Transfection of small RNAs globally perturbs gene regul

Nature Biotechnology 27, 549-555

DOI: 10.1038/nbt.1543

Citation Report

#	Article	IF	CITATIONS
1	Annealing siRNAs to Produce siRNA Duplexes. Cold Spring Harbor Protocols, 2006, 2006, pdb.prot4340.	0.2	7
2	Identification of Keratinocyte Growth Factor as a Target of microRNA-155 in Lung Fibroblasts: Implication in Epithelial-Mesenchymal Interactions. PLoS ONE, 2009, 4, e6718.	1.1	192
3	Chronic Reduction of the Cytosolic or Mitochondrial NAD(P)-malic Enzyme Does Not Affect Insulin Secretion in a Rat Insulinoma Cell Line. Journal of Biological Chemistry, 2009, 284, 35359-35367.	1.6	26
4	Relative contribution of sequence and structure features to the mRNA binding of Argonaute/EIF2C–miRNA complexes and the degradation of miRNA targets. Genome Research, 2009, 19, 2009-2020.	2.4	88
5	Conserved Expression Patterns Predict microRNA Targets. PLoS Computational Biology, 2009, 5, e1000513.	1.5	49
6	microRNA Regulation of Synaptic Plasticity. NeuroMolecular Medicine, 2009, 11, 133-140.	1.8	108
7	Argonaute HITS-CLIP decodes microRNA–mRNA interaction maps. Nature, 2009, 460, 479-486.	13.7	1,651
9	Leveraging therapeutic potential of multi-targeted siRNA inhibitors. Future Medicinal Chemistry, 2009, 1, 1671-1681.	1.1	9
10	miRNAs and cancer: New research developments and potential clinical applications. Cancer Biology and Therapy, 2009, 8, 2317-2322.	1.5	30
11	Lentiviral Delivery of RNAi Effectors Against HIV-1. Current Topics in Medicinal Chemistry, 2009, 9, 1130-1143.	1.0	21
12	Systemic Delivery and Quantification of Unformulated Interfering RNAs In Vivo. Current Topics in Medicinal Chemistry, 2009, 9, 1117-1129.	1.0	16
13	Regulation of fibrinogen production by microRNAs. Blood, 2010, 116, 2608-2615.	0.6	93
14	A llama-derived gelsolin single-domain antibody blocks gelsolin–G-actin interaction. Cellular and Molecular Life Sciences, 2010, 67, 1519-1535.	2.4	75
15	Defining Larger Roles for "Tiny―RNA Molecules: Role of miRNAs in Neurodegeneration Research. Journal of NeuroImmune Pharmacology, 2010, 5, 63-69.	2.1	22
16	RNA interference by nanofiber-based siRNA delivery system. Journal of Controlled Release, 2010, 144, 203-212.	4.8	128
17	Pharmacological studies of the mechanism and function of interleukin- $1\hat{i}^2$ -induced miRNA-146a expression in primary human airway smooth muscle. Respiratory Research, 2010, 11, 68.	1.4	74
18	High-throughput experimental studies to identify miRNA targets directly, with special focus on the mammalian brain. Brain Research, 2010, 1338, 122-130.	1.1	20
19	miRâ€181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines. International Journal of Cancer, 2010, 127, 2520-2529.	2.3	266

#	ARTICLE	IF	CITATIONS
20	Delivery of Oligonucleotides and Analogues: The Oligonucleotide Conjugateâ€Based Approach. ChemBioChem, 2010, 11, 1493-1500.	1.3	23
21	A status report on RNAi therapeutics. Silence: A Journal of RNA Regulation, 2010, 1, 14.	8.0	269
22	MicroRNA assassins: factors that regulate the disappearance of miRNAs. Nature Structural and Molecular Biology, 2010, 17, 5-10.	3.6	233
23	Targeting of mRNAs by multiple miRNAs: the next step. Oncogene, 2010, 29, 2161-2164.	2.6	265
24	Recognizing and avoiding siRNA off-target effects for target identification and therapeutic application. Nature Reviews Drug Discovery, 2010, 9, 57-67.	21.5	838
25	Evaluation and application of a luciferase fusion system for rapidin vivoanalysis of RNAi targets and constructs in plants. Plant Biotechnology Journal, 2010, 8, 465-475.	4.1	8
26	The optimal concentration of siRNA for gene silencing in primary cultured astrocytes and microglial cells of rats. Korean Journal of Anesthesiology, 2010, 59, 403.	0.9	15
27	Quantitative evaluation of siRNA delivery in vivo. Rna, 2010, 16, 2553-2563.	1.6	66
28	Sequence-non-specific effects of RNA interference triggers and microRNA regulators. Nucleic Acids Research, 2010, 38, 1-16.	6.5	485
29	Predicting the target genes of intronic microRNAs using large-scale gene expression data. , 2010, 2010, 791-4.		2
30	MicroRNA, mRNA, and protein expression link development and aging in human and macaque brain. Genome Research, 2010, 20, 1207-1218.	2.4	283
31	Biomolecular engineering of intracellular switches in eukaryotes. Journal of Drug Delivery Science and Technology, 2010, 20, 163-169.	1.4	4
32	MicroRNA Regulation of IFN- \hat{l}^2 Protein Expression: Rapid and Sensitive Modulation of the Innate Immune Response. Journal of Immunology, 2010, 184, 2369-2376.	0.4	167
33	A two-step site and mRNA-level model for predicting microRNA targets. BMC Bioinformatics, 2010, 11, 612.	1.2	15
35	mRNA turnover rate limits siRNA and microRNA efficacy. Molecular Systems Biology, 2010, 6, 433.	3.2	94
36	In vivo efficacy and off-target effects of Locked Nucleic Acid (LNA) and Unlocked Nucleic Acid (UNA) modified siRNA and small internally segmented interfering RNA (sisiRNA) in mice bearing human tumor xenografts. Artificial DNA, PNA & XNA, 2010, 1, 36-44.	1.4	38
37	Signatures of RNA binding proteins globally coupled to effective microRNA target sites. Genome Research, 2010, 20, 1010-1019.	2.4	102
38	MicroRNases and the Regulated Degradation of Mature Animal miRNAs. Advances in Experimental Medicine and Biology, 2010, 700, 140-155.	0.8	25

#	Article	IF	Citations
39	siRNAs as potential drugs. Drug Discovery Today: Technologies, 2010, 7, e125-e130.	4.0	5
40	Target mRNA abundance dilutes microRNA and siRNA activity. Molecular Systems Biology, 2010, 6, 363.	3.2	299
41	Anti-Argonaute RIP-Chip shows that miRNA transfections alter global patterns of mRNA recruitment to microribonucleoprotein complexes. Rna, 2010, 16, 394-404.	1.6	91
42	Identification of sequence features that predict competition potency of siRNAs. Biochemical and Biophysical Research Communications, 2010, 398, 92-97.	1.0	6
43	Desperately seeking microRNA targets. Nature Structural and Molecular Biology, 2010, 17, 1169-1174.	3.6	456
44	Dual-targeting siRNAs. Rna, 2010, 16, 1275-1284.	1.6	19
45	Intelligent nucleic acid delivery systems based on stimuli-responsive polymers. Soft Matter, 2010, 6, 835-848.	1.2	91
46	Comprehensive modeling of microRNA targets predicts functional non-conserved and non-canonical sites. Genome Biology, 2010, 11, R90.	13.9	1,478
47	The Regulatory Activities of Plant MicroRNAs: A More Dynamic Perspective. Plant Physiology, 2011, 157, 1583-1595.	2.3	92
48	Vigilance and Validation: Keys to Success in RNAi Screening. ACS Chemical Biology, 2011, 6, 47-60.	1.6	110
50	Experimental strategies for microRNA target identification. Nucleic Acids Research, 2011, 39, 6845-6853.	6.5	493
52	The Emerging Role of microRNAs in Adult Stem Cells. , 2011, , 57-94.		1
53	Therapeutic Oligonucleotides. Methods in Molecular Biology, 2011, 764, 1-15.	0.4	65
54	Systems Biology Reveals MicroRNA-Mediated Gene Regulation. Frontiers in Genetics, 2011, 2, 29.	1.1	28
55	Computational Prediction of Intronic microRNA Targets using Host Gene Expression Reveals Novel Regulatory Mechanisms. PLoS ONE, 2011, 6, e19312.	1.1	34
56	RNA interference in the clinic: challenges and future directions. Nature Reviews Cancer, 2011, 11, 59-67.	12.8	729
57	Disturbance of the microRNA pathway by commonly used lentiviral shRNA libraries limits the application for screening host factors involved in hepatitis C virus infection. FEBS Letters, 2011, 585, 1025-1030.	1.3	25
58	Subcellular Fate and Off-Target Effects of siRNA, shRNA, and miRNA. Pharmaceutical Research, 2011, 28, 2996-3015.	1.7	169

