A γ-ray burst at a redshift of z €‰2

Nature 461, 1254-1257 DOI: 10.1038/nature08459

Citation Report

#	Article	IF	CITATIONS
1	ESTIMATING REDSHIFTS FOR LONG GAMMA-RAY BURSTS. Astrophysical Journal, 2009, 707, 387-403.	1.6	39
2	LOW-RESOLUTION SPECTROSCOPY OF GAMMA-RAY BURST OPTICAL AFTERGLOWS: BIASES IN THE <i>SWIFT</i> SAMPLE AND CHARACTERIZATION OF THE ABSORBERS. Astrophysical Journal, Supplement Series, 2009, 185, 526-573.	3.0	295
3	GRB 090423 at a redshift of z â‰^ 8.1. Nature, 2009, 461, 1258-1260.	13.7	397
4	Most distant cosmic blast seen. Nature, 2009, 461, 1221-1223.	13.7	6
5	Basic performance of the polarimeter for gamma-ray bursts using MAPMTs and segmented scintillators. , 2009, , .		0
6	The high energy telescope on EXIST. , 2009, , .		5
7	The Cosmic Chemical Evolution as seen by the Brightest Events in the Universe. Proceedings of the International Astronomical Union, 2009, 5, 139-146.	0.0	4
8	Overview of EXIST mission science and implementation. , 2010, , .		7
9	The reanalysis of spectra of GRBÂ080913 to estimate the neutral fraction of the IGM at a redshift of 6.7. Astronomy and Astrophysics, 2010, 512, L3.	2.1	24
10	GRB 090417B AND ITS HOST GALAXY: A STEP TOWARD AN UNDERSTANDING OF OPTICALLY DARK GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 717, 223-234.	1.6	46
11	DISCOVERY OF RADIO AFTERGLOW FROM THE MOST DISTANT COSMIC EXPLOSION. Astrophysical Journal Letters, 2010, 712, L31-L35.	3.0	39
12	The nature of long-GRB host galaxies from chemical abundances. Astronomy and Astrophysics, 2010, 521, A73.	2.1	7
13	A NEW CLASSIFICATION METHOD FOR GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 725, 1965-1970.	1.6	62
14	GRB 090313: X-shooter's first shot at a gamma-ray burst. Astronomy and Astrophysics, 2010, 513, A42.	2.1	23
15	A MATURE DUSTY STAR-FORMING GALAXY HOSTING GRB 080607 AT <i>z</i> = 3.036. Astrophysical Journal Letters, 2010, 723, L218-L222.	3.0	22
16	Detection of the high \${sf z}\$ GRB 080913 and its implications on progenitors and energy extraction mechanisms. Astronomy and Astrophysics, 2010, 510, A105.	2.1	13
17	The afterglow and host galaxy of GRB 090205: evidence of a Ly- <i>α</i> emitter at z = 4.65. Astronomy and Astrophysics, 2010, 522, A20.	2.1	19
18	GRB 021004: Tomography of a gamma-ray burst progenitor and its host galaxy. Astronomy and Astrophysics, 2010, 517, A61.	2.1	29

ATION REI

CITATION REPORT	
-----------------	--

#	Article	IF	CITATIONS
19	ULTRADEEP INFRARED ARRAY CAMERA OBSERVATIONS OF SUB- <i>L</i> * <i>z</i> â ⁻¹ / ₄ 7 AND <i>z</i> â ⁻¹ / ₄ 8 GALA IN THE HUBBLE ULTRA DEEP FIELD: THE CONTRIBUTION OF LOW-LUMINOSITY GALAXIES TO THE STELLAR MASS DENSITY AND REIONIZATION. Astrophysical Journal Letters, 2010, 708, L26-L31.	XIES 3.0	128
20	FRAGMENTATION IN THE FIRST GALAXIES. Astrophysical Journal, 2010, 723, 1568-1582.	1.6	43
21	Observational Searches for High-Redshift Galaxies Hosting Population III Stars. , 2010, , .		0
22	THE LACK OF INTENSE Lyα IN ULTRADEEP SPECTRA OF <i>z</i> = 7 CANDIDATES IN GOODS-S: IMPRINT OF REIONIZATION?. Astrophysical Journal Letters, 2010, 725, L205-L209.	3.0	133
23	DISCOVERY OF <i>z</i> â ⁻¹ /4 8 GALAXIES IN THE HUBBLE ULTRA DEEP FIELD FROM ULTRA-DEEP WFC3/IR OBSERVATIONS. Astrophysical Journal Letters, 2010, 709, L133-L137.	3.0	310
24	DISCOVERY OF A TIGHT CORRELATION FOR GAMMA-RAY BURST AFTERGLOWS WITH "CANONICAL―LIGHT CURVES. Astrophysical Journal Letters, 2010, 722, L215-L219.	3.0	104
25	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. I. COMPARING PRE- <i>SWIFT</i> AND <i>SWIFT</i> -ERA LONG/SOFT (TYPE II) GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2010, 720, 1513-1558.	1.6	253
26	Deciphering the Ancient Universe with High-Energy Gamma-Rays from Gamma-Ray Bursts. , 2010, , .		0
27	Recent Progress on GRBs with Swift. , 2010, , .		0
28	GRB Probes of the Early Universe with EXIST. , 2010, , .		2
29	GRB 090423 and the high-z GRBs as a New Tool to study the Reionization Epoch. , 2010, , .		0
30	The highest redshift GRBs and their host galaxies. , 2010, , .		0
31	On a possible connection between wormholes and soft gamma repeaters. Gravitation and Cosmology, 2010, 16, 259-265.	0.3	4
32	Tachyonic Î ³ -ray bursts generated by nonlocal plasma currents. European Physical Journal C, 2010, 69, 241-263.	1.4	9
33	Gamma-ray bursts in the Swift-Fermi era: Confronting data with theory. Science China: Physics, Mechanics and Astronomy, 2010, 53, 14-23.	2.0	3
34	Lorentz invariance under scrutiny of recent high-energy gamma-ray observations. Nuclear Physics, Section B, Proceedings Supplements, 2010, 203-204, 33-44.	0.5	1
35	50 years of space science at Leicester. Astronomy and Geophysics, 2010, 51, 6.12-6.15.	0.1	1
36	Redshift distribution and luminosity function of long gamma-ray bursts from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1972-1980.	1.6	36

#	Article	IF	CITATIONS
37	Constraining reionization using 21-cm observations in combination with CMB and Lyα forest data. Monthly Notices of the Royal Astronomical Society, 0, 408, 57-70.	1.6	39
38	Constraining cosmological parameters by gamma-ray burst X-ray afterglow light curves. Monthly Notices of the Royal Astronomical Society, 2010, 408, 1181-1186.	1.6	58
39	The contribution of high-redshift galaxies to cosmic reionization: new results from deep WFC3 imaging of the Hubble Ultra Deep Field. Monthly Notices of the Royal Astronomical Society, 2010, 409, 855-866.	1.6	175
40	Constraining the molecular gas in the environs of a zâ^¼ 8 gamma-ray burst host galaxy. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	9
41	Probing the very high redshift Universe with gamma-ray bursts: prospects for observations with future X-ray instruments. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	4
42	The earliest galaxies seen in 21 cm line absorption. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	16
43	The X-ray absorbing column densities of <i>Swift</i> gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2010, 402, 2429-2435.	1.6	67
44	Galaxies at z= 6-9 from the WFC3/IR imaging of the Hubble Ultra Deep Field. Monthly Notices of the Royal Astronomical Society, 0, 403, 960-983.	1.6	204
45	Probing intergalactic radiation fields during cosmic reionization through gamma-ray absorption. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	1.6	6
46	Simulations on high-z long gamma-ray burst rate. Monthly Notices of the Royal Astronomical Society, 2010, 406, 558-565.	1.6	42
47	Lag-luminosity relation in γ-ray burst X-ray flares: a direct link to the prompt emission. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2149-2167.	1.6	104
48	Spectroscopic confirmation of a galaxy at redshift z = 8.6. Nature, 2010, 467, 940-942.	13.7	110
49	Probing â^1⁄4L* Lyman-break galaxies at zâ‰^ 7 in GOODS-South with WFC3 on Hubble Space Telescope. Monthly Notices of the Royal Astronomical Society, 0, 403, 938-944.	1.6	64
50	Evidence for supernova-synthesized dust from the rising afterglow of GRB 071025 at zâ^¼ 5. Monthly Notices of the Royal Astronomical Society, 2010, 406, 2473-2487.	1.6	70
51	Galaxy sets distance mark. Nature, 2010, 467, 924-925.	13.7	0
52	A supernova connection. Nature Physics, 2010, 6, 241-243.	6.5	2
53	At the limit, at last. Nature Physics, 2010, 6, 243-243.	6.5	1
54	No evidence for dust extinction in GRB 050904 at <i>z</i> ~ 6.3. Astronomy and Astrophysics, 2010, 515, A94.	2.1	42

