Reconstruction of the history of anthropogenic CO2 cor

Nature 462, 346-349 DOI: 10.1038/nature08526

Citation Report

		15	2
#	ARTICLE	IF	CITATIONS
1	Ocean Acidification at High Latitudes: The Bellwether. Oceanography, 2009, 22, 160-171.	0.5	349
2	Slowing sink?. Nature Geoscience, 2009, 2, 826-826.	5.4	0
3	What can be learned about carbon cycle climate feedbacks from the CO ₂ airborne fraction?. Atmospheric Chemistry and Physics, 2010, 10, 7739-7751.	1.9	68
4	Towards an assessment of simple global marine biogeochemical models of different complexity. Progress in Oceanography, 2010, 86, 337-360.	1.5	96
5	Ocean biomes blended. Nature, 2010, 467, 538-539.	13.7	0
6	The long and the short of it. Nature, 2010, 467, 539-539.	13.7	0
7	A model-based assessment of the TrOCA approach for estimating anthropogenic carbon in the ocean. Biogeosciences, 2010, 7, 723-751.	1.3	47
8	Ongoing transients in carbonate compensation. Global Biogeochemical Cycles, 2010, 24, .	1.9	32
9	Where and how long ago was water in the western North Atlantic ventilated? Maximum entropy inversions of bottle data from WOCE line A20. Journal of Geophysical Research, 2010, 115, .	3.3	38
10	Detecting anthropogenic CO ₂ changes in the interior Atlantic Ocean between 1989 and 2005. Journal of Geophysical Research, 2010, 115, .	3.3	72
11	Dissolved organic carbon export and subsequent remineralization in the mesopelagic and bathypelagic realms of the North Atlantic basin. Deep-Sea Research Part II: Topical Studies in Oceanography, 2010, 57, 1433-1445.	0.6	230
12	An improved method for estimating water-mass ventilation age from radiocarbon data. Earth and Planetary Science Letters, 2010, 295, 367-378.	1.8	27
13	State of the Climate in 2009. Bulletin of the American Meteorological Society, 2010, 91, s1-s222.	1.7	121
14	A Large and Persistent Carbon Sink in the World's Forests. Science, 2011, 333, 988-993.	6.0	5,393
15	Variation in particulate C and N isotope composition following iron fertilization in two successive phytoplankton communities in the Southern Ocean. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	9
16	The impact of the North Atlantic Oscillation on the uptake and accumulation of anthropogenic CO ₂ by North Atlantic Ocean mode waters. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	30
17	Changes in South Pacific anthropogenic carbon. Global Biogeochemical Cycles, 2011, 25, n/a-n/a.	1.9	29
18	Sea surface <i>p</i> CO ₂ and O ₂ in the Southern Ocean during the austral fall, 2008. Journal of Geophysical Research, 2011, 116, .	3.3	24

TATION REPO

#	Article	IF	CITATIONS
19	Volcanic versus anthropogenic carbon dioxide. Eos, 2011, 92, 201-202.	0.1	120
20	Limiting invasive species in ballast water. Eos, 2011, 92, 202-203.	0.1	2
23	Linking phytoplankton community size composition with temperature, plankton food web structure and sea–air CO2 flux. Deep-Sea Research Part I: Oceanographic Research Papers, 2011, 58, 826-838.	0.6	77
24	Water masses as a unifying framework for understanding the Southern Ocean Carbon Cycle. Biogeosciences, 2011, 8, 1031-1052.	1.3	66
25	Climatic trends. , 0, , 1-2.		0
26	Carbon cycle trends and vulnerabilities. , 0, , 75-98.		Ο
28	Monitoring and interpreting the ocean uptake of atmospheric CO ₂ . Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2011, 369, 1997-2008.	1.6	8
29	Acclimation to high CO ₂ in maize is related to water status and dependent on leaf rank. Plant, Cell and Environment, 2011, 34, 314-331.	2.8	33
30	CO2-fertilization and potential future terrestrial carbon uptake in India. Mitigation and Adaptation Strategies for Global Change, 2011, 16, 143-160.	1.0	8
31	State of the Climate in 2010. Bulletin of the American Meteorological Society, 2011, 92, S1-S236.	1.7	135
32	Evidence for Oceanic Control of Interannual Carbon Cycle Feedbacks. Numerische Mathematik, 2011, 311, 485-516.	0.7	1
33	Gross CO ₂ fluxes from land-use change: implications for reducing global emissions and increasing sinks. Carbon Management, 2011, 2, 41-47.	1.2	40
34	Regional Impacts of Climate Change and Atmospheric CO2 on Future Ocean Carbon Uptake: A Multimodel Linear Feedback Analysis. Journal of Climate, 2011, 24, 2300-2318.	1.2	95
35	The Mean Age of Ocean Waters Inferred from Radiocarbon Observations: Sensitivity to Surface Sources and Accounting for Mixing Histories. Journal of Physical Oceanography, 2012, 42, 291-305.	0.7	90
36	Impact of aragonite saturation state changes on migratory pteropods. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 732-738.	1.2	65
37	Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 1589-1597.	1.8	217
38	Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. Nature Geoscience, 2012, 5, 579-584.	5.4	166
39	State of the Climate in 2011. Bulletin of the American Meteorological Society, 2012, 93, S1-S282.	1.7	121

#	Article	IF	CITATIONS
40	Ventilation of the deep ocean constrained with tracer observations and implications for radiocarbon estimates of ideal mean age. Earth and Planetary Science Letters, 2012, 325-326, 116-125.	1.8	122
41	Variability of primary production and airâ€sea CO ₂ flux in the Southern Ocean. Global Biogeochemical Cycles, 2012, 26, .	1.9	22
42	Estimating net community production in the Southern Ocean based on atmospheric potential oxygen and satellite ocean color data. Global Biogeochemical Cycles, 2012, 26, .	1.9	31
43	Seasonal variations of stratospheric age spectra in the Goddard Earth Observing System Chemistry Climate Model (GEOSCCM). Journal of Geophysical Research, 2012, 117, .	3.3	29
44	Changing controls on oceanic radiocarbon: New insights on shallowâ€ŧoâ€deep ocean exchange and anthropogenic CO ₂ uptake. Journal of Geophysical Research, 2012, 117, .	3.3	99
45	Simulation of anthropogenic CO ₂ uptake in the CCSM3.1 ocean circulation-biogeochemical model: comparison with data-based estimates. Biogeosciences, 2012, 9, 1321-1336.	1.3	24
46	The Southern Ocean Observing System. Oceanography, 2012, 25, 68-69.	0.5	30
47	Observed acidification trends in North Atlantic water masses. Biogeosciences, 2012, 9, 5217-5230.	1.3	26
48	Changes in column inventories of carbon and oxygen in the Atlantic Ocean. Biogeosciences, 2012, 9, 4819-4833.	1.3	12
49	Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 2012, 9, 2509-2522.	1.3	166
50	Mechanisms for CO Production from CO ₂ Using Reduced Rhenium Tricarbonyl Catalysts. Journal of the American Chemical Society, 2012, 134, 5180-5186.	6.6	213
51	Influences of climate change on the uptake and storage of anthropogenic CO2 in the global ocean. Journal of Meteorological Research, 2012, 26, 304-317.	1.0	3
52	The subsurface layer reference to calculate preformed alkalinity and air–sea CO2 disequilibrium in the Atlantic Ocean. Journal of Marine Systems, 2012, 94, 52-63.	0.9	20
53	An update of anthropogenic CO2 storage rates in the western South Atlantic basin and the role of Antarctic Bottom Water. Journal of Marine Systems, 2012, 94, 197-203.	0.9	39
54	Patterns, processes and vulnerability of Southern Ocean benthos: a decadal leap in knowledge and understanding. Marine Biology, 2013, 160, 2295-2317.	0.7	79
55	A global ocean biogeochemistry general circulation model and its simulations. Advances in Atmospheric Sciences, 2013, 30, 922-939.	1.9	4
56	Earth System Monitoring. , 2013, , .		7
57	Land use change and nitrogen feedbacks constrain the trajectory of the land carbon sink. Geophysical Research Letters, 2013, 40, 5218-5222.	1.5	40

