Alefacept promotes co-stimulation blockade based allog primates

Nature Medicine 15, 746-749 DOI: 10.1038/nm.1993

Citation Report

#	Article	IF	CITATIONS
1	Memory T-cell-specific therapeutics in organ transplantation. Current Opinion in Organ Transplantation, 2009, 14, 643-649.	0.8	66
2	Immunosuppressants: what's new?. Current Opinion in Organ Transplantation, 2010, 15, 594-600.	0.8	10
3	Overcoming the memory barrier in tolerance induction: molecular mimicry and functional heterogeneity among pathogen-specific T-cell populations. Current Opinion in Organ Transplantation, 2010, 15, 405-410.	0.8	43
4	GVHD after haploidentical transplantation: a novel, MHC-defined rhesus macaque model identifies CD28â [°] CD8+ T cells as a reservoir of breakthrough T-cell proliferation during costimulation blockade and sirolimus-based immunosuppression. Blood, 2010, 116, 5403-5418.	0.6	67
6	Recent Progress and New Perspectives in Studying T Cell Responses to Allografts. American Journal of Transplantation, 2010, 10, 1117-1125.	2.6	33
7	New developments in immunosuppression. Liver Transplantation, 2010, 16, S77-S81.	1.3	3
8	Suppression of human antiâ€porcine natural killer cell xenogeneic responses by combinations of monoclonal antibodies specific to CD2 and NKG2D and extracellular signalâ€regulated kinase kinase inhibitor. Immunology, 2010, 130, 545-555.	2.0	14
9	The Immune Tolerance Network at 10 years: tolerance research at the bedside. Nature Reviews Immunology, 2010, 10, 797-803.	10.6	55
10	LFA-1–specific therapy prolongs allograft survival in rhesus macaques. Journal of Clinical Investigation, 2010, 120, 4520-4531.	3.9	106
11	Alternatives to calcineurin inhibition in renal transplantation: belatacept, the first co-stimulation blocker. Immunotherapy, 2010, 2, 625-636.	1.0	24
12	Advances in immunosuppression for renal transplantation. Nature Reviews Nephrology, 2010, 6, 160-167.	4.1	44
13	Transplantation tolerance through mixed chimerism. Nature Reviews Nephrology, 2010, 6, 594-605.	4.1	87
14	Antibody immunosuppressive therapy in solid organ transplant. MAbs, 2010, 2, 607-612.	2.6	29
15	Co-Stimulation Blockade as a New Strategy in Kidney Transplantation. Drugs, 2010, 70, 2121-2131.	4.9	32
16	Rationale for Using Belatacept in Combination With Sirolimus. Transplantation Proceedings, 2010, 42, S29-S31.	0.3	4
17	Principles of Immunopharmacology. , 2011, , .		14
18	Skin cancer in solid organ transplant recipients: Advances in therapy and management. Journal of the American Academy of Dermatology, 2011, 65, 263-279.	0.6	252
20	Costimulatory pathways in transplantation. Seminars in Immunology, 2011, 23, 293-303.	2.7	80

#	Article	IF	CITATIONS
21	Preclinical and clinical studies on the induction of renal allograft tolerance through transient mixed chimerism. Current Opinion in Organ Transplantation, 2011, 16, 366-371.	0.8	38
22	Recent advances in immunosuppressive therapy for prevention of renal allograft rejection. Current Opinion in Organ Transplantation, 2011, 16, 390-397.	0.8	14
23	Immunosuppression and renal transplant rejection: review of current and emerging therapies. Clinical Investigation, 2011, 1, 859-877.	0.0	3
24	Selective Targeting of Human Alloresponsive CD8+ Effector Memory T Cells Based on CD2 Expression. American Journal of Transplantation, 2011, 11, 22-33.	2.6	118
25	Identification and Targeting of Costimulation-Resistant T cells in Renal Transplantation. American Journal of Transplantation, 2011, 11, 8-9.	2.6	5
27	LFA-1 Antagonism Inhibits Early Infiltration of Endogenous Memory CD8 T Cells into Cardiac Allografts and Donor-Reactive T Cell Priming. American Journal of Transplantation, 2011, 11, 923-935.	2.6	48
