology of Graphene. Material Sciences, 2016, 06, 346-360.	0.0	1

#	Article	IF	CITATIONS
2039	Terahertz time-domain spectroscopy of zone-folded acoustic phonons in 4H and 6H silicon carbide. Optics Express, 2019, 27, 3618.	1.7	29
2040	Graphene-on-Silicon Formation by Thermal Conversion of 3C-SiC Thin Films on Si(111), (110), (100) Substrates. Hyomen Kagaku, 2010, 31, 352-358.	0.0	3
2042	Synthesis of graphene: Potential carbon precursors and approaches. Nanotechnology Reviews, 2020, 9, 1284-1314.	2.6	72
2043	The growth of weakly coupled graphene sheets from silicon carbide powder. Semiconductor Physics, Quantum Electronics and Optoelectronics, 2014, 17, 301-307.	0.3	2
2044	Graphene Systems: Methods of Fabrication and Treatment, Structure Formation, and Functional Properties. Progress in Physics of Metals, 2010, 11, 95-138.	0.5	13
2045	Ortogonal dizinler kullanarak kimyasal buhar çöktürme yöntemi ile büyütülen grafenin ana etkiler analizi. Journal of the Faculty of Engineering and Architecture of Gazi University, 2018, 2018, .	0.3	1
2046	Synthesis of Large-Area Few-Layer Graphene by Open-Flame Deposition. Sains Malaysiana, 2017, 46, 1011-1016.	0.3	5
2047	Recent Development of Graphene-Based Materials for Cathode Application in Lithium Batteries: A Review and Outlook. International Journal of Electrochemical Science, 0, , 5961-5971.	0.5	10
2048	Bio-reduction of Graphene Oxide: Catalytic Applications of (Reduced) GO in Organic Synthesis. Current Organic Synthesis, 2020, 17, 164-191.	0.7	9
2049	Research Progress of Graphene Composites. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2013, 28, 235-246.	0.6	23
2050	Carbon-Based Nanomaterials for Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2016, , 154-179.	0.2	6
2051	Novel Synthesis and Characterization of Pt-graphene/TiO2 Composite Designed for High Photonic Effect and Photocatalytic Activity under Visible Light. Journal of the Korean Ceramic Society, 2017, 54, 28-32.	1.1	11
2052	Chemical Doping of Graphene by Altretamine(2,4,6-Tris [dimethylamino]-1,3,5-Triazine). Bulletin of the Korean Chemical Society, 2011, 32, 2199-2202.	1.0	1
2053	Singular Sheet Etching of Graphene with Oxygen Plasma. Nano-Micro Letters, 2014, 6, 116.	14.4	3
2054	Control of size and physical properties of graphene oxide by changing the oxidation temperature. Carbon Letters, 2012, 13, 39-43.	3.3	54
2055	Identifying and quantitating defects on chemical vapor deposition grown graphene layers by selected electrochemical deposition of Au nanoparticles. Carbon Letters, 2012, 13, 56-59.	3.3	3
2056	Comprehensive review on synthesis and adsorption behaviors of graphene-based materials. Carbon Letters, 2012, 13, 73-87.	3.3	39
2057	Graphene: an emerging material for biological tissue engineering. Carbon Letters, 2013, 14, 63-75.	3.3	85

#	Article	IF	CITATIONS
2058	Polymer-Graphene Nanocomposites: Preparation, Characterization, Properties, and Applications. , 0, , .		23
2059	Quasi-equilibrium growth of monolayer epitaxial graphene on SiC (0001). Wuli Xuebao/Acta Physica Sinica, 2014, 63, 038102.	0.2	5
2060	Transmission Electron Microscopy and Raman-Scattering Spectroscopy Observation on the Interface Structure of Graphene Formed on Si Substrates with Various Orientations. Japanese Journal of Applied Physics, 2011, 50, 04DH02.	0.8	11
2061	Observation of Band Gap in Epitaxial Bilayer Graphene Field Effect Transistors. Japanese Journal of Applied Physics, 2011, 50, 04DN04.	0.8	3
2062	4H-SiC(0001) Basal Plane Stability during the Growth of Epitaxial Graphene on Inverted-Mesa Structures. Japanese Journal of Applied Physics, 2011, 50, 070104.	0.8	7
2063	Investigation of Graphene Field Effect Transistors with Al2O3Gate Dielectrics Formed by Metal Oxidation. Japanese Journal of Applied Physics, 2011, 50, 070111.	0.8	2
2064	Room Temperature Logic Inverter on Epitaxial Graphene-on-Silicon Device. Japanese Journal of Applied Physics, 2011, 50, 070113.	0.8	4
2065	Epitaxial Graphene on Si(111) Substrate Grown by Annealing 3C-SiC/Carbonized Silicon. Japanese Journal of Applied Physics, 2012, 51, 01AH05.	0.8	4
2066	Electrical Characterization of Bilayer Graphene Formed by Hydrogen Intercalation of Monolayer Graphene on SiC(0001). Japanese Journal of Applied Physics, 2012, 51, 02BN02.	0.8	29
2067	Epitaxy of Graphene on 3C-SiC(111) Thin Films on Microfabricated Si(111) Substrates. Japanese Journal of Applied Physics, 2012, 51, 06FD02.	0.8	6
2068	Improvement in Film Quality of Epitaxial Graphene on SiC(111)/Si(111) by SiH4Pretreatment. Japanese Journal of Applied Physics, 2012, 51, 06FD10.	0.8	4
2069	Layer-by-Layer Assembled Transparent Conductive Graphene Films for Silicon Thin-Film Solar Cells. Japanese Journal of Applied Physics, 2012, 51, 11PF01.	0.8	8
2070	Synthesis Methods for Carbon-Based Materials. Indian Institute of Metals Series, 2021, , 367-420.	0.2	0
2071	Quasi-freestanding graphene on SiC(0001) via cobalt intercalation of zero-layer graphene. Physical Review B, 2021, 104, .	1.1	8
2072	Improved field-effect mobility in transfer-free graphene films synthesized via the metal agglomeration technique using high-crystallinity Ni catalyst films. Applied Physics Express, 2021, 14, 116503.	1.1	0
2073	One-pot green synthesis of graphene oxide/MnO2/polyaniline nanocomposites applied in aqueous and neutral supercapacitors and sensors. Journal of Electroanalytical Chemistry, 2021, 902, 115776.	1.9	17
2074	High-density and low-roughness anodic oxide formed on SiC in highly concentrated LiCl aqueous solution. Electrochemistry Communications, 2021, 132, 107138.	2.3	3
2075	The roles of graphene and its derivatives in perovskite solar cells: A review. Materials and Design, 2021, 211, 110170.	3.3	29