#	Article	IF	Citations
59	Anti-tumor effects of fibroblast growth factor-binding protein (FGF-BP) knockdown in colon carcinoma. Molecular Cancer, 2011, 10, 144.	7.9	29
60	Modeling RNA interference in mammalian cells. BMC Systems Biology, 2011, 5, 19.	3.0	48
61	Off-target effects dominate a large-scale RNAi screen for modulators of the TGF- \hat{l}^2 pathway and reveal microRNA regulation of TGFBR2. Silence: A Journal of RNA Regulation, 2011, 2, 3.	8.0	78
62	The dose can make the poison: lessons learned from adverse in vivo toxicities caused by RNAi overexpression. Silence: A Journal of RNA Regulation, 2011, 2, 8.	8.0	65
63	miREE: miRNA recognition elements ensemble. BMC Bioinformatics, 2011, 12, 454.	1.2	31
64	When Cellular Networks Run Out of Control. Progress in Molecular Biology and Translational Science, 2011, 102, 165-242.	0.9	15
65	Data Integration in Functional Analysis of MicroRNAs. Current Bioinformatics, 2011, 6, 462-472.	0.7	6
66	R2D2 Organizes Small Regulatory RNA Pathways in <i>Drosophila^{â^‡â€}</i> . Molecular and Cellular Biology, 2011, 31, 884-896.	1.1	57
67	RNAi in Xenopus: look before you leap. Genes and Development, 2011, 25, 1105-1108.	2.7	2
68	Limiting Ago protein restricts RNAi and microRNA biogenesis during early development in <i>Xenopus laevis</i> . Genes and Development, 2011, 25, 1121-1131.	2.7	79
69	RNA interference in mammals: behind the screen. Briefings in Functional Genomics, 2011, 10, 215-226.	1.3	27
70	Role for miR-204 in human pulmonary arterial hypertension. Journal of Experimental Medicine, 2011, 208, 535-548.	4.2	487
71	Disruption of small RNA signaling caused by competition for Hfq. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1110-1115.	3.3	125
72	A Foamy Virus Vector System for Stable and Efficient RNAi Expression in Mammalian Cells. Human Gene Therapy, 2011, 22, 1293-1303.	1.4	2
73	Constitutive Expression of Short Hairpin RNAin VivoTriggers Buildup of Mature Hairpin Molecules. Human Gene Therapy, 2011, 22, 1483-1497.	1.4	11
74	Enhanced specificity of HPV16 E6E7 siRNA by RNA–DNA chimera modification. Cancer Gene Therapy, 2011, 18, 587-597.	2.2	15
75	Structural Diversity Repertoire of Gene Silencing Small Interfering RNAs. Nucleic Acid Therapeutics, 2011, 21, 125-131.	2.0	24
76	Widespread regulatory activity of vertebrate microRNA* species. Rna, 2011, 17, 312-326.	1.6	293

#	ARTICLE	IF	Citations
77	Quantitative Prediction of miRNA-mRNA Interaction Based on Equilibrium Concentrations. PLoS Computational Biology, 2011, 7, e1001090.	1.5	72
78	Neurophysiological Defects and Neuronal Gene Deregulation in Drosophila mir-124 Mutants. PLoS Genetics, 2012, 8, e1002515.	1.5	48
79	EBV and human microRNAs co-target oncogenic and apoptotic viral and human genes during latency. EMBO Journal, 2012, 31, 2207-2221.	3.5	268
80	Novel Modeling of Combinatorial miRNA Targeting Identifies SNP with Potential Role in Bone Density. PLoS Computational Biology, 2012, 8, e1002830.	1.5	38
81	RNA therapy for polyglutamine neurodegenerative diseases. Expert Reviews in Molecular Medicine, 2012, 14, e3.	1.6	13
82	Development of Therapeutic-Grade Small Interfering RNAs by Chemical Engineering. Frontiers in Genetics, 2012, 3, 154.	1.1	82
83	Antiviral Effects of Small Interfering RNA Simultaneously Inducing RNA Interference and Type 1 Interferon in Coxsackievirus Myocarditis. Antimicrobial Agents and Chemotherapy, 2012, 56, 3516-3523.	1.4	8
84	Single base mismatches in the mRNA target site allow specific seed region-mediated off-target binding of siRNA targeting human coagulation factor 7. RNA Biology, 2012, 9, 87-97.	1.5	2
85	Targeting MicroRNA Targets. Circulation Research, 2012, 111, 506-508.	2.0	12
86	Induction of Specific MicroRNAs Inhibits Cutaneous Wound Healing. Journal of Biological Chemistry, 2012, 287, 29324-29335.	1.6	118
87	Sustained miRNA-mediated Knockdown of Mutant AAT With Simultaneous Augmentation of Wild-type AAT Has Minimal Effect on Global Liver miRNA Profiles. Molecular Therapy, 2012, 20, 590-600.	3.7	105
88	UNCOVER CONTEXT-SPECIFIC GENE REGULATION BY TRANSCRIPTION FACTORS AND microRNAs USING BAYESIAN SPARSE NONNEGATIVE FACTOR REGRESSION. Journal of Biological Systems, 2012, 20, 377-402.	0.5	1
89	Specific Inhibition of SRC Kinase Impairs Malignant Glioma Growth In Vitro and In Vivo. Molecular Therapy - Nucleic Acids, 2012, 1, e19.	2.3	6
90	Association of Argonaute proteins and microRNAs can occur after cell lysis. Rna, 2012, 18, 1581-1585.	1.6	74
91	siRNA off-target effects in genome-wide screens identify signaling pathway members. Scientific Reports, 2012, 2, 428.	1.6	59
92	The microRNA-30 family targets DLL4 to modulate endothelial cell behavior during angiogenesis. Blood, 2012, 120, 5063-5072.	0.6	163
93	One Decade of Development and Evolution of MicroRNA Target Prediction Algorithms. Genomics, Proteomics and Bioinformatics, 2012, 10, 254-263.	3.0	42
94	Oral delivery of small RNA and DNA. Journal of Controlled Release, 2012, 162, 438-445.	4.8	65

#	Article	lF	Citations
95	Specific alterations of the microRNA transcriptome and global network structure in colorectal cancer after treatment with MAPK/ERK inhibitors. Journal of Molecular Medicine, 2012, 90, 1421-1438.	1.7	82
96	The miR-143/-145 cluster regulates plasminogen activator inhibitor-1 in bladder cancer. British Journal of Cancer, 2012, 106, 366-374.	2.9	106
97	Delivery of AP- $2\hat{l}\pm$ siRNA into cultured bovine trophoblast cells by electroporation repressed key placenta-specific gene expression. Gene, 2012, 499, 169-175.	1.0	2
98	The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated. BMC Medical Genomics, 2012, 5, 33.	0.7	30
99	Alternative RISC assembly: Binding and repression of microRNA–mRNA duplexes by human Ago proteins. Rna, 2012, 18, 2041-2055.	1.6	108
100	The Business of RNAi Therapeutics in 2012. Molecular Therapy - Nucleic Acids, 2012, 1, e8.	2.3	84
101	Polycation-based nanoparticle delivery of RNAi therapeutics: Adverse effects and solutions. Advanced Drug Delivery Reviews, 2012, 64, 1717-1729.	6.6	136
102	RNAi-based nanomedicines for targeted personalized therapy. Advanced Drug Delivery Reviews, 2012, 64, 1508-1521.	6.6	147
103	Competition between Small RNAs: A Quantitative View. Biophysical Journal, 2012, 102, 1712-1721.	0.2	41
104	siRNA as a conventional drug in the clinic? Challenges and current technologies. Drug Discovery Today: Technologies, 2012, 9, e167-e173.	4.0	10
105	Dihydropyrimidine dehydrogenase (DPD) expression is negatively regulated by certain microRNAs in human lung tissues. Lung Cancer, 2012, 77, 16-23.	0.9	58
106	A competitive cell growth assay for the detection of subtle effects of gene transduction on cell proliferation. Gene Therapy, 2012, 19, 1058-1064.	2.3	47
107	An alternative mode of microRNA target recognition. Nature Structural and Molecular Biology, 2012, 19, 321-327.	3.6	308
108	Developing microRNA Therapeutics: Approaching the Unique Complexities. Nucleic Acid Therapeutics, 2012, 22, 213-225.	2.0	52
109	The Expression of microRNA and microRNA Clusters in the Aging Heart. PLoS ONE, 2012, 7, e34688.	1.1	100
110	The mir-51 Family of microRNAs Functions in Diverse Regulatory Pathways in Caenorhabditis elegans. PLoS ONE, 2012, 7, e37185.	1.1	21
111	Silencing disease genes in the laboratory and the clinic. Journal of Pathology, 2012, 226, 365-379.	2.1	349
112	Action and Reaction: The Biological Response to siRNA and Its Delivery Vehicles. Molecular Therapy, 2012, 20, 513-524.	3.7	231