28	Effect of biologic agents on regulatory T cells. Transplantation Reviews, 2011, 25, 110-116.	1.2	9
29	Clinical transplantation tolerance. Seminars in Immunopathology, 2011, 33, 91-104.	2.8	22
30	Advances in kidney transplant immunosuppression: Emerging biologics. Dialysis and Transplantation, 2011, 40, 30-32.	0.2	2
31	Molecular cloning, expression and characterization of the functional domain of CTLA4 from the rhesus monkey, Macaca mulatta. Developmental and Comparative Immunology, 2011, 35, 736-744.	1.0	5
32	Emerging drugs for the treatment of transplant rejection. Expert Opinion on Emerging Drugs, 2011, 16, 683-695.	1.0	3
33	Emerging Immunosuppressive Drugs in Kidney Transplantation. Current Clinical Pharmacology, 2011, 6, 130-136.	0.2	6
34	Host Alloreactive Memory T Cells Influence Tolerance to Kidney Allografts in Nonhuman Primates. Science Translational Medicine, 2011, 3, 86ra51.	5.8	97
35	T-cell co-stimulatory blockade in kidney transplantation: back to the bench. Kidney International Supplements, 2011, 1, 25-30.	4.6	4
36	Transplantation Tolerance: Memories That Haunt Us. Science Translational Medicine, 2011, 3, 86ps22.	5.8	12
37	Translating tolerogenic therapies to the clinic – where do we stand?. Frontiers in Immunology, 2012, 3, 254.	2.2	30
38	The future developments in hepatology: no need for a jaundiced view. Frontline Gastroenterology, 2012, 3, i47-i52.	0.9	2
39	New immunosuppressants in pediatric solid organ transplantation. Current Opinion in Organ Transplantation, 2012, 17, 503-508.	0.8	8

#	Article	IF	CITATIONS
40	Modulating T-cell costimulation as new immunosuppressive concept in organ transplantation. Current Opinion in Organ Transplantation, 2012, Publish Ahead of Print, 368-75.	0.8	12
41	Innate Immunity and Resistance to Tolerogenesis in Allotransplantation. Frontiers in Immunology, 2012, 3, 73.	2.2	28
42	Mixed chimerism through donor bone marrow transplantation. Current Opinion in Organ Transplantation, 2012, 17, 63-70.	0.8	29
43	Adult Neurogenesis in the Olfactory System and Neurodegenerative Disease. Current Molecular Medicine, 2012, 12, 1253-1260.	0.6	14
44	Targeting Regulatory T Cells in the Treatment of Type 1 Diabetes Mellitus. Current Molecular Medicine, 2012, 12, 1261-1272.	0.6	47
47	Memory T-cell-specific therapeutics attenuate allograft rejection via mediation of alloreactivity in memory cells. Immunology Letters, 2012, 148, 53-58.	1.1	8
48	Immunomodulating options for liver transplant patients. Expert Review of Clinical Immunology, 2012, 8, 565-578.	1.3	14
49	Concordance of preclinical and clinical pharmacology and toxicology of therapeutic monoclonal antibodies and fusion proteins: cell surface targets. British Journal of Pharmacology, 2012, 166, 823-846.	2.7	62
50	Future Trends in Organ Transplant Recipients – Important Issues for Dermatologists. Current Problems in Dermatology, 2012, 43, 71-80.	0.8	3
53	Heterogeneity within T Cell Memory: Implications for Transplant Tolerance. Frontiers in Immunology, 2012, 3, 36.	2.2	32
54	Induction Therapy in Renal Transplant Recipients. , 0, , .		0
55	Current state of renal transplant immunosuppression: Present and future. World Journal of Transplantation, 2012, 2, 51.	0.6	58
56	Modern Immunosuppression Regimens in Kidney Transplantation. , 0, , .		0
57	The impact of infection and tissue damage in solid-organ transplantation. Nature Reviews Immunology, 2012, 12, 459-471.	10.6	128
58	Belatacept: from rational design to clinical application. Transplant International, 2012, 25, 139-150.	0.8	66