#	Article	IF	CITATIONS
2076	Toward clean and crackless polymer-assisted transfer of CVD-grown graphene and its recent advances in GFET-based biosensors. Materials Today Chemistry, 2021, 22, 100578.	1.7	9
2077	Interface Structures of Graphene-on-SiC Produced by the SiC Surface Decomposition Method. Nihon Kessho Gakkaishi, 2009, 51, 313-319.	0.0	2
2080	Analysis of Number of Layers in Epitaxial Few-Layer Graphene Grown on SiC towards Single-Crystal Graphene Substrate. Journal of the Vacuum Society of Japan, 2010, 53, 101-108.	0.3	0
2081	SiC: crystal structures, phase transitions. Landolt-Bâ^šâ^,rnstein - Group III Condensed Matter, 2011, , 301-302.	0.0	0
2082	4H-SiC(0001) Basal Plane Stability during the Growth of Epitaxial Graphene on Inverted-Mesa Structures. Japanese Journal of Applied Physics, 2011, 50, 070104.	0.8	1
2084	Interface Electronic Differences Between Epitaxial Graphene Systems Grown on the Si and the C Face of SiC. Carbon Nanostructures, 2012, , 51-56.	0.1	Ο
2085	High-k gate oxides integration of graphene based infrared detector. Hongwai Yu Haomibo Xuebao/Journal of Infrared and Millimeter Waves, 2012, 31, 118-121.	0.2	1
2086	The Use of Graphene for Regenerative Medicine. KSBB Journal, 2012, 27, 273-280.	0.1	0
2087	Process in preparation of metal-catalyzed graphene. Wuli Xuebao/Acta Physica Sinica, 2013, 62, 028201.	0.2	6
2088	Comparison Characteristic of Large Area Graphene Films Grown by Chemical Vapor Deposition with Nano-Graphite Structures. International Journal of Materials Mechanics and Manufacturing, 2013, , 324-327.	0.2	0
2089	Effect of Growth Morphology on the Electronic Structure of Epitaxial Graphene on SiC. Graphene, 2013, 02, 55-59.	0.3	2
2090	Graphene based Transparent Conductive Film : Status and Perspective. Journal of the Korean Ceramic Society, 2013, 50, 309-318.	1.1	Ο
2091	Graphene. , 2013, , 1-30.		0
2092	Graphene Synthesis. , 2013, , 1-28.		0
2093	Morphology and Friction Characterization of CVD Grown Graphene on Polycrystalline Nickel. Lecture Notes in Mechanical Engineering, 2014, , 195-204.	0.3	0
2094	Graphene—Two-Dimensional Crystal. Nanoscience and Technology, 2014, , 3-27.	1.5	Ο
2095	Epitaxial growth of graphene on silicon carbide (SiC). , 2014, , 177-198.		6
2096	Atomic-scale Observations of Semiconductor Surfaces after Ultra-Precision Machining. Journal of the Japan Society for Precision Engineering, 2014, 80, 452-456.	0.0	0