#	Article	IF	CITATIONS
55	SHORT-DURATION GAMMA-RAY BURSTS FROM OFF-AXIS COLLAPSARS. Astrophysical Journal, 2010, 717, 239-244.	1.6	44
57	ON THE FORMATION OF LyÎ \pm EMISSION FROM RESONANTLY SCATTERED CONTINUUM PHOTONS OF GAMMA-RAY BURST's AFTERGLOW. Astrophysical Journal, 2010, 710, 1432-1443.	1.6	3
58	ON THE ORIGIN OF THE HIGHEST REDSHIFT GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 708, 117-126.	1.6	35
59	CONSTRAINING DARK ENERGY WITH GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 714, 1347-1354.	1.6	58
60	A NEW LUMINOSITY RELATION FOR GAMMA-RAY BURSTS AND ITS IMPLICATION. Astrophysical Journal, 2010, 717, 1274-1278.	1.6	14
61	Spectral-luminosity relation within individual <i>Fermi</i> gamma rays bursts. Astronomy and Astrophysics, 2010, 511, A43.	2.1	105
62	THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS. Astrophysical Journal, 2010, 711, 495-516.	1.6	149
63	The first spectral line surveys searching for signals from the dark ages. Astronomy and Astrophysics, 2010, 515, A72.	2.1	12
64	A cosmographic calibration of the <i>E^{p,i}</i> – <i>E</i> _{<i>iso</i>} (Amati) relation for GRBs. Astronomy and Astrophysics, 2010, 519, A73.	2.1	20
65	RESONANT SCATTERING AND Lyα RADIATION EMERGENT FROM NEUTRAL HYDROGEN HALOS. Astrophysical Journal, 2010, 716, 604-614.	1.6	12
66	Can massive Be/Oe stars be progenitors of long gamma ray bursts?. Astronomy and Astrophysics, 2010, 516, A103.	2.1	4
67	Gamma-Ray Bursts in the Era of Rapid Followup. Advances in Astronomy, 2010, 2010, 1-14.	0.5	4
68	UNVEILING THE ORIGIN OF GRB 090709A: LACK OF PERIODICITY IN A REDDENED COSMOLOGICAL LONG-DURATION GAMMA-RAY BURST. Astronomical Journal, 2010, 140, 224-234.	1.9	37
69	High-Redshift Gamma-Ray Bursts: Observational Signatures of Superconducting Cosmic Strings?. Physical Review Letters, 2010, 104, 241102.	2.9	31
70	Constraints on cosmological models and reconstructing the acceleration history of the Universe with gamma-ray burst distance indicators. Physical Review D, 2010, 81, .	1.6	36
71	<i>FERMI</i> LARGE AREA TELESCOPE CONSTRAINTS ON THE GAMMA-RAY OPACITY OF THE UNIVERSE. Astrophysical Journal, 2010, 723, 1082-1096.	1.6	106
72	ANGULAR SIZE TEST ON THE EXPANSION OF THE UNIVERSE. International Journal of Modern Physics D, 2010, 19, 245-291.	0.9	21
73	Revealing the First Stellar and Supermassive Black Holes to EXIST. , 2010, , .		2

		CITATION REPORT		
#	Article		IF	CITATIONS
74	GAMMA-RAY BURSTS $\hat{a} \in $ "OBSERVATIONS. International Journal of Modern Physics D, 2010, 1	19, 977-984.	0.9	0
75	Galaxy formation in the reionization epoch as hinted by Wide Field Camera 3 observations of Hubble Ultra Deep Field. Research in Astronomy and Astrophysics, 2010, 10, 867-904.	the	0.7	50
76	Dark mysteries of the Universe. Contemporary Physics, 2011, 52, 349-354.		0.8	0
77	A luminous quasar at a redshift of $z = 7.085$. Nature, 2011, 474, 616-619.		13.7	1,183
78	The missing gas problem in GRB host galaxies: evidence for a highly ionised component. Astro Astrophysics, 2011, 525, A113.	onomy and	2.1	52
79	POPULATION III GAMMA-RAY BURST AFTERGLOWS: CONSTRAINTS ON STELLAR MASSES AND MEDIUM DENSITIES. Astrophysical Journal, 2011, 731, 127.	D EXTERNAL	1.6	69
80	SPECTROSCOPIC CONFIRMATION OF TWO LYMAN BREAK GALAXIES AT REDSHIFT BEYOND 7 Journal Letters, 2011, 730, L35.	7. Astrophysical	3.0	163
81	The stars and stellar evolution. , 2011, , 35-76.			0
82	The dynamics of charged particles in magnetic fields. , 2011, , 178-192.			0
83	Interstellar gas and magnetic fields. , 2011, , 333-377.			0
84	Populations III.1 and III.2 gamma-ray bursts: constraints on the event rate for future radio and surveys. Astronomy and Astrophysics, 2011, 533, A32.	l X-ray	2.1	98
85	Rest-frame properties of 32 gamma-ray bursts observed by the <i>Fermi</i> Gamma-ray Burst Astronomy and Astrophysics, 2011, 531, A20.	Monitor.	2.1	32
87	Recovering <i>Swift</i> -XRT energy resolution through CCD charge trap mapping. Astronomy Astrophysics, 2011, 534, A20.	' and	2.1	7
89	High energy astrophysics $\hat{a} \in $ an introduction. , 2011, , 3-34.			13
90	Interactions of high energy photons. , 2011, , 228-278.			0
91	Active galaxies. , 2011, , 585-609.			0
92	The galaxies. , 2011, , 77-98.			0
93	Clusters of galaxies. , 2011, , 99-128.			0

#	Article	IF	CITATIONS
94	Ionisation losses. , 2011, , 131-153.		0
95	Radiation of accelerated charged particles and bremsstrahlung of electrons. , 2011, , 154-177.		1
96	Synchrotron radiation. , 2011, , 193-227.		1
97	Nuclear interactions. , 2011, , 279-297.		0
98	Aspects of plasma physics and magnetohydrodynamics. , 2011, , 298-330.		0
99	Dead stars. , 2011, , 378-442.		0
100	Accretion power in astrophysics. , 2011, , 443-492.		0
102	The origin of cosmic rays in our Galaxy. , 2011, , 536-560.		0
103	The acceleration of high energy particles. , 2011, , 561-582.		0
104	Black holes in the nuclei of galaxies. , 2011, , 610-636.		0
105	The vicinity of the black hole. , 2011, , 637-660.		0
106	Extragalactic radio sources. , 2011, , 661-680.		0
107	Compact extragalactic sources and superluminal motions. , 2011, , 681-713.		1
108	Cosmological aspects of high energy astrophysics. , 2011, , 714-752.		0
111	Photometric redshifts for gamma-ray burst afterglows from GROND and <i>Swift</i> /UVOT. Astronomy and Astrophysics, 2011, 526, A153.	2.1	47
112	Spectrophotometric redshifts. Astronomy and Astrophysics, 2011, 525, A75.	2.1	0
113	Search for Correlations between Properties and Redshifts of Gamma-Ray Bursts. , 2011, , .		0
114	Gamma-Ray Bursts as Cosmological Probes. Proceedings of the International Astronomical Union, 2011, 7, 241-247.	0.0	Ο

	CITATION REF	PORT	
#	Article	IF	CITATIONS
115	COMMISSION 28: GALAXIES. Proceedings of the International Astronomical Union, 2011, 7, 255-259.	0.0	3
116	GRB Progenitors and Observational Criteria. Proceedings of the International Astronomical Union, 2011, 7, 102-109.	0.0	0
117	Luminosities, Masses and Star Formation Rates of Galaxies at High Redshift. Proceedings of the International Astronomical Union, 2011, 7, 224-231.	0.0	0
118	Observations of GRBs in the mm/submm range at the dawn of the ALMA era. Proceedings of the International Astronomical Union, 2011, 7, 380-382.	0.0	0
119	A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR <i>z</i> â ¹ /4 7 LYMAN-BREAK GALAXIES: <i>SPITZER</i> IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203. Astrophysical Journal, 2011, 741, 58.	1.6	21
120	EXPLORING DUST EXTINCTION AT THE EDGE OF REIONIZATION. Astrophysical Journal, 2011, 735, 2.	1.6	27
121	A HIGH SIGNAL-TO-NOISE RATIO COMPOSITE SPECTRUM OF GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal, 2011, 727, 73.	1.6	40
122	CAN GAMMA-RAY BURST JETS BREAK OUT THE FIRST STARS?. Astrophysical Journal, 2011, 726, 107.	1.6	88
123	THE AFTERGLOWS OF <i>SWIFT</i> -ERA GAMMA-RAY BURSTS. II. TYPE I GRB VERSUS TYPE II GRB OPTICAL AFTERGLOWS. Astrophysical Journal, 2011, 734, 96.	1.6	187
124	CONSTRAINING GAMMA-RAY BURST EMISSION PHYSICS WITH EXTENSIVE EARLY-TIME, MULTIBAND FOLLOW-UP. Astrophysical Journal, 2011, 743, 154.	1.6	59
125	PROBABILITY DISTRIBUTION FUNCTIONS OF COSMOLOGICAL LENSING: CONVERGENCE, SHEAR, AND MAGNIFICATION. Astrophysical Journal, 2011, 742, 15.	1.6	90
126	A PHOTOMETRIC REDSHIFT OF <i>z</i> â^¼ 9.4 FOR GRB 090429B. Astrophysical Journal, 2011, 736, 7.	1.6	352
127	THE SHOCKING TRUTH: THE SMALL CONTRIBUTION TO HYDROGEN REIONIZATION FROM GRAVITATIONAL INFALL. Astrophysical Journal, 2011, 743, 173.	1.6	3
128	EXPLORING THE GALAXY MASSâ^'METALLICITY RELATION AT <i>z</i> â^1⁄4 3â^'5. Astrophysical Journal, 2011, 739, 2	11. 6	60
129	CO OBSERVATIONS OF THE HOST GALAXY OF GRB 000418 AT <i>z</i> = 1.1. Astrophysical Journal, 2011, 738, 33.	1.6	16
130	Subaru studies of the cosmic dawn. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2011, 87, 575-586.	1.6	3
131	Probing the nature of high-z short GRB 090426 with its early optical and X-ray afterglows. Monthly Notices of the Royal Astronomical Society, 2011, 410, 27-32.	1.6	44
132	Gravitational wave background from sub-luminous GRBs: prospects for second- and third-generation detectors. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2123-2136.	1.6	30