59	Nonhuman Primate Transplant Models Finally Evolve: Detailed Immunogenetic Analysis Creates New Models and Strengthens the Old. American Journal of Transplantation, 2012, 12, 812-819.	2.6	25
60	Regulatory T Cells Exhibit Decreased Proliferation but Enhanced Suppression After Pulsing With Sirolimus. American Journal of Transplantation, 2012, 12, 1441-1457.	2.6	46
61	Long-Term Hepatic Allograft Acceptance Based on CD40 Blockade by ASKP1240 in Nonhuman Primates. American Journal of Transplantation, 2012, 12, 1740-1754.	2.6	58

#	Article	IF	CITATIONS
62	Alternative Immunomodulatory Strategies for Xenotransplantation: CD40/154 Pathway-Sparing Regimens Promote Xenograft Survival. American Journal of Transplantation, 2012, 12, 1765-1775.	2.6	70
63	Evidence for Kidney Rejection After Combined Bone Marrow and Renal Transplantation Despite Ongoing Whole-Blood Chimerism in Rhesus Macaques. American Journal of Transplantation, 2012, 12, 1755-1764.	2.6	21
64	Enhanced De Novo Alloantibody and Antibody-Mediated Injury in Rhesus Macaques. American Journal of Transplantation, 2012, 12, 2395-2405.	2.6	24
65	Alefacept Combined With Tacrolimus, Mycophenolate Mofetil and Steroids in De Novo Kidney Transplantation: A Randomized Controlled Trial. American Journal of Transplantation, 2013, 13, 1724-1733.	2.6	37
66	Regulatory Dendritic Cell Infusion Prolongs Kidney Allograft Survival in Nonhuman Primates. American Journal of Transplantation, 2013, 13, 1989-2005.	2.6	108
67	Viewing Transplantation Immunology Through Today's Lens: New Models, New Imaging, and New Insights. Biology of Blood and Marrow Transplantation, 2013, 19, S44-S51.	2.0	2
68	Targeting of memory T cells with alefacept in new-onset type 1 diabetes (T1DAL study): 12 month results of a randomised, double-blind, placebo-controlled phase 2 trial. Lancet Diabetes and Endocrinology,the, 2013, 1, 284-294.	5.5	169
69	Clinical operational tolerance in liver transplantation: state-of-the-art perspective and future prospects. Hepatobiliary and Pancreatic Diseases International, 2013, 12, 12-33.	0.6	33
70	Inhibition of αvβ6 Promotes Acute Renal Allograft Rejection in Nonhuman Primates. American Journal of Transplantation, 2013, 13, 3085-3093.	2.6	15
71	Anti-LFA-1 or rapamycin overcome costimulation blockade-resistant rejection in sensitized bone marrow recipients. Transplant International, 2013, 26, 206-218.	0.8	14
72	Belatacept and Sirolimus Prolong Nonhuman Primate Islet Allograft Survival: Adverse Consequences of Concomitant Alefacept Therapy. American Journal of Transplantation, 2013, 13, 312-319.	2.6	46
73	Belatacept and Sirolimus Prolong Nonhuman Primate Renal Allograft Survival Without a Requirement for Memory T Cell Depletion. American Journal of Transplantation, 2013, 13, 320-328.	2.6	59
74	Lymphodepletional Strategies in Transplantation. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015511-a015511.	2.9	24
75	T-Cell Costimulatory Blockade in Organ Transplantation. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015537-a015537.	2.9	17
76	Primate Models in Organ Transplantation. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a015503-a015503.	2.9	27
77	Tolerance induction. Current Opinion in Organ Transplantation, 2013, 18, 402-407.	0.8	35
78	Beyond calcineurin inhibitors. Current Opinion in Nephrology and Hypertension, 2013, 22, 689-697.	1.0	14
79	Alefacept Promotes Immunosuppression-Free Renal Allograft Survival in Nonhuman Primates via Depletion of Recipient Memory T Cells. American Journal of Transplantation, 2013, <u>13, 3223-3229.</u>	2.6	27