#	Article	IF	CITATIONS
2097	Carbon at the Nanoscale. , 2014, , 1-35.		2
2098	Nanotechnology in Electronics. , 2014, , 17-36.		2
2099	Large-Scale Assembly of Aligned Graphene Nanoribbons with Sub 30-nm Width. Journal of the Korean Chemical Society, 2014, 58, 524-527.	0.2	0
2100	Device Architecture and Biosensing Applications for Attractive One- and Two-Dimensional Nanostructures. , 2015, , 41-70.		1
2101	Synthesis, Modification and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids. , 2015, , 1-35.		0
2105	Synthesis, Modification, and Characterization of Nanocarbon Electrodes for Determination of Nucleic Acids. , 2016, , 241-281.		0
2106	High crystallinity graphene synthesis from graphene oxide. Tanso, 2016, 2016, 171-181.	0.1	0
2108	Graphitization of SiC (0001) Surface in the Si Flux. , 0, , .		0
2109	9 Preparation and Processing of Graphene and SWCNTs. , 2016, , 151-172.		0
2110	Tunneling Transport Between Transition Metal Dichalcogenides. Springer Theses, 2017, , 49-64.	0.0	0
2111	Heterogeneous Integration on Graphene Substrate. Journal of Japan Institute of Electronics Packaging, 2017, 20, 382-386.	0.0	0
2112	Research progress of direct synthesis of graphene on dielectric layer. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 216804.	0.2	1
2113	Introduction of Scanning Nonlinear Dielectric Microscopy and Its Applications to the Evaluation of Electronic Materials and Devices. Journal of the Institute of Electrical Engineers of Japan, 2017, 137, 697-700.	0.0	0
2114	Defect Characterization and Metrology. , 2017, , 631-678.		0
2115	Chapter 6: Epitaxial Graphene on SiC: 2D Sheets, Selective Growth, and Nanoribbons. , 2017, , 181-204.		0
2118	Review of fabrication methods, physical properties, and applications of twisted bilayer graphene. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 246802.	0.2	3
2119	Basic Electrochemistry of CPs. , 2018, , 283-309.		0
9190	Structure and hand structure of enitavial graphene on hexagonal silicon carbide 2018 689-715		0

#	Article	IF	CITATIONS
2121	Miscellaneous CNT Applications. , 2018, , 89-90.		0
2122	CNT Applications in Specialized Materials. , 2018, , 45-48.		0
2123	Structural Aspects and Morphology of CPs. , 2018, , 389-402.		0
2124	Electronic Structure and Conduction Models of Graphene. , 2018, , 101-106.		0
2125	Electrochromics. , 2018, , 601-624.		1
2126	Classes of CPs: Part 1. , 2018, , 489-507.		0
2127	Electro-Optic and Optical Devices. , 2018, , 671-684.		2
2128	Conduction Models and Electronic Structure of CNTs. , 2018, , 11-16.		0
2129	Miscellaneous Applications. , 2018, , 695-715.		0
2130	CNT Applications in the Environment and in Materials Used in Separation Science. , 2018, , 81-87.		0
2131	Graphene Applications in Displays and Transparent, Conductive Films/Substrates. , 2018, , 147-148.		0
2132	Classes of CPs: Part 2. , 2018, , 509-545.		0
2133	Introducing Conducting Polymers (CPs). , 2018, , 159-174.		0
2134	Syntheses and Processing of CPs. , 2018, , 311-388.		0
2135	Tuning Electronic Transport in WSe2-Graphene. Springer Theses, 2018, , 103-112.	0.0	0
2136	Physical, Mechanical, and Thermal Properties of CNTs. , 2018, , 33-36.		0
2137	CNT Applications in Electrical Conductors, "Quantum Nanowires,―and Potential Superconductors. , 2018, , 77-79.		1
2138	Toxicology of CNTs. , 2018, , 37-39.		0

#	Article	IF	CITATIONS
2139	Synthesis, Purification, and Chemical Modification of CNTs. , 2018, , 17-31.		0
2140	Introducing Graphene. , 2018, , 93-99.		0
2141	Graphene Preparation Methods Traceability, Research Progress and Development Status. Material Sciences, 2018, 08, 202-221.	0.0	0
2142	Coverage measurement of graphene film on metallic substrate using scanning electron microscopy. Wuli Xuebao/Acta Physica Sinica, 2018, 67, 076802.	0.2	0
2144	Conduction Models and Electronic Structure of CPs. , 2018, , 175-249.		1
2145	Brief, General Overview of Applications. , 2018, , 123-124.		0
2146	Electrochemomechanical, Chemomechanical, and Related Devices. , 2018, , 685-693.		0
2147	Displays, Including Light-Emitting Diodes (LEDs) and Conductive Films. , 2018, , 625-654.		0
2148	Effect of Graphene Nanosheets Reinforcement on the Mechanical Properties of Rubber Seed Oil Based Polyurethane Nanocomposites. Minerals, Metals and Materials Series, 2019, , 139-153.	0.3	0
2149	Structural and Physical Properties of Epitaxial Graphene. Nihon Kessho Gakkaishi, 2019, 61, 35-42.	0.0	0
2150	Synthesis and characterization of Graphene produced from Iraqi date syrup. Association of Arab Universities Journal of Engineering Sciences, 2019, 26, 49-54.	0.2	0
2151	Graphene Synthesis by Chemical Vapour Deposition (CVD): A Review on Growth Mechanism and Techniques. International Journal of Engineering Research & Technology, 2019, V8, .	0.2	2
2152	Graphene Growth and Characterization: Advances, Present Challenges and Prospects. Journal of Materials Science Research, 2020, 8, 37.	0.1	4
2154	Structure—Property Co-relation of Graphene/Graphene Derivative Based TPE. Engineering Materials, 2020, , 127-181.	0.3	0
2156	Effect of Growth Pressure on Graphene Direct Growth on an A-Plane Sapphire Substrate: Implications for Graphene-Based Electronic Devices. ACS Applied Nano Materials, 2021, 4, 343-351.	2.4	7
2157	Raman Studies of Graphene Films Grown on 4H-SiC Subjected to Deposition of Ni. Semiconductors, 2020, 54, 1674-1677.	0.2	0
2158	Intercalation of graphene formed on silicon carbide with iron, cobalt and silicon atoms. Journal of Physics: Conference Series, 2020, 1697, 012105.	0.3	0
2159	Graphene p-n junction formed on SiC(0001) by Au intercalation. Journal of the Korean Physical Society, 2021, 78, 40-44.	0.3	3

