The velocity of climate change

Nature 462, 1052-1055 DOI: 10.1038/nature08649

Citation Report

#	Article	IF	CITATIONS
1	Boreal Forest Bird Assemblages and Their Conservation. , 0, , 183-230.		3
2	The net climate impact of coal-fired power plant emissions. Atmospheric Chemistry and Physics, 2010, 10, 3247-3260.	1.9	62
3	The Global Climate and Energy Project at Stanford University: Fundamental Research Towards Future Energy Technologies. Journal of Groundwater Hydrology, 2010, 52, 235-246.	0.1	0
4	Interdisciplinary approaches: towards new statistical methods for phenological studies. Climatic Change, 2010, 100, 143-171.	1.7	35
5	Climate Change Impacts in Alpine Environments. Geography Compass, 2010, 4, 1133-1153.	1.5	119
7	Buying time for wild animals with zoos. Zoo Biology, 2011, 30, 1-8.	0.5	118
8	Drought impacts on the Amazon forest: the remote sensing perspective. New Phytologist, 2010, 187, 569-578.	3.5	205
9	Ecological Connectivity for a Changing Climate. Conservation Biology, 2010, 24, 1686-1689.	2.4	172
10	The geography of climate change: implications for conservation biogeography. Diversity and Distributions, 2010, 16, 476-487.	1.9	490
11	Additive diversity partitioning as a guide to regional montane reserve design in Asia: an example from Yunnan Province, China. Diversity and Distributions, 2010, 16, 1022-1033.	1.9	26
12	Gene movement and genetic association with regional climate gradients in California valley oak (<i>Quercus lobata</i> Née) in the face of climate change. Molecular Ecology, 2010, 19, 3806-3823.	2.0	208
13	Demographic compensation and tipping points in climate-induced range shifts. Nature, 2010, 467, 959-962.	13.7	381
14	Global change and the evolution of phenotypic plasticity in plants. Annals of the New York Academy of Sciences, 2010, 1206, 35-55.	1.8	341
15	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	3.0	1,387
16	Climatic Variability Leads to Later Seasonal Flowering of Floridian Plants. PLoS ONE, 2010, 5, e11500.	1.1	36
17	A Climatic Stability Approach to Prioritizing Global Conservation Investments. PLoS ONE, 2010, 5, e15103.	1.1	52
18	Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12581-12586.	3.3	104
19	The CC-Bio Project: Studying the Effects of Climate Change on Quebec Biodiversity. Diversity, 2010, 2, 1181-1204.	0.7	37

TATION REDO

#	Article	IF	CITATIONS
20	<i>Polystichum munitum</i> (Dryopteridaceae) varies geographically in its capacity to absorb fog water by foliar uptake within the redwood forest ecosystem. American Journal of Botany, 2010, 97, 1121-1128.	0.8	65
21	Climate change effects on an endemicâ€rich edaphic flora: resurveying Robert H. Whittaker's Siskiyou sites (Oregon, USA). Ecology, 2010, 91, 3609-3619.	1.5	113
22	Planning for Biodiversity in Future Climates—Response. Science, 2010, 327, 1453-1453.	6.0	2
23	Of forests and time in the culture of possession. International Forestry Review, 2010, 12, 407-417.	0.3	0
24	Very Large Protected Areas and Their Contribution to Terrestrial Biological Conservation. BioScience, 2010, 60, 808-818.	2.2	73
25	Combined effects of climate and landâ€use change on the future of humid tropical forests. Conservation Letters, 2010, 3, 395-403.	2.8	75
26	Surface temperature lapse rates over complex terrain: Lessons from the Cascade Mountains. Journal of Geophysical Research, 2010, 115, .	3.3	329
27	Scenarios for Global Biodiversity in the 21st Century. Science, 2010, 330, 1496-1501.	6.0	1,570
28	Pre-impact forest composition and ongoing tree mortality associated with sudden oak death in the Big Sur region; California. Forest Ecology and Management, 2010, 259, 2342-2354.	1.4	46
29	Cedrus libani (A. Rich) distribution in Lebanon: Past, present and future. Comptes Rendus - Biologies, 2010, 333, 622-630.	0.1	41
30	is part of the virtual symposium "Flagship Species – Flagship Problems―that deals with ecology, biodiversity and management issues, and climate impacts on species at risk and of Canadian importance, including the polar bear (<i>Ursus maritimus</i>), Atlantic cod (<i>Gadus morhua</i>), Piping Plover (<i>Charadrius melodus</i>), and caribou (<i>Rangifer tarandus</i>) Canadian Journal of Zoology,	0.4	34
31	2011, 89, 435-451. Climate change predicted to shift wolverine distributions, connectivity, and dispersal corridors. , 2011, 21, 2882-2897.		92
32	Global Biodiversity Conservation: The Critical Role of Hotspots. , 2011, , 3-22.		821
33	Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Marine Ecology - Progress Series, 2011, 435, 83-95.	0.9	120
34	Changes in plant community composition lag behind climate warming in lowland forests. Nature, 2011, 479, 517-520.	13.7	645
35	The Influence of Late Quaternary Climate-Change Velocity on Species Endemism. Science, 2011, 334, 660-664.	6.0	665
36	Global Change Effects on Alpine Plant Diversity. , 2011, , 149-163.		4
37	Running Out of Climate Space. Science, 2011, 334, 613-614.	6.0	28

#	Article	IF	CITATIONS
38	Long-Term Ecological Records and Their Relevance to Climate Change Predictions for a Warmer World. Annual Review of Ecology, Evolution, and Systematics, 2011, 42, 267-287.	3.8	113
39	Beyond Reserves and Corridors: Policy Solutions to Facilitate the Movement of Plants and Animals in a Changing Climate. BioScience, 2011, 61, 713-719.	2.2	35
40	The 10 Australian ecosystems most vulnerable to tipping points. Biological Conservation, 2011, 144, 1472-1480.	1.9	158
41	Protected areas in climate space: What will the future bring?. Biological Conservation, 2011, 144, 2119-2125.	1.9	66
42	Conservation policies and planning under climate change. Biological Conservation, 2011, 144, 2968-2977.	1.9	28
43	Sedentary nestlings of Wood Stork as monitors of mercury contamination in the gold mining region of the Brazilian Pantanal. Environmental Research, 2011, 111, 1091-1095.	3.7	13
44	Adaptive Potential of Northernmost Tree Populations to Climate Change, with Emphasis on Scots Pine (Pinus sylvestris L.). Journal of Heredity, 2011, 102, 526-536.	1.0	53
45	Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 2011, 333, 1024-1026.	6.0	3,858
46	Fineâ€scale environmental variation in species distribution modelling: regression dilution, latent variables and neighbourly advice. Methods in Ecology and Evolution, 2011, 2, 248-257.	2.2	58
47	Specialization in Plant-Hummingbird Networks Is Associated with Species Richness, Contemporary Precipitation and Quaternary Climate-Change Velocity. PLoS ONE, 2011, 6, e25891.	1.1	142
48	The Pace of Shifting Climate in Marine and Terrestrial Ecosystems. Science, 2011, 334, 652-655.	6.0	1,062
52	Modelos de distribución de especies: Una revisión sintética. Revista Chilena De Historia Natural, 2011, 84, 217-240.	0.5	104
53	Robust detection of plant species distribution shifts under biased sampling regimes. Ecosphere, 2011, 2, art115.	1.0	10
54	Spread of North American wind-dispersed trees in future environments. Ecology Letters, 2011, 14, 211-219.	3.0	160
55	Climate change threatens European conservation areas. Ecology Letters, 2011, 14, 484-492.	3.0	660
56	Do species' traits predict recent shifts at expanding range edges?. Ecology Letters, 2011, 14, 677-689.	3.0	452
57	Relationships among net primary productivity, nutrients and climate in tropical rain forest: a panâ€ŧropical analysis. Ecology Letters, 2011, 14, 939-947.	3.0	379
58	Two <i> Trebouxia</i> algae with different physiological performances are everâ€present in lichen thalli of <i>Ramalina farinacea</i> . Coexistence versus Competition?. Environmental Microbiology, 2011, 13, 806-818.	1.8	151

<u> </u>		<u> </u>	
(15	ГАТІ	NEDC	DT
	IAL	NLPC	ואר

#	Article	IF	CITATIONS
59	Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene? Testing a palaeobotanical hypothesis with a dynamic landscape model. Journal of Biogeography, 2011, 38, 933-949.	1.4	81
60	Geographic distribution of plant pathogens in response to climate change. Plant Pathology, 2011, 60, 31-43.	1.2	122
61	Behavioral thermoregulation in a tropical gastropod: links to climate change scenarios. Global Change Biology, 2011, 17, 1740-1749.	4.2	93
62	21st century climate change threatens mountain flora unequally across Europe. Global Change Biology, 2011, 17, 2330-2341.	4.2	478
63	Revisiting projected shifts in the climate envelopes of North American trees using updated general circulation models. Global Change Biology, 2011, 17, 2720-2730.	4.2	110
64	Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. Journal of Ecology, 2011, 99, 664-677.	1.9	117
65	Clobal diversity in light of climate change: the case of ants. Diversity and Distributions, 2011, 17, 652-662.	1.9	87
66	The tropical frontier in avian climate impact research. Ibis, 2011, 153, 877-882.	1.0	37
67	Challenges and Opportunities in Implementing Managed Relocation for Conservation of Freshwater Species. Conservation Biology, 2011, 25, 40-47.	2.4	125
68	Spatial Predictions of Phylogenetic Diversity in Conservation Decision Making. Conservation Biology, 2011, 25, 1229-1239.	2.4	39
69	Editorial: Research in Zoos. International Zoo Yearbook, 2011, 45, 1-6.	1.0	5
70	Patterns and Determinants of Floristic Variation across Lowland Forests of Bolivia. Biotropica, 2011, 43, 405-413.	0.8	41
71	Ecoâ€evolutionary effects on population recovery following catastrophic disturbance. Evolutionary Applications, 2011, 4, 354-366.	1.5	31
72	Extinction of water plants in the Hula Valley: Evidence for climate changeâ ⁻ †. Journal of Human Evolution, 2011, 60, 320-327.	1.3	28
73	Recent evidence for the climate change threat to Lepidoptera and other insects. Journal of Insect Conservation, 2011, 15, 259-268.	0.8	77
74	Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future. Journal of Insect Conservation, 2011, 15, 311-319.	0.8	13
75	Sensitivity of potential natural vegetation in China to projected changes in temperature, precipitation and atmospheric CO2. Regional Environmental Change, 2011, 11, 715-727.	1.4	37
76	Bird migration on Helgoland: the yield from 100Âyears of research. Journal of Ornithology, 2011, 152, 25-40.	0.5	31

,,		15	C
Ŧ	ARTICLE	IF	CITATIONS
77	Planning Process. Environmental Management, 2011, 47, 322-337.	1.2	102
78	Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews: Climate Change, 2011, 2, 220-237.	3.6	81
79	Pleistocene Climate, Phylogeny, and Climate Envelope Models: An Integrative Approach to Better Understand Species' Response to Climate Change. PLoS ONE, 2011, 6, e28554.	1.1	84
80	Rapid evolution of cold tolerance in stickleback. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 233-238.	1.2	129
81	Waders in winter: long-term changes of migratory bird assemblages facing climate change. Biology Letters, 2011, 7, 714-717.	1.0	45
82	Impacts of climate change on the world's most exceptional ecoregions. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2306-2311.	3.3	312
83	History matters: ecometrics and integrative climate change biology. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 1131-1140.	1.2	81
84	Responses to historical climate change identify contemporary threats to diversity in Dodecatheon. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 5655-5660.	3.3	27
85	Can forest management be used to sustain water-based ecosystem services in the face of climate change?. , 2011, 21, 2049-2067.		131
86	Uncertainty in thermal tolerances and climatic debt. Nature Climate Change, 2012, 2, 638-639.	8.1	20
87	Evolutionary and Ecological Responses to Anthropogenic Climate Change. Plant Physiology, 2012, 160, 1728-1740.	2.3	117
88	Climate heterogeneity modulates impact of warming on tropical insects. Ecology, 2012, 93, 449-455.	1.5	72
89	Drought-induced tree mortality: ecological consequences, causes, and modeling. Environmental Reviews, 2012, 20, 109-121.	2.1	94
90	Elevation-dependent influence of snow accumulation on forest greening. Nature Geoscience, 2012, 5, 705-709.	5.4	187
92	Reviving a Legacy Citizen Science Project to Illuminate Shifts in Bird Phenology. International Journal of Zoology, 2012, 2012, 1-6.	0.3	11
93	Whitebark pine (<i>Pinus albicaulis</i>) assisted migration potential: testing establishment north of the species range. Ecological Applications, 2012, 22, 142-153.	1.8	105
94	Geographical and taxonomic biases in research on biodiversity in humanâ€modified landscapes. Ecosphere, 2012, 3, 1-16.	1.0	74
95	Cusk (Brosme brosme) and climate change: assessing the threat to a candidate marine fish species under the US Endangered Species Act. ICES Journal of Marine Science, 2012, 69, 1753-1768.	1.2	62

#	Article	IF	CITATIONS
96	Preserving species populations in the boreal zone in a changing climate: contrasting trends of bird species groups in a protected area network. Nature Conservation, 0, 3, 1-20.	0.0	15
97	Bioclimatic equilibrium for lichen distributions on disjunct continental landmasses. Botany, 2012, 90, 1316-1325.	0.5	21
98	Equatorial decline of reef corals during the last Pleistocene interglacial. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 21378-21383.	3.3	90
99	Functional and Phylogenetic Approaches to Forecasting Species' Responses to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 205-226.	3.8	181
100	Diversity of birds in eastern <scp>N</scp> orth <scp>A</scp> merica shifts north with global warming. Ecology and Evolution, 2012, 2, 3052-3060.	0.8	22
101	Climate change adaptation and sustainable regional development: a case study for the Federal State of Brandenburg, Germany. Regional Environmental Change, 2012, 12, 523-542.	1.4	46
102	Ants on a mountain: spatial, environmental and habitat associations along an altitudinal transect in a centre of endemism. Journal of Insect Conservation, 2012, 16, 677-695.	0.8	50
103	Climate Change Refugia for Biodiversity in the Klamath-Siskiyou Ecoregion. Natural Areas Journal, 2012, 32, 65-74.	0.2	58
104	Invasive Species Unchecked by Climate. Science, 2012, 335, 537-538.	6.0	13
105	Climate change hotspots in the CMIP5 global climate model ensemble. Climatic Change, 2012, 114, 813-822.	1.7	449
106	Carnegie Airborne Observatory-2: Increasing science data dimensionality via high-fidelity multi-sensor fusion. Remote Sensing of Environment, 2012, 124, 454-465.	4.6	283
107	The Role of Mountain Ranges in the Diversification of Birds. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 249-265.	3.8	309
108	Modelling changes in the distribution of the critical food resources of a specialist folivore in response to climate change. Diversity and Distributions, 2012, 18, 847-860.	1.9	39
109	Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8606-8611.	3.3	437
110	The effects of climate change on tropical birds. Biological Conservation, 2012, 148, 1-18.	1.9	276
111	Amazon's vulnerability to climate change heightened by deforestation and manâ€made dispersal barriers. Global Change Biology, 2012, 18, 3606-3614.	4.2	48
112	Climate Change, Aboveground-Belowground Interactions, and Species' Range Shifts. Annual Review of Ecology, Evolution, and Systematics, 2012, 43, 365-383.	3.8	182
113	Projected vegetation changes for the American Southwest: combined dynamic modeling and bioclimaticâ€envelope approach. Ecological Applications, 2012, 22, 1365-1388.	1.8	84

#	Article	IF	CITATIONS
114	Evapotranspiration along an elevation gradient in California's Sierra Nevada. Journal of Geophysical Research, 2012, 117, .	3.3	165
115	Analysis of threats to South American flora and its implications for conservation. Journal for Nature Conservation, 2012, 20, 337-348.	0.8	19
116	Systemic range shift lags among a pollinator species assemblage following rapid climate change ¹ This article is part of a Special Issue entitled "Pollination biology research in Canada: Perspectives on a mutualism at different scalesâ€. Botany, 2012, 90, 587-597.	0.5	25
117	Between-Site Differences in the Scale of Dispersal and Gene Flow in Red Oak. PLoS ONE, 2012, 7, e36492.	1.1	39
118	Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 16083-16088.	3.3	2,896
119	Differences in the climatic debts of birds and butterflies at a continental scale. Nature Climate Change, 2012, 2, 121-124.	8.1	594
120	Saving a Million Species. , 2012, , .		15
121	Quaternary Tropical Plant Extinction: A Paleoecological Perspective from the Neotropics. , 2012, , 199-214.		0
122	Climate change and disruptions to global fire activity. Ecosphere, 2012, 3, 1-22.	1.0	650
123	Differential Response to Soil Salinity in Endangered Key Tree Cactus: Implications for Survival in a Changing Climate. PLoS ONE, 2012, 7, e32528.	1.1	9
124	Downscaling Future Climate Projections to the Watershed Scale: A North San Francisco Bay Case Study. San Francisco Estuary and Watershed Science, 2012, 10, .	0.2	9
126	perspective: The responses of tropical forest species to global climate change: acclimate, adapt, migrate, or go extinct?. Frontiers of Biogeography, 2012, 4, .	0.8	12
127	Boreal Forest, Canada. , 2012, , 69-79.		2
128	Early stages of divergence: phylogeography, climate modeling, and morphological differentiation in the South American lizard <i>Liolaemus petrophilus</i> (Squamata: Liolaemidae). Ecology and Evolution, 2012, 2, 792-808.	0.8	29
129	Ecohydrological consequences of drought―and infestation―triggered tree dieâ€off: insights and hypotheses. Ecohydrology, 2012, 5, 145-159.	1.1	211
130	Approaching a state shift in Earth's biosphere. Nature, 2012, 486, 52-58.	13.7	1,518
131	Identifying potential evolutionary consequences of climate-driven phenological shifts. Evolutionary Ecology, 2012, 26, 465-473.	0.5	15
132	The influence of species interactions on geographic range change under climate change. Annals of the New York Academy of Sciences, 2012, 1249, 18-28.	1.8	52

#	Article	IF	CITATIONS
133	Forecasting species ranges by statistical estimation of ecological niches and spatial population dynamics. Global Ecology and Biogeography, 2012, 21, 293-304.	2.7	188
134	Rapid global change: implications for defining natives and aliens. Global Ecology and Biogeography, 2012, 21, 305-311.	2.7	67
135	Modelling spread of British windâ€dispersed plants under future wind speeds in a changing climate. Journal of Ecology, 2012, 100, 104-115.	1.9	84
136	The productivity, metabolism and carbon cycle of tropical forest vegetation. Journal of Ecology, 2012, 100, 65-75.	1.9	238
137	The responses of grassland plants to experimentally simulated climate change depend on land use and region. Global Change Biology, 2012, 18, 127-137.	4.2	43
138	Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology, 2012, 18, 1042-1052.	4.2	519
139	Noâ€analog climates and shifting realized niches during the late quaternary: implications for 21stâ€century predictions by species distribution models. Global Change Biology, 2012, 18, 1698-1713.	4.2	243
140	Keeping pace with climate change: what can we learn from the spread of Lessepsian migrants?. Clobal Change Biology, 2012, 18, 2161-2172.	4.2	35
141	Global environmental change and the biology of heritage structures. Global Change Biology, 2012, 18, 2406-2418.	4.2	71
142	The relative importance of deforestation, precipitation change, and temperature sensitivity in determining the future distributions and diversity of <scp>A</scp> mazonian plant species. Global Change Biology, 2012, 18, 2636-2647.	4.2	65
143	Tracking of climatic niche boundaries under recent climate change. Journal of Animal Ecology, 2012, 81, 914-925.	1.3	129
144	Local and landscape management of an expanding range margin under climate change. Journal of Applied Ecology, 2012, 49, 552-561.	1.9	34
145	Endemic plant communities on special soils: early victims or hardy survivors of climate change?. Journal of Ecology, 2012, 100, 1122-1130.	1.9	85
146	Continentalâ€scale variability in browser diversity is a major driver of diversity patterns in acacias across Africa. Journal of Ecology, 2012, 100, 1093-1104.	1.9	29
147	A crucial step toward realism: responses to climate change from an evolving metacommunity perspective. Evolutionary Applications, 2012, 5, 154-167.	1.5	106
148	RECONSTRUCTING THE ORIGINS OF HIGH-ALPINE NICHES AND CUSHION LIFE FORM IN THE GENUS ANDROSACE S.L. (PRIMULACEAE). Evolution; International Journal of Organic Evolution, 2012, 66, 1255-1268.	1.1	69
149	What's on the horizon for macroecology?. Ecography, 2012, 35, 673-683.	2.1	166
150	Agriculture and Trade Opportunities for Tanzania: Past Volatility and Future Climate Change. Review of Development Economics, 2012, 16, 429-447.	1.0	17

#	Article	IF	CITATIONS
151	Longâ€distance gene flow and adaptation of forest trees to rapid climate change. Ecology Letters, 2012, 15, 378-392.	3.0	550
152	Postâ€glacial migration lag restricts range filling of plants in the European Alps. Global Ecology and Biogeography, 2012, 21, 829-840.	2.7	91
153	Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecological Processes, 2012, 1, .	1.6	150
154	Slow, but steady: dispersal of freshwater molluscs. Aquatic Sciences, 2012, 74, 1-14.	0.6	203
155	Clobal changes in extreme events: regional and seasonal dimension. Climatic Change, 2012, 110, 669-696.	1.7	442
156	Vulnerability of baobab species to climate change and effectiveness of the protected area network in Madagascar: Towards new conservation priorities. Biological Conservation, 2013, 166, 11-22.	1.9	44
157	Clobal imprint of climate change on marine life. Nature Climate Change, 2013, 3, 919-925.	8.1	1,602
158	How comparable are species distributions along elevational and latitudinal climate gradients?. Global Ecology and Biogeography, 2013, 22, 1228-1237.	2.7	43
159	Latitudinal and Elevational Range Shifts under Contemporary Climate Change. , 2013, , 599-611.		57
160	Assessing migration of Ruby-throated Hummingbirds (<i>Archilochus colubris</i>) at broad spatial and temporal scales. Auk, 2013, 130, 107-117.	0.7	28
161	Forest resilience, climate change, and opportunities for adaptation: A specific case of a general problem. Forest Ecology and Management, 2013, 306, 216-225.	1.4	60
162	The Ethics of Assisted Colonization in the Age of Anthropogenic Climate Change. Journal of Agricultural and Environmental Ethics, 2013, 26, 827-845.	0.9	20
163	Distribution of the Eastern knapweed fritillary (Melitaea ornata Christoph, 1893) (Lepidoptera:) Tj ETQq0 0 0 rgBT	/Oyerlock 0.8	10 Tf 50 26
164	The shaping of genetic variation in edgeâ€ofâ€range populations under past and future climate change. Ecology Letters, 2013, 16, 1258-1266.	3.0	99
165	Treetops at Risk. , 2013, , .		13
166	Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Climatic Change, 2013, 119, 659-675.	1.7	41
167	Climate change must not blow conservation off course. Nature, 2013, 500, 271-272.	13.7	29
168	Using climate impacts indicators to evaluate climate model ensembles: temperature suitability of premium winegrape cultivation in the United States. Climate Dynamics, 2013, 40, 709-729.	1.7	21

#	Article	IF	CITATIONS
169	Temporal and geographical variation in the onset of climatological spring in Northeast China. Theoretical and Applied Climatology, 2013, 114, 605-613.	1.3	5
170	Climate change affecting temperature and aridity zones: a case study in Eastern Inner Mongolia, China from 1960–2008. Theoretical and Applied Climatology, 2013, 113, 561-572.	1.3	18
171	Consequences of past climate change for species engaged in obligatory interactions. Comptes Rendus - Geoscience, 2013, 345, 306-315.	0.4	6
172	Succulent plants on arid inselbergs. Flora: Morphology, Distribution, Functional Ecology of Plants, 2013, 208, 321-329.	0.6	5
173	Cryptic or mystic? Glacial tree refugia in northern Europe. Trends in Ecology and Evolution, 2013, 28, 696-704.	4.2	273
174	The timing of climate change. Nature, 2013, 502, 174-175.	13.7	5
175	Responses of Bats to Climate Change: Learning from the Past and Predicting the Future. , 2013, , 457-478.		27
176	Assisted Gene Flow to Facilitate Local Adaptation to Climate Change. Annual Review of Ecology, Evolution, and Systematics, 2013, 44, 367-388.	3.8	708
177	Ecological genomics of local adaptation. Nature Reviews Genetics, 2013, 14, 807-820.	7.7	1,099
178	Marine Ecosystem Responses to Cenozoic Global Change. Science, 2013, 341, 492-498.	6.0	140
179	Ceria atalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2 yanopyridine. ChemSusChem, 2013, 6, 1341-1344.	3.6	153
179 180	Ceriaâ€Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2â€Cyanopyridine. ChemSusChem, 2013, 6, 1341-1344. Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3681-3688.	3.6 3.3	153 128
179 180 181	 Ceriaâ€Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2â€Cyanopyridine. ChemSusChem, 2013, 6, 1341-1344. Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3681-3688. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes, 2013, 2, . 	3.6 3.3 1.6	153 128 186
179 180 181 182	Ceriaâ€Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2â€Cyanopyridine. ChemSusChem, 2013, 6, 1341-1344. Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3681-3688. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes, 2013, 2, . Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodiversity and Conservation, 2013, 22, 1151-1166.	3.6 3.3 1.6 1.2	153 128 186 28
179 180 181 182 183	Ceriaâ€Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2â€Cyanopyridine. ChemSusChem, 2013, 6, 1341-1344. Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3681-3688. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes, 2013, 2, . Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodiversity and Conservation, 2013, 22, 1151-1166. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 2013, 3, 989-994.	3.6 3.3 1.6 1.2 8.1	153 128 186 28 204
179 180 181 182 183 183	Ceriaâ€Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2â€Cyanopyridine. ChemSusChem, 2013, 6, 1341-1344.Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3681-3688.Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes, 2013, 2, .Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodiversity and Conservation, 2013, 22, 1151-1166.Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 2013, 3, 989-994.Does functional type vulnerability to multiple threats depend on spatial context in <scp>M</scp> editerraneana&climate regions?. Diversity and Distributions, 2013, 19, 1263-1274.	3.6 3.3 1.6 1.2 8.1 1.9	 153 128 186 28 204 20
 179 180 181 182 183 184 185 	Ceria Catalyzed Conversion of Carbon Dioxide into Dimethyl Carbonate with 2 yanopyridine. ChemSusChem, 2013, 6, 1341-1344. Interdisciplinary approaches to understanding disease emergence: The past, present, and future drivers of Nipah virus emergence. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3681-3688. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecological Processes, 2013, 2, . Adaptive genetic diversity of trees for forest conservation in a future climate: a case study on Norway spruce in Austria. Biodiversity and Conservation, 2013, 22, 1151-1166. Mapping vulnerability and conservation adaptation strategies under climate change. Nature Climate Change, 2013, 3, 989-994. Does functional type vulnerability to multiple threats depend on spatial context in editerraneana&celimate">scsp:wk./scp>editerraneana&celimate regions?. Diversity and Distributions, 2013, 19, 1263-1274. Focus on poleward shifts in species' distribution underestimates the fingerprint of climate change. Nature Climate Change, 2013, 3, 239-243.	3.6 3.3 1.6 1.2 8.1 1.9 8.1	 153 128 186 28 204 20 313

#	Article	IF	CITATIONS
187	Appropriateness of fullâ€, partial―and noâ€dispersal scenarios in climate change impact modelling. Diversity and Distributions, 2013, 19, 1224-1234.	1.9	88
188	Future distribution of tundra refugia in northernÂAlaska. Nature Climate Change, 2013, 3, 931-938.	8.1	34
189	Anticipating the consequences of climate change for Canada's boreal forest ecosystems. Environmental Reviews, 2013, 21, 322-365.	2.1	414
190	Efficient, direct synthesis of dimethyl carbonate from CO2 using a solid, calcined zirconium phenylphosphonate phosphite catalyst. RSC Advances, 2013, 3, 23993.	1.7	20
191	A risk-based model of climate change threat: hazard, exposure, and vulnerability in the ecology of lichen epiphytes. Botany, 2013, 91, 1-11.	0.5	47
192	Climate Change, Marine Environments, and the U.S. Endangered Species Act. Conservation Biology, 2013, 27, 1138-1146.	2.4	15
193	Climate Change Vulnerability Assessment of Rare Plants in California. Madroño, 2013, 60, 193-210.	0.3	43
194	Moving forward: dispersal and species interactions determine biotic responses to climate change. Annals of the New York Academy of Sciences, 2013, 1297, 44-60.	1.8	120
195	Can terrestrial ectotherms escape the heat of climate change by moving?. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131149.	1.2	45
196	The impacts of climate change on ecosystem structure and function. Frontiers in Ecology and the Environment, 2013, 11, 474-482.	1.9	433
197	Observing changing ecological diversity in the Anthropocene. Frontiers in Ecology and the Environment, 2013, 11, 129-137.	1.9	101
198	Climate change has indirect effects on resource use and overlap among coexisting bird species with negative consequences for their reproductive success. Global Change Biology, 2013, 19, 411-419.	4.2	26
199	An Update of Wallace's Zoogeographic Regions of the World. Science, 2013, 339, 74-78.	6.0	1,037
200	More rapid climate change promotes evolutionary rescue through selection for increased dispersal distance. Evolutionary Applications, 2013, 6, 353-364.	1.5	52
201	Predicting dispersal distance in mammals: a traitâ€based approach. Journal of Animal Ecology, 2013, 82, 211-221.	1.3	115
202	Does the protected area network preserve bird species of conservation concern in a rapidly changing climate?. Biodiversity and Conservation, 2013, 22, 459-482.	1.2	33
203	Mechanistic models for the spatial spread of species under climate change. Ecological Applications, 2013, 23, 815-828.	1.8	80
204	Connectivity Planning to Address Climate Change. Conservation Biology, 2013, 27, 407-416.	2.4	164

#	Article	IF	CITATIONS
205	Modelling future no-analogue climate distributions: A world-wide phytoclimatic niche-based survey. Global and Planetary Change, 2013, 101, 1-11.	1.6	17
206	Assessing the stability of tree ranges and influence of disturbance in eastern US forests. Forest Ecology and Management, 2013, 291, 172-180.	1.4	42
207	Assessing biome boundary shifts under climate change scenarios in India. Ecological Indicators, 2013, 34, 536-547.	2.6	28
208	Tracking shifting range margins using geographical centroids of metapopulations weighted by population density. Ecological Modelling, 2013, 269, 61-69.	1.2	15
209	Accommodating the human response for realistic adaptation planning: response to Gillson et al Trends in Ecology and Evolution, 2013, 28, 573-574.	4.2	15
210	Thermal tolerance during early ontogeny in the common whelk Buccinum undatum (Linnaeus 1785): Bioenergetics, nurse egg partitioning and developmental success. Journal of Sea Research, 2013, 79, 32-39.	0.6	18
211	The climate velocity of the contiguous <scp>U</scp> nited <scp>S</scp> tates during the 20th century. Global Change Biology, 2013, 19, 241-251.	4.2	267
212	Rapid changes in bird community composition at multiple temporal and spatial scales in response to recent climate change. Ecography, 2013, 36, 313-322.	2.1	96
213	Life on the Move: Modeling the Effects of Climate-Driven Range Shifts with Integrodifference Equations. Lecture Notes in Mathematics, 2013, , 263-292.	0.1	19
214	Predicting persistence in a changing climate: flow direction and limitations to redistribution. Oikos, 2013, 122, 161-170.	1.2	41
215	A highâ€resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Global Ecology and Biogeography, 2013, 22, 630-638.	2.7	245
216	Making decisions to conserve species under climate change. Climatic Change, 2013, 119, 239-246.	1.7	77
217	Potential for evolutionary responses to climate change – evidence from tree populations. Global Change Biology, 2013, 19, 1645-1661.	4.2	705
218	Do stream fish track climate change? Assessing distribution shifts in recent decades. Ecography, 2013, 36, 1236-1246.	2.1	196
220	Boreal carbon loss due to poleward shift in low-carbon ecosystems. Nature Geoscience, 2013, 6, 452-456.	5.4	55
221	Highly efficient synthesis of cyclic ureas from CO2 and diamines by a pure CeO2 catalyst using a 2-propanol solvent. Green Chemistry, 2013, 15, 1567.	4.6	98
222	Tree-species range shifts in a changing climate: detecting, modeling, assisting. Landscape Ecology, 2013, 28, 879-889.	1.9	120
223	Will plant movements keep up with climate change?. Trends in Ecology and Evolution, 2013, 28, 482-488.	4.2	575

ARTICLE IF CITATIONS # Tracking climate change in a dispersalâ€limited species: reduced spatial and genetic connectivity in a 224 2.0 76 montane salamander. Molecular Ecology, 2013, 22, 3261-3278. Projected climateâ€driven faunal movement routes. Ecology Letters, 2013, 16, 1014-1022. 153 Compositional shifts in $\langle scp \rangle C \langle scp \rangle osta \langle scp \rangle R \langle scp \rangle ican forests due to climate <math>\widehat{e}driven$ species 226 4.2 87 migrations. Global Change Biology, 2013, 19, 3472-3480. Climatic variation and age-specific survival in Asian elephants from Myanmar. Ecology, 2013, 94, 1131-1141. Current state of knowledge regarding the world's wetlands and their future under global climate 228 0.6 468 change: a synthesis. Aquatic Sciences, 2013, 75, 151-167. Climatic and biotic velocities for woody taxa distributions over the last 16Â000Âyears in eastern North America. Ecology Letters, 2013, 16, 773-781. 229 3.0 Latitudinal gradients as natural laboratories to infer species' responses to temperature. Journal of 230 1.9 315 Ecology, 2013, 101, 784-795. The Future of Species Under Climate Change: Resilience or Decline?. Science, 2013, 341, 504-508. 6.0 231 549 232 Changes in Ecologically Critical Terrestrial Climate Conditions. Science, 2013, 341, 486-492. 6.0 473 Habitat area and climate stability determine geographical variation in plant species range sizes. Ecology Letters, 2013, 16, 1446-1454. Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic?. 234 0.4 61 Environmental Biology of Fishes, 2013, 96, 1187-1226. How will biotic interactions influence climate change–induced range shifts?. Annals of the New York 1.8 238 Academy of Sciences, 2013, 1297, 112-125. Current state of knowledge regarding South America wetlands and their future under global climate 236 0.6 190 change. Aquatic Sciences, 2013, 75, 113-131. How does climate change cause extinction?. Proceedings of the Royal Society B: Biological Sciences, 1.2 2013, 280, 20121890 The Balance of Nature and Human Impact. * Klaus Rohde, editor.. Integrative and Comparative Biology, 238 0.9 2 2013, 53, 1017-1019. African rainforests: past, present and future. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20120312. 1.8 131 Alternative biological assumptions strongly influence models of climate change effects on mountain 240 1.0 33 gorillas. Ecosphere, 2013, 4, 1-17. Disequilibrium vegetation dynamics under future climate change. American Journal of Botany, 2013, 241 100, 1266-1286.