#	Article	IF	CITATIONS
80	T-cell co-stimulatory blockade in transplantation: two steps forward one step back!. Expert Opinion on Biological Therapy, 2013, 13, 1557-1568.	1.4	23
81	Novel immunosuppressive agents in kidney transplantation. World Journal of Transplantation, 2013, 3, 68.	0.6	47
83	Allograft Tolerance. , 2014, , 650-664.		0
84	Cellular and Molecular Principles Underlying Allorecognition andÂAllotransplantÂRejection by T Lymphocytes. , 2014, , .		0
85	Regulatory T Cells as Immunotherapy. Frontiers in Immunology, 2014, 5, 46.	2.2	158
86	Immunology of Graft Rejection. , 2014, , 10-38.		0
87	Rat islets are not rejected by antiâ€islet antibodies in mice treated with costimulation blockade. Xenotransplantation, 2014, 21, 353-366.	1.6	4
88	The Allo- and Viral-Specific Immunosuppressive Effect of Belatacept, but Not Tacrolimus, Attenuates With Progressive T Cell Maturation. American Journal of Transplantation, 2014, 14, 319-332.	2.6	61
89	Recollective homeostasis and the immune consequences of peritransplant depletional induction therapy. Immunological Reviews, 2014, 258, 167-182.	2.8	13
90	Costimulation Blockade Alters Germinal Center Responses and Prevents Antibody-Mediated Rejection. American Journal of Transplantation, 2014, 14, 59-69.	2.6	157
91	Immunosuppression-state-of-the-art. Current Opinion in Organ Transplantation, 2014, 19, 500-507.	0.8	9
92	Homeostatic expansion as a barrier to lymphocyte depletion strategies. Current Opinion in Organ Transplantation, 2014, 19, 357-362.	0.8	20
93	Targeting co-stimulatory pathways: transplantation and autoimmunity. Nature Reviews Nephrology, 2014, 10, 14-24.	4.1	137
94	Bcl-2 Inhibition to Overcome Memory Cell Barriers in Transplantation. American Journal of Transplantation, 2014, 14, 333-342.	2.6	16
95	Antilymphocyte Globulin, Monoclonal Antibodies, and Fusion Proteins. , 2014, , 287-313.		1
96	Transplantation tolerance and its outcome during infections and inflammation. Immunological Reviews, 2014, 258, 80-101.	2.8	26
97	New immunosuppressive agents in pediatric transplantation. Clinics, 2014, 69, 8-16.	0.6	18
102	Effects of Preexisting Autoimmunity on Heart Graft Prolongation After Donor-Specific Transfusion and Anti-CD154. Transplantation, 2014, 97, 12-19.	0.5	10

#	Article	IF	CITATIONS
103	Pathogen Stimulation History Impacts Donor-Specific CD8+ T Cell Susceptibility to Costimulation/Integrin Blockade Based Therapy. American Journal of Transplantation, 2015, 15, 3081-3094.	2.6	16
105	Studies Introducing Costimulation Blockade for Vascularized Composite Allografts in Nonhuman Primates. American Journal of Transplantation, 2015, 15, 2240-2249.	2.6	20
106	The Evolving Roles of Memory Immune Cells in Transplantation. Transplantation, 2015, 99, 2029-2037.	0.5	15
107	Co-Stimulatory Blockade of the CD28/CD80-86/CTLA-4 Balance in Transplantation: Impact on Memory T Cells?. Frontiers in Immunology, 2015, 6, 411.	2.2	39
108	The Science of Reconstructive Transplantation. Pancreatic Islet Biology, 2015, , .	0.1	3
109	T cells in the control of organ-specific autoimmunity. Journal of Clinical Investigation, 2015, 125, 2250-2260.	3.9	122
110	Novel therapies for memory cells in autoimmune diseases. Clinical and Experimental Immunology, 2015, 180, 353-360.	1.1	22
111	Neutralizing BAFF/APRIL With Atacicept Prevents Early DSA Formation and AMR Development in T Cell Depletion Induced Nonhuman Primate AMR Model. American Journal of Transplantation, 2015, 15, 815-822.	2.6	56
112	Immunosuppressive Biologic Agents. , 2015, , 1343-1353.		1
112 113	Immunosuppressive Biologic Agents. , 2015, , 1343-1353. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56.	0.8	1