#	ARTICLE	IF	CITATIONS
113	Complementary Strand MicroRNAs Mediate Acquisition of Metastatic Potential in Colonic Adenocarcinoma. Journal of Gastrointestinal Surgery, 2012, 16, 905-913.	0.9	61
114	The search for endogenous siRNAs in the mammalian brain. Experimental Neurology, 2012, 235, 455-463.	2.0	17
115	A dynamic perspective of RNAi library development. Trends in Biotechnology, 2012, 30, 206-215.	4.9	27
116	Inhibition of microRNA function by antimiR oligonucleotides. Silence: A Journal of RNA Regulation, 2012, 3, 1.	8.0	456
117	Target gene expression levels and competition between transfected and endogenous microRNAs are strong confounding factors in microRNA high-throughput experiments. Silence: A Journal of RNA Regulation, 2012, 3, 3.	8.0	30
118	MicroRNA Cancer Regulation. Advances in Experimental Medicine and Biology, 2013, , .	0.8	17
119	A kinetic model for RNA-interference of focal adhesions. BMC Systems Biology, 2013, 7, 2.	3.0	17
120	The Therapeutic Potential of miRNAs in Cardiac Fibrosis: Where Do We Stand?. Journal of Cardiovascular Translational Research, 2013, 6, 899-908.	1.1	22
121	Quantitative aspects of RNA silencing in metazoans. Biochemistry (Moscow), 2013, 78, 613-626.	0.7	5
122	TALEN-based knockout library for human microRNAs. Nature Structural and Molecular Biology, 2013, 20, 1458-1464.	3 . 6	74
123	Emerging Roles of Competing Endogenous RNAs in Cancer: Insights from the Regulation of PTEN. Molecular and Cellular Biology, 2013, 33, 3976-3982.	1.1	67
124	\hat{I}^3 -Herpesvirus-encoded miRNAs and their roles in viral biology and pathogenesis. Current Opinion in Virology, 2013, 3, 266-275.	2.6	71
125	Therapeutic Application of MicroRNAs in Cancer. Advances in Delivery Science and Technology, 2013, , 299-314.	0.4	2
126	Progress in microRNA delivery. Journal of Controlled Release, 2013, 172, 962-974.	4.8	517
127	RNAi-Based Insecticidal Crops: Potential Effects on Nontarget Species. BioScience, 2013, 63, 657-665.	2.2	105
128	Clinical translation of RNAi-based treatments for respiratory diseases. Drug Delivery and Translational Research, 2013, 3, 84-99.	3.0	6
129	Polymeric Micelles for siRNA Delivery. Advances in Delivery Science and Technology, 2013, , 161-184.	0.4	7
130	RNA viruses and the host microRNA machinery. Nature Reviews Microbiology, 2013, 11, 169-180.	13.6	121

#	Article	IF	Citations
131	A library of TAL effector nucleases spanning the human genome. Nature Biotechnology, 2013, 31, 251-258.	9.4	344
132	Transfection of siRNAs can alter miRNA levels and trigger non-specific protein degradation in mammalian cells. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 455-468.	0.9	36
133	microRNAs and the regulation of neuronal plasticity under stress conditions. Neuroscience, 2013, 241, 188-205.	1.1	58
134	RNA helicase A is not required for RISC activity. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2013, 1829, 1092-1101.	0.9	10
135	Quantitative Analysis of Competition in Posttranscriptional Regulation Reveals a Novel Signature in Target Expression Variation. Biophysical Journal, 2013, 104, 951-958.	0.2	8
136	Overview of the Nonclinical Development Strategies and Class-Effects of Oligonucleotide-Based Therapeutics., 2013,, 647-664.		5
137	siRNA therapeutics in the treatment of diseases. Therapeutic Delivery, 2013, 4, 45-57.	1.2	30
138	The "Observer Effect―in Genome-wide Surveys of Protein-RNA Interactions. Molecular Cell, 2013, 49, 601-604.	4. 5	72
139	RNA Interference Pathways and Therapeutic Exploitation. Advances in Delivery Science and Technology, 2013, , 1-29.	0.4	0
140	siRNA Design Principles and Off-Target Effects. Methods in Molecular Biology, 2013, 986, 59-71.	0.4	40
141	Working Together: Combinatorial Regulation by microRNAs. Advances in Experimental Medicine and Biology, 2013, 774, 317-337.	0.8	22
142	Targeting long non-coding RNAs in cancers: Progress and prospects. International Journal of Biochemistry and Cell Biology, 2013, 45, 1895-1910.	1.2	439
143	Lentiviral-Mediated Gene Transfer of siRNAs for the Treatment of Huntington's Disease. Methods in Molecular Biology, 2013, 1010, 95-109.	0.4	4
144	Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2317-26.	3.3	121
145	Molecular dissection of human Argonaute proteins by DNA shuffling. Nature Structural and Molecular Biology, 2013, 20, 818-826.	3.6	74
146	MicroRNA-206 is involved in hypoxia-induced pulmonary hypertension through targeting of the HIF- $1\hat{1}$ ±/Fhl-1 pathway. Laboratory Investigation, 2013, 93, 748-759.	1.7	61
147	MiR-183 family regulates chloride intracellular channel 5 expression in inner ear hair cells. Toxicology in Vitro, 2013, 27, 486-491.	1.1	21
148	Robust RNAi enhancement via human Argonaute-2 overexpression from plasmids, viral vectors and cell lines. Nucleic Acids Research, 2013, 41, e199-e199.	6.5	53

#	Article	IF	CITATIONS
149	Regulation of LH Receptor mRNA Binding Protein by miR-122 in Rat Ovaries. Endocrinology, 2013, 154, 4826-4834.	1.4	44
150	Fluctuation of Global Gene Expression by Endogenous miRNA Response to the Introduction of an Exogenous miRNA. International Journal of Molecular Sciences, 2013, 14, 11171-11189.	1.8	9
151	The majority of endogenous microRNA targets within Alu elements avoid the microRNA machinery. Bioinformatics, 2013, 29, 894-902.	1.8	30
152	ComiR: combinatorial microRNA target prediction tool. Nucleic Acids Research, 2013, 41, W159-W164.	6.5	174
153	miR-29 Promotes Murine Osteoclastogenesis by Regulating Osteoclast Commitment and Migration. Journal of Biological Chemistry, 2013, 288, 33347-33360.	1.6	110
154	Development of MicroRNA Therapeutics for Hepatocellular Carcinoma. Diagnostics, 2013, 3, 170-191.	1.3	22
155	Non-Target Effects of Green Fluorescent Protein (GFP)-Derived Double-Stranded RNA (dsRNA-GFP) Used in Honey Bee RNA Interference (RNAi) Assays. Insects, 2013, 4, 90-103.	1.0	85
156	Timescales and bottlenecks in miRNAâ€dependent gene regulation. Molecular Systems Biology, 2013, 9, 711.	3.2	54
157	<i>MiR-193b</i> and <i>miR-365-1</i> are not required for the development and function of brown fat in the mouse. RNA Biology, 2013, 10, 1807-1814.	1.5	32
158	Re-analysis of genome wide data on mammalian microRNA-mediated suppression of gene expression. Translation, 2013, 1, e24557.	2.9	19
159	BayMiR: inferring evidence for endogenous miRNA-induced gene repression from mRNA expression profiles. BMC Genomics, 2013, 14, 592.	1.2	3
161	Nanoformulations for Delivery of Biomolecules: Focus on Liposomal Variants for siRNA Delivery. Critical Reviews in Therapeutic Drug Carrier Systems, 2013, 30, 469-493.	1.2	7
162	Identification of a Core miRNA-Pathway Regulatory Network in Glioma by Therapeutically Targeting miR-181d, miR-21, miR-23b, β-Catenin, CBP, and STAT3. PLoS ONE, 2014, 9, e101903.	1.1	18
163	Macros in microRNA target identification. RNA Biology, 2014, 11, 324-333.	1.5	39
164	Oligonucleotide-based strategies to combat polyglutamine diseases. Nucleic Acids Research, 2014, 42, 6787-6810.	6.5	48
165	A loss of FUS/TLS function leads to impaired cellular proliferation. Cell Death and Disease, 2014, 5, e1572-e1572.	2.7	41
166	A probabilistic approach to explore human miRNA targetome by integrating miRNA-overexpression data and sequence information. Bioinformatics, 2014, 30, 621-628.	1.8	37
167	Designing Ago2-specific siRNA/shRNA to Avoid Competition with Endogenous miRNAs. Molecular Therapy - Nucleic Acids, 2014, 3, e176.	2.3	34

