From molecular to macroscopic via the rational design

Nature 461, 74-77 DOI: 10.1038/nature08274

Citation Report

#	Article	IF	CITATIONS
2	Designed DNA Crystals: Triangles with Short Sticky Ends. Small, 2009, 5, 2782-2783.	5.2	5
4	Molecular Behavior of DNA Origami in Higher-Order Self-Assembly. Journal of the American Chemical Society, 2010, 132, 13545-13552.	6.6	123
5	Nanomaterials Based on DNA. Annual Review of Biochemistry, 2010, 79, 65-87.	5.0	933
6	The many twists and turns of DNA: template, telomere, tool, and target. Current Opinion in Structural Biology, 2010, 20, 262-275.	2.6	28
7	Binding Hisâ€ŧagged Proteins to NTA Stripes Assembled in 2D DNA Scaffold. Chinese Journal of Chemistry, 2010, 28, 1795-1798.	2.6	5
8	Threeâ€Dimensional Structure and Thermal Stability Studies of DNA Nanostructures by Energy Transfer Spectroscopy. ChemPhysChem, 2010, 11, 2081-2084.	1.0	16
14	DNA as a Versatile Chemical Component for Catalysis, Encoding, and Stereocontrol. Angewandte Chemie - International Edition, 2010, 49, 7180-7201.	7.2	221
15	Selfâ€Assembly of Functionalizable Twoâ€Component 3D DNA Arrays through the Induced Formation of DNA Threeâ€Wayâ€Junction Branch Points by Supramolecular Cylinders. Angewandte Chemie - International Edition, 2010, 49, 2336-2339.	7.2	65
16	A Geometric Approach to the Crystallographic Solution of Nonconventional DNA Structures: Helical Superstructures of d(CGATAT). Angewandte Chemie - International Edition, 2010, 49, 7920-7922.	7.2	5
17	Threeâ€Dimensional Directed Selfâ€Assembly of Peptide Nanowires into Micrometerâ€6ized Crystalline Cubes with Nanoparticle Joints. Angewandte Chemie - International Edition, 2010, 49, 8375-8378.	7.2	27
18	Cage molecules for self-assembly. Materials Science and Engineering Reports, 2010, 70, 188-208.	14.8	66
19	Prediction and design of DNA and RNA structures. New Biotechnology, 2010, 27, 184-193.	2.4	39
20	Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Current Opinion in Chemical Biology, 2010, 14, 597-607.	2.8	78
21	Novel DNA materials and their applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 648-669.	3.3	79
22	A polyhedron made of tRNAs. Nature Chemistry, 2010, 2, 772-779.	6.6	187
23	Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature Nanotechnology, 2010, 5, 520-524.	15.6	354
24	The emerging field of RNA nanotechnology. Nature Nanotechnology, 2010, 5, 833-842.	15.6	642
25	Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain. Journal of Microbiology and Biotechnology, 2010, 20, 1529-1533.	0.9	13

TATION PEDO

	CITATION	CITATION REPORT	
#	Article	IF	CITATIONS
26	Biofabrication to build the biology–device interface. Biofabrication, 2010, 2, 022002.	3.7	94
27	Macroscopic Films of Porphyrin Nanowell-Arrays via Solvent Diffusion-Induced Self-Assembly. Journal of Physical Chemistry C, 2010, 114, 18449-18454.	1.5	9
28	Structural DNA Nanotechnology: Growing Along with <i>Nano Letters</i> . Nano Letters, 2010, 10, 1971-1978.	4.5	157
29	Effective Click Construction of <i>Bridged</i> and <i>Spiro</i> -Multicyclic Polymer Topologies with Tailored Cyclic Prepolymers (<i>kyklo</i> -Telechelics). Journal of the American Chemical Society, 2010, 132, 14790-14802.	6.6	129
30	A DNA Crystal Designed to Contain Two Molecules per Asymmetric Unit. Journal of the American Chemical Society, 2010, 132, 15471-15473.	6.6	69
31	Structural DNA Nanotechnology: From Bases to Bricks, From Structure to Function. Journal of Physical Chemistry Letters, 2010, 1, 1994-2005.	2.1	63
32	Programmed Nanoparticle Aggregation Using Molecular Beacons. Angewandte Chemie - International Edition, 2010, 49, 7917-7919.	7.2	13
33	Weave Tile Architecture Construction Strategy for DNA Nanotechnology. Journal of the American Chemical Society, 2010, 132, 14481-14486.	6.6	42
34	DNA nanogel encapsulated by a lipid vesicle. , 2010, , .		0
35	Nanoscale Protein Assemblies from a Circular Permutant of the Tobacco Mosaic Virus. Nano Letters, 2010, 10, 181-186.	4.5	93
36	Photonic Bands in DNA Crystal-Based Frequency-Dependent Media. IEEE Sensors Journal, 2010, 10, 1820-1823.	2.4	0
37	Blunt-ended DNA stacking interactions in a 3-helix motif. Chemical Communications, 2010, 46, 4905.	2.2	36
38	Adaptive DNA-based materials for switching, sensing, and logic devices. Journal of Materials Chemistry, 2011, 21, 6113.	6.7	26
39	Oligonucleotide-functionalized hydrogels as stimuli responsive materials and biosensors. Soft Matter, 2011, 7, 6757.	1.2	170
40	DNA Coiled Coil Superstructures in Oligonucleotide Crystals. Industrial & Engineering Chemistry Research, 2011, 50, 5218-5224.	1.8	2
41	pH-responsive, DNA-directed reversible assembly of graphene oxide. Molecular BioSystems, 2011, 7, 2681.	2.9	20
42	Design and Construction of Double-Decker Tile as a Route to Three-Dimensional Periodic Assembly of DNA. Journal of the American Chemical Society, 2011, 133, 3843-3845.	6.6	57
43	Simulative Analysis of a Truncated Octahedral DNA Nanocage Family Indicates the Single-Stranded Thymidine Linkers as the Major Player for the Conformational Variability. Journal of Physical Chemistry C, 2011, 115, 16819-16827.	1.5	14