#	Article	IF	CITATIONS
133	Probing early cosmic magnetic fields through pair echoes from high-redshift GRBs. Monthly Notices of the Royal Astronomical Society, 2011, 410, 2741-2748.	1.6	23
134	Rotation speed of the first stars. Monthly Notices of the Royal Astronomical Society, 2011, 413, 543-553.	1.6	102
135	Simulating high-redshift galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 414, 847-859.	1.6	112
136	A possible gravitational lensing explanation for the excess of strong Mg ii absorbers in gamma-ray burst afterglow spectra. Monthly Notices of the Royal Astronomical Society, 2011, 414, 209-217.	1.6	10
137	The updated luminosity correlations of gamma-ray bursts and cosmological implications. Monthly Notices of the Royal Astronomical Society, 2011, 415, 3423-3433.	1.6	67
138	The non-linear evolution of baryonic overdensities in the early universe: initial conditions of numerical simulations. Monthly Notices of the Royal Astronomical Society, 2011, , no-no.	1.6	17
139	GRB 090618: detection of thermal X-ray emission from a bright gamma-ray burst. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2078-2089.	1.6	57
140	Population III stars and the long gamma-ray burst rate. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2760-2767.	1.6	63
141	A faint optical flash in dust-obscured GRB 080603A: implications for GRB prompt emission mechanisms. Monthly Notices of the Royal Astronomical Society, 2011, 417, 2124-2143.	1.6	32
142	Gamma-ray burst rate: high-redshift excess and its possible origins. Monthly Notices of the Royal Astronomical Society, 2011, 417, 3025-3034.	1.6	52
143	Probing cosmic star formation up to z= 9.4 with gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2011, 418, 500-504.	1.6	47
144	Filamentary infall of cold gas and escape of Lyα and hydrogen ionizing radiation from an interacting high-redshift galaxya~ Monthly Notices of the Royal Astronomical Society, 2011, 418, 1115-1126.	1.6	56
145	Spectral evolution of <i>Fermi</i> /GBM short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 410, L47-L51.	1.2	33
146	Ancient giants: on the farthest galaxy at <i>z</i> = 8.6. Monthly Notices of the Royal Astronomical Society: Letters, 2011, 417, L41-L45.	1.2	8
147	A candidate redshift z â‰^ 10 galaxy and rapid changes in that population at an age of 500 Myr. N 469, 504-507.	ature, 201 13.7	1, ₂₆₅
148	The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 414, 1263-1268.	1.6	158
149	Development of tiled imaging CZT detectors for sensitive wide-field hard X-ray surveys to EXIST. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 652, 671-673.	0.7	13
150	Basic Performance of a Polarimeter for Gamma-Ray Bursts Using Segmented Scintillators. IEEE Transactions on Nuclear Science, 2011, 58, 426-433.	1.2	2

	CITATION RI	CITATION REPORT	
#	Article	IF	CITATIONS
151	Production of dust by massive stars at high redshift. Astronomy and Astrophysics Review, 2011, 19, 1.	9.1	151
152	The multi-wavelength context in 2015 and beyond. Comptes Rendus Physique, 2011, 12, 226-233.	0.3	1
153	Studying the formation of massive stars with VLT/Xâ€ s hooter. Astronomische Nachrichten, 2011, 332, 232-237.	0.6	4
154	Absorption spectroscopy of gammaâ€ray burst afterglows: Probing the GRB line of sight. Astronomische Nachrichten, 2011, 332, 272-275.	0.6	0
155	Metallicities of high redshift GRB hosts: The case of GRB 100219A. Astronomische Nachrichten, 2011, 332, 281-282.	0.6	3
156	Observing GRB host galaxies with the integral field unit of Xâ€shooter. Astronomische Nachrichten, 2011, 332, 288-291.	0.6	2
157	Stellar forensics with the supernovaâ€GRB connection – Ludwig Biermann Award Lecture 2010. Astronomische Nachrichten, 2011, 332, 434-447.	0.6	47
158	GRB host galaxies: An unbiased sample. Advances in Space Research, 2011, 47, 1416-1420.	1.2	4
159	Gamma-ray bursts as probes of the distant Universe. Comptes Rendus Physique, 2011, 12, 288-297.	0.3	10
160	Open questions in GRB physics. Comptes Rendus Physique, 2011, 12, 206-225.	0.3	100
161	Gamma-Ray Burst Polarimeter (GAP) aboard the Small Solar Power Sail Demonstrator IKAROS. Publication of the Astronomical Society of Japan, 2011, 63, 625-638.	1.0	55
162	High energy neutrino emission from the earliest gamma-ray bursts. Physical Review D, 2011, 83, .	1.6	15
163	The Cosmic History of Star Formation. Science, 2011, 333, 178-181.	6.0	8
164	An Extremely Luminous Panchromatic Outburst from the Nucleus of a Distant Galaxy. Science, 2011, 333, 199-202.	6.0	290
165	SWIFT HIGHLIGHTS AND FLARES (BACK TO THE DRAWING BOARD?). International Journal of Modern Physics D, 2011, 20, 1733-1743.	0.9	2
166	THE SECOND <i>SWIFT</i> BURST ALERT TELESCOPE GAMMA-RAY BURST CATALOG. Astrophysical Journal, Supplement Series, 2011, 195, 2.	3.0	197
167	SHOCK BREAKOUT IN TYPE II PLATEAU SUPERNOVAE: PROSPECTS FOR HIGH-REDSHIFT SUPERNOVA SURVEYS. Astrophysical Journal, Supplement Series, 2011, 193, 20.	3.0	66
168	Latest cosmological constraints on Cardassian expansion models including the updated gamma-ray bursts. Research in Astronomy and Astrophysics, 2011, 11, 1019-1030.	0.7	4

#	Article	IF	CITATIONS
169	FUNDAMENTAL PHYSICS FROM BLACK HOLES, NEUTRON STARS AND GAMMA-RAY BURSTS. International Journal of Modern Physics D, 2011, 20, 1797-1872.	0.9	13
170	Physical origin of multi-wavelength emission of GRB 100418A and implications for its progenitor. Research in Astronomy and Astrophysics, 2012, 12, 411-418.	0.7	2
171	THE CLUSTER LENSING AND SUPERNOVA SURVEY WITH HUBBLE: AN OVERVIEW. Astrophysical Journal, Supplement Series, 2012, 199, 25.	3.0	659
172	Gamma-ray bursts and their links with supernovae and cosmology. Research in Astronomy and Astrophysics, 2012, 12, 1139-1161.	0.7	16
173	High-z core-collapse supernova survey with shock breakout. , 2012, , .		0
174	Cosmic explosions in the young Universe. Nature, 2012, 491, 205-206.	13.7	1
175	Evolution of FLRW spacetime after the birth of a cosmic string. Physical Review D, 2012, 85, .	1.6	4
176	Observations of the first light and the epoch of reionization. Research in Astronomy and Astrophysics, 2012, 12, 865-890.	0.7	11
177	CALIBRATION OF GRB LUMINOSITY RELATIONS WITH COSMOGRAPHY. International Journal of Modern Physics D, 2012, 21, 1250016.	0.9	15
178	ALMA SUBMILLIMETER CONTINUUM IMAGING OF THE HOST GALAXIES OF GRB 021004 AND GRB 080607. Astrophysical Journal Letters, 2012, 761, L32.	3.0	22
179	A minimalist operating mode for UKIRT. Proceedings of SPIE, 2012, , .	0.8	0
180	Keck 1 deployable tertiary mirror (K1DM3). , 2012, , .		1
181	STAR FORMATION IN THE EARLY UNIVERSE: BEYOND THE TIP OF THE ICEBERG. Astrophysical Journal, 2012, 754, 46.	1.6	104
182	CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION. Astrophysical Journal, 2012, 744, 95.	1.6	182
183	Instrumental principles. , 0, , 9-18.		0
184	The Swift era. , 0, , 73-90.		0
185	Discoveries enabled by multiwavelength afterglow observations of gamma-ray bursts. , 0, , 91-120.		1
186	The GRB–supernova connection. , 2012, , 169-190.		121

# 187	ARTICLE Models for gamma-ray burst progenitors and central engines. , 2012, , 191-214.	IF	Citations
188	Gamma-ray burst cosmology. , 0, , 291-310.		1
189	Constraining the nature of the most distant gamma-ray burst host galaxies. Astronomy and Astrophysics, 2012, 542, A103.	2.1	25
190	GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT <i>z</i> â‰ ³ 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION. Astrophysical Journal Letters, 2012, 749, L38.	3.0	63
191	RAPID, MACHINE-LEARNED RESOURCE ALLOCATION: APPLICATION TO HIGH-REDSHIFT GAMMA-RAY BURST FOLLOW-UP. Astrophysical Journal, 2012, 746, 170.	1.6	12
192	GRB 081029: A GAMMA-RAY BURST WITH A MULTI-COMPONENT AFTERGLOW. Astrophysical Journal, 2012, 745, 41.	1.6	16
193	Evolution of the observed Ly <i>α</i> luminosity function from <i>z</i> = 6.5 to <i>z</i> = 7.7: evidence for the epoch of reionization?. Astronomy and Astrophysics, 2012, 538, A66.	2.1	45
194	Pre-ALMA observations of GRBs in the mm/submm range. Astronomy and Astrophysics, 2012, 538, A44.	2.1	48
195	LONG-DURATION X-RAY FLASH AND X-RAY-RICH GAMMA-RAY BURSTS FROM LOW-MASS POPULATION III STARS. Astrophysical Journal, 2012, 759, 128.	1.6	37
196	PROBING PRE-GALACTIC METAL ENRICHMENT WITH HIGH-REDSHIFT GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 760, 27.	1.6	64
197	A RADIO-SELECTED SAMPLE OF GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal, 2012, 746, 156.	1.6	176
198	EVIDENCE FOR LOW EXTINCTION IN ACTIVELY STAR-FORMING GALAXIES AT <i>z</i> > 6.5. Astrophysical Journal, 2012, 752, 93.	1.6	53
199	TOWARD TIGHT GAMMA-RAY BURST LUMINOSITY RELATIONS. Astrophysical Journal, 2012, 749, 99.	1.6	10
200	ULTRALUMINOUS SUPERNOVAE AS A NEW PROBE OF THE INTERSTELLAR MEDIUM IN DISTANT GALAXIES. Astrophysical Journal Letters, 2012, 755, L29.	3.0	57
201	Evidence for a proto-black hole and a double astrophysical component in GRBÂ101023. Astronomy and Astrophysics, 2012, 538, A58.	2.1	33
202	A Universal Scaling for the Energetics of Relativistic Jets from Black Hole Systems. Science, 2012, 338, 1445-1448.	6.0	175
203	Particle Acceleration in Relativistic Outflows. Space Science Reviews, 2012, 173, 309-339.	3.7	74
204	A COMPLETE SAMPLE OF BRIGHT <i>SWIFT</i> LONG GAMMA-RAY BURSTS. I. SAMPLE PRESENTATION, LUMINOSITY FUNCTION AND EVOLUTION. Astrophysical Journal, 2012, 749, 68.	1.6	198