#	Article	IF	CITATIONS
58	Natural air–sea flux of CO2 in simulations of the NASA-GISS climate model: Sensitivity to the physical ocean model formulation. Ocean Modelling, 2013, 66, 26-44.	1.0	27
59	A new constraint on global airâ€sea CO ₂ fluxes using bottle carbon data. Geophysical Research Letters, 2013, 40, 1594-1599.	1.5	29
60	Changes in deep-water CO2 concentrations over the last several decades determined from discrete pCO2measurements. Deep-Sea Research Part I: Oceanographic Research Papers, 2013, 74, 48-63.	0.6	15
61	Global trends in surface ocean <i>p</i> CO ₂ from in situ data. Global Biogeochemical Cycles, 2013, 27, 541-557.	1.9	126
62	THE ROLE OF THE BARENTS SEA IN THE ARCTIC CLIMATE SYSTEM. Reviews of Geophysics, 2013, 51, 415-449.	9.0	362
63	Coral Reef Ecosystems. , 2013, , 77-106.		3
64	Theoretical mechanism studies on the electrocatalytic reduction of CO2 to formate by water-stable iridium dihydride pincer complex. Dalton Transactions, 2013, 42, 5755.	1.6	37
65	Accounting for demand and supply of the biosphere's regenerative capacity: The National Footprint Accounts' underlying methodology and framework. Ecological Indicators, 2013, 24, 518-533.	2.6	510
66	Socio-economic impacts of ocean acidification in the Mediterranean Sea. Marine Policy, 2013, 38, 447-456.	1.5	25
67	Adaptive strategies and life history characteristics in a warming climate: Salmon in the Arctic?. Environmental Biology of Fishes, 2013, 96, 1187-1226.	0.4	61
68	Marine Ecosystems, Biogeochemistry, and Climate. International Geophysics, 2013, 103, 817-842.	0.6	7
69	Long-term effects of warming and ocean acidification are modified by seasonal variation in species responses and environmental conditions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2013, 368, 20130186.	1.8	102
70	Atmospheric Carbon Dioxide Variability in the Community Earth System Model: Evaluation and Transient Dynamics during the Twentieth and Twenty-First Centuries. Journal of Climate, 2013, 26, 4447-4475.	1.2	48
72	A theoretical framework for the net land-to-atmosphere CO ₂ flux and its implications in the definition of "emissions from land-use change". Earth System Dynamics, 2013, 4, 171-186.	2.7	74
73	The impact of nitrogen and phosphorous limitation on the estimated terrestrial carbon balance and warming of land use change over the last 156 yr. Earth System Dynamics, 2013, 4, 333-345.	2.7	32
74	Recent Changes in the Ventilation of the Southern Oceans. Science, 2013, 339, 568-570.	6.0	129
76	Dynamics of the Southern Ocean Circulation. International Geophysics, 2013, 103, 471-492.	0.6	56
77	State of the Climate in 2012. Bulletin of the American Meteorological Society, 2013, 94, S1-S258.	1.7	129

#	Article	IF	CITATIONS
78	Mixed layer saturations of CFC-11, CFC-12, and SF ₆ in a global isopycnal model. Journal of Geophysical Research: Oceans, 2013, 118, 4978-4988.	1.0	25
79	Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode. Global Biogeochemical Cycles, 2013, 27, 1236-1245.	1.9	107
80	Airâ€mass origin as a diagnostic of tropospheric transport. Journal of Geophysical Research D: Atmospheres, 2013, 118, 1459-1470.	1.2	31
81	The Marine Carbon Cycle and Ocean Carbon Inventories. International Geophysics, 2013, 103, 787-815.	0.6	11
82	Global ocean carbon uptake: magnitude, variability and trends. Biogeosciences, 2013, 10, 1983-2000.	1.3	276
83	Summertime calcium carbonate undersaturation in shelf waters of the western Arctic Ocean – how biological processes exacerbate the impact of ocean acidification. Biogeosciences, 2013, 10, 5281-5309.	1.3	39
84	A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks. Biogeosciences, 2013, 10, 4319-4340.	1.3	32
85	An assessment of the Atlantic and Arctic sea–air CO ₂ fluxes, 1990–2009. Biogeosciences, 2013, 10, 607-627.	1.3	131
86	The non-steady state oceanic CO ₂ signal: its importance, magnitude and a novel way to detect it. Biogeosciences, 2013, 10, 2219-2228.	1.3	23
87	Role of regression model selection and station distribution on the estimation of oceanic anthropogenic carbon change by eMLR. Biogeosciences, 2013, 10, 4801-4831.	1.3	17
88	Variation in Carbon Storage and Its Distribution by Stand Age and Forest Type in Boreal and Temperate Forests in Northeastern China. PLoS ONE, 2013, 8, e72201.	1.1	45
89	Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models. Biogeosciences, 2013, 10, 6225-6245.	1.3	1,191
90	Global ocean storage of anthropogenic carbon. Biogeosciences, 2013, 10, 2169-2191.	1.3	348
91	Respiration of Mediterranean cold-water corals is not affected by ocean acidification as projected for the end of the century. Biogeosciences, 2013, 10, 5671-5680.	1.3	26
92	Wind-driven changes in the ocean carbon sink. Biogeosciences, 2014, 11, 6107-6117.	1.3	19
93	Southern Ocean carbon trends: Sensitivity to methods. Geophysical Research Letters, 2014, 41, 6833-6840.	1.5	39
94	An automated gas exchange tank for determining gas transfer velocities in natural seawater samples. Ocean Science, 2014, 10, 587-600.	1.3	4
95	Regional variability of acidification in the Arctic: a sea of contrasts. Biogeosciences, 2014, 11, 293-308.	1.3	41

#	Article	IF	CITATIONS
96	Natural ocean carbon cycle sensitivity to parameterizations of the recycling in a climate model. Biogeosciences, 2014, 11, 1137-1154.	1.3	19
97	Quantifying the impact of ocean acidification on our future climate. Biogeosciences, 2014, 11, 3965-3983.	1.3	19
98	Preliminary analysis of the development of the Carbon Tracker system in Latin America and the Caribbean. Atmosfera, 2014, 27, 61-76.	0.3	6
99	Studies of Recent Changes in Atmospheric O2 Content. , 2014, , 385-404.		74
100	The role of CO2 in the Earth's ecosystem and the possibility of controlling flows between subsystems. Gospodarka Surowcami Mineralnymi / Mineral Resources Management, 2014, 30, 5-19.	0.2	1
101	State of the Climate in 2013. Bulletin of the American Meteorological Society, 2014, 95, S1-S279.	1.7	138
102	Nitrogen and phosphorous limitations significantly reduce future allowable CO2emissions. Geophysical Research Letters, 2014, 41, 632-637.	1.5	70
103	Global carbon budget 2013. Earth System Science Data, 2014, 6, 235-263.	3.7	311
104	The Contemporary Carbon Cycle. , 2014, , 399-435.		20
105	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55.	0.6	60
105 106	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521.	0.6 1.3	60 12
105 106 107	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521. Ecological Footprint: Implications for biodiversity. Biological Conservation, 2014, 173, 121-132.	0.6 1.3 1.9	60 12 149
105 106 107 108	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521. Ecological Footprint: Implications for biodiversity. Biological Conservation, 2014, 173, 121-132. Protonâ€Transfer Reaction Dynamics and Energetics in Calcification and Decalcification. Chemistry - A European Journal, 2014, 20, 13656-13661.	0.6 1.3 1.9 1.7	60 12 149 2
105 106 107 108	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521. Ecological Footprint: Implications for biodiversity. Biological Conservation, 2014, 173, 121-132. Protonâ€Transfer Reaction Dynamics and Energetics in Calcification and Decalcification. Chemistry - A European Journal, 2014, 20, 13656-13661. Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005.	0.6 1.3 1.9 1.7 1.2	60 12 149 2 156
105 106 107 108 109	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521. Ecological Footprint: Implications for biodiversity. Biological Conservation, 2014, 173, 121-132. Protonâ€Transfer Reaction Dynamics and Energetics in Calcification and Decalcification. Chemistry - A European Journal, 2014, 20, 13656-13661. Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005. A growing oceanic carbon uptake: Results from an inversion study of surface <i>p</i> >Co ₂	0.6 1.3 1.9 1.7 1.2 1.9	 60 12 149 2 156 33
105 106 107 108 109 110	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521. Ecological Footprint: Implications for biodiversity. Biological Conservation, 2014, 173, 121-132. Protonâ&Transfer Reaction Dynamics and Energetics in Calcification and Decalcification. Chemistry - A European Journal, 2014, 20, 13656-13661. Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BCC). Journal of Climate, 2014, 27, 8981-9005. A growing oceanic carbon uptake: Results from an inversion study of surface <i>> An observing system simulation for Southern Ocean carbon dioxide uptake. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130046.</i>	0.6 1.3 1.9 1.7 1.2 1.9 1.9	 60 12 149 2 156 33 41
 105 106 107 108 109 110 111 112 	The Arctic Ocean carbon sink. Deep-Sea Research Part I: Oceanographic Research Papers, 2014, 86, 39-55. The biogeophysical effects of extreme afforestation in modeling future climate. Theoretical and Applied Climatology, 2014, 118, 511-521. Ecological Footprint: Implications for biodiversity. Biological Conservation, 2014, 173, 121-132. ProtonâeTransfer Reaction Dynamics and Energetics in Calcification and Decalcification. Chemistry - A European Journal, 2014, 20, 13656-13661. Preindustrial-Control and Twentieth-Century Carbon Cycle Experiments with the Earth System Model CESM1(BGC). Journal of Climate, 2014, 27, 8981-9005. A growing oceanic carbon uptake: Results from an inversion study of surface <i>p</i> Co ₂ An observing system simulation for Southern Ocean carbon dioxide uptake. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2014, 372, 20130046. Evaluation of oceanic transport parameters using transient tracers from observations and model output. Ocean Modelling, 2014, 74, 1-21.	0.6 1.3 1.9 1.7 1.2 1.9 1.6 1.0	 60 12 149 2 156 33 41 8