#	Article	IF	CITATIONS
242	Genetic patterns of habitat fragmentation and past climateâ€change effects in the Mediterranean highâ€mountain plant <i>Armeria caespitosa</i> (Plumbaginaceae). American Journal of Botany, 2013, 100, 1641-1650.	0.8	20
243	Marine Taxa Track Local Climate Velocities. Science, 2013, 341, 1239-1242.	6.0	1,025
244	Implications of nonrandom seed abscission and global stilling for migration of windâ€dispersed plant species. Global Change Biology, 2013, 19, 1720-1735.	4.2	25
245	Biodiversity in a changing climate: a synthesis of current and projected trends in the US. Frontiers in Ecology and the Environment, 2013, 11, 465-473.	1.9	125
246	Stream isotherm shifts from climate change and implications for distributions of ectothermic organisms. Global Change Biology, 2013, 19, 742-751.	4.2	133
247	Local temperatures inferred from plant communities suggest strong spatial buffering of climate warming across <scp>N</scp> orthern <scp>E</scp> urope. Global Change Biology, 2013, 19, 1470-1481.	4.2	200
248	Climate change and plant dispersal along corridors in fragmented landscapes of Mesoamerica. Ecology and Evolution, 2013, 3, 2917-2932.	0.8	20
249	Dispersal, Individual Movement and Spatial Ecology. Lecture Notes in Mathematics, 2013, , .	0.1	30
250	Conservation implications of adaptation to tropical climates from a historical perspective. Journal of Biogeography, 2013, 40, 409-414.	1.4	13
251	Exploring tree species colonization potentials using a spatially explicit simulation model: implications for four oaks under climate change. Clobal Change Biology, 2013, 19, 2196-2208.	4.2	41
252	Catchments on the cusp? Structural and functional change in northern ecohydrology. Hydrological Processes, 2013, 27, 766-774.	1.1	55
253	Europe's other debt crisis caused by the long legacy of future extinctions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7342-7347.	3.3	102
254	Realized climatic niche of North American plant taxa lagged behind climate during the end of the Pleistocene. American Journal of Botany, 2013, 100, 1255-1265.	0.8	36
255	Asynchronous exposure to global warming: freshwater resources and terrestrial ecosystems. Environmental Research Letters, 2013, 8, 034032.	2.2	52
256	Don't Give up Just Yet: Maintaining Species, Services, and Systems in a Changing World. Ethics, Policy and Environment, 2013, 16, 33-36.	0.8	4
257	Climate isn't everything: Competitive interactions and variation by life stage will also affect range shifts in a warming world. American Journal of Botany, 2013, 100, 1344-1355.	0.8	79
259	Potential effects of climate change on streambed scour and risks to salmonid survival in snowâ€dominated mountain basins. Hydrological Processes, 2013, 27, 750-765.	1.1	70
260	An Inventory of Crop Wild Relatives of the United States. Crop Science, 2013, 53, 1496-1508.	0.8	77

#	Article	IF	CITATIONS
261	Developing predictive insight into changing water systems: use-inspired hydrologic science for the Anthropocene. Hydrology and Earth System Sciences, 2013, 17, 5013-5039.	1.9	119
262	Climate Change and Intertidal Wetlands. Biology, 2013, 2, 445-480.	1.3	27
263	The Jena Diversity-Dynamic Global Vegetation Model (JeDi-DGVM): a diverse approach to representing terrestrial biogeography and biogeochemistry based on plant functional trade-offs. Biogeosciences, 2013, 10, 4137-4177.	1.3	162
264	Assessing insect responses to climate change: What are we testing for? Where should we be heading?. PeerJ, 2013, 1, e11.	0.9	114
266	Present, Future, and Novel Bioclimates of the San Francisco, California Region. PLoS ONE, 2013, 8, e58450.	1.1	19
267	Spatial Heterogeneity in Ecologically Important Climate Variables at Coarse and Fine Scales in a High-Snow Mountain Landscape. PLoS ONE, 2013, 8, e65008.	1.1	58
268	Updating Known Distribution Models for Forecasting Climate Change Impact on Endangered Species. PLoS ONE, 2013, 8, e65462.	1.1	24
269	Using Citizen Science Data to Model the Distributions of Common Songbirds of Turkey Under Different Global Climatic Change Scenarios. PLoS ONE, 2013, 8, e68037.	1.1	29
270	Ancient Dispersal of the Human Fungal Pathogen Cryptococcus gattii from the Amazon Rainforest. PLoS ONE, 2013, 8, e71148.	1.1	122
271	Millennial-Scale Temperature Change Velocity in the Continental Northern Neotropics. PLoS ONE, 2013, 8, e81958.	1.1	34
272	Latitude, elevation, richness and hotspots of change across the Americas: a test of Orlóci's plant compositional transition hypotheses throughout the Holocene. Community Ecology, 2013, 14, 231-242.	0.5	1
273	Divergent Arctic-Boreal Vegetation Changes between North America and Eurasia over the Past 30 Years. Remote Sensing, 2013, 5, 2093-2112.	1.8	59
274	Climate zones will shift faster as world warms. Nature, 2013, , .	13.7	2
275	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	5
276	Studying the effects of climatic gradients within anthropogenic environments improves biogeographical inferences. Frontiers of Biogeography, 2013, 5, .	0.8	0
277	The Trajectory of Dispersal Research in Conservation Biology. Systematic Review. PLoS ONE, 2014, 9, e95053.	1.1	91
278	Individualistic Population Responses of Five Frog Species in Two Changing Tropical Environments over Time. PLoS ONE, 2014, 9, e98351.	1.1	8
279	Public Support for Conserving Bird Species Runs Counter to Climate Change Impacts on Their Distributions. PLoS ONE, 2014, 9, e101281.	1.1	20

		Citation Report		
#	Article		IF	CITATIONS
280	Pushing the Pace of Tree Species Migration. PLoS ONE, 2014, 9, e105380.		1.1	22
281	<p class="HeadingRunIn">A new species of the Miniopt schreibersii species complex (Chiroptera: Miniopteridae) from tl Region, North Africa</p> . Zootaxa, 2014, 3794, 108.	erus he Maghreb	0.2	25
282	Relative roles of local disturbance, current climate and paleoclimate in determining ph functional diversity in Chinese forests. Biogeosciences, 2014, 11, 1361-1370.	ylogenetic and	1.3	26
283	Vulnerability of birds to climate change in California's Sierra Nevada. Avian Conservatio Ecology, 2014, 9, .	on and	0.3	21
284	Age, health, damage and death: living in a hostile world. , 0, , 315-375.			0
285	Assessing current and projected suitable habitats for tree-of-heaven along the Appalac Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 201	hian Trail. 30192.	1.8	20
286	Use of an Observation Network in the Great Basin to Evaluate Gridded Climate Data. Jo Hydrometeorology, 2014, 15, 1913-1931.	ournal of	0.7	25
287	Timescales associated with climate change and their relevance in adaptation strategie Change, 2014, 126, 93-106.	s. Climatic	1.7	7
288	Changes in plant diversity on the Chinese Loess Plateau since the Last Glacial Maximu Bulletin, 2014, 59, 4096-4100.	m. Science	1.7	7
289	Amazonian functional diversity from forest canopy chemical assembly. Proceedings of Academy of Sciences of the United States of America, 2014, 111, 5604-5609.	the National	3.3	140
290	How does contemporary climate versus climate change velocity affect endemic plant s in China?. Science Bulletin, 2014, 59, 4660-4667.	species richness	1.7	10
291	Facilitation among plants in alpine environments in the face of climate change. Frontie Science, 2014, 5, 387.	ers in Plant	1.7	111
292	Range-Wide Latitudinal and Elevational Temperature Gradients for the World's Terrest Implications under Global Climate Change. PLoS ONE, 2014, 9, e98361.	rial Birds:	1.1	38
294	Fiddling in biodiversity hotspots while deserts burn? Collapse of the <scp>S</scp> aha Diversity and Distributions, 2014, 20, 114-122.	ra's megafauna.	1.9	102
295	Soil microbial and nutrient responses to 7Âyears of seasonally altered precipitation in Desert grassland. Global Change Biology, 2014, 20, 1657-1673.	a Chihuahuan	4.2	120
296	Range <scp>S</scp> hifter: a platform for modelling spatial ecoâ€evolutionary dynamic responses to environmental changes. Methods in Ecology and Evolution, 2014, 5, 388	cs and species' -396.	2.2	160
297	Relative contributions of neutral and nonâ€neutral genetic differentiation to inform co steelhead trout across highly variable landscapes. Evolutionary Applications, 2014, 7, 6	onservation of 682-701.	1.5	52
298	Which hostâ€dependent insects are most prone to coextinction under changed climat Evolution, 2014, 4, 1295-1312.	tes?. Ecology and	0.8	20

#	Article	IF	CITATIONS
299	Unravelling biodiversity, evolution and threats to conservation in the Sahara ahel. Biological Reviews, 2014, 89, 215-231.	4.7	170
300	Beyond a warming fingerprint: individualistic biogeographic responses to heterogeneous climate change in California. Global Change Biology, 2014, 20, 2841-2855.	4.2	154
301	Ecological and Social Outcomes of a New Protected Area in Tanzania. Conservation Biology, 2014, 28, 1512-1521.	2.4	24
302	Estimating Climate Resilience for Conservation across Geophysical Settings. Conservation Biology, 2014, 28, 959-970.	2.4	86
303	Protected areas alleviate climate change effects on northern bird species of conservation concern. Ecology and Evolution, 2014, 4, 2991-3003.	0.8	36
304	Changing forest water yields in response to climate warming: results from longâ€ŧerm experimental watershed sites across North America. Global Change Biology, 2014, 20, 3191-3208.	4.2	147
305	Modelling the <scp>H</scp> olocene migrational dynamics of <i><scp>F</scp>agus sylvatica</i> â€ <scp>L.</scp> and <i><scp>P</scp>icea abies</i> (<scp>L</scp> .) <scp>H</scp> . <scp>K</scp> arst. Global Ecology and Biogeography, 2014, 23, 658-668.	2.7	18
306	Climate Change and the Distribution of Neotropical Red-Bellied Toads (Melanophryniscus, Anura,) Tj ETQq1 1 0.	784314 rg 1.1	gBT_{0verlock
307	Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 723-727.	3.3	431
308	Geographic variation in growth and phenology of two dominant central US grasses: consequences for climate change. Journal of Plant Ecology, 2014, 7, 211-221.	1.2	15
310	Middle-Eastern plant communities tolerate 9 years of drought in a multi-site climate manipulation experiment. Nature Communications, 2014, 5, 5102.	5.8	117
311	EDITOR'S CHOICE: Stepping stones are crucial for species' longâ€distance dispersal and range expansion through habitat networks. Journal of Applied Ecology, 2014, 51, 171-182.	1.9	413
312	Assessing global biome exposure to climate change through the <scp>H</scp> olocene– <scp>A</scp> nthropocene transition. Global Ecology and Biogeography, 2014, 23, 235-244.	2.7	27
313	Climatic Change and Desert Vegetation Distribution: Assessing Thirty Years of Change in Southern Nevada's Mojave Desert. Professional Geographer, 2014, 66, 311-322.	1.0	17
314	The role of forest genetic resources in responding to biotic and abiotic factors in the context of anthropogenic climate change. Forest Ecology and Management, 2014, 333, 76-87.	1.4	125
315	A century of chasing the ice: delayed colonisation of iceâ€free sites by ground beetles along glacier forelands in the Alps. Ecography, 2014, 37, 33-42.	2.1	31
316	Organizing phenological data resources to inform natural resource conservation. Biological Conservation, 2014, 173, 90-97.	1.9	62
317	Lizard thermal trait variation at multiple scales: a review. Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology, 2014, 184, 5-21.	0.7	154

#	Article	IF	CITATIONS
318	Revisiting tree-migration rates: Abies alba (Mill.), a case study. Vegetation History and Archaeobotany, 2014, 23, 113-122.	1.0	30
319	The last decade in ecological climate change impact research: where are we now?. Die Naturwissenschaften, 2014, 101, 1-9.	0.6	15
320	Plasticity and genetic adaptation mediate amphibian and reptile responses to climate change. Evolutionary Applications, 2014, 7, 88-103.	1.5	193
321	Geographical limits to species-range shifts are suggested by climate velocity. Nature, 2014, 507, 492-495.	13.7	436
322	Responses of vegetation distribution to climate change in China. Theoretical and Applied Climatology, 2014, 117, 15-28.	1.3	31
323	Terrestrial carbon cycle affected by non-uniform climate warming. Nature Geoscience, 2014, 7, 173-180.	5.4	226
324	Using dynamic vegetation models to simulate plant range shifts. Ecography, 2014, 37, 1184-1197.	2.1	89
325	Multiple Dimensions of Climate Change and Their Implications for Biodiversity. Science, 2014, 344, 1247579.	6.0	519
326	Disentangling the influence of climatic and geological changes on species radiations. Journal of Biogeography, 2014, 41, 1313-1325.	1.4	30
327	Spatial genetic structure reflects extensive clonality, low genotypic diversity and habitat fragmentation in Grevillea renwickiana (Proteaceae), a rare, sterile shrub from south-eastern Australia. Annals of Botany, 2014, 114, 413-423.	1.4	23
328	Bioclimatic velocity: the pace of species exposure to climate change. Diversity and Distributions, 2014, 20, 169-180.	1.9	60
329	Spatiotemporal trends and drivers of population dynamics in a declining Sonoran Desert predator. Biological Conservation, 2014, 175, 110-118.	1.9	11
330	Countryside biogeography of Neotropical reptiles and amphibians. Ecology, 2014, 95, 856-870.	1.5	55
331	Large frugivorous birds facilitate functional connectivity of fragmented landscapes. Journal of Applied Ecology, 2014, 51, 684-692.	1.9	71
332	Exploring hydroclimatic change disparity via the Budyko framework. Hydrological Processes, 2014, 28, 4110-4118.	1.1	63
333	Mangrove Ecosystems of Asia. , 2014, , .		33
334	Assessing the impacts of climatic change on mountain water resources. Science of the Total Environment, 2014, 493, 1129-1137.	3.9	146
335	Modeling the effects of dispersal and patch size on predicted fisher (Pekania [Martes] pennanti) distribution in the U.S. Rocky Mountains. Biological Conservation, 2014, 169, 89-98.	1.9	19

#	Article	IF	CITATIONS
336	Shifts in plant species elevational range limits and abundances observed over nearly five decades in a western <scp>N</scp> orth <scp>A</scp> merica mountain range. Journal of Vegetation Science, 2014, 25, 135-146.	1.1	45
337	Mountain landscapes offer few opportunities for highâ€elevation tree species migration. Global Change Biology, 2014, 20, 1441-1451.	4.2	75
338	Zoogeographical affinities and faunal relationships of bee flies (Diptera: Bombyliidae) in Egypt. Zoology in the Middle East, 2014, 60, 50-56.	0.2	31
339	Shifts in plant functional types have timeâ€dependent and regionally variable impacts on dryland ecosystem water balance. Journal of Ecology, 2014, 102, 1408-1418.	1.9	45
340	Climate change will increase savannas at the expense of forests and treeless vegetation in tropical and subtropical <scp>A</scp> mericas. Journal of Ecology, 2014, 102, 1363-1373.	1.9	107
341	Integrating Homo sapiens into ecological models: Imperatives of climate change. Ecological Complexity, 2014, 20, 325-334.	1.4	4
342	Fine―and coarseâ€filter conservation strategies in a time of climate change. Annals of the New York Academy of Sciences, 2014, 1322, 92-109.	1.8	63
343	Interactions between climate change and land use change onÂbiodiversity: attribution problems, risks, and opportunities. Wiley Interdisciplinary Reviews: Climate Change, 2014, 5, 317-335.	3.6	333
344	Exposure of U.S. National Parks to land use and climate change 1900–2100. Ecological Applications, 2014, 24, 484-502.	1.8	98
345	Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil. Ecological Modelling, 2014, 291, 224-232.	1.2	36
346	Biogeography of the Anthropocene. Progress in Physical Geography, 2014, 38, 664-673.	1.4	47
347	Persistence and Spread of a Species with a Shifting Habitat Edge. SIAM Journal on Applied Mathematics, 2014, 74, 1397-1417.	0.8	83
348	Tropical Forests in the Anthropocene. Annual Review of Environment and Resources, 2014, 39, 125-159.	5.6	322
349	Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem. International Journal of Geographical Information Science, 2014, 28, 1561-1589.	2.2	22
350	Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nature Communications, 2014, 5, 5023.	5.8	79
351	Alien plants confront expectations of climate change impacts. Trends in Plant Science, 2014, 19, 547-549.	4.3	13
352	Refugia within refugia - patterns in endemism and genetic divergence are linked to Late Quaternary climate stability in the Iberian Peninsula. Biological Journal of the Linnean Society, 2014, 113, 13-28.	0.7	86
353	Vulnerability of dynamic genetic conservation units of forest trees in Europe to climate change. Global Change Biology, 2014, 20, 1498-1511.	4.2	48

#	Article	IF	CITATIONS
354	Non-climatic constraints on upper elevational plant range expansion under climate change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141779.	1.2	137
355	Combined speeds of climate and land-use change of the conterminous US until 2050. Nature Climate Change, 2014, 4, 811-816.	8.1	69
356	Systematic identification of potential conservation priority areas on roadless Bureau of Land Management lands in the western United States. Biological Conservation, 2014, 178, 117-127.	1.9	16
357	Conservation implications of omitting narrowâ€ranging taxa from species distribution models, now and in the future. Diversity and Distributions, 2014, 20, 1307-1320.	1.9	44
358	Ecological and lifeâ€history traits explain recent boundary shifts in elevation and latitude of western <scp>N</scp> orth <scp>A</scp> merican songbirds. Global Ecology and Biogeography, 2014, 23, 867-875.	2.7	84
359	A framework for assessing the vulnerability of species to climate change: a case study of the Australian elapid snakes. Biodiversity and Conservation, 2014, 23, 3019-3034.	1.2	28
360	Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biology, 2014, 20, 3256-3269.	4.2	297
361	Oil in the Sahara: mapping anthropogenic threats to Saharan biodiversity from space. Philosophical Transactions of the Royal Society B: Biological Sciences, 2014, 369, 20130191.	1.8	29
362	Climate-induced shifts in the niche similarity of two related spadefoot toads (genus Pelobates). Organisms Diversity and Evolution, 2014, 14, 397-408.	0.7	11
363	Migration Amidst Climate Rigidity Traps: Resource Politics and Social–Ecological Possibilism in Honduras and Peru. Annals of the American Association of Geographers, 2014, 104, 292-304.	3.0	41
364	Supporting conservation with biodiversity research in sub-Saharan Africa's human-modified landscapes. Biodiversity and Conservation, 2014, 23, 2345-2369.	1.2	15
365	Biogeographical analysis of the Atlantic Sahara reptiles: Environmental correlates of species distribution and vulnerability toÂclimate change. Journal of Arid Environments, 2014, 109, 65-73.	1.2	13
366	Adaptation of a widespread epiphytic fern to simulated climate change conditions. Plant Ecology, 2014, 215, 889-897.	0.7	11
367	Caatinga, the Brazilian dry tropical forest: can it tolerate climate changes?. Theoretical and Experimental Plant Physiology, 2014, 26, 83-99.	1.1	136
368	Europe's freshwater biodiversity under climate change: distribution shifts and conservation needs. Diversity and Distributions, 2014, 20, 1097-1107.	1.9	122
369	Keeping Pace with Climate Change: Stage-Structured Moving-Habitat Models. American Naturalist, 2014, 184, 25-37.	1.0	47
370	Volume yield, tree species diversity and carbon hoard in protected areas of two developing countries. Forest Science and Technology, 2014, 10, 89-103.	0.3	6
371	Climate change, fire management, and ecological services in the southwestern US. Forest Ecology and Management, 2014, 327, 280-289.	1.4	134

#	Article	IF	CITATIONS
372	Climate effects on the distribution of wetland habitats and connectivity in networks of migratory waterbirds. Acta Oecologica, 2014, 58, 5-11.	0.5	6
373	Comparison of elevation and remote sensing derived products as auxiliary data for climate surface interpolation. International Journal of Climatology, 2014, 34, 2258-2268.	1.5	20
374	Climatic variation and tortoise survival: Has a desert species met its match?. Biological Conservation, 2014, 169, 214-224.	1.9	56
375	Condition assessment and preservation of open-air rock art panels during environmental change. Journal of Cultural Heritage, 2014, 15, 49-56.	1.5	30
376	Response of the two rare arable weed species Lithospermum arvense and Scandix pecten-veneris to climate change conditions. Plant Ecology, 2014, 215, 1013-1023.	0.7	10
377	Clobal late Quaternary megafauna extinctions linked to humans, not climate change. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20133254.	1.2	307
378	The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography, 2014, 37, 711-719.	2.1	182
379	Climatic seasonality may affect ecological network structure: Food webs and mutualistic networks. BioSystems, 2014, 121, 29-37.	0.9	18
380	Centers of endemism and diversity patterns for typhlocybine leafhoppers (Hemiptera: Cicadellidae:) Tj ETQq0 0 C) rgBT /Ove	rlock 10 Tf 5
381	Stormâ€induced changes in coastal geomorphology control estuarine secondary productivity. Earth's Future, 2014, 2, 1-6.	2.4	21
382	Terrestrial and Inland Water Systems. , 0, , 271-360.		25
383	Climate change effects on northern Great Lake (USA) forests: A case for preserving diversity. Ecosphere, 2014, 5, 1-26.	1.0	66
384	A chemical-evolutionary basis for remote sensing of tropical forest diversity. , 2014, , 343-358.		29
385	Regional Context. , 0, , 1133-1198.		3
387	The Changing Pursuit of Happiness. Ecological Restoration, 2014, 32, 219-220.	0.6	0
388			
	The Foreseeable Future for Water Planning: Time to Change. Water Intelligence Online, 2014, 13, .	0.3	2
389	The Foreseeable Future for Water Planning: Time to Change. Water Intelligence Online, 2014, 13, . Determinants of bird species richness, endemism, and island network roles in Wallacea and the West Indies: is geography sufficient or does current and historical climate matter?. Ecology and Evolution, 2014, 4, 4019-4031.	0.3	2

#	Article	IF	CITATIONS
391	An approach to consider behavioral plasticity as a source of uncertainty when forecasting species' response to climate change. Ecology and Evolution, 2015, 5, 2359-2373.	0.8	23
392	The rise of novelty in ecosystems. Ecological Applications, 2015, 25, 2051-2068.	1.8	179
393	Temperatureâ€related geographical shifts among passerines: contrasting processes along poleward and equatorward range margins. Ecology and Evolution, 2015, 5, 5162-5176.	0.8	26
394	Global-change vulnerability of a key plant resource, the African palms. Scientific Reports, 2015, 5, 12611.	1.6	34
395	The persistence of populations facing climate shifts and harvest. Ecosphere, 2015, 6, 1-16.	1.0	19
396	Using a global botanic gardens database to help assess the capabilities of rare eucalypt species to cope with climate change. International Forestry Review, 2015, 17, 259-268.	0.3	6
397	Regional vegetation change and implications for local conservation: An example from West Cornwall (United Kingdom). Global Ecology and Conservation, 2015, 4, 405-413.	1.0	6
398	Persistence in a Two-Dimensional Moving-Habitat Model. Bulletin of Mathematical Biology, 2015, 77, 2125-2159.	0.9	11
399	Desert-adapted species are vulnerable to climate change: Insights from the warmest region on Earth. Global Ecology and Conservation, 2015, 4, 369-379.	1.0	72
400	Individual behaviour mediates effects of warming on movement across a fragmented landscape. Functional Ecology, 2015, 29, 1543-1552.	1.7	16
401	Scenarios of large mammal loss in Europe for the 21 st century. Conservation Biology, 2015, 29, 1028-1036.	2.4	23
402	Modelling the effect of habitat fragmentation on climateâ€driven migration of European forest understorey plants. Diversity and Distributions, 2015, 21, 1375-1387.	1.9	32
403	Latitudinal shift in thermal niche breadth results from thermal release during a climateâ€mediated range expansion. Journal of Biogeography, 2015, 42, 1953-1963.	1.4	74
404	The theory behind, and the challenges of, conserving nature's stage in a time of rapid change. Conservation Biology, 2015, 29, 618-629.	2.4	188
405	Facilitating climateâ€changeâ€induced range shifts across continental landâ€use barriers. Conservation Biology, 2015, 29, 1586-1595.	2.4	64
406	Species traits and climate velocity explain geographic range shifts in an oceanâ€warming hotspot. Ecology Letters, 2015, 18, 944-953	3.0	334
407	Comparative palaeodistribution of eight hummingbird species reveal a link between genetic diversity and Quaternary habitat and climate stability in Mexico. Folia Zoologica, 2015, 64, 245-258.	0.9	13
408	Assessing the impacts of projected climate change on biodiversity in the protected areas of western North America. Ecosphere, 2015, 6, 1-14.	1.0	34

#	Article	IF	CITATIONS
409	Velocity of Climate Change and of Restoration Action: Collision Course?. Ecological Restoration, 2015, 33, 125-126.	0.6	1
410	Seasonality of soil moisture mediates responses of ecosystem phenology to elevated <scp>CO</scp> ₂ and warming in a semiâ€arid grassland. Journal of Ecology, 2015, 103, 1119-1130.	1.9	56
411	Climate change, genetic markers and species distribution modelling. Journal of Biogeography, 2015, 42, 1577-1585.	1.4	86
412	Extending spatial modelling of climate change responses beyond the realized niche: estimating, and accommodating, physiological limits and adaptive evolution. Global Ecology and Biogeography, 2015, 24, 1192-1202.	2.7	73
413	Spatial scaling of temporal changes in avian communities. Global Ecology and Biogeography, 2015, 24, 1236-1248.	2.7	9
414	Rate and velocity of climate change caused by cumulative carbon emissions. Environmental Research Letters, 2015, 10, 095001.	2.2	19
415	A 2.5-million-year perspective on coarse-filter strategies for conserving nature's stage. Conservation Biology, 2015, 29, 640-648.	2.4	34
416	Conservation of future boreal forest bird communities considering lags in vegetation response to climate change: a modified refugia approach. Diversity and Distributions, 2015, 21, 1112-1128.	1.9	54
417	Frequency-dependent selection at rough expanding fronts. New Journal of Physics, 2015, 17, 103035.	1.2	2
418	Distribution shifts of freshwater fish under a variable climate: comparing climatic, bioclimatic and biotic velocities. Diversity and Distributions, 2015, 21, 1014-1026.	1.9	41
419	Climateâ€suitable planting as a strategy for maintaining forest productivity and functional diversity. Ecological Applications, 2015, 25, 1653-1668.	1.8	58
420	The macroecology of phylogenetically structured hummingbird–plant networks. Global Ecology and Biogeography, 2015, 24, 1212-1224.	2.7	100
421	Assessing the effects of climate change on distributions of Cape Floristic Region amphibians. South African Journal of Science, 2015, 111, 7.	0.3	18
422	Water limitations on forest carbon cycling and conifer traits along a steep climatic gradient in the Cascade Mountains, Oregon. Biogeosciences, 2015, 12, 6617-6635.	1.3	19
423	Predicting Effects of Climate Change on Habitat Suitability of Red Spruce (Picea rubens Sarg.) in the Southern Appalachian Mountains of the USA: Understanding Complex Systems Mechanisms through Modeling. Forests, 2015, 6, 1208-1226.	0.9	13
424	Infrared Thermography to Evaluate Heat Tolerance in Different Genetic Groups of Lambs. Sensors, 2015, 15, 17258-17273.	2.1	33
425	Monitoring Rarity: The Critically Endangered Saharan Cheetah as a Flagship Species for a Threatened Ecosystem. PLoS ONE, 2015, 10, e0115136.	1.1	49
426	Lineage Range Estimation Method Reveals Fine-Scale Endemism Linked to Pleistocene Stability in Australian Rainforest Herpetofauna. PLoS ONE, 2015, 10, e0126274.	1.1	42