ARTICLE IF CITATIONS Improving the Yield of Mono-DNA-Functionalized Gold Nanoparticles through Dual Steric Hindrance. 6.6 89 Journal of the American Chemical Society, 2011, 133, 15284-15287. Cooperative Hybridization of Oligonucleotides. Journal of the American Chemical Society, 2011, 133, 6.6 98 1077-1086. Nanoparticles, nanotubes and nanowell-array films via solvent diffusion-induced self-assembly., 2011, 0 , . DNA origami: a quantum leap for self-assembly of complex structures. Chemical Society Reviews, 2011, 444 40, 5636. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. 1.9 255 Polymer Chemistry, 2011, 2, 1930. Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 2011, 6, 15.6 1,169 763-772. Direct Mechanical Measurements Reveal the Material Properties of Three-Dimensional DNA Origami. 4.5 183 Nano Letters, 2011, 11, 5558-5563. Three-Dimensional Plasmon Rulers. Science, 2011, 332, 1407-1410. 6.0 522 Anharmonic Vibrational Modes of Nucleic Acid Bases Revealed by 2D IR Spectroscopy. Journal of the 108 6.6 American Chemical Society, 2011, 133, 15650-15660. The sequence d(CGCCGCCGC) self-assembles into a two dimensional rhombic DNA lattice. 1.0 Biochemical and Biophysical Research Communications, 2011, 407, 548-551. Linear birefringence magnitude of artificial self-assembled DNA crystals. Optical Materials Express, 1.6 1 2011, 1, 936. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature 15.6 214 Nanotechnology, 2011, 6, 558-562. pH-Responsive self-duplex of PyA-substituted oligodeoxyadenylate in graphene oxide solution as a 1.5 19 molecular switch. Organic and Biomolecular Chemistry, 2011, 9, 7434. Supramolecular DNA assembly. Chemical Society Reviews, 2011, 40, 5647. 18.7 Numerical study of DNA-functionalized microparticles and nanoparticles: Explicit pair potentials and 1.2 75 their implications for phase behavior. Journal of Chemical Physics, 2011, 134, 084702. Triplex inducer-directed self-assembly of single-walled carbon nanotubes: a triplex DNA-based approach for controlled manipulation of nanostructures. Nucleic Acids Research, 2011, 39, 3939-3948. Surmounting the Cartesian Cut: Klein Bottle Logophysics, The Dirac Algebra and the Genetic Code. 0.12 NeuroQuantology, 2011, 9, .

CITATION REPORT

61A Structurally Variable Hinged Tetrahedron Framework from DNA Origami. Journal of Nucleic Acids,
2011, 2011, 1-9.0.826

#

44

46

48

49

50

52

54

56

58

#	Article	IF	CITATIONS
63	Topological Polymer Chemistry: New Synthesis of Cyclic and Multicyclic Polymers and <i>Topology Effects</i> Thereby. Kobunshi Ronbunshu, 2011, 68, 782-794.	0.2	4
64	From untangled graphs and nets to tangled materials. Solid State Sciences, 2011, 13, 676-683.	1.5	11
65	A DNA assembly model of sentence generation. BioSystems, 2011, 106, 51-56.	0.9	5
66	Bio-inspired supramolecular self-assembly towards soft nanomaterials. Frontiers of Materials Science, 2011, 5, 247-265.	1.1	38
67	A Light Trigger for DNA Nanotechnology. Small, 2011, 7, 2163-2167.	5.2	27
68	Controlling forces and pathways in selfâ€essembly using viruses and DNA. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 282-297.	3.3	10
69	Cytosine, the double helix and DNA selfâ€assembly. Journal of Molecular Recognition, 2011, 24, 137-138.	1.1	8
70	Single molecule microscopy methods for the study of DNA origami structures. Microscopy Research and Technique, 2011, 74, 688-698.	1.2	23
71	Visualization of bionanostructures using transmission electron microscopical techniques. Microscopy Research and Technique, 2011, 74, 642-663.	1.2	32
72	Controlling Polarization Dependent Reactions to Fabricate Multi omponent Functional Nanostructures. Advanced Functional Materials, 2011, 21, 4712-4718.	7.8	16
77	Nucleic Acid Based Molecular Devices. Angewandte Chemie - International Edition, 2011, 50, 3124-3156.	7.2	527
78	Crystalline Twoâ€Ðimensional DNAâ€Origami Arrays. Angewandte Chemie - International Edition, 2011, 50, 264-267.	7.2	344
79	Site‧pecific Assembly of DNAâ€Based Photonic Wires by Using Programmable Polyamides. Angewandte Chemie - International Edition, 2011, 50, 2712-2715.	7.2	49
80	Branched DNA That Forms a Solid at 95 °C. Angewandte Chemie - International Edition, 2011, 50, 3227-3231.	7.2	66
81	Design and synthesis of DNA four-helix bundles. Nanotechnology, 2011, 22, 235601.	1.3	19
82	Structural Diversity and Specific Recognition of Four Stranded G-Quadruplex DNA. Current Molecular Medicine, 2011, 11, 744-769.	0.6	39
83	Intrinsic DNA curvature of double-crossover tiles. Nanotechnology, 2011, 22, 245706.	1.3	10
84	Self-Assembly-Based Structural DNA Nanotechnology. Current Organic Chemistry, 2011, 15, 534-547.	0.9	3