#	Article	IF	CITATIONS
114	The oceanic anthropogenic CO ₂ sink: Storage, airâ€sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles, 2014, 28, 631-647.	1.9	207
115	Vertical transport in the ocean due to sub-mesoscale structures: Impacts in the Kerguelen region. Ocean Modelling, 2014, 80, 10-23.	1.0	62
116	Spatial and seasonal variability of the airâ€sea equilibration timescale of carbon dioxide. Global Biogeochemical Cycles, 2014, 28, 1163-1178.	1.9	74
118	Causes and implications of persistent atmospheric carbon dioxide biases in Earth System Models. Journal of Geophysical Research G: Biogeosciences, 2014, 119, 141-162.	1.3	121
119	Mixing and remineralization in waters detrained from the surface into Subantarctic Mode Water and Antarctic Intermediate Water in the southeastern Pacific. Journal of Geophysical Research: Oceans, 2014, 119, 4001-4028.	1.0	14
120	Decadal (1994–2008) change in the carbon isotope ratio in the eastern South Pacific Ocean. Global Biogeochemical Cycles, 2014, 28, 775-785.	1.9	8
121	Ocean acidification decreases the lightâ€use efficiency in an A ntarctic diatom under dynamic but not constant light. New Phytologist, 2015, 207, 159-171.	3.5	88
122	On the Southern Ocean CO ₂ uptake and the role of the biological carbon pump in the 21st century. Global Biogeochemical Cycles, 2015, 29, 1451-1470.	1.9	85
123	Multicentury changes in ocean and land contributions to the climate arbon feedback. Global Biogeochemical Cycles, 2015, 29, 744-759.	1.9	63
125	Southern Hemisphere extratropical circulation: Recent trends and natural variability. Geophysical Research Letters, 2015, 42, 5508-5515.	1.5	42
127	Pathways of anthropogenic carbon subduction in the global ocean. Geophysical Research Letters, 2015, 42, 6416-6423.	1.5	41
128	Natural variability of CO ₂ and O ₂ fluxes: What can we learn from centuriesâ€long climate models simulations?. Journal of Geophysical Research: Oceans, 2015, 120, 384-404.	1.0	63
129	Southern Ocean isopycnal mixing and ventilation changes driven by winds. Geophysical Research Letters, 2015, 42, 10,357.	1.5	32
130	Assessing the abilities of CMIP5 models to represent the seasonal cycle of surface ocean <i>p</i> CO ₂ . Journal of Geophysical Research: Oceans, 2015, 120, 4625-4637.	1.0	11
131	Biomineralization in bryozoans: present, past and future. Biological Reviews, 2015, 90, 1118-1150.	4.7	57
132	Transports and budgets of anthropogenic <scp>CO₂</scp> in the tropical <scp>North Atlantic</scp> in 1992–1993 and 2010–2011. Global Biogeochemical Cycles, 2015, 29, 1075-1091.	1.9	9
133	Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophysical Research Letters, 2015, 42, 4516-4522.	1.5	28
134	Knowledge and implications of global change in the oceans for biology, ecology, and ecosystem services. , 0, , 84-108.		1

#	Article	IF	CITATIONS
135	Water mass age and aging driving chromophoric dissolved organic matter in the dark global ocean. Global Biogeochemical Cycles, 2015, 29, 917-934.	1.9	60
136	Recent evidence for a strengthening CO ₂ sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophysical Research Letters, 2015, 42, 7623-7630.	1.5	70
139	Simulated anthropogenic CO ₂ storage and acidification of the Mediterranean Sea. Biogeosciences, 2015, 12, 781-802.	1.3	77
140	Characterizing the Natural System: Toward Sustained, Integrated Coastal Ocean Acidification Observing Networks to Facilitate Resource Management and Decision Support. Oceanography, 2015, 25, 92-107.	0.5	14
141	Sobre el calentamiento y la acidificación del océano mundial y su posible expresión en el medio marino costero colombiano. Revista De La Academia Colombiana De Ciencias Exactas, Fisicas Y Naturales, 2015, 39, 201.	0.0	9
142	The ocean carbon sink – impacts, vulnerabilities and challenges. Earth System Dynamics, 2015, 6, 327-358.	2.7	109
143	Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences, 2015, 12, 653-679.	1.3	587
144	Audit of the global carbon budget: estimate errors and their impact on uptake uncertainty. Biogeosciences, 2015, 12, 2565-2584.	1.3	96
146	Evaluating the ocean biogeochemical components of Earth system models using atmospheric potential oxygen and ocean color data. Biogeosciences, 2015, 12, 193-208.	1.3	16
147	Sensitivity of Mediterranean Bivalve Mollusc Aquaculture to Climate Change, Ocean Acidification, and Other Environmental Pressures: Findings from a Producer Survey. Journal of Shellfish Research, 2015, 34, 1161-1176.	0.3	41
148	Rising atmospheric CO ₂ leads to large impact of biology on Southern Ocean CO ₂ uptake via changes of the Revelle factor. Geophysical Research Letters, 2015, 42, 1459-1464.	1.5	78
149	Ocean acidification along the 24.5°N section in the subtropical North Atlantic. Geophysical Research Letters, 2015, 42, 450-458.	1.5	7
150	An objective reconstruction of the Mediterranean sea carbonate system. Deep-Sea Research Part I: Oceanographic Research Papers, 2015, 98, 21-30.	0.6	7
151	Global warming caused by afforestation in the Southern Hemisphere. Ecological Indicators, 2015, 52, 371-378.	2.6	6
152	Dominance of the Southern Ocean in Anthropogenic Carbon and Heat Uptake in CMIP5 Models. Journal of Climate, 2015, 28, 862-886.	1.2	432
153	Carbon dynamics of the Weddell Gyre, Southern Ocean. Global Biogeochemical Cycles, 2015, 29, 288-306.	1.9	24
154	Topographic influence on submesoscale dynamics in the Southern Ocean. Geophysical Research Letters, 2015, 42, 1139-1147.	1.5	61
155	Using Green's Functions to initialize and adjust a global, eddying ocean biogeochemistry general circulation model. Ocean Modelling, 2015, 95, 1-14.	1.0	22

#	Article	IF	CITATIONS
156	Quantifying anthropogenic carbon inventory changes in the Pacific sector of the Southern Ocean. Marine Chemistry, 2015, 174, 147-160.	0.9	38
157	Anthropogenic CO2 changes in the Equatorial Atlantic Ocean. Progress in Oceanography, 2015, 134, 256-270.	1.5	4
158	Effects of seawater-pH and biomineralization on the boron isotopic composition of deep-sea bamboo corals. Geochimica Et Cosmochimica Acta, 2015, 155, 86-106.	1.6	32
159	The dilemma of the dwarf Earth's CO2 degassing: Irrelevant or crucial?. Journal of Geochemical Exploration, 2015, 152, 118-122.	1.5	5
160	Airâ€mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air. Geophysical Research Letters, 2015, 42, 4240-4248.	1.5	44
161	Airmass Origin in the Arctic. Part I: Seasonality. Journal of Climate, 2015, 28, 4997-5014.	1.2	18
162	Decreased calcification in the Southern Ocean over the satellite record. Geophysical Research Letters, 2015, 42, 1834-1840.	1.5	27
163	Observing multidecadal trends in Southern Ocean CO ₂ uptake: What can we learn from an ocean model?. Clobal Biogeochemical Cycles, 2015, 29, 416-426.	1.9	35
164	Spectrophotometric Measurements of the Carbonate Ion Concentration: Aragonite Saturation States in the Mediterranean Sea and Atlantic Ocean. Environmental Science & Technology, 2015, 49, 11679-11687.	4.6	10
165	Climate-Driven Variability in the Southern Ocean Carbonate System. Journal of Climate, 2015, 28, 5335-5350.	1.2	10
166	Summertime physical and biological controls on O 2 and CO 2 in the Australian Sector of the Southern Ocean. Journal of Marine Systems, 2015, 147, 21-28.	0.9	22
167	Re-evaluating the 1940s CO ₂ plateau. Biogeosciences, 2016, 13, 4877-4897.	1.3	22
168	Climate impacts on multidecadal <i>p</i> CO ₂ variability in the North Atlantic: 1948–2009. Biogeosciences, 2016, 13, 3387-3396.	1.3	16
169	Constraining the strength of the terrestrial CO ₂ fertilization effect in the Canadian Earth system model version 4.2 (CanESM4.2). Geoscientific Model Development, 2016, 9, 2357-2376.	1.3	11
170	Quantifying the influence of sub-mesoscale dynamics on the supply of iron to Southern Ocean phytoplankton blooms. Deep-Sea Research Part I: Oceanographic Research Papers, 2016, 115, 199-209.	0.6	18
171	Particulate matter stoichiometry driven by microplankton community structure in summer in the Indian sector of the Southern Ocean. Limnology and Oceanography, 2016, 61, 1301-1321.	1.6	13
172	Multidecadal accumulation of anthropogenic and remineralized dissolved inorganic carbon along the Extended Ellett Line in the northeast Atlantic Ocean. Global Biogeochemical Cycles, 2016, 30, 293-310.	1.9	8
173	Narrowing the spread in CMIP5 model projections of air-sea CO2 fluxes. Scientific Reports, 2016, 6, 37548.	1.6	12

