Comparative genomic and phylogeographic analysis of

Nature Genetics

41, 1282-1289

DOI: 10.1038/ng.477

Citation Report

#	Article	IF	Citations
1	Putting leprosy on the map. Nature Genetics, 2009, 41, 1264-1266.	21.4	11
2	Recent advances in leprosy and Buruli ulcer (Mycobacterium ulcerans infection). Current Opinion in Infectious Diseases, 2010, 23, 445-455.	3.1	36
3	Structure, evolution and dynamics of transcriptional regulatory networks. Biochemical Society Transactions, 2010, 38, 1155-1178.	3.4	21
4	IFNG +874 T>A single nucleotide polymorphism is associated with leprosy among Brazilians. Human Genetics, 2010, 128, 481-490.	3.8	63
6	Constraints and plasticity in genome and molecular-phenome evolution. Nature Reviews Genetics, 2010, 11, 487-498.	16.3	152
7	Sequencing and Genetic Variation of Multidrug Resistance Plasmids in Klebsiella pneumoniae. PLoS ONE, 2010, 5, e10141.	2.5	52
8	Detection of Mycobacterium leprae DNA from Archaeological Skeletal Remains in Japan Using Whole Genome Amplification and Polymerase Chain Reaction. PLoS ONE, 2010, 5, e12422.	2.5	34
9	New insights in the pathogenesis and genetics of leprosy. F1000 Medicine Reports, 2010, 2, .	2.9	23
10	Molecular Epidemiology of <i>Mycobacterium leprae</i> as Determined by Structure-Neighbor Clustering. Journal of Clinical Microbiology, 2010, 48, 1997-2008.	3.9	18
11	Infection during Infancy and Long Incubation Period of Leprosy Suggested in a Case of a Chimpanzee Used for Medical Research. Journal of Clinical Microbiology, 2010, 48, 3432-3434.	3.9	35
12	Genomewide Analysis of Divergence of Antibiotic Resistance Determinants in Closely Related Isolates of <i>Acinetobacter baumannii</i> . Antimicrobial Agents and Chemotherapy, 2010, 54, 3569-3577.	3.2	106
13	Leprosy and the Adaptation of Human Toll-Like Receptor 1. PLoS Pathogens, 2010, 6, e1000979.	4.7	139
14	<i>Mycobacterium tuberculosis</i> UvrD1 and UvrA Proteins Suppress DNA Strand Exchange Promoted by Cognate and Noncognate RecA Proteins. Biochemistry, 2010, 49, 4872-4883.	2.5	24
15	High-throughput sequencing and clinical microbiology: progress, opportunities and challenges. Current Opinion in Microbiology, 2010, 13, 625-631.	5.1	135
16	Analysis of Mycobacterium leprae gene expression using DNA microarray. Microbial Pathogenesis, 2010, 49, 181-185.	2.9	14
17	Association of TNF, MBL, and VDR polymorphisms with leprosy phenotypes. Human Immunology, 2010, 71, 992-998.	2.4	66
18	Constraints, Plasticity, and Universal Patterns in Genome and Phenome Evolution., 2010,, 19-47.		1
19	Elucidating Human Migrations by Means of their Pathogens. , 2011, , 173-202.		1

#	Article	IF	CITATIONS
20	Leprosy susceptibility: genetic variations regulate innate and adaptive immunity, and disease outcome. Future Microbiology, 2011, 6, 533-549.	2.0	93
21	Leprosy now: epidemiology, progress, challenges, and research gaps. Lancet Infectious Diseases, The, 2011, 11, 464-470.	9.1	326
22	Palaeogenomics of Mycobacterium tuberculosis: epidemic bursts with a degrading genome. Lancet Infectious Diseases, The, 2011, 11, 641-650.	9.1	44
23	Horizontal Gene Transfers with or without Cell Fusions in All Categories of the Living Matter. Advances in Experimental Medicine and Biology, 2011, 714, 5-89.	1.6	15
24	Probable Zoonotic Leprosy in the Southern United States. New England Journal of Medicine, 2011, 364, 1626-1633.	27.0	296
25	Skin Biopsy in Leprosy. , 0, , .		5
28	Leprosy in a chimpanzee. Japanese Journal of Leprosy, 2011, 80, 29-36.	0.3	2
30	Human Polymorphisms as Clinical Predictors in Leprosy. Journal of Tropical Medicine, 2011, 2011, 1-14.	1.7	9
31	Defining Pathogenic Bacterial Species in the Genomic Era. Frontiers in Microbiology, 2010, 1, 151.	3.5	90
32	Comparative Genomics of Cell Envelope Components in Mycobacteria. PLoS ONE, 2011, 6, e19280.	2.5	16
33	Revival of Seeliger's historical â€~Special <i>Listeria</i> Culture Collection'. Environmental Microbiology, 2011, 13, 3163-3171.	3.8	13
34	The history of leprosy in Dubrovnik: an overview. International Journal of Dermatology, 2011, 50, 1428-1431.	1.0	2
35	How evolutionary principles improve the understanding of human health and disease. Evolutionary Applications, 2011, 4, 249-263.	3.1	129
36	The MycoBrowser portal: A comprehensive and manually annotated resource for mycobacterial genomes. Tuberculosis, 2011, 91, 8-13.	1.9	355
37	Towards the molecular epidemiology of Mycobacterium leprae: Strategies, successes, and shortcomings. Infection, Genetics and Evolution, 2011, 11, 1505-1513.	2.3	6
38	A quantitative view on Mycobacterium leprae antigens by proteomics. Journal of Proteomics, 2011, 74, 1711-1719.	2.4	11
39	Transmission of leprosy in Qiubei County, Yunnan, China: Insights from an 8-year molecular epidemiology investigation. Infection, Genetics and Evolution, 2011, 11, 363-374.	2.3	19
40	Mutations in the regulatory network underlie the recent clonal expansion of a dominant subclone of the Mycobacterium tuberculosis Beijing genotype. Infection, Genetics and Evolution, 2011, 11, 587-597.	2.3	36