#	Article	IF	CITATIONS
2161	Graphene. Springer Handbooks, 2020, , 1171-1198.	0.3	2
2162	Nanotechnology for Water and Wastewater Treatment Using Graphene Semiconductor Composite Materials. Environmental Chemistry for A Sustainable World, 2020, , 1-34.	0.3	3
2165	Electrical and Electronics Metrology: From Quantum Standard to Applications in Industry and Strategic Sectors. , 2020, , 457-521.		0
2166	Advances in Carbon-Based Nanocomposites for Deep Adsorptive Desulfurization. Advances in Chemical and Materials Engineering Book Series, 2020, , 63-91.	0.2	0
2167	Two-dimensional wide band-gap nitride semiconductor GaN and AlN materials: properties, fabrication and applications. Journal of Materials Chemistry C, 2021, 9, 17201-17232.	2.7	40
2168	Synthesis of Graphene and fabrication of Aluminium-Grp nanocomposites: A review. Materials Today: Proceedings, 2022, 50, 2436-2442.	0.9	2
2169	Molten Ga-Pd alloy catalyzed interfacial growth of graphene on dielectric substrates. Applied Surface Science, 2022, 576, 151806.	3.1	2
2170	Recent Progress in the Transfer of Graphene Films and Nanostructures. Small Methods, 2021, 5, e2100771.	4.6	17
2171	Recentadvances in the propertiesand synthesis of bilayer graphene and transition metal dichalcogenides. JPhys Materials, 2020, 3, 042003.	1.8	11
2172	Direct nitridation of 4H-SiC(0001) surface by H2/N2 treatment. Applied Physics Express, 2020, 13, 095506.	1.1	1
2173	Epitaxial synthesis of graphene on 4H-SiC by microwave plasma chemical vapor deposition. Materials Research Express, 2020, 7, 116410.	0.8	3
2174	The application of graphene-based biomaterials in biomedicine. American Journal of Translational Research (discontinued), 2019, 11, 3246-3260.	0.0	17
2175	Liquid-phase catalytic growth of graphene. Journal of Materials Chemistry C, 2022, 10, 571-578.	2.7	2
2176	Graphene: Structure, properties, preparation, modification, and applications. , 2022, , 1-24.		0
2177	Chemical vapor deposition synthesis of high-quality Ni3C/GNPs composite material: Effect of growth time on the yield, morphology and adsorption behavior of metal ions. Chemical Papers, 2022, 76, 1579-1592.	1.0	0
2178	Graphene Synthesis and Its Recent Advances in Applications—A Review. Journal of Carbon Research, 2021, 7, 76.	1.4	17
2179	Substrate-Driven Atomic Layer Deposition of High-κ Dielectrics on 2D Materials. Applied Sciences (Switzerland), 2021, 11, 11052.	1.3	11
2180	Increasing the Rate of Magnesium Intercalation Underneath Epitaxial Graphene on 6Hâ€SiC(0001). Advanced Materials Interfaces, 2021, 8, 2101598.	1.9	6

#	Article	IF	CITATIONS
2181	Epitaxial Growth of Uniform Single-Layer and Bilayer Graphene with Assistance of Nitrogen Plasma. Nanomaterials, 2021, 11, 3217.	1.9	5
2182	Recent advances of the graphite exfoliation processes and structural modification of graphene: a review. Journal of Nanoparticle Research, 2021, 23, 1.	0.8	17
2183	Direct growth of wafer-scale highly oriented graphene on sapphire. Science Advances, 2021, 7, eabk0115.	4.7	43
2184	Recent Advances and Challenges of Nanomaterials-Based Hydrogen Sensors. Micromachines, 2021, 12, 1429.	1.4	11
2185	Intrinsic color centers in 4H-silicon carbide formed by heavy ion implantation and annealing. Journal Physics D: Applied Physics, 2022, 55, 105303.	1.3	3
2186	Growth of 2D Materials at the Wafer Scale. Advanced Materials, 2022, 34, e2108258.	11.1	43
2188	Atomic-Scale Probing of Defect-Assisted Ga Intercalation Through Graphene Using ReaxFF Molecular Dynamics Simulations. SSRN Electronic Journal, 0, , .	0.4	0
2189	Periodic Nanoarray of Graphene pnâ€Junctions on Silicon Carbide Obtained by Hydrogen Intercalation. Advanced Functional Materials, 2022, 32, .	7.8	10
2190	Advances on graphene-based gas sensors for acetone detection based on its physical and chemical attributes. Journal of Materials Research, 2022, 37, 405-423.	1.2	7
2191	A comprehensive review: Super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 2022, 31, 100326.	2.8	33
2192	Photoexfoliation Synthesis of 2D Materials. , 2022, 4, 263-270.		16
2193	Scanning probe analysis of twisted graphene grown on a graphene/silicon carbide template. Nanotechnology, 2022, 33, 155603.	1.3	4
2194	Graphene as a Piezoresistive Material in Strain Sensing Applications. Micromachines, 2022, 13, 119.	1.4	22
2195	Large-Area and Crack-free Helium-Sieving Graphene Membranes. ACS Applied Nano Materials, 0, , .	2.4	2
2196	Atomic-scale probing of defect-assisted Ga intercalation through graphene using ReaxFF molecular dynamics simulations. Carbon, 2022, 190, 276-290.	5.4	9
2197	808-nm-light-excited high sensitivity ratiometric NIR nanothermometer via phonon assisted positive and negative thermal quenching effect. Optics Communications, 2022, 510, 127935.	1.0	1
2198	A green and efficient method for preparing graphene using CO2@Mg in-situ reaction and its application in high-performance lithium-ion batteries. Journal of Alloys and Compounds, 2022, 902, 163700.	2.8	10
2199	Nanostructured Graphene Thin Films: A Brief Review of Their Fabrication Techniques and Corrosion Protective Performance. Minerals, Metals and Materials Series, 2022, , 366-377.	0.3	20