#	Article	IF	CITATIONS
85	Stability of DNA-linked nanoparticle crystals: Effect of number of strands, core size, and rigidity of strand attachment. Journal of Chemical Physics, 2011, 134, 244701.	1.2	34
86	Stability and electronic structure of <mml:math <br="" xmlns:mml="http://www.w3.org/1998/Math/MathML">display="inline"><mml:mrow><mml:mi>M</mml:mi></mml:mrow></mml:math> -DNA: Role of metal position. Physical Review B, 2011, 84, .	1.1	6
87	Synthesis, structure and imaging of oligodeoxyribonucleotides with tellurium-nucleobase derivatization. Nucleic Acids Research, 2011, 39, 3962-3971.	6.5	21
88	Using DNA Self-assembly Design Strategies to Motivate Graph Theory Concepts. Mathematical Modelling of Natural Phenomena, 2011, 6, 96-107.	0.9	5
89	Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus, 2011, 1, 702-724.	1.5	48
90	DNA-Based Soft Phases. Topics in Current Chemistry, 2011, 318, 225-279.	4.0	29
91	DNA Crystals, Constructs, and Devices. The Electrical Engineering Handbook, 2012, , 1037-1050.	0.2	0
92	Three-Dimensional Structures Self-Assembled from DNA Bricks. Science, 2012, 338, 1177-1183.	6.0	1,062
93	Solution-Phase Synthesis of Branched DNA Hybrids Based on Dimer Phosphoramidites and Phenolic or Nucleosidic Cores. Journal of Organic Chemistry, 2012, 77, 2703-2717.	1.7	24
94	Solution-Phase Synthesis of Branched DNA Hybrids via <i>H</i> -Phosphonate Dimers. Journal of Organic Chemistry, 2012, 77, 2718-2728.	1.7	28
95	A programmable transducer self-assembled from DNA. Chemical Science, 2012, 3, 168-176.	3.7	24
96	Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature. Science, 2012, 338, 1458-1461.	6.0	252
97	Tile Complexity of Linear Assemblies. SIAM Journal on Computing, 2012, 41, 1051-1073.	0.8	10
98	Cryo-EM structure of a 3D DNA-origami object. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20012-20017.	3.3	219
99	DNA Origami Gatekeepers for Solidâ€State Nanopores. Angewandte Chemie - International Edition, 2012, 51, 4864-4867.	7.2	168
100	Structural DNA Nanotechnology: From Design to Applications. International Journal of Molecular Sciences, 2012, 13, 7149-7162.	1.8	74
101	Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures. Accounts of Chemical Research, 2012, 45, 1215-1226.	7.6	140
103	Genetically engineered protein nanowires: unique features in site-specific functionalization and multi-dimensional self-assembly. Soft Matter, 2012, 8, 7533.	1.2	18