#	ARTICLE	IF	CITATIONS
41	Chimpanzees used for medical research shed light on the pathoetiology of leprosy. Future Microbiology, 2011, 6, 1151-1157.	2.0	7
42	<i>Mycobacterium leprae</i> >–host-cell interactions and genetic determinants in leprosy: an overview. Future Microbiology, 2011, 6, 217-230.	2.0	74
43	Transmission of Dapsone-Resistant Leprosy Detected by Molecular Epidemiological Approaches. Antimicrobial Agents and Chemotherapy, 2011, 55, 5384-5387.	3.2	12
44	Case of Diffuse Lepromatous Leprosy Associated with "Mycobacterium lepromatosis― Journal of Clinical Microbiology, 2011, 49, 4366-4368.	3.9	42
45	Molecular Drug Susceptibility Testing and Genotyping of Mycobacterium leprae Strains from South America. Antimicrobial Agents and Chemotherapy, 2011, 55, 2971-2973.	3.2	25
46	Metagenomic analysis of bacterial infections by means of high-throughput DNA sequencing. Experimental Biology and Medicine, 2011, 236, 968-971.	2.4	31
47	Genotyping of Mycobacterium leprae from Brazilian leprosy patients suggests the occurrence of reinfection or of bacterial population shift during disease relapse. Journal of Medical Microbiology, 2011, 60, 1441-1446.	1.8	21
48	<i>Mycobacterium leprae</i> : genes, pseudogenes and genetic diversity. Future Microbiology, 2011, 6, 57-71.	2.0	106
49	ML1419c Peptide Immunization Induces <i>Mycobacterium leprae</i> -Specific HLA-A*0201–Restricted CTL In Vivo with Potential To Kill Live Mycobacteria. Journal of Immunology, 2011, 187, 1393-1402.	0.8	12
51	Human Leukocyte Antigen Class I Region Single-Nucleotide Polymorphisms are Associated with Leprosy Susceptibility in Vietnam and India. Journal of Infectious Diseases, 2011, 203, 1274-1281.	4.0	49
52	TNF -308G>A Single Nucleotide Polymorphism Is Associated With Leprosy Among Brazilians: A Genetic Epidemiology Assessment, Meta-Analysis, and Functional Study. Journal of Infectious Diseases, 2011, 204, 1256-1263.	4.0	40
53	Genetic and Immunological Evidence Implicates Interleukin 6 as a Susceptibility Gene for Leprosy Type 2 Reaction. Journal of Infectious Diseases, 2012, 205, 1417-1424.	4.0	54
54	Development of a Temperature-Switch PCR-Based SNP Typing Method for Mycobacterium ulcerans. PLoS Neglected Tropical Diseases, 2012, 6, e1904.	3.0	5
55	Insights from Genomics into Bacterial Pathogen Populations. PLoS Pathogens, 2012, 8, e1002874.	4.7	87
56	Leprosy (Hansen's Disease). , 2012, , 1950-1954.		1
57	Real-Time PCR and High-Resolution Melt Analysis for Rapid Detection of Mycobacterium leprae Drug Resistance Mutations and Strain Types. Journal of Clinical Microbiology, 2012, 50, 742-753.	3.9	28
58	Insights from genomic comparisons of genetically monomorphic bacterial pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 860-867.	4.0	109
59	Distribution of Mycobacterium leprae Strains among Cases in a Rural and Urban Population of Maharashtra, India. Journal of Clinical Microbiology, 2012, 50, 1406-1411.	3.9	15

#	ARTICLE	IF	CITATIONS
60	Medieval Leper Hospitals in England: An Archaeological Perspective. Medieval Archaeology, 2012, 56, 203-233.	0.5	28
61	Comparative immunological and microbiological aspects of paratuberculosis as a model mycobacterial infection. Veterinary Immunology and Immunopathology, 2012, 148, 29-47.	1.2	310
62	Transforming clinical microbiology with bacterial genome sequencing. Nature Reviews Genetics, 2012, 13, 601-612.	16.3	684
63	Leprosy and the natural selection for psoriasis. Medical Hypotheses, 2012, 78, 183-190.	1.5	26
64	Phylogeography helps with investigating the building of human parasite communities. Parasitology, 2012, 139, 1966-1974.	1.5	11
65	History and Phylogeography of Leprosy. , 2012, , 3-13.		3
66	Advances in Proteomics of <i>Mycobacterium leprae</i> . Scandinavian Journal of Immunology, 2012, 75, 369-378.	2.7	10
69	Evolution, revolution and heresy in the genetics of infectious disease susceptibility. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 840-849.	4.0	117
70	Many Neglected Tropical Diseases May Have Originated in the Paleolithic or Before: New Insights from Genetics. PLoS Neglected Tropical Diseases, 2012, 6, e1393.	3.0	22
71	Mitochondrial DNA Copy Number, but Not Haplogroup, Confers a Genetic Susceptibility to Leprosy in Han Chinese from Southwest China. PLoS ONE, 2012, 7, e38848.	2.5	31
72	Pan-Genomic Analysis Provides Insights into the Genomic Variation and Evolution of Salmonella Paratyphi A. PLoS ONE, 2012, 7, e45346.	2.5	26
73	Current approaches and future directions in the treatment of leprosy. Research and Reports in Tropical Medicine, 2012, 3, 79.	1.4	10
74	Genotyping of Mycobacterium leprae present on Ziehl-Neelsen-stained microscopic slides and in skin biopsy samples from leprosy patients in different geographic regions of Brazil. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 143-149.	1.6	18
75	Phylogenetic Framework and Molecular Signatures for the Main Clades of the Phylum Actinobacteria. Microbiology and Molecular Biology Reviews, 2012, 76, 66-112.	6.6	244
76	Association of variants in BAT1-LTA-TNF-BTNL2 genes within 6p21.3 region show graded risk to leprosy in unrelated cohorts of Indian population. Human Genetics, 2012, 131, 703-716.	3.8	23
77	Genetic variants of the MRC1 gene and the IFNG gene are associated with leprosy in Han Chinese from Southwest China. Human Genetics, 2012, 131, 1251-1260.	3.8	38
78	Current status of leprosy: Epidemiology, basic science and clinical perspectives. Journal of Dermatology, 2012, 39, 121-129.	1.2	88
79	Dynamics of Mycobacterium leprae transmission in environmental context: Deciphering the role of environment as a potential reservoir. Infection, Genetics and Evolution, 2012, 12, 121-126.	2.3	47