#	Article	IF	CITATIONS
427	Reserve Design under Climate Change: From Land Facets Back to Ecosystem Representation. PLoS ONE, 2015, 10, e0126918.	1.1	3
428	Live Fast, Die Young: Experimental Evidence of Population Extinction Risk due to Climate Change. PLoS Biology, 2015, 13, e1002281.	2.6	119
429	Predicted Shifts in Small Mammal Distributions and Biodiversity in the Altered Future Environment of Alaska: An Open Access Data and Machine Learning Perspective. PLoS ONE, 2015, 10, e0132054.	1.1	35
430	The magnitude and spatial patterns of historical and future hydrologic change in California's watersheds. Ecosphere, 2015, 6, 1-30.	1.0	41
431	Uncertainty in projected impacts of climate change on biodiversity — a focus on African vertebrates. Frontiers of Biogeography, 2015, 7, .	0.8	0
432	Modelling spatial distribution of critically endangered Asian elephant and Hoolock gibbon in Bangladesh forest ecosystems under a changing climate. Applied Geography, 2015, 60, 10-19.	1.7	58
433	Molecular Proxies for Climate Maladaptation in a Long-Lived Tree (<i>Pinus pinaster</i> Aiton,) Tj ETQq0 0 0 rgBT	/Qverlock 1.2	10 Tf 50 502
434	One size does not always fit all: a reply to Stroud and Feeley. Trends in Ecology and Evolution, 2015, 30, 297-298.	4.2	0
435	Beyond species distribution modeling: A landscape genetics approach to investigating range shifts under future climate change. Ecological Informatics, 2015, 30, 250-256.	2.3	29
436	Range-Expanding Pests and Pathogens in a Warming World. Annual Review of Phytopathology, 2015, 53, 335-356.	3.5	195
437	Species Range Shifts. , 2015, , 57-81.		0
438	Development of Native Plant Materials for Restoration and Rehabilitation of Colorado Plateau Ecosystems. Natural Areas Journal, 2015, 35, 134-150.	0.2	22
439	A downside of diversity? A response to Gallagher et al Trends in Ecology and Evolution, 2015, 30, 296-297.	4.2	4
440	An empirical examination of echo chambers in US climate policy networks. Nature Climate Change, 2015, 5, 782-786.	8.1	140
441	Testing the water: detecting artificial water points using freely available satellite data and open source software. Remote Sensing in Ecology and Conservation, 2015, 1, 61-72.	2.2	11
442	Analyze causal relations between climatic and biotic velocities using circular statistics so as to inform biodiversity conservation. Biodiversity and Conservation, 2015, 24, 3627-3628.	1.2	1
443	Of plants and pikas: evidence for a climate-mediated decline in forage and cache quality. Plant Ecology and Diversity, 2015, 8, 781-794.	1.0	16
444	Low among-provenance differences in structural and functional plasticity in response to nutrients in saplings of the circum-Mediterranean treeArbutus unedoL Tree Physiology, 2015, 35, 1118-1128.	1.4	11

#	Article	IF	CITATIONS
445	Climateâ€smart management of biodiversity. Ecosphere, 2015, 6, 1-17.	1.0	19
446	Understanding global change impacts on South African biomes using Dynamic Vegetation Models. South African Journal of Botany, 2015, 101, 16-23.	1.2	48
447	Biome stability and long-term vegetation change in the semi-arid, south-eastern interior of South Africa: A synthesis of repeat photo-monitoring studies. South African Journal of Botany, 2015, 101, 139-147.	1.2	25
448	Species turnover in tropical montane forest avifauna links to climatic correlates. Global Ecology and Conservation, 2015, 3, 541-552.	1.0	2
449	Bounds for the critical speed of climate-driven moving-habitat models. Mathematical Biosciences, 2015, 262, 65-72.	0.9	17
450	Longâ€ŧerm change and spatial variation in butterfly communities over an elevational gradient: driven by climate, buffered by habitat. Diversity and Distributions, 2015, 21, 950-961.	1.9	37
451	Forest conversion can help to mitigate impacts of climate change on common forest birds. Annals of Forest Science, 2015, 72, 335-348.	0.8	6
452	Approximate Bayesian Computation Reveals the Crucial Role of Oceanic Islands for the Assembly of Continental Biodiversity. Systematic Biology, 2015, 64, 579-589.	2.7	63
453	Microrefugia: Not for everyone. Ambio, 2015, 44, 60-68.	2.8	51
454	A framework for incorporating evolutionary genomics into biodiversity conservation and management. Climate Change Responses, 2015, 2, .	2.6	175
455	Disturbance and climate microrefugia mediate tree range shifts during climate change. Landscape Ecology, 2015, 30, 1039-1053.	1.9	52
456	Photoperiod constraints on tree phenology, performance and migration in a warming world. Plant, Cell and Environment, 2015, 38, 1725-1736.	2.8	274
457	Rapid adjustment of bird community compositions to local climatic variations and its functional consequences. Global Change Biology, 2015, 21, 3367-3378.	4.2	53
458	Elevational Distribution and Extinction Risk in Birds. PLoS ONE, 2015, 10, e0121849.	1.1	33
459	Past-century decline in forest regeneration potential across a latitudinal and elevational gradient in Canada. Ecological Modelling, 2015, 313, 94-102.	1.2	10
460	Looking to the future of conservation genetics: The case for using quantitative genetic experiments to estimate the ability of rare plants to withstand climate change. American Journal of Botany, 2015, 102, 1011-1013.	0.8	5
461	Targeting climate diversity in conservation planning to build resilience to climate change. Ecosphere, 2015, 6, 1-20.	1.0	27
462	Making spatial prioritizations robust to climate change uncertainties: a case study with North American birds. Ecological Applications, 2015, 25, 1819-1831.	1.8	20

		CITATION R	EPORT	
#	Article		IF	CITATIONS
463	Tree Responses to Environmental Cues. Advances in Botanical Research, 2015, 74, 229	-263.	0.5	9
464	Partitioning of multivariate phenotypes using regression trees reveals complex pattern to climate across the range of black cottonwood (Populus trichocarpa). Frontiers in Pla 2015, 6, 181.	s of adaptation nt Science,	1.7	5
465	Stochastic Modeling for Velocity of Climate Change. Journal of Agricultural, Biological, Environmental Statistics, 2015, 20, 323-342.	and	0.7	12
466	Climate change challenges the current conservation strategy for the giant panda. Biolo Conservation, 2015, 190, 43-50.	gical	1.9	109
468	Adult activity and temperature preference drives region-wide damselfly (Zygoptera) dis under a warming climate. Biology Letters, 2015, 11, 20150001.	tributions	1.0	7
469	Accelerating extinction risk from climate change. Science, 2015, 348, 571-573.		6.0	1,561
470	New climate velocity algorithm is nearly equivalent to simple species distribution mode Global Change Biology, 2015, 21, 2832-2833.	ling methods.	4.2	5
471	Vulnerability to climate change in three hot spots in Africa and Asia: key issues for polic adaptation and resilience-building research. Regional Environmental Change, 2015, 15	:y-relevant 747-753.	1.4	159
472	Identification of geophysically diverse locations that may facilitate species' persiste adaptation to climate change in the southwestern United States. Landscape Ecology, 2	nce and 2015, 30, 1023-1037.	1.9	15
473	Incorporating movement in species distribution models. Progress in Physical Geograph 837-849.	y, 2015, 39,	1.4	41
474	Assessing climate change impacts for vertebrate fauna across the West African protect network using regionally appropriate climate projections. Diversity and Distributions, 2 991-1003.	:ed area 015, 21,	1.9	23
475	The ecological forecast horizon, and examples of its uses and determinants. Ecology Le 597-611.	tters, 2015, 18,	3.0	242
476	Incorporating geodiversity into conservation decisions. Conservation Biology, 2015, 29	9, 692-701.	2.4	63
477	The performance of protected areas for biodiversity under climate change. Biological Jo Linnean Society, 2015, 115, 718-730.	urnal of the	0.7	123
478	Efficient use of land to meet sustainable energyÂneeds. Nature Climate Change, 2015,	5, 353-358.	8.1	95
479	Five decades of growth in a genetic field trial of Douglas-fir reveal trade-offs between p and drought tolerance. Tree Genetics and Genomes, 2015, 11, 1.	roductivity	0.6	37
480	Potential of remote sensing to predict species invasions. Progress in Physical Geograph 283-309.	y, 2015, 39,	1.4	80
481	Historical legacies accumulate to shape future biodiversity in an era of rapid global cha and Distributions, 2015, 21, 534-547.	nge. Diversity	1.9	112

#	ARTICLE	IF	CITATIONS
482	Revisiting the past to foretell the future: summer temperature and habitat area predict pika extirpations in California. Journal of Biogeography, 2015, 42, 880-890.	1.4	65
483	The inability of tropical cloud forest species to invade grasslands above treeline during climate change: potential explanations and consequences. Ecography, 2015, 38, 1167-1175.	2.1	75
484	Observed climate change hotspots. Geophysical Research Letters, 2015, 42, 3521-3528.	1.5	88
485	Where and When do Species Interactions Set Range Limits?. Trends in Ecology and Evolution, 2015, 30, 780-792.	4.2	347
486	Accounting for multiple climate components when estimating climate change exposure and velocity. Methods in Ecology and Evolution, 2015, 6, 697-705.	2.2	11
487	Pulse-drought atop press-drought: unexpected plant responses and implications for dryland ecosystems. Oecologia, 2015, 179, 1211-1221.	0.9	55
488	Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution. Ecological Modelling, 2015, 313, 127-136.	1.2	23
489	Snowpack, fire, and forest disturbance: interactions affect montane invasions by nonâ€native shrubs. Global Change Biology, 2015, 21, 2379-2393.	4.2	20
490	Seasonal weather patterns drive population vital rates and persistence in a stream fish. Global Change Biology, 2015, 21, 1856-1870.	4.2	63
491	Velocity of climate change algorithms for guiding conservation and management. Global Change Biology, 2015, 21, 997-1004.	4.2	160
492	Solar energy development impacts on land cover change and protected areas. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13579-13584.	3.3	177
493	Pleistocene climatic oscillations rather than recent human disturbance influence genetic diversity in one of the world's highest treeline species. American Journal of Botany, 2015, 102, 1676-1684.	0.8	9
494	Resource colimitation governs plant community responses to altered precipitation. Proceedings of the United States of America, 2015, 112, 13009-13014.	3.3	104
495	Conserving desert biodiversity through ecotourism. Tourism Management Perspectives, 2015, 16, 176-178.	3.2	14
496	Recent changes in precipitation extremes in the Heihe River basin, Northwest China. Advances in Atmospheric Sciences, 2015, 32, 1391-1406.	1.9	20
497	Increasing human dominance of tropical forests. Science, 2015, 349, 827-832.	6.0	551
498	Considerations for restoring temperate forests of tomorrow: forest restoration, assisted migration, and bioengineering. New Forests, 2015, 46, 947-964.	0.7	101
499	The Influence of Paleoclimate on Present-Day Patterns in Biodiversity and Ecosystems. Annual Review of Ecology, Evolution, and Systematics, 2015, 46, 551-572.	3.8	229

#	Article	IF	CITATIONS
500	Ecosystem vulnerability to ocean warming. Nature, 2015, 528, 43-44.	13.7	3
501	Unrivalled specialization in a pollination network from South Africa reveals that specialization increases with latitude only in the Southern Hemisphere. Journal of Biogeography, 2015, 42, 652-661.	1.4	47
502	As old as the mountains: the radiations of the Ericaceae. New Phytologist, 2015, 207, 355-367.	3.5	150
503	Macroecological trends in nestedness and modularity of seedâ€dispersal networks: human impact matters. Global Ecology and Biogeography, 2015, 24, 293-303.	2.7	92
504	Directionality of recent bird distribution shifts and climate change in Great Britain. Global Change Biology, 2015, 21, 2155-2168.	4.2	105
505	Predicting population responses to environmental change: the importance of considering informed dispersal strategies in spatially structured population models. Diversity and Distributions, 2015, 21, 88-100.	1.9	34
506	Latitudinal gradients in the productivity of <scp>E</scp> uropean migrant warblers have not shifted northwards during a period of climate change. Global Ecology and Biogeography, 2015, 24, 427-436.	2.7	25
507	A multi-trait approach for the identification and protection of European freshwater species that are potentially vulnerable to the impacts of climate change. Ecological Indicators, 2015, 50, 150-160.	2.6	37
508	Climate change in our backyards: the reshuffling of North America's winter bird communities. Global Change Biology, 2015, 21, 572-585.	4.2	107
509	Temperature tracking by North Sea benthic invertebrates in response to climate change. Global Change Biology, 2015, 21, 117-129.	4.2	111
510	The potential drivers in forming avian biodiversity hotspots in the East Himalaya Mountains of Southwest China. Integrative Zoology, 2015, 10, 171-181.	1.3	59
511	Trailing edges projected to move faster than leading edges for large pelagic fish habitats under climate change. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 225-234.	0.6	49
512	Episodic and non-uniform shifts of thermal habitats in a warming ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2015, 113, 59-72.	0.6	31
513	Separating sensitivity from exposure in assessing extinction risk from climate change. Scientific Reports, 2014, 4, 6898.	1.6	34
514	Climateâ€related range shifts – a global multidimensional synthesis and new research directions. Ecography, 2015, 38, 15-28.	2.1	733
515	Phylogenetic endemism in terrestrial mammals. Global Ecology and Biogeography, 2015, 24, 168-179.	2.7	89
516	Adapting to rates versus amounts of climate change: a case of adaptation to sea-level rise. Environmental Research Letters, 2016, 11, 104007.	2.2	7
517	The green ash transcriptome and identification of genes responding to abiotic and biotic stresses. BMC Genomics, 2016, 17, 702.	1.2	32

#	Article	IF	CITATIONS
518	Using ecological niche modelsto plan conservation in a changing environment: A case for the plant Chasmanthera dependens Hochst (Menispermaceae) in West Africa. Journal of Ecology and the Natural Environment, 2016, 8, 1-8.	0.2	3
519	Physiologically grounded metrics of model skill: a case study estimating heat stress in intertidal populations. , 2016, 4, cow038.		13
520	Disturbance and distributions: avoiding exclusion in a warming world. Ecology and Society, 2016, 21, .	1.0	29
521	Cross-Scale Approaches to Forecasting Biogeographic Responses to Climate Change. Advances in Ecological Research, 2016, , 371-433.	1.4	17
522	Marine Biodiversity and Climate Change. , 2016, , 195-212.		24
523	Climate Change Refugia, Fire Ecology and Management. Forests, 2016, 7, 77.	0.9	33
524	Contrasting Nutritional Acclimation of Sugar Maple (Acer saccharum Marsh.) and Red Maple (Acer) Tj ETQq0 0 0 Frontiers in Ecology and Evolution, 2016, 4, .	rgBT /Ove 1.1	rlock 10 Tf 50 9
525	Modeling the Boundaries of Plant Ecotones of Mountain Ecosystems. Forests, 2016, 7, 271.	0.9	4
526	Quantitative Estimation of the Velocity of Urbanization in China Using Nighttime Luminosity Data. Remote Sensing, 2016, 8, 94.	1.8	12
527	Impacts of Climate Change on Native Landcover: Seeking Future Climatic Refuges. PLoS ONE, 2016, 11, e0162500.	1.1	5
528	Assessing Mammal Exposure to Climate Change in the Brazilian Amazon. PLoS ONE, 2016, 11, e0165073.	1.1	45
529	Temperature Range Shifts for Three European Tree Species over the Last 10,000 Years. Frontiers in Plant Science, 2016, 7, 1581.	1.7	28
530	Impacts of Climate Change on the Distributions of Allergenic Species. , 0, , 29-49.		2
531	Using dynamic occupancy models to inform climate change adaptation strategies for California spotted owls. Journal of Applied Ecology, 2016, 53, 895-905.	1.9	22
532	Distribution dynamics of South American savanna birds in response to Quaternary climate change. Austral Ecology, 2016, 41, 768-777.	0.7	14
533	Ecological and methodological drivers of species' distribution and phenology responses to climate change. Global Change Biology, 2016, 22, 1548-1560.	4.2	162
534	Can protected areas mitigate the impacts of climate change on bird's species and communities?. Diversity and Distributions, 2016, 22, 625-637.	1.9	58
535	Climate refugia and migration requirements in complex landscapes. Ecography, 2016, 39, 1238-1246.	2.1	30

#	Article	IF	CITATIONS
536	A traitâ€based approach for predicting species responses to environmental change from sparse data: how well might terrestrial mammals track climate change?. Global Change Biology, 2016, 22, 2415-2424.	4.2	69
537	Velocity of temperature and flowering time in wheat – assisting breeders to keep pace with climate change. Global Change Biology, 2016, 22, 921-933.	4.2	53
538	Spatioâ€ŧemporal variation of biotic factors underpins contemporary range dynamics of congeners. Global Change Biology, 2016, 22, 1201-1213.	4.2	9
539	The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Global Change Biology, 2016, 22, 2329-2352.	4.2	428
540	Shrubline but not treeline advance matches climate velocity in montane ecosystems of south entral Alaska. Global Change Biology, 2016, 22, 1841-1856.	4.2	60
541	Uncertainty in predicting range dynamics of endemic alpine plants under climate warming. Global Change Biology, 2016, 22, 2608-2619.	4.2	40
542	Empirical test on the relative climatic sensitivity between individuals of narrowly and broadly distributed species. Ecosphere, 2016, 7, e01227.	1.0	8
543	Conservation Biogeography of the Saharaâ€Sahel: additional protected areas are needed to secure unique biodiversity. Diversity and Distributions, 2016, 22, 371-384.	1.9	46
544	Climate drives temporal replacement and nestedâ€resultant richness patterns of Scottish coastal vegetation. Ecography, 2016, 39, 754-762.	2.1	8
545	Moving beyond bioclimatic envelope models: integrating upland forest and peatland processes to predict ecosystem transitions under climate change in the western Canadian boreal plain. Ecohydrology, 2016, 9, 899-908.	1.1	32
546	Bioclimatic envelope models predict a decrease inÂtropical forest carbon stocks with climate change inÂMadagascar. Journal of Ecology, 2016, 104, 703-715.	1.9	63
547	The pace of past climate change vs. potential bird distributions and land use in the United States. Global Change Biology, 2016, 22, 1130-1144.	4.2	62
548	Future Non-Analogue Climates for Scotland's Temperate Rainforest. Scottish Geographical Journal, 2016, 132, 257-268.	0.4	9
549	Patterns of tree species composition at watershed-scale in the Amazon â€~arc of deforestation': implications for conservation. Environmental Conservation, 2016, 43, 317-326.	0.7	14
552	Evergreen and Deciduous Ferns of the Coast Redwood Forest. Madroño, 2016, 63, 329-339.	0.3	6
553	Climate change sensitivity of threatened, and largely unprotected, Amazonian fishes. Aquatic Conservation: Marine and Freshwater Ecosystems, 2016, 26, 91-102.	0.9	40
555	Climate change velocity underestimates climate change exposure in mountainous regions. Nature Communications, 2016, 7, 12349.	5.8	93
556	A macroecological perspective on strategic bat conservation in theÂU.S. National Park Service. Ecosphere, 2016, 7, e01576.	1.0	16

#	Article	IF	CITATIONS
557	Plant fitness in a rapidly changing world. New Phytologist, 2016, 210, 81-87.	3.5	112
558	Genome-wide SNP discovery in the annual herb, Lasthenia fremontii (Asteraceae): genetic resources for the conservation and restoration of a California vernal pool endemic. Conservation Genetics Resources, 2016, 8, 145-158.	0.4	9
559	Slow climate velocities of mountain streams portend their role as refugia for cold-water biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 4374-4379.	3.3	182
560	Plant responses to global change: next generation biogeography. Physical Geography, 2016, 37, 93-119.	0.6	8
561	High plant endemism in China is partially linked to reduced glacialâ€interglacial climate change. Journal of Biogeography, 2016, 43, 145-154.	1.4	79
562	De-extinction potential under climate change: Extensive mismatch between historic and future habitat suitability for three candidate birds. Biological Conservation, 2016, 197, 164-170.	1.9	15
563	Future climate warming and changes to mountain permafrost in the Bolivian Andes. Climatic Change, 2016, 137, 231-243.	1.7	35
564	Projected changes in cold hardiness zones and suitable overwinter ranges of perennial crops over the United States. Environmental Research Letters, 2016, 11, 034001.	2.2	32
565	Cerrado to Rupestrian Grasslands: Patterns of Species Distribution and the Forces Shaping Them Along an Altitudinal Gradient. , 2016, , 345-377.		30
566	Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology, 2016, 172, pp.00793.2016.	2.3	101
567	What are the effects of Agro-Ecological Zones and land use region boundaries on land resource projection using the Global Change Assessment Model?. Environmental Modelling and Software, 2016, 85, 246-265.	1.9	14
568	The macroecology of animal versus wind pollination: ecological factors are more important than historical climate stability. Plant Ecology and Diversity, 2016, 9, 253-262.	1.0	68
569	Examining climate-biome ("cliomeâ€) shifts for Yukon and its protected areas. Global Ecology and Conservation, 2016, 8, 1-17.	1.0	18
570	Midâ€elevation ecosystems of Panama: future uncertainties in light of past global climatic variability. Journal of Quaternary Science, 2016, 31, 731-740.	1.1	12
571	Resource partitioning between ungulate populations in arid environments. Ecology and Evolution, 2016, 6, 6354-6365.	0.8	7
572	Sustainable bioenergy production with little carbon debt in the Loess Plateau of China. Biotechnology for Biofuels, 2016, 9, 161.	6.2	16
573	Predictors of intraspecific morphological variability in a tropical hotspot: comparing the influence of random and nonâ€random factors. Journal of Biogeography, 2016, 43, 2160-2172.	1.4	22
574	Assessing tree germination resilience to global warming: a manipulative experiment using sugar maple (<i>Acer saccharum</i>). Seed Science Research, 2016, 26, 153-164.	0.8	28

		TION REPORT	
#	Article	IF	Citations
575	Time to get moving: assisted gene flow of forest trees. Evolutionary Applications, 2016, 9, 271-290.	1.5	378
576	Do projections from bioclimatic envelope models and climate change metrics match?. Global Ecology and Biogeography, 2016, 25, 65-74.	2.7	19
577	Combining landscape variables and species traits can improve the utility of climate change vulnerability assessments. Biological Conservation, 2016, 202, 30-38.	1.9	16
578	Can Pathogen Spread Keep Pace with its Host Invasion?. SIAM Journal on Applied Mathematics, 2016, 76 1633-1657.	, 0.8	71
579	Update of distribution, habitats, population size, and threat factors for the West African crocodile in Mauritania. Amphibia - Reptilia, 2016, 37, 325-330.	0.1	5
580	Rates of change in climatic niches in plant and animal populations are much slower than projected climate change. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20162104.	1.2	96
581	Warmer seed environments increase germination fractions in Australian winter annual plant species. Ecosphere, 2016, 7, e01497.	1.0	24
582	Climate change perils for dioecious plant species. Nature Plants, 2016, 2, 16109.	4.7	107
583	Mapping climatic mechanisms likely to favour the emergence of novel communities. Nature Climate Change, 2016, 6, 1104-1109.	8.1	75
584	Persistence and Spreading Speeds of Integro-Difference Equations with an Expanding or Contracting Habitat. Bulletin of Mathematical Biology, 2016, 78, 1337-1379.	0.9	35
587	Future frequencies of extreme weather events in the National Wildlife Refuges of the conterminous U.S Biological Conservation, 2016, 201, 327-335.	1.9	17
588	Quaternary Biogeography and Climate Change. , 2016, , 395-405.		1
589	Potentially Extreme Population Displacement and Concentration in the Tropics Under Non-Extreme Warming. Scientific Reports, 2016, 6, 25697.	1.6	22
590	Probability of emergence of novel temperature regimes at different levels ofÂcumulative carbon emissions. Frontiers in Ecology and the Environment, 2016, 14, 418-423.	1.9	15
591	Ecological constraints increase the climatic debt in forests. Nature Communications, 2016, 7, 12643.	5.8	108
592	American Pikas (<i>Ochotona princeps</i>) Extirpated from the Historic Masonic Mining District of Eastern California. Western North American Naturalist, 2016, 76, 163-171.	0.2	9
593	Ecological determinants of mean family age of angiosperm trees in forest communities in China. Scientific Reports, 2016, 6, 28662.	1.6	6
594	Faster poleward range shifts in moths with more variable colour patterns. Scientific Reports, 2016, 6, 36265.	1.6	30

#	Article	IF	Citations
595	Understanding the dynamics of physiological impacts of environmental stressors on Australian marsupials, focus on the koala (Phascolarctos cinereus). BMC Zoology, 2016, 1, .	0.3	21
596	Phylogenetic assemblage structure of <scp>N</scp> orth <scp>A</scp> merican trees is more strongly shaped by glacial–interglacial climate variability in gymnosperms than in angiosperms. Ecology and Evolution, 2016, 6, 3092-3106.	0.8	40
597	High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biology, 2016, 39, 221-236.	0.5	10
598	Modelling spatially dependent predation mortality of eastern Bering Sea walleye pollock, and its implications for stock dynamics under future climate scenarios. ICES Journal of Marine Science, 2016, 73, 1330-1342.	1.2	46
599	Biotic forcing: the push–pull of plant ranges. Plant Ecology, 2016, 217, 1331-1344.	0.7	16
600	Assessing the vulnerability of rare plants using climate change velocity, habitat connectivity, and dispersal ability: a case study in Alberta, Canada. Regional Environmental Change, 2016, 16, 1433-1441.	1.4	26
601	Achieving climate connectivity in a fragmented landscape. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 7195-7200.	3.3	194
602	Effects of topoclimatic complexity on the composition of woody plant communities. AoB PLANTS, 2016, 8, plw049.	1.2	15
603	Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses. Journal of the Royal Society Interface, 2016, 13, 20160196.	1.5	29
604	How do we want Satellite Remote Sensing to support biodiversity conservation globally?. Methods in Ecology and Evolution, 2016, 7, 656-665.	2.2	40
605	Modelâ€based inference for estimating shifts in species distribution, area occupied and centre of gravity. Methods in Ecology and Evolution, 2016, 7, 990-1002.	2.2	91
606	Range expansion and retraction along a moving contact zone has no effect on the genetic diversity of two passerine birds. Ecography, 2016, 39, 884-893.	2.1	9
607	Dynamic habitat suitability modelling reveals rapid poleward distribution shift in a mobile apex predator. Global Change Biology, 2016, 22, 1086-1096.	4.2	51
608	Landâ€use change outweighs projected effects of changing rainfall on tree cover in subâ€Saharan Africa. Global Change Biology, 2016, 22, 3013-3025.	4.2	45
609	Conservation of grassland butterflies in Finland under a changing climate. Regional Environmental Change, 2016, 16, 71-84.	1.4	7
610	Responses of Mediterranean Forest Phytophagous Insects to Climate Change. , 2016, , 801-858.		5
611	Introduction to Mediterranean Forest Systems: Mediterranean Basin. , 2016, , 7-28.		0
612	A global assessment of current and future biodiversity vulnerability to habitat loss–climate change interactions. Global Ecology and Conservation, 2016, 5, 12-21.	1.0	134

	C	ITATION REPORT	
#	Article	IF	CITATIONS
613	High and dry: high elevations disproportionately exposed to regional climate change in Mediterranean-climate landscapes. Landscape Ecology, 2016, 31, 1063-1075.	1.9	43
614	Vulnerability of <scp>A</scp> ustralian tropical savanna birds to climate change. Austral Ecology, 2016, 41, 106-116.	0.7	12
615	Altitudinal shifts of the native and introduced flora of <scp>C</scp> alifornia in the context of 20thâ€century warming. Global Ecology and Biogeography, 2016, 25, 418-429.	2.7	51
616	Modelling marine community responses to climateâ€driven species redistribution to guide monitorir and adaptive ecosystemâ€based management. Global Change Biology, 2016, 22, 2462-2474.	ng 4.2	63
617	Climate change not to blame for late Quaternary megafauna extinctions in Australia. Nature Communications, 2016, 7, 10511.	5.8	109
618	Distinct Processes Drive Diversification in Different Clades of Gesneriaceae. Systematic Biology, 201 65, 662-684.	6, <u>2.</u> 7	72
619	Invasion of amphisteginid foraminifera in the Adriatic Sea. Biological Invasions, 2016, 18, 1335-1349). 1.2	26
620	Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environmental Reviews, 2016, 24, 164-186.	2.1	146
621	High proportion of smaller ranged hummingbird species coincides with ecological specialization across the Americas. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20152512.	1.2	32
622	Nuclear introns outperform mitochondrial DNA in inter-specific phylogenetic reconstruction: Lessons from horseshoe bats (Rhinolophidae: Chiroptera). Molecular Phylogenetics and Evolution, 2016, 97, 196-212.	1.2	77
623	Tree biomass reconstruction shows no lag in postglacial afforestation of eastern Canada. Canadian Journal of Forest Research, 2016, 46, 485-498.	0.8	32
624	Climate and topography explain range sizes of terrestrial vertebrates. Nature Climate Change, 2016, 498-502.	6, 8.1	51
625	Projected robust shift of climate zones over West Africa in response to anthropogenic climate change for the late 21st century. Climatic Change, 2016, 134, 241-253.	1.7	68
626	CeO2-catalyzed direct synthesis of dialkylureas from CO2 and amines. Journal of Catalysis, 2016, 34 75-85.	3, <u>3.1</u>	86
627	Expansion of subalpine woody vegetation over 40 years on Vancouver Island, British Columbia, Canada. Canadian Journal of Forest Research, 2016, 46, 437-443.	0.8	13
628	Long-term decline of southern boreal forest birds: consequence of habitat alteration or climate change?. Biodiversity and Conservation, 2016, 25, 151-167.	1.2	48
629	Constraints to and conservation implications for climate change adaptation in plants. Conservation Genetics, 2016, 17, 305-320.	0.8	122
630	Forests and global change: what can genetics contribute to the major forest management and policy challenges of the twenty-first century?. Regional Environmental Change, 2016, 16, 927-939.	1.4	91