#	Article	IF	CITATIONS
104	Folding super-sized DNA origami with scaffold strands from long-range PCR. Chemical Communications, 2012, 48, 6405.	2.2	115
105	Atomic force microscopy of arrays of asymmetrical DNA motifs. Soft Matter, 2012, 8, 3094.	1.2	2
106	Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles. Langmuir, 2012, 28, 1959-1965.	1.6	28
107	Three-Dimensional DNA Crystals with pH-Responsive Noncanonical Junctions. Journal of the American Chemical Society, 2012, 134, 12557-12564.	6.6	24
108	Small-Angle X-ray Scattering Investigations of Biomolecular Confinement, Loading, and Release from Liquid-Crystalline Nanochannel Assemblies. Journal of Physical Chemistry Letters, 2012, 3, 445-457.	2.1	81
109	Assembly and Microscopic Characterization of DNA Origami Structures. Advances in Experimental Medicine and Biology, 2012, 733, 87-96.	0.8	3
110	Magnesium-free self-assembly of multi-layer DNA objects. Nature Communications, 2012, 3, 1103.	5.8	147
111	DNA origami – art, science, and engineering. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2012, 6, 3-9.	1.1	5
112	Branchpoint Expansion in a Fully Complementary Three-Way DNA Junction. Journal of the American Chemical Society, 2012, 134, 6280-6285.	6.6	44
113	Chapter 9. DNA Self-assembly: from Nanostructures to Macro-engineering. RSC Smart Materials, 2012, , 204-222.	0.1	0
114	Quasi 3D imaging of DNA–gold nanoparticle tetrahedral structures. Journal of Physics Condensed Matter, 2012, 24, 164203.	0.7	5
116	Nanoscale imaging in DNA nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 66-81.	3.3	20
117	Influence of Mg ²⁺ , Ni ²⁺ , and Cu ²⁺ on DNA assembly on HOPG surfaces: atomic force microscopy study. Scanning, 2012, 34, 68-75.	0.7	4
118	Assembly of Single‣tranded DNA Onto HOPG Surface at Different Temperature: Atomic Force Microscopy Study. Scanning, 2012, 34, 302-308.	0.7	9
119	Triplex-Directed Recognition of a DNA Nanostructure Assembled by Crossover Strand Exchange. ACS Nano, 2012, 6, 3604-3613.	7.3	37
120	HolT Hunter: Software for identifying and characterizing lowâ€strain DNA holliday triangles. Journal of Computational Chemistry, 2012, 33, 1393-1405.	1.5	1
121	The absence of tertiary interactions in a selfâ€assembled DNA crystal structure. Journal of Molecular Recognition, 2012, 25, 234-237.	1.1	32
122	Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012, 485, 623-626.	13.7	835

#	Article	IF	CITATIONS
123	Computational Design of Self-Assembling Protein Nanomaterials with Atomic Level Accuracy. Science, 2012, 336, 1171-1174.	6.0	588
124	DNA-Multichromophore Systems. Chemical Reviews, 2012, 112, 4221-4245.	23.0	292
128	Microfluidic Control of the Internal Morphology in Nanofiberâ€Based Macroscopic Cables. Angewandte Chemie - International Edition, 2012, 51, 7942-7947.	7.2	53
130	DNA Architectonics: towards the Next Generation of Bioâ€inspired Materials. Chemistry - A European Journal, 2012, 18, 4456-4469.	1.7	82
131	Computational design of a protein crystal. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7304-7309.	3.3	157
132	Metal-directed, chemically tunable assembly of one-, two- and three-dimensional crystalline protein arrays. Nature Chemistry, 2012, 4, 375-382.	6.6	332
133	Hierarchical self assembly of patterns from the Robinson tilings: DNA tile design in an enhanced Tile Assembly Model. Natural Computing, 2012, 11, 323-338.	1.8	31
134	Design of an artificial functional nanomaterial with high recognition ability. Natural Computing, 2012, 11, 231-238.	1.8	5
135	Metallization of a Genetically Engineered Polypeptide. Macromolecular Bioscience, 2012, 12, 269-273.	2.1	2
136	Natural triterpenoids as renewable nanos. Structural Chemistry, 2012, 23, 393-398.	1.0	44
137	DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. , 2013, , .		8
138	Nanoscale Structure and Microscale Stiffness of DNA Nanotubes. ACS Nano, 2013, 7, 6700-6710.	7.3	100
139	Nucleic acid nanostructures for biomedical applications. Nanomedicine, 2013, 8, 105-121.	1.7	67
140	DNA Nanotechnology. , 2013, , .		5
141	Nanorobotics. , 2013, , .		32
142	Isothermal Self-Assembly of Complex DNA Structures under Diverse and Biocompatible Conditions. Nano Letters, 2013, 13, 4242-4248.	4.5	50
143	DNA-directed self-assembly of shape-controlled hydrogels. Nature Communications, 2013, 4, 2275.	5.8	238
144	A guide to mentoring undergraduates in the lab. Nature Nanotechnology, 2013, 8, 784-786.	15.6	4

	CITATION	Report	
#	Article	IF	Citations
145	Learning and research in the cloud. Nature Nanotechnology, 2013, 8, 786-789.	15.6	25
146	Design Space for Complex DNA Structures. Journal of the American Chemical Society, 2013, 135, 18080-18088.	6.6	36
148	Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage. ACS Nano, 2013, 7, 9724-9734.	7.3	132
149	Binding Assistance Triggering Attachments of Hairpin DNA onto Gold Nanoparticles. Analytical Chemistry, 2013, 85, 11973-11978.	3.2	5
150	Specificity, flexibility and valence of DNA bonds guide emulsion architecture. Soft Matter, 2013, 9, 9816.	1.2	90
151	Hairpin embedded DNA lattices grown on a mica substrate. RSC Advances, 2013, 3, 19876.	1.7	5
152	Self-assembly of biomolecular soft matter. Faraday Discussions, 2013, 166, 9.	1.6	84
153	TEM imaging of unstained DNA nanostructures using suspended graphene. Soft Matter, 2013, 9, 1414-1417.	1.2	15
154	Crystallization of a self-assembled three-dimensional DNA nanostructure. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 141-146.	0.7	5
155	Constructing arrays of proteins. Current Opinion in Chemical Biology, 2013, 17, 946-951.	2.8	21
156	Self-Assembled DNA Crystals: The Impact on Resolution of 5′-Phosphates and the DNA Source. Nano Letters, 2013, 13, 793-797.	4.5	46
157	Self-assembling of large ordered DNA arrays using superhydrophobic patterned surfaces. Nanotechnology, 2013, 24, 495302.	1.3	30
158	Multivalent Directed Assembly of Colloidal Particles. Angewandte Chemie - International Edition, 2013, 52, 3314-3316.	7.2	7
159	DNA Nanorobotics. , 2013, , 355-382.		11
160	Backbone-Branched DNA Building Blocks for Facile Angular Control in Nanostructures. ACS Nano, 2013, 7, 3953-3961.	7.3	15
161	Longâ€fange assembly of DNA into nanofibers and highly ordered networks. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 266-285.	3.3	16
162	Smart Drug Delivery Nanocarriers with Selfâ€Assembled DNA Nanostructures. Advanced Materials, 2013, 25, 4386-4396.	11.1	378
163	Overview of DNA origami for molecular selfâ€assembly. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 150-162.	3.3	29