		LPORT	
#	Article	IF	CITATIONS
205	GRIPS - Gamma-Ray Imaging, Polarimetry and Spectroscopy. Experimental Astronomy, 2012, 34, 551-582.	1.6	48
206	Counts of high-redshift GRBs as probes of primordial non-Gaussianities. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2078-2088.	1.6	21
207	A search for thermal X-ray signatures in gamma-ray bursts - II. The Swift sample. Monthly Notices of the Royal Astronomical Society, 2012, 427, 2965-2974.	1.6	37
208	Constraining the dark energy and smoothness parameter with typeÂla supernovae and gamma-ray bursts. Physical Review D, 2012, 85, .	1.6	17
209	Gamma-Ray Bursts. Science, 2012, 337, 932-936.	6.0	84
210	A SIGNIFICANT PROBLEM WITH USING THE AMATI RELATION FOR COSMOLOGICAL PURPOSES. Astrophysical Journal, 2012, 747, 39.	1.6	29
211	THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS. Astrophysical Journal, 2012, 756, 187.	1.6	156
212	A deep search for the host galaxies of gamma-ray bursts with no detected optical afterglow. Astronomy and Astrophysics, 2012, 545, A77.	2.1	60
213	Galaxy counterparts of intervening high- <i>z</i> sub-DLAs/DLAs and Mg ii absorbers towards gamma-ray bursts. Astronomy and Astrophysics, 2012, 546, A20.	2.1	21
214	Evolution of massive Population III stars with rotation and magnetic fields. Astronomy and Astrophysics, 2012, 542, A113.	2.1	174
215	The metal-enriched host of an energetic <i>γ</i> -ray burst at <i>z</i> Ââ‰^ 1.6. Astronomy and Astrophysics, 2012, 546, A8.	2.1	40
216	The distribution of equivalent widths in long GRB afterglow spectra. Astronomy and Astrophysics, 2012, 548, A11.	2.1	43
217	REVISITING THE LONG/SOFT-SHORT/HARD CLASSIFICATION OF GAMMA-RAY BURSTS IN THE <i>FERMI</i> ERA. Astrophysical Journal, 2012, 750, 88.	1.6	81
218	Gammaâ€ray burst host galaxies at low and high redshift. Astronomische Nachrichten, 2012, 333, 480-485.	0.6	8
219	Presupernova Evolution of Massive Single and Binary Stars. Annual Review of Astronomy and Astrophysics, 2012, 50, 107-164.	8.1	629
220	Joint quasar-cosmic microwave background constraints on reionization history. Monthly Notices of the Royal Astronomical Society, 2012, 419, 1480-1488.	1.6	53
221	Near-infrared spectroscopy of gamma-ray burst host galaxies at : insights into host galaxy dynamics and interpretations of afterglow absorption spectra. Monthly Notices of the Royal Astronomical Society, 2012, 419, 3039-3047.	1.6	28
222	Gamma-Ray Bursts and Other Observations: Constraints on Cosmographic Parameters and Dark Energy Models. Chinese Astronomy and Astrophysics, 2012, 36, 155-168.	0.1	0

#	Article	IF	Citations
223	On the sensitivity of the HAWC observatory to gamma-ray bursts. Astroparticle Physics, 2012, 35, 641-650.	1.9	100
224	The dark GRB 080207 in an extremely red host and the implications for gamma-ray bursts in highly obscured environments. Monthly Notices of the Royal Astronomical Society, 2012, , no-no.	1.6	22
225	Metallicity effects on cosmic Type Ib/c supernovae and gamma-ray burst rates. Monthly Notices of the Royal Astronomical Society, 2012, 423, 3049-3057.	1.6	17
226	Prospects for detecting gamma-ray bursts at very high energies with the Cherenkov Telescope Array. Monthly Notices of the Royal Astronomical Society, 2012, 425, 514-526.	1.6	30
227	Progress in search for highâ€redshift galaxies magnified by gravitational lensing. Astronomische Nachrichten, 2013, 334, 474-477.	0.6	1
228	Gamma-ray bursts in the swift-Fermi era. Frontiers of Physics, 2013, 8, 661-678.	2.4	57
229	New distance record for galaxies. Nature, 2013, 502, 459-460.	13.7	9
230	Core-Collapse Supernovae and Gamma-Ray Bursts in TMT Era. Journal of Astrophysics and Astronomy, 2013, 34, 157-173.	0.4	5
231	Observing the First Galaxies. Astrophysics and Space Science Library, 2013, , 223-292.	1.0	25
232	Observational probes of cosmic acceleration. Physics Reports, 2013, 530, 87-255.	10.3	933
233	Gamma ray bursts. Astroparticle Physics, 2013, 43, 134-141.	1.9	25
234	Potential of EBL and cosmology studies with the Cherenkov Telescope Array. Astroparticle Physics, 2013, 43, 241-251.	1.9	14
235	Gamma-ray burst science in the era of the Cherenkov Telescope Array. Astroparticle Physics, 2013, 43, 252-275.	1.9	58
236	Is there lower limit to velocity or velocity change?. Astrophysics and Space Science, 2013, 345, 209-211.	0.5	1
237	Radio afterglows of a complete sample of bright Swift GRBs: predictions from present days to the SKA era. Monthly Notices of the Royal Astronomical Society, 2013, 435, 2543-2551.	1.6	29
238	Are gamma-ray bursts the same at high redshift and low redshift?. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3640-3655.	1.6	21
239	X-ray absorption evolution in gamma-ray bursts: intergalactic medium or evolutionary signature of their host galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 431, 3159-3176.	1.6	55
240	Pulse-wise Amati correlation in Fermi gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3082-3088.	1.6	14

#	Article	IF	CITATIONS
241	Ultra-Fast Flash Observatory for the observation of early photons from gamma-ray bursts. New Journal of Physics, 2013, 15, 023031.	1.2	26
242	Simulating high-z gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society, 2013, 429, 2718-2726.	1.6	43
243	ILLUMINATING THE DARKEST GAMMA-RAY BURSTS WITH RADIO OBSERVATIONS. Astrophysical Journal, 2013, 767, 161.	1.6	27
244	A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION. Astrophysical Journal, 2013, 778, 128.	1.6	160
245	A TENTATIVE DETECTION OF AN EMISSION LINE AT 1.6 μm FOR THE <i>z</i> â^¼ 12 CANDIDATE UDFj-3954628 Astrophysical Journal Letters, 2013, 765, L2.	4 _{3.0}	58
246	EXTRAGALACTIC BACKGROUND LIGHT FROM HIERARCHICAL GALAXY FORMATION: GAMMA-RAY ATTENUATION UP TO THE EPOCH OF COSMIC REIONIZATION AND THE FIRST STARS. Astrophysical Journal, 2013, 768, 197.	1.6	125
247	AN INDEPENDENT MEASUREMENT OF THE INCIDENCE OF Mg II ABSORBERS ALONG GAMMA-RAY BURST SIGHT LINES: THE END OF THE MYSTERY?. Astrophysical Journal, 2013, 773, 82.	1.6	13
248	GEMINI SPECTROSCOPY OF THE SHORT-HARD GAMMA-RAY BURST GRB 130603B AFTERGLOW AND HOST GALAXY. Astrophysical Journal, 2013, 777, 94.	1.6	40
249	GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG. Astrophysical Journal, 2013, 774, 26.	1.6	77
250	GAMMA-RAY BURST AND STAR FORMATION RATES: THE PHYSICAL ORIGIN FOR THE REDSHIFT EVOLUTION OF THEIR RATIO. Astrophysical Journal Letters, 2013, 773, L22.	3.0	35
251	THE POTENTIAL FOR DETECTING GAMMA-RAY BURST AFTERGLOWS FROM POPULATION III STARS WITH THE NEXT GENERATION OF INFRARED TELESCOPES. Astrophysical Journal, 2013, 779, 73.	1.6	14
252	GRBÂ100219A with X-shooter – abundances in a galaxy at z =4.7. Monthly Notices of the Royal Astronomical Society, 2013, 428, 3590-3606.	1.6	66
253	Ultra-Fast Flash Observatory: Fast Response Space Missions for Early Time Phase of Gamma Ray Bursts. EAS Publications Series, 2013, 61, 501-515.	0.3	0
254	VLT/XSHOOTER and Subaru/MOIRCS spectroscopy of HUDF.YD3: no evidence for Lyman α emission at zÂ= 8.55ã~ Monthly Notices of the Royal Astronomical Society, 2013, 430, 3314-3319.	1.6	19
255	Probing Galaxy Evolution with Gamma-Ray Bursts. EAS Publications Series, 2013, 61, 421-425.	0.3	1
256	A deep search for the host galaxies of GRBs with no detected optical afterglow. EAS Publications Series, 2013, 61, 431-433.	0.3	0
257	Gamma-ray Bursts and the First Stars. EAS Publications Series, 2013, 61, 585-593.	0.3	0
258	A-STAR: The All-Sky Transient Astrophysics Reporter. EAS Publications Series, 2013, 61, 625-631.	0.3	3