#	Article	IF	CITATIONS
631	Biodiversity conservation status in China's growing protected areas. Biological Conservation, 2017, 210, 89-100.	1.9	171
632	Current and future suitability areas of kermes oak (Quercus coccifera L.) in the Levant under climate change. Regional Environmental Change, 2017, 17, 143-156.	1.4	50
633	The Impacts of Climate Change on Natural Areas Recreation: A Multi-Region Snapshot and Agency Comparison. Natural Areas Journal, 2017, 37, 86-97.	0.2	10
634	Metaâ€corridor solutions for climateâ€vulnerable plant species groups in South Korea. Journal of Applied Ecology, 2017, 54, 1742-1754.	1.9	32
635	A closer look at novel climates: new methods and insights at continental to landscape scales. Global Change Biology, 2017, 23, 3934-3955.	4.2	88
636	Exploring and conserving a "microcosm― whole-population genetic characterization within a refugial area of the endemic, relict conifer Picea omorika. Conservation Genetics, 2017, 18, 777-788.	0.8	11
637	Thermal segregation drives patterns of alder and willow expansion in a montane ecosystem subject to climate warming. Journal of Ecology, 2017, 105, 935-946.	1.9	15
638	Emergence patterns of novelty in European vegetation assemblages over the past 15Â000Âyears. Ecology Letters, 2017, 20, 336-346.	3.0	32
639	Are fish outside their usual ranges early indicators of climateâ€driven range shifts?. Global Change Biology, 2017, 23, 2047-2057.	4.2	59
640	Sink or swim? Potential for high faunal turnover in Australian rivers under climate change. Journal of Biogeography, 2017, 44, 489-501.	1.4	31
641	Improving the interpretability of climate landscape metrics: An ecological risk analysis of Japan's Marine Protected Areas. Global Change Biology, 2017, 23, 4440-4452.	4.2	14
642	Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology, 2017, 23, 3219-3230.	4.2	48
643	Longâ€ŧerm trends of typhoonâ€induced rainfall over Taiwan: In situ evidence of poleward shift of typhoons in western North Pacific in recent decades. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2750-2765.	1.2	39
644	Scaleâ€dependent complementarity of climatic velocity and environmental diversity for identifying priority areas for conservation under climate change. Global Change Biology, 2017, 23, 4508-4520.	4.2	98
645	Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. Journal of Ecology, 2017, 105, 1358-1373.	1.9	78
646	Conservation assessments in climate change scenarios: spatial perspectives for present and future in two Pristidactylus (Squamata: Leiosauridae) lizards from Argentina. Zootaxa, 2017, 4237, 91.	0.2	11
647	Rapid and direct recoveries of predators and prey through synchronized ecosystem management. Nature Ecology and Evolution, 2017, 1, 68.	3.4	39
648	Tree range expansion in eastern North America fails to keep pace with climate warming at northern range limits. Global Change Biology, 2017, 23, 3292-3301.	4.2	104
#	Article	IF	CITATIONS
-----	--	-----	-----------
649	Revealing topoclimatic heterogeneity using meteorological station data. International Journal of Climatology, 2017, 37, 544-556.	1.5	47
650	Species' traits influenced their response to recent climate change. Nature Climate Change, 2017, 7, 205-208.	8.1	272
651	Global climate change will increase the abundance of symbiotic nitrogenâ€fixing trees in much of North America. Global Change Biology, 2017, 23, 4777-4787.	4.2	30
653	Comparison of land use change in payments for environmental services and National Biological Corridor Programs. Land Use Policy, 2017, 63, 440-449.	2.5	9
654	Fire catalyzed rapid ecological change in lowland coniferous forests of the Pacific Northwest over the past 14,000 years. Ecology, 2017, 98, 2356-2369.	1.5	41
655	Grand Challenges in Understanding the Interplay of Climate and Land Changes. Earth Interactions, 2017, 21, 1-43.	0.7	24
656	How are streamflow responses to the <scp>E</scp> I <scp>N</scp> ino <scp>S</scp> outhern <scp>O</scp> scillation affected by watershed characteristics?. Water Resources Research, 2017, 53, 4393-4406.	1.7	14
657	Forecasted range shifts of arid-land fishes in response to climate change. Reviews in Fish Biology and Fisheries, 2017, 27, 463-479.	2.4	12
658	Conservation assessment of the Peruvian Andes and Amazon based on mapped forest functional diversity. Biological Conservation, 2017, 210, 80-88.	1.9	11
659	Species' traits as predictors of range shifts under contemporary climate change: A review and metaâ€analysis. Global Change Biology, 2017, 23, 4094-4105.	4.2	215
660	Ecological differences influence the thermal sensitivity of swimming performance in two co-occurring mysid shrimp species with climate change implications. Journal of Thermal Biology, 2017, 64, 26-34.	1.1	6
661	Analysis of longâ€ŧerm dry and wet conditions over Nigeria. International Journal of Climatology, 2017, 37, 3577-3586.	1.5	15
662	Protected areas as socialâ€ecological systems: perspectives from resilience and socialâ€ecological systems theory. Ecological Applications, 2017, 27, 1709-1717.	1.8	130
663	Snow hydrology in Mediterranean mountain regions: A review. Journal of Hydrology, 2017, 551, 374-396.	2.3	94
664	The future distribution of river fish: The complex interplay of climate and land use changes, species dispersal and movement barriers. Global Change Biology, 2017, 23, 4970-4986.	4.2	79
665	Conducting robust ecological analyses with climate data. Oikos, 2017, 126, 1533-1541.	1.2	34
666	A dual role for farmlands: food security and pollinator conservation. Journal of Ecology, 2017, 105, 890-899.	1.9	41
667	Modeling seasonal surface temperature variations in secondary tropical dry forests. International Journal of Applied Earth Observation and Geoinformation, 2017, 62, 122-134.	1.4	16

#	Article	IF	CITATIONS
668	Predicting the spectral information of future land cover using machine learning. International Journal of Remote Sensing, 2017, 38, 5592-5607.	1.3	19
669	The relationship between mammal faunas and climatic instability since the Last Glacial Maximum: A Nearctic vs. Western Palearctic comparison. Acta Oecologica, 2017, 82, 10-15.	0.5	3
670	Climate change decouples marine and freshwater habitats of a threatened migratory fish. Diversity and Distributions, 2017, 23, 751-760.	1.9	13
671	A common thermal niche among geographically diverse populations of the widely distributed tree species <i>Eucalyptus tereticornis</i> : No evidence for adaptation to climateâ€ofâ€origin. Global Change Biology, 2017, 23, 5069-5082.	4.2	38
672	Ocean currents modify the coupling between climate change and biogeographical shifts. Scientific Reports, 2017, 7, 1332.	1.6	46
673	Fossil record improves biodiversity risk assessment under future climate change scenarios. Diversity and Distributions, 2017, 23, 922-933.	1.9	25
674	Response of Sierra Nevada forests to projected climate–wildfire interactions. Global Change Biology, 2017, 23, 2016-2030.	4.2	70
675	The future demographic niche of a declining grassland bird fails to shift poleward in response to climate change. Landscape Ecology, 2017, 32, 807-821.	1.9	11
676	Global trophic ecology of yellowfin, bigeye, and albacore tunas: Understanding predation on micronekton communities at ocean-basin scales. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 140, 55-73.	0.6	53
677	Assessing vulnerability of two Mediterranean conifers to support genetic conservation management in the face of climate change. Diversity and Distributions, 2017, 23, 507-516.	1.9	29
678	Multidirectional abundance shifts among North American birds and the relative influence of multifaceted climate factors. Global Change Biology, 2017, 23, 3610-3622.	4.2	63
679	Distinguishing globally-driven changes from regional- and local-scale impacts: The case for long-term and broad-scale studies of recovery from pollution. Marine Pollution Bulletin, 2017, 124, 573-586.	2.3	29
680	Climate change may reduce the spread of nonâ€native species. Ecosphere, 2017, 8, e01694.	1.0	53
681	Local climate mediates spatial and temporal variation in carabid beetle communities in three forests in Mount Odaesan, Korea. Ecological Entomology, 2017, 42, 184-194.	1.1	8
682	Moving forward: insights and applications of movingâ€habitat models for climate change ecology. Journal of Ecology, 2017, 105, 1169-1181.	1.9	24
683	Determinants of richness patterns differ between rare and common species: implications for Gesneriaceae conservation in China. Diversity and Distributions, 2017, 23, 235-246.	1.9	50
684	High community turnover and dispersal limitation relative to rapid climate change. Global Ecology and Biogeography, 2017, 26, 459-471.	2.7	30
685	Vulnerability of eastern <scp>US</scp> tree species to climate change. Global Change Biology, 2017, 23, 3302-3320.	4.2	64

		CITATION RE	PORT	
#	Article		IF	Citations
686	IPCC reasons for concern regarding climate change risks. Nature Climate Change, 201	7, 7, 28-37.	8.1	266
687	Old concepts, new challenges: adapting landscape-scale conservation to the twenty-fir Biodiversity and Conservation, 2017, 26, 527-552.	st century.	1.2	41
688	Single species dynamics under climate change. Theoretical Ecology, 2017, 10, 181-193	}.	0.4	5
689	Endemism hotspots are linked to stable climatic refugia. Annals of Botany, 2017, 119,	207-214.	1.4	208
690	The greening of the Himalayas and Tibetan Plateau under climate change. Global and P 2017, 159, 77-92.	lanetary Change,	1.6	48
691	Velocity of change in vegetation productivity over northern high latitudes. Nature Ecol Evolution, 2017, 1, 1649-1654.	ogy and	3.4	79
692	A pantropical analysis of the impacts of forest degradation and conversion on local ter Ecology and Evolution, 2017, 7, 7897-7908.	nperature.	0.8	84
693	Atmospheric Stressors: Challenges and Coping Strategies. , 2017, , 9-50.			17
694	More than half the Earth. Nature Ecology and Evolution, 2017, 1, 1587-1587.		3.4	0
695	Climates Past, Present, and Yet-to-Come Shape Climate Change Vulnerabilities. Trends Evolution, 2017, 32, 786-800.	in Ecology and	4.2	130
696	A spongy nickel-organic CO ₂ reduction photocatalyst for nearly 100% se production. Science Advances, 2017, 3, e1700921.	lective CO	4.7	175
697	Changes In Spring Arrival Dates of Rufous Hummingbirds (<i>Selasphorus rufus</i>) In America In the Past Century. Wilson Journal of Ornithology, 2017, 129, 535-544.	Western North	0.1	6
698	Birds on the move in the face of climate change: High species turnover in northern Eur and Evolution, 2017, 7, 8201-8209.	ope. Ecology	0.8	40
699	Modern planktic foraminifers in the high-latitude ocean. Marine Micropaleontology, 20	17, 136, 1-13.	0.5	41
701	The effects of climate change on a megaâ€diverse country: predicted shifts in mamma richness and turnover in continental Ecuador. Biotropica, 2017, 49, 821-831.	lian species	0.8	14
702	Phylogenetic age differences in tree assemblages across the Northern Hemisphere incr longâ€ŧerm climate stability in unstable regions. Global Ecology and Biogeography, 20 	ease with 17, 26, 1035-1042.	2.7	13
703	How climatic variability is linked to the spatial distribution of range sizes: seasonality v change velocity in sphingid moths. Journal of Biogeography, 2017, 44, 2441-2450.	ersus climate	1.4	8
704	Super impact absorbing bio-alloys from inedible plants. Green Chemistry, 2017, 19, 45	03-4508.	4.6	9

#	Article	IF	CITATIONS
705	Restoration Ecology, Resilience, and the Axes of Change. Annals of the Missouri Botanical Garden, 2017, 102, 201-216.	1.3	63
706	Longâ€ŧerm changes in abundances of Sonoran Desert lizards reveal complex responses to climatic variation. Global Change Biology, 2017, 23, 5492-5508.	4.2	28
707	Can forest water yields be increased with increased precipitation in a Qinghai spruce forest in arid northwestern China?. Agricultural and Forest Meteorology, 2017, 247, 139-150.	1.9	22
708	Climate Change, Managed Relocation, andthe Risk of Intra-Continental Plant Invasions: A Theoretical and Empirical Exploration Relative To the Flora of New England. Rhodora, 2017, 119, 73-109.	0.0	6
710	Despite available habitat at range edge, yellow edar migration is punctuated with a past pulse tied to colder conditions. Diversity and Distributions, 2017, 23, 1381-1392.	1.9	6
711	Monitoring the long term vegetation phenology change in Northeast China from 1982 to 2015. Scientific Reports, 2017, 7, 14770.	1.6	53
712	Toward an improved conceptual understanding of North American tree species distributions. Ecosphere, 2017, 8, e01853.	1.0	20
713	Spatial and temporal variability in the effects of wildfire and drought on thermal habitat for a desert trout. Journal of Arid Environments, 2017, 145, 60-68.	1.2	28
714	Subtidal Benthic Invertebrates Shifting Northward Along the US Atlantic Coast. Estuaries and Coasts, 2017, 40, 1744-1756.	1.0	23
715	Repeated evolution of camouflage in speciose desert rodents. Scientific Reports, 2017, 7, 3522.	1.6	29
716	Climates on the move: Implications of climate warming for species distributions in mountains of the northeastern United States. Agricultural and Forest Meteorology, 2017, 246, 272-280.	1.9	26
717	â€~Are 3°C too much?': thermal niche breadth in Bromeliaceae and global warming. Journal of Ecology, 2017, 105, 507-516.	1.9	25
718	Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?. Journal of Animal Ecology, 2017, 86, 108-116.	1.3	70
719	Climate adaptation is not enough: warming does not facilitate success of southern tundra plant populations in the high Arctic. Global Change Biology, 2017, 23, 1540-1551.	4.2	63
720	Genetically informed ecological niche models improve climate change predictions. Global Change Biology, 2017, 23, 164-176.	4.2	164
721	Coarse climate change projections for species living in a fineâ€scaled world. Global Change Biology, 2017, 23, 12-24.	4.2	56
722	Heat resistance throughout ontogeny: body size constrains thermal tolerance. Global Change Biology, 2017, 23, 686-696.	4.2	113
723	Spatiotemporal heterogeneity in precipitation patterns explain population-level germination strategies in an edaphic specialist. Annals of Botany, 2017, 119, 253-265.	1.4	31

#	ARTICLE	IF	CITATIONS
724	Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism. Global Change Biology, 2017, 23, 1881-1890.	4.2	87
725	Mapping conservation priorities and connectivity pathways under climate change for tropical ecosystems. Climatic Change, 2017, 141, 77-92.	1.7	26
726	Relation between extinction and assisted colonization of plants in the arcticâ€alpine and boreal regions. Conservation Biology, 2017, 31, 524-530.	2.4	5
727	Forest fragmentation alters winter microclimates and microrefugia in humanâ€modified landscapes. Ecography, 2017, 40, 158-170.	2.1	61
728	Adaptive and plastic responses of <i>Quercus petraea</i> populations to climate across Europe. Global Change Biology, 2017, 23, 2831-2847.	4.2	92
729	Assessing the effectiveness of China's protected areas to conserve current and future amphibian diversity. Diversity and Distributions, 2017, 23, 146-157.	1.9	53
730	Late Quaternary climate stability and the origins and future of global grass endemism. Annals of Botany, 2017, 119, 279-288.	1.4	21
731	Where do they go? The effects of topography and habitat diversity on reducing climatic debt in birds. Global Change Biology, 2017, 23, 2218-2229.	4.2	43
732	A century of biodiversity: some open questions and some answers. Biodiversity, 2017, 18, 175-185.	0.5	13
733	The impact of climate change uncertainty on California's vegetation and adaptation management. Ecosphere, 2017, 8, e02021.	1.0	44
734	Optimisation of the conservation of rare and vulnerable plant species in the perspective of climate change in Lithuanian (nature) reserves. Archives of Environmental Protection, 2017, 43, 61-73.	1.1	4
735	Projected warming portends seasonal shifts of stream temperatures in the Crown of the Continent Ecosystem, USA and Canada. Climatic Change, 2017, 144, 641-655.	1.7	15
736	AFFECTIVE RHETORIC AND THE CULTURAL POLITICS OF DETERMINATE NEGATION. Angelaki - Journal of the Theoretical Humanities, 2017, 22, 103-132.	0.3	0
737	Influence of a rock glacier spring on the stream energy budget and coldâ€water refuge in an alpine stream. Hydrological Processes, 2017, 31, 4719-4733.	1.1	28
738	Correlates of ecological-niche diversity and extinction risk of amphibians in China under climate change. Australian Systematic Botany, 2017, 30, 414.	0.3	1
739	Ecotypes and evolutionary significant units in endangered North African gazelles. Biological Journal of the Linnean Society, 2017, 122, 286-300.	0.7	9
740	Climatic variables determining <i>Rhododendron</i> sister taxa distributions and distributional overlaps in the Himalayas. Frontiers of Biogeography, 2017, 9, .	0.8	2
741	Can Aquatic Plants Keep Pace with Climate Change?. Frontiers in Plant Science, 2017, 8, 1906.	1.7	23

#	Article	IF	CITATIONS
742	Toward a Global Classification of Coastal Anthromes. Land, 2017, 6, 13.	1.2	17
743	Changes in Landscape Greenness and Climatic Factors over 25 Years (1989–2013) in the USA. Remote Sensing, 2017, 9, 295.	1.8	14
744	Peripheral Isolates as Sources of Adaptive Diversity under Climate Change. Frontiers in Ecology and Evolution, 2017, 5, .	1.1	35
745	Thermal Thresholds of Phytoplankton Growth in Polar Waters and Their Consequences for a Warming Polar Ocean. Frontiers in Marine Science, 2017, 4, .	1.2	25
746	Recent advances in plant-herbivore interactions. F1000Research, 2017, 6, 119.	0.8	42
747	Can spatial patterns along climatic gradients predict ecosystem responses to climate change? Experimenting with reaction-diffusion simulations. PLoS ONE, 2017, 12, e0174942.	1.1	7
748	Geography of current and future global mammal extinction risk. PLoS ONE, 2017, 12, e0186934.	1.1	34
749	Differences in Rate and Direction of Shifts between Phytoplankton Size Structure and Sea Surface Temperature. Remote Sensing, 2017, 9, 222.	1.8	9
750	Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains. Forests, 2017, 8, 423.	0.9	9
751	Is Spatial Resolution Critical in Urbanization Velocity Analysis? Investigations in the Pearl River Delta. Remote Sensing, 2017, 9, 80.	1.8	7
753	Climate-mediated hybrid zone movement revealed with genomics, museum collection, and simulation modeling. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2284-E2291.	3.3	60
754	A review and metaâ€analysis of the effects of climate change on Holarctic mountain and upland bird populations. Ibis, 2018, 160, 489-515.	1.0	117
755	Predicting community rankâ€abundance distributions under current and future climates. Ecography, 2018, 41, 1572-1582.	2.1	9
756	Tree vulnerability to climate change: improving exposureâ€based assessments using traits as indicators of sensitivity. Ecosphere, 2018, 9, e02108.	1.0	61
757	A mechanistic model of climate change risk: Growth rates and microhabitat specificity for conservation priority woodland epiphytes. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 32, 38-48.	1.1	8
758	Effects of species biological traits and environmental heterogeneity on simulated tree species distribution shifts under climate change. Science of the Total Environment, 2018, 634, 1214-1221.	3.9	29
759	An ecological climate change classification for South Australia. Transactions of the Royal Society of South Australia, 2018, 142, 70-85.	0.1	10
760	Response to climate change of montane herbaceous plants in the genus Rhodiola predicted by ecological niche modelling. Scientific Reports, 2018, 8, 5879.	1.6	55

#	Article	IF	CITATIONS
761	Range contraction and increasing isolation of a polar bear subpopulation in an era of seaâ€ice loss. Ecology and Evolution, 2018, 8, 2062-2075.	0.8	38
762	Can sugar maple establish into the boreal forest? Insights from seedlings under various canopies in southern Quebec. Ecosphere, 2018, 9, e02022.	1.0	16
763	Macrorefugia for North American trees and songbirds: Climatic limiting factors and multiâ€scale topographic influences. Global Ecology and Biogeography, 2018, 27, 690-703.	2.7	43
764	Modelling biomeâ€scale root reinforcement and slope stability. Earth Surface Processes and Landforms, 2018, 43, 2157-2166.	1.2	18
765	Slow and steady wins the race? Future climate and land use change leaves the imperiled Blanding's turtle (Emydoidea blandingii) behind. Biological Conservation, 2018, 222, 75-85.	1.9	20
766	Strategies for mammal conservation under climate change in the Amazon. Biodiversity and Conservation, 2018, 27, 1943-1959.	1.2	33
767	Evolutionary Responses to Climate Change. , 2018, , 43-49.		0
768	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2018, , 289-300.		Ο
769	Ecoregional Planning and Climate Change Adaptation. , 2018, , 245-256.		0
770	Timing of mutualist arrival has a greater effect on <i>Pinus muricata</i> seedling growth than interspecific competition. Journal of Ecology, 2018, 106, 514-523.	1.9	31
771	Conserving and managing the subnivium. Conservation Biology, 2018, 32, 774-781.	2.4	21
772	Identifying in situ climate refugia for plant species. Ecography, 2018, 41, 1850-1863.	2.1	35
773	A global analysis of elevational distribution of nonâ€native versus native plants. Journal of Biogeography, 2018, 45, 793-803.	1.4	26
774	Plant geographical range size and climate stability in China: Growth form matters. Global Ecology and Biogeography, 2018, 27, 506-517.	2.7	30
775	Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conservation Biology, 2018, 32, 872-882.	2.4	35
776	Cryospheric Science: research framework and disciplinary system. National Science Review, 2018, 5, 255-268.	4.6	82
777	Altitudinal heterogeneity and vulnerability assessment of protected area network for climate change adaptation planning in central Iran. Applied Geography, 2018, 92, 94-103.	1.7	11
778	Potentially dangerous consequences for biodiversity of solar geoengineering implementation and termination. Nature Ecology and Evolution, 2018, 2, 475-482.	3.4	89

#	Article	IF	CITATIONS
779	Temperatureâ€driven selection on metabolic traits increases the strength of an algal–grazer interaction in naturally warmed streams. Global Change Biology, 2018, 24, 1793-1803.	4.2	36
780	Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change. Annual Review of Plant Biology, 2018, 69, 761-787.	8.6	38
781	Climate Velocity Can Inform Conservation in a Warming World. Trends in Ecology and Evolution, 2018, 33, 441-457.	4.2	124
782	Plant, microbial community and soil property responses to an experimental precipitation gradient in a desert grassland. Applied Soil Ecology, 2018, 127, 87-95.	2.1	35
783	Correlates of long-term land-cover change and protected area performance at priority conservation sites in Africa. Environmental Conservation, 2018, 45, 49-57.	0.7	8
784	Flow intermittence and ecosystem services in rivers of the Anthropocene. Journal of Applied Ecology, 2018, 55, 353-364.	1.9	113
785	Managing consequences of climateâ€driven species redistribution requires integration of ecology, conservation and social science. Biological Reviews, 2018, 93, 284-305.	4.7	154
786	Landâ€use history as a guide for forest conservation and management. Conservation Biology, 2018, 32, 84-97.	2.4	54
787	Ecohydrological disturbances associated with roads: Current knowledge, research needs, and management concerns with reference to the tropics. Ecohydrology, 2018, 11, e1881.	1.1	42
788	The 90 ways to describe plant temperature. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 16-21.	1.1	119
789	Spatial and temporal heterogeneity in climate change limits species' dispersal capabilities and adaptive potential. Ecography, 2018, 41, 1428-1440.	2.1	26
790	Why decadal to century timescale palaeoclimate data are needed to explain presentâ€day patterns of biological diversity and change. Global Change Biology, 2018, 24, 1371-1381.	4.2	32
791	Limited stand expansion by a longâ€lived conifer at a leading northern range edge, despite available habitat. Journal of Ecology, 2018, 106, 911-924.	1.9	11
792	Adapting systematic conservation planning for climate change. Biodiversity and Conservation, 2018, 27, 1-29.	1.2	109
793	Leap frog in slow motion: Divergent responses of tree species and life stages to climatic warming in Great Basin subalpine forests. Global Change Biology, 2018, 24, e442-e457.	4.2	43
794	The value of spaceâ€forâ€time substitution for studying fineâ€scale microevolutionary processes. Ecography, 2018, 41, 1456-1468.	2.1	40
795	How disturbance, competition, and dispersal interact to prevent tree range boundaries from keeping pace with climate change. Global Change Biology, 2018, 24, e335-e351.	4.2	97
796	Shifting Baselines: Conveying Climate Change in Popular Music. Environmental Communication, 2018, 12, 58-70.	1.2	22

#	Article	IF	CITATIONS
797	Physical effects of habitatâ€forming species override latitudinal trends in temperature. Ecology Letters, 2018, 21, 190-196.	3.0	46
798	Land use and life history limit migration capacity of eastern tree species. Global Ecology and Biogeography, 2018, 27, 57-67.	2.7	39
799	Longâ€ŧerm inÂsitu persistence of biodiversity in tropical sky islands revealed by landscape genomics. Molecular Ecology, 2018, 27, 432-448.	2.0	39
800	From past to future: impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Regional Environmental Change, 2018, 18, 409-424.	1.4	20
801	Predicting persistence in benthic marine species with complex life cycles: linking dispersal dynamics to redistribution potential and thermal tolerance limits. Marine Biology, 2018, 165, 1.	0.7	16
802	Below room temperature: How the photocatalytic activity of dense and mesoporous TiO2 coatings is affected. Applied Surface Science, 2018, 435, 769-775.	3.1	12
803	Forecasting the combined effects of climate and land use change on Mexican bats. Diversity and Distributions, 2018, 24, 363-374.	1.9	38
804	Conserving migration in a changing climate, a case study: The Eurasian spoonbill, Platalea leucorodia leucorodia. Biological Conservation, 2018, 217, 222-231.	1.9	8
805	Stay or go – how topographic complexity influences alpine plant population and community responses to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 2018, 30, 41-50.	1.1	141
806	Both lifeâ€history plasticity and local adaptation will shape rangeâ€wide responses to climate warming in the tundra plant <i>Silene acaulis</i> . Global Change Biology, 2018, 24, 1614-1625.	4.2	57
807	Notes on the postglacial spread of abundant European tree taxa. Vegetation History and Archaeobotany, 2018, 27, 337-349.	1.0	26
808	Growth responses to elevated temperatures and the importance of ontogenetic niche shifts in Bromeliaceae. New Phytologist, 2018, 217, 127-139.	3.5	16
809	Release of hatchery adult steelhead for angler opportunity increases potential for interactions with endemic steelhead. Ecosphere, 2018, 9, e02448.	1.0	1
810	Impact of climate change on biodiversity and associated key ecosystem services in Africa: a systematic review. Ecosystem Health and Sustainability, 2018, 4, 225-239.	1.5	174
811	Controls on the distribution and resilience of Quercus garryana : ecophysiological evidence of oak's waterâ€limitation tolerance. Ecosphere, 2018, 9, e02218.	1.0	25
812	Biobanking in forestry practices: towards an agency policy?. New Genetics and Society, 2018, 37, 411-434.	0.7	2
813	Niche squeeze induced by climate change of the cold-tolerant subtropical montane Podocarpus parlatorei. Royal Society Open Science, 2018, 5, 180513.	1,1	6
814	Network resilience of mutualistic ecosystems and environmental changes: an empirical study. Royal Society Open Science, 2018, 5, 180706.	1.1	15

	CHAI	ON REPORT	
#	Article	IF	CITATIONS
815	Context and Opportunities for Expanding Protected Areas in Canada. Land, 2018, 7, 137.	1.2	6
816	Delineating the ecological and geographic edge of an opportunist: The American black bear exploiting an agricultural landscape. Ecological Modelling, 2018, 387, 205-219.	1.2	52
817	Compensatory conservation measures for an endangered caribou population under climate change. Scientific Reports, 2018, 8, 16438.	1.6	12
818	Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model: LAVESI-WIND 1.0. Geoscientific Model Development, 2018, 11, 4451-4467.	1.3	16
819	OBSOLETE: Evolutionary responses to climate change. , 2018, , .		0
820	Varying dataset resolution alters predictive accuracy of spatially explicit ensemble models for avian species distribution. Ecology and Evolution, 2018, 8, 12867-12878.	0.8	4
821	Northern forest tree populations are physiologically maladapted to drought. Nature Communications, 2018, 9, 5254.	5.8	78
822	Decoupling photo- and thermoperiod by projected climate change perturbs bud development, dormancy establishment and vernalization in the model tree Populus. BMC Plant Biology, 2018, 18, 220.	1.6	18
823	Disproportionate magnitude of climate change in United States national parks. Environmental Research Letters, 2018, 13, 104001.	2.2	64
824	OBSOLETE: Distributions and range shifts. , 2018, , .		0
825	Temperature-Driven Biodiversity Change: Disentangling Space and Time. BioScience, 2018, 68, 873-884.	2.2	30
826	Mutation load dynamics during environmentally-driven range shifts. PLoS Genetics, 2018, 14, e1007450.	1.5	29
827	Differential vulnerability to climate change yields novel deep-reef communities. Nature Climate Change, 2018, 8, 873-878.	8.1	10
828	Mapping underrepresented land cover heterogeneity in arid regions: The Sahara-Sahel example. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, 146, 211-220.	4.9	15
830	Extremophiles as a Model of a Natural Ecosystem: Transcriptional Coordination of Genes Reveals Distinct Selective Responses of Plants Under Climate Change Scenarios. Frontiers in Plant Science, 2018, 9, 1376.	1.7	10
831	Empirical Predictability of Community Responses to Climate Change. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	26
832	An Economist's Guide to Climate Change Science. Journal of Economic Perspectives, 2018, 32, 3-32.	2.7	80
833	Functional and geographic components of risk for climate sensitive vertebrates in the Pacific Northwest, USA. Biological Conservation, 2018, 228, 183-194.	1.9	20

#	Article	IF	CITATIONS
835	Landscapes that work for biodiversity and people. Science, 2018, 362, .	6.0	622
836	Shifting echo chambers in US climate policy networks. PLoS ONE, 2018, 13, e0203463.	1.1	30
837	Stem Circadian Phenology of Four Pine Species in Naturally Contrasting Climates from Sky-Island Forests of the Western USA. Forests, 2018, 9, 396.	0.9	16
838	Climate change-driven range losses among bumblebee species are poised to accelerate. Scientific Reports, 2018, 8, 14464.	1.6	61
839	Tropical Protected Areas Under Increasing Threats from Climate Change and Deforestation. Land, 2018, 7, 90.	1.2	28
840	The role of climate, water and biotic interactions in shaping biodiversity patterns in arid environments across spatial scales. Diversity and Distributions, 2018, 24, 1440-1452.	1.9	22
841	Marine fauna sort at fine resolution in an ecotone of shifting wetland foundation species. Ecology, 2018, 99, 2546-2557.	1.5	8
842	Vulnerability of the global terrestrial ecosystems to climate change. Global Change Biology, 2018, 24, 4095-4106.	4.2	166
843	Belowâ€ground biotic interactions moderated the postglacial range dynamics of trees. New Phytologist, 2018, 220, 1148-1160.	3.5	36
844	Projected timing of perceivable changes in climate extremes for terrestrial and marine ecosystems. Global Change Biology, 2018, 24, 4696-4708.	4.2	29
845	Securing a future for China's plant biodiversity through an integrated conservation approach. Plant Diversity, 2018, 40, 91-105.	1.8	30
846	Adaptive differentiation of Festuca rubra along a climate gradient revealed by molecular markers and quantitative traits. PLoS ONE, 2018, 13, e0194670.	1.1	17
847	Simulating vegetation response to climate change in the Blue Mountains with MC2 dynamic global vegetation model. Climate Services, 2018, 10, 20-32.	1.0	27
848	Climatic, topographic, and anthropogenic factors determine connectivity between current and future climate analogs in North America. Global Change Biology, 2018, 24, 5318-5331.	4.2	75
849	Range shifts in response to past and future climate change: Can climate velocities and species' dispersal capabilities explain variation in mammalian range shifts?. Journal of Biogeography, 2018, 45, 2175-2189.	1.4	74
850	Environmental health assessment of warming coastal ecosystems in the tropics – Application of integrative physiological indices. Science of the Total Environment, 2018, 643, 28-39.	3.9	34
851	Major perturbations in the Earth's forest ecosystems. Possible implications for global warming. Earth-Science Reviews, 2018, 185, 544-571.	4.0	72
852	Effect of climate change in lizards of the genus <i>Xenosaurus</i> (Xenosauridae) based on projected changes in climatic suitability and climatic niche conservatism. Ecology and Evolution, 2018, 8, 6860-6871.	0.8	18