# 164	ARTICLE Cinnamate-based DNA photolithography. Nature Materials, 2013, 12, 747-753.	IF 13.3	Citations
165	DNAâ€Based Selfâ€Assembly for Functional Nanomaterials. Advanced Materials, 2013, 25, 3905-3914.	11.1	81
166	Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides. Nature Methods, 2013, 10, 647-652.	9.0	111
167	PNA-Peptide Assembly in a 3D DNA Nanocage at Room Temperature. Journal of the American Chemical Society, 2013, 135, 6985-6993.	6.6	34
168	Unusual DNA Structures Formed on Bare Highly Oriented Pyrolytic Graphite Surfaces Studied by Atomic Force Microscopy. Microscopy and Microanalysis, 2013, 19, 544-552.	0.2	8
170	The enabled state of DNA nanotechnology. Current Opinion in Biotechnology, 2013, 24, 555-561.	3.3	152
171	Real-time study of a DNA strand displacement reaction using dual polarization interferometry. Biosensors and Bioelectronics, 2013, 41, 505-510.	5.3	16
172	A molecular logical switching beacon controlled by thiolated DNA signals. Chemical Communications, 2013, 49, 11308.	2.2	10
174	"Giant Surfactants―Created by the Fast and Efficient Functionalization of a DNA Tetrahedron with a Temperature-Responsive Polymer. ACS Nano, 2013, 7, 8561-8572.	7.3	93
175	Phase behavior and critical activated dynamics of limited-valence DNA nanostars. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15633-15637.	3.3	156
176	DNA Self-Assembly: From Chirality to Evolution. International Journal of Molecular Sciences, 2013, 14, 8252-8270.	1.8	27
177	Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize I. Advances in Polymer Science, 2013, , .	0.4	0
178	Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nature Communications, 2013, 4, 1965.	5.8	183
179	Bowman v. Monsanto and the protection of patented replicative biologic technologies. Nature Biotechnology, 2013, 31, 602-606.	9.4	5
180	Functionalized DNA Nanostructures for Nanomedicine. Israel Journal of Chemistry, 2013, 53, 555-566.	1.0	8
183	Design and engineering of molecular communication systems. , 0, , 122-151.		0
184	Robust analysis of synthetic label-free DNA junctions in solution by X-ray scattering and molecular simulation. Scientific Reports, 2013, 3, 3226.	1.6	5
186	Functional DNA Nanostructures for Photonic and Biomedical Applications. Small, 2013, 9, 2210-2222.	5.2	54

#	Article	IF	CITATIONS
187	Quantitative analysis of molecular-level DNA crystal growth on a 2D surface. Scientific Reports, 2013, 3, 2115.	1.6	24
188	Another Important 60th Anniversary. Advances in Polymer Science, 2013, , 217-228.	0.4	1
189	Biotensegrity: A Unifying Theory of Biological Architecture With Applications to Osteopathic Practice, Education, and Research—A Review and Analysis. Journal of Osteopathic Medicine, 2013, 113, 34-52.	0.4	67
191	Designer three-dimensional DNA architectures. Current Opinion in Structural Biology, 2014, 27, 122-128.	2.6	22
192	Nanolithography Based on Metalized DNA Templates for Graphene Patterning. Current Protocols in Chemical Biology, 2014, 6, 53-64.	1.7	1
193	Functionalizing Designer DNA Crystals with a Tripleâ€Helical Veneer. Angewandte Chemie - International Edition, 2014, 53, 3979-3982.	7.2	63
194	Influence of the singleâ€strand linker composition on the structural/dynamical properties of a truncated octahedral DNA nanoâ€cage family. Biopolymers, 2014, 101, 992-999.	1.2	13
196	Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nature Communications, 2014, 5, 5578.	5.8	101
197	State of the art: micro-nanorobotic manipulation in single cell analysis. Robotics and Biomimetics, 2014, 1, .	1.7	28
198	Predicting macroscopic thermal expansion of metastable liquid metals with only one thousand atoms. Science China: Physics, Mechanics and Astronomy, 2014, 57, 2235-2241.	2.0	2
199	DNA Nanotechnology: From Biology and Beyond. Nucleic Acids and Molecular Biology, 2014, , 135-169.	0.2	2
200	Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT. Science, 2014, 344, 65-69.	6.0	299
201	Helical nanostructures based on DNA self-assembly. Nanoscale, 2014, 6, 9331.	2.8	27
202	Directed Selfâ€Assembly of DNA Tiles into Complex Nanocages. Angewandte Chemie - International Edition, 2014, 53, 8041-8044.	7.2	66
203	Sequence-specific recognition of DNA nanostructures. Methods, 2014, 67, 123-133.	1.9	10
204	DNA Crystals as Vehicles for Biocatalysis. Journal of the American Chemical Society, 2014, 136, 7817-7820.	6.6	43
205	Tensegrity, cellular biophysics, and the mechanics of living systems. Reports on Progress in Physics, 2014, 77, 046603.	8.1	339
206	Art as a Stimulus for Structural DNA Nanotechnology. Leonardo, 2014, 47, 142-149.	0.2	4