#	Article	IF	CITATIONS
80	The leprosy agents <i>Mycobacterium lepromatosis</i> and <i>Mycobacterium leprae</i> in Mexico. International Journal of Dermatology, 2012, 51, 952-959.	1.0	69
81	Possible cases of leprosy and tuberculosis in medieval Sigtuna, Sweden. International Journal of Osteoarchaeology, 2012, 22, 261-283.	1.2	21
82	Prokaryotic systematics in the genomics era. Antonie Van Leeuwenhoek, 2012, 101, 21-34.	1.7	41
83	Palaeopathology and genes: Investigating the genetics of infectious diseases in excavated human skeletal remains and mummies from past populations. Gene, 2013, 528, 33-40.	2.2	71
84	Ancient trade routes shaped the genetic structure of horses in eastern <scp>E</scp> urasia. Molecular Ecology, 2013, 22, 5340-5351.	3.9	14
85	Taking Sides: Interferons in Leprosy. Cell Host and Microbe, 2013, 13, 377-378.	11.0	5
86	Bifidobacterium animalis subsp. lactis ATCC 27673 Is a Genomically Unique Strain within Its Conserved Subspecies. Applied and Environmental Microbiology, 2013, 79, 6903-6910.	3.1	30
87	A S52P mutation in the ‴αâ€crystallin domain' of <i><scp>M</scp>ycobacteriumÂleprae </i> <scp>HSP</scp> 18 reduces its oligomeric size and chaperone function. FEBS Journal, 2013, 280, 5994-6009.	4.7	19
88	Ancient-DNA reveals an Asian type of Mycobacterium leprae in medieval Scandinavia. Journal of Archaeological Science, 2013, 40, 465-470.	2.4	30
89	<i>IL12B</i> SNPs and copy number variation in <i>IL23R</i> gene associated with susceptibility to leprosy. Journal of Medical Genetics, 2013, 50, 34-42.	3.2	32
90	Linkage disequilibrium pattern and age-at-diagnosis are critical for replicating genetic associations across ethnic groups in leprosy. Human Genetics, 2013, 132, 107-116.	3.8	32
91	Molecular, ethno-spatial epidemiology of leprosy in China: Novel insights for tracing leprosy in endemic and non endemic provinces. Infection, Genetics and Evolution, 2013, 14, 361-368.	2.3	20
92	Vitamin B ₁₂ metabolism in <i>Mycobacterium tuberculosis</i> Future Microbiology, 2013, 8, 1405-1418.	2.0	58
93	Genetic tracking of mice and other bioproxies to infer human history. Trends in Genetics, 2013, 29, 298-308.	6.7	88
94	Mycobacterium leprae in Colombia described by SNP7614 in gyrA, two minisatellites and geography. Infection, Genetics and Evolution, 2013, 14, 375-382.	2.3	7
95	dUTPases, the unexplored family of signalling molecules. Current Opinion in Microbiology, 2013, 16, 163-170.	5.1	32
96	Rapid bacterial genome sequencing: methods and applications in clinical microbiology. Clinical Microbiology and Infection, 2013, 19, 803-813.	6.0	186
97	Single nucleotide polymorphisms typing of Mycobacterium leprae reveals focal transmission of leprosy in high endemic regions of India. Clinical Microbiology and Infection, 2013, 19, 1058-1062.	6.0	15

#	ARTICLE	IF	CITATIONS
98	Genome-Wide Comparison of Medieval and Modern <i>Mycobacterium leprae</i> . Science, 2013, 341, 179-183.	12.6	313
99	Characteristic mutations found in the ML0411 gene of Mycobacterium leprae isolated in Northeast Asian countries. Infection, Genetics and Evolution, 2013, 19, 200-204.	2.3	6
100	Toll-like Receptor 1 N248S Single-Nucleotide Polymorphism Is Associated With Leprosy Risk and Regulates Immune Activation During Mycobacterial Infection. Journal of Infectious Diseases, 2013, 208, 120-129.	4.0	51
101	HIV Infection Disrupts the Sympatric Host–Pathogen Relationship in Human Tuberculosis. PLoS Genetics, 2013, 9, e1003318.	3.5	78
102	Mycobacterium tuberculosis: Evolution, Host–Pathogen Interactions, and Implications for Tuberculosis Control. , 2013, , 111-146.		0
104	Severe Leprosy Reactions Due to Mycobacterium lepromatosis. American Journal of the Medical Sciences, 2013, 345, 65-69.	1.1	33
105	Detection and Strain Typing of Ancient Mycobacterium leprae from a Medieval Leprosy Hospital. PLoS ONE, 2013, 8, e62406.	2.5	44
106	LRRK2 and RIPK2 Variants in the NOD 2-Mediated Signaling Pathway Are Associated with Susceptibility to Mycobacterium leprae in Indian Populations. PLoS ONE, 2013, 8, e73103.	2.5	45
107	Genome sequence and analysis of Lactobacillus helveticus. Frontiers in Microbiology, 2013, 3, 435.	3.5	37
108	Phage Display and Synthetic Peptides as Promising Biotechnological Tools for the Serological Diagnosis of Leprosy. PLoS ONE, 2014, 9, e106222.	2.5	26
109	Structure and Evolution of Transcriptional Regulatory Networks. , 2014, , 1-16.		1
110	Genome-wide re-sequencing of multidrug-resistant Mycobacterium leprae Airaku-3. Clinical Microbiology and Infection, 2014, 20, 0619-0622.	6.0	18
111	Disrupted humanââ,¬â€œpathogen co-evolution: a model for disease. Frontiers in Genetics, 2014, 5, 290.	2.3	50
112	PCR-Based Techniques for Leprosy Diagnosis: From the Laboratory to the Clinic. PLoS Neglected Tropical Diseases, 2014, 8, e2655.	3.0	90
113	On the Age of Leprosy. PLoS Neglected Tropical Diseases, 2014, 8, e2544.	3.0	55
115	Analysis of the Leprosy Agents Mycobacterium leprae and Mycobacterium lepromatosis in Four Countries. American Journal of Clinical Pathology, 2014, 142, 524-532.	0.7	40
116	Limitations to estimating bacterial crossâ€species transmission using genetic and genomic markers: inferences from simulation modeling. Evolutionary Applications, 2014, 7, 774-787.	3.1	10
117	COV2HTML: A Visualization and Analysis Tool of Bacterial Next Generation Sequencing (NGS) Data for Postgenomics Life Scientists. OMICS A Journal of Integrative Biology, 2014, 18, 184-195.	2.0	35

#	Article	IF	CITATIONS
118	PARK2 and proinflammatory/anti-inflammatory cytokine gene interactions contribute to the susceptibility to leprosy: a case–control study of North Indian population. BMJ Open, 2014, 4, e004239.	1.9	16
119	Natural selection and infectious disease in human populations. Nature Reviews Genetics, 2014, 15, 379-393.	16.3	353
120	Single nucleotide polymorphism-based molecular typing of M. leprae from multicase families of leprosy patients and their surroundings to understand the transmission of leprosy. Clinical Microbiology and Infection, 2014, 20, 0142-0149.	6.0	25
121	Analysis of polymorphic sites in the promoter of the nitric oxide synthase 2 gene in Brazilian patients with leprosy. International Journal of Immunogenetics, 2014, 41, 231-235.	1.8	2
122	NOD2 and CCDC122-LACC1 genes are associated with leprosy susceptibility in Brazilians. Human Genetics, 2014, 133, 1525-1532.	3.8	48
123	Neglected Tropical Diseases - Middle East and North Africa. Neglected Tropical Diseases, 2014, , .	0.4	7
124	Phylogeny of the class Actinobacteria revisited in the light of complete genomes. The orders †Frankiales' and Micrococcales should be split into coherent entities: proposal of Frankiales ord. nov., Geodermatophilales ord. nov., Acidothermales ord. nov. and Nakamurellales ord. nov International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 3821-3832.	1.7	148
125	Identification of Primary Drug Resistance to Rifampin in Mycobacterium leprae Strains from Leprosy Patients in Amazonas State, Brazil. Journal of Clinical Microbiology, 2014, 52, 4359-4360.	3.9	16
126	Mycobacterium leprae genomes from a British medieval leprosy hospital: towards understanding an ancient epidemic. BMC Genomics, 2014, 15, 270.	2.8	60
127	Rabies, tetanus, leprosy, and malaria. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2014, 121, 1501-1520.	1.8	8
128	Socioâ€economic and environmental effects influencing the development of leprosy in Bahia, northâ€eastern Brazil. Tropical Medicine and International Health, 2014, 19, 1504-1514.	2.3	40
129	Common variants of OPA1 conferring genetic susceptibility to leprosy in Han Chinese from Southwest China. Journal of Dermatological Science, 2015, 80, 133-141.	1.9	12
131	Zoonotic Leprosy in the Southeastern United States. Emerging Infectious Diseases, 2015, 21, 2127-34.	4.3	100
132	Mycobacterium leprae (Leprosy)., 2015,, 2819-2831.e2.		4
133	Activation and cytokine profile of monocyte derived dendritic cells in leprosy: in vitro stimulation by sonicated Mycobacterium leprae induces decreased level of IL-12p70 in lepromatous leprosy. Memorias Do Instituto Oswaldo Cruz, 2015, 110, 655-661.	1.6	6
134	Identification of Immunotopes against <i>Mycobacterium leprae</i> as Immune Targets Using PhDTm- 12mer Phage Display Peptide Library. Tropical Journal of Pharmaceutical Research, 2015, 14, 1153.	0.3	19
135	Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Critical Reviews in Microbiology, 2015, 41, 508-519.	6.1	50
136	Ancient pathogen genomics: insights into timing and adaptation. Journal of Human Evolution, 2015, 79, 137-149.	2.6	60