#	ARTICLE	IF	CITATIONS
168	Global and Local Competition between Exogenously Introduced microRNAs and Endogenously Expressed microRNAs. Molecules and Cells, 2014, 37, 412-417.	1.0	10
169	Interplay of microRNA and epigenetic regulation in the human regulatory network. Frontiers in Genetics, 2014, 5, 345.	1.1	52
170	Inferring probabilistic miRNA–mRNA interaction signatures in cancers: a role-switch approach. Nucleic Acids Research, 2014, 42, e76-e76.	6.5	55
171	RUSH and CRUSH: A rapid and conditional RNA interference method in mice. Genesis, 2014, 52, 39-48.	0.8	2
172	Silencing Sexually Transmitted Infections: Topical siRNA-Based Interventions for the Prevention of HIV and HSV. Infectious Diseases in Obstetrics and Gynecology, 2014, 2014, 1-11.	0.4	8
173	The application of RNAi-based treatments for inflammatory bowel disease. Drug Delivery and Translational Research, 2014, 4, 4-18.	3.0	12
174	A TALEN-based strategy for efficient bi-allelic miRNA ablation in human cells. Rna, 2014, 20, 948-955.	1.6	21
175	cRGD grafted liposomes containing inorganic nano-precipitate complexed siRNA for intracellular delivery in cancer cells. Journal of Controlled Release, 2014, 182, 45-57.	4.8	52
177	Development of RNAi technology for targeted therapy â€" A track of siRNA based agents to RNAi therapeutics. Journal of Controlled Release, 2014, 193, 270-281.	4.8	76
178	Polycation-based nanoparticles for RNAi-mediated cancer treatment. Cancer Letters, 2014, 352, 66-80.	3.2	22
179	Long DNA passenger strand highly improves the activity of RNA/DNA hybrid siRNAs. Journal of Bioscience and Bioengineering, 2014, 117, 401-406.	1.1	2
180	Stable RNA interference rules for silencing. Nature Cell Biology, 2014, 16, 10-18.	4.6	153
181	Lentiviral Vector-Mediated RNA Silencing in the Central Nervous System. Human Gene Therapy Methods, 2014, 25, 14-32.	2.1	25
182	Mapping Argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nature Protocols, 2014, 9, 263-293.	5 . 5	272
183	Development of siRNA Payloads to Target <i>KRAS</i> IIIS2-1197.	7.7	93
184	Dissection of miRNA pathways using Arabidopsis mesophyll protoplasts. Molecular Plant, 2014, , .	3.9	0
185	Reconsideration of in silico siRNA design from a perspective of heterogeneous data integration: problems and solutions. Briefings in Bioinformatics, 2014, 15, 292-305.	3.2	8
186	Concise Review: New Frontiers in MicroRNA-Based Tissue Regeneration. Stem Cells Translational Medicine, 2014, 3, 969-976.	1.6	24

#	ARTICLE	IF	CITATIONS
187	Inferring condition-specific miRNA activity from matched miRNA and mRNA expression data. Bioinformatics, 2014, 30, 3070-3077.	1.8	22
189	Understanding principles of <scp>miRNA</scp> target recognition and function through integrated biological and bioinformatics approaches. Wiley Interdisciplinary Reviews RNA, 2014, 5, 361-379.	3.2	60
190	Recent In Vivo Evidences of Particle-Based Delivery of Small-Interfering RNA (siRNA) into Solid Tumors. Journal of Pharmaceutical Innovation, 2014, 9, 158-173.	1.1	85
191	Transcriptional override: a regulatory network model of indirect responses to modulations in microRNA expression. BMC Systems Biology, 2014, 8, 36.	3.0	19
192	MicroRNA Target Identification: Lessons from HypoxamiRs. Antioxidants and Redox Signaling, 2014, 21, 1249-1268.	2.5	12
193	Complexity in the therapeutic delivery of RNAi medicines: an analytical challenge. Expert Opinion on Drug Delivery, 2014, 11, 1481-1495.	2.4	22
194	Interactions between Distant ceRNAs in Regulatory Networks. Biophysical Journal, 2014, 106, 2254-2266.	0.2	41
195	The anti-miR21 antagomir, a therapeutic tool for colorectal cancer, has a potential synergistic effect by perturbing an angiogenesis-associated miR30. Frontiers in Genetics, 2014, 4, 301.	1.1	27
197	MicroRNAs: Target Prediction and Involvement in Gene Regulatory Networks., 0,, 291-309.		0
198	Obesityâ€induced miRâ€15b is linked causally to the development of insulin resistance through the repression of the insulin receptor in hepatocytes. Molecular Nutrition and Food Research, 2015, 59, 2303-2314.	1.5	77
199	Alterations in SiRNA and MiRNA Expression Profiles Detected by Deep Sequencing of Transgenic Rice with SiRNA-Mediated Viral Resistance. PLoS ONE, 2015, 10, e0116175.	1.1	18
200	Differential mRNA Accumulation upon Early Arabidopsis thaliana Infection with ORMV and TMV-Cg Is Associated with Distinct Endogenous Small RNAs Level. PLoS ONE, 2015, 10, e0134719.	1.1	15
201	Assessment of Artificial MiRNA Architectures for Higher Knockdown Efficiencies without the Undesired Effects in Mice. PLoS ONE, 2015, 10, e0135919.	1.1	6
202	Predicting effective microRNA target sites in mammalian mRNAs. ELife, 2015, 4, .	2.8	5,779
203	Choosing the Right Tool for the Job: RNAi, TALEN, or CRISPR. Molecular Cell, 2015, 58, 575-585.	4.5	374
204	Control of the localization and function of a miRNA silencing component TNRC6A by Argonaute protein. Nucleic Acids Research, 2015, 43, gkv1026.	6.5	25
205	Abasic pivot substitution harnesses target specificity of RNA interference. Nature Communications, 2015, 6, 10154.	5.8	39
206	Dosage and Temporal Thresholds in microRNA Proteomics*. Molecular and Cellular Proteomics, 2015, 14, 289-302.	2.5	10

#	Article	IF	CITATIONS
207	A Dicer-miR-107 Interaction Regulates Biogenesis of Specific miRNAs Crucial for Neurogenesis. Developmental Cell, 2015, 32, 546-560.	3.1	44
208	Dissection of miRNA Pathways Using Arabidopsis Mesophyll Protoplasts. Molecular Plant, 2015, 8, 261-275.	3.9	30
209	miRNA-embedded shRNAs for Lineage-specific BCL11A Knockdown and Hemoglobin F Induction. Molecular Therapy, 2015, 23, 1465-1474.	3.7	101
210	RNAi therapeutics for brain cancer: current advancements in RNAi delivery strategies. Molecular BioSystems, 2015, 11, 2635-2657.	2.9	7
211	Quantifying the strength of miRNA–target interactions. Methods, 2015, 85, 90-99.	1.9	21
212	Activation of <scp>PPAR</scp> â€i induces micro <scp>RNA</scp> â€100 and decreases the uptake of very lowâ€density lipoprotein in endothelial cells. British Journal of Pharmacology, 2015, 172, 3728-3736.	2.7	18
213	Prospects for Vector-Based Gene Silencing to Explore Immunobiological Features of Schistosoma mansoni. Advances in Parasitology, 2015, 88, 85-122.	1.4	8
214	Prospects for Therapeutic Targeting of MicroRNAs in Human Immunological Diseases. Journal of Immunology, 2015, 194, 5047-5052.	0.4	39
215	MicroRNAs in vascular tissue engineering and post-ischemic neovascularization. Advanced Drug Delivery Reviews, 2015, 88, 78-91.	6.6	26
216	Peptidyl–Oligonucleotide Conjugates Demonstrate Efficient Cleavage of RNA in a Sequence-Specific Manner. Bioconjugate Chemistry, 2015, 26, 1129-1143.	1.8	19
217	Knocking down schistosomes – promise for lentiviral transduction in parasites. Trends in Parasitology, 2015, 31, 324-332.	1.5	19
218	Computational Biology in <scp>microRNA</scp> . Wiley Interdisciplinary Reviews RNA, 2015, 6, 435-452.	3.2	39
219	Functional Genomics in Pharmaceutical Drug Discovery. Handbook of Experimental Pharmacology, 2015, 232, 25-41.	0.9	4
220	MicroRNA modules prefer to bind weak and unconventional target sites. Bioinformatics, 2015, 31, 1366-1374.	1.8	21
221	The New State of the Art: Cas9 for Gene Activation and Repression. Molecular and Cellular Biology, 2015, 35, 3800-3809.	1.1	197
222	Multifunctional Nanoparticles Facilitate Molecular Targeting and miRNA Delivery to Inhibit Atherosclerosis in ApoE ^{–/–} Mice. ACS Nano, 2015, 9, 8885-8897.	7.3	150
223	microRNAs: Modulators of the underlying pathophysiology of sarcopenia?. Ageing Research Reviews, 2015, 24, 263-273.	5.0	62
224	Competition between target sites of regulators shapes post-transcriptional gene regulation. Nature Reviews Genetics, 2015, 16, 113-126.	7.7	220