#	Article	IF	CITATIONS
853	Biotic and abiotic drivers of tree seedling recruitment across an alpine treeline ecotone. Scientific Reports, 2018, 8, 10894.	1.6	37
854	Incipient road to extinction of a keystone herbivore in south-eastern Europe: Harting's vole (Microtus) Tj ETQ	q110.784 1.7	43 <u>1</u> 4 rgBT /(
855	Advancing Biogeography Through Population Genomics. Population Genomics, 2018, , 539-585.	0.2	7
856	Using present and past climosequences to estimate soil organic carbon and related physical quality indicators under future climatic conditions. Agriculture, Ecosystems and Environment, 2018, 266, 17-30.	2.5	5
857	Historical distributions of bobcats (<i>Lynx rufus</i>) and Canada lynx (<i>Lynx</i>) Tj ETQq0 0 0 rgBT /O 2018, 96, 1299-1308.	verlock 10 0.4) Tf 50 587 T 9
858	The EuMedClim Database: Yearly Climate Data (1901–2014) of 1 km Resolution Grids for Europe and the Mediterranean Basin. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	32
859	Topoedaphic and Forest Controls on Post-Fire Vegetation Assemblies Are Modified by Fire History and Burn Severity in the Northwestern Canadian Boreal Forest. Forests, 2018, 9, 151.	0.9	55
860	Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Diversity and Distributions, 2018, 24, 1598-1611.	1.9	21
861	Clobal Analysis of Burned Area Persistence Time with MODIS Data. Remote Sensing, 2018, 10, 750.	1.8	40
862	Biogeographical Shifts and Climate Change. , 2018, , 217-228.		3
863	Global assessment of early warning signs that temperature could undergo regime shifts. Scientific Reports, 2018, 8, 10058.	1.6	7
864	New concepts, models, and assessments of climate-wise connectivity. Environmental Research Letters, 2018, 13, 073002.	2.2	77
865	Modeling the ecology and evolution of biodiversity: Biogeographical cradles, museums, and graves. Science, 2018, 361, .	6.0	260
866	Distribution and protection of climatic refugia in North America. Conservation Biology, 2018, 32, 1414-1425.	2.4	55
867	Invoking adaptation to decipher the genetic legacy of past climate change. Ecology, 2018, 99, 1530-1546.	1.5	72
868	The effect of rainfall on population dynamics in Sahara-Sahel rodents. Mammal Research, 2018, 63, 485-492.	0.6	14
869	Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecology Letters, 2018, 21, 1085-1096.	3.0	82
870	Drought Impacts on Vegetation Indices and Productivity of Terrestrial Ecosystems in Southwestern China During 2001–2012. Chinese Geographical Science, 2018, 28, 784-796.	1.2	13

#	Article	IF	CITATIONS
871	Noninvasive genetic assessment provides evidence of extensive gene flow and possible high movement ability in the African golden wolf. Mammalian Biology, 2018, 92, 94-101.	0.8	11
872	Effects of Temperature and Day Length on Daily Movements and Home Range of Glaucomys volans (Southern Flying Squirrel) in the Northeastern United States. Northeastern Naturalist, 2018, 25, 383-390.	0.1	2
873	Functional diversity mediates macroecological variation in plant–hummingbird interaction networks. Global Ecology and Biogeography, 2018, 27, 1186-1199.	2.7	43
874	Decadal changes in tree range stability across forests of the eastern U.S Forest Ecology and Management, 2018, 429, 503-510.	1.4	18
875	Transmission of climate risks across sectors and borders. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20170301.	1.6	74
876	Variation of preferred body temperatures along an altitudinal gradient: A multi-species study. Journal of Thermal Biology, 2018, 77, 38-44.	1.1	27
877	The many possible climates from the Paris Agreement's aim of 1.5 °C warming. Nature, 2018, 558, 41-49.	13.7	116
878	Altered spring phenology of North American freshwater turtles and the importance of representative populations. Ecology and Evolution, 2018, 8, 5815-5827.	0.8	29
879	Changes in the geographical distribution of plant species and climatic variables on the West Cornwall peninsula (South West UK). PLoS ONE, 2018, 13, e0191021.	1.1	29
880	Spatial distance and climate determine modularity in a crossâ€biomes plant–hummingbird interaction network in Brazil. Journal of Biogeography, 2018, 45, 1846-1858.	1.4	35
881	Disequilibrium and relaxation times for species responses to climate change. Ecological Modelling, 2018, 384, 23-29.	1.2	16
882	Assessing agreement among alternative climate change projections to inform conservation recommendations in the contiguous United States. Scientific Reports, 2018, 8, 9441.	1.6	30
883	Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Diversity and Distributions, 2018, 24, 1583-1597.	1.9	41
884	Transitional climate mortality: slower warming may result in increased climateâ€induced mortality in some systems. Ecosphere, 2018, 9, e02170.	1.0	10
885	Vagrants as vanguards of range shifts in a dynamic world. Biological Conservation, 2018, 224, 238-241.	1.9	16
886	High dispersal ability is related to fast lifeâ€history strategies. Journal of Ecology, 2018, 106, 1349-1362.	1.9	70
887	Effects of contemporary environment and Quaternary climate change on drylands plant diversity differ between growth forms. Ecography, 2019, 42, 334-345.	2.1	36
888	The ecology of plant extinction: rates, traits and island comparisons. Oryx, 2019, 53, 424-428.	0.5	30

ARTICLE IF CITATIONS # Climate change increases ecogeographical isolation between closely related plants. Journal of 889 1.9 10 Ecology, 2019, 107, 167-177. Value of protected areas to avian persistence across 20 years of climate and landâ€use change. 890 2.4 Conservation Biology, 2019, 33, 423-433. 891 Future Hydrologic Scenarios in India Under Climate Change., 2019, , 39-59. 4 Ecological islands: conserving biodiversity hotspots in a changing climate. Frontiers in Ecology and 892 1.9 the Environment, 2019, 17, 331-340. Movement seasonality in a desert-dwelling bat revealed by miniature GPS loggers. Movement Ecology, 893 1.3 15 2019, 7, 27. Climate exposure of East Asian temperate forests suggests transboundary climate adaptation strategies are needed. Climatic Change, 2019, 156, 51-67. 894 1.7 895 Anthropocene risk. Nature Sustainability, 2019, 2, 667-673. 11.5 133 Marine recreational fishing and the implications of climate change. Fish and Fisheries, 2019, 20, 896 2.7 977-992. Potential Distribution Shifts of Plant Species under Climate Change in Changbai Mountains, China. 897 0.9 14 Forests, 2019, 10, 498. Habitat Climate Change Vulnerability Index Applied to Major Vegetation Types of the Western Interior 898 1.2 United States. Land, 2019, 8, 108. Incorporating future climate uncertainty into the identification of climate change refugia for 899 1.9 35 threatened species. Biological Conservation, 2019, 237, 230-237. Global loss of climate connectivity in tropical forests. Nature Climate Change, 2019, 9, 623-626. 8.1 49 Climate change is predicted to disrupt patterns of local adaptation in wild and cultivated maize. 901 1.2 32 Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20190486. Extreme heat events and the vulnerability of endemic montane fishes to climate change. Ecography, 2.1 2019, 42, 1913-1925. Thermal biology of mosquitoâ€borne disease. Ecology Letters, 2019, 22, 1690-1708. 903 3.0 349 Dehydration constrains thermoregulation and space use in lizards. PLoS ONE, 2019, 14, e0220384. 904 1.1 Diversidad de comunidades de palmas en el ChocÃ³ biogeogrÃ_ifico y su relaciÃ³n con la precipitaciÃ³n. 905 0.1 4 Caldasia, 2019, 41, 358-369. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly 906 shaped by modern climate and glacial–interglacial climate change. Global Ecology and Biogeography, 34 2019, 28, 1393-1402.

#	Article	IF	CITATIONS
907	Effects of current climate, paleo-climate, and habitat heterogeneity in determining biogeographical patterns of evergreen broad-leaved woody plants in China. Journal of Chinese Geography, 2019, 29, 1142-1158.	1.5	15
908	Global restoration opportunities in tropical rainforest landscapes. Science Advances, 2019, 5, eaav3223.	4.7	286
909	Rapid niche shifts in introduced species can be a million times faster than changes among native species and ten times faster than climate change. Journal of Biogeography, 2019, 46, 2115-2125.	1.4	35
910	Observed Northward Migration of Agroâ€Climate Zones in Europe Will Further Accelerate Under Climate Change. Earth's Future, 2019, 7, 1088-1101.	2.4	71
911	Seasonal diet of <i>Asellia tridens</i> (Chiroptera: Hipposideridae) in North-Western Africa. , 2019, 86, 354-362.		2
912	A Review of the Effects of Climate Change on Chelonians. Diversity, 2019, 11, 138.	0.7	28
913	Survival of Whitebark Pine Seedlings Grown from Direct Seeding: Implications for Regeneration and Restoration under Climate Change. Forests, 2019, 10, 677.	0.9	11
914	Echo chambers in climate science. Environmental Research Communications, 2019, 1, 101003.	0.9	7
915	The Effects of Interaction between Climate Change and Landâ€Use/Cover Change on Biodiversityâ€Related Ecosystem Services. Global Challenges, 2019, 3, 1800095.	1.8	42
916	Reduced pH and elevated salinities affect the physiology of intertidal crab <i>Minuca mordax</i> (Crustacea, Decapoda). Marine and Freshwater Behaviour and Physiology, 2019, 52, 241-254.	0.4	9
917	Climate change threatens the most biodiverse regions of Mexico. Biological Conservation, 2019, 240, 108215.	1.9	15
918	Differing climatic mechanisms control transient and accumulated vegetation novelty in Europe and eastern North America. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20190218.	1.8	16
919	Phylogenetic dispersion and diversity in regional assemblages of seed plants in China. Proceedings of the United States of America, 2019, 116, 23192-23201.	3.3	85
920	Predicted climate shifts within terrestrial protected areas worldwide. Nature Communications, 2019, 10, 4787.	5.8	102
921	VoCC: An <scp>r</scp> package for calculating the velocity of climate change and related climatic metrics. Methods in Ecology and Evolution, 2019, 10, 2195-2202.	2.2	42
922	Spatial gradients in countryâ€level population trends of European birds. Diversity and Distributions, 2019, 25, 1527-1536.	1.9	14
923	Microbiota bacteriana oral de la tortuga del bolsón Gopherus flavomarginatus en la Reserva de la Biosfera MapimÃ; México. Revista Mexicana De Biodiversidad, 2019, 90, .	0.4	2
924	Conservation planning for boreal birds in a changing climate: a framework for action. Avian Conservation and Ecology, 2019, 14, .	0.3	18

#	Article	IF	CITATIONS
925	Species traits and reduced habitat suitability limit efficacy of climate change refugia in streams. Nature Ecology and Evolution, 2019, 3, 1321-1330.	3.4	37
926	The conflict between adaptation and dispersal for maintaining biodiversity in changing environments. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21061-21067.	3.3	65
927	Climate change, range shifts, and the disruption of a pollinator-plant complex. Scientific Reports, 2019, 9, 14048.	1.6	32
928	Monitoring boreal avian populations: how can we estimate trends and trajectories from noisy data?. Avian Conservation and Ecology, 2019, 14, .	0.3	16
929	A Conceptual Framework for Range-Expanding Species that Track Human-Induced Environmental Change. BioScience, 2019, 69, 908-919.	2.2	113
930	Spatial contraction of demersal fish populations in a large marine ecosystem. Journal of Biogeography, 2019, 46, 633-645.	1.4	30
931	Risk of biodiversity collapse under climate change in the Afro-Arabian region. Scientific Reports, 2019, 9, 955.	1.6	25
932	Landscape Connectivity Planning for Adaptation to Future Climate and Land-Use Change. Current Landscape Ecology Reports, 2019, 4, 1-13.	1.1	30
933	Present and future invasion perspectives of an alien shrimp in South Atlantic coastal waters: an experimental assessment of functional biomarkers and thermal tolerance. Biological Invasions, 2019, 21, 1567-1584.	1.2	1
934	Can leaf net photosynthesis acclimate to rising and more variable temperatures?. Plant, Cell and Environment, 2019, 42, 1913-1928.	2.8	35
935	Climate Change and Geographic Ranges: The Implications for Russian Forests. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	14
936	Assessing historical and future habitat models for four conservationâ€priority Mojave Desert species. Journal of Biogeography, 2019, 46, 2081-2097.	1.4	7
937	Effects of climatically shifting species distributions on biocultural relationships. People and Nature, 2019, 1, 87-102.	1.7	19
938	Responses of community structure and diversity to nitrogen deposition and rainfall addition in contrasting steppes are ecosystem-dependent and dwarfed by year-to-year community dynamics. Annals of Botany, 2019, 124, 461-469.	1.4	8
939	Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Global Ecology and Biogeography, 2019, 28, 1067-1077.	2.7	7
940	Geographic variation in the intensity of warming and phenological mismatch between Arctic shorebirds and invertebrates. Ecological Monographs, 2019, 89, e01383.	2.4	39
941	Temperature shapes opposing latitudinal gradients of plant taxonomic and phylogenetic Î ² diversity. Ecology Letters, 2019, 22, 1126-1135.	3.0	54
942	Patterns and ecological determinants of woody plant height in eastern Eurasia and its relation to primary productivity. Journal of Plant Ecology, 2019, 12, 791-803.	1.2	15

			(
#	Article	IF	CITATIONS
943	Effects of climate change on habitat and connectivity for populations of a vulnerable, endemic salamander in Iran. Global Ecology and Conservation, 2019, 19, e00637.	1.0	39
944	Sessile oak forest plant community changes on the NE Iberian Peninsula over recent decades. Journal of Plant Ecology, 2019, 12, 894-906.	1.2	2
945	Late Quaternary climate change explains soil fungal community composition rather than fungal richness in forest ecosystems. Ecology and Evolution, 2019, 9, 6678-6692.	0.8	9
946	Beta diversity of aquatic invertebrates increases along an altitudinal gradient in a Neotropical mountain. Biotropica, 2019, 51, 399-411.	0.8	33
947	Social and ecological factors alter stress physiology of Virunga mountain gorillas (<i>Gorilla) Tj ETQq0 0 0 rgBT /C</i>)verlock 1(0 Tf 50 582

948	Could restoration of a landscape to a preâ€European historical vegetation condition reduce burn probability?. Ecosphere, 2019, 10, e02584.	1.0	15
949	Climate policy action needed to reduce vulnerability of conservationâ€reliant grassland birds in North America. Conservation Science and Practice, 2019, 1, e21.	0.9	26
950	Evidence for adaptive responses to historic drought across a native plant species range. Evolutionary Applications, 2019, 12, 1569-1582.	1.5	44
951	Assessment of Variations in the Temperature-Rainfall Trend in the Province of Macerata (Central) Tj ETQq0 0 0 rg Biosustainability Studies. Environmental Processes, 2019, 6, 391-412.	BT /Overlo 1.7	ock 10 Tf 50 19
952	Dispersal distances and migration rates at the arctic treeline in Siberia – a genetic and simulation-based study. Biogeosciences, 2019, 16, 1211-1224.	1.3	21
953	A Global Deal For Nature: Guiding principles, milestones, and targets. Science Advances, 2019, 5, eaaw2869.	4.7	477
956	Remote sensing of alpine treeline ecotone dynamics and phenology in Arunachal Pradesh Himalaya. International Journal of Remote Sensing, 2019, 40, 7986-8009.	1.3	22
957	Drought in Southern California coastal sage scrub reduces herbaceous biomass of exotic species more than native species, but exotic growth recovers quickly when drought ends. Plant Ecology, 2019, 220, 151-169.	0.7	13
958	Effects of climate change and horticultural use on the spread of naturalized alien garden plants in Europe. Ecography, 2019, 42, 1548-1557.	2.1	2
959	Understanding ecological change across large spatial, temporal and taxonomic scales: integrating data and methods in light of theory. Ecography, 2019, 42, 1247-1266.	2.1	38
960	The future of North American grassland birds: Incorporating persistent and emergent threats into full annual cycle conservation priorities. Conservation Science and Practice, 2019, 1, e20.	0.9	18
961	Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspectives in Ecology and Conservation, 2019, 17, 57-63.	1.0	38
962	Climate change and climate change velocity analysis across Germany. Scientific Reports, 2019, 9, 2196.	1.6	15

#	Article	IF	CITATIONS
963	Spatial and temporal patterns of public and private land protection within the Blue Ridge and Piedmont ecoregions of the eastern US. Landscape and Urban Planning, 2019, 186, 91-102.	3.4	7
964	Characteristics of Transformational Adaptation in Climate-Land-Society Interactions. Sustainability, 2019, 11, 356.	1.6	20
965	Winners and losers: How the elevational range of breeding birds on Alps has varied over the past four decades due to climate and habitat changes. Ecology and Evolution, 2019, 9, 1289-1305.	0.8	27
966	A model of hardwood tree colonization among forest fragments: predicting migration across human-dominated landscapes. Ecoscience, 2019, 26, 35-51.	0.6	2
967	The ability of moderate resolution imaging spectroradiometer land surface temperatures to simulate cold air drainage and microclimates in complex Arctic terrain. International Journal of Climatology, 2019, 39, 953-973.	1.5	4
969	Restoration of Threatened Species. , 2019, , 59-146.		0
970	Restoration of Threatened Species Habitat. , 2019, , 147-200.		0
971	Conservation-Oriented Restoration of Particular Systems. , 2019, , 269-305.		0
973	Rapid changes in seed dispersal traits may modify plant responses to global change. AoB PLANTS, 2019, 11, plz020.	1.2	32
974	Climate change reduces resilience to fire in subalpine rainforests. Global Change Biology, 2019, 25, 2030-2042.	4.2	27
975	Projecting biological impacts from climate change like a climate scientist. Wiley Interdisciplinary Reviews: Climate Change, 2019, 10, e585.	3.6	20
976	Ecoâ€evolution on the edge during climate change. Ecography, 2019, 42, 1280-1297.	2.1	122
977	Redefining the climate niche of plant species: A novel approach for realistic predictions of species distribution under climate change. Science of the Total Environment, 2019, 671, 1086-1093.	3.9	17
978	What's hot in conservation biogeography in a changing climate? Going beyond species range dynamics. Diversity and Distributions, 2019, 25, 492-498.	1.9	16
979	Different effects of alpine woody plant expansion on domestic and wild ungulates. Global Change Biology, 2019, 25, 1808-1819.	4.2	28
980	A Comprehensive Model for the Quantitative Estimation of Seed Dispersal by Migratory Mallards. Frontiers in Ecology and Evolution, 2019, 7, .	1.1	28
981	Lost at high latitudes: Arctic and endemic plants under threat as climate warms. Diversity and Distributions, 2019, 25, 809-821.	1.9	38
982	The Concept's Major Principles. , 2019, , 13-58.		0

#	Article	IF	CITATIONS
983	Conservation-Oriented Restoration Silvicultural Toolkit. , 2019, , 201-268.		0
985	Quantifying the effects of solar geoengineering on vegetation. Climatic Change, 2019, 153, 235-251.	1.7	23
986	The importance of defining measures of stability in macroecology and biogeography. Frontiers of Biogeography, 2019, 11, .	0.8	6
987	Climate change threatens New Guinea's biocultural heritage. Science Advances, 2019, 5, eaaz1455.	4.7	42
988	Facilitating Adaptive Forest Management under Climate Change: A Spatially Specific Synthesis of 125 Species for Habitat Changes and Assisted Migration over the Eastern United States. Forests, 2019, 10, 989.	0.9	28
989	Spatial scale affects novel and disappeared climate change projections in Alaska. Ecology and Evolution, 2019, 9, 12026-12044.	0.8	6
990	Potential feedbacks between loss of biosphere integrity and climate change. Global Sustainability, 2019, 2, .	1.6	11
991	Climate change vulnerability higher in arctic than alpine bumblebees. Frontiers of Biogeography, 2019, 11, .	0.8	13
992	Local adaptation of a dominant coastal tree to freshwater availability and solar radiation suggested by genomic and ecophysiological approaches. Scientific Reports, 2019, 9, 19936.	1.6	19
994	Concluding Remarks and Prospects for the Proposed Strategy. , 2019, , 355-356.		0
995	The commonness of rarity: Global and future distribution of rarity across land plants. Science Advances, 2019, 5, eaaz0414.	4.7	194
996	Strong dispersal limitation in postfire regeneration of Baker cypress, a rare serotinous conifer. American Journal of Botany, 2019, 106, 1566-1574.	0.8	2
997	FosSahul 2.0, an updated database for the Late Quaternary fossil records of Sahul. Scientific Data, 2019, 6, 272.	2.4	19
998	Interâ€individual variation in colour patterns in noctuid moths characterizes longâ€distance dispersers and agricultural pests. Journal of Applied Entomology, 2019, 143, 992-999.	0.8	5
999	Contributions of Quaternary botany to modern ecology and biogeography. Plant Ecology and Diversity, 2019, 12, 189-385.	1.0	103
1000	Climate and Biological Diversity: How Should the Effects of Climate Change on Biological Diversity Be Legally Addressed in International and Comparative Law and Solutions?. Climate Change Management, 2019, , 325-335.	0.6	3
1001	Significance of Protected Area Network in Preserving Biodiversity in a Changing Northern European Climate. Climate Change Management, 2019, , 377-390.	0.6	8
1002	Quantifying multiple pressure interactions affecting populations of a recreationally and commercially important freshwater fish. Global Change Biology, 2019, 25, 1049-1062.	4.2	27

#	Article	IF	CITATIONS
1003	Strengthened scientific support for the Endangerment Finding for atmospheric greenhouse gases. Science, 2019, 363, .	6.0	34
1004	Velocities for spatio-temporal point patterns. Spatial Statistics, 2019, 29, 204-225.	0.9	2
1005	Incorporating local adaptation into forecasts of species' distribution and abundance under climate change. Global Change Biology, 2019, 25, 775-793.	4.2	169
1006	Elevational rear edges shifted at least as much as leading edges over the last century. Global Ecology and Biogeography, 2019, 28, 533-543.	2.7	75
1007	Protected areas act as a buffer against detrimental effects of climate change—Evidence from largeâ€scale, longâ€term abundance data. Global Change Biology, 2019, 25, 304-313.	4.2	62
1008	The origins and maintenance of global species endemism. Global Ecology and Biogeography, 2019, 28, 170-183.	2.7	20
1009	Emerging threats and persistent conservation challenges for freshwater biodiversity. Biological Reviews, 2019, 94, 849-873.	4.7	1,766
1010	Impact of the industrial sector on surface temperatures in Jubail City, Saudi Arabia using remote sensing techniques. Spatial Information Research, 2019, 27, 329-337.	1.3	3
1011	Applying habitat and populationâ€density models to landâ€cover time series to inform IUCN Red List assessments. Conservation Biology, 2019, 33, 1084-1093.	2.4	56
1012	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78	4314 rgB1 0.8	[/Qverlock]
1012 1013	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295.	4314 rgB1 0.8	Verlock 1 44
1012 1013 1014	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295. Functional reorganization of marine fish nurseries under climate warming. Global Change Biology, 2019, 25, 660-674.	4314 rgBT 2.2 4.2	- /Qverlock 1 13 37
1012 1013 1014 1015	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295. Functional reorganization of marine fish nurseries under climate warming. Global Change Biology, 2019, 25, 660-674. Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, 2019, , .	4314 rgB1 2.2 4.2 1.6	7 /Qverlock 1 13 37 6
1012 1013 1014 1015 1016	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295. Functional reorganization of marine fish nurseries under climate warming. Global Change Biology, 2019, 25, 660-674. Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, 2019, , . Serbian Spruce and Climate Change: Possible Outcomes and Conservation Strategy. Advances in Global Change Research, 2019, , 353-371.	4314 rgB1 2.2 4.2 1.6	- /Qverlock 1 13 37 6 6
1012 1013 1014 1015 1016	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295. Functional reorganization of marine fish nurseries under climate warming. Global Change Biology, 2019, 25, 660-674. Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, 2019, , . Serbian Spruce and Climate Change: Possible Outcomes and Conservation Strategy. Advances in Global Change Research, 2019, , 353-371. Conservation and Management of Romanian Forest Genetic Resources in the Context of Climate Change Research, 2019, , 389-399.	4314 rgB1 2.2 4.2 1.6 1.6	- /Qyerlock 1 13 37 6 6 0
1012 1013 1014 1015 1016 1017	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis</i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295. Functional reorganization of marine fish nurseries under climate warming. Global Change Biology, 2019, 25, 660-674. Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, 2019, , . Serbian Spruce and Climate Change: Possible Outcomes and Conservation Strategy. Advances in Global Change Research, 2019, , 353-371. Conservation and Management of Romanian Forest Genetic Resources in the Context of Climate Change. Advances in Global Change Research, 2019, , 389-399. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecological	4314 rgB1 2.2 4.2 1.6 1.6 2.4	/Qyerlock 1 13 37 6 0 0 172
1012 1013 1014 1015 1016 1017 1018	Global distribution and invasion pattern of oriental fruit fly, <i>Bactrocera dorsalis </i> (Diptera:) Tj ETQq1 1 0.78 McSwan: A joint site frequency spectrum method to detect and date selective sweeps across multiple population genomes. Molecular Ecology Resources, 2019, 19, 283-295. Functional reorganization of marine fish nurseries under climate warming. Global Change Biology, 2019, 25, 660-674. Forests of Southeast Europe Under a Changing Climate. Advances in Global Change Research, 2019, . Serbian Spruce and Climate Change: Possible Outcomes and Conservation Strategy. Advances in Global Change Research, 2019, ., 353-371. Conservation and Management of Romanian Forest Genetic Resources in the Context of Climate Change Research, 2019, ., 389-399. The mechanisms of phenology: the patterns and processes of phenological shifts. Ecological Monographs, 2019, 89, e01337. Effects of Changing Climate on the Hydrological Cycle in Cold Desert Ecosystems of the Great Basin and Columbia Plateau. Rangeland Ecology and Management, 2019, 72, 1-12.	4314 rgB1 2.2 4.2 1.6 1.6 2.4 1.1	 7/Qyerlock 1 13 37 6 6 0 172 59

ARTICLE IF CITATIONS Toward a Resilience-Based Conservation Strategy for Wetlands in Puerto Rico: Meeting Challenges 1021 0.7 4 Posed by Environmental Change. Wetlands, 2019, 39, 1255-1269. Towards an interactive, processâ€based approach to understanding range shifts: developmental and 2.1 environmental dependencies matter. Ecography, 2019, 42, 201-210. Changes in arthropod communities as black mangroves Avicennia germinans expand into Gulf of 1023 0.55 Mexico salt marshes. Arthropod-Plant Interactions, 2019, 13, 465-475. Genetic diversity of the genus Vulpes (Red fox and Fennec fox) in Tunisia based on mitochondrial DNA 1024 0.8 and noninvasive DNA sampling. Mammalian Biology, 2019, 96, 118-123. Effects of environmental filters on early establishment of cloud forest trees along elevation 1026 1.4 35 gradients: Implications for assisted migration. Forest Ecology and Management, 2019, 432, 427-435. Assessment of climate change in Algeria from 1951 to 2098 using the Köppen–Geiger climate 1.7 classification scheme. Climate Dynamics, 2019, 52, 227-243. Turning Down the Heat: Vegetation Feedbacks Limit Fire Regime Responses to Global Warming. 1028 1.6 20 Ecosystems, 2020, 23, 204-216. Water and Carbon Fluxes Along an Elevational Gradient in a Sagebrush Ecosystem. Ecosystems, 2020, 1029 1.6 26 23, 246-263. Climate migrants' survival threatened by "C―shaped anthropic barriers. Integrative Zoology, 2020, 15, 1030 1.3 2 32-39. Under the weather: Corticosterone levels in wild nestlings are associated with ambient temperature 0.8 and wind. General and Comparative Endocrinology, 2020, 285, 113247. Spatial Population Structure Determines Extinction Risk in Climate-Induced Range Shifts. American 1032 1.0 14 Naturalist, 2020, 195, 31-42. Extensive mismatches between species distributions and performance and their relationship to 3.0 34 functional traits. Ecology Letters, 2020, 23, 33-44. Documenting lemming population change in the Arctic: Can we detect trends?. Ambio, 2020, 49, 786-800. 1034 2.8 54 Effects of topography on tropical forest structure depend on climate context. Journal of Ecology, 2020, 108, 145-159. 1.9 Evaluating climate change adaptation pathways through capital assessment: five case studies of forest 1036 2.58 social-ecological systems in France. Sustainability Science, 2020, 15, 539-553. An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA. Climatic Change, 2020, 163, 1897-1916. Climate change shifts in habitat suitability and phenology of huckleberry (Vaccinium membranaceum). 1038 1.9 37 Agricultural and Forest Meteorology, 2020, 280, 107803. 1039 Soil alters seedling establishment responses to climate. Ecology Letters, 2020, 23, 140-148.