112 113 114	Immunosuppressive Biologic Agents. , 2015, , 1343-1353. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56. Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ET	0.8 Qq8 <u>0</u> 0 rg	1 12 ;BT ₁ /Overlock
112 113 114 115	Immunosuppressive Biologic Agents., 2015, 1343-1353. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56. Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ET Down-Regulation of Surface CD28 under Belatacept Treatment: An Escape Mechanism for Antigen-Reactive T-Cells. PLoS ONE, 2016, 11, e0148604.	0.8 Qq8.9 0 rg 1.1	1 12 gBT ₁ /Overlock 27
112 113 114 115 116	Immunosuppressive Biologic Agents., 2015,, 1343-1353. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56. Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ET Down-Regulation of Surface CD28 under Belatacept Treatment: An Escape Mechanism for Antigen-Reactive T-Cells. PLoS ONE, 2016, 11, e0148604. Postdepletion Lymphocyte Reconstitution During Belatacept and Rapamycin Treatment in Kidney Transplant Recipients. American Journal of Transplantation, 2016, 16, 550-564.	0.8 Qq8.9 0 rg 1.1 2.6	1 12 gBT ₁ /Overlock 27 24
 112 113 114 115 116 117 	Immunosuppressive Biologic Agents., 2015,, 1343-1353. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56. Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ET Down-Regulation of Surface CD28 under Belatacept Treatment: An Escape Mechanism for Antigen-Reactive T-Cells. PLoS ONE, 2016, 11, e0148604. Postdepletion Lymphocyte Reconstitution During Belatacept and Rapamycin Treatment in Kidney Transplant Recipients. American Journal of Transplantation, 2016, 16, 550-564. CD57+ CD4 T Cells Underlie Belatacept-Resistant Allograft Rejection. American Journal of	0.8 Qq8.0 0 rg 1.1 2.6 2.6	1 12 (BT ₁ /Overlock 27 24 98
 112 113 114 115 116 117 118 	Immunosuppressive Biologic Agents., 2015,, 1343-1353.Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56.Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ET Down-Regulation of Surface CD28 under Belatacept Treatment: An Escape Mechanism for Antigen-Reactive T-Cells. PLoS ONE, 2016, 11, e0148604.Postdepletion Lymphocyte Reconstitution During Belatacept and Rapamycin Treatment in Kidney Transplant Recipients. American Journal of Transplantation, 2016, 16, 550-564.CD57+ CD4 T Cells Underlie Belatacept-Resistant Allograft Rejection. American Journal of Transplantation, 2016, 16, 1102-1112.Impact of Immune-Modulatory Drugs on Regulatory T Cell. Transplantation, 2016, 100, 2288-2300.	0.8 Qq8.0 0 rg 1.1 2.6 2.6 0.5	1 12 BT1/Overlock 27 24 98 99
 112 113 114 115 116 117 118 119 	Immunosuppressive Biologic Agents., 2015,, 1343-1353. Hematopoietic stem cell infusion/transplantation for induction of allograft tolerance. Current Opinion in Organ Transplantation, 2015, 20, 49-56. Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ET Down-Regulation of Surface CD28 under Belatacept Treatment: An Escape Mechanism for Antigen-Reactive T-Cells. PLoS ONE, 2016, 11, e0148604. Postdepletion Lymphocyte Reconstitution During Belatacept and Rapamycin Treatment in Kidney Transplant Recipients. American Journal of Transplantation, 2016, 16, 550-564. CD57+ CD4 T Cells Underlie Belatacept-Resistant Allograft Rejection. American Journal of Impact of Immune-Modulatory Drugs on Regulatory T Cell. Transplantation, 2016, 100, 2288-2300. T Cell Cosignaling Molecules in Transplantation. Immunity, 2016, 44, 1020-1033.	0.8 Qq8.0 0 rg 1.1 2.6 2.6 0.5 6.6	1 12 35T1/Overlock 27 24 98 99 99

The CD8 Tâ \in cell response during tolerance induction in liver transplantation. Clinical and Translational Immunology, 2016, 5, e102.