#	Article	IF	CITATIONS
225	Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Advanced Drug Delivery Reviews, 2015, 81, 161-168.	6.6	25
226	From miRNA regulation to miRNA-TF co-regulation: computational approaches and challenges. Briefings in Bioinformatics, 2015, 16, 475-496.	3.2	36
227	Therapeutics of Epigenetic-Based RNA Molecules. , 2016, , 731-745.		0
228	Predicting miRNA Targets by Integrating Gene Regulatory Knowledge with Expression Profiles. PLoS ONE, 2016, 11, e0152860.	1.1	15
229	Apoptosis induced by a HIPK2 full-length-specific siRNA is due to off-target effects rather than prevalence of HIPK2-1"e8 isoform. Oncotarget, 2016, 7, 1675-1686.	0.8	5
230	Expression of microRNAs miR21, miR146a, and miR155 in tuberous sclerosis complex cortical tubers and their regulation in human astrocytes and SEGAâ€derived cell cultures. Glia, 2016, 64, 1066-1082.	2.5	51
231	The miR-125 family is an important regulator of the expression and maintenance of maternal effect genes during preimplantational embryo development. Open Biology, 2016, 6, 160181.	1.5	34
232	Noncoding RNA for Cancer Gene Therapy. Recent Results in Cancer Research, 2016, 209, 51-60.	1.8	15
233	Proteomics in the genome engineering era. Proteomics, 2016, 16, 177-187.	1.3	7
234	Unsupervised Learning in Genome Informatics. , 2016, , 405-448.		4
235	Computational Systems Biology Approach Predicts Regulators and Targets of microRNAs and Their Genomic Hotspots in Apoptosis Process. Molecular Biotechnology, 2016, 58, 460-479.	1.3	35
236	Unsupervised Learning Algorithms. , 2016, , .		115
237	Mammalian Innate Immune Response to a Leishmania -Resident RNA Virus Increases Macrophage Survival to Promote Parasite Persistence. Cell Host and Microbe, 2016, 20, 318-328.	5.1	61
238	Ecological risk assessment for DvSnf7 RNA: A plant-incorporated protectant with targeted activity against western corn rootworm. Regulatory Toxicology and Pharmacology, 2016, 81, 77-88.	1.3	87
239	Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Research, 2016, 44, 6019-6035.	6.5	135
240	A Guide to Genome-Wide In Vivo RNAi Applications in Drosophila. Methods in Molecular Biology, 2016, 1478, 117-143.	0.4	32
241	MicroRNA-17 Suppresses TNF-α Signaling by Interfering with TRAF2 and cIAP2 Association in Rheumatoid Arthritis Synovial Fibroblasts. Journal of Immunology, 2016, 197, 2219-2228.	0.4	61
242	Blocking senseâ€strand activity improves potency, safety and specificity of antiâ€hepatitis B virus short hairpin <scp>RNA</scp> . EMBO Molecular Medicine, 2016, 8, 1082-1098.	3.3	24

#	ARTICLE	IF	CITATIONS
243	bmo-miR-0001 and bmo-miR-0015 down-regulate expression of Bombyx mori fibroin light chain gene in vitro. Journal of Zhejiang University: Science B, 2016, 17, 127-135.	1.3	4
244	MicroRNAs in cardiovascular disease. Current Opinion in Cardiology, 2016, 31, 249-254.	0.8	70
245	Elucidating MicroRNA Regulatory Networks Using Transcriptional, Post-transcriptional, and Histone Modification Measurements. Cell Reports, 2016, 14, 310-319.	2.9	86
246	Sequence-non-specific effects generated by various types of RNA interference triggers. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 306-314.	0.9	19
247	RNA nanomedicines: the next generation drugs?. Current Opinion in Biotechnology, 2016, 39, 28-34.	3.3	31
248	Bioinformatic analyses reveal a distinct Notch activation induced by STAT3 phosphorylation in the mesenchymal subtype of glioblastoma. Journal of Neurosurgery, 2017, 126, 249-259.	0.9	19
249	Challenges and opportunities for siRNA-based cancer treatment. Cancer Letters, 2017, 387, 77-83.	3.2	82
250	The impact of microRNAs on transcriptional heterogeneity and gene co-expression across single embryonic stem cells. Nature Communications, 2017, 8, 14126.	5.8	28
251	Resolving Subcellular miRNA Trafficking and Turnover at Single-Molecule Resolution. Cell Reports, 2017, 19, 630-642.	2.9	74
252	The IncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Research, 2017, 45, 5458-5469.	6.5	84
253	Direct experimental manipulation of intestinal cells in Ascaris suum, with minor influences on the global transcriptome. International Journal for Parasitology, 2017, 47, 271-279.	1.3	6
254	Assessing the Off-Target Effects of miRNA Inhibitors on Innate Immune Toll-Like Receptors. Methods in Molecular Biology, 2017, 1517, 127-135.	0.4	6
255	Knockout of miR-221 and miR-222 reveals common and specific targets for paralogous miRNAs. RNA Biology, 2017, 14, 197-205.	1.5	11
256	Antisense oligonucleotides targeting translation inhibitory elements in 5′ UTRs can selectively increase protein levels. Nucleic Acids Research, 2017, 45, 9528-9546.	6.5	83
257	Time-lapse imaging of microRNA activity reveals the kinetics of microRNA activation in single living cells. Scientific Reports, 2017, 7, 12642.	1.6	20
258	Host induced gene silencing, an emerging science to engineer crop resistance against harmful plant pathogens. Physiological and Molecular Plant Pathology, 2017, 100, 242-254.	1.3	44
259	MicroRNA-based Regulation of Picornavirus Tropism. Journal of Visualized Experiments, 2017, , .	0.2	4
260	Overview of the Nonclinical Development Strategies and Class-Effects of Oligonucleotide-Based Therapeutics., 2017,, 737-754.		0

#	ARTICLE	IF	CITATIONS
261	Literature review of baseline information to support the risk assessment of RNAiâ€based GM plants. EFSA Supporting Publications, 2017, 14, 1246E.	0.3	15
262	Carbonate apatite nanoparticles carry siRNA(s) targeting growth factor receptor genes <i>egfr1</i> and <i>erbb2</i> to regress mouse breast tumor. Drug Delivery, 2017, 24, 1721-1730.	2.5	22
263	Gene Editing and Crop Improvement Using CRISPR-Cas9 System. Frontiers in Plant Science, 2017, 8, 1932.	1.7	244
264	microRNA Decay: Refining microRNA Regulatory Activity. MicroRNA (Shariqah, United Arab Emirates), 2017, 5, 167-174.	0.6	20
265	Parameters for Successful Parental RNAi as An Insect Pest Management Tool in Western Corn Rootworm, Diabrotica virgifera virgifera. Genes, 2017, 8, 7.	1.0	18
266	New Insight into microRNA Functions in Cancer: Oncogene–microRNA–Tumor Suppressor Gene Network. Frontiers in Molecular Biosciences, 2017, 4, 46.	1.6	104
267	Many si/shRNAs can kill cancer cells by targeting multiple survival genes through an off-target mechanism. ELife, 2017, 6, .	2.8	62
268	Construction of an miRNA-Regulated Pathway Network Reveals Candidate Biomarkers for Postmenopausal Osteoporosis. Computational and Mathematical Methods in Medicine, 2017, 2017, 1-9.	0.7	14
269	Micromechanical properties of lymphoid cells in patients with acute lymphoblastic leucosis. Journal of Cellular Biotechnology, 2017, 2, 117-123.	0.1	1
270	siRNA delivery for treatment of degenerative diseases, new hopes and challenges. Journal of Drug Delivery Science and Technology, 2018, 45, 428-441.	1.4	21
271	MicroRNA-focused CRISPR-Cas9 library screen reveals fitness-associated miRNAs. Rna, 2018, 24, 966-981.	1.6	58
272	Designing aptamers which respond to intracellular oxidative stress and inhibit aggregation of mutant huntingtin. Free Radical Biology and Medicine, 2018, 120, 311-316.	1.3	8
273	Molecular mechanism of diabetic cardiomyopathy and modulation of microRNA function by synthetic oligonucleotides. Cardiovascular Diabetology, 2018, 17, 43.	2.7	53
274	Stress-induced changes in miRNA biogenesis and functioning. Cellular and Molecular Life Sciences, 2018, 75, 177-191.	2.4	123
275	CCmiR: a computational approach for competitive and cooperative microRNA binding prediction. Bioinformatics, 2018, 34, 198-206.	1.8	10
276	Evaluation and control of miRNA-like off-target repression for RNA interference. Cellular and Molecular Life Sciences, 2018, 75, 797-814.	2.4	75
277	Recent Advances in Managing Atherosclerosis via Nanomedicine. Small, 2018, 14, 1702793.	5 . 2	87
278	TargetScore used to reveal potential targets of miRNA203 and miRNA-146a in psoriasis by integrating microRNA overexpression and microarray data. Medicine (United States), 2018, 97, e12671.	0.4	7