#	Article	IF	CITATIONS
1040	Range edges in heterogeneous landscapes: Integrating geographic scale and climate complexity into range dynamics. Global Change Biology, 2020, 26, 1055-1067.	4.2	51
1041	Cradles and museums of generic plant diversity across tropical Africa. New Phytologist, 2020, 225, 2196-2213.	3.5	97
1042	Scientists' Warning on Climate Change and Medicinal Plants. Planta Medica, 2020, 86, 10-18.	0.7	85
1043	Species range shifts along multistressor mosaics in estuarine environments under future climate. Fish and Fisheries, 2020, 21, 32-46.	2.7	37
1044	Multiâ€dimensional biodiversity hotspots and the future of taxonomic, ecological and phylogenetic diversity: A case study of North American rodents. Global Ecology and Biogeography, 2020, 29, 516-533.	2.7	19
1045	Ecological change in dynamic environments: Accounting for temporal environmental variability in studies of ocean change biology. Global Change Biology, 2020, 26, 54-67.	4.2	88
1046	Genomic assessment of local adaptation in dwarf birch to inform assisted gene flow. Evolutionary Applications, 2020, 13, 161-175.	1.5	37
1047	Geographically divergent evolutionary and ecological legacies shape mammal biodiversity in the global tropics and subtropics. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1559-1565.	3.3	30
1048	Present and future of the critically endangered Araucaria angustifolia due to climate change and habitat loss. Forestry, 2020, 93, 401-410.	1.2	20
1049	Factors affecting the occurrence and activity of clouded leopards, common leopards and leopard cats in the Himalayas. Biodiversity and Conservation, 2020, 29, 839-851.	1.2	16
1050	Molecular bases of responses to abiotic stress in trees. Journal of Experimental Botany, 2020, 71, 3765-3779.	2.4	65
1051	Environmental predictors of vascular plant richness at large spatial scales based on protected area data of China. Global Ecology and Conservation, 2020, 21, e00846.	1.0	2
1052	Protected areas as potential refugia for biodiversity under climatic change. Biological Conservation, 2020, 241, 108258.	1.9	37
1053	Do shrubs improve reproductive chances of neighbors across soil types in drought?. Oecologia, 2020, 192, 79-90.	0.9	3
1054	Elevated carbon dioxide and reduced salinity enhance mangrove seedling establishment in an artificial saltmarsh community. Oecologia, 2020, 192, 273-280.	0.9	15
1055	Globalâ€scale species distributions predict temperatureâ€related changes in species composition of rocky shore communities in Britain. Global Change Biology, 2020, 26, 2093-2105.	4.2	31
1057	Climate change exposure and vulnerability of the global protected area estate from an international perspective. Diversity and Distributions, 2020, 26, 1496-1509.	1.9	29
1058	Genetic and Environmental Indicators of Climate Change Vulnerability for Desert Bighorn Sheep. Frontiers in Ecology and Evolution, 2020, 8, .	1.1	8

		LITATION REPORT	
#	Article	IF	Citations
1059	Quantifying Climate-Wise Connectivity across a Topographically Diverse Landscape. Land, 2020, 9,	355. 1.2	3
1060	Landscape scale variation in the hydrologic niche of California coast redwood. Ecography, 2020, 43 1305-1315.	2.1	5
1061	Plant extinction excels plant speciation in the Anthropocene. BMC Plant Biology, 2020, 20, 430.	1.6	18
1062	How to survive winter?. , 2020, , 101-125.		1
1063	Vertebrate viruses in polar ecosystems. , 2020, , 126-148.		0
1065	Life in the extreme environments of our planet under pressure. , 2020, , 151-183.		Ο
1066	Chemical ecology in the Southern Ocean. , 2020, , 251-278.		1
1070	Physiological traits of the Greenland sharkSomniosus microcephalusobtained during the TUNU-Expeditions to Northeast Greenland. , 2020, , 11-41.		Ο
1071	Metazoan adaptation to deep-sea hydrothermal vents. , 2020, , 42-67.		4
1072	Extremophiles populating high-level natural radiation areas (HLNRAs) in Iran. , 2020, , 68-86.		1
1074	Metazoan life in anoxic marine sediments. , 2020, , 89-100.		0
1075	The ecophysiology of responding to change in polar marine benthos. , 2020, , 184-217.		Ο
1076	The Southern Ocean: an extreme environment or just home of unique ecosystems?. , 2020, , 218-2	33.	1
1077	Metabolic and taxonomic diversity in antarctic subglacial environments. , 2020, , 279-296.		2
1078	Analytical astrobiology: the search for life signatures and the remote detection of biomarkers through their Raman spectral interrogation. , 2020, , 301-318.		1
1079	Adaptation/acclimatisation mechanisms of oxyphototrophic microorganisms and their relevance to astrobiology. , 2020, , 319-342.		Ο
1080	Life at the extremes. , 2020, , 343-354.		0
1081	Microorganisms in cryoturbated organic matter of Arctic permafrost soils. , 2020, , 234-250.		0

#	Article	IF	CITATIONS
1084	Reptile species richness associated to ecological and historical variables in Iran. Scientific Reports, 2020, 10, 18167.	1.6	19
1085	Locating North African microrefugia for mountain tree species from landscape ruggedness and fossil records. Journal of African Earth Sciences, 2020, 172, 103996.	0.9	5
1086	Global wind patterns and the vulnerability of wind-dispersed species to climate change. Nature Climate Change, 2020, 10, 868-875.	8.1	28
1087	Highâ€elevation hypoxia impacts perinatal physiology and performance in a potential montane colonizer. Integrative Zoology, 2020, 15, 544-557.	1.3	13
1088	Climatic breadth of calling behaviour in two widespread Neotropical frogs: Insights from humidity extremes. Global Change Biology, 2020, 26, 5431-5446.	4.2	3
1089	One hundred years of climate change in Mexico. PLoS ONE, 2020, 15, e0209808.	1.1	40
1090	The effect of climate change on the richness distribution pattern of oaks (Quercus L.) in China. Science of the Total Environment, 2020, 744, 140786.	3.9	62
1091	Counter-Intuitive Response to Water Limitation in a Southern European Provenance of Frangula alnus Mill. in a Common Garden Experiment. Forests, 2020, 11, 1186.	0.9	3
1092	Making Tough Decisions: Prioritizing Species for Conservation. , 2020, , 291-317.		0
1093	Long-term effects of climatic and hydrological variation on natural vegetation production and characteristics in a semiarid watershed: The northern Negev, Israel. Science of the Total Environment, 2020, 747, 141146.	3.9	6
1094	Classifying biogeographic realms of the endemic fauna in the Afroâ€Arabian region. Ecology and Evolution, 2020, 10, 8669-8680.	0.8	8
1096	Probability of Spring Frosts, Not Growing Degree-Days, Drives Onset of Spruce Bud Burst in Plantations at the Boreal-Temperate Forest Ecotone. Frontiers in Plant Science, 2020, 11, 1031.	1.7	22
1097	Preserving connectivity under climate and land-use change: No one-size-fits-all approach for focal species in similar habitats. Biological Conservation, 2020, 248, 108678.	1.9	15
1098	Forest Phenology Shifts in Response to Climate Change over China–Mongolia–Russia International Economic Corridor. Forests, 2020, 11, 757.	0.9	14
1099	Effects of climate change on the life stages of streamâ€dwelling brown trout (<scp><i>Salmo) Tj ETQq0 0 0 rgBT 2020, 13, e2241.</i></scp>	/Overlock 1.1	10 Tf 50 18 5
1100	Plant biomes demonstrate that landscape resilience today is the lowest it has been since endâ€Pleistocene megafaunal extinctions. Global Change Biology, 2020, 26, 5914-5927.	4.2	17
1101	Precipitation is the dominant driver for bird species richness, phylogenetic and functional structure in university campuses in northern China. Avian Research, 2020, 11, .	0.5	6
1102	Thermal displacement by marine heatwaves. Nature, 2020, 584, 82-86.	13.7	87

#	Article	IF	CITATIONS
1103	The origin of the Afro-Mediterranean cypresses: Evidence from genetic analysis. Perspectives in Plant Ecology, Evolution and Systematics, 2020, 46, 125564.	1.1	4
1104	Assessing the Vulnerability of Military Installations in the Coterminous United States to Potential Biome Shifts Resulting from Rapid Climate Change. Environmental Management, 2020, 66, 564-589.	1.2	9
1105	Restoration at the landscape scale as a means of mitigation and adaptation to climate change. Current Landscape Ecology Reports, 2020, 5, 85-97.	1.1	16
1106	Projecting species loss and turnover under climate change for 111 Chinese tree species. Forest Ecology and Management, 2020, 477, 118488.	1.4	21
1107	Climate change and the future of endemic flora in the South Western Alps: relationships between niche properties and extinction risk. Regional Environmental Change, 2020, 20, 1.	1.4	19
1109	What's in the Conservationist's Toolbox: Species-Centered Approaches. , 2020, , 196-223.		0
1110	Expanding the Conservationistâ \in Ms Toolbox: Going Beyond Species. , 2020, , 224-257.		0
1111	Conservation Reliance Is a Human Issue. , 2020, , 258-290.		0
1112	Being a Good Shepherd. , 2020, , 318-325.		0
1117	Climate change has different predicted effects on the range shifts of two hybridizing ambush bug () Tj ETQq1 1 0	.784314 r 0.8	g&T /Overloc
1118	Growingâ€season frost is a better predictor of tree growth than mean annual temperature in boreal mixedwood forest plantations. Global Change Biology, 2020, 26, 6537-6554.	4.2	20
1119	Longâ€lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia. Ecology and Evolution, 2020, 10, 10017-10030.	0.8	7
1120	Sustainability Challenges in Sub-Saharan Africa I. Science for Sustainable Societies, 2020, , .	0.2	4
1121	Projected effects of climate change on the distribution and abundance of breeding waterfowl in Eastern Canada. Climatic Change, 2020, 162, 2339-2358.	1.7	5
1122	Understanding the Importance of Dynamic Landscape Connectivity. Land, 2020, 9, 303.	1.2	45
1123	Climate change effects on turtles of the genus Kinosternon (Testudines: Kinosternidae): an assessment of habitat suitability and climate niche conservatism. Hydrobiologia, 2020, 847, 4091-4110.	1.0	7
1124	Climate velocity in inland standing waters. Nature Climate Change, 2020, 10, 1124-1129.	8.1	33
1125	Woody and Herbaceous Plants of Inner Asia: Species Richness and Ecogeorgraphic Patterns.	0.3	2

#	Article	IF	CITATIONS
1126	The role of connectivity in the interplay between climate change and the spread of alien fish in a large Mediterranean river. Global Change Biology, 2020, 26, 6383-6398.	4.2	19
1127	Assessing future distribution, suitability of corridors and efficiency of protected areas to conserve vulnerable ungulates under climate change. Diversity and Distributions, 2020, 26, 1383-1396.	1.9	24
1128	Wrong-way migrations of benthic species driven by ocean warming and larval transport. Nature Climate Change, 2020, 10, 1052-1056.	8.1	28
1129	Niche Breadth: Causes and Consequences for Ecology, Evolution, and Conservation. Quarterly Review of Biology, 2020, 95, 179-214.	0.0	114
1130	Spatial-Temporal Dynamics of a Diffusive Lotka–Volterra Competition Model with a Shifting Habitat II: Case of Faster Diffuser Being a Weaker Competitor. Journal of Dynamics and Differential Equations, 2021, 33, 2091-2132.	1.0	5
1131	Transporting Biodiversity Using Transmission Power Lines as Stepping-Stones?. Diversity, 2020, 12, 439.	0.7	4
1132	Weather variation affects the dispersal of grasshoppers beyond their elevational ranges. Ecology and Evolution, 2020, 10, 14411-14422.	0.8	6
1133	Assessing the future conservation potential of the Amazon and Andes Protected Areas: Using the woolly monkey (Lagothrix lagothricha) as an umbrella species. Journal for Nature Conservation, 2020, 58, 125926.	0.8	11
1134	Genetic data and climate niche suitability models highlight the vulnerability of a functionally important plant species from southâ€eastern Australia. Evolutionary Applications, 2020, 13, 2014-2029.	1.5	10
1135	Predicting effects of climate change on productivity and persistence of forest trees. Ecological Research, 2020, 35, 562-574.	0.7	8
1136	Ecology of Neglected Rodent-Borne American Orthohantaviruses. Pathogens, 2020, 9, 325.	1.2	19
1137	Multiple dimensions of climate change on the distribution of Amazon primates. Perspectives in Ecology and Conservation, 2020, 18, 83-90.	1.0	26
1138	Predictors of past avian translocation outcomes inform feasibility of future efforts under climate change. Biological Conservation, 2020, 247, 108597.	1.9	13
1139	Forest microclimate dynamics drive plant responses to warming. Science, 2020, 368, 772-775.	6.0	385
1140	Climate change promotes transitions to tall evergreen vegetation in tropical Asia. Global Change Biology, 2020, 26, 5106-5124.	4.2	35
1141	Demographic trends in community functional tolerance reflect tree responses to climate and altered fire regimes. Ecological Applications, 2020, 30, e02197.	1.8	5
1142	Extinction and the Challenge of Conservation Reliance. , 2020, , 1-24.		0
1143	The Genesis of Conservation Reliance and the Language of Conservation. , 2020, , 55-83.		0

#	Article	IF	CITATIONS
1144	Emerging Threats in a Rapidly Changing World. , 2020, , 130-157.		0
1145	The Role of Policy and Law. , 2020, , 158-195.		0
1146	Vegetation refugia can inform climateâ€adaptive land management under global warming. Frontiers in Ecology and the Environment, 2020, 18, 281-287.	1.9	18
1147	Dimensionality of grassland stability shifts along with altitudes on the Tibetan Plateau. Agricultural and Forest Meteorology, 2020, 291, 108080.	1.9	20
1148	Keeping pace with climate change in global terrestrial protected areas. Science Advances, 2020, 6, eaay0814.	4.7	94
1149	Plant adaptation to climate change—Where are we?. Journal of Systematics and Evolution, 2020, 58, 533-545.	1.6	82
1150	Climateâ€change refugia: biodiversity in the slow lane. Frontiers in Ecology and the Environment, 2020, 18, 228-234.	1.9	156
1151	Topoclimates, refugia, and biotic responses to climate change. Frontiers in Ecology and the Environment, 2020, 18, 288-297.	1.9	54
1152	Climate and land-use change refugia for Brazilian Cerrado birds. Perspectives in Ecology and Conservation, 2020, 18, 109-115.	1.0	16
1153	African biomes are most sensitive to changes in CO ₂ under recent and near-future CO ₂ conditions. Biogeosciences, 2020, 17, 1147-1167.	1.3	6
1154	The role of liquid water percolation representation in estimating snow water equivalent in a Mediterranean mountain region (Mount Lebanon). Hydrology and Earth System Sciences, 2020, 24, 1527-1542.	1.9	7
1155	Global warming will affect the maximum potential abundance of boreal plant species. Ecography, 2020, 43, 801-811.	2.1	26
1156	DICE-RD: an implementation of rate-related damages in the DICE model. Environmental Economics and Policy Studies, 2020, 22, 555-584.	0.8	9
1157	Direct climate effects are more influential than functional composition in determining future gross primary productivity. Landscape Ecology, 2020, 35, 969-984.	1.9	2
1158	The Conservation Spectrum. , 2020, , 25-54.		0
1159	Potential impact of climate change on the distribution of the Eurasian Lynx (<i>Lynx lynx</i>) in Iran (Mammalia: Felidae). Zoology in the Middle East, 2020, 66, 107-117.	0.2	5
1160	Strong genetic differentiation among populations of <i>Cheirotonus gestroi</i> (Coleoptera:) Tj ETQq0 0 0 rgBT / Mapping, Sequencing, and Analysis, 2020, 31, 108-119.	Overlock 1 0.7	0 Tf 50 107 3
1161	Simulating the effects of local adaptation and life history on the ability of plants to track climate shifts. AoB PLANTS, 2020, 12, plaa008.	1.2	12

#	Article	IF	CITATIONS
1162	Small spaces, big impacts: contributions of micro-environmental variation to population persistence under climate change. AoB PLANTS, 2020, 12, plaa005.	1.2	28
1163	Trait velocities reveal that mortality has driven widespread coordinated shifts in forest hydraulic trait composition. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 8532-8538.	3.3	55
1164	The impact of different natural environments on the regeneration dynamics of two Nothofagus species across elevation in the southern Andes. Forest Ecology and Management, 2020, 464, 118034.	1.4	7
1165	Projected Global Loss of Mammal Habitat Due to Land-Use and Climate Change. One Earth, 2020, 2, 578-585.	3.6	46
1166	What Are the Threats?. , 2020, , 84-129.		0
1167	Spatial distribution of tree species in mountain national parks depends on geomorphology and climate. Forest Ecology and Management, 2020, 474, 118366.	1.4	21
1168	Protected Areas and Connectivity. , 2020, , 252-258.		0
1169	Desert Conservation and Management: Biodiversity Loss. , 2020, , 193-200.		0
1170	Combining physical and speciesâ€based approaches improves refugia identification. Frontiers in Ecology and the Environment, 2020, 18, 254-260.	1.9	34
1171	Recent responses to climate change reveal the drivers of species extinction and survival. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 4211-4217.	3.3	373
1172	Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People and Nature, 2020, 2, 380-394.	1.7	139
1173	30% land conservation and climate action reduces tropical extinction risk by more than 50%. Ecography, 2020, 43, 943-953.	2.1	94
1174	Exposure to exogenous egg cortisol does not rescue juvenile Chinook salmon body size, condition, or survival from the effects of elevated water temperatures. Ecology and Evolution, 2020, 10, 2466-2477.	0.8	10
1175	Dendroclimatological analysis and tree-ring growth prediction of <i>Quercus mongolica</i> . Forest Science and Technology, 2020, 16, 32-40.	0.3	7
1176	Using nighttime lights to assess infrastructure expansion within and around protected areas in South America. Environmental Research Communications, 2020, 2, 021002.	0.9	11
1177	Fine-grained climate velocities reveal vulnerability of protected areas to climate change. Scientific Reports, 2020, 10, 1678.	1.6	21
1178	An Analysis of Current Sustainability of Mexican Cities and Their Exposure to Climate Change. Frontiers in Environmental Science, 2020, 8, .	1.5	1
1179	Can Topographic Variation in Climate Buffer against Climate Change-Induced Population Declines in Northern Forest Birds?. Diversity, 2020, 12, 56.	0.7	8

#	Article	IF	CITATIONS
1180	Biogeographic historical legacies in the net primary productivity of Northern Hemisphere forests. Ecology Letters, 2020, 23, 800-810.	3.0	22
1181	Contrasting latitudinal patterns in diversity and stability in a highâ€latitude speciesâ€rich moth community. Global Ecology and Biogeography, 2020, 29, 896-907.	2.7	32
1182	Should I Stay or Should I Go: Partially Sedentary Populations Can Outperform Fully Dispersing Populations in Response to Climate-Induced Range Shifts. Bulletin of Mathematical Biology, 2020, 82, 26.	0.9	4
1183	Influence of climate stability on endemism of the vascular plants of the Chihuahuan Desert. Journal of Arid Environments, 2020, 177, 104139.	1.2	12
1184	Twenty-First-Century Climate Change Hot Spots in the Light of a Weakening Sun. Journal of Climate, 2020, 33, 3431-3447.	1.2	6
1185	Spatial genetic structure in a crustacean herbivore highlights the need for local considerations in Baltic Sea biodiversity management. Evolutionary Applications, 2020, 13, 974-990.	1.5	17
1186	Developing and evaluating national soil moisture percentile maps. Soil Science Society of America Journal, 2020, 84, 443-460.	1.2	8
1187	Birds from matched developmental environments breed faster. Behavioral Ecology and Sociobiology, 2020, 74, 1.	0.6	4
1188	Multiple axes of ecological vulnerability to climate change. Global Change Biology, 2020, 26, 2798-2813.	4.2	40
1189	Dispersal Increases the Resilience of Tropical Savanna and Forest Distributions. American Naturalist, 2020, 195, 833-850.	1.0	13
1190	Human land uses reduce climate connectivity across North America. Global Change Biology, 2020, 26, 2944-2955.	4.2	45
1191	Shifting velocity of temperature extremes under climate change. Environmental Research Letters, 2020, 15, 034027.	2.2	7
1192	Plant community diversity will decline more than increase under climatic warming. Philosophical Transactions of the Royal Society B: Biological Sciences, 2020, 375, 20190106.	1.8	61
1193	Vulnerability of baobab (Adansonia digitata L.) to human disturbances and climate change in western Tigray, Ethiopia: Conservation concerns and priorities. Clobal Ecology and Conservation, 2020, 22, e00943.	1.0	20
1194	Projected distribution and climate refugia of endangered Kashmir musk deer Moschus cupreus in greater Himalaya, South Asia. Scientific Reports, 2020, 10, 1511.	1.6	22
1195	Towards a global understanding of the drivers of marine and terrestrial biodiversity. PLoS ONE, 2020, 15, e0228065.	1.1	39
1196	Influence of late Quaternary climate on the biogeography of Neotropical aquatic species as reflected by non-marine ostracodes. Biogeosciences, 2020, 17, 145-161.	1.3	6
1197	Invasive grasses: A new perfect storm for forested ecosystems?. Forest Ecology and Management, 2020, 463, 117985.	1.4	64

#	Article	IF	CITATIONS
1198	Toward a climateâ€informed North American protected areas network: Incorporating climateâ€change refugia and corridors in conservation planning. Conservation Letters, 2020, 13, e12712.	2.8	62
1199	Disjunct and decoupled? The persistence of a fire-sensitive conifer species in a historically frequent-fire landscape. Journal for Nature Conservation, 2020, 55, 125828.	0.8	4
1200	Insights into phylogeny, age and evolution of Allium (Amaryllidaceae) based on the whole plastome sequences. Annals of Botany, 2020, 125, 1039-1055.	1.4	49
1201	Is subarctic forest advance able to keep pace with climate change?. Clobal Change Biology, 2020, 26, 3965-3977.	4.2	76
1202	Can protected areas buffer short-term population changes of resident bird species in a period of intensified forest harvesting?. Biological Conservation, 2020, 244, 108526.	1.9	13
1203	Fish and fisheries in hot water: What is happening and how do we adapt?. Population Ecology, 2021, 63, 17-26.	0.7	35
1204	Rewilding in the face of climate change. Conservation Biology, 2021, 35, 155-167.	2.4	26
1205	Genetic data improves niche model discrimination and alters the direction and magnitude of climate change forecasts. Ecological Applications, 2021, 31, e02254.	1.8	13
1206	Assisted species migration and hybridization to conserve coldâ€adapted plants under climate change. Conservation Biology, 2021, 35, 559-566.	2.4	15
1207	Evolutionary principles and genetic considerations for guiding conservation interventions under climate change. Global Change Biology, 2021, 27, 475-488.	4.2	47
1208	Adaptive spatial planning of protected area network for conserving the Himalayan brown bear. Science of the Total Environment, 2021, 754, 142416.	3.9	22
1209	Revealing hidden plant diversity in arid environments. Ecography, 2021, 44, 98-111.	2.1	15
1210	Estimating climate-induced â€~Nowhere to go' range shifts of the Himalayan Incarvillea Juss. using multi-model median ensemble species distribution models. Ecological Indicators, 2021, 121, 107127.	2.6	28
1211	Abrupt fragmentation thresholds of eight zonal forest types in mainland Spain. Forest Ecology and Management, 2021, 482, 118788.	1.4	3
1212	Improving biological relevance of model projections in response to climate change by considering dispersal amongst lineages in an amphibian. Journal of Biogeography, 2021, 48, 561-576.	1.4	6
1213	Elevated temperature and CO2 interactively modulate sexual competition and ecophysiological responses of dioecious Populus cathayana. Forest Ecology and Management, 2021, 481, 118747.	1.4	22
1214	Insect responses to global change offer signposts for biodiversity and conservation. Ecological Entomology, 2021, 46, 699-717.	1.1	63
1215	Identifying conservation priority areas for gymnosperm species under climate changes in China. Biological Conservation, 2021, 253, 108914.	1.9	15

		CITATION REPORT	
#	Article	IF	CITATIONS
1216	Longer photoperiods negate the CO 2 stimulation of photosynthesis in Betula papyrifera Ma Implications to climate changeâ€induced migration. Physiologia Plantarum, 2021, 172, 106-	rsh: 2.6	1
1217	Vulnerability to warming in a desert amphibian tadpole community: the role of interpopulation variation. Journal of Zoology, 2021, 313, 283-296.	onal 0.8	7
1218	Correlation between the dynamics and spatial configuration of the circumarctic latitudinal forest-tundra ecotone. International Journal of Remote Sensing, 2021, 42, 1250-1274.	1.3	3
1219	Using spatial models to identify refugia and guide restoration in response to an invasive plan pathogen. Journal of Applied Ecology, 2021, 58, 192-201.	t 1.9	7
1220	Latitudinal and environmental patterns of species richness in lizards and snakes across conti North America. Journal of Biogeography, 2021, 48, 291-304.	nental 1.4	6
1221	The differential genetic signatures related to climatic landscapes for jaguars and pumas on a continental scale. Integrative Zoology, 2021, 16, 2-18.	1.3	6
1222	Champions of winter survival: cold acclimation and molecular regulation of cold hardiness in evergreen conifers. New Phytologist, 2021, 229, 675-691.	3.5	80
1223	Spatial phylogenetics of two topographic extremes of the Hengduan Mountains in southwes China and its implications for biodiversity conservation. Plant Diversity, 2021, 43, 181-191.	tern 1.8	49
1224	A methodology to assess the future connectivity of protected areas by combining climatic representativeness and land-cover change simulations: the case of the Guadarrama National (Madrid, Spain). Journal of Environmental Planning and Management, 2021, 64, 734-753.	Park 2.4	3
1225	Historical continuity and spatial connectivity ensure hedgerows are effective corridors for for plants: Evidence from the species–time–area relationship. Journal of Vegetation Science	est 1.1 2021, 32, . 1.1	18
1227	Climate change refugia: landscape, stand and tree-scale microclimates in epiphyte communit composition. Lichenologist, 2021, 53, 135-148.	у 0.5	5
1228	A Paleo-perspective on Ecosystem Collapse in Boreal North America. Ecological Studies, 202	l,,101-129. 0.4	4
1229	Searching for synthetic mechanisms on how biological traits mediate species responses to cl change. Biota Neotropica, 2021, 21, .	imate 0.2	1
1230	Factors shaping students' perception of climate change in the western Himalayas, Jammu &a Kashmir, India. Current Research in Environmental Sustainability, 2021, 3, 100035.	mp; 1.7	11
1231	Observed and projected changes in global climate zones based on Köppen climate classifica Interdisciplinary Reviews: Climate Change, 2021, 12, e701.	ition. Wiley 3.6	43
1232	Impacts of climate change on economies, ecosystems, energy, environments, and human eq systems perspective. , 2021, , 19-50.	uity: A	5
1233	Climate effects on nesting phenology in Nebraska turtles. Ecology and Evolution, 2021, 11, 2		3
1234	Dissecting the Polygenic Basis of Cold Adaptation Using Genome-Wide Association of Traits Environmental Data in Douglas-fir. Genes, 2021, 12, 110.	and 1.0	14

		CITATION RE	PORT	
#	Article		IF	CITATIONS
1235	Ecosystem Collapse and Climate Change: An Introduction. Ecological Studies, 2021, ,	1-9.	0.4	4
1236	Forests of Greece, Their Multiple Functions and Uses, Sustainable Management and Bi Conservation in the Face of Climate Change. Open Journal of Ecology, 2021, 11, 374-4	odiversity 1 06.	0.4	8
1237	Understanding the impact of climate change on the oceanic circulation in the Chilean ecoregions. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 232-	island 252.	0.9	10
1238	Topographic diversity as an indicator for resilience of terrestrial protected areas agains change. Global Ecology and Conservation, 2021, 25, e01445.	t climate	1.0	9
1239	Increasing protected area coverage mitigates climate-driven community changes. Biolo Conservation, 2021, 253, 108892.	ogical	1.9	16
1240	Pinus pseudostrobus assisted migration trial with rain exclusion: maintaining Monarch Biosphere Reserve forest cover in an environment affected by climate change. New For 995-1010.	Butterfly rests, 2021, 52,	0.7	7
1241	Global progress in incorporating climate adaptation into land protection for biodiversit targets. Global Change Biology, 2021, 27, 1788-1801.	ty since Aichi	4.2	16
1242	Spaceâ€forâ€time inferences about rangeâ€edge dynamics of tree species can be influ biases. Global Change Biology, 2021, 27, 2102-2112.	uenced by sampling	4.2	6
1243	Continent-wide tree fecundity driven by indirect climate effects. Nature Communication 1242.	ons, 2021, 12,	5.8	46
1244	Global population trends in shorebirds: migratory behaviour makes species at risk. Die Naturwissenschaften, 2021, 108, 9.		0.6	14
1245	Plant translocations in Europe and the Mediterranean: Geographical and climatic direc distances from source to host sites. Journal of Ecology, 2021, 109, 2296-2308.	tions and	1.9	11
1246	Microclimates hold the key to spatial forest planning under climate change: Cyanolich temperate rainforest. Global Change Biology, 2021, 27, 1915-1926.	ens in	4.2	13
1247	How climate change is affecting the transitional natural zones of the Northern and Arc Russia. Polar Science, 2021, 29, 100652.	tic regions of:	0.5	4
1248	Specific niche requirements underpin multidecadal range edge stability, but may intro for climate change adaptation. Diversity and Distributions, 2021, 27, 668-683.	duce barriers	1.9	15
1249	Climate change reshapes the ecoâ \in evolutionary dynamics of a Neotropical seed disperence of the cology and Biogeography, 2021, 30, 1129-1138.	rsal system. Global	2.7	27
1250	Regional disparity in extinction risk: Comparison of disjunct plant genera between eas eastern North America. Global Change Biology, 2021, 27, 1904-1914.	tern Asia and	4.2	8
1251	Vulnerability of global biodiversity hotspots to climate change. Global Ecology and Bio 2021, 30, 768-783.	geography,	2.7	87
1252	The Effects of Multi-Scale Climate Variability on Biodiversity Patterns of Chinese Everg Broad-Leaved Woody Plants: Growth Form Matters. Frontiers in Ecology and Evolution	reen , 2021, 8, .	1.1	3

#	Article	IF	CITATIONS
1253	The Forest of Unintended Consequences: Anthropogenic Actions Trigger the Rise and Fall of Black Cherry. BioScience, 2021, 71, 683-696.	2.2	13
1254	Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science, 2021, 371, 633-636.	6.0	106
1255	A hierarchical machine learning framework for the analysis of large scale animal movement data. Movement Ecology, 2021, 9, 6.	1.3	12
1256	Climate change vulnerability assessment of the main marine commercial fish and invertebrates of Portugal. Scientific Reports, 2021, 11, 2958.	1.6	19
1257	Diversity of Dominant Soil Bacteria Increases with Warming Velocity at the Global Scale. Diversity, 2021, 13, 120.	0.7	3
1258	Developing a new disturbance index for tracking gradual change of forest ecosystems in the hilly red soil region of southern China using dense Landsat time series. Ecological Informatics, 2021, 61, 101221.	2.3	11
1259	Soil bacterial characteristics between surface and subsurface soils along a precipitation gradient in the Alxa Desert, China. Journal of Arid Land, 2021, 13, 257-273.	0.9	3
1260	Precipitation Drives the NDVI Distribution on the Tibetan Plateau While High Warming Rates May Intensify Its Ecological Droughts. Remote Sensing, 2021, 13, 1305.	1.8	32
1261	Effect of foundation species composition and oil exposure on wetland communities across multiple trophic levels. Marine Ecology - Progress Series, 2021, 662, 53-68.	0.9	2
1263	The GenTree Platform: growth traits and tree-level environmental data in 12 European forest tree species. GigaScience, 2021, 10, .	3.3	3
1264	Continent-Wide Tree Species Distribution Models May Mislead Regional Management Decisions: A Case Study in the Transboundary Biosphere Reserve Mura-Drava-Danube. Forests, 2021, 12, 330.	0.9	10
1265	Global patterns and a latitudinal gradient of flower disparity: perspectives from the angiosperm order Ericales. New Phytologist, 2021, 230, 821-831.	3.5	18
1266	Precipitation response to climate change and urban development over the continental United States. Environmental Research Letters, 2021, 16, 044001.	2.2	34
1267	Elevational distribution ranges of vascular plant species in the Baekdudaegan mountain range, South Korea. Journal of Ecology and Environment, 2021, 45, .	1.6	5
1268	Characterization and monitoring of vacuum pressure of tank containers with multilayer insulation for cryogenic clean fuels storage and transportation. Applied Thermal Engineering, 2021, 187, 116569.	3.0	11
1269	Threats of global warming to the world's freshwater fishes. Nature Communications, 2021, 12, 1701.	5.8	157
1270	Global patterns and drivers of alpine plant species richness. Global Ecology and Biogeography, 2021, 30, 1218-1231.	2.7	59
1271	Understanding global land degradation processes interacted with complex biophysics and socioeconomics from the perspective of the Normalized Difference Vegetation Index (1982–2015).	1.6	17

#	Article	IF	CITATIONS
1272	Ensembpecies distribution modeling of Salvia hydrangea under future climate change scenarios in Central Zagros Mountains, Iran. Global Ecology and Conservation, 2021, 26, e01488.	1.0	8
1273	Magnitudes and environmental drivers of greenhouse gas emissions from natural wetlands in China based on unbiased data. Environmental Science and Pollution Research, 2021, 28, 44973-44986.	2.7	5
1274	Selection of models to describe the temperature-dependent development of <i>Neoleucinodes elegantalis</i> (Lepidoptera: Crambidae) and its application to predict the species voltinism under future climate conditions. Bulletin of Entomological Research, 2021, 111, 476-484.	0.5	3
1275	Genetic load has potential in large populations but is realized in small inbred populations. Evolutionary Applications, 2021, 14, 1540-1557.	1.5	58
1276	Potential ecological impacts of climate intervention by reflecting sunlight to cool Earth. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	46
1278	Alpine speciation and morphological innovations: revelations from a species-rich genus in the northern hemisphere. AoB PLANTS, 2021, 13, plab018.	1.2	8
1279	OCBIL theory: a new science for old ecosystems. Biological Journal of the Linnean Society, 2021, 133, 251-265.	0.7	8
1280	Range edges of North American marine species are tracking temperature over decades. Global Change Biology, 2021, 27, 3145-3156.	4.2	38
1281	The sensory impacts of climate change: bathymetric shifts and visually mediated interactions in aquatic species. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20210396.	1.2	9
1283	Seven Ways a Warming Climate Can Kill the Southern Boreal Forest. Forests, 2021, 12, 560.	0.9	19
1284	Hemispheric asymmetry in ocean change and the productivity of ecosystem sentinels. Science, 2021, 372, 980-983.	6.0	38
1285	Endemism increases species' climate change risk in areas of global biodiversity importance. Biological Conservation, 2021, 257, 109070.	1.9	120
1286	Woody-biomass projections and drivers of change in sub-Saharan Africa. Nature Climate Change, 2021, 11, 449-455.	8.1	23
1287	Warming enabled upslope advance in western US forest fires. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	83
1288	Temperature effects on forest understorey plants in hedgerows: a combined warming and transplant experiment. Annals of Botany, 2021, 128, 315-327.	1.4	2
1289	The climatic debt is growing in the understorey of temperate forests: Stand characteristics matter. Global Ecology and Biogeography, 2021, 30, 1474-1487.	2.7	28
1290	Vegetation responses to climatic and geologic controls on water availability in southeastern Arizona. Environmental Research Letters, 2021, 16, 064029.	2.2	9
1291	The impacts of extreme climate change on mammals differ among functional groups at regional scale: The case of Iranian terrestrial mammals. Diversity and Distributions, 2021, 27, 1634-1647.	1.9	12