ARTICLE IF CITATIONS # 2D Heterostructures for Ubiquitous Electronics and Optoelectronics: Principles, Opportunities, and 2200 23.0 187 Challenges. Chemical Reviews, 2022, 122, 6514-6613. Graphene-based materials: analysis through calorimetric techniques. Journal of Thermal Analysis and 2201 Calorimetry, 0, , 1. Temperature-Dependent Bending Rigidity of AB -Stacked Bilayer Graphene. Physical Review Letters, 2021, 2202 2.9 3 127, 266102. Realization of electronic grade graphene and h-BN., 2022, , 119-157. Principles and Biomedical Application of Graphene Family Nanomaterials. Advances in Experimental 2204 0.8 0 Medicine and Biology, 2022, 1351, 3-22. High-Efficiency Preparation of Reduced Graphene Oxide by a Two-Step Reduction Method and Its Synergistic Enhancement of Thermally Conductive and Anticorrosive Performance for Epoxy 1.8 Coatings. Industrial & amp; Engineering Chemistry Research, 2022, 61, 3044-3054. Graphene and g-C3N4-Based Gas Sensors. Journal of Nanotechnology, 2022, 2022, 1-20. 2206 1.511 Effective Work Functions of the Elements. Progress in Surface Science, 2022, 97, 100583. 2207 3.8 38 New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self Propagating High-Temperature 2208 1.9 4 Synthesis Method from Biopolymers. Nanomaterials, 2022, 12, 657. Ultrafast Growth of Highly Conductive Graphene Films by a Single Subsecond Pulse of Microwave. 2209 7.3 ACS Nano, 2022, 16, 6676-6686. Polymer Composites with Graphene and Its Derivatives as Functional Materials of the Future. Polymer 2210 4 0.8 Science - Series C, 2022, 64, 40-61. Grapheneâ€Based Microwave Circuits: A Review. Advanced Materials, 2022, 34, e2108473. 11.1 Highly Asymmetric Graphene Layer Doping and Band Structure Manipulation in Rare Earth–Graphene 2212 Heterostructure by Targeted Bonding of the Intercalated Gadolinium. Journal of Physical Chemistry C, 1.5 10 2022, 126, 6863-6873. A point-like thermal light source as a probe for sensing light-matter interaction. Scientific Reports, 2214 1.6 2022, 12, 4881. Progress and perspectives on two-dimensional silicon anodes for lithium-ion batteries. 2215 1.4 5 ChemPhysMater, 2023, 2, 1-19. A general strategy for polishing SiC wafers to atomic smoothness with arbitrary facets. Materials 1.9 Science in Semiconductor Processing, 2022, 144, 106628. Experimental evidence of a mixed amorphous-crystalline graphene/SiC interface due to 2217 1.50 oxygen-intercalation. Surfaces and Interfaces, 2022, 30, 101906. Graphene quantum dots: Synthesis, optical properties and navigational applications against cancer. Materials Today Communications, 2022, 31, 103359.