#	Article	IF	Citations
279	Growth-restricting effects of siRNA transfections: a largely deterministic combination of off-target binding and hybridization-independent competition. Nucleic Acids Research, 2018, 46, 9309-9320.	6.5	7
280	miR-122 removal in the liver activates imprinted microRNAs and enables more effective microRNA-mediated gene repression. Nature Communications, 2018, 9, 5321.	5.8	48
281	Emerging Concepts and Techniques. , 2018, , 729-743.		0
282	Competing Endogenous RNA Regulations in Neurodegenerative Disorders: Current Challenges and Emerging Insights. Frontiers in Molecular Neuroscience, 2018, 11, 370.	1.4	52
283	RNA interference to enhance radiation therapy: Targeting the DNA damage response. Cancer Letters, 2018, 439, 14-23.	3.2	9
284	Predicting microRNA targeting efficacy in Drosophila. Genome Biology, 2018, 19, 152.	3.8	91
285	Target RNAs Strike Back on MicroRNAs. Frontiers in Genetics, 2018, 9, 435.	1.1	69
286	miRNA-223 regulates ischemic neuronal injury by targeting the type 1 insulin-like growth factor receptor (IGF1R). Folia Neuropathologica, 2018, 56, 49-57.	0.5	19
287	Disruption of the BCL11A Erythroid Enhancer Reactivates Fetal Hemoglobin in Erythroid Cells of Patients with \hat{l}^2 -Thalassemia Major. Molecular Therapy - Methods and Clinical Development, 2018, 10, 313-326.	1.8	83
288	miRNAs that Induce Human Cardiomyocyte Proliferation Converge on the Hippo Pathway. Cell Reports, 2018, 23, 2168-2174.	2.9	73
289	Overexpression of hsa‑miR‑125a‑5p enhances proliferation, migration and invasion of head and neck squamous cell carcinoma cell lines by upregulating C‑C chemokine receptor type�7. Oncology Letters, 2018, 15, 9703-9710.	0.8	12
290	DROSHA Knockout Leads to Enhancement of Viral Titers for Vectors Encoding miRNA-Adapted shRNAs. Molecular Therapy - Nucleic Acids, 2018, 12, 591-599.	2.3	5
291	Don't Kill the Messenger: Employing Genome Editing to Study Regulatory RNA Interactions. , 0, , 52-68.		0
292	Transduction with Lentiviral Vectors Altered the Expression Profile of Host MicroRNAs. Journal of Virology, 2018, 92, .	1.5	16
293	RNA-Targeted Therapies and Amyotrophic Lateral Sclerosis. Biomedicines, 2018, 6, 9.	1.4	20
294	Tensor Decomposition-Based Unsupervised Feature Extraction Can Identify the Universal Nature of Sequence-Nonspecific Off-Target Regulation of mRNA Mediated by MicroRNA Transfection. Cells, 2018, 7, 54.	1.8	17
295	Dicer cleaves 5′-extended microRNA precursors originating from RNA polymerase II transcription start sites. Nucleic Acids Research, 2018, 46, 5737-5752.	6.5	40
296	Literature review of baseline information on RNAi to support the environmental risk assessment of RNAiâ€based GM plants. EFSA Supporting Publications, 2018, 15, 1424E.	0.3	63

#	Article	IF	CITATIONS
297	hsa-let-7c miRNA Regulates Synaptic and Neuronal Function in Human Neurons. Frontiers in Synaptic Neuroscience, 2018, 10, 19.	1.3	24
298	Effect of Cell Inner Pressure on Deposition Volume in Microinjection. Langmuir, 2018, 34, 10287-10292.	1.6	8
299	Strategies for improving the specificity of siRNAs for enhanced therapeutic potential. Expert Opinion on Drug Discovery, 2018, 13, 709-725.	2.5	10
300	miRNAs and NAFLD: from pathophysiology to therapy. Gut, 2019, 68, 2065-2079.	6.1	156
301	Identification and Functional Verification of MicroRNA-16 Family Targeting Intestinal Divalent Metal Transporter 1 (DMT1) in vitro and in vivo. Frontiers in Physiology, 2019, 10, 819.	1.3	13
302	AAV5-miHTT Lowers Huntingtin mRNA and Protein without Off-Target Effects in Patient-Derived Neuronal Cultures and Astrocytes. Molecular Therapy - Methods and Clinical Development, 2019, 15, 275-284.	1.8	38
303	Significant Interference with Porcine Epidemic Diarrhea Virus Pandemic and Classical Strain Replication in Small-Intestine Epithelial Cells Using an shRNA Expression Vector. Vaccines, 2019, 7, 173.	2.1	3
304	MiR-20b Down-Regulates Intestinal Ferroportin Expression In Vitro and In Vivo. Cells, 2019, 8, 1135.	1.8	15
305	<i>In vivo</i> miRNA delivery in whitefish: Synthetic MiR92b-3p uptake and the efficacy of gene expression silencing. Experimental Biology and Medicine, 2019, 244, 52-63.	1.1	1
306	Systemic delivery of Eg5 shRNA-expressing plasmids using PEGylated DC-Chol/DOPE cationic liposome: Long-term silencing and anticancer effects in vivo. Biochemical Pharmacology, 2019, 166, 192-202.	2.0	10
307	Modeling the Kinetics of Lipid-Nanoparticle- Mediated Delivery of Multiple siRNAs to Evaluate the Effect on Competition for Ago2. Molecular Therapy - Nucleic Acids, 2019, 16, 367-377.	2.3	9
308	Loss of <i>miR-17~92</i> results in dysregulation of <i>Cftr</i> in nephron progenitors. American Journal of Physiology - Renal Physiology, 2019, 316, F993-F1005.	1.3	10
309	MicroRNA target gene prediction of ischemic stroke by using variational Bayesian inference for Gauss mixture model. Experimental and Therapeutic Medicine, 2019, 17, 2734-2740.	0.8	4
310	Inconsistencies and Limitations of Current MicroRNA Target Identification Methods. Methods in Molecular Biology, 2019, 1970, 291-314.	0.4	27
311	High throughput analysis to identify key gene molecules that inhibit adipogenic differentiation and promote osteogenic differentiation of human mesenchymal stem cells. Experimental and Therapeutic Medicine, 2019, 17, 3021-3028.	0.8	5
312	Identifying the optimal target genes associated with multiple myeloma by a novel bioinformatical analysis. Oncology Letters, 2019, 17, 4375-4382.	0.8	0
313	A systematic study on the influence of thermodynamic asymmetry of $5\hat{a}\in^2$ -ends of siRNA duplexes in relation to their silencing potency. Scientific Reports, 2019, 9, 2477.	1.6	13
314	miRNA‑135a regulates Hut78 cell proliferation via the GATA‑3/TOX signaling pathway. Molecular Medicine Reports, 2019, 19, 2361-2367.	1.1	3

#	ARTICLE	IF	CITATIONS
315	MicroRNA-451b participates in coronary heart disease by targeting VEGFA. Open Medicine (Poland), 2019, 15, 1-7.	0.6	17
316	siRNAs targeting multidrug transporter genes sensitise breast tumour to doxorubicin in a syngeneic mouse model. Journal of Drug Targeting, 2019, 27, 325-337.	2.1	12
317	Enhancement of gene knockdown efficiency by CNNC motifs in the intronic shRNA precursor. Genes and Genomics, 2019, 41, 491-498.	0.5	0
318	Chicken GHR antisense transcript regulates its sense transcript in hepatocytes. Gene, 2019, 682, 101-110.	1.0	5
319	A guide to micro <scp>RNA</scp> â€mediated gene silencing. FEBS Journal, 2019, 286, 642-652.	2.2	44
320	TAG-RNAi overcomes off-target effects in cancer models. Oncogene, 2020, 39, 935-945.	2.6	4
321	ZYZ-803, a novel hydrogen sulfide-nitric oxide conjugated donor, promotes angiogenesis via cross-talk between STAT3 and CaMKII. Acta Pharmacologica Sinica, 2020, 41, 218-228.	2.8	24
322	Bmoâ€miRâ€2780a regulates the expression of thesericinâ€1 gene ofBombyx mori. Archives of Insect Biochemistry and Physiology, 2020, 103, e21627.	0.6	2
323	An Improved CRISPR/dCas9 Interference Tool for Neuronal Gene Suppression. Frontiers in Genome Editing, 2020, 2, 9.	2.7	23
324	A Survey of Regulatory Interactions Among RNA Binding Proteins and MicroRNAs in Cancer. Frontiers in Genetics, 2020, 11, 515094.	1.1	1
325	Strict conformational demands of RNA cleavage in bulge-loops created by peptidyl-oligonucleotide conjugates. Nucleic Acids Research, 2020, 48, 10662-10679.	6.5	7
326	microRNAs in oral cancer: Moving from bench to bed as next generation medicine. Oral Oncology, 2020, 111, 104916.	0.8	28
327	Autophagy inhibition is the next step in the treatment of glioblastoma patients following the Stupp era. Cancer Gene Therapy, 2020, 28, 971-983.	2.2	6
328	Extracellular Vesicles: New Endogenous Shuttles for miRNAs in Cancer Diagnosis and Therapy?. International Journal of Molecular Sciences, 2020, 21, 6486.	1.8	36
329	Perturbation-based gene regulatory network inference to unravel oncogenic mechanisms. Scientific Reports, 2020, 10, 14149.	1.6	4
330	Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers, 2020, 12, 3709.	1.7	22
331	Best Practices for Preclinical In Vivo Testing of Cancer Nanomedicines. Advanced Healthcare Materials, 2020, 9, 2000110.	3.9	14
332	Safety Considerations for Humans and Other Vertebrates Regarding Agricultural Uses of Externally Applied RNA Molecules. Frontiers in Plant Science, 2020, 11, 407.	1.7	44