#	Article	IF	CITATIONS
137	A migration-driven model for the historical spread of leprosy in medieval Eastern and Central Europe. Infection, Genetics and Evolution, 2015, 31, 250-256.	2.3	48
138	Whole Genome Comparisons Suggest Random Distribution of Mycobacterium ulcerans Genotypes in a Buruli Ulcer Endemic Region of Ghana. PLoS Neglected Tropical Diseases, 2015, 9, e0003681.	3.0	23
139	Draft Genome Sequence of New Leprosy Agent Mycobacterium lepromatosis. Genome Announcements, 2015, 3, .	0.8	19
140	Diversity and Origins of Human Infectious Diseases. , 2015, , 405-414.		6
141	Identification of functional candidates amongst hypothetical proteins of <i>Mycobacterium leprae</i> Br4923, a causative agent of leprosy. Genome, 2015, 58, 25-42.	2.0	16
142	The discovery, function and development of the variable number tandem repeats in differentMycobacteriumspecies. Critical Reviews in Microbiology, 2015, 42, 1-21.	6.1	8
143	Ancient DNA analysis – An established technique in charting the evolution of tuberculosis and leprosy. Tuberculosis, 2015, 95, S140-S144.	1.9	30
144	What has molecular epidemiology ever done for wildlife disease research? Past contributions and future directions. European Journal of Wildlife Research, 2015, 61, 1-16.	1.4	21
145	Comparative functional pan-genome analyses to build connections between genomic dynamics and phenotypic evolution in polycyclic aromatic hydrocarbon metabolism in the genus Mycobacterium. BMC Evolutionary Biology, 2015, 15, 21.	3.2	38
146	Insight into the evolution and origin of leprosy bacilli from the genome sequence of <i>Mycobacterium lepromatosis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4459-4464.	7.1	134
147	Update on the epidemiology, diagnosis, and treatment of leprosy. Médecine Et Maladies Infectieuses, 2015, 45, 383-393.	5.0	91
148	CMRegNet–An interspecies reference database for corynebacterial and mycobacterial regulatory networks. BMC Genomics, 2015, 16, 452.	2.8	5
149	Genotyping of Mycobacterium leprae strains from a region of high endemic leprosy prevalence in India. Infection, Genetics and Evolution, 2015, 36, 256-261.	2.3	20
150	Diffuse Lepromatous Leprosy Due to Mycobacterium lepromatosis in Quintana Roo, Mexico. Journal of Clinical Microbiology, 2015, 53, 3695-3698.	3.9	11
151	Molecular studies on ancient M. tuberculosis and M. leprae: methods of pathogen and host DNA analysis. European Journal of Clinical Microbiology and Infectious Diseases, 2015, 34, 1733-1749.	2.9	12
152	Parallel detection of ancient pathogens via array-based DNA capture. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20130375.	4.0	38
153	Genetics of leprosy: Expected and unexpected developments and perspectives. Clinics in Dermatology, 2015, 33, 99-107.	1.6	28
154	Lucio's leprosy: A clinical and therapeutic challenge. Clinics in Dermatology, 2015, 33, 66-78.	1.6	27

#	Article	IF	CITATIONS
155	Mycobacterium leprae. , 2015, , 1655-1668.		1
156	Presence of viable Mycobacterium leprae in environmental specimens around houses of leprosy patients. Indian Journal of Medical Microbiology, 2016, 34, 315-321.	0.8	30
157	Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules. , 2016, , 93-106.		0
158	Paleomicrobiology of Leprosy. , 2016, , 131-142.		1
159	Ancient Human Parasites in Ethnic Chinese Populations. Korean Journal of Parasitology, 2016, 54, 565-572.	1.3	35
160	A Quantitative Approach to Analyzing Genome Reductive Evolution Using Protein–Protein Interaction Networks: A Case Study of Mycobacterium leprae. Frontiers in Genetics, 2016, 7, 39.	2.3	11
161	Pauci- and Multibacillary Leprosy: Two Distinct, Genetically Neglected Diseases. PLoS Neglected Tropical Diseases, 2016, 10, e0004345.	3.0	57
162	Common variants in the PARL and PINK1 genes increase the risk to leprosy in Han Chinese from South China. Scientific Reports, 2016, 6, 37086.	3.3	15
163	Paleopathology of Human Infections: Old Bones, Antique Books, Ancient and Modern Molecules. Microbiology Spectrum, 2016, 4, .	3.0	8
164	Paleomicrobiology of Leprosy. Microbiology Spectrum, 2016, 4, .	3.0	6
166	The Rate and Spectrum of Spontaneous Mutations in <i>Mycobacterium smegmatis</i> , a Bacterium Naturally Devoid of the Postreplicative Mismatch Repair Pathway. G3: Genes, Genomes, Genetics, 2016, 6, 2157-2163.	1.8	48
167	Characterization of PAS domains in Frankia and selected Actinobacteria and their possible interaction with other co-domains for environmental adaptation. Symbiosis, 2016, 70, 69-78.	2.3	4
168	Neglected Tropical Bacterial Diseases. Topics in Medicinal Chemistry, 2016, , 169-244.	0.8	1
169	Genetic variants of the MAVS, MITA and MFN2 genes are not associated with leprosy in Han Chinese from Southwest China. Infection, Genetics and Evolution, 2016, 45, 105-110.	2.3	6
170	Transmission of Drug-Resistant Leprosy in Guinea-Conakry Detected Using Molecular Epidemiological Approaches: Table 1 Clinical Infectious Diseases, 2016, 63, 1482-1484.	5.8	25
171	Editorial Commentary: Drug-Resistance in Leprosy: Moving Toward Understanding the Scope of the Problem and How to Tackle It. Clinical Infectious Diseases, 2016, 63, 1485-1486.	5.8	2
172	Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. Microbiology Spectrum, 2016, 4, .	3.0	14
173	Genomic diversity in Mycobacterium leprae isolates from leprosy cases in South India. Infection, Genetics and Evolution, 2016, 45, 285-289.	2.3	7