		CITATION REPORT		
#	Article		lF	CITATIONS
2219	Surface Transport Properties of Pb-Intercalated Graphene. Materials, 2021, 14, 7706.		1.3	11
2220	Microscopic Understanding of Ultrafast Charge Transfer in van der Waals Heterostruc Physical Review Letters, 2021, 127, 276401.	tures.	2.9	13
2221	Electrochemical Sensor for Methamphetamine Detection Using Laser-Induced Porous Electrode. Nanomaterials, 2022, 12, 73.	Sraphene	1.9	17
2224	Novel Graphene Allocating Carbon–Copper Ratio Method for the Rail Vehicle Propula Ground Carbon Brush. IEEE Access, 2022, 10, 52890-52898.	sion System	2.6	2
2225	Light-field control of real and virtual charge carriers. Nature, 2022, 605, 251-255.		13.7	57
2226	Nanopatterning Technologies of 2D Materials for Integrated Electronic and Optoelect Advanced Materials, 2022, 34, e2200734.	ronic Devices.	11.1	25
2228	Remote epitaxy. Nature Reviews Methods Primers, 2022, 2, .		11.8	47
2229	Light-field-driven electronics in the mid-infrared regime: Schottky rectification. Science 2022, 8, .	Advances,	4.7	6
2230	Laserâ€Based Growth and Treatment of Graphene for Advanced Photo―and Electroâ Applications. Advanced Functional Materials, 2022, 32, .	€Related Device	7.8	16
2231	An overview on atmospheric carbonaceous particulate matter into carbon nanomateri approach for air pollution mitigation. Chemosphere, 2022, 303, 135027.	als: A new	4.2	10
2233	Enclosed Cells for Extending Soft X-ray Spectroscopies to Atmospheric Pressures and A Symposium Series, 0, , 175-218.	Above. ACS	0.5	2
2234	3D printing of graphene-based composites and their applications in medicine and heal 463-485.	th care. , 2022, ,		3
2235	Exploring Interfaces Through Synchrotron Radiation Characterization Techniques: A G Advanced Functional Materials, 2022, 32, .	aphene Case.	7.8	3
2236	Advances in Flexible Optoelectronics Based on Chemical Vapor Depositionâ€Grown Gr Functional Materials, 2022, 32, .	aphene. Advanced	7.8	19
2237	A review on graphene and its derivatives as the forerunner of the two-dimensional mat the future. Journal of Materials Science, 2022, 57, 12236-12278.	erial family for	1.7	22
2238	Band gap formation of 2D materialin graphene: Future prospect and challenges. Resul Engineering, 2022, 15, 100474.	ts in	2.2	20
2239	Surface charge-transfer doping a quantum-confined silver monolayer beneath epitaxia Physical Review B, 2022, 105, .	graphene.	1.1	6
2240	New Approaches to Produce Largeâ€Area Single Crystal Thin Films. Advanced Material	s, 2023, 35, .	11.1	14

#	Article	IF	CITATIONS
2241	Hydrogen etching of 4H–SiC(0001) facet and step formation. Materials Science in Semiconductor Processing, 2022, 149, 106896.	1.9	2
2242	Recent advances in SiC biomedical devices. , 2022, , 1-48.		2
2243	Sige-Intercalated Graphene on Sic(0001): Interfacial Structures and Graphene Doping Depending on Coverage and Composition Ratio of the Alloy. SSRN Electronic Journal, 0, , .	0.4	0
2244	Graphene on SiC. , 2022, , 65-97.		2
2245	Momentum microscopy of Pb-intercalated graphene on SiC: Charge neutrality and electronic structure of interfacial Pb. Physical Review Research, 2022, 4, .	1.3	10
2246	Microscopic mechanism of hydrogen intercalation: On the conversion of the buffer layer on SiC to graphene. Physical Review B, 2022, 105, .	1.1	6
2247	Destructive Processing of Silicon Carbide Grains: Experimental Insights into the Formation of Interstellar Fullerenes and Carbon Nanotubes. Journal of Physical Chemistry A, 2022, 126, 5761-5767.	1.1	4
2248	Glass encapsulation of molecular-doped epitaxial graphene for quantum resistance metrology. Measurement Science and Technology, 2022, 33, 115019.	1.4	1
2249	Effect of Germanium Surface Orientation on Graphene Chemical Vapor Deposition and Graphene-Induced Germanium Nanofaceting. Chemistry of Materials, 2022, 34, 6769-6778.	3.2	4
2251	A review on the alternative of indium tin oxide coated glass substrate in flexible and bendable organic optoelectronic device. Polymers for Advanced Technologies, 2022, 33, 3078-3111.	1.6	14
2252	Amide salt pyrolysis fabrication of graphene nanosheets with multi-excitation single color emission. Journal of Colloid and Interface Science, 2022, 627, 671-680.	5.0	8
2253	Esaki Diode Behavior in Highly Uniform MoS ₂ /Silicon Carbide Heterojunctions. Advanced Materials Interfaces, 2022, 9, .	1.9	14
2255	Beyond CMOS. , 2021, , .		2
2256	Ï€ Band Folding and Interlayer Band Filling of Graphene upon Interface Potassium Intercalation. Advanced Materials Interfaces, 2022, 9, .	1.9	1
2257	A note on using expanded graphite for achieving energy―and timeâ€efficient production of graphene nanoplatelets via liquid phase exfoliation. Canadian Journal of Chemical Engineering, 0, , .	0.9	1
2258	Carbon-Related Materials: Graphene and Carbon Nanotubes in Semiconductor Applications and Design. Micromachines, 2022, 13, 1257.	1.4	40
2259	Electrochemical Deposition of ZnO Nanowires on CVD-Graphene/Copper Substrates. Nanomaterials, 2022, 12, 2858.	1.9	8
2260	A review of top-down and bottom-up synthesis methods for the production of graphene, graphene oxide. Journal of Materials Science, 2022, 57, 14543-14578.	1.7	35