#	Article	IF	CITATIONS
333	sRNA/L1 retrotransposition: using siRNAs and miRNAs to expand the applications of the cell culture-based LINE-1 retrotransposition assay. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190346.	1.8	8
334	Impacts of Multiple Time Delays on a Gene Regulatory Network Mediated by Small Noncoding RNA. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 2020, 30, 2050069.	0.7	5
335	Discovering and validating cancer genetic dependencies: approaches and pitfalls. Nature Reviews Genetics, 2020, 21, 671-682.	7.7	41
336	hsa-miR-9-3p and hsa-miR-9-5p as Post-Transcriptional Modulators of DNA Topoisomerase II <i<math>\hat{l}±in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Molecular Pharmacology, 2020, 97, 159-170.</i<math>	1.0	12
337	Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Scientific Reports, 2020, 10, 2300.	1.6	17
338	miRNAs as Influencers of Cell–Cell Communication in Tumor Microenvironment. Cells, 2020, 9, 220.	1.8	53
339	microRNA-mediated noise processing in cells: A fight or a game?. Computational and Structural Biotechnology Journal, 2020, 18, 642-649.	1.9	6
340	RNA-based therapeutics in cardiovascular disease. Current Opinion in Cardiology, 2020, 35, 191-198.	0.8	10
341	Antisense drug discovery and development technology considered in a pharmacological context. Biochemical Pharmacology, 2021, 189, 114196.	2.0	55
342	Off-target effects of RNAi correlate with the mismatch rate between dsRNA and non-target mRNA. RNA Biology, 2021, 18, 1747-1759.	1.5	62
343	Ratiometric and amplified fluorescence nanosensor based on a DNA tetrahedron for miRNA imaging in living cells. Journal of Materials Chemistry B, 2021, 9, 8341-8347.	2.9	5
344	Delivery of miR-424-5p via Extracellular Vesicles Promotes the Apoptosis of MDA-MB-231 TNBC Cells in the Tumor Microenvironment. International Journal of Molecular Sciences, 2021, 22, 844.	1.8	38
345	The Risks of miRNA Therapeutics: In a Drug Target Perspective. Drug Design, Development and Therapy, 2021, Volume 15, 721-733.	2.0	116
346	Genome-Wide Integrated Analysis Revealed Functions of lncRNA–miRNA–mRNA Interaction in Growth of Intermuscular Bones in Megalobrama amblycephala. Frontiers in Cell and Developmental Biology, 2020, 8, 603815.	1.8	16
347	Targeted Delivery of Gene Silencing in Fungi Using Genetically Engineered Bacteria. Journal of Fungi (Basel, Switzerland), 2021, 7, 125.	1.5	11
348	Antisense technology: an overview and prospectus. Nature Reviews Drug Discovery, 2021, 20, 427-453.	21.5	299
349	Transcriptome-wide analysis reveals insight into tumor suppressor functions of 1B3, a novel synthetic miR-193a-3p mimic. Molecular Therapy - Nucleic Acids, 2021, 23, 1161-1171.	2.3	8
350	Plasmids Expressing shRNAs Specific to the Nucleocapsid Gene Inhibit the Replication of Porcine Deltacoronavirus In Vivo. Animals, 2021, 11, 1216.	1.0	1

#	Article	IF	Citations
351	miRNA interplay: mechanisms and consequences in cancer. DMM Disease Models and Mechanisms, 2021, 14 , .	1.2	230
352	One vectorâ€based method to verify predicted plant miRNAs, target sequences, and function modes. Biotechnology and Bioengineering, 2021, 118, 3105-3116.	1.7	1
353	Noncoding RNA therapeutics â€" challenges and potential solutions. Nature Reviews Drug Discovery, 2021, 20, 629-651.	21.5	749
354	Genotype–Phenotype Relationships in the Context of Transcriptional Adaptation and Genetic Robustness. Annual Review of Genetics, 2021, 55, 71-91.	3.2	21
355	Non-viral nanoparticles for RNA interference: Principles of design and practical guidelines. Advanced Drug Delivery Reviews, 2021, 174, 576-612.	6.6	36
356	Synthetic gene circuits as tools for drug discovery. Trends in Biotechnology, 2022, 40, 210-225.	4.9	10
357	Potential Therapeutic Strategies for Targeting Y-Box-Binding Protein 1 in Cancers. Current Cancer Drug Targets, 2021, 21, 897-906.	0.8	3
358	Experimental MicroRNA Targeting Validation. Methods in Molecular Biology, 2022, 2257, 79-90.	0.4	3
359	Impact of MicroRNA in Normal and Pathological Respiratory Epithelia. Methods in Molecular Biology, 2011, 741, 171-191.	0.4	4
360	Plant miRNomics: Novel Insights in Gene Expression and Regulation. , 2015, , 181-211.		7
361	Inhibition of miR-29-3p isoforms via tough decoy suppresses osteoblast function in homeostasis but promotes intermittent parathyroid hormone-induced bone anabolism. Bone, 2021, 143, 115779.	1.4	11
362	Hsa-miR-3658 down-regulates OCT4 gene expression followed by suppressing SW480 cell proliferation and migration. Biochemical Journal, 2020, 477, 2281-2293.	1.7	3
364	Argonaute proteins are key determinants of RNAi efficacy, toxicity, and persistence in the adult mouse liver. Journal of Clinical Investigation, 2010, 120, 3106-3119.	3.9	161
365	miRConnect: Identifying Effector Genes of miRNAs and miRNA Families in Cancer Cells. PLoS ONE, 2011, 6, e26521.	1.1	46
366	Quantitative Proteomic Analysis of Gene Regulation by miR-34a and miR-34c. PLoS ONE, 2014, 9, e92166.	1.1	25
367	MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts. PLoS ONE, 2014, 9, e107071.	1.1	4
368	shRNA Off-Target Effects In Vivo: Impaired Endogenous siRNA Expression and Spermatogenic Defects. PLoS ONE, 2015, 10, e0118549.	1.1	11
369	bmo-miR-275 down-regulates expression of Bombyx mori sericin gene 2 in vitro. PLoS ONE, 2018, 13, e0190464.	1.1	10