# 207	ARTICLE Lighting up tumours. Nature Materials, 2014, 13, 122-124.	IF 13.3	Citations 34
208	DNA-bonded 'atoms'. Nature Materials, 2014, 13, 121-122.	13.3	7
209	DNA-based nanobiostructured devices: The role of quasiperiodicity and correlation effects. Physics Reports, 2014, 535, 139-209.	10.3	88
210	Microarrays and single molecules: an exciting combination. Soft Matter, 2014, 10, 931.	1.2	20
211	Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, 2014, , .	0.2	5
212	Accurate phase diagram of tetravalent DNA nanostars. Journal of Chemical Physics, 2014, 140, .	1.2	50
213	Approaching the Limit: Can One DNA Strand Assemble into Defined Nanostructures?. Langmuir, 2014, 30, 5859-5862.	1.6	23
214	Programmable polymer-DNA hydrogels with dual input and multiscale responses. Biomaterials Science, 2014, 2, 203-211.	2.6	27
215	DNA brick crystals with prescribed depths. Nature Chemistry, 2014, 6, 994-1002.	6.6	182
216	Programmed assembly of polymer–DNA conjugate nanoparticles with optical readout and sequence-specific activation of biorecognition. Nanoscale, 2014, 6, 2368-2374.	2.8	15
217	A DNA-Directed Light-Harvesting/Reaction Center System. Journal of the American Chemical Society, 2014, 136, 16618-16625.	6.6	100
218	Complex Reconfiguration of DNA Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 7475-7479.	7.2	21
220	Strength of DNA Sticky End Links. Biomacromolecules, 2014, 15, 143-149.	2.6	8
221	Quantifying quality in DNA self-assembly. Nature Communications, 2014, 5, 3691.	5.8	37
223	Functional DNA Nanostructures for Theranostic Applications. Accounts of Chemical Research, 2014, 47, 550-559.	7.6	364
224	Self-assembled RNA nanostructures. Science, 2014, 345, 732-733.	6.0	17
225	Modular-DNA Programmed Molecular Construction of "Fixed―of 2D and 3D-Au Nanoparticle Arrays. Chemistry of Materials, 2014, 26, 5499-5505.	3.2	4
226	Structural DNA Nanotechnology: State of the Art and Future Perspective. Journal of the American Chemical Society, 2014, 136, 11198-11211.	6.6	492

#	Article	IF	Citations
227	Self-assembly of one dimensional DNA-templated structures. Journal of Materials Chemistry C, 2014, 2, 6895-6920.	2.7	17
228	Simulating a burnt-bridges DNA motor with a coarse-grained DNA model. Natural Computing, 2014, 13, 535-547.	1.8	30
229	Switchable Reconfiguration of Nucleic Acid Nanostructures by Stimuli-Responsive DNA Machines. Accounts of Chemical Research, 2014, 47, 1673-1680.	7.6	145
230	Developmental Self-Assembly of a DNA Tetrahedron. ACS Nano, 2014, 8, 3251-3259.	7.3	97
231	Engineering DNA Self-Assemblies as Templates for Functional Nanostructures. Accounts of Chemical Research, 2014, 47, 1654-1662.	7.6	101
232	Surfaceâ€Assisted Large cale Ordering of DNA Origami Tiles. Angewandte Chemie - International Edition, 2014, 53, 7665-7668.	7.2	152
233	New molecular engineering approaches for crystallographic studies of large RNAs. Current Opinion in Structural Biology, 2014, 26, 9-15.	2.6	46
234	Structural DNA Nanotechnology for Intelligent Drug Delivery. Small, 2014, 10, 4626-4635.	5.2	101
235	Speeding up the self-assembly of a DNA nanodevice using a variety of polar solvents. Nanoscale, 2014, 6, 14153-14157.	2.8	13
236	Physical and Biochemical Insights on DNA Structures in Artificial and Living Systems. Accounts of Chemical Research, 2014, 47, 1720-1730.	7.6	59
237	Wireframe and Tensegrity DNA Nanostructures. Accounts of Chemical Research, 2014, 47, 1691-1699.	7.6	72
238	Building DNA Nanostructures for Molecular Computation, Templated Assembly, and Biological Applications. Accounts of Chemical Research, 2014, 47, 1778-1788.	7.6	47
239	DNA Nanostructures Interacting with Lipid Bilayer Membranes. Accounts of Chemical Research, 2014, 47, 1807-1815.	7.6	142
240	Phage-based nanomaterials for biomedical applications. Acta Biomaterialia, 2014, 10, 1741-1750.	4.1	48
241	Nanotechnology in agri-food production: an overview. Nanotechnology, Science and Applications, 2014, 7, 31.	4.6	733
242	FRET based characterization of DNA-based assemblies. , 2014, , .		1
244	Dependence of a DNA globule size in a gas phase on the chain length. Russian Journal of Genetics: Applied Research, 2015, 5, 394-400.	0.4	1
245	(Non-) Covalently Modified DNA with Novel Functions. , 2015, , 1-77.		1