#	Article	IF	CITATIONS
1292	Assessing the equilibrium between assemblage composition and climate: A directional distanceâ€decay approach. Journal of Animal Ecology, 2021, 90, 1906-1918.	1.3	8
1293	The response of culturally important plants to experimental warming and clipping in Pakistan Himalayas. PLoS ONE, 2021, 16, e0237893.	1.1	2
1294	Combining connectivity and species distribution modeling to define conservation and restoration priorities for multiple species: A case study in the eastern Amazon. Biological Conservation, 2021, 257, 109148.	1.9	15
1295	Drivers of change in the realised climatic niche of terrestrial mammals. Ecography, 2021, 44, 1180-1190.	2.1	18
1296	Warming Effects on Two Autogenic Engineers (Zostera capensis and Gracilaria gracilis): Consequences for Macrofaunal Assemblages and Benthic Heterogeneity in Intertidal Sandflat Ecosystems. Estuaries and Coasts, 2022, 45, 247-259.	1.0	6
1298	Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology. Communications Biology, 2021, 4, 748.	2.0	23
1299	Limited potential for bird migration to disperse plants to cooler latitudes. Nature, 2021, 595, 75-79.	13.7	44
1300	Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern. Remote Sensing of Environment, 2021, 258, 112368.	4.6	20
1301	Wildcards in climate change biology. Ecological Monographs, 2021, 91, e01471.	2.4	9
1302	Permafrost Biases Climate Signals in δ18Otree-ring Series from a Sub-Alpine Tree Stand in Val Bever/Switzerland. Atmosphere, 2021, 12, 836.	1.0	0
1303	Multivariate Bayesian clustering using covariateâ€informed components with application to boreal vegetation sensitivity. Biometrics, 2022, 78, 1427-1440.	0.8	3
1304	Climate Analogues for Temperate European Forests to Raise Silvicultural Evidence Using Twin Regions. Sustainability, 2021, 13, 6522.	1.6	8
1305	Differences between flower and leaf phenological responses to environmental variation drive shifts in spring phenological sequences of temperate woody plants. Journal of Ecology, 2021, 109, 2922-2933.	1.9	14
1306	Climate and land-use changes coupled with low coverage of protected areas threaten palm species in South Brazilian grasslands. Perspectives in Ecology and Conservation, 2021, 19, 345-353.	1.0	10
1307	Climateâ€Driven Limits to Future Carbon Storage in California's Wildland Ecosystems. AGU Advances, 2021, 2, e2021AV000384.	2.3	21
1308	Projection of vegetation distribution to 1.5°C and 2°C of global warming on the Tibetan Plateau. Global and Planetary Change, 2021, 202, 103525.	1.6	18
1309	Accelerating Mountain Forest Dynamics in the Alps. Ecosystems, 2022, 25, 603-617.	1.6	14
1310	Geodiversity impacts plant community structure in a semi-arid region. Scientific Reports, 2021, 11, 15259.	1.6	13

#	Article	IF	CITATIONS
1311	Biodiverse river basins: assessing coverage of protected areas for terrestrial vertebrates. Biodiversity and Conservation, 2021, 30, 3151-3166.	1.2	1
1312	Toward Systemic Thinking in Managing Environmental Risks. Engineering, 2021, 7, 1518-1522.	3.2	8
1313	Local and non-local controls on seasonal variations in water availability and use by riparian trees along a hydroclimatic gradient. Environmental Research Letters, 2021, 16, 084018.	2.2	1
1314	Greater increases in China's dryland ecosystem vulnerability in drier conditions than in wetter conditions. Journal of Environmental Management, 2021, 291, 112689.	3.8	31
1315	Review on climate change and its effect on wildlife and ecosystem. Open Journal of Environmental Biology, 2021, , 008-014.	0.1	6
1316	Limited refugia and high velocity range-shifts predicted for bat communities in drought-risk areas of the Northern Hemisphere. Global Ecology and Conservation, 2021, 28, e01608.	1.0	9
1317	High-latitude EU Habitats Directive species at risk due to climate change and land use. Global Ecology and Conservation, 2021, 28, e01664.	1.0	9
1319	Sensitivity and future exposure of ecosystem services to climate change on the Tibetan Plateau of China. Landscape Ecology, 2021, 36, 3451-3471.	1.9	44
1320	Climate change would prevail over land use change in shaping the future distribution of <i>Triturus marmoratus</i> in France. Animal Conservation, 2022, 25, 221-232.	1.5	9
1321	Ecological responses, adaptation and mechanisms of mangrove wetland ecosystem to global climate change and anthropogenic activities. International Biodeterioration and Biodegradation, 2021, 162, 105248.	1.9	89
1322	Synergistic benefits of conserving land-sea ecosystems. Global Ecology and Conservation, 2021, 28, e01684.	1.0	23
1323	Terrestrial biodiversity threatened by increasing global aridity velocity under high-level warming. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	29
1324	Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment, 2021, 783, 146896.	3.9	60
1325	Biotic interactions are more often important at species' warm versus cool range edges. Ecology Letters, 2021, 24, 2427-2438.	3.0	86
1326	Global warming drives range shifts in spiny-tailed lizards (Squamata: Agamidae: Uromastyx) in the African and Arabian deserts. Journal of Arid Environments, 2021, 191, 104522.	1.2	2
1327	Incorporating climate velocity into the design of climateâ€smart networks of marine protected areas. Methods in Ecology and Evolution, 2021, 12, 1969-1983.	2.2	22
1328	Mountain definitions and their consequences. Alpine Botany, 2021, 131, 213-217.	1.1	23
1329	Climate warming threatens the persistence of a community of disturbanceâ€adapted native annual plants. Ecology, 2021, 102, e03464.	1.5	12
	Сітат	tion Report	
------	--	-------------	-----------
#	Article	IF	Citations
1330	Major Forest Changes in Subtropical China since the Last Ice Age. Forests, 2021, 12, 1314.	0.9	3
1331	Synzootics. Journal of Animal Ecology, 2021, 90, 2744-2754.	1.3	4
1332	The ecology of zoonotic parasites in the Carnivora. Trends in Parasitology, 2021, 37, 1096-1110.	1.5	12
1333	Spatial and Temporal Changes in Nesting Behavior by Black Skimmers (Rynchops niger) in New Jersey, USA, from 1976-2019. Waterbirds, 2020, 43, .	0.2	3
1334	Trait-mediated shifts and climate velocity decouple an endothermic marine predator and its ectothermic prey. Scientific Reports, 2021, 11, 18507.	1.6	10
1335	The dynamics of introgression across an avian radiation. Evolution Letters, 2021, 5, 568-581.	1.6	15
1336	A landscapeâ€scale framework to identify refugiaÂfrom multiple stressors. Conservation Biology, 2022, 36, .	2.4	12
1338	High-resolution analysis of observed thermal growing season variability over northern Europe. Climate Dynamics, 0, , 1.	1.7	9
1339	Measuring Metrics of Climate Change and Its Implication on the Endangered Mammal Conservation in the Leuser Ecosystem. Frontiers in Environmental Science, 2021, 9, .	1.5	4
1340	The role of habitat fragmentation in Pleistocene megafauna extinction in Eurasia. Ecography, 2021, 44, 1619-1630.	2.1	13
1341	Future Representation of Species' Climatic Niches in Protected Areas: A Case Study With Austrian Endemics. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	6
1343	Temperature increase and frost decrease driving upslope elevational range shifts in Alpine grouse and hares. Global Change Biology, 2021, 27, 6602-6614.	4.2	18
1344	Developing resilience to climate change impacts in Antarctica: An evaluation of Antarctic Treaty System protected area policy. Environmental Science and Policy, 2021, 124, 12-22.	2.4	30
1345	Impact of low temperatures on the immune system of honeybees. Journal of Thermal Biology, 2021, 101, 103082.	1.1	2
1346	Is the current Mediterranean network of marine protected areas resilient to climate change?. Science of the Total Environment, 2021, 792, 148397.	3.9	13
1347	Climate sensitivity across latitude: scaling physiology to communities. Trends in Ecology and Evolution, 2021, 36, 931-942.	4.2	14
1348	Changes in global climate heterogeneity under the 21st century global warming. Ecological Indicators, 2021, 130, 108075.	2.6	33
1349	A heuristic tool to assess regional impacts of renewable energy infrastructure on conservation areas. Biological Conservation, 2021, 263, 109334.	1.9	3

#	Article	IF	CITATIONS
1350	Differential responses of forest strata species richness to paleoclimate and forest structure. Forest Ecology and Management, 2021, 499, 119605.	1.4	5
1351	Impact of climate and land cover changes on the potential distribution of four endemic salamanders in Mexico. Journal for Nature Conservation, 2021, 64, 126066.	0.8	13
1352	Clinal variation in phenological traits and fitness responses to drought across the native range of California poppy. Climate Change Ecology, 2021, 2, 100021.	0.9	4
1353	Mountain frog species losing out to climate change around the Sichuan Basin. Science of the Total Environment, 2022, 806, 150605.	3.9	11
1354	Impact of Marine Heatwaves on Seagrass Ecosystems. Ecological Studies, 2021, , 345-364.	0.4	12
1355	Patterns of tree species richness in Southwest China. Environmental Monitoring and Assessment, 2021, 193, 97.	1.3	13
1356	Impact of Past and Future Climate Change on the Potential Distribution of an Endangered Montane Shrub Lonicera oblata and Its Conservation Implications. Forests, 2021, 12, 125.	0.9	22
1358	Marine biodiversity and climate change. , 2021, , 445-464.		28
1359	Insects and recent climate change. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	239
1360	Phenological shifts of abiotic events, producers and consumers across a continent. Nature Climate Change, 2021, 11, 241-248.	8.1	37
1361	Mesoscale Exploration and Conservation of Tropical Canopies in a Changing Climate. , 2013, , 177-193.		3
1362	Diversity, Endemism, and Evolutionary History of Montane Biotas Outside the Andean Region. Fascinating Life Sciences, 2020, , 299-328.	0.5	9
1363	Cities Dealing with Energy Issues and Climate-Related Impacts: Approaches, Strategies and Tools for a Sustainable Urban Development. Green Energy and Technology, 2016, , 199-217.	0.4	4
1364	Trade-offs in High Mountain Conservation. Advances in Global Change Research, 2017, , 37-59.	1.6	4
1365	Addressing Adaptation in the EU Policy Framework. , 2010, , 39-96.		8
1366	Urbanization Forecasts, Effects on Land Use, Biodiversity, and Ecosystem Services. , 2013, , 437-452.		20
1367	Local Assessment of Cape Town: Navigating the Management Complexities of Urbanization, Biodiversity, and Ecosystem Services in the Cape Floristic Region. , 2013, , 461-484.		13
1368	Forest Processes. Advances in Global Change Research, 2014, , 25-54.	1.6	3

#	Article	IF	CITATIONS
1369	Hotspots and ecoregion vulnerability driven by climate change velocity in Southern South America. Regional Environmental Change, 2020, 20, 1.	1.4	19
1370	Vulnerability and impacts of climate change on forest and freshwater wetland ecosystems in Nepal: A review. Ambio, 2017, 46, 915-930.	2.8	41
1371	Potential distribution of an epiphytic bryophyte depends on climate and forest continuity. Global and Planetary Change, 2020, 193, 103270.	1.6	15
1372	Parasite Ecology of Invasive Species: Conceptual Framework and New Hypotheses. Trends in Parasitology, 2018, 34, 655-663.	1.5	66
1378	Climate velocity reveals increasing exposure of deep-ocean biodiversity to future warming. Nature Climate Change, 2020, 10, 576-581.	8.1	99
1379	Species better track climate warming in the oceans than on land. Nature Ecology and Evolution, 2020, 4, 1044-1059.	3.4	359
1380	Intensification of the dispersion of the global climatic landscape and its potential as a new climate change indicator. Environmental Research Letters, 2020, 15, 114032.	2.2	6
1386	On opportunities and threats to conserve the phylogenetic diversity of Neotropical palms. Diversity and Distributions, 2021, 27, 512-523.	1.9	20
1387	A socioâ€ecological model for predicting impacts of landâ€use and climate change on regional plant diversity in the Austrian Alps. Global Change Biology, 2020, 26, 2336-2352.	4.2	26
1388	Effects of evolutionary time, speciation rates and local abiotic conditions on the origin and maintenance of amphibian montane diversity. Global Ecology and Biogeography, 2021, 30, 674-684.	2.7	14
1389	Ocean Sprawl: Challenges and Opportunities for Biodiversity Management In A Changing World. Oceanography and Marine Biology, 2016, , 193-270.	1.0	39
1391	Climate-Related Local Extinctions Are Already Widespread among Plant and Animal Species. PLoS Biology, 2016, 14, e2001104.	2.6	434
1392	Warming Increases the Spread of an Invasive Thistle. PLoS ONE, 2011, 6, e21725.	1.1	32
1393	The Roles of Dispersal, Fecundity, and Predation in the Population Persistence of an Oak (Quercus) Tj ETQq1 10.	784314 rg 1.1	gBT ¦Overlack
1394	Phylogenetic Patterns of Extinction Risk in the Eastern Arc Ecosystems, an African Biodiversity Hotspot. PLoS ONE, 2012, 7, e47082.	1.1	33
1395	Global Priority Conservation Areas in the Face of 21st Century Climate Change. PLoS ONE, 2013, 8, e54839.	1.1	38
1396	Climate Change, Northern Birds of Conservation Concern and Matching the Hotspots of Habitat Suitability with the Reserve Network. PLoS ONE, 2013, 8, e63376.	1.1	23
1397	Diverging Responses of Tropical Andean Biomes under Future Climate Conditions. PLoS ONE, 2013, 8, e63634.	1.1	126

#	Article	IF	CITATIONS
1398	Plants, Birds and Butterflies: Short-Term Responses of Species Communities to Climate Warming Vary by Taxon and with Altitude. PLoS ONE, 2014, 9, e82490.	1.1	86
1399	Climate Exposure of US National Parks in a New Era of Change. PLoS ONE, 2014, 9, e101302.	1.1	62
1400	Biogeography of Anurans from the Poorly Known and Threatened Coastal Sandplains of Eastern Brazil. PLoS ONE, 2015, 10, e0128268.	1.1	11
1401	Biotic and Climatic Velocity Identify Contrasting Areas of Vulnerability to Climate Change. PLoS ONE, 2015, 10, e0140486.	1.1	94
1402	Simulating the Interacting Effects of Intraspecific Variation, Disturbance, and Competition on Climate-Driven Range Shifts in Trees. PLoS ONE, 2015, 10, e0142369.	1.1	19
1403	Ecologically-Relevant Maps of Landforms and Physiographic Diversity for Climate Adaptation Planning. PLoS ONE, 2015, 10, e0143619.	1.1	154
1404	The Effects of Sub-Regional Climate Velocity on the Distribution and Spatial Extent of Marine Species Assemblages. PLoS ONE, 2016, 11, e0149220.	1.1	109
1405	Human Impacts and Climate Change Influence Nestedness and Modularity in Food-Web and Mutualistic Networks. PLoS ONE, 2016, 11, e0157929.	1.1	31
1406	Projecting the Global Distribution of the Emerging Amphibian Fungal Pathogen, Batrachochytrium dendrobatidis, Based on IPCC Climate Futures. PLoS ONE, 2016, 11, e0160746.	1.1	44
1407	Response of spatial vegetation distribution in China to climate changes since the Last Glacial Maximum (LGM). PLoS ONE, 2017, 12, e0175742.	1.1	34
1408	Life history trade-off moderates model predictions of diversity loss from climate change. PLoS ONE, 2017, 12, e0177778.	1.1	5
1409	Projected avifaunal responses to climate change across the U.S. National Park System. PLoS ONE, 2018, 13, e0190557.	1.1	28
1410	Climate change adaptation benefits of potential conservation partnerships. PLoS ONE, 2018, 13, e0191468.	1.1	7
1411	Sistema automático para a medição da concentração dos núcleos de condensação de nuvens por visã computacional. Controle and Automacao, 2011, 22, 296-307.	.0 _{0.2}	1
1412	Agriculture and Trade Opportunities for Tanzania: Past Volatility and Future Climate Change. Policy Research Working Papers, 2012, , .	1.4	5
1413	Interactions of climate and solar irradiance can reverse the bioclimatic response of poikilohydric species: An experimental test for Flavoparmelia caperata. Bryologist, 2019, 122, 98.	0.1	6
1414	Tropical Street Trees and Climate Uncertainty in Southeast Asia. Hortscience: A Publication of the American Society for Hortcultural Science, 2011, 46, 167-172.	0.5	12
1415	Reforestation challenges in Southeast Europe facing climate change. Reforesta, 2016, , 178-220.	0.4	23

#	Article	IF	CITATIONS
1416	Effects of Climate Change on Vegetation in Mediterranean Forests: A review. International Journal of Environment Agriculture and Biotechnology, 2017, 2, 240-247.	0.0	11
1417	Camouflage in arid environments: the case of Sahara-Sahel desert rodents. Journal of Vertebrate Biology, 2020, 69, 1.	0.4	6
1419	Bed sites as thermal refuges for a coldâ€adapted ungulate in summer. Wildlife Biology, 2016, 22, 228-237.	0.6	26
1420	Re-evaluating the margin of the South Australian grain belt in a changing climate. Climate Research, 2012, 51, 249-260.	0.4	30
1421	Effectiveness of drought indices in identifying impacts on major crops across the USA. Climate Research, 2018, 75, 221-240.	0.4	28
1422	New and Repeating Tipping Points: The Interplay of Fire, Climate Change, and Deforestation in Neotropical Ecosystems. Annals of the Missouri Botanical Garden, 2020, 105, 393-404.	1.3	6
1423	DNA barcoding reveals micro-evolutionary changes and river system-level phylogeographic resolution of African silver catfish, <l>Schilbe intermedius</l> (Actinopterygii:) Tj ETQq0 0 0 rgBT /Ove	rlock 10 Tf 0.3	50 502 Td (1
1424	Plant diversity changes in a nature reserve: a probabilistic sampling method for quantitative assessments. Nature Conservation, 0, 34, 145-161.	0.0	8
1425	Steatoda nobilis, a false widow on the rise: a synthesis of past and current distribution trends. NeoBiota, 0, 42, 19-43.	1.0	13
1426	Climate change impacts, conservation and protected values: Understanding promotion, ambivalence and resistance to policy change at the world conservation congress. Conservation and Society, 2010, 8, 298.	0.4	11
1427	A Trend Analysis of Temperature in Selected Stations in Nigeria Using Three Different Approaches. Open Access Library Journal (oalib), 2018, 05, 1-17.	0.1	9
1428	Spatial and Temporal Variation of Stable Isotopes in Precipitation across Costa Rica: An Analysis of Historic GNIP Records. Open Journal of Modern Hydrology, 2013, 03, 226-240.	0.4	45
1431	The ACER pollen and charcoal database: aÂglobal resource to document vegetation and fire response to abrupt climate changes during the last glacial period. Earth System Science Data, 2017, 9, 679-695.	3.7	38
1433	Response of European yews to climate change: a review. Forest Systems, 2015, 24, eR01.	0.1	22
1434	Are clearcut borders an effective tool for Scots pine (Pinus sylvestris L.) natural regeneration?. Forest Systems, 2018, 27, e010.	0.1	12
1435	Assessing the Effects of Climate Change on the Geographic Distribution of Pinus densiflora in Korea using Ecological Niche Model. Korean Journal of Agricultural and Forest Meteorology, 2013, 15, 219-233.	0.2	15
1436	Factors Determining Mortality of Adult Chaparral Shrubs in an Extreme Drought Year in California. Aliso, 2013, 31, 49-57.	0.4	39
1437	Every Species Is an Insect (or Nearly So): On Insects, Climate Change, Extinction, and the Biological Unknown, 2012, 217-237.		3

ARTICLE IF CITATIONS Assessing Vulnerability to Land Use and Climate Change at Landscape Scales Using Landforms and 1438 3 Physiographic Diversity as Coarse-Filter Targets., 2016, , 95-115. Climate-Smart Approaches to Managing Forests., 2017, , 225-242. 1439 Future of biodiversity in the Barents Region., 0, , . 3 1440 Disturbance and climatic effects on red spruce community dynamics at its southern continuous range 1442 0.9 margin. PeerJ, 2014, 2, e293. Influence of current climate, historical climate stability and topography on species richness and 1443 0.9 43 endemism in Mesoamerican geophyte plants. PeerJ, 2017, 5, e3932. Distributional dynamics of a vulnerable species in response to past and future climate change: a window for conservation prospects. PeerJ, 2018, 6, e4287. 1444 A multi-year experiment shows that lower precipitation predictability encourages plants' early life 1445 0.9 11 stages and enhances population viability. Peerl, 2019, 7, e6443. Throwing light on dark diversity of vascular plants in China: predicting the distribution of dark and 1446 threatened species under globál climate change. PeerJ, 2019, 7, e6731. Rapid response to anthropogenic climate change by<i>Thuja occidentalis</i>: implications for past 1447 0.9 12 climate reconstructions and future climate predictions. Peerl, 2019, 7, e7378. Assessment of the vulnerability of alpine grasslands on the Qinghai-Tibetan Plateau. Peerl, 2020, 8, 1448 e8513. Can Australian biodiversity adapt to climate change?., 2012, , 8-10. 1449 38 Proposed business rules to incorporate climate-induced changes in fisheries management. ICES 1.2 Journal of Marine Science, 2021, 78, 3562-3580. Climate Change and Plant Diversity: Threats and Opportunities. Soil Biology, 2021, , 369-396. 1453 0.6 0 Climate Change Vulnerability and Agroecosystem Services., 2021, , 163-195. 1454 Contrasting climate velocity impacts in warm and cool locations show that effects of marine 1455 19 2.7 warming are worse in already warmer temperate waters. Fish and Fisheries, 2022, 23, 239-255. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. 1456 1.8 Current Biology, 2021, 31, R1342-R1361. Combined climatic and anthropogenic stress threaten resilience of important wetland sites in an arid 1457 3.9 10 region. Science of the Total Environment, 2022, 806, 150806. Wilderness areas in a changing landscape: changes in land use, land cover, and climate. Ecological 1458 1.8 Applications, 2022, 32, e02471.

~		_
$(IT \Delta^{-}$	TION	REDUBL
		ICLI ORI

#	Article	IF	CITATIONS
1459	Climate adaptation of biodiversity conservation in managed forest landscapes. Conservation Biology, 2022, 36, .	2.4	20
1460	Synchronisation of egg hatching of brown hairstreak (Thecla betulae) and budburst of blackthorn (Prunus spinosa) in a warmer future. , 2010, , 113-121.		0
1461	Recent evidence for the climate change threat to Lepidoptera and other insects. , 2010, , 103-112.		0
1463	Species Range Shifts. , 2011, , 55-79.		0
1464	Integrating Ecology and Demography to Understand the Interrelationship Between Environmental Issues and Rural Populations. International Handbooks of Population, 2012, , 333-347.	0.2	0
1465	Vietnam's vanishing wildlife: the new threat of climate change. , 2012, , 137-143.		2
1466	Climate Change - not an excuse for failing to address other threats. , 2012, , 80-91.		0
1470	A Review of Solutions and Challenges to Addressing Human Population Growth and Global Climate Change. International Journal of Climate Change: Impacts and Responses, 2013, 4, 147-172.	0.1	2
1472	Field Notes from the Future: Environmental Conditions at Four Localities in 2100. , 2014, , 67-87.		0
1473	Forests: Temperate Evergreen and Deciduous. , 2014, , 214-223.		5
1475	Microrefugia and Climate Change Adaptation: A Practical Guide for Wildland Managers. , 2015, , .		0
1476	Ecoregional Planning and Climate Change Adaptation. , 2015, , .		1
1477	Effects of climate change on the geographic distribution of Quercus acuta Thunb Journal of Agriculture & Life Science, 2015, 49, 47-57.	0.1	1
1479	Seedling growth and survival of five tree species in secondary forests and adjacent pastures in the montane rain forests of southern Costa Rica. Revista De Biologia Tropical, 2016, 64, 1565-83.	0.1	3
1484	ANALYZING THE VELOCITY OF URBAN DYNAMIC OVER NORTHEASTERN CHINA USING DMSP-OLS NIGHT-TIME LIGHTS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 1477-1480.	0.2	0
1484 1485	ANALYZING THE VELOCITY OF URBAN DYNAMIC OVER NORTHEASTERN CHINA USING DMSP-OLS NIGHT-TIME LIGHTS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 1477-1480. ANALYZING THE VELOCITY OF VEGETATION PHENOLOGY OVER THE TIBETAN PLATEAU USING GIMMS NDVI3g DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 2575-2578.	0.2	0 0
1484 1485 1491	ANALYZING THE VELOCITY OF URBAN DYNAMIC OVER NORTHEASTERN CHINA USING DMSP-OLS NIGHT-TIME LIGHTS. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-2/W7, 1477-1480. ANALYZING THE VELOCITY OF VEGETATION PHENOLOGY OVER THE TIBETAN PLATEAU USING GIMMS NDVI3g DATA. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, 0, XLII-3, 2575-2578. Physiologische Anpassung und Migration als Antworten auf den Klimawandel. , 2019, , 37-41.	0.2	0 0 0

#	Article	IF	CITATIONS
1496	Forests. , 2020, , 213-226.		1
1497	Biodiversity: Climate Change. , 2020, , 23-33.		0
1500	Integrating functional connectivity in designing networks of protected areas under climate change: A caribou case-study. PLoS ONE, 2020, 15, e0238821.	1.1	6
1501	Accelerated shifts in terrestrial life zones under rapid climate change. Global Change Biology, 2022, 28, 918-935.	4.2	24
1502	Dynamic Patterns of the Vertical Distribution of Vegetation in Heihe River Basin since the 1980s. Forests, 2021, 12, 1496.	0.9	1
1503	Docility Behavioral Development in Nilgai (Boselaphus tragocamelus), a Signs of Taming towards Domestication. Current Journal of Applied Science and Technology, 0, , 30-39.	0.3	0
1504	Ecological and evolutionary constraints on regional avifauna of passerines in China. Environmental Epigenetics, 2021, 67, 431-440.	0.9	0
1507	Biodiversity Conservation and Climate Change. , 2020, , 125-170.		0
1510	Climate change effects on desert ecosystems: A case study on the keystone species of the Namib Desert Welwitschia mirabilis. PLoS ONE, 2021, 16, e0259767.	1.1	8
1511	Depicting the phenotypic space of the annual plant Diplotaxis acris in hyperarid deserts. Ecology and Evolution, 2021, 11, 15708-15719.	0.8	0
1512	Decreasing Water Availability as a Threat for Traditional Irrigation-Based Land-Use Systems in the Mustang Himalaya/Nepal. Sustainable Development Goals Series, 2022, , 253-266.	0.2	0
1516	An horizon scan of biogeography. Frontiers of Biogeography, 2013, 5, .	0.8	3
1517	Global marine biodiversity partnership. , 2022, , 199-216.		0
1519	Climate and land-use changes reduce the benefits of terrestrial protected areas. Nature Climate Change, 2021, 11, 1105-1110.	8.1	35
1521	Forest fires and climate-induced tree range shifts in the western US. Nature Communications, 2021, 12, 6583.	5.8	13
1523	Publication Performance and Trends in Mangrove Forests: A Bibliometric Analysis. Sustainability, 2021, 13, 12532.	1.6	23
1525	Northern Hemisphere drought risk in a warming climate. Npj Climate and Atmospheric Science, 2021, 4,	2.6	47
1526	Drivers of change and conservation needs for vertebrates in drylands: an assessment from global scale to Sahara-Sahel wetlands. , 2021, 88, 1103-1129.		4

#	Article	IF	CITATIONS
1527	Transgenerational Responses to Climate Change in Mediterranean Annual Species with Contrasting Functional Strategies. SSRN Electronic Journal, 0, , .	0.4	0
1528	Revealing migratory path, important stopovers and non-breeding areas of a boreal songbird in steep decline. Animal Migration, 2021, 8, 168-191.	1.1	1
1529	Spatial heterogeneity and temporal stability characterize future climatic refugia in Mediterranean Europe. Global Change Biology, 2022, 28, 2413-2424.	4.2	8
1530	Assessment of drought effects on survival and growth dynamics in eucalypt commercial forestry using remote sensing photogrammetry. A showcase in Mato Grosso, Brazil. Forest Ecology and Management, 2022, 505, 119930.	1.4	9
1531	A hidden mechanism of forest loss under climate change: The role of drought in eliminating forest regeneration at the edge of its distribution. Forest Ecology and Management, 2022, 506, 119966.	1.4	15
1532	The Impacts of Climate Change on Natural Areas Recreation: A Multi-Region Snapshot and Agency Comparison. Natural Areas Journal, 2020, 40, .	0.2	0
1533	Dynamic vulnerability of ecological systems to climate changes across the Qinghai-Tibet Plateau, China. Ecological Indicators, 2022, 134, 108483.	2.6	36
1534	Topography of the Dolomites modulates range dynamics of narrow endemic plants under climate change. Scientific Reports, 2022, 12, 1398.	1.6	9
1535	Microclimateâ€based species distribution models in complex forested terrain indicate widespread cryptic refugia under climate change. Global Ecology and Biogeography, 2022, 31, 562-575.	2.7	31
1536	The effects of defaunation on plants' capacity to track climate change. Science, 2022, 375, 210-214.	6.0	110
1537	Climate Changes and Their Elevational Patterns in the Mountains of the World. Reviews of Geophysics, 2022, 60, .	9.0	140
1538	Pollen–insect interaction metaâ€networks identify key relationships for conservation in mosaic agricultural landscapes. Ecological Applications, 2022, 32, e2537.	1.8	4
1540	Succulent Karoo Biome. , 2024, , 251-263.		0
1541	Biogeographic consequences of shifting climate for the western massasauga (<i>Sistrurus) Tj ETQq1 1 0.784314</i>	FrgBT /Ονι	erlock 10 T
1542	Forest cover loss in the Nevado de Toluca volcano protected area (Mexico) after the change to a less restrictive category in 2013. Biodiversity and Conservation, 2022, 31, 871-894.	1.2	6
1543	Age, growth, reproduction and mortality of Mediterranean sand smelt Atherina hepsetus (Atherinidae) from the Crimea region (the Black Sea). Regional Studies in Marine Science, 2022, 52, 102235.	0.4	3
1544	Transgenerational responses to climate change in Mediterranean annual species with contrasting functional strategies. Environmental and Experimental Botany, 2022, 196, 104817.	2.0	3
1545	Modeled Distribution Shifts of North American Birds Over Four Decades Based on Suitable Climate Do Not Predict Observed Shifts. SSRN Electronic Journal, 0, , .	0.4	0