#	Article	IF	CITATIONS
174	Early evidence for travel with infectious diseases along the Silk Road: Intestinal parasites from 2000 year-old personal hygiene sticks in a latrine at Xuanquanzhi Relay Station in China. Journal of Archaeological Science: Reports, 2016, 9, 758-764.	0.5	6
175	Unsolved matters in leprosy: a descriptive review and call for further research. Annals of Clinical Microbiology and Antimicrobials, 2016, 15, 33.	3.8	37
176	Red squirrels in the British Isles are infected with leprosy bacilli. Science, 2016, 354, 744-747.	12.6	138
177	Leprosy in red squirrels. Science, 2016, 354, 702-703.	12.6	5
179	Genetics of leprosy: Expectedâ€"and unexpectedâ€"developments and perspectives. Clinics in Dermatology, 2016, 34, 96-104.	1.6	14
180	The contribution of genomics to the study of Q fever. Future Microbiology, 2016, $11, 253-272$.	2.0	15
181	Integrative analyses of leprosy susceptibility genes indicate a common autoimmune profile. Journal of Dermatological Science, 2016, 82, 18-27.	1.9	22
182	Methodological and Clinical Aspects of the Molecular Epidemiology of Mycobacterium tuberculosis and Other Mycobacteria. Clinical Microbiology Reviews, 2016, 29, 239-290.	13.6	131
183	Genetics of Infectious and Inflammatory Diseases: Overlapping Discoveries from Association and Exome-Sequencing Studies. Annual Review of Immunology, 2017, 35, 1-30.	21.8	36
184	Proto-globalisation and biotic exchange in the Old World. , 0, , 349-408.		20
185	The globalisations of disease. , 0, , 494-520.		7
186	Host genetics in susceptibility to and severity of mycobacterial diseases. Tuberculosis, 2017, 106, 1-8.	1.9	12
187	Ninjurin 1 gene asp110ala genetic variants as a susceptibility factor in nerve damage leprosy patients of India. Meta Gene, 2017, 12, 18-21.	0.6	1
188	The mtDNA replication-related genes TFAM and POLG are associated with leprosy in Han Chinese from Southwest China. Journal of Dermatological Science, 2017, 88, 349-356.	1.9	8
190	Leprosy in a Lombard-Avar cemetery in central Italy (Campochiaro, Molise, 6th–8th century AD): ancient DNA evidence and demography. Annals of Human Biology, 2017, 44, 510-521.	1.0	1
191	Paléomicrobiologie de la tuberculose. Revue Francophone Des Laboratoires, 2017, 2017, 40-46.	0.0	0
192	Identification of novel genetic loci GAL3ST4 and CHGB involved in susceptibility to leprosy. Scientific Reports, 2017, 7, 16352.	3.3	3
194	Pathogen lineage-based genome-wide association study identified CD53 as susceptible locus in tuberculosis. Journal of Human Genetics, 2017, 62, 1015-1022.	2.3	45

#	Article	IF	CITATIONS
195	Microbes as Tracers of Past Human Demography and Migrations., 2017,, 141-165.		0
196	Positive Diagnosis of Ancient Leprosy and Tuberculosis Using Ancient DNA and Lipid Biomarkers. Diversity, 2017, 9, 46.	1.7	23
197	Early Human Migrations (ca. 13,000 Years Ago) or Postcontact Europeans for the Earliest Spread of Mycobacterium leprae and Mycobacterium lepromatosis to the Americas. Interdisciplinary Perspectives on Infectious Diseases, 2017, 2017, 1-8.	1.4	3
198	Natural Selection Associated With Infectious Diseases. , 2017, , 177-191.		2
199	Genomic divergence and cohesion in a species of pelagic freshwater bacteria. BMC Genomics, 2017, 18, 794.	2.8	14
200	Evaluation and Monitoring of Mycobacterium leprae Transmission in Household Contacts of Patients with Hansen's Disease in Colombia. PLoS Neglected Tropical Diseases, 2017, 11, e0005325.	3.0	34
201	Genotyping of Mycobacterium leprae for better understanding of leprosy transmission in Fortaleza, Northeastern Brazil. PLoS Neglected Tropical Diseases, 2017, 11, e0006117.	3.0	13
202	Whole genome sequencing distinguishes between relapse and reinfection in recurrent leprosy cases. PLoS Neglected Tropical Diseases, 2017, 11, e0005598.	3.0	35
204	Presence of Mycobacterium leprae genotype 4 in environmental waters in Northeast Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 2017, 50, 216-222.	0.9	16
205	Multiple introductions and recent spread of the emerging human pathogen <i>Mycobacterium ulcerans</i> across Africa. Genome Biology and Evolution, 2017, 9, evx003.	2.5	32
206	Differential growth of Mycobacterium leprae strains (SNP genotypes) in armadillos. Infection, Genetics and Evolution, 2018, 62, 20-26.	2.3	12
207	Characterization of the Antigenic Heterogeneity of Lipoarabinomannan, the Major Surface Glycolipid of <i>Mycobacterium tuberculosis</i> , and Complexity of Antibody Specificities toward This Antigen. Journal of Immunology, 2018, 200, 3053-3066.	0.8	58
208	Phylogenomics and antimicrobial resistance of the leprosy bacillus Mycobacterium leprae. Nature Communications, 2018, 9, 352.	12.8	95
209	Ancient DNA study reveals HLA susceptibility locus for leprosy in medieval Europeans. Nature Communications, 2018, 9, 1569.	12.8	67
210	Analysis of mutations in pncA reveals non-overlapping patterns among various lineages of Mycobacterium tuberculosis. Scientific Reports, 2018, 8, 4628.	3.3	5
212	Paleomicrobiology: a Snapshot of Ancient Microbes and Approaches to Forensic Microbiology. , 2018, , 63-90.		1
213	The Origin and Spread of Leprosy: Historical, Skeletal, and Molecular Data. Journal of Interdisciplinary History, 2018, 49, 367-395.	0.0	1
214	Leprosy at the edge of Europe—Biomolecular, isotopic and osteoarchaeological findings from medieval Ireland. PLoS ONE, 2018, 13, e0209495.	2.5	13