#	Article	IF	CITATIONS
259	Formation of the first stars. Reports on Progress in Physics, 2013, 76, 112901.	8.1	246
260	EVIDENCE OF CONTRIBUTION OF INTERVENING CLOUDS TO GAMMA-RAY BURST'S X-RAY COLUMN DENSITY. Astrophysical Journal, 2013, 776, 96.	1.6	7
261	PROBING THE DAWN OF GALAXIES AT <i>z</i> â ¹ /4 9-12: NEW CONSTRAINTS FROM HUDF12/XDF AND CANDELS DATA. Astrophysical Journal, 2013, 773, 75.	1.6	230
262	The metals-to-dust ratio to very low metallicities using GRB and QSO absorbers; extremely rapid dust formation. Astronomy and Astrophysics, 2013, 560, A26.	2.1	68
263	A complete sample of long bright Swift gamma ray bursts. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120235.	1.6	1
264	The Promise of Recent and Future Observatories and Instruments. Proceedings of the International Astronomical Union, 2013, 9, 389-398.	0.0	0
265	Time-dependent excitation and ionization modelling of absorption-line variability due to GRB 080310. Astronomy and Astrophysics, 2013, 549, A22.	2.1	30
266	A COMPREHENSIVE ANALYSIS OF <i>FERMI</i> GAMMA-RAY BURST DATA. III. ENERGY-DEPENDENT <i>T</i> ₉₀ DISTRIBUTIONS OF GBM GRBs AND INSTRUMENTAL SELECTION EFFECT ON DURATION CLASSIFICATION. Astrophysical Journal, 2013, 763, 15.	1.6	82
267	Induced gravitational collapse at extreme cosmological distances: the case of GRB 090423. Astronomy and Astrophysics, 2014, 569, A39.	2.1	12
268	Effective absorbing column density in the gamma-ray burst afterglow X-ray spectra. Monthly Notices of the Royal Astronomical Society, 2014, 441, 3634-3639.	1.6	9
269	IDENTIFYING HIGH-REDSHIFT GAMMA-RAY BURSTS WITH RATIR. Astronomical Journal, 2014, 148, 2.	1.9	9
270	ALMA OBSERVATIONS OF THE HOST GALAXY OF GRB 090423 AT <i>z</i> = 8.23: DEEP LIMITS ON OBSCURED STAR FORMATION 630 MILLION YEARS AFTER THE BIG BANG. Astrophysical Journal, 2014, 796, 96.	1.6	14
271	The plateau phase of gamma-ray burst afterglows in the thick-shell scenario. Monthly Notices of the Royal Astronomical Society, 2014, 437, 2448-2460.	1.6	23
272	High-z gamma-ray bursts for unraveling the dark ages mission HiZ-GUNDAM. Proceedings of SPIE, 2014, ,	0.8	7
273	Cosmic equation of state from combined angular diameter distances: Does the tension with luminosity distances exist?. Physical Review D, 2014, 90, .	1.6	39
274	On extended sign-changeable interactions in the dark sector. General Relativity and Gravitation, 2014, 46, 1.	0.7	24
275	GRB 120521C AT <i>z</i> â ¹ /4 6 AND THE PROPERTIES OF HIGH-REDSHIFT Î ³ -RAY BURSTS. Astrophysical Journal, 2014, 781, 1.	1.6	71
276	THE HOST GALAXIES OF FAST-EJECTA CORE-COLLAPSE SUPERNOVAE. Astrophysical Journal, 2014, 789, 23.	1.6	53

#	Article	IF	CITATIONS
277	The â€~amplitude' parameter of gamma-ray bursts and its implications for GRB classification. Monthly Notices of the Royal Astronomical Society, 2014, 442, 1922-1929.	1.6	44
278	THE OPTICAL LUMINOSITY FUNCTION OF GAMMA-RAY BURSTS DEDUCED FROM ROTSE-III OBSERVATIONS. Astrophysical Journal, 2014, 795, 103.	1.6	3
279	A 10Âdeg2 Lyman α survey at z=8.8 with spectroscopic follow-up: strong constraints on the luminosity function and implications for other surveysâ~ Monthly Notices of the Royal Astronomical Society, 2014, 440, 2375-2387.	1.6	40
280	A TEST OF THE MILLISECOND MAGNETAR CENTRAL ENGINE MODEL OF GAMMA-RAY BURSTS WITH <i>SWIFT</i> DATA. Astrophysical Journal, 2014, 785, 74.	1.6	136
281	THE METALLICITY AND DUST CONTENT OF A REDSHIFT 5 GAMMA-RAY BURST HOST GALAXY. Astrophysical Journal, 2014, 785, 150.	1.6	64
282	FAST RADIO BURST/GAMMA-RAY BURST COSMOGRAPHY. Astrophysical Journal, 2014, 788, 189.	1.6	95
283	DIVERSE PROPERTIES OF INTERSTELLAR MEDIUM EMBEDDING GAMMA-RAY BURSTS AT THE EPOCH OF REIONIZATION. Astrophysical Journal, 2014, 794, 50.	1.6	4
284	PHENOMENOLOGY OF REVERSE-SHOCK EMISSION IN THE OPTICAL AFTERGLOWS OF GAMMA-RAY BURSTS. Astrophysical Journal, 2014, 785, 84.	1.6	51
285	Probing intergalactic neutral hydrogen by the Lyman alpha red damping wing of gamma-ray burst 130606A afterglow spectrum at <i>z</i> Â=Â5.913. Publication of the Astronomical Society of Japan, 2014, 66, .	1.0	45
286	GAME: GRB and All-sky Monitor Experiment. International Journal of Modern Physics D, 2014, 23, 1430010.	0.9	0
287	The Host Galaxies of Long-Duration Gamma-Ray Bursts. Publications of the Astronomical Society of the Pacific, 2014, 126, 1-14.	1.0	25
288	Dark matter interacts with variable vacuum energy. General Relativity and Gravitation, 2014, 46, 1.	0.7	10
289	最ã"éã"銀河ã®ç™ºè¦<. Nature Digest, 2014, 11, 22-24.	0.0	0
290	The first Frontier Fields cluster: 4.5 <i>μ</i> m excess in a <i>z</i> ~ 8 galaxy candidate in Abell 2744. Astronomy and Astrophysics, 2014, 562, L8.	2.1	50
291	Cryogenic optical systems for the rapid infrared imager/spectrometer (RIMAS). , 2014, , .		0
292	GRBSpec: a multi-observatory database for gamma-ray burst spectroscopy. Proceedings of SPIE, 2014, , .	0.8	3
293	High redshift Gamma-Ray Bursts. Journal of High Energy Astrophysics, 2015, 7, 35-43.	2.4	30
294	Gamma-ray burst afterglows as probes of the ISM. Journal of High Energy Astrophysics, 2015, 7, 56-63.	2.4	3

#	Article	IF	CITATIONS
295	VLT/X-Shooter spectroscopy of the afterglow of the <i>Swift</i> GRB 130606A. Astronomy and Astrophysics, 2015, 580, A139.	2.1	66
296	GAMMA-RAY BURSTS TRACE UV METRICS OF STAR FORMATION OVER 3 < <i>z</i> < 5. Astrophysical Journal, 2015, 809, 76.	1.6	50
297	LIMITS ON OPTICAL POLARIZATION DURING THE PROMPT PHASE OF GRB 140430A. Astrophysical Journal, 2015, 813, 1.	1.6	25
298	Einstein's Triumph. , 0, , 1-9.		0
299	Relativistic Astrophysics. , 0, , 97-161.		0
300	Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the <i>Swift</i> /BAT6 complete sample of LGRBs. Astronomy and Astrophysics, 2015, 581, A102.	2.1	95
301	Reflections on Swift from the early years. Journal of High Energy Astrophysics, 2015, 7, 12-16.	2.4	0
302	HAPPY BIRTHDAY <i>SWIFT</i> : ULTRA-LONG GRB 141121A AND ITS BROADBAND AFTERGLOW. Astrophysical Journal, 2015, 812, 122.	1.6	18
303	Integrating temporal and spectral features of astronomical data using wavelet analysis for source classification. , 2015, , .		0
304	How Swift is redefining time domain astronomy. Journal of High Energy Astrophysics, 2015, 7, 2-11.	2.4	11
305	A detailed study of the optical attenuation of gamma-ray bursts in the Swift era. Monthly Notices of the Royal Astronomical Society, 2015, 449, 2919-2936.	1.6	26
306	The effects of convection criteria on the evolution of PopulationÂlll stars and the detectability of their supernovae. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1618-1630.	1.6	4
307	Thirty Meter Telescope Detailed Science Case: 2015. Research in Astronomy and Astrophysics, 2015, 15, 1945-2140.	0.7	118
308	THE ENERGY DEPENDENCE OF GRB MINIMUM VARIABILITY TIMESCALES. Astrophysical Journal, 2015, 811, 93.	1.6	50
309	A New Era of Submillimeter GRB Afterglow Follow-Ups with the Greenland Telescope. Advances in Astronomy, 2015, 2015, 1-12.	0.5	5
310	Utilizing the Updated Gamma-Ray Bursts and Type Ia Supernovae to Constrain the Cardassian Expansion Model and Dark Energy. Advances in Astronomy, 2015, 2015, 1-12.	0.5	8
311	LGRB hosts in emission and in absorption. Proceedings of the International Astronomical Union, 2015, 11, 244-245.	0.0	0
312	Simulating the 21Âcm forest detectable with LOFAR and SKA in the spectra of high- <i>z</i> GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 453, 101-105.	1.6	15

	CITATION RE	PORT	
# 313	ARTICLE GRBâ€selected galaxies through cosmic time. Astronomische Nachrichten, 2015, 336, 487-492.	IF 0.6	Citations 2
314	Ly <i>\hat{i} </i> EMISSION FROM A LUMINOUS <i>z</i> = 8.68 GALAXY: IMPLICATIONS FOR GALAXIES AS TRACERS OF COSMIC REIONIZATION. Astrophysical Journal Letters, 2015, 810, L12.	3.0	196
315	A dusty, normal galaxy in the epoch of reionization. Nature, 2015, 519, 327-330.	13.7	301
316	PopIII signatures in the spectra of PopII/I GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 449, 3006-3014.	1.6	14
317	Accessing the population of high-redshift Gamma Ray Bursts. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2514-2524.	1.6	29
318	Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society, 2015, 448, 1494-1503.	1.6	11
319	A SPECTROSCOPIC REDSHIFT MEASUREMENT FOR A LUMINOUS LYMAN BREAK GALAXY AT <i>z</i> = 7.730 USING KECK/MOSFIRE. Astrophysical Journal Letters, 2015, 804, L30.	3.0	180
320	Gamma-ray burst cosmology. New Astronomy Reviews, 2015, 67, 1-17.	5.2	97
321	DETECTABILITY OF PLANCK-SCALE-INDUCED BLURRING WITH GAMMA-RAY BURSTS. Astrophysical Journal, 2015, 802, 38.	1.6	5
322	UNVEILING THE SECRETS OF METALLICITY AND MASSIVE STAR FORMATION USING DLAS ALONG GAMMA-RAY BURSTS. Astrophysical Journal, 2015, 804, 51.	1.6	56
323	THE STAR FORMATION RATE AND METALLICITY OF THE HOST GALAXY OF THE DARK GRB 080325 AT <i>z</i> = 1.78. Astrophysical Journal, 2015, 806, 250.	1.6	15
324	Introduction to high-energy gamma-ray astronomy. Comptes Rendus Physique, 2015, 16, 587-599.	0.3	19
325	Cosmological constraints and cosmic growth factor for ghost dark energy models in varying G \$G\$ theories. Astrophysics and Space Science, 2015, 360, 1.	0.5	6
326	Galaxies as seen through the most energetic explosions in the universe. Journal of High Energy Astrophysics, 2015, 7, 95-104.	2.4	5
327	Swift J1112.2â^'8238: a candidate relativistic tidal disruption flare. Monthly Notices of the Royal Astronomical Society, 2015, 452, 4297-4306.	1.6	102
328	THE LUMINOSITY AND STELLAR MASS FUNCTIONS OF GRB HOST GALAXIES: INSIGHT INTO THE METALLICITY BIAS. Astrophysical Journal, 2015, 802, 103.	1.6	48
329	TIME-DEPENDENT MULTI-GROUP MULTI-DIMENSIONAL RELATIVISTIC RADIATIVE TRANSFER CODE BASED ON SPHERICAL HARMONIC DISCRETE ORDINATE METHOD. Astrophysical Journal, Supplement Series, 2015, 219, 38.	3.0	7
330	The impact of star formation and gamma-ray burst rates at high redshift on cosmic chemical evolution and reionization. Monthly Notices of the Royal Astronomical Society, 2015, 447, 2575-2587.	1.6	82