#	Article	IF	CITATIONS
174	Carbon cycling dynamics in the seasonal sea-ice zone of East Antarctica. Journal of Geophysical Research: Oceans, 2016, 121, 8749-8769.	1.0	17
175	The influence of Southern Ocean winds on the North Atlantic carbon sink. Global Biogeochemical Cycles, 2016, 30, 844-858.	1.9	12
176	Polar Marine Microorganisms and Climate Change. Advances in Microbial Physiology, 2016, 69, 187-215.	1.0	45
177	Monthly CO2 at A4HDYD station in a productive shallow marginal sea (Yellow Sea) with a seasonal thermocline: Controlling processes. Journal of Marine Systems, 2016, 159, 89-99.	0.9	17
178	Toward the Ecological Footprint of the use and maintenance phase of buildings: Utility consumption and cleaning tasks. Ecological Indicators, 2016, 69, 66-77.	2.6	37
179	Economic and ecological views on climate change mitigation with bioenergy and negative emissions. GCB Bioenergy, 2016, 8, 4-10.	2.5	51
180	How does <scp>S</scp> ubantarctic <scp>M</scp> ode <scp>W</scp> ater ventilate the <scp>S</scp> outhern <scp>H</scp> emisphere subtropics?. Journal of Geophysical Research: Oceans, 2016, 121, 6558-6582.	1.0	47
181	Changes in anthropogenic carbon storage in the Northeast Pacific in the last decade. Journal of Geophysical Research: Oceans, 2016, 121, 4618-4632.	1.0	11
182	A new statistical approach for interpreting oceanic fCO2 data. Marine Chemistry, 2016, 183, 41-49.	0.9	13
183	Meteorology and oceanography of the Atlantic sector of the Southern Ocean—a review of German achievements from the last decade. Ocean Dynamics, 2016, 66, 1379-1413.	0.9	12
184	Evaluating CMIP5 ocean biogeochemistry and Southern Ocean carbon uptake using atmospheric potential oxygen: Presentâ€day performance and future projection. Geophysical Research Letters, 2016, 43, 2077-2085.	1.5	22
185	Decadal trends in airâ€sea CO ₂ exchange in the Ross Sea (Antarctica). Geophysical Research Letters, 2016, 43, 5271-5278.	1.5	8
186	Chromophoric signatures of microbial byâ€products in the dark ocean. Geophysical Research Letters, 2016, 43, 7639-7648.	1.5	15
187	The Transit-Time Distribution from the Northern Hemisphere Midlatitude Surface. Journals of the Atmospheric Sciences, 2016, 73, 3785-3802.	0.6	26
188	The formation of the ocean's anthropogenic carbon reservoir. Scientific Reports, 2016, 6, 35473.	1.6	46
189	Reducing uncertainties in decadal variability of the global carbon budget with multiple datasets. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13104-13108.	3.3	39
190	Empirical algorithms to estimate water column pH in the Southern Ocean. Geophysical Research Letters, 2016, 43, 3415-3422.	1.5	48
191	Partial ages: diagnosing transport processes by means of multiple clocks. Ocean Dynamics, 2016, 66, 367-386.	0.9	14

#	Article	IF	CITATIONS
192	Preliminary kinetic data of silicic acid species prior to the formation of exoskeletal structures. Marine Chemistry, 2016, 181, 18-24.	0.9	3
193	On which timescales do gas transfer velocities control North Atlantic CO ₂ flux variability?. Global Biogeochemical Cycles, 2016, 30, 787-802.	1.9	13
194	The internal consistency of the North Sea carbonate system. Journal of Marine Systems, 2016, 157, 52-64.	0.9	10
195	Timescales for detection of trends in the ocean carbon sink. Nature, 2016, 530, 469-472.	13.7	110
196	Constraints on oceanic meridional heat transport from combined measurements of oxygen and carbon. Climate Dynamics, 2016, 47, 3335-3357.	1.7	16
197	Ecological Footprint: Refining the carbon Footprint calculation. Ecological Indicators, 2016, 61, 390-403.	2.6	185
198	Changes in Ocean Heat, Carbon Content, and Ventilation: A Review of the First Decade of GO-SHIP Global Repeat Hydrography. Annual Review of Marine Science, 2016, 8, 185-215.	5.1	183
199	Comparison of sinking particles in the upper 200Âm between subarctic station K2 and subtropical station S1 based on drifting sediment trap experiments. Journal of Oceanography, 2016, 72, 373-386.	0.7	33
200	Importance of deep mixing and silicic acid in regulating phytoplankton biomass and community in the iron-limited Antarctic Polar Front region in summer. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 138, 74-85.	0.6	12
201	Temporal changes in ventilation and the carbonate system in the Atlantic sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 138, 26-38.	0.6	13
202	Clarifying the role of coastal and marine systems in climate mitigation. Frontiers in Ecology and the Environment, 2017, 15, 42-50.	1.9	321
203	Two decades of Pacific anthropogenic carbon storage and ocean acidification along Global Ocean Shipâ€based Hydrographic Investigations Program sections P16 and P02. Global Biogeochemical Cycles, 2017, 31, 306-327.	1.9	42
204	Decline in global oceanic oxygen content during the past five decades. Nature, 2017, 542, 335-339.	13.7	829
205	Delineating environmental control of phytoplankton biomass and phenology in the Southern Ocean. Geophysical Research Letters, 2017, 44, 5016-5024.	1.5	79
206	Calibration of the carbon isotope composition (δ ¹³ C) of benthic foraminifera. Paleoceanography, 2017, 32, 512-530.	3.0	63
207	The Modern Carbon Cycle. , 2017, , 163-225.		0
208	Eddy-Pump: Pelagic carbon pump processes along the eddying Antarctic Polar Front in the Atlantic Sector of the Southern Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 2017, 138, 1-5.	0.6	1
209	Transit Time Distribution based on the ECCO-JPL Ocean Data Assimilation. Journal of Marine Systems, 2017, 167, 1-10.	0.9	3

#	ARTICLE	IF	CITATIONS
210	Ecological footprint of the use and maintenance phase of buildings: Maintenance tasks and final results. Energy and Buildings, 2017, 155, 339-351.	3.1	37
211	Mechanistic Drivers of Reemergence of Anthropogenic Carbon in the Equatorial Pacific. Geophysical Research Letters, 2017, 44, 9433-9439.	1.5	10
212	A data assimilating model for estimating <scp>S</scp> outhern <scp>O</scp> cean biogeochemistry. Journal of Geophysical Research: Oceans, 2017, 122, 6968-6988.	1.0	120
213	Mesoscale and Submesoscale Effects on Mixed Layer Depth in the Southern Ocean. Journal of Physical Oceanography, 2017, 47, 2173-2188.	0.7	42
214	Atmospheric evidence for a global secular increase in carbon isotopic discrimination of land photosynthesis. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10361-10366.	3.3	166
215	Collapse of the tropical and subtropical North Atlantic CO2 sink in boreal spring of 2010. Scientific Reports, 2017, 7, 41694.	1.6	17
216	Space and time variability of the <scp>S</scp> outhern <scp>O</scp> cean carbon budget. Journal of Geophysical Research: Oceans, 2017, 122, 7407-7432.	1.0	20
217	Phytoplankton community responses to iron and CO2 enrichment in different biogeochemical regions of the Southern Ocean. Polar Biology, 2017, 40, 2143-2159.	0.5	7
218	Decadal changes in Southern Ocean ventilation inferred from deconvolutions of repeat hydrographies. Geophysical Research Letters, 2017, 44, 5655-5664.	1.5	17
219	Recent Changes in Land Water Storage and its Contribution to Sea Level Variations. Surveys in Geophysics, 2017, 38, 131-152.	2.1	59
220	Natural Variability and Anthropogenic Trends in the Ocean Carbon Sink. Annual Review of Marine Science, 2017, 9, 125-150.	5.1	100
221	Role of the ocean's AMOC in setting the uptake efficiency of transient tracers. Geophysical Research Letters, 2017, 44, 5590-5598.	1.5	20
222	Stationary Rossby waves dominate subduction of anthropogenic carbon in the Southern Ocean. Scientific Reports, 2017, 7, 17076.	1.6	27
223	Agreement of CMIP5 Simulated and Observed Ocean Anthropogenic CO ₂ Uptake. Geophysical Research Letters, 2017, 44, 12,298.	1.5	27
224	Modelled estimates of spatial variability of iron stress in the Atlantic sector of the Southern Ocean. Biogeosciences, 2017, 14, 3883-3897.	1.3	8
225	Southern Ocean Phytoplankton in a Changing Climate. Frontiers in Marine Science, 2017, 4, .	1.2	251
226	Compiled records of carbon isotopes in atmospheric CO ₂ for historical simulations in CMIP6. Geoscientific Model Development, 2017, 10, 4405-4417.	1.3	154
228	The impact of nanoplastics on marine dissolved organic matter assembly. Science of the Total Environment, 2018, 634, 316-320.	3.9	58