#	Article	IF	CITATIONS
1546	Plant regeneration from seeds in the temperate deciduous forest zone under a changing climate. , 2022, , 131-143.		2
1547	Current climate overrides past climate change in explaining multi-site beta diversity of Lauraceae species in China. Forest Ecosystems, 2022, 9, 100018.	1.3	7
1548	Early-Life Stress Drives the Molecular Mechanisms Shaping the Adult Phenotype. Fascinating Life Sciences, 2022, , 99-125.	0.5	1
1549	Smooth velocity fields for tracking climate change. Scientific Reports, 2022, 12, 2997.	1.6	Ο
1550	Conservation biogeography of highâ€altitude longhorn beetles under climate change. Insect Conservation and Diversity, 2022, 15, 429-444.	1.4	5
1551	DNA Methylation Can Mediate Local Adaptation and Response to Climate Change in the Clonal Plant Fragaria vesca: Evidence From a European-Scale Reciprocal Transplant Experiment. Frontiers in Plant Science, 2022, 13, 827166.	1.7	20
1552	Species distribution models and a 60â€yearâ€old transplant experiment reveal inhibited forest plant range shifts under climate change. Journal of Biogeography, 2022, 49, 537-550.	1.4	10
1554	Addressing Climate Change Vulnerability in the IUCN Red List of Ecosystems—Results Demonstrated for a Cross-Section of Major Vegetation-Based Ecosystem Types in the United States. Land, 2022, 11, 302.	1.2	Ο
1555	The role of climate in past forest loss in an ecologically important region of South Asia. Global Change Biology, 2022, 28, 3883-3901.	4.2	10
1556	Climate change and alpine-adapted insects: modelling environmental envelopes of a grasshopper radiation. Royal Society Open Science, 2022, 9, 211596.	1.1	16
1557	Differential Adaptive Potential and Vulnerability to Climate-Driven Habitat Loss in Brazilian Mangroves. Frontiers in Conservation Science, 2022, 3, .	0.9	0
1558	A palaeoecological perspective on the transformation of the tropical Andes by early human activity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20200497.	1.8	9
1559	Priority conservation areas for <i>Cedrus atlantica</i> in the Atlas Mountains, Morocco. Conservation Science and Practice, 0, , .	0.9	3
1560	Cool microrefugia accumulate and conserve biodiversity under climate change. Global Change Biology, 2022, 28, 3222-3235.	4.2	9
1561	Uncertainty in climate change impact studies for irrigated maize cropping systems in southern Spain. Scientific Reports, 2022, 12, 4049.	1.6	9
1562	The impact of carbon tax on financial stability. Environmental Science and Pollution Research, 2022, 29, 55596-55608.	2.7	4
1563	Seed dormancy in space and time: global distribution, paleoclimatic and present climatic drivers, and evolutionary adaptations. New Phytologist, 2022, 234, 1770-1781.	3.5	16
1564	Identifying the Factors behind Climate Diversification and Refugial Capacity in Mountain Landscapes: The Key Role of Forests. Remote Sensing, 2022, 14, 1708.	1.8	5

#	Article	IF	CITATIONS
1565	Climate Adaptation, Drought Susceptibility, and Genomic-Informed Predictions of Future Climate Refugia for the Australian Forest Tree Eucalyptus globulus. Forests, 2022, 13, 575.	0.9	3
1566	Mechanisms of forest resilience. Forest Ecology and Management, 2022, 512, 120129.	1.4	70
1567	Emerging spatial prioritization for biodiversity conservation indicated by climate change velocity. Ecological Indicators, 2022, 138, 108829.	2.6	8
1568	Area, isolation and climate explain the diversity of mammals on islands worldwide. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211879.	1.2	4
1570	Applying genomics in assisted migration under climate change: Framework, empirical applications, and case studies. Evolutionary Applications, 2022, 15, 3-21.	1.5	23
1571	Assessing environmental DNA metabarcoding and camera trap surveys as complementary tools for biomonitoring of remote desert water bodies. Environmental DNA, 2022, 4, 580-595.	3.1	7
1572	Northward expansion trends and future potential distribution of a dragonfly Ischnura senegalensis Rambur under climate change using citizen science data in South Korea. Journal of Ecology and Environment, 2021, 45, .	1.6	3
1573	Physiological costs of undocumented human migration across the southern United States border. Science, 2021, 374, 1496-1500.	6.0	13
1575	Living on the edge: genetic structure and geographic distribution in the threatened Markham's Storm-Petrel (<i>Hydrobates markhami</i>). PeerJ, 2021, 9, e12669.	0.9	1
1576	The need for stewardship of lands exposed by deglaciation from climate change. Wiley Interdisciplinary Reviews: Climate Change, 2022, 13, .	3.6	11
1577	Limited Range-Filling Among Endemic Forest Herbs of Eastern North America and Its Implications for Conservation With Climate Change. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	3
1579	Different increase rate in body mass of two marten species due to climate warming potentially reinforces interspecific competition. Scientific Reports, 2021, 11, 24164.	1.6	5
1580	Widespread Mismatch Between Phenology and Climate in Humanâ€Dominated Landscapes. AGU Advances, 2021, 2, .	2.3	10
1581	A Mechanistic Framework for Understanding the Effects of Climate Change on the Link Between Flowering and Fruiting Phenology. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	4
1582	Not all biodiversity rich spots are climate refugia. Biogeosciences, 2021, 18, 6567-6578.	1.3	5
1583	U.S. National Wildlife Refuge System likely to see regional and seasonal species turnover in bird assemblages under a 2°C warming scenario. Condor, 2022, 124, .	0.7	3
1585	Changes in tree functional composition across topographic gradients and through time in a tropical montane forest. PLoS ONE, 2022, 17, e0263508.	1.1	11
1586	Effects of flood discharge on the water quality of a drinking water reservoir in China – Characteristics and management strategies. Journal of Environmental Management, 2022, 314, 115072.	3.8	5

#	Article	IF	CITATIONS
1610	Guiding Conservation for Mountain Tree Species in Lebanon. Forests, 2022, 13, 711.	0.9	1
1611	Biodiversity, climate change, and adaptation in the Mediterranean. Ecosphere, 2022, 13, .	1.0	29
1612	Modeling response curves of European yew (Taxus baccata L.) using HOF models along the environmental gradient in north of Iran. Acta Ecologica Sinica, 2022, 42, 383-391.	0.9	2
1613	Diurnal photosynthetic performance of two oak species from two provenances in a Mediterranean and a central European common garden. Photosynthetica, 2022, 60, 326-336.	0.9	0
1614	Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s. Journal of Geophysical Research G: Biogeosciences, 2023, 128, .	1.3	14
1615	Static vs dynamic connectivity: how landscape changes affect connectivity predictions in the Iberian Peninsula. Landscape Ecology, 2022, 37, 1855-1870.	1.9	2
1616	Predicting the distribution of Australian frogs and their overlap with <i>Batrachochytrium dendrobatidis</i> under climate change. Diversity and Distributions, 2022, 28, 1255-1268.	1.9	6
1617	Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (<i>Coffea canephora</i>). Global Change Biology, 2022, 28, 4124-4142.	4.2	15
1618	Landscape Connectivity and Genetic Structure in a Mainstem and a Tributary Stonefly (Plecoptera) Species Using a Novel Reference Genome. Journal of Heredity, 2022, 113, 453-471.	1.0	1
1619	Decomposition analytics of carbon emissions by cement manufacturing – a way forward towards carbon neutrality in a developing country. Environmental Science and Pollution Research, 2022, 29, 49429-49438.	2.7	10
1620	Bioclimatic context of species' populations determines community stability. Global Ecology and Biogeography, 2022, 31, 1542-1555.	2.7	3
1622	Large-scale citizen science programs can support ecological and climate change assessments. Environmental Research Letters, 2022, 17, 065011.	2.2	5
1623	Regional opportunities for tundra conservation in the next 1000 years. ELife, 0, 11, .	2.8	8
1624	The role of demographic compensation in stabilising marginal tree populations in North America. Ecology Letters, 2022, 25, 1676-1689.	3.0	11
1625	Unravelling Trait–Environment Relationships at Local and Regional Scales in Temperate Forests. Frontiers in Plant Science, 2022, 13, .	1.7	2
1626	Dramatic impact of future climate change on the genetic diversity and distribution of ecologically relevant Western Mediterranean <i>Carex</i> (Cyperaceae). PeerJ, 0, 10, e13464.	0.9	2
1627	Signals in temperature extremes emerge in China during the last millennium based on CMIP5 simulations. Climatic Change, 2022, 172, .	1.7	1
1628	The Household Context of In Situ Conservation in a Center of Crop Diversity: Self-Reported Practices and Perceptions of Maize and Phaseolus Bean Farmers in Oaxaca, Mexico. Sustainability, 2022, 14, 7148.	1.6	1

#	Article	IF	CITATIONS
1629	Key Areas of Ecological Restoration in Inner Mongolia Based on Ecosystem Vulnerability and Ecosystem Service. Remote Sensing, 2022, 14, 2729.	1.8	13
1630	Patterns and distribution of Botryosphaeriaceae fungi related to dieback in big berry manzanita. Phytopathology, 0, , .	1.1	0
1631	Experimentally heatâ€induced transposition increases drought tolerance in <i>Arabidopsis thaliana</i> . New Phytologist, 2022, 236, 182-194.	3.5	12
1632	Climatic Niche of Vegetation Greenness Is Likely to Be Conservative in Degraded Land. Land, 2022, 11, 894.	1.2	1
1633	Topographic and vegetation drivers of thermal heterogeneity along the boreal–grassland transition zone in western Canada: Implications for climate change refugia. Ecology and Evolution, 2022, 12, .	0.8	8
1634	Integrating geographic ranges across temporal scales. Trends in Ecology and Evolution, 2022, , .	4.2	0
1635	La ecologÃa de los parásitos zoonóticos en Carnivora. Magna Scientia UCEVA, 2022, 2, 30-47.	0.1	0
1638	Assessment of Land Use Change and Climate Change Impact on Biodiversity and Environment. Springer Proceedings in Earth and Environmental Sciences, 2022, , 73-89.	0.2	4
1639	Timing and synchrony of birth in Eurasian lynx across Europe. Ecology and Evolution, 2022, 12, .	0.8	4
1640	Dynamics of lineages in adaptation to a gradual environmental change. Annales Henri Lebesgue, 0, 5, 729-777.	0.0	6
1642	Contemporary climate change velocity for near-surface temperatures over India. Climatic Change, 2022, 173, .	1.7	2
1643	Research trends in biodiversity loss: a bibliometric analysis. Environmental Science and Pollution Research, 2023, 30, 2754-2770.	2.7	5
1645	Projected dry/wet regimes in China using <scp>SPEI</scp> under four <scp>SSPâ€RCPs</scp> based on statistically downscaled <scp>CMIP6</scp> data. International Journal of Climatology, 2022, 42, 9357-9384.	1.5	4
1646	Rapid restructuring of the odontocete community in an ocean warming hotspot. Global Change Biology, 2022, 28, 6524-6540.	4.2	5
1647	A climate risk index for marine life. Nature Climate Change, 2022, 12, 854-862.	8.1	29
1648	Vulnerability of grassland ecosystems to climate change in the Qilian Mountains, northwest China. Journal of Hydrology, 2022, 612, 128305.	2.3	22
1649	Assisted Migration: Adapting Forest Management to a Changing Climate. , 2011, 12, .		22
1650	Review: A comprehensive overview of studies related to the ecology and genetics of <scp><i>Fagus crenata</i></scp> Blume (Siebold's beech, Japanese beech) at the species' northernmost range limit. Ecological Research, 2023, 38, 724-739.	0.7	0

#	Article	IF	CITATIONS
1651	Global progress in climate change and biodiversity conservation research. Global Ecology and Conservation, 2022, 38, e02272.	1.0	11
1652	Faster velocity changes in the near-surface soil freeze state in croplands than in forests across northeast China from 1979 to 2020. Journal of Environmental Management, 2022, 321, 116022.	3.8	2
1653	Ecology of Eastern Himalaya. , 2022, , 55-84.		0
1655	Genomic Data Reveals Profound Genetic Structure and Multiple Glacial Refugia in Lonicera oblata (Caprifoliaceae), a Threatened Montane Shrub Endemic to North China. Frontiers in Plant Science, 0, 13, .	1.7	5
1656	Zoogeography and diversity patterns of the family Cicadellidae (Hemiptera) in Toshka Region, Egypt. Journal of Natural History, 2022, 56, 1199-1213.	0.2	3
1657	Climate change, dietary shift, and traditional norms in the western Himalayan region, India. Climate and Development, 0, , 1-9.	2.2	0
1658	What are the contributions of maternal and paternal traits to fecundity and offspring development? A case study in an amphibian species, the spined toad <i>Bufo spinosus</i> . Environmental Epigenetics, 2023, 69, 527-534.	0.9	2
1659	Demographic uncertainty and disease risk influence climateâ€informed management of an alpine species. Journal of Wildlife Management, 2022, 86, .	0.7	4
1660	Floristic diversity and vegetation of communities associated with two endemic <i>Dianthus</i> species in the montane steppes of northeastern Iran. Nordic Journal of Botany, 2022, 2022, .	0.2	2
1661	Climate change induced elevational range shifts of Himalayan tree species. Biotropica, 2023, 55, 53-69.	0.8	7
1662	Epochs, events and episodes: Marking the geological impact of humans. Earth-Science Reviews, 2022, 234, 104171.	4.0	17
1663	Predicting BOG rate in cryogenic containers at different liquid levels based on a single test. Journal of Mechanical Science and Technology, 2022, 36, 4809-4814.	0.7	1
1664	Postglacial species arrival and diversity buildup of northern ecosystems took millennia. Science Advances, 2022, 8, .	4.7	29
1665	Vegetation productivity under climate change depends on landscape complexity in tropical drylands. Mitigation and Adaptation Strategies for Global Change, 2022, 27, .	1.0	1
1667	Natural forest regeneration on anthropized landscapes could overcome climate change effects on the endangered maned sloth (<i>Bradypus torquatus</i> , Illiger 1811). Journal of Mammalogy, 2022, 103, 1383-1396.	0.6	3
1668	Reference genome of the color polymorphic desert annual plant sandblossoms, <i>Linanthus parryae</i> . Journal of Heredity, 2022, 113, 712-721.	1.0	1
1669	Quantifying the climate exposure of priority habitat constrained to specific environmental conditions: Boreal aapa mires. Ecological Informatics, 2022, 72, 101828.	2.3	1
1670	Impacts of Climate Change on Biodiversity Resources, Especially Forests and Wildlife Distribution. , 2022, , 55-85.		0

#	Article	IF	CITATIONS
1671	High dietary and habitat diversity indicate generalist behaviors of northern bog lemmings Synaptomys borealis in Alaska, USA. Endangered Species Research, 2022, 49, 145-158.	1.2	1
1672	Choice of prioritization method impacts recommendations for climateâ€informed bird conservation in the United States. Ecography, 2022, 2022, .	2.1	1
1673	Migrationâ€based simulations for Canadian trees show limited tracking of suitable climate under climate climate 2022, 28, 2330-2348.	1.9	8
1674	Coat color mismatch improves survival of a keystone boreal herbivore: Energetic advantages exceed lost camouflage. Ecology, 2023, 104, .	1.5	4
1675	The deglacial forest conundrum. Nature Communications, 2022, 13, .	5.8	11
1676	Influence of Water Limitation and Provenance on Reproductive Traits in a Common Garden of Frangula alnus Mill Forests, 2022, 13, 1744.	0.9	2
1677	Drivers of Three Most Charismatic Mammalian Species Distribution across a Multiple-Use Tropical Forest Landscape of Sumatra, Indonesia. Animals, 2022, 12, 2722.	1.0	3
1678	Snow limits polecat <i>Mustela putorius</i> distribution in Sweden. Wildlife Biology, 2023, 2023, .	0.6	0
1679	Global patterns of sea surface climate connectivity for marine species. Communications Earth & Environment, 2022, 3, .	2.6	4
1680	Multi-Directional Rather Than Unidirectional Northward-Dominant Range Shifts Predicted under Climate Change for 99 Chinese Tree Species. Forests, 2022, 13, 1619.	0.9	2
1681	Cerrado native vegetation is a refuge for birds under the current climate change trajectory. Austral Ecology, 2022, 47, 1622-1635.	0.7	4
1682	Strengthening protected areas for climate refugia on the Tibetan Plateau, China. Biological Conservation, 2022, 275, 109781.	1.9	6
1683	Protected area network insufficiently represents climatic niches of endemic plants in a Global Biodiversity Hotspot. Biological Conservation, 2022, 275, 109768.	1.9	4
1684	Improving Rainfallâ€Runoff Model Reliability Under Nonstationarity of Model Parameters: A Hypothesis Testing Based Framework. Water Resources Research, 2022, 58, .	1.7	2
1685	Desert ecosystems in China: Past, present, and future. Earth-Science Reviews, 2022, 234, 104206.	4.0	14
1686	Land-use and climate risk assessment for Earth's remaining wilderness. Current Biology, 2022, 32, 4890-4899.e4.	1.8	8
1687	Symbiont genotype influences holobiont response to increased temperature. Scientific Reports, 2022, 12, .	1.6	0
1688	Modeled distribution shifts of North American birds over four decades based on suitable climate alone do not predict observed shifts. Science of the Total Environment, 2023, 857, 159603.	3.9	4

TTATION REDORT	~	<u> </u>	
	(ΊΤΔΤ	REDU	DL

#	Article	IF	CITATIONS
1689	Global Weirding in British Columbia: Climate Change and the Habitat of Terrestrial Vertebrates. , 2011, 12, .		2
1690	New Zealand Fern Distributions from the Last Glacial Maximum to 2070: A Dynamic Tale of Migration and Community Turnover. American Fern Journal, 2022, 112, .	0.2	1
1691	Scientists' warning on climate change and insects. Ecological Monographs, 2023, 93, .	2.4	90
1693	Climate change alters future distribution of mountain plants, a case study of Astragalus adscendens in Iran. Plant Ecology, 0, , .	0.7	0
1694	<i>Centris pallida</i> (Hymenoptera: Apidae) male body size decreases across five decades. Ecological Entomology, 0, , .	1.1	5
1695	Assessing Climate Change Exposure for the Adaptation of Conservation Management: The Importance of Scale in Mountain Landscapes. Land, 2022, 11, 2052.	1.2	3
1696	Role of climate change in disasters occurrences: Forecasting and management options. , 2023, , 149-180.		0
1698	Combined threats of climate change and land use to boreal protected areas with red-listed forest species in Finland. Global Ecology and Conservation, 2023, 41, e02348.	1.0	1
1699	Future Köppen-Geiger climate zones over Southeast Asia using CMIP6 Multimodel Ensemble. Atmospheric Research, 2023, 283, 106560.	1.8	9
1700	Barriers to seedling establishment in grasslands: Implications for <i>Nothofagus</i> forest restoration and migration. Journal of Applied Ecology, 0, , .	1.9	2
1701	Scenarios of change in the realized climatic niche of mountain carnivores and ungulates. Conservation Biology, 2023, 37, .	2.4	1
1702	Suitable habitat prediction with a huge set of variables on some Central Asian tulips. Journal of Asia-Pacific Biodiversity, 2023, 16, 75-82.	0.2	1
1703	Predicting potential transmission risk of Everglades virus in Florida using mosquito blood meal identifications. , 0, 2, .		2
1704	Nitrogen Addition Increases Freeze Resistance in Black Mangrove (Avicennia germinans) Shrubs in a Temperate-Tropical Ecotone. Ecosystems, 2023, 26, 800-814.	1.6	4
1705	Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecology Letters, 2023, 26, 203-218.	3.0	9
1706	Rarity, geography, and plant exposure to global change in the California Floristic Province. Global Ecology and Biogeography, 2023, 32, 218-232.	2.7	4
1707	Influences of Climate Change and Land Use Change on the Habitat Suitability of Bharal in the Sanjiangyuan District, China. International Journal of Environmental Research and Public Health, 2022, 19, 17082.	1.2	3
1708	Climate tracking by freshwater fishes suggests that fish diversity in temperate lakes may be increasingly threatened by climate warming. Diversity and Distributions, 2023, 29, 300-315.	1.9	4

#	Article	IF	CITATIONS
1709	Phenological response to climate variation in a northern red oak plantation: Links to survival and productivity. Ecology, 0, , .	1.5	0
1711	The influence of fineâ€scale topography on detection of a mammal assemblage at camera traps in a mountainous landscape. Wildlife Biology, 2023, 2023, .	0.6	1
1712	Greater evolutionary divergence of thermal limits within marine than terrestrial species. Nature Climate Change, 2022, 12, 1175-1180.	8.1	8
1713	Hedging at the rear edge: Intraspecific trait variability drives the trajectory of marginal populations in a widespread boreal tree species. Journal of Ecology, 2023, 111, 479-494.	1.9	3
1714	Sea-level rise can reverse the conditions that promote the spread of ecosystem engineers. Theoretical Ecology, 0, , .	0.4	0
1715	Precipitation amount and event intervals interact to change plant diversity during dry years in a desert shrubland. Ecological Indicators, 2022, 145, 109701.	2.6	0
1716	Ecological niche models reveal divergent habitat use of Pallas's cat in the Eurasian cold steppes. Ecology and Evolution, 2022, 12, .	0.8	4
1717	Evaluating future climate change exposure of marine habitat in the South East Pacific based on metabolic constraints. Frontiers in Marine Science, 0, 9, .	1.2	2
1718	Sea level rise may pose conservation challenges for the endangered Cape Sable seaside sparrow. Frontiers in Ecology and Evolution, 0, 10, .	1.1	1
1719	Climatic and Non-Climatic Drivers of Plant Diversity along an Altitudinal Gradient in the Taihang Mountains of Northern China. Diversity, 2023, 15, 66.	0.7	3
1720	Mutualistic coevolution and community diversity favour persistence in metacommunities under environmental changes. Proceedings of the Royal Society B: Biological Sciences, 2023, 290, .	1.2	1
1721	Novel climate–fire–vegetation interactions and their influence on forest ecosystems in the western <scp>USA</scp> . Functional Ecology, 2023, 37, 2126-2142.	1.7	3
1722	Latitudinal patterns of forest ecosystem stability across spatial scales as affected by biodiversity and environmental heterogeneity. Global Change Biology, 2023, 29, 2242-2255.	4.2	7
1723	Satellite observed reversal in trends of spring phenology in the middleâ€high latitudes of the Northern Hemisphere during the global warming hiatus. Global Change Biology, 2023, 29, 2227-2241.	4.2	4
1724	The Declining Ogallala Aquifer and the Future Role of Rangeland Science on the North American High Plains. Rangeland Ecology and Management, 2023, 87, 83-96.	1.1	3
1725	Microclimate species distribution models estimate lower levels of climate-related habitat loss for salamanders. Journal for Nature Conservation, 2023, 72, 126333.	0.8	5
1726	The rate of environmental change as an important driver across scales in ecology. Oikos, 2023, 2023, .	1.2	3
1727	The Effect of Low Positive Temperatures on the Formation of Secondary Metabolites in Rhodiola quadrifida (Pall.) Fisch. et C.A. Mey. In Vitro Cultures. Processes, 2023, 11, 28.	1.3	0

# 1728	ARTICLE Spectral Characteristics of Tundra and Forest Tundra Landscapes during the Years of Summer Temperature Anomalies. Izvestiya - Atmospheric and Oceanic Physics, 2022, 58, 660-667.	IF 0.2	Citations
1729	Mexican Avifauna of the Anthropocene. , 2023, , 153-180.		0
1730	The benefits of being smaller: Consistent pattern for climate-induced range shift and morphological difference of three falconiforme species. Avian Research, 2023, 14, 100079.	0.5	2
1731	Topography and climate of Mount Karanfil (Pozantı/Adana). Environmental Systems Research, 2023, 12, .	1.5	1
1732	Protected area planning to conserve biodiversity in an uncertain future. Conservation Biology, 2023, 37, .	2.4	4
1733	Contemporary Climate Change Impacts on Mexican Fauna. , 2023, , 437-463.		0
1734	Environmental matters in sport: sustainable research in the academy. European Sport Management Quarterly, 2023, 23, 5-12.	2.3	7
1735	Long-term monitoring of the European roller (Coracias garrulus) in Ukraine: is climate behind the changes?. Geo&Bio, 2022, 2022, 155-171.	0.3	0
1736	Baumartenwechsel und Herkunftswahl im Klimawandel. Studien Zum Marketing Natul`rlicher Ressourcen, 2023, , 23-37.	0.0	0
1737	Changing cropland in changing climates: quantifying two decades of global cropland changes. Environmental Research Letters, 0, , .	2.2	0
1738	CMIP6 Earth System Models Project Greater Acceleration of Climate Zone Change Due To Stronger Warming Rates. Earth's Future, 2023, 11, .	2.4	6
1739	Bridging the gap between an applied map and scientific needs: Visualization of the uncertainty of plant hardiness zone maps, with emphasis on climate change impact. Applied Geography, 2023, 154, 102938.	1.7	0
1740	Detecting low fragmented sites surrounding European protected areas – Implications for expansion of the Natura 2000 network. Journal for Nature Conservation, 2023, 73, 126398.	0.8	2
1741	Evolutionary footprints of cold adaptation in arctic-alpine Cochlearia (Brassicaceae) – Evidence from freezing experiments and electrolyte leakage. Perspectives in Plant Ecology, Evolution and Systematics, 2023, 59, 125728.	1.1	2
1742	Climate change and land use threats to species of aapa mires, an EU priority habitat. Journal for Nature Conservation, 2023, 73, 126390.	0.8	0
1743	Turnover. , 2024, , 739-753.		0
1744	Seagrasses At The Islands Iturup And Urup Of Kuril Archipelago. Geography, Environment, Sustainability, 2023, 15, 39-43.	0.6	0
1745	Mexican Bats: Threats in the Anthropocene. , 2023, , 237-265.		0

#	Article	IF	CITATIONS
1746	Plants maintain climate fidelity in the face of dynamic climate change. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	8
1747	Trophically integrated ecometric models as tools for demonstrating spatial and temporal functional changes in mammal communities. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
1748	Implications of exceeding the Paris Agreement for mammalian biodiversity. Conservation Science and Practice, 2023, 5, .	0.9	0
1749	Disentangling the drivers of continental mammalian endemism. Global Change Biology, 2023, 29, 2421-2435.	4.2	3
1750	Camel livestock in the Algerian Sahara under the context of climate change: Milk properties and livestock production practices. Journal of Agriculture and Food Research, 2023, 11, 100528.	1.2	2
1751	Transgenerational Effects of Water Limitation on Reproductive Mother Plants in a Common Garden of the Shrub Frangula alnus. Forests, 2023, 14, 348.	0.9	1
1752	Widespread mismatch between satellite observed vegetation greenness and temperature isolines during 2000–2020 in China. Ecological Indicators, 2023, 147, 110018.	2.6	1
1753	Impact of Climate Change on Livelihood Security and Biodiversity – Issues and Mitigation Strategies. Springer Climate, 2023, , 1-27.	0.3	0
1754	Avalanches create unique habitats for birds in the European Alps. Journal of Ornithology, 2023, 164, 377-388.	0.5	0
1755	Rapid range shifts in African <i>Anopheles</i> mosquitoes over the last century. Biology Letters, 2023, 19, .	1.0	11
1756	High-velocity upward shifts in vegetation are ubiquitous in mountains of western North America. , 2023, 2, e0000071.		4
1757	Elevation-dependent warming of streams in mountainous regions: implications for temperature modeling and headwater climate refugia. Canadian Water Resources Journal, 2023, 48, 167-188.	0.5	4
1758	Mapping the Link between Climate Change and Mangrove Forest: A Global Overview of the Literature. Forests, 2023, 14, 421.	0.9	6
1759	Changes in Mangrove Blue Carbon under Elevated Atmospheric CO ₂ . Ecosystem Health and Sustainability, 2023, 9, .	0.0	3
1760	Spatiotemporal changes in the boreal forest in Siberia over the period 1985–2015 against the background of climate change. Earth System Dynamics, 2023, 14, 223-239.	2.7	1
1761	Differences in heat tolerance, water use efficiency and growth among Douglas-fir families and varieties evidenced by GWAS and common garden studies. AoB PLANTS, 2023, 15, .	1.2	2
1762	Lags in the response of plant assemblages to global warming depends on temperatureâ€change velocity. Global Ecology and Biogeography, 2023, 32, 719-733.	2.7	2
1763	Predicting the impacts of climate change on the distribution of European syngnathids over the next century. Frontiers in Marine Science, 0, 10, .	1.2	2

#	Article	IF	Citations
1764	Cold-water habitats, climate refugia, and their utility for conserving salmonid fishes. Canadian Journal of Fisheries and Aquatic Sciences, 2023, 80, 1187-1206.	0.7	6
1765	Big data help to define climate change challenges for the typical Mediterranean species Cistus ladanifer L Frontiers in Ecology and Evolution, 0, 11, .	1.1	1
1766	Geography, ecology, and history synergistically shape across-range genetic variation in a calanoid copepod endemic to the north-eastern Oriental. Evolution; International Journal of Organic Evolution, 2023, 77, 422-436.	1.1	1
1767	A metricâ€based framework for climateâ€smart conservation planning. Ecological Applications, 2023, 33, .	1.8	9
1768	Genome Scan of Rice Landrace Populations Collected Across Time Revealed Climate Changes' Selective Footprints in the Genes Network Regulating Flowering Time. Rice, 2023, 16, .	1.7	3
1769	Habitat–trait interactions that control response to climate change: North American ground beetles (Carabidae). Global Ecology and Biogeography, 2023, 32, 987-1001.	2.7	4
1770	Fast response of vegetation in East Asia to abrupt climatic events during the last deglaciation. , 2023, 2, .		4
1771	Habitat characteristics, ecology and biodiversity drivers of plant communities associated with Cousinia edmondsonii, an endemic and critically endangered species in NE Iran. Community Ecology, 2023, 24, 201-214.	0.5	1
1772	Impacts of anthropogenic climate change on tropical montane forests: an appraisal of the evidence. Biological Reviews, 2023, 98, 1200-1224.	4.7	6
1773	Clustering future scenarios based on predicted range maps. Methods in Ecology and Evolution, 2023, 14, 1346-1360.	2.2	0
1774	Historical contingency or effective niche differentiation as drivers for the emergence of endemism centres? A commentary on †The evolution of ecological specialization underlies plant endemism in the Atlantic Forest'. Annals of Botany, 0, , .	1.4	0
1775	Distribution of genetic variability in mature and progeny populations of Abies alba Mill. from the Polish Western and Eastern Carpathians. Journal of Forest Science, 0, , .	0.5	0
1776	The pace of shifting seasons in lakes. Nature Communications, 2023, 14, .	5.8	9
1777	Assisted tree migration can reduce but not avert the decline of forest ecosystem services in Europe. Global Environmental Change, 2023, 80, 102676.	3.6	7
1778	Divergent vegetation variation and the response to extreme climate events in the National Nature Reserves in Southwest China, 1961–2019. Ecological Indicators, 2023, 150, 110247.	2.6	3
1779	Integrating presenceâ€only and presence–absence data to model changes in species geographic ranges: An example in the Neotropics. Journal of Biogeography, 2023, 50, 1561-1575.	1.4	3
1808	Carbon Trading and Sustainable Development Goal 13: The Malaysia Perspectives. Climate Change Management, 2023, , 289-305.	0.6	0
1816	Priorities for Information, Research and Conservation of Birds in High Mountains. , 2023, , 372-406.		1

#	Article	IF	CITATIONS
1828	Introductory Chapter: Vegetation Dynamics, Basic Phenomena, and Processes. , 0, , .		0
1862	Climate Change: Adapting for Resilience. , 2023, , 287-321.		0
1863	Latitudinal and Elevational Range Shifts Under Contemporary Climate Change. , 2024, , 690-709.		0
1866	Climate-Analog Velocity Estimation using Optical Flow Approach. , 2023, , .		0
1878	Boreal forests. , 2024, , 221-242.		0
1887	Changing plant distributions and abundances. , 2023, , .		0
1892	Genome Editing in Forest Trees. , 2024, , 347-372.		0
1897	The potential environmental and climate impacts of stratospheric aerosol injection: a review. Environmental Science Atmospheres, 2024, 4, 114-143.	0.9	0
1899	Kuwait Deserts and Ecosystems in the Context of Changing Climate. , 2023, , 341-359.		0
1901	Spatial Trend Analysis of Vegetation Dynamics and Their Responses to Climate Change on Black Sea Coasts, Romania From 2000 to 2021. Advances in Environmental Engineering and Green Technologies Book Series, 2023, , 162-184.	0.3	0
1905	Genomics empowering conservation action and improvement of celery in the face of climate change. Planta, 2024, 259, .	1.6	0
1912	Mapping scientific fieldwork data: a potential tool for improving and strengthening Antarctic Specially Protected Areas as an effective measure for protecting Antarctic biodiversity. Biodiversity and Conservation, 2024, 33, 929-948	1.2	1