#	Article	IF	CITATIONS
331	THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT â ⁻¹ /46. Astrophysical Journal, 2015, 808, 73.	1.6	60
332	AN UNEXPECTEDLY LOW-REDSHIFT EXCESS OF <i>SWIFT</i> GAMMA-RAY BURST RATE. Astrophysical Journal, Supplement Series, 2015, 218, 13.	3.0	51
333	A giant ring-like structure at 0.78Â<Â <i>z</i> Â<Â0.86 displayed by GRBs. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2236-2246.	1.6	44
334	CAN VERY MASSIVE POPULATION III STARS PRODUCE A SUPER-COLLAPSAR?. Astrophysical Journal, 2015, 802, 16.	1.6	11
335	The physics of gamma-ray bursts & amp; relativistic jets. Physics Reports, 2015, 561, 1-109.	10.3	682
336	Observational Searches for Star-Forming Galaxies at <i>z</i> > 6. Publications of the Astronomical Society of Australia, 2016, 33, .	1.3	117
337	Measuring dark energy with the <i>E</i> _{iso} – <i>E</i> _p correlation of gamma-ray bursts using model-independent methods. Astronomy and Astrophysics, 2016, 585, A68.	2.1	63
338	Gamma-Ray Bursts: A Radio Perspective. Advances in Astronomy, 2016, 2016, 1-13.	0.5	7
339	THE GRISM LENS-AMPLIFIED SURVEY FROM SPACE (GLASS). III. A CENSUS OF Lyα EMISSION AT FROM HST SPECTROSCOPY. Astrophysical Journal, 2016, 818, 38.	1.6	60
340	Optical dispersion of composite particles consisting of millicharged constituents. Journal of Physics G: Nuclear and Particle Physics, 2016, 43, 085002.	1.4	1
341	Gamma-Ray Burst Progenitors. Space Science Reviews, 2016, 202, 33-78.	3.7	65
342	The rate and luminosity function of long gamma ray bursts. Astronomy and Astrophysics, 2016, 587, A40.	2.1	61
343	ON THE UNIVERSAL LATE X-RAY EMISSION OF BINARY-DRIVEN HYPERNOVAE AND ITS POSSIBLE COLLIMATION. Astrophysical Journal, 2016, 833, 159.	1.6	8
344	First identification of direct collapse black hole candidates in the early Universe in CANDELS/GOODS-S. Monthly Notices of the Royal Astronomical Society, 2016, 459, 1432-1439.	1.6	51
345	Machine- <i>z</i> : rapid machine-learned redshift indicator for <i>Swift</i> gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2016, 458, 3821-3829.	1.6	10
346	GRB afterglows: Dust extinction properties from the low to high redshift universe. Planetary and Space Science, 2016, 133, 14-16.	0.9	2
347	Galaxy Formation and Evolution. Space Science Reviews, 2016, 202, 79-109.	3.7	3
348	Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities. Space Science Reviews, 2016, 202, 235-277.	3.7	23

		15	0
#	ARTICLE	IF	CITATIONS
349	Galaxies in the First Billion Years After the Big Bang. Annual Review of Astronomy and Astrophysics, 2016, 54, 761-803.	8.1	210
350	Research Developments in Li-Paczyński Novae (I): Theoretical Aspect. Chinese Astronomy and Astrophysics, 2016, 40, 141-175.	0.1	0
351	A COMPARATIVE STUDY OF LONG AND SHORT GRBS. I. OVERLAPPING PROPERTIES. Astrophysical Journal, Supplement Series, 2016, 227, 7.	3.0	57
352	THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD. Astrophysical Journal, 2016, 817, 8.	1.6	135
353	DETECTION OF THREE GAMMA-RAY BURST HOST GALAXIES AT z $\hat{a}^{1}/4$ 6. Astrophysical Journal, 2016, 825, 135.	1.6	29
354	EXPLORING DAMPED LyÎ \pm SYSTEM HOST GALAXIES USING GAMMA-RAY BURSTS. Astrophysical Journal, 2016, 832, 175.	1.6	6
355	Science with OCTOCAM: a new workhorse instrument proposed for Gemini. , 2016, , .		0
356	Gamma-Ray Bursts and Population III Stars. Space Science Reviews, 2016, 202, 159-180.	3.7	17
357	Stellar population effects on the inferred photon density at reionization. Monthly Notices of the Royal Astronomical Society, 2016, 456, 485-499.	1.6	270
358	Gamma-ray bursts from massive Population-III stars: clues from the radio band. Monthly Notices of the Royal Astronomical Society, 2016, 459, 3356-3362.	1.6	7
359	GRBs as Probes of the IGM. Space Science Reviews, 2016, 202, 143-158.	3.7	1
360	Understanding the Epoch of Cosmic Reionization. Astrophysics and Space Science Library, 2016, , .	1.0	30
361	Model-independent distance calibration of high-redshift gamma-ray bursts and constrain on the Ĵ›CDM model. Monthly Notices of the Royal Astronomical Society, 2016, 455, 2131-2138.	1.6	24
362	MIRAX sensitivity for Gamma Ray Bursts. Journal of High Energy Astrophysics, 2016, 9-10, 16-24.	2.4	0
363	High-precision analyses of Lyα damping wing of gamma-ray bursts in the reionization era: On the controversial results from GRB 130606A at <i>z</i> = 5.91. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	24
364	THE SWIFT GAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION. Astrophysical Journal, 2016, 817, 7.	1.6	103
365	First-generation science cases for ground-based terahertz telescopes. Publication of the Astronomical Society of Japan, 2016, 68, .	1.0	12
366	Evolutions and Calibrations of Long Gamma-Ray-burst Luminosity Correlations Revisited. Astrophysical Journal, 2017, 836, 103.	1.6	11

#	Article	IF	CITATIONS
367	Relationship between the large scale structure of the universe and spatial distribution of GRBs. AIP Conference Proceedings, 2017, , .	0.3	2
368	Cosmology with gamma-ray bursts. Astronomy and Astrophysics, 2017, 598, A112.	2.1	94
369	GRBÂ110715A: the peculiar multiwavelength evolution of the first afterglow detected by ALMA. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4624-4640.	1.6	14
370	"Lomonosov―Satellite—Space Observatory to Study Extreme Phenomena in Space. Space Science Reviews, 2017, 212, 1705-1738.	3.7	21
371	Hard X-ray spectral investigations of gamma-ray bursts 120521C and 130606A at high-redshift z â^1⁄4 6. Monthly Notices of the Royal Astronomical Society, 2017, 466, 4558-4567.	1.6	6
372	Triggered searches of delayed or extended VHE GRB emissions with HAWC. AIP Conference Proceedings, 2017, , .	0.3	0
373	A Peculiar GRB 110731A: Lorentz Factor, Jet Composition, Central Engine, and Progenitor. Astrophysical Journal, 2017, 843, 114.	1.6	9
374	Wolf-Rayet spin at low metallicity and its implication for black hole formation channels. Astronomy and Astrophysics, 2017, 603, A120.	2.1	19
375	Gamma-ray burst cosmology: Hubble diagram and star formation history. International Journal of Modern Physics D, 2017, 26, 1730002.	0.9	14
376	Explosions throughout the universe. International Journal of Modern Physics D, 2017, 26, 1730003.	0.9	1
377	Constraining the PopIII IMF with high- <i>z</i> GRBs. Monthly Notices of the Royal Astronomical Society, 2017, 466, 1140-1148.	1.6	39
378	The MUSE <i>Hubble </i> Ultra Deep Field Survey. Astronomy and Astrophysics, 2017, 608, A4.	2.1	48
379	Hot gas around SN 1998bw: Inferring the progenitor from its environment. Astronomy and Astrophysics, 2017, 602, A85.	2.1	56
380	The diversity of GRBs and their SNe: Observations from the 10.4m GTC. Proceedings of the International Astronomical Union, 2017, 12, 39-44.	0.0	1
381	Gamma-ray bursts and their use as cosmic probes. Royal Society Open Science, 2017, 4, 170304.	1.1	23
382	Astronomical Distance Determination in the Space Age. Space Science Reviews, 2018, 214, 1.	3.7	24
383	UFFO/Lomonosov: The Payload for the Observation of Early Photons from Gamma Ray Bursts. Space Science Reviews, 2018, 214, 1.	3.7	5
384	Relativistic Astronomy. Astrophysical Journal, 2018, 854, 123.	1.6	6