#	Article	IF	CITATIONS
215	Ticks as potential vectors of Mycobacterium leprae: Use of tick cell lines to culture the bacilli and generate transgenic strains. PLoS Neglected Tropical Diseases, 2018, 12, e0007001.	3.0	26
216	Polymorphisms in the TGFB1 and IL2RA genes are associated with clinical forms of leprosy in Brazilian population. Memorias Do Instituto Oswaldo Cruz, 2018, 113, e180274.	1.6	5
217	Enriched whole genome sequencing identified compensatory mutations in the RNA polymerase gene of rifampicin-resistant Mycobacterium leprae strains. Infection and Drug Resistance, 2018, Volume 11, 169-175.	2.7	6
218	Emerging Concepts of Adaptive Immunity in Leprosy. Frontiers in Immunology, 2018, 9, 604.	4.8	28
219	Meanings, measurements, and musings on the significance of patterns in human microbiome variation. Current Opinion in Genetics and Development, 2018, 53, 43-52.	3.3	5
220	The genome sequence of a SNP type 3K strain of <i>Mycobacterium leprae</i> isolated from a seventhâ€century Hungarian case of lepromatous leprosy. International Journal of Osteoarchaeology, 2018, 28, 439-447.	1.2	13
221	Genetic Susceptibility to Leprosy—From Classic Immune-Related Candidate Genes to Hypothesis-Free, Whole Genome Approaches. Frontiers in Immunology, 2018, 9, 1674.	4.8	21
222	Ancient genomes reveal a high diversity of Mycobacterium leprae in medieval Europe. PLoS Pathogens, 2018, 14, e1006997.	4.7	98
223	Archival, paleopathological and aDNA-based techniques in leprosy research and the case of Father Petrus Donders at the Leprosarium †Batavia', Suriname. International Journal of Paleopathology, 2019, 27, 1-8.	1.4	14
224	DNA gyrase could be a crucial regulatory factor for growth and survival of Mycobacterium leprae. Scientific Reports, 2019, 9, 10815.	3.3	4
225	The recombination-cold region as an epidemiological marker of recombinogenic opportunistic pathogen Mycobacterium avium. BMC Genomics, 2019, 20, 752.	2.8	7
226	Differential immunoglobulin and complement levels in leprosy prior to development of reversal reaction and erythema nodosum leprosum. PLoS Neglected Tropical Diseases, 2019, 13, e0007089.	3.0	15
228	Molecular epidemiology of locally acquired Hansen's disease in Central Florida. Journal of the American Academy of Dermatology, 2019, 80, 1789-1791.	1.2	2
230	Mycobacterium leprae's evolution and environmental adaptation. Acta Tropica, 2019, 197, 105041.	2.0	24
231	Tuberculosis and leprosy associated with historical human population movements in Europe and beyond – an overview based on mycobacterial ancient DNA. Annals of Human Biology, 2019, 46, 120-128.	1.0	23
232	The acceleration of melanoma in situ: A population-based study of melanoma incidence trends from Victoria, Australia, 1985-2015. Journal of the American Academy of Dermatology, 2019, 80, 1791-1793.	1.2	6
234	Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species. International Journal of Molecular Sciences, 2019, 20, 1032.	4.1	11
235	Detection of Mycobacterium leprae DNA in soil: multiple needles in the haystack. Scientific Reports, 2019, 9, 3165.	3.3	30

#	ARTICLE	IF	CITATIONS
236	A new Mycobacterium leprae dihydropteroate synthase variant (V39I) from Papua, Indonesia. Heliyon, 2019, 5, e01279.	3.2	7
237	The Distribution and Origins of Ancient Leprosy. , 2019, , .		0
238	Ancient Mycobacterium leprae genomes from the mediaeval sites of Chichester and Raunds in England. Journal of Archaeological Science, 2019, 112, 105035.	2.4	4
239	Rv2223c, an acid inducible carboxyl-esterase of <i>Mycobacterium tuberculosis</i> enhanced the growth and survival of <i>Mycobacterium smegmatis</i> . Future Microbiology, 2019, 14, 1397-1415.	2.0	6
240	Mycobacterial genomics and structural bioinformatics: opportunities and challenges in drug discovery. Emerging Microbes and Infections, 2019, 8, 109-118.	6.5	26
241	Detection of Mycobacterium leprae DNA from remains of a medieval individual, Amiens, France. Clinical Microbiology and Infection, 2020, 26, 127-129.	6.0	2
242	Features of the biochemistry of Mycobacterium smegmatis, as a possible model for Mycobacterium tuberculosis. Journal of Infection and Public Health, 2020, 13, 1255-1264.	4.1	60
243	Molecular epidemiology of leprosy: An update. Infection, Genetics and Evolution, 2020, 86, 104581.	2.3	22
244	Real-time PCR-based quantitation of viable Mycobacterium leprae strain from clinical samples and environmental sources and its genotype in multi-case leprosy families of India. European Journal of Clinical Microbiology and Infectious Diseases, 2020, 39, 2045-2055.	2.9	11
245	Immunology of leprosy. International Reviews of Immunology, 2022, 41, 72-83.	3.3	20
246	Evolutionary history of <i>Mycobacterium leprae </i> in the Pacific Islands. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190582.	4.0	12
247	Multi-omic detection of <i>Mycobacterium leprae </i> in archaeological human dental calculus. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190584.	4.0	31
248	2000-year-old pathogen genomes reconstructed from metagenomic analysis of Egyptian mummified individuals. BMC Biology, 2020, 18, 108.	3.8	29
249	Leprosy Transmission in Amazonian Countries: Current Status and Future Trends. Current Tropical Medicine Reports, 2020, 7, 79-91.	3.7	13
250	Molecular epidemiology and transmission dynamics of leprosy among multicase families and case-contact pairs. International Journal of Infectious Diseases, 2020, 96, 172-179.	3.3	3
251	Population Genomics of Mycobacterium leprae Reveals a New Genotype in Madagascar and the Comoros. Frontiers in Microbiology, 2020, 11, 711.	3.5	15
252	Palaeomicrobiology: Application of Ancient DNA Sequencing to Better Understand Bacterial Genome Evolution and Adaptation. Frontiers in Ecology and Evolution, 2020, 8, .	2.2	19
253	Mycobacterium lepromatosis genome exhibits unusually high CpG dinucleotide content and selection is key force in shaping codon usage. Infection, Genetics and Evolution, 2020, 84, 104399.	2.3	21