# 246	ARTICLE Alternative DNA Structures, Switches and Nanomachines. , 2015, , 329-490.	IF	CITATIONS 0
247	Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. Journal of Chemical Physics, 2015, 142, 234901.	1.2	267
248	Modelling DNA origami self-assembly at the domain level. Journal of Chemical Physics, 2015, 143, 165102.	1.2	28
250	Combining DNA motifs into larger multi-component constructs. , 0, , 97-129.		0
251	Self-assembly of Complex Two-dimensional Shapes from Single-stranded DNA Tiles. Journal of Visualized Experiments, 2015, , e52486.	0.2	4
252	Selfâ€essembly of Micrometerâ€long DNA Nanoribbons with Four Oligonucleotides. Chinese Journal of Chemistry, 2015, 33, 522-526.	2.6	2
253	Screening of Oligopeptides that Recognize Inorganic Crystalline Facets of Metal Nanoparticles. Israel Journal of Chemistry, 2015, 55, 749-755.	1.0	3
254	Postâ€Assembly Stabilization of Rationally Designed DNA Crystals. Angewandte Chemie, 2015, 127, 10074-10077.	1.6	8
255	Sequence-dependent structural changes in a self-assembling DNA oligonucleotide. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2471-2478.	2.5	6
257	Postâ€Assembly Stabilization of Rationally Designed DNA Crystals. Angewandte Chemie - International Edition, 2015, 54, 9936-9939.	7.2	50
258	Advances in Functional Assemblies for Regenerative Medicine. Advanced Healthcare Materials, 2015, 4, 2500-2519.	3.9	4
259	Probing the role of sequence in the assembly of threeâ€dimensional DNA crystals. Biopolymers, 2015, 103, 618-626.	1.2	9
260	Fabrication of multi-layered DNA nanostructures using single-strand and double-crossover tile connectors. RSC Advances, 2015, 5, 43234-43241.	1.7	6
261	Thermodynamics and kinetics of DNA nanotube polymerization from single-filament measurements. Chemical Science, 2015, 6, 2252-2267.	3.7	39
262	DNA origami and the complexity of Eulerian circuits with turning costs. Natural Computing, 2015, 14, 491-503.	1.8	11
263	Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nature Nanotechnology, 2015, 10, 637-644.	15.6	243
265	DNA hairpins destabilize duplexes primarily by promoting melting rather than by inhibiting hybridization. Nucleic Acids Research, 2015, 43, 6181-6190.	6.5	54
266	Bioactive DNA-Peptide Nanotubes Enhance the Differentiation of Neural Stem Cells Into Neurons. Nano Letters, 2015, 15, 603-609.	4.5	123

		CITATION REPORT		
#	ARTICLE		IF	Citations
267	3D Printing with Nucleic Acid Adhesives. ACS Biomaterials Science and Engineering, 201	5, 1, 19-26.	2.6	23
268	Programmable Engineering of a Biosensing Interface with Tetrahedral DNA Nanostructur Ultrasensitive DNA Detection. Angewandte Chemie - International Edition, 2015, 54, 215	2s for 1-2155.	7.2	350
269	Coarse-Grained Simulation Study of Sequence Effects on DNA Hybridization in a Concen Environment. Journal of Physical Chemistry B, 2015, 119, 1823-1834.	rated	1.2	24
270	Directed Enzymatic Activation of 1-D DNA Tiles. ACS Nano, 2015, 9, 1072-1079.		7.3	5
271	Proteins as supramolecular building blocks: Nterm‣sr2 as a new protein tecton. Biopol 260-270.	ymers, 2015, 103,	1.2	2
272	Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Journal of the American Chemical Society, 2015, 137, 3844-3851.	Silencing.	6.6	113
273	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.		6.0	1,141
274	Engineering Artificial Machines from Designable DNA Materials for Biomedical Application Engineering - Part B: Reviews, 2015, 21, 288-297.	hs. Tissue	2.5	5
275	Functionalization of quantum rods with oligonucleotides for programmable assembly wit origami. Nanoscale, 2015, 7, 2883-2888.	h DNA	2.8	19
276	Switching Bonds in a DNA Gel: An All-DNA Vitrimer. Physical Review Letters, 2015, 114, C	78104.	2.9	32
277	Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst, The, 2015,	140, 5821-5848.	1.7	33
279	Intrinsic universality and the computational power of self-assembly. Philosophical Transa Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140214.	tions	1.6	31
280	DNA Nanostructures as Programmable Biomolecular Scaffolds. Bioconjugate Chemistry, 1381-1395.	2015, 26,	1.8	134
281	Substrate-assisted 2D DNA lattices and algorithmic lattices from single-stranded tiles. Na 2015, 7, 12336-12342.	noscale,	2.8	12
282	Description of DNA molecular motion for nanotechnology applications. Progress in Mate Science, 2015, 74, 308-331.	rials	16.0	12
283	An intercalation-locked parallel-stranded DNA tetraplex. Nucleic Acids Research, 2015, 43	, 1937-1944.	6.5	14
284	Photocontrolled micellar aggregation of amphiphilic DNA-azobenzene conjugates. Colloi Surfaces B: Biointerfaces, 2015, 135, 126-132.	ds and	2.5	11
286	Exploiting shape complementarity. Nature Materials, 2015, 14, 752-754.		13.3	3