#	Article	IF	CITATIONS
385	The host galaxies of long gamma-ray bursts through cosmic time. International Journal of Modern Physics D, 2018, 27, 1842001.	0.9	1
386	The first ICRANet catalog of binary-driven hypernovae. EPJ Web of Conferences, 2018, 168, 04002.	0.1	2
387	Investigating a population of infrared-bright gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 478, 2-27.	1.6	15
388	GRB 171205A/SN 2017iuk: A local low-luminosity gamma-ray burst. Astronomy and Astrophysics, 2018, 619, A66.	2.1	36
389	The Properties of GRB 120923A at a Spectroscopic Redshift of zÂâ‰^Â7.8. Astrophysical Journal, 2018, 865, 107.	1.6	23
390	A Few Selected Topics in Extreme Astrophysical Phenomena: Gamma-ray Burst as a Source of Multi-messenger Astrophysics and Cosmic Particles as a Would-be Messenger. Journal of the Korean Physical Society, 2018, 73, 736-746.	0.3	0
391	The luminous host galaxy, faint supernova and rapid afterglow rebrightening of GRB 100418A. Astronomy and Astrophysics, 2018, 620, A190.	2.1	13
392	Environing technologies: a theory of making environment. History and Technology, 2018, 34, 101-125.	0.3	29
393	Early galaxy formation and its large-scale effects. Physics Reports, 2018, 780-782, 1-64.	10.3	273
394	The Environments of the Most Energetic Gamma-Ray Bursts. Astrophysical Journal, 2018, 866, 162.	1.6	21
395	Molecular gas masses of gamma-ray burst host galaxies. Astronomy and Astrophysics, 2018, 617, A143.	2.1	19
396	Mass and metallicity scaling relations of high-redshift star-forming galaxies selected by GRBs. Monthly Notices of the Royal Astronomical Society, 2018, 473, 3312-3324.	1.6	30
397	A Global Photoionization Response to Prompt Emission and Outliers: Different Origin of Long Gamma-ray Bursts?. Astrophysical Journal, 2018, 855, 91.	1.6	2
398	Dust reddening and extinction curves toward gamma-ray bursts at <i>z</i> > 4. Astronomy and Astrophysics, 2018, 609, A62.	2.1	20
399	X-shooting GRBs at high redshift: probing dust production history*. Monthly Notices of the Royal Astronomical Society, 2018, 480, 108-118.	1.6	18
400	Chandra X-Rays from the Redshift 7.54 Quasar ULAS J1342+0928. Astrophysical Journal Letters, 2018, 856, L25.	3.0	31
401	A VLA Study of High-redshift GRBs. I. Multiwavelength Observations and Modeling of GRB 140311A. Astrophysical Journal, 2018, 858, 65.	1.6	20
402	The X-shooter GRB afterglow legacy sample (XS-GRB). Astronomy and Astrophysics, 2019, 623, A92.	2.1	47

#	Article	IF	CITATIONS
403	The case for a high-redshift origin of GRB 100205A. Monthly Notices of the Royal Astronomical Society, 2019, 488, 902-909.	1.6	3
404	Star-formation rates of two GRB host galaxies at zÂâ^¼Â2 and a [C ii] deficit observed with ALMA. Monthly Notices of the Royal Astronomical Society, 2019, 488, 5029-5041.	1.6	9
405	The CGM–GRB Study. I. Uncovering the Circumgalactic Medium around GRB Hosts at Redshifts 2–6. Astrophysical Journal, 2019, 884, 66.	1.6	9
406	Cold gas in the early Universe. Astronomy and Astrophysics, 2019, 621, A20.	2.1	16
407	The fraction of ionizing radiation from massive stars that escapes to the intergalactic medium. Monthly Notices of the Royal Astronomical Society, 2019, 483, 5380-5408.	1.6	43
408	Addressing the circularity problem in the <i>E</i> pâ ^{^,} <i>E</i> iso correlation of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 486, L46-L51.	1.2	66
409	Molecular Gas Properties in the Host Galaxy of GRB 080207. Astrophysical Journal, 2019, 876, 91.	1.6	7
410	Two Contrasting Provenances of Prehistoric Obsidian Artifacts in South Korea: Mineralogical and Geochemical Characteristics. Open Archaeology, 2019, 5, 106-120.	0.3	5
411	The host galaxy of GRB 980425/SN1998bw: a collisional ring galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 485, 5411-5422.	1.6	17
412	Chandra and Hubble Space Telescope observations of dark gamma-ray bursts and their host galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3105-3117.	1.6	7
413	Detailed multiwavelength modelling of the dark GRB 140713A and its host galaxy. Monthly Notices of the Royal Astronomical Society, 2019, 484, 5245-5255.	1.6	10
414	The Benefit of Simultaneous Seven-filter Imaging: 10 Years of GROND Observations. Publications of the Astronomical Society of the Pacific, 2019, 131, 015002.	1.0	5
415	Binarity at High Masses. , 2019, , 144-152.		0
416	Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the <i>Swift</i> /BAT6 complete sample of bright LGRBs. Astronomy and Astrophysics, 2019, 623, A26.	2.1	56
417	New constraints on the physical conditions in H ₂ -bearing GRB-host damped Lyman- <i>α</i> absorbers. Astronomy and Astrophysics, 2019, 629, A131.	2.1	10
418	First Detection of Radio Linear Polarization in a Gamma-Ray Burst Afterglow. Astrophysical Journal Letters, 2019, 884, L58.	3.0	18
419	A statistical method to detect non-stationarities of gamma-ray burst jets. Monthly Notices of the Royal Astronomical Society, 2019, , .	1.6	2
420	Dissolution of Dominant Soil Phosphorus Fractions in Phosphorus-Responsive Soils of Bihar, India: Effects of Mycorrhiza and Fertilizer Levels. Communications in Soil Science and Plant Analysis, 2019, 50–287-294	0.6	4

#	Article	IF	CITATIONS
421	Variants in genes of innate immunity, appetite control and energy metabolism are associated with host cardiometabolic health and gut microbiota composition. Gut Microbes, 2020, 11, 556-568.	4.3	7
422	Magma mixing model for the genesis of middle crust in the Izu–Bonin–Mariana arc: evidence from plutonic rocks in the Mineoka-Setogawa ophiolitic mélange, central Japan. International Geology Review, 2020, 62, 503-521.	1.1	3
423	Potentialities and soil impact analysis of rock phosphorus fertilization of perennial and annual legume crops. Archives of Agronomy and Soil Science, 2020, 66, 1074-1088.	1.3	3
424	Far-infrared star formation rates of six GRB host galaxies with ALMA. Monthly Notices of the Royal Astronomical Society, 2020, 496, 4405-4419.	1.6	4
425	A Confront between Amati and Combo Correlations at Intermediate and Early Redshifts. Symmetry, 2020, 12, 1118.	1.1	3
426	Lyman continuum leakage in faint star-forming galaxies at redshift <i>z</i> = 3â^'3.5 probed by gamma-ray bursts. Astronomy and Astrophysics, 2020, 641, A30.	2.1	13
427	Improving sampling and calibration of GRBs as distance indicators. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	10
428	Rapid Reionization by the Oligarchs: The Case for Massive, UV-bright, Star-forming Galaxies with High Escape Fractions. Astrophysical Journal, 2020, 892, 109.	1.6	166
429	ALMA CO Observations of the Host Galaxies of Long-duration Gamma-Ray Bursts. I. Molecular Gas Scaling Relations. Astrophysical Journal, 2020, 892, 42.	1.6	8
430	New Radio Constraints on the Obscured Star Formation Rates of Massive CRB Hosts at Redshifts 2–3.5. Astrophysical Journal, 2020, 897, 9.	1.6	5
431	A possible bright ultraviolet flash from a galaxy at redshift z â‰^ 11. Nature Astronomy, 2021, 5, 262-2	674.2	12
432	On the kinematic interpretation of cosmological redshifts. Communications of the Byurakan Astrophysical Observatory, 0, , 12-31.	0.0	2
433	Transient-optimized real-bogus classification with Bayesian convolutional neural networks – sifting the GOTO candidate stream. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4838-4854.	1.6	19
434	Model-independent calibrations of gamma-ray bursts using machine learning. Monthly Notices of the Royal Astronomical Society, 2021, 503, 4581-4600.	1.6	21
436	Constraining the intrinsic population of long gamma-ray bursts: Implications for spectral correlations, cosmic evolution, and their use as tracers of star formation. Astronomy and Astrophysics, 2021, 649, A166.	2.1	8
437	GRB 180418A: A Possibly Short Gamma-Ray Burst with a Wide-angle Outflow in a Faint Host Galaxy. Astrophysical Journal, 2021, 912, 95.	1.6	8
438	Gamma ray burst studies with THESEUS. Experimental Astronomy, 2021, 52, 277-308.	1.6	9
439	ALMA Host Galaxy Observation of the Off-axis Gamma-Ray Burst XRF 020903. Astrophysical Journal, 2021, 915, 46.	1.6	1

#	Article	IF	CITATIONS
440	Exploration of the high-redshift universe enabled by THESEUS. Experimental Astronomy, 2021, 52, 219-244.	1.6	12
441	Redshift evolution of the Amati relation: Calibrated results from the Hubble diagram of quasars at high redshifts. Astronomy and Astrophysics, 2021, 651, L8.	2.1	9
442	The Gamow Explorer: a Gamma-Ray Burst Observatory to study the high redshift universe and enable multi-messenger astrophysics. , 2021, , .		9
443	Future Constraints on the Reionization History and the Ionizing Sources from Gamma-Ray Burst Afterglows. Astrophysical Journal, 2021, 917, 58.	1.6	9
444	Gamma-ray bursts as probes of high-redshift Lyman-α emitters and radiative transfer models. Astronomy and Astrophysics, 2021, 653, A83.	2.1	2
445	Revisiting the luminosity and redshift distributions of long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society, 2021, 508, 52-68.	1.6	6
447	Particle Acceleration in Relativistic Outflows. Space Sciences Series of ISSI, 2012, , 309-339.	0.0	1
448	High-energy astrophysics — energies above 100 keV. , 2013, , 55-72.		2
449	Quasars as Probes of Cosmological Reionization. Astrophysics and Space Science Library, 2016, , 187-226.	1.0	14
450	New Eyes for Galaxies Investigation. Astrophysics and Space Science Library, 2016, , 697-737.	1.0	1
451	The Formation of the First Massive Black Holes. Astrophysics and Space Science Library, 2013, , 293-341.	1.0	50
452	Near Field Cosmology: The Origin of the Galaxy and the Local Group. Saas-Fee Advanced Course, 2014, , 1-144.	1.1	4
454	Optical and near-infrared follow-up observations of four <i>Fermi</i> /LAT GRBs: redshifts, afterglows, energetics, and host galaxies. Astronomy and Astrophysics, 2010, 516, A71.	2.1	96
455	Is CRB 050904 at z = 6.3 absorbed by dust?. Astronomy and Astrophysics, 2011, 532, A45.	2.1	17
456	The SEDs and host galaxies of the dustiest GRB afterglows. Astronomy and Astrophysics, 2011, 534, A108.	2.1	142
457	The long <i>γ</i> -ray burst rate and the correlation with host galaxy properties. Astronomy and Astrophysics, 2012, 539, A113.	2.1	60
458	New light on gamma-ray burst host galaxies with <i>Herschel</i> . Astronomy and Astrophysics, 2014, 565, A112.	2.1	70
459	New measurements of Ω _m from gamma-ray bursts. Astronomy and Astrophysics, 2015, 582, A115.	2.1	41