#	Article	IF	CITATIONS
254	Genotyping of Mycobacterium leprae for understanding the distribution and transmission of leprosy in endemic provinces of China. International Journal of Infectious Diseases, 2020, 98, 6-13.	3.3	9
255	Genomic Characterization of Mycobacterium leprae to Explore Transmission Patterns Identifies New Subtype in Bangladesh. Frontiers in Microbiology, 2020, 11, 1220.	3.5	20
256	Key Transitions in the Evolution of Rapid and Slow Growing Mycobacteria Identified by Comparative Genomics. Frontiers in Microbiology, 2019, 10, 3019.	3.5	37
257	Metagenomics of Imported Multidrug-Resistant Mycobacterium leprae, Saudi Arabia, 2017. Emerging Infectious Diseases, 2020, 26, 615-617.	4.3	3
258	The Many Hosts of Mycobacteria 8 (MHM8): A conference report. Tuberculosis, 2020, 121, 101914.	1.9	6
260	Surveillance of Leprosy in Kiribati, 1935–2017. Emerging Infectious Diseases, 2020, 26, 833-840.	4.3	8
261	Adding MASP1 to the lectin pathwayâ€"Leprosy association puzzle: Hints from gene polymorphisms and protein levels. PLoS Neglected Tropical Diseases, 2020, 14, e0007534.	3.0	7
262	Insights from ancient DNA analysis of Egyptian human mummies: clues to disease and kinship. Human Molecular Genetics, 2021, 30, R24-R28.	2.9	8
263	Paleopathology of Infectious Human Diseases. , 2021, , 1-16.		0
264	Insights into Mycobacterium leprae Proteomics and Biomarkers—An Overview. Proteomes, 2021, 9, 7.	3.5	6
266	Does Mycobacterium tuberculosis var. bovis Survival in the Environment Confound Bovine Tuberculosis Control and Eradication? A Literature Review. Veterinary Medicine International, 2021, 2021, 1-19.	1.5	34
267	Genetics of Host Protection against Helicobacter pylori Infections. International Journal of Molecular Sciences, 2021, 22, 3192.	4.1	7
268	Factors Influencing Leprosy Incidence: A Comprehensive Analysis of Observations in Wenshan of China, Nepal, and Other Global Epidemic Areas. Frontiers in Public Health, 2021, 9, 666307.	2.7	9
269	Analysis of a medieval strain of mycobacterium leprae from the deserted medieval village site of Wharram Percy, Yorkshire, UK. Journal of Archaeological Science: Reports, 2021, 37, 103015.	0.5	2
270	In vitro activity of SPR719 against Mycobacterium ulcerans, Mycobacterium marinum and Mycobacterium chimaera. PLoS Neglected Tropical Diseases, 2021, 15, e0009636.	3.0	6
271	Strategies for drug target identification in Mycobacterium leprae. Drug Discovery Today, 2021, 26, 1569-1573.	6.4	11
272	Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211252.	2.6	14
273	Could Egyptian mummies tell us more about the history of coronaviruses?. Lancet Microbe, The, 2021, 2, e425.	7.3	2

#	Article	IF	CITATIONS
274	Simultaneous Determination of Mycobacterium leprae Drug Resistance and Single-Nucleotide Polymorphism Genotype by Use of Nested Multiplex PCR with Amplicon Sequencing. Journal of Clinical Microbiology, 2021, 59, e0081421.	3.9	8
275	A 3,000-year-old, basal S. enterica lineage from Bronze Age Xinjiang suggests spread along the Proto-Silk Road. PLoS Pathogens, 2021, 17, e1009886.	4.7	7
276	Paleopathology of Infectious Human Diseases. , 2021, , 1-16.		0
277	Leprosy in pre-Norman Suffolk, UK: biomolecular and geochemical analysis of the woman from Hoxne. Journal of Medical Microbiology, 2017, 66, 1640-1649.	1.8	12
278	The past, present and future of ancient bacterial DNA. Microbial Genomics, 2020, 6, .	2.0	12
279	Diguanylate cyclase activity of the Mycobacterium leprae T cell antigen ML1419c. Microbiology (United) Tj ETQq1	1.8.7843	14 rgBT /Ov
282	Human Genetic Ancestral Composition Correlates with the Origin of Mycobacterium leprae Strains in a Leprosy Endemic Population. PLoS Neglected Tropical Diseases, 2015, 9, e0004045.	3.0	18
283	Leprosy Drug Resistance Surveillance in Colombia: The Experience of a Sentinel Country. PLoS Neglected Tropical Diseases, 2016, 10, e0005041.	3.0	27
284	Investigation of a Medieval Pilgrim Burial Excavated from the Leprosarium of St Mary Magdalen Winchester, UK. PLoS Neglected Tropical Diseases, 2017, 11, e0005186.	3.0	21
285	Mycobacterium leprae genomes from naturally infected nonhuman primates. PLoS Neglected Tropical Diseases, 2018, 12, e0006190.	3.0	50
286	Molecular Exploration of the First-Century Tomb of the Shroud in Akeldama, Jerusalem. PLoS ONE, 2009, 4, e8319.	2.5	49
287	A Framework for Classification of Prokaryotic Protein Kinases. PLoS ONE, 2010, 5, e10608.	2.5	20
288	SNP/RD Typing of Mycobacterium tuberculosis Beijing Strains Reveals Local and Worldwide Disseminated Clonal Complexes. PLoS ONE, 2011, 6, e28365.	2.5	26
289	Synonymous Codon Ordering: A Subtle but Prevalent Strategy of Bacteria to Improve Translational Efficiency. PLoS ONE, 2012, 7, e33547.	2.5	45
290	HTSstation: A Web Application and Open-Access Libraries for High-Throughput Sequencing Data Analysis. PLoS ONE, 2014, 9, e85879.	2.5	93
291	Paleopathological Evidence and Detection of Mycobacterium leprae DNA from Archaeological Skeletal Remains of Nabe-kaburi (Head-Covered with Iron Pots) Burials in Japan. PLoS ONE, 2014, 9, e88356.	2.5	12
292	Osteological, Biomolecular and Geochemical Examination of an Early Anglo-Saxon Case of Lepromatous Leprosy. PLoS ONE, 2015, 10, e0124282.	2.5	35
293	Characterization of Mycobacterium leprae Genotypes in China—Identification of a New Polymorphism C251T in the 16S rRNA Gene. PLoS ONE, 2015, 10, e0133268.	2.5	7