#	Article	IF	Citations
2261	Short duration growth of high-quality multi-layered graphene by temperature-controlled rapid heating chemical vapor deposition. Japanese Journal of Applied Physics, 0, , .	0.8	0
2262	Evidence for temporary and local transition of sp ² graphite-type to sp ³ diamond-type bonding induced by the tip of an atomic force microscope. New Journal of Physics, 2022, 24, 083018.	1.2	2
2263	Recent Advances in Laserâ€Induced Graphene: Mechanism, Fabrication, Properties, and Applications in Flexible Electronics. Advanced Functional Materials, 2022, 32, .	7.8	72
2264	Proximity-Induced Gap Opening by Twisted Plumbene in Epitaxial Graphene. Physical Review Letters, 2022, 129, .	2.9	12
2265	Sn intercalation into the BL/SiC(0001) interface: A detailed SPA-LEED investigation. Surfaces and Interfaces, 2022, 34, 102304.	1.5	10
2266	The quest for negative electrode materials for Supercapacitors: 2D materials as a promising family. Chemical Engineering Journal, 2023, 452, 139455.	6.6	34
2267	Graphene: A Path-Breaking Discovery for Energy Storage and Sustainability. Materials, 2022, 15, 6241.	1.3	10
2268	Atomistic insight into the initial stage of graphene formation on SiC(0001) surfaces. Physical Review Materials, 2022, 6, .	0.9	1
2269	Graphene Film Growth on Silicon Carbide by Hot Filament Chemical Vapor Deposition. Nanomaterials, 2022, 12, 3033.	1.9	3
2270	Two-dimensional material templates for van der Waals epitaxy, remote epitaxy, and intercalation growth. Applied Physics Reviews, 2022, 9, .	5.5	9
2271	Effects of Er atoms on graphitization process and structural defects for epitaxial graphene. Journal of Applied Physics, 2022, 132, .	1.1	4
2272	Recent major advances and challenges in the emerging graphene-based nanomaterials in electrocatalytic fuel cell technology. Journal of Materials Chemistry C, 2022, 10, 17812-17873.	2.7	3
2273	Recent Advances in Modeling and Experimental Prediction of Properties of Graphene Reinforced Natural Rubber Composites: A Review (Part 1). Nanoscience and Technology, 2022, , .	0.6	0
2274	Tailoring Permanent Charge Carrier Densities in Epitaxial Graphene on SiC by Functionalization with F4â€TCNQ. , 2022, 1, .		2
2275	Graphene Properties, Synthesis and Applications: A Review. Jom, 2023, 75, 614-630.	0.9	48
2276	Vertical structure of Sb-intercalated quasifreestanding graphene on SiC(0001). Physical Review B, 2022, 106, .	1.1	3
2277	Application of Grazing-Incidence X-ray Methods to Study Terrace-Stepped SiC Surface for Graphene Growth. Materials, 2022, 15, 7669.	1.3	0
2278	Two-dimensional carbon-based heterostructures as bifunctional electrocatalysts for water splitting and metal–air batteries. Nano Materials Science, 2022, , .	3.9	12

#	Article	IF	CITATIONS
2279	Impact of Polymer-Assisted Epitaxial Graphene Growth on Various Types of SiC Substrates. ACS Applied Electronic Materials, 2022, 4, 5317-5325.	2.0	7
2280	Emerging 2D Metal Oxides: From Synthesis to Device Integration. Advanced Materials, 2023, 35, .	11.1	18
2281	Promising Supercapacitive and Photocatalytic Performances of TiO ₂ Nanotubes Loaded with Graphene: Insight on the Quantitative Chatacterisation by EIS. Journal of the Electrochemical Society, 2022, 169, 113503.	1.3	1
2282	Mesoporous graphene-based hybrid nanostructures for capacitive energy storage and photocatalytic applications. Fullerenes Nanotubes and Carbon Nanostructures, 2023, 31, 266-276.	1.0	2
2283	SiGe-intercalated graphene on SiC(0001): Interfacial structures and graphene doping depending on coverage and composition ratio of the alloy. Applied Surface Science, 2023, 611, 155658.	3.1	2
2284	Preparation, properties and applications of two-dimensional superlattices. Materials Horizons, 2023, 10, 722-744.	6.4	4
2285	Influence of surface morphology and processing parameters on polishing of silicon carbide ceramics using femtosecond laser pulses. Surfaces and Interfaces, 2023, 36, 102528.	1.5	2
2286	Graphene Intercalation with Iron and Cobalt: a Brief Review. Reviews on Advanced Materials and Technologies, 2022, 4, 43-50.	0.1	0
2287	Insights into the Electrical Characterization of Graphene-like Materials from Carbon Black. Coatings, 2022, 12, 1788.	1.2	0
2288	An epitaxial graphene platform for zero-energy edge state nanoelectronics. Nature Communications, 2022, 13, .	5.8	5
2289	High quality epitaxial graphene on 4H-SiC by face-to-face growth in ultra-high vacuum. Nanotechnology, 2023, 34, 105601.	1.3	3
2290	Relaxing Graphene Plasmon Excitation Constraints Through the Use of an Epsilon-Near-Zero Substrate. Plasmonics, 0, , .	1.8	0
2291	Formation of β-SiC on por-Si/mono-Si surface according to stranski - krastanow mechanism. Himia, Fizika Ta Tehnologia Poverhni, 2022, 13, 447-454.	0.2	1
2292	Selfâ€Aided Batch Growth of 12â€Inch Transferâ€Free Graphene Under Free Molecular Flow. Advanced Functional Materials, 2023, 33, .	7.8	5
2293	Zero to Three Dimension Structure Evolution from Carbon Allotropes to Phosphorus Allotropes. Advanced Materials Interfaces, 2023, 10, .	1.9	7
2294	Recent Advances in Mechanically Transferable IIIâ€Nitride Based on 2D Buffer Strategy. Advanced Functional Materials, 2023, 33, .	7.8	3
2295	Reversing silicon carbide into 1D silicon nanowires and graphene-like structures using a dynamic magnetic flux template. Materials Horizons, 2023, 10, 1354-1362.	6.4	3
2296	Gain enhancement of a novel 1 × 2 microstrip patch antenna array based on cylindrical and cuboid photonic crystal substrate in THz. Analog Integrated Circuits and Signal Processing, 2023, 114, 159-170.	0.9	2