#	Article	IF	CITATIONS
229	Meridional overturning circulation conveys fast acidification to the deep Atlantic Ocean. Nature, 2018, 554, 515-518.	13.7	64
230	Variability of nutrients and carbon dioxide in the Antarctic Intermediate Water between 1990 and 2014. Ocean Dynamics, 2018, 68, 295-308.	0.9	13
231	A Modelâ€Based Evaluation of the Inverse Gaussian Transitâ€Time Distribution Method for Inferring Anthropogenic Carbon Storage in the Ocean. Journal of Geophysical Research: Oceans, 2018, 123, 1777-1800.	1.0	13
232	Physical and Biological Drivers of Biogeochemical Tracers Within the Seasonal Sea Ice Zone of the Southern Ocean From Profiling Floats. Journal of Geophysical Research: Oceans, 2018, 123, 746-758.	1.0	23
233	Southern Ocean carbon-wind stress feedback. Climate Dynamics, 2018, 51, 2743-2757.	1.7	9
234	Recent Changes in Global Photosynthesis and Terrestrial Ecosystem Respiration Constrained From Multiple Observations. Geophysical Research Letters, 2018, 45, 1058-1068.	1.5	19
235	Submesoscale Rossby waves on the Antarctic circumpolar current. Science Advances, 2018, 4, eaao2824.	4.7	12
236	The eMLR(C*) Method to Determine Decadal Changes in the Global Ocean Storage of Anthropogenic CO ₂ . Global Biogeochemical Cycles, 2018, 32, 654-679.	1.9	35
237	CO 2 fixation stability by Sulfurovum lithotrophicum 42BKT T depending on pH and ionic strength conditions. Journal of Industrial and Engineering Chemistry, 2018, 57, 72-76.	2.9	5
238	The O2/N2 Ratio and CO2 Airborne Southern Ocean Study. Bulletin of the American Meteorological Society, 2018, 99, 381-402.	1.7	28
239	Past and future evolution of the marine carbonate system in a coastal zone of the Northern Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in Oceanography, 2018, 149, 193-205.	0.6	18
240	Climate conditions, and changes, affect microalgae communities… should we worry?. Integrated Environmental Assessment and Management, 2018, 14, 181-184.	1.6	5
241	Tropical land carbon cycle responses to 2015/16 El Niño as recorded by atmospheric greenhouse gas and remote sensing data. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170302.	1.8	37
242	Drivers of Interannual Variability of Summer Mixed Layer Depth in the Southern Ocean Between 2002 and 2011. Journal of Geophysical Research: Oceans, 2018, 123, 5077-5090.	1.0	15
243	The Fate of Carbon and Nutrients Exported Out of the Southern Ocean. Global Biogeochemical Cycles, 2018, 32, 1556-1573.	1.9	17
244	Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion. Nature Geoscience, 2018, 11, 836-841.	5.4	166
245	Argo Observations of the Deep Mixing Band in the Southern Ocean: A Salinity Modeling Challenge. Journal of Geophysical Research: Oceans, 2018, 123, 7599-7617.	1.0	14
246	Transport and storage of anthropogenic C in the North Atlantic Subpolar Ocean. Biogeosciences, 2018, 15, 4661-4682.	1.3	7

#	Article	IF	CITATIONS
247	Impact of deep ocean mixing on the climatic mean state in the Southern Ocean. Scientific Reports, 2018, 8, 14479.	1.6	32
248	Current CaCO ₃ dissolution at the seafloor caused by anthropogenic CO ₂ . Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 11700-11705.	3.3	83
249	Submesoscale Vertical Velocities Enhance Tracer Subduction in an Idealized Antarctic Circumpolar Current. Geophysical Research Letters, 2018, 45, 9790-9802.	1.5	48
250	Advances in planktonic foraminifer research: New perspectives for paleoceanography. Revue De Micropaleontologie, 2018, 61, 113-138.	0.8	32
251	Temperature dependency of metabolic rates in the upper ocean: A positive feedback to global climate change?. Global and Planetary Change, 2018, 170, 201-212.	1.6	62
252	Should phytoplankton be a key consideration for marine management?. Marine Policy, 2018, 97, 1-9.	1.5	39
253	Ocean acidification of a coastal Antarctic marine microbial community reveals a critical threshold for CO ₂ tolerance in phytoplankton productivity. Biogeosciences, 2018, 15, 209-231.	1.3	29
254	Changes to the Airâ€5ea Flux and Distribution of Radiocarbon in the Ocean Over the 21st Century. Geophysical Research Letters, 2018, 45, 5617-5626.	1.5	11
255	Coccolithophore populations and their contribution to carbonate export during an annual cycle in the Australian sector of the Antarctic zone. Biogeosciences, 2018, 15, 1843-1862.	1.3	15
256	The North Atlantic Biological Pump: Insights from the Ocean Observatories Initiative Irminger Sea Array. Oceanography, 2018, 31, 42-49.	0.5	43
257	Pelagic Iron Recycling in the Southern Ocean: Exploring the Contribution of Marine Animals. Frontiers in Marine Science, 2018, 5, .	1.2	29
258	Clobal soil organic carbon removal by water erosion under climate change and land use change during AD 1850–2005. Biogeosciences, 2018, 15, 4459-4480.	1.3	68
259	Seasonal development of iron limitation in the sub-Antarctic zone. Biogeosciences, 2018, 15, 4647-4660.	1.3	18
260	Revision of global carbon fluxes based on a reassessment of oceanic and riverine carbon transport. Nature Geoscience, 2018, 11, 504-509.	5.4	95
261	Ventilation of the Subtropical North Atlantic: Locations and Times of Last Ventilation Estimated Using Tracer Constraints From GEOTRACES Section GA03. Journal of Geophysical Research: Oceans, 2018, 123, 2332-2352.	1.0	9
262	Summer Carbonate Chemistry in the Dalton Polynya, East Antarctica. Journal of Geophysical Research: Oceans, 2019, 124, 5634-5653.	1.0	8
263	Model constraints on the anthropogenic carbon budget of the Arctic Ocean. Biogeosciences, 2019, 16, 2343-2367.	1.3	20
264	Overlooked ocean strategies to address climate change. Global Environmental Change, 2019, 59, 101968.	3.6	21

#	Article	IF	CITATIONS
265	The importance of Antarctic krill in biogeochemical cycles. Nature Communications, 2019, 10, 4742.	5.8	97
266	Phaeodaria: An Important Carrier of Particulate Organic Carbon in the Mesopelagic Twilight Zone of the North Pacific Ocean. Global Biogeochemical Cycles, 2019, 33, 1146-1160.	1.9	15
267	Reframing the carbon cycle of the subpolar Southern Ocean. Science Advances, 2019, 5, eaav6410.	4.7	25
268	Acidification diminishes diatom silica production in the Southern Ocean. Nature Climate Change, 2019, 9, 781-786.	8.1	68
269	Similarity Theory in the Surface Layer of Large-Eddy Simulations of the Wind-, Wave-, and Buoyancy-Forced Southern Ocean. Journal of Physical Oceanography, 2019, 49, 2165-2187.	0.7	19
270	Evaluation of Chlorophyll-a and POC MODIS Aqua Products in the Southern Ocean. Remote Sensing, 2019, 11, 1793.	1.8	16
271	Modeled Effect of Coastal Biogeochemical Processes, Climate Variability, and Ocean Acidification on Aragonite Saturation State in the Bering Sea. Frontiers in Marine Science, 2019, 5, .	1.2	30
272	Satellite Salinity Observing System: Recent Discoveries and the Way Forward. Frontiers in Marine Science, 2019, 6, .	1.2	120
273	Decadal trends in the ocean carbon sink. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 11646-11651.	3.3	94
274	Regional Wind Variability Modulates the Southern Ocean Carbon Sink. Scientific Reports, 2019, 9, 7384.	1.6	63
275	The Weddell Gyre, Southern Ocean: Present Knowledge and Future Challenges. Reviews of Geophysics, 2019, 57, 623-708.	9.0	105
276	CMIP5 model analysis of future changes in ocean net primary production focusing on differences among individual oceans and models. Journal of Oceanography, 2019, 75, 441-462.	0.7	9
277	Challenges and Prospects in Ocean Circulation Models. Frontiers in Marine Science, 2019, 6, .	1.2	133
278	Deciphering Patterns and Drivers of Heat and Carbon Storage in the Southern Ocean. Geophysical Research Letters, 2019, 46, 3359-3367.	1.5	16
279	The oceanic sink for anthropogenic CO ₂ from 1994 to 2007. Science, 2019, 363, 1193-1199.	6.0	505
280	Prominence of the tropics in the recent rise of global nitrogen pollution. Nature Communications, 2019, 10, 1437.	5.8	32
281	Sea Ice Meltwater and Circumpolar Deep Water Drive Contrasting Productivity in Three Antarctic Polynyas. Journal of Geophysical Research: Oceans, 2019, 124, 2943-2968.	1.0	31
282	Maximum entropy principle analysis in network systems with short-time recordings. Physical Review E, 2019, 99, 022409.	0.8	3