#	Article	IF	CITATIONS
294	Possible cases of leprosy from the Late Copper Age (3780-3650 cal BC) in Hungary. PLoS ONE, 2017, 12, e0185966.	2.5	16
295	A Systems Level Comparison of Mycobacterium tuberculosis, Mycobacterium leprae and Mycobacterium smegmatis Based on Functional Interaction Network Analysis. Journal of Bacteriology & Parasitology, 2013, 04, .	0.2	9
296	What is the evidence that the putative Mycobacterium lepromatosis species causes diffuse lepromatous leprosy?. Leprosy Review, 2011, 82, 205-209.	0.3	8
297	Biomarkers for Leprosy: would you prefer T (cells)?. Leprosy Review, 2013, 84, 3-12.	0.3	26
298	Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biology, 2021, 19, 220.	3.8	14
299	Leprosy in wild chimpanzees. Nature, 2021, 598, 652-656.	27.8	30
300	The Genomics of Leprosy. Advances in Microbial Ecology, 2012, , 39-49.	0.1	0
301	Genotyping of Mycobacterium leprae in Myanmar and supposed transmission mode. Japanese Journal of Leprosy, 2012, 81, 191-198.	0.3	1
303	The Origin of Human Pathogens. , 2014, , 3-11.		0
304	Molecular-biological Methods of Research in Laboratory Diagnostics of Leprosy: Epidemiological Analysis, Genetic Determinants of Resistance to Antimicrobial Drugs. Vestnik Dermatologii I Venerologii, 2017, 93, 34-40.	0.6	2
309	Mycobacterium leprae Infection in Ticks and Tick-Derived Cells. Frontiers in Microbiology, 2021, 12, 761420.	3.5	7
310	Polymorphisms in mitochondrial ribosomal protein S5 (MRPS5) are associated with leprosy risk in Chinese. PLoS Neglected Tropical Diseases, 2020, 14, e0008883.	3.0	2
311	Reconsidering the Early History of Leprosy in Light of Advances in Palaeopathology. , 2020, , 85-103.		0
312	Leprosy in a Medieval Cemetery from Sudanese Nubia (Mouweiss, Shendi Area, Sudan). Bulletins Et Memoires De La Societe D'Anthropologie De Paris, 2020, 32, 105-120.	0.1	0
313	Characterization of New Leprosy Cases in Northeast of Iran within the Last 15 Years. Iranian Journal of Medical Sciences, 2018, 43, 416-420.	0.4	5
314	A probable case of leprosy from colonial period St. Vincent and the Grenadines, Southeastern Caribbean. International Journal of Paleopathology, 2022, 36, 7-13.	1.4	0
316	Đ"ĐμĐ½Đ¾Đ¾Đ,аа Đ՜Ñ€ĐμĐ²Đ½Đ,Ñ Đ¿Đ°Ñ,Đ¾Đ³ĐμĐ½Đ¾Đ²: Đ¿ĐμÑ€Đ²Ñ‹Đμ уÑĐ¿ĐμÑÐ, Ð, пĐ	Ġ ţ Ġ ĬĎ ⊋ Ñμ(μĐθÑ,Đ¸Đ²Ñ‹.
317	Creating communities of care: Sex estimation and mobility histories of adolescents buried in the cemetery of St. Mary Magdalen leprosarium (Winchester, England). American Journal of Biological Anthropology, 2022, 178, 108-123.	1.1	4

#	ARTICLE	IF	Citations
318	Genomics of Ancient Pathogens: First Advances and Prospects. Biochemistry (Moscow), 2022, 87, 242-258.	1.5	3
319	Leprosy: clinical and immunopathological characteristics. Anais Brasileiros De Dermatologia, 2022, 97, 338-347.	1.1	15
320	Mycobacterium leprae: A historical study on the origins of leprosy and its social stigma. Infezioni in Medicina, 2021, 29, 623-632.	1.1	3
332	Existence of viable Mycobacterium leprae in natural environment and its genetic profiling in a leprosy endemic region. Frontiers in Tropical Diseases, 0, 3, .	1.4	0
333	Leprosy Caused by <i>Mycobacterium lepromatosis </i> . American Journal of Clinical Pathology, 2022, 158, 678-686.	0.7	2
334	Evidente—a visual analytics tool for data enrichment in SNP-based phylogenetic trees. Bioinformatics Advances, 2022, 2, .	2.4	1
335	Pathogenicity and virulence of <i>Mycobacterium leprae</i> . Virulence, 2022, 13, 1985-2011.	4.4	12
336	Immunopathogenesis of Leprosy: A Model for T Cell Anergy. EMJ Dermatology, 0, , 95-101.	0.0	4
337	Climate change, human health, and resilience in the Holocene. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	14
338	Paleopathology of Infectious Human Diseases. , 2023, , 347-362.		0
339	Genetic diversity of Mycobacterium leprae in the state of $S\tilde{A}$ £0 Paulo, an area of low-leprosy incidence in Brazil. Revista Da Sociedade Brasileira De Medicina Tropical, 0, 56, .	0.9	0
341	Lepra: enfermedad milenaria y actual. latreia, 2011, 24, .	0.1	2
342	<i>Mycobacterium leprae</i> in Armadillo Tissues from Museum Collections, United States. Emerging Infectious Diseases, 2023, 29, 622-626.	4.3	0
343	Antimicrobial resistance and genotyping of Mycobacterium leprae in Venezuela. Frontiers in Tropical Diseases, 0, 4, .	1.4	0
344	Leprosy in Eastern Siberia in the 19th $\hat{a}\in$ " early 20th centuries: theories of occurrence, prevalence and elements of quarantine measures. Kazan Medical Journal, 0, , .	0.2	0
345	The Bioarchaeology of Leprosy: Learning from the Past. , 2018, , .		2
346	Genomics Insights into the Biology and Evolution of Leprosy Bacilli. , 2018, , .		0
347	Epidemiology of Leprosy. , 2016, , .		2

#	Article	IF	CITATIONS
348	Rodent Models in Leprosy Research. , 2020, , .		1
349	Hi-plex deep amplicon sequencing for identification, high-resolution genotyping and multidrug resistance prediction of Mycobacterium leprae directly from patient biopsies by using Deeplex Myc-Lep. EBioMedicine, 2023, 93, 104649.	6.1	1
350	The Origin, Evolution and History of Leprosy Through a Palaeopathological Lens., 2023,, 23-33.		0
351	次世代ã,•ãf¼ã,±ãf³ã,•ãf³ã,°è§£æžã,'ä½μ用ã⊷ãŸNested Multiplex PCR法ã«ã,ˆã,‹ã€ã,‰ã•¸èŒã®è−¬å%	₀ ë∈e€§ãŠã,^∂	³å മ∕åå¥ã®a⊵
352	Multiplex PCR-based RFLP assay for early identification of prevalent Mycobacterium leprae genotypes. Diagnostic Microbiology and Infectious Disease, 2023, 107, 116084.	1.8	1
353	Intestinal Parasites at the Xuanquanzhi Relay Station on the Silk Road 2000ÂYears Ago. Parasitology Research Monographs, 2023, , 131-139.	0.3	0
354	How do monomorphic bacteria evolve? The Mycobacterium tuberculosis complex and the awkward population genetics of extreme clonality. , 0, 3 , .		0
355	Advances in the pathogenic, genetic and immunological studies of leprosy. , 2024, 2, 6-17.		0
356	Origin and spread of leprosy in Suriname. A historical and biomedical study. Frontiers in Tropical Diseases, 0, 4, .	1.4	0
357	Migration in French Guiana: Implications in health and infectious diseases. Travel Medicine and Infectious Disease, 2024, 57, 102677.	3.0	0
358	Challenges Experienced and Observed during the Implementation of Leprosy Strategies, Sidama Region, Southern Ethiopia: An inductive thematic analysis of qualitative study among health professionals who working with leprosy programs. PLoS Neglected Tropical Diseases, 2023, 17, e0011794.	3.0	0
359	New threats from an old foe: Evaluating the risk to the blood supply due to increasing incidence and endemicity of leprosy in the United States. Transfusion and Apheresis Science, 2024, 63, 103877.	1.0	0
360	Mycobacterium leprae and beyond. , 2024, , 1585-1602.		0