#	Article	IF	CITATIONS
123	Co-stimulation Blockade Plus T-Cell Depletion in Transplant Patients: Towards a Steroid- and Calcineurin Inhibitor-Free Future?. Drugs, 2016, 76, 1589-1600.	4.9	2
124	Preclinical Testing of Antihuman CD28 Fab′ Antibody in a Novel Nonhuman Primate Small Animal Rodent Model of Xenogenic Graft-Versus-Host Disease. Transplantation, 2016, 100, 2630-2639.	0.5	13
125	Clinical consequences of circulating CD28-negative T cells for solid organ transplantation. Transplant International, 2016, 29, 274-284.	0.8	26
126	The future direction and unmet needs of transplant immunosuppression. Expert Review of Clinical Pharmacology, 2016, 9, 873-876.	1.3	7
127	B Cell Depletion With an Anti-CD20 Antibody Enhances Alloreactive Memory T Cell Responses After Transplantation. American Journal of Transplantation, 2016, 16, 672-678.	2.6	29
128	Roles of CD48 in regulating immunity and tolerance. Clinical Immunology, 2016, 164, 10-20.	1.4	160
129	Memory T cells in organ transplantation: progress and challenges. Nature Reviews Nephrology, 2016, 12, 339-347.	4.1	49
130	Selective CD28 Antagonist Blunts Memory Immune Responses and Promotes Long-Term Control of Skin Inflammation in Nonhuman Primates. Journal of Immunology, 2016, 196, 274-283.	0.4	24
131	Adaptive immune regulation in autoimmune diabetes. Autoimmunity Reviews, 2016, 15, 236-241.	2.5	21
132	Advances in targeting coâ€inhibitory and coâ€stimulatory pathways in transplantation settings: the Yin to the Yang ofÂcancer immunotherapy. Immunological Reviews, 2017, 276, 192-212.	2.8	44
133	A Randomized Controlled Clinical Trial Comparing Belatacept With Tacrolimus After De Novo Kidney Transplantation. Transplantation, 2017, 101, 2571-2581.	0.5	53
134	Total Recall: Can We Reshape T Cell Memory by Lymphoablation?. American Journal of Transplantation, 2017, 17, 1713-1718.	2.6	12
135	Crosstalk Between T and B Cells in the Germinal Center After Transplantation. Transplantation, 2017, 101, 704-712.	0.5	51
136	Allogeneic stem cell transplantation in fully MHC-matched Mauritian cynomolgus macaques recapitulates diverse human clinical outcomes. Nature Communications, 2017, 8, 1418.	5.8	22
137	Role of Memory T Cells in Allograft Rejection and Tolerance. Frontiers in Immunology, 2017, 8, 170.	2.2	79
138	The Role of Costimulation Blockade in Solid Organ and Islet Xenotransplantation. Journal of Immunology Research, 2017, 2017, 1-11.	0.9	47
139	Long-term Nonhuman Primate Renal Allograft Survival Without Ongoing Immunosuppression in Recipients of Delayed Donor Bone Marrow Transplantation. Transplantation, 2018, 102, e128-e136.	0.5	20
140	Under-Evaluated or Unassessed Pathogenic Pathways in Autoimmune Hepatitis and Implications for Future Management. Digestive Diseases and Sciences, 2018, 63, 1706-1725.	1.1	13

ARTICLE IF CITATIONS # Simultaneous Recognition of Allogeneic MHC and Cognate Autoantigen by Autoreactive T Cells in 141 0.4 7 Transplant Rejection. Journal of Immunology, 2018, 200, 1504-1512. Preclinical and clinical studies for transplant tolerance via the mixed chimerism approach. Human 142 1.2 Immunology, 2018, 79, 258-265. Selective CD28 blockade attenuates CTLA-4–dependent CD8+ memory T cell effector function and 143 2.3 21 prolongs graft survival. JCI Insight, 2018, 3, . Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocinâ€diabetic 144 nonâ€human primates. Xenotransplantation, 2018, 25, e12450. High-Dimensional Renal Profiling: Towards a Better Understanding of Renal Transplant Immune 145 0.9 0 Suppression. Current Transplantation Reports, 2019, 6, 60-68. The Immunology of Transplantation., 2019, , 9-35. Siplizumab selectively depletes effector memory T cells and promotes a relative expansion of 147 2.6 26 alloreactive regulatory T cells in vitro. American Journal of Transplantation, 2020, 20, 88-100. Antilymphocyte Globulin, Monoclonal Antibodies, and Fusion Proteins., 2020, 283-312. 