#	Article	IF	CITATIONS
283	Heat Distribution in the Southeast Pacific Is Only Weakly Sensitive to High‣atitude Heat Flux and Wind Stress. Journal of Geophysical Research: Oceans, 2019, 124, 8647-8666.	1.0	9
284	Reduced CaCO 3 Flux to the Seafloor and Weaker Bottom Current Speeds Curtail Benthic CaCO 3 Dissolution Over the 21st Century. Global Biogeochemical Cycles, 2019, 33, 1654-1673.	1.9	1
285	Summertime Atmospheric Boundary Layer Gradients of O 2 and CO 2 over the Southern Ocean. Journal of Geophysical Research D: Atmospheres, 2019, 124, 13439-13456.	1.2	2
286	The Variable Southern Ocean Carbon Sink. Annual Review of Marine Science, 2019, 11, 159-186.	5.1	165
287	Clobal reconstruction of historical ocean heat storage and transport. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 1126-1131.	3.3	180
288	Decadalâ€Scale Increases of Anthropogenic CO ₂ in Antarctic Bottom Water in the Indian and Western Pacific Sectors of the Southern Ocean. Geophysical Research Letters, 2019, 46, 833-841.	1.5	6
289	Antarctic Futures: An Assessment of Climate-Driven Changes in Ecosystem Structure, Function, and Service Provisioning in the Southern Ocean. Annual Review of Marine Science, 2020, 12, 87-120.	5.1	140
290	Diagnosis of CO2 dynamics and fluxes in global coastal oceans. National Science Review, 2020, 7, 786-797.	4.6	44
291	Importance of wind and meltwater for observed chemical and physical changes in the Southern Ocean. Nature Geoscience, 2020, 13, 35-42.	5.4	42
292	Data accuracy in Ecological Footprint's carbon footprint. Ecological Indicators, 2020, 111, 105983.	2.6	16
293	AWESOME OCIM: A simple, flexible, and powerful tool for modeling elemental cycling in the oceans. Chemical Geology, 2020, 533, 119403.	1.4	15
294	Signature of Ocean Warming at the Mixed Layer Base. Geophysical Research Letters, 2020, 47, e2019GL086269.	1.5	12
295	Correlation between fixation of high-concentration CO2 and glutamate accumulation in Sulfurovum lithotrophicum 42BKTT. Journal of Industrial and Engineering Chemistry, 2020, 92, 56-61.	2.9	1
296	Physical and Biological Controls of the Drake Passage pCO ₂ Variability. Global Biogeochemical Cycles, 2020, 34, e2020GB006644.	1.9	4
297	The ECCOâ€Darwin Dataâ€Assimilative Global Ocean Biogeochemistry Model: Estimates of Seasonal to Multidecadal Surface Ocean <i>p</i> CO ₂ and Airâ€Sea CO ₂ Flux. Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS001888.	1.3	43
298	Heat and carbon coupling reveals ocean warming due to circulation changes. Nature, 2020, 584, 227-233.	13.7	71
299	Tropical Indoâ€Pacific Teleconnections to Southern Ocean Mixed Layer Variability. Geophysical Research Letters, 2020, 47, e2020GL088466.	1.5	7
300	Ocean Biogeochemistry in GFDL's Earth System Model 4.1 and Its Response to Increasing Atmospheric CO ₂ . Journal of Advances in Modeling Earth Systems, 2020, 12, e2019MS002043.	1.3	70

#	Article	IF	CITATIONS
301	Carbon dioxide flux in the Java Sea estimated from satellite measurements. Remote Sensing Applications: Society and Environment, 2020, 20, 100376.	0.8	6
302	Modeling of Atmospheric Carbon Dioxide (CO2) Concentrations as a Function of Fossil-Fuel and Land-Use Change CO2 Emissions Coupled with Oceanic and Terrestrial Sequestration. Climate, 2020, 8, 61.	1.2	2
303	Remote assessment of the fate of phytoplankton in the Southern Ocean sea-ice zone. Nature Communications, 2020, 11, 3108.	5.8	31
304	The Sensitivity of Southeast Pacific Heat Distribution to Local and Remote Changes in Ocean Properties. Journal of Physical Oceanography, 2020, 50, 773-790.	0.7	6
305	Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences, 2020, 17, 3439-3470.	1.3	348
306	Advective Controls on the North Atlantic Anthropogenic Carbon Sink. Global Biogeochemical Cycles, 2020, 34, e2019GB006457.	1.9	12
307	Labrador Sea Water Transport Across the Charlieâ€Gibbs Fracture Zone. Journal of Geophysical Research: Oceans, 2020, 125, e2020JC016068.	1.0	2
308	Towards an intensified summer CO2 sink behaviour in the Southern Ocean coastal regions. Progress in Oceanography, 2020, 183, 102267.	1.5	18
309	Effects of phytoplankton community composition and productivity on sea surface pCO2 variations in the Southern Ocean. Deep-Sea Research Part I: Oceanographic Research Papers, 2020, 160, 103263.	0.6	8
310	Golden carbon of Sargassum forests revealed as an opportunity for climate change mitigation. Science of the Total Environment, 2020, 729, 138745.	3.9	68
311	Mapping the field: a bibliometric analysis of land use and carbon emissions (LUCE) research from 1987 to 2018. Library Hi Tech, 2021, 39, 396-411.	3.7	8
312	Impact of climate change on the primary production and related biogeochemical cycles in the coastal and sea ice zone of the Southern Ocean. Science of the Total Environment, 2021, 751, 141678.	3.9	9
314	Doping regulation in transition metal compounds for electrocatalysis. Chemical Society Reviews, 2021, 50, 9817-9844.	18.7	245
315	Constraining Southern Ocean CO ₂ Flux Uncertainty Using Uncrewed Surface Vehicle Observations. Geophysical Research Letters, 2021, 48, e2020GL091748.	1.5	41
316	Transient Response of the Southern Ocean to Idealized Wind and Thermal Forcing across Different Model Resolutions. Journal of Climate, 2021, 34, 5477-5496.	1.2	4
318	Exploring the Roles of Iron and Irradiance in Dynamics of Diatoms and <i>Phaeocystis</i> in the Amundsen Sea Continental Shelf Water. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC016673.	1.0	7
319	Ocean carbon uptake under aggressive emission mitigation. Biogeosciences, 2021, 18, 2711-2725.	1.3	19
320	Energy Flux into Near-Inertial Internal Waves Below the Surface Boundary Layer in the Global Ocean.	0.7	2