#	Article	IF	CITATIONS
2297	Production of graphitic carbons from plant-based SiC/C nanocomposites for Li-ion batteries. Materials Chemistry and Physics, 2023, 296, 127286.	2.0	3
2298	High-performance hybrid graphene-perovskite photodetector based on organic nano carbon source-induced graphene interdigital electrode film on quartz substrate. Carbon, 2023, 204, 547-554.	5.4	4
2299	Toward a Mechanistic Understanding of the Formation of 2D-GaN _{<i>x</i>} in Epitaxial Graphene. ACS Nano, 2023, 17, 230-239.	7.3	5
2300	Scalable synthesis of 2D materials. , 2023, , 1-54.		0
2301	Graphene: Preparation, tailoring, and modification. Exploration, 2023, 3, .	5.4	19
2302	Morphological features and nanostructures generated during SiC graphitization process. Chinese Physics B, O, , .	0.7	0
2303	Graphene Nanocomposite Membranes: Fabrication and Water Treatment Applications. Membranes, 2023, 13, 145.	1.4	10
2304	Exploring 2D materials at surfaces through synchrotron-based core-level photoelectron spectroscopy. Surface Science Reports, 2023, 78, 100586.	3.8	1
2305	A review: Impact of surface treatment of nanofillers for improvement in thermo mechanical properties of the epoxy based nanocomposites. Materials Today: Proceedings, 2023, 78, 164-172.	0.9	9
2306	Enhanced Electrical Conductivity and Tensile Strength of Cu/Single-Layer Graphene/Cu Nanomaterials. ACS Applied Nano Materials, 2023, 6, 2697-2707.	2.4	0
2307	Rapid direct growth of graphene on single-crystalline diamond using nickel as catalyst. Thin Solid Films, 2023, 770, 139766.	0.8	3
2308	Core-level photoelectron spectroscopy study on the buffer-layer formed in approximately atmospheric pressure argon on n-type and semi-insulating SiC(0001). Surface Science, 2023, 733, 122292.	0.8	0
2309	Influence of H2 treatment on the surface morphology of SiC with different wafer orientation and doping. Journal of Crystal Growth, 2023, 607, 127105.	0.7	5
2310	Optical film-thinning of graphene epitaxially grown on 4H-SiC(0001): robustness of monolayer-graphene against the photoexcitation. Journal of Physics Condensed Matter, 2023, 35, 195401.	0.7	0
2311	Current Research Trends of Graphene Nanotechnology. , 2023, , 106-123.		0
2312	Using combustion synthesis to convert emissions into useful solid materials. , 2023, , 599-630.		0
2313	Synthesis and Fabrication of Advanced Carbon Nanostructures. Materials Horizons, 2023, , 3-19.	0.3	0
2314	Insights into the Conductive Network of Electrochemical Exfoliation with Graphite Powder as Starting Raw Material for Graphene Production. Langmuir, 2023, 39, 4413-4426.	1.6	3

#	Article	IF	CITATIONS
2315	Stacking domain morphology in epitaxial graphene on silicon carbide. Physical Review Materials, 2023, 7, .	0.9	3
2316	Water absorption behavior of functionalized graphene reinforced PVA based composite crosslinked using citric acid. Materials Today: Proceedings, 2023, , .	0.9	0
2317	Role of temperature and Ar flow on the uniformity of epitaxial graphene grown on SiC. Bulletin of Materials Science, 2023, 46, .	0.8	1
2318	Formation of intermittent covalent bonds at high contact pressure limits superlow friction on epitaxial graphene. Physical Review Research, 2023, 5, .	1.3	2
2319	A review on recent advances in fabricating freestanding single-crystalline complex-oxide membranes and its applications. Physica Scripta, 2023, 98, 052002.	1.2	7
2320	Dielectric function of epitaxial quasi-freestanding monolayer graphene on Si-face 6H-SiC in a broad spectral range. Physical Review Materials, 2023, 7, .	0.9	3
2321	Microbial reduction of graphene oxide and its application in microbial fuel cells and biophotovoltaics. Frontiers of Materials Science, 2023, 17, .	1.1	1
2326	Green synthesis of graphene and its derivatives. , 2023, , 305-318.		0
2327	Challenges of synthesizing graphene-like and graphitic structures from biomass-based lignocellulosic wastes and its applications. , 2023, , 173-212.		0
2345	Engineered Two-Dimensional Materials-Based Smart Biosensors for Point-of-Care Diagnosis. , 2023, , 499-517.		0
2348	Small twist, big miracle—recent progress in the fabrication of twisted 2D materials. Journal of Materials Chemistry C, 0, , .	2.7	0
2349	Transfer-free chemical vapor deposition graphene for nitride epitaxy: challenges, current status and future outlook. Science China Chemistry, 2024, 67, 824-840.	4.2	0
2351	Graphene-based Nanocomposites for Sensing. , 2023, , 47-79.		0
2363	Graphene and Graphene-Based Nanocomposites: From Synthesis to Applications. Indian Institute of Metals Series, 2024, , 517-543.	0.2	0