	CHATONIC		
#	Article	IF	CITATIONS
460	The high-redshift gamma-ray burst GRBâ \in ‰140515A. Astronomy and Astrophysics, 2015, 581, A86.	2.1	23
461	Soft X-ray absorption excess in gamma-ray burst afterglow spectra: Absorption by turbulent ISM. Astronomy and Astrophysics, 2016, 595, A24.	2.1	5
462	Evolution of the dust-to-metals ratio in high-redshift galaxies probed by GRB-DLAs. Astronomy and Astrophysics, 2017, 599, A24.	2.1	72
463	Solving the conundrum of intervening strong Mg II absorbers towards gamma-ray bursts and quasars. Astronomy and Astrophysics, 2017, 608, A84.	2.1	11
464	CONSTRAINTS ON OBSCURED STAR FORMATION IN HOST GALAXIES OF GAMMA-RAY BURSTS. Astrophysical Journal, 2012, 748, 108.	1.6	19
465	Development of wide-field low-energy x-ray imaging detectors for HiZ-GUNDAM. Proceedings of SPIE, 2016, , .	0.8	2
466	Asteroseismology of High-Mass Stars: New Insights of Stellar Interiors With Space Telescopes. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	61
467	Local Starburst Conditions and Formation of GRB 980425/SN 1998bw within a Collisional Ring. Astrophysical Journal, 2020, 899, 165.	1.6	5
468	The Optical Luminosity–Time Correlation for More than 100 Gamma-Ray Burst Afterglows. Astrophysical Journal Letters, 2020, 905, L26.	3.0	32
469	GN-z11-flash in the Context of Gamma-Ray Burst Afterglows. Research Notes of the AAS, 2020, 4, 247.	0.3	3
470	GN-z11-flash from a man-made satellite not a gamma-ray burst at redshift 11. Nature Astronomy, 2021, 5, 995-997.	4.2	8
471	Detection of Low-Energy X-rays Using YSO Scintillation Crystal Arrays for GRB Experiments. Universe, 2021, 7, 396.	0.9	0
472	Most distant gamma-ray burst spotted. Nature, 0, , .	13.7	0
473	Standard Candles in Astronomy. Issues in Agroecology, 2011, , 21-42.	0.1	0
474	Observational Aspects of Gamma-ray Burst Afterglows. , 2012, , .		0
477	Observing photons in space. , 2013, , 1-19.		4
478	Infrared Astronomy Fundamentals. , 2013, , 99-174.		1
479	Observations of Gamma-Ray Bursts at UKIRT. Thirty Years of Astronomical Discovery With UKIRT, 2013, , 259-268.	0.3	0

	CHATION R	LPORT	
# 481	ARTICLE Very Massive Stars in the Local Universe. Astrophysics and Space Science Library, 2015, , 1-8.	IF 1.0	Citations
482	Galaxy Formation and Evolution. Space Sciences Series of ISSI, 2016, , 81-111.	0.0	0
483	Gamma-Ray Bursts and Population III Stars. Space Sciences Series of ISSI, 2016, , 161-182.	0.0	0
484	GRBs as Probes of the IGM. Space Sciences Series of ISSI, 2016, , 145-160.	0.0	0
485	Gamma-Ray Burst Progenitors. Space Sciences Series of ISSI, 2016, , 35-80.	0.0	0
486	Perspectives on Gamma-Ray Burst Physics and Cosmology with Next Generation Facilities. Space Sciences Series of ISSI, 2016, , 237-279.	0.0	1
487	Astronomical Distance Determination in the Space Age. Space Sciences Series of ISSI, 2018, , 283-351.	0.0	0
488	Observations of Ly\$\$alpha \$\$ Emitters at High Redshift. Saas-Fee Advanced Course, 2019, , 189-318.	1.1	6
489	A pilot study of catching high-z GRBs and exploring circumburst environment in the forthcoming SVOM era. Research in Astronomy and Astrophysics, 2020, 20, 124.	0.7	3
490	Accounting for Selection Bias and Redshift Evolution in GRB Radio Afterglow Data. Galaxies, 2021, 9, 95.	1.1	20
491	Imprints of Gravitational Millilensing on the Light Curve of Gamma-Ray Bursts. Astrophysical Journal, 2021, 922, 77.	1.6	11
492	Hubble tension or a transition of the Cepheid SnIa calibrator parameters?. Physical Review D, 2021, 104,	1.6	49
493	21 cm forest constraints on primordial black holes. Publication of the Astronomical Society of Japan, 2023, 75, S33-S49.	1.0	14
494	Searching for Gravitationally Lensed Gamma-Ray Bursts with Their Afterglows. Astrophysical Journal, 2022, 924, 49.	1.6	6
495	Probing the initial mass function of the first stars with transients. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2505-2514.	1.6	12
496	Standardizing Dainotti-correlated gamma-ray bursts, and using them with standardized Amati-correlated gamma-ray bursts to constrain cosmological model parameters. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2928-2947.	1.6	41
497	Does the GRB Duration Depend on Redshift?. Universe, 2022, 8, 221.	0.9	3
498	A Search for Millilensing Gamma-Ray Bursts in the Observations of Fermi GBM. Astrophysical Journal, 2022, 931, 4.	1.6	15

#	Article	IF	CITATIONS
499	Multiple Measurements of Gravitational Waves Acting as Standard Probes: Model-independent Constraints on the Cosmic Curvature with DECIGO. Astrophysical Journal, 2022, 931, 119.	1.6	12
500	Quasar Standardization: Overcoming Selection Biases and Redshift Evolution. Astrophysical Journal, 2022, 931, 106.	1.6	33
501	The Cosmic History of Long Gamma-Ray Bursts. Astrophysical Journal, 2022, 932, 10.	1.6	10
502	Challenges for <mml:math <br="" altimg="si238.svg" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline" id="d1e11032"><mml:mi mathvariant="normal">Î></mml:mi></mml:math> CDM: An update. New Astronomy Reviews, 2022, 95, 101659.	5.2	246
503	Fermi-GBM Observation of GRB 090717034: χ ² Test Confirms Evidence of Gravitational Lensing by a Supermassive Black Hole with a Million Solar Mass. Astrophysical Journal, 2022, 934, 106.	1.6	7
504	Are the host galaxies of long gamma-ray bursts more compact than star-forming galaxies of the field?. Astronomy and Astrophysics, 2022, 666, A14.	2.1	5
505	A blast from the infant Universe: The very high- <i>z</i> GRB 210905A. Astronomy and Astrophysics, 2022, 665, A125.	2.1	7
506	Stability analysis of supermassive primordial stars: a new mass range for general relativistic instability supernovae. Monthly Notices of the Royal Astronomical Society, 2022, 517, 1584-1600.	1.6	10
507	The Stellar-mass Function of Long Gamma-Ray Burst Host Galaxies. Astrophysical Journal, 2022, 938, 129.	1.6	4
508	Finding high-redshift gamma-ray bursts in tandem near-infrared and optical surveys. Nature Astronomy, 2022, 6, 1101-1104.	4.2	2
509	Intermediate redshift calibration of gamma-ray bursts and cosmic constraints in non-flat cosmology. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2247-2255.	1.6	7
510	Gamma-Ray Bursts. , 2022, , 1-34.		2
511	A Radio-selected Population of Dark, Long Gamma-Ray Bursts: Comparison to the Long Gamma-Ray Burst Population and Implications for Host Dust Distributions. Astrophysical Journal, 2022, 940, 53.	1.6	0
512	Systematic Study of the Peak Energy of Broadband Gamma-Ray Burst Spectra. Astrophysical Journal, 2020, 889, 110.	1.6	7
513	The Neil Gehrels Swift Observatory. , 2022, , 1-32.		0
514	The gamma-ray bursts fundamental plane correlation as a cosmological tool. Monthly Notices of the Royal Astronomical Society, 2022, 518, 2201-2240.	1.6	21
515	Î ³ rays run on time, and propagate tailgating gravitational waves. Journal of Cosmology and Astroparticle Physics, 2022, 2022, 004.	1.9	0
516	Dissecting the interstellar medium of a <i>z</i> = 6.3 galaxy. Astronomy and Astrophysics, 2023, 671, A84.	2.1	6

#	Article	IF	CITATIONS
517	Gamma-ray bursts, quasars, baryonic acoustic oscillations, and supernovae Ia: new statistical insights and cosmological constraints. Monthly Notices of the Royal Astronomical Society, 2023, 521, 3909-3924.	1.6	16
518	Optical darkness in short-duration \hat{I}^3 -ray bursts. Monthly Notices of the Royal Astronomical Society, 0, , .	1.6	1
524	Galaxy Formation from a Timescale Perspective. Mathematics Online First Collections, 2023, , 105-145.	0.1	0
534	The Neil Gehrels Swift Observatory. , 2024, , 1423-1454.		0
535	Gamma-Ray Bursts. , 2024, , 5093-5126.		0