#	Article	IF	CITATIONS
323	Evolving patterns of sterodynamic sea-level rise under mitigation scenarios and insights from linear system theory. Climate Dynamics, 2021, 57, 635-656.	1.7	4
324	Demons in the North Atlantic: Variability of Deep Ocean Ventilation. Geophysical Research Letters, 2021, 48, e2020GL092340.	1.5	7
325	Ocean carbon cycle feedbacks in CMIP6 models: contributions from different basins. Biogeosciences, 2021, 18, 3189-3218.	1.3	9
326	Regional Asymmetries in Ocean Heat and Carbon Storage due to Dynamic Redistribution in Climate Model Projections. Journal of Climate, 2021, 34, 3907-3925.	1.2	8
327	A 30Â‥ear Time Series of Transient Tracerâ€Based Estimates of Anthropogenic Carbon in the Central Labrador Sea. Journal of Geophysical Research: Oceans, 2021, 126, e2020JC017092.	1.0	6
328	Apparent Periodic and Longâ€Term Changes in AAIW and UCDW Properties at Fixed Depths in the Southwest Pacific, With Indications of a Regime Shift in the 1930s. Geophysical Research Letters, 2021, 48, e2020GL092329.	1.5	2
329	Carbon Cycle Response to Temperature Overshoot Beyond 2°C: An Analysis of CMIP6 Models. Earth's Future, 2021, 9, e2020EF001967.	2.4	17
330	Evaluating the physical and biogeochemical state of the global ocean component of UKESM1 in CMIP6 historical simulations. Geoscientific Model Development, 2021, 14, 3437-3472.	1.3	25
331	Change of coral carbon isotopic response to anthropogenic Suess effect since around 2000s. Marine Environmental Research, 2021, 168, 105328.	1.1	2
332	Surface atmospheric forcing as the driver of long-term pathways and timescales of ocean ventilation. Ocean Science, 2021, 17, 935-952.	1.3	3
333	Individual-level characteristics of environmental sustainability among students in a higher education institution: the role of happiness and academic performance. International Journal of Sustainability in Higher Education, 2021, 22, 1664-1690.	1.6	6
335	Ventilation of the Southern Ocean Pycnocline. Annual Review of Marine Science, 2022, 14, 405-430.	5.1	21
336	Potential Role of Major Phytoplankton Communities on pCO2 Modulation in the Indian Sector of Southern Ocean. Thalassas, 2021, 37, 531-548.	0.1	2
337	Mass-transfer kinetics of CO2 in a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent. Journal of Molecular Liquids, 2021, 336, 116383.	2.3	3
338	Missing the Reef for the Corals: Unexpected Trends Between Coral Reef Condition and the Environment at the Ecosystem Scale. Frontiers in Marine Science, 2021, 8, .	1.2	9
340	Diagnosing CO2 emission-induced feedbacks between the Southern Ocean carbon cycle and the climate system: A multiple Earth System Model analysis using a water mass tracking approach. Journal of Climate, 2021, , 1-62.	1.2	2
341	Impacts of global warming on marine microbial communities. Science of the Total Environment, 2021, 791, 147905.	3.9	47
342	Circulation timescales of Atlantic Water in the Arctic Ocean determined from anthropogenic radionuclides. Ocean Science, 2021, 17, 111-129.	1.3	20

# 343	ARTICLE Coral Reef coral reef Ecosystems coral reef ecosystem. , 2012, , 2489-2509.	IF	CITATIONS 3
344	Global Forests Management for Climate Change Mitigation. , 2017, , 395-432.		2
345	Ecosystem Carbon Sequestration. , 2013, , 39-62.		4
346	Locations and Mechanisms of Ocean Ventilation in the High-Latitude North Atlantic in an Eddy-Permitting Ocean Model. Journal of Climate, 2020, 33, 10113-10131.	1.2	14
347	Factors influencing the retreat of the coastline. International Journal of Computational Methods and Experimental Measurements, 2017, 5, 741-749.	0.1	9
348	Biometry and dissolution features of the benthic foraminifer Ammonia aomoriensis at high pCO2. Marine Ecology - Progress Series, 2011, 432, 53-67.	0.9	43
349	Microbial metabolic rates in the Ross Sea: the ABIOCLEAR Project. Nature Conservation, 0, 34, 441-475.	0.0	7
350	A dynamical state underlying the second order maximum entropy principle in neuronal networks. Communications in Mathematical Sciences, 2017, 15, 665-692.	0.5	6
352	Carbon uptake and biogeochemical change in the Southern Ocean, south of Tasmania. Biogeosciences, 2017, 14, 5217-5237.	1.3	26
367	Global Carbon Budget 2018. Earth System Science Data, 2018, 10, 2141-2194.	3.7	1,167
368	Global Carbon Budget 2017. Earth System Science Data, 2018, 10, 405-448.	3.7	801
369	Global Carbon Budget 2019. Earth System Science Data, 2019, 11, 1783-1838.	3.7	1,159
370	Global Carbon Budget 2020. Earth System Science Data, 2020, 12, 3269-3340.	3.7	1,477
371	Measurements of the stable carbon isotope composition of dissolved inorganic carbon in the northeastern Atlantic and Nordic Seas during summer 2012. Earth System Science Data, 2015, 7, 127-135.	3.7	12
372	Global Carbon Budget 2015. Earth System Science Data, 2015, 7, 349-396.	3.7	616
373	Global carbon budget 2014. Earth System Science Data, 2015, 7, 47-85.	3.7	463
374	Stable carbon isotopes of dissolved inorganic carbon for a zonal transect across the subpolar North Atlantic Ocean in summer 2014. Earth System Science Data, 2016, 8, 221-233.	3.7	6
375	Global Carbon Budget 2016. Earth System Science Data, 2016, 8, 605-649.	3.7	905

# 377	ARTICLE Variability and stability of anthropogenic CO ₂ in Antarctic Bottom Water observed in the Indian sector of the Southern Ocean, 1978–2018. Ocean Science, 2020, 16, 1559-1576.	IF 1.3	CITATIONS
378	Reconstruction of Ocean Circulation Based on Neodymium Isotopic Composition: Potential Limitations and Application to the Mid-Pleistocene Transition. Oceanography, 2020, 33, .	0.5	5
390	AtmosphÃ ¤ sche Spurengase. , 2017, , 397-467.		0
393	Effect of Intensity and Mode of Artificial Upwelling on Particle Flux and Carbon Export. Frontiers in Marine Science, 2021, 8, .	1.2	14
394	Modeling the mixed layer depth in Southern Ocean using high resolution regional coupled ocean sea ice model. Modeling Earth Systems and Environment, 0, , 1.	1.9	1
395	Analysis of the marine carbon sink capacity in China. , 2020, , 103-144.		1
396	Explicit silicate cycling in the Kiel Marine Biogeochemistry Model version 3 (KMBM3) embedded in the UVic ESCM version 2.9. Geoscientific Model Development, 2021, 14, 7255-7285.	1.3	4
397	Suppressed <i>p</i> CO ₂ in the Southern Ocean Due to the Interaction Between Current and Wind. Journal of Geophysical Research: Oceans, 2021, 126, e2021JC017884.	1.0	3
398	Simulations With the Marine Biogeochemistry Library (MARBL). Journal of Advances in Modeling Earth Systems, 2021, 13, e2021MS002647.	1.3	37
399	Multiâ€Century Changes in the Ocean Carbon Cycle Controlled by the Tropical Oceans and the Southern Ocean. Global Biogeochemical Cycles, 2021, 35, e2021GB007090.	1.9	5
400	Strong Southern Ocean carbon uptake evident in airborne observations. Science, 2021, 374, 1275-1280.	6.0	44
401	Decadal vision in oceanography 2021: Polar oceans. Oceanography in Japan, 2021, 30, 159-178.	0.5	4
402	Evaluation of Existing Indexes of Sustainable Well-Being and Propositions for Improvement. Sustainability, 2022, 14, 1027.	1.6	11
403	Ocean acidification alters the nutritional value of Antarctic diatoms. New Phytologist, 2022, 233, 1813-1827.	3.5	13
404	Stratification constrains future heat and carbon uptake in the Southern Ocean between 30°S and 55°S. Nature Communications, 2022, 13, 340.	5.8	35
405	Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia, 2023, 850, 2691-2706.	1.0	35
406	Sedimentary Anthropogenic Carbon Signals From the Western Pacific Margin for the Last Century. Frontiers in Earth Science, 2022, 9, .	0.8	1
409	Responses of a Natural Phytoplankton Community From the Drake Passage to Two Predicted Climate Change Scenarios. Frontiers in Marine Science, 2022, 9, .	1.2	3