#	Article	IF	CITATIONS
370	Legionella pneumophila-Derived Outer Membrane Vesicles Promote Bacterial Replication in Macrophages. PLoS Pathogens, 2016, 12, e1005592.	2.1	72
371	Luciferase shRNA Presents off-Target Effects on Voltage-Gated Ion Channels in Mouse Hippocampal Pyramidal Neurons. ENeuro, 2017, 4, ENEURO.0186-17.2017.	0.9	10
372	HITS-CLIP and PAR-CLIP Advance Viral MiRNA Targetome Analysis. Critical Reviews in Eukaryotic Gene Expression, 2014, 24, 101-116.	0.4	23
373	Experimental procedures to identify and validate specific mRNA targets of miRNAs. EXCLI Journal, 2015, 14, 758-90.	0.5	20
374	MDM4 expression as an indicator of TP53 reactivation by combined targeting of MDM2 and MDM4 in cancer cells without TP53 mutation. Oncoscience, 2014, 1, 830-843.	0.9	11
375	MicroRNA Regulation and Role in Stem Cell Maintenance, Cardiac Differentiation and Hypertrophy. Current Molecular Medicine, 2013, 13, 757-764.	0.6	41
376	Therapeutic Potential of microRNA Modulation in Pulmonary Arterial Hypertension. Current Vascular Pharmacology, 2015, 13, 331-340.	0.8	27
377	Neuronal dark matter: the emerging role of microRNAs in neurodegeneration. Frontiers in Cellular Neuroscience, 2013, 7, 178.	1.8	167
378	miRNA Targets: From Prediction Tools to Experimental Validation. Methods and Protocols, 2021, 4, 1.	0.9	101
379	Gene editing for corneal disease management. World Journal of Translational Medicine, 2016, 5, 1.	3.5	5
381	Emerging Concepts and Techniques. , 2010, , 731-741.		0
382	Integrins as Determinants of Genetic Susceptibility, Tumour Behaviour and Their Potential as Therapeutic Targets., 0,,.		0
383	Polymeric Micelle-Based Nanomedicine for siRNA Delivery. RSC Polymer Chemistry Series, 2013, , 158-189.	0.1	0
385	Two faces of competition: targetâ€mediated reverse signalling in microRNA and mitogenâ€activated protein kinase regulatory networks. IET Systems Biology, 2017, 11, 105-113.	0.8	1
389	MicroRNAs and small interfering RNAs as tools for the directed regulation of cellular processes for cancer therapy. Bulletin of Siberian Medicine, 2020, 19, 160-171.	0.1	0
392	Optimizing siRNA delivery to the genital mucosa. Discovery Medicine, 2011, 11, 124-32.	0.5	6
393	siRNA-based topical microbicides targeting sexually transmitted infections. Current Opinion in Molecular Therapeutics, 2010, 12, 192-202.	2.8	7
396	MicroRNA Regulation of Smooth Muscle Phenotype. Molecular and Cellular Pharmacology, 2012, 4, 1-16.	1.7	25

#	Article	IF	CITATIONS
397	Properties and kinetics of microRNA regulation through canonical seed sites. Journal of Rnai and Gene Silencing, 2015, 11, 507-14.	1.2	3
398	Competing endogenous RNA in cancer: a new pattern of gene expression regulation. International Journal of Clinical and Experimental Medicine, 2015, 8, 17110-6.	1.3	69
399	Differential genes expression analysis of invasive aspergillosis: a bioinformatics study based on mRNA/microRNA. Molecular Biology Research Communications, 2020, 9, 173-180.	0.2	0
400	CRISPR genome surgery in a novel humanized model for autosomal dominant retinitis pigmentosa. Molecular Therapy, 2022, 30, 1407-1420.	3.7	16
401	miRâ€AB, a miRNAâ€based shRNA viral toolkit for multicolorâ€barcoded multiplex RNAi at a singleâ€cell level. EMBO Reports, 2022, 23, e53691.	2.0	1
403	Emerging concepts of miRNA therapeutics: from cells to clinic. Trends in Genetics, 2022, 38, 613-626.	2.9	212
404	Sequencing of Argonaute-bound microRNA/mRNA hybrids reveals regulation of the unfolded protein response by microRNA-320a. PLoS Genetics, 2021, 17, e1009934.	1.5	9
414	Diversity of bacterial small RNAs drives competitive strategies for a mutual chaperone. Nature Communications, 2022, 13, 2449.	5.8	13
415	CRISPR/Cas technology for improving nutritional values in the agricultural sector: an update. Molecular Biology Reports, 2022, , 1.	1.0	4
416	Deep learning modeling m6A deposition reveals the importance of downstream cis-element sequences. Nature Communications, 2022, 13, 2720.	5.8	12
417	Establishing an effective gene knockdown system using cultured cells of the model fish medaka (<i>Oryzias latipes</i>). Biology Methods and Protocols, 2022, 7, .	1.0	1
418	MicroRNAs as therapeutic targets in cardiovascular disease. Journal of Clinical Investigation, 2022, 132, .	3.9	50
419	Suppression of osteoclast multinucleation via a posttranscriptional regulation–based spatiotemporally selective delivery system. Science Advances, 2022, 8, .	4.7	17
420	Paired miRNA- and messenger RNA-sequencing identifies novel miRNA-mRNA interactions in multiple myeloma. Scientific Reports, 2022, 12, .	1.6	10
421	RISC-y Business: Limitations of Short Hairpin RNA-Mediated Gene Silencing in the Brain and a Discussion of CRISPR/Cas-Based Alternatives. Frontiers in Molecular Neuroscience, 0, 15, .	1.4	10
422	A conserved long-distance telomeric silencing mechanism suppresses mTOR signaling in aging human fibroblasts. Science Advances, 2022, 8, .	4.7	4
424	Polymeric micelles for drug delivery in oncology with an emphasis on siRNA conveyance. , 2022, , 199-284.		0
425	Targeting non-coding RNA family members with artificial endonuclease XNAzymes. Communications Biology, 2022, 5, .	2.0	5

#	Article	IF	CITATIONS
426	IncRNA MPFAST Promotes Proliferation and Fatty Acid Synthesis of Bovine Mammary Epithelial Cell by Sponging miR-103 Regulating PI3K-AKT Pathway. Journal of Agricultural and Food Chemistry, 2022, 70, 12004-12013.	2.4	9
427	Functional Intercellular Transmission of miHTT via Extracellular Vesicles: An In Vitro Proof-of-Mechanism Study. Cells, 2022, 11, 2748.	1.8	4
428	Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics, 2022, 12, 7132-7157.	4.6	14
429	Cardiovascular Diseases and their Novel Therapeutic Interventions: A Literature Review., 2022, 6, 1-9.		0
430	miRNA:miRNA Interactions: A Novel Mode of miRNA Regulation and Its Effect On Disease. Advances in Experimental Medicine and Biology, 2022, , 241-257.	0.8	4
431	How global RNA-binding proteins coordinate the behaviour of RNA regulons: An information approach. Computational and Structural Biotechnology Journal, 2022, 20, 6317-6338.	1.9	1
432	XNAzymes targeting the SARS-CoV-2 genome inhibit viral infection. Nature Communications, 2022, 13, .	5.8	7
434	MicroRNAs and Drug Resistance in Non-Small Cell Lung Cancer: Where Are We Now and Where Are We Going. Cancers, 2022, 14, 5731.	1.7	1
435	miRNA Pathway Alteration in Response to Non-Coding RNA Delivery in Viral Vector-Based Gene Therapy. International Journal of Molecular Sciences, 2022, 23, 14954.	1.8	5
436	Innovative approaches in transforming <scp>microRNAs</scp> into therapeutic tools. Wiley Interdisciplinary Reviews RNA, 2023, 14, .	3.2	18
437	Effects of hsa-miR-9-3p and hsa-miR-9-5p on Topoisomerase II $<$ i $>$ Î $^2<$ /i $>$ Expression in Human Leukemia K562 Cells with Acquired Resistance to Etoposide. Journal of Pharmacology and Experimental Therapeutics, 2023, 384, 265-276.	1.3	2
439	TGF \hat{I}^21 -Induced EMT in the MCF10A Mammary Epithelial Cell Line Model Is Executed Independently of SNAIL1 and ZEB1 but Relies on JUNB-Coordinated Transcriptional Regulation. Cancers, 2023, 15, 558.	1.7	5
440	Host Plant Resistance: An Eco-Friendly Approach for Crop Disease Management., 2021,, 395-449.		0
441	Programmable Macromolecule-based RNA-targeting Therapies To Treat Human Neurological Disorders. Rna, 0, , rna.079519.122.	1.6	O
442	lodine-131 radiolabeled polyvinylchloride: A potential radiotracer for micro and nanoplastics bioaccumulation and biodistribution study in organisms. Marine Pollution Bulletin, 2023, 188, 114627.	2.3	2
444	Inducible CRISPR Epigenome Systems Mimic Cocaine Induced Bidirectional Regulation of Nab2 and Egr3. Journal of Neuroscience, 2023, 43, 2242-2259.	1.7	2
445	Doxorubicin and Cisplatin Modulate miR-21, miR-106, miR-126, miR-155 and miR-199 Levels in MCF7, MDA-MB-231 and SK-BR-3 Cells That Makes Them Potential Elements of the DNA-Damaging Drug Treatment Response Monitoring in Breast Cancer Cells—A Preliminary Study. Genes, 2023, 14, 702.	1.0	1
446	Advances in molecular targeted therapies to increase efficacy of (chemo)radiation therapy. Strahlentherapie Und Onkologie, 2023, 199, 1091-1109.	1.0	3

#	Article	IF	CITATIONS
447	Molecular Biology for Medicinal Chemists. , 2023, , 324-358.		0
462	Advantages and disadvantages of RNA therapeutics. Progress in Molecular Biology and Translational Science, 2024, , 151-164.	0.9	0
465	Overview of the Nonclinical Development Strategies and Class Effects of Oligonucleotide-based Therapeutics., 2024,, 769-790.		0