148 Memory T Cells in Transplantation: Old Challenges Define New Directions. Transplantation, 2020, 104, 149 0.5 11 2024-2034. Siplizumab, an Anti-CD2 Monoclonal Antibody, Induces a Unique Set of Immune Modulatory Effects Compared to Alemtuzumab and Rabbit Anti-Thymocyte Globulin In Vitro. Frontiers in Immunology, 2.2 2020, 11, 592553. Macrophages in Organ Transplantation. Frontiers in Immunology, 2020, 11, 582939. 151 2.2 44 Th17 cell inhibition in a costimulation blockadeâ€based regimen for vascularized composite 0.8 allotransplantation using a nonhuman primate model. Transplant International, 2020, 33, 1294-1301. Phosphoproteomics of CD2 signaling reveals AMPK-dependent regulation of lytic granule polarization 153 1.6 18 in cytotoxic T cells. Science Signaling, 2020, 13, . CD2 Immunobiology. Frontiers in Immunology, 2020, 11, 1090. 154 2.2 Targeting Calcium Release–activated Calcium Channel Is Not Sufficient to Prevent Rejection in 155 0.5 0 Nonhuman Primate Kidney Transplantation. Transplantation, 2020, 104, 970-980. mTOR Inhibitor Therapy Diminishes Circulating CD8+ CD28a[^] Effector Memory T Cells and Improves Allograft Inflammation in Belatacept-refractory Renal Allograft Rejection. Transplantation, 2020, 104, 1058-1069. Belatacept in renal transplantation in comparison to tacrolimus and molecular understanding of 157 resistance pattern: Meta-analysis and systematic review. World Journal of Transplantation, 2021, 11, 0.6 8 70-87. TIGIT regulates apoptosis of risky memory T cell subsets implicated in belatacept-resistant rejection. American Journal of Transplantation, 2021, 21, 3256-3267.

#	Article	IF	CITATIONS
159	Designing biomaterials for the modulation of allogeneic and autoimmune responses to cellular implants in Type 1 Diabetes. Acta Biomaterialia, 2021, 133, 87-101.	4.1	22
160	Endogenous memory T cells with donorâ€reactivity: early postâ€transplant mediators of acute graft injury in unsensitized recipients. Transplant International, 2021, 34, 1360-1373.	0.8	3
161	Modulation of Xenogeneic T Cell Proliferation by B7 and mTOR Blockade of T cells and Porcine Endothelial Cells. Transplantation, 2021, Publish Ahead of Print, .	0.5	3
162	Blocking MHC class II on human endothelium mitigates acute rejection. JCI Insight, 2016, 1, .	2.3	58
163	Gazing into a crystal ball to predict kidney transplant outcome. Journal of Clinical Investigation, 2010, 120, 1803-1806.	3.9	11
164	Central memory CD8+ T lymphocytes mediate lung allograft acceptance. Journal of Clinical Investigation, 2014, 124, 1130-1143.	3.9	97
165	Heterologous Immunity Triggered by a Single, Latent Virus in Mus musculus: Combined Costimulation- and Adhesion- Blockade Decrease Rejection. PLoS ONE, 2013, 8, e71221.	1.1	14
166	Profiling of mRNA of interstitial fibrosis and tubular atrophy with subclinical inflammation in recipients after kidney transplantation. Aging, 2019, 11, 5215-5231.	1.4	7
167	Novel immunosuppressive agents in kidney transplantation. Clinical Nephrology, 2010, 73, 333-343.	0.4	44
168	C12 Immunosuppressives in transplant rejection. , 2011, , 525-556.		0
172	Cell-Based Immunomodulatory Concepts and Tolerance Protocols for Reconstructive Transplantation. Pancreatic Islet Biology, 2015, , 181-202.	0.1	0
175	Can We Repurpose FDA-Approved Alefacept to Diminish the HIV Reservoir?. Immunotherapy (Los Angeles,) Tj ETQ	Qq1 1 0.78	4314 rgBT
177	Advances in immunosuppression for kidney transplantation: new strategies for preserving kidney function and reducing cardiovascular risk. Nefrologia, 2012, 32, 374-84.	0.2	7
179	Activation and regulation of alloreactive T cell immunity in solid organ transplantation. Nature Reviews Nephrology, 2022, 18, 663-676.	4.1	24
180	Antigen discrimination by T cells relies on size-constrained microvillar contact. Nature Communications, 2023, 14, .	5.8	9
182	Strategies to induce tolerance. , 2024, , 1449-1465.		0