#	Article	IF	CITATIONS
410	Evaluating the Arabian Sea as a regional source of atmospheric CO ₂ : seasonal variability and drivers. Biogeosciences, 2022, 19, 907-929.	1.3	7
411	The impact of mobile demersal fishing on carbon storage in seabed sediments. Global Change Biology, 2022, 28, 2875-2894.	4.2	35
412	Dynamically downscaled projections of ocean acidification for the Bering Sea. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 198, 105055.	0.6	8
413	Attribution of Spaceâ€Time Variability in Globalâ€Ocean Dissolved Inorganic Carbon. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
414	Diatoms and Their Microbiomes in Complex and Changing Polar Oceans. Frontiers in Microbiology, 2022, 13, 786764.	1.5	7
415	Transit Time Distributions and ventilation pathways using CFCs and Lagrangian backtracking in the South Atlantic of an eddying ocean model. Journal of Physical Oceanography, 2022, , .	0.7	0
416	Atmospheric CO ₂ and Sea Surface Temperature Variability Cannot Explain Recent Decadal Variability of the Ocean CO ₂ Sink. Geophysical Research Letters, 2022, 49, .	1.5	19
417	How Well Do We Understand the Landâ€Oceanâ€Atmosphere Carbon Cycle?. Reviews of Geophysics, 2022, 60, .	9.0	38
418	Rising Atmospheric Carbon Dioxide Could Doom Ocean Corals and Shellfish: Simple Thermodynamic Calculations Show Why. Journal of Chemical Education, 0, , .	1.1	2
420	Mesoscale Eddies Regulate Seasonal Iron Supply and Carbon Drawdown in the Drake Passage. Geophysical Research Letters, 2021, 48, .	1.5	4
421	Commercial fishery disturbance of the global ocean biological carbon sink. Global Change Biology, 2022, 28, 1212-1221.	4.2	21
424	The marine carbonate system along the northern Antarctic Peninsula: current knowledge and future perspectives. Anais Da Academia Brasileira De Ciencias, 2022, 94, e20210825.	0.3	3
425	Research on the Blue Carbon Trading Market System under Blockchain Technology. Energies, 2022, 15, 3134.	1.6	13
426	Global Carbon Budget 2021. Earth System Science Data, 2022, 14, 1917-2005.	3.7	663
427	Inter-annual variability of biogeography-based phytoplankton seasonality in the Arabian Sea during 1998–2017. Deep-Sea Research Part II: Topical Studies in Oceanography, 2022, 200, 105096.	0.6	2
428	A derivative-free optimisation method for global ocean biogeochemical models. Geoscientific Model Development, 2022, 15, 3537-3554.	1.3	5
429	Development of the Regional Carbon Cycle Model in the Central Pacific Sector of the Southern Ocean. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	0
430	How Is the Ocean Anthropogenic Carbon Reservoir Filled?. Global Biogeochemical Cycles, 2022, 36, .	1.9	9

# 431	ARTICLE Importance of Mesoscale Currents in Amoc Pathways and Timescales. Journal of Physical Oceanography, 2022, , .	IF 0.7	Citations
432	The redistribution of anthropogenic excess heat is a key driver of warming in the North Atlantic. Communications Earth & Environment, 2022, 3, .	2.6	10
433	Ocean systems. , 2022, , 427-452.		1
434	Variations and Environmental Controls of Primary Productivity in the Amundsen Sea. Frontiers in Marine Science, 2022, 9, .	1.2	1
435	Summer trends and drivers of sea surface fCO ₂ and pH changes observed in the southern Indian Ocean over the last two decades (1998–2019). Biogeosciences, 2022, 19, 2599-2625.	1.3	7
436	Tracer and observationally derived constraints on diapycnal diffusivities in an ocean state estimate. Ocean Science, 2022, 18, 729-759.	1.3	3
437	On anomalously high sub-surface dissolved oxygen in the Indian sector of the Southern Ocean. Journal of Oceanography, 0, , .	0.7	0
438	Phytoplankton and ice-algal communities in the seasonal ice zone during January (Southern Ocean,) Tj ETQq1 1	0.784314 0.7	rgǥT /Overlo
439	Indoâ€Pacific Sector Dominates Southern Ocean Carbon Outgassing. Global Biogeochemical Cycles, 2022, 36, .	1.9	14
440	Topographic Hotspots of Southern Ocean Eddy Upwelling. Frontiers in Marine Science, 0, 9, .	1.2	5
441	Controls on nitrite oxidation in the upper Southern Ocean: insights from winter kinetics experiments in the Indian sector. Biogeosciences, 2022, 19, 3425-3444.	1.3	5
442	The Ocean Carbon Cycle. Annual Review of Environment and Resources, 2022, 47, 317-341.	5.6	36
444	The role of the Dotson Ice Shelf and Circumpolar Deep Water as driver and source of dissolved and particulate iron and manganese in the Amundsen Sea polynya, Southern Ocean. Marine Chemistry, 2022, 246, 104161.	0.9	9
445	Identifying priority areas to manage mobile bottom fishing on seabed carbon in the UK. , 2022, 1, e0000059.		3
446	A review of the scientific knowledge of the seascape off Dronning Maud Land, Antarctica. Polar Biology, 2022, 45, 1313-1349.	0.5	2
447	Global impacts of projected climate changes on the extent and aboveground biomass of mangrove forests. Diversity and Distributions, 2022, 28, 2349-2360.	1.9	9
448	Sustainable Approaches to Realize Carbon Neutrality in China: A Case Study of Zhejiang Province. Journal of Marine Science and Engineering, 2022, 10, 1351.	1.2	0
449	Source‣abeled Anthropogenic Carbon Reveals a Large Shift of Preindustrial Carbon From the Ocean to the Atmosphere. Global Biogeochemical Cycles, 2022, 36, .	1.9	5

#	Article	IF	CITATIONS
450	Estimating Ocean Heat Uptake Using Boundary Green's Functions: A Perfectâ€Model Test of the Method. Journal of Advances in Modeling Earth Systems, 2022, 14, .	1.3	2
451	Anthropogenic Carbon Transport Variability in the Atlantic Ocean Over Three Decades. Global Biogeochemical Cycles, 2022, 36, .	1.9	2
452	Evolution of blue carbon management policies in China: review, performance and prospects. Climate Policy, 2023, 23, 254-267.	2.6	4
453	Global Carbon Budget 2022. Earth System Science Data, 2022, 14, 4811-4900.	3.7	492
454	A regional-scale approach for modeling primary production and biogenic silica export in the Southern Ocean. Environmental Research, 2022, , 114811.	3.7	0
455	Contribution of silica-scaled chrysophytes to ecosystems services: a review. Hydrobiologia, 2023, 850, 2735-2756.	1.0	5
456	Optimizing 4Âyears of CO ₂ biospheric fluxes from OCO-2 and in situ data in TM5: fire emissions from GFED and inferred from MOPITT CO data. Atmospheric Chemistry and Physics, 2022, 22, 15817-15849.	1.9	0
457	Diversity and Carbon Sequestration of Seaweed in the Ma'an Archipelago, China. Diversity, 2023, 15, 12.	0.7	1
458	Filling the Gap between Heteroatom Doping and Edge Enrichment of 2D Electrocatalysts for Enhanced Hydrogen Evolution. ACS Nano, 2023, 17, 1287-1297.	7.3	9
459	Direct Air Capture of CO2 through Carbonate Alkalinity Generated by Phytoplankton Nitrate Assimilation. International Journal of Environmental Research and Public Health, 2023, 20, 550.	1.2	0
460	Biological carbon pump in the Black Sea. Hydrosphere Еcology (ÐколоÐ3Ð,Ñ•Ð3Ð,ÐроÑферы);	2 02 2, , 6	9-92.
461	New insight into Salpa thompsoni distribution via glider-borne acoustics. Frontiers in Marine Science, 0, 9, .	1.2	2
462	Fast Spinâ€Up of Geochemical Tracers in Ocean Circulation and Climate Models. Journal of Advances in Modeling Earth Systems, 2023, 15, .	1.3	0
463	Trends and variability in the ocean carbon sink. Nature Reviews Earth & Environment, 2023, 4, 119-134.	12.2	37
464	Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world. Renewable and Sustainable Energy Reviews, 2023, 177, 113215.	8.2	42
465	Low frequency changes in CO2 concentration in East Asia related to Pacific decadal oscillation and Atlantic multi-decadal oscillation for mid-summer and early fall. Science of the Total Environment, 2023, 876, 162377.	3.9	2
466	Rice husk as a potential source of silicate to oceanic phytoplankton. Science of the Total Environment, 2023, 879, 162941.	3.9	3
467	Phytoplankton communities in a coastal and offshore stations of the northern Adriatic Sea approached by network analysis and different statistical descriptors. Estuarine, Coastal and Shelf Science, 2023, 282, 108224	0.9	4

#	Article	IF	CITATIONS
468	Evaluating Northern Hemisphere Growing Season Net Carbon Flux in Climate Models Using Aircraft Observations. Global Biogeochemical Cycles, 2023, 37, .	1.9	2
469	Anomalous DOC signatures reveal iron control on export dynamics in the Pacific Southern Ocean. Frontiers in Marine Science, 0, 10, .	1.2	0
470	Annually Resolved Propagation of CFCs and SF ₆ in the Global Ocean Over Eight Decades. Journal of Geophysical Research: Oceans, 2023, 128, .	1.0	1
472	Dissolved gases in the deep North Atlantic track ocean ventilation processes. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
473	Wind-driven upwelling of iron sustains dense blooms and food webs in the eastern Weddell Gyre. Nature Communications, 2023, 14, .	5.8	4
487	THE IMPACT OF RIVER SEDIMENTATION ON THE VARIABILITY OF THE SEA FLOOR TOPOGRAPHY IS ONE OF THE FACTORS WITH A SIGNIFICANT IMPACT ON THE DYNAMICS OF THE COASTLINE. , 2023, , .		0
496	Assessing carbon cycle projections from complex and simple models under SSP scenarios. Climatic Change, 2023, 176, .	1.7	1