# 287	ARTICLE Liquid-state particle physics. Nature Materials, 2015, 14, 754-754.	IF 13.3	CITATIONS 0
288	DNA-linked superlattices get into shape. Nature Materials, 2015, 14, 746-749.	13.3	11
289	Molecular ping-pong Game of Life on a two-dimensional DNA origami array. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2015, 373, 20140215.	1.6	7
290	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	8.3	68
291	Optical properties and electronic transitions of DNA oligonucleotides as a function of composition and stacking sequence. Physical Chemistry Chemical Physics, 2015, 17, 4589-4599.	1.3	17
292	MicroRNA-triggered, cascaded and catalytic self-assembly of functional "DNAzyme ferris wheel― nanostructures for highly sensitive colorimetric detection of cancer cells. Nanoscale, 2015, 7, 9055-9061.	2.8	63
293	Design of protein crystals in the development of solid biomaterials. RSC Advances, 2015, 5, 21366-21375.	1.7	55
294	Directed Assembly of Nucleic Acid-Based Polymeric Nanoparticles from Molecular Tetravalent Cores. Journal of the American Chemical Society, 2015, 137, 8184-8191.	6.6	31
295	Assembly of a tile-based multilayered DNA nanostructure. Nanoscale, 2015, 7, 6492-6497.	2.8	13
296	Membrane-Assisted Growth of DNA Origami Nanostructure Arrays. ACS Nano, 2015, 9, 3530-3539.	7.3	151
297	Culture of Chemistry. , 2015, , .		0
298	van der Waals Interactions on the Mesoscale: Open-Science Implementation, Anisotropy, Retardation, and Solvent Effects. Langmuir, 2015, 31, 10145-10153.	1.6	17
299	Diffusive Transport of Molecular Cargo Tethered to a DNA Origami Platform. Nano Letters, 2015, 15, 2693-2699.	4.5	46
300	DNA-mediated engineering of multicomponent enzyme crystals. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4564-4569.	3.3	122
301	Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nature Communications, 2015, 6, 8052.	5.8	176
303	Mechanistic Insight into DNA-Guided Control of Nanoparticle Morphologies. Journal of the American Chemical Society, 2015, 137, 14456-14464.	6.6	84
304	Structural Characterization of Single-Stranded DNA Monolayers Using Two-Dimensional Sum Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2015, 119, 10586-10596.	1.2	24
305	Enhancing DNA-Mediated Assemblies of Supramolecular Cage Dimers through Tuning Core Flexibility and DNA Length—A Combined Experimental–Modeling Study. Journal of the American Chemical Society, 2015, 137, 13381-13388.	6.6	16

	CHATION R	EPORT	
# 306	ARTICLE Computational Approaches to Nucleic Acid Origami. ACS Combinatorial Science, 2015, 17, 535-547.	IF 3.8	CITATIONS 22
307	Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles. Soft Matter, 2015, 11, 8484-8492.	1.2	18
308	DNA nanotechnology from the test tube to the cell. Nature Nanotechnology, 2015, 10, 748-760.	15.6	501
309	DNA nanotechnology: understanding and optimisation through simulation. Molecular Physics, 2015, 113, 1-15.	0.8	34
310	Synthesising topological links. Journal of Mathematical Chemistry, 2015, 53, 183-199.	0.7	11
311	3D DNA Crystals and Nanotechnology. Crystals, 2016, 6, 97.	1.0	20
312	Self-Assembly of Gold Nanocrystals into Discrete Coupled Plasmonic Structures. Crystals, 2016, 6, 117.	1.0	6
313	DNA-Based Enzyme Reactors and Systems. Nanomaterials, 2016, 6, 139.	1.9	63
314	Metallic Nanostructures Based on DNA Nanoshapes. Nanomaterials, 2016, 6, 146.	1.9	16
315	Designer DNA Architectures: Applications in Nanomedicine. Nanobiomedicine, 2016, 3, 6.	4.4	8
316	Enhancing DNA Crystal Durability through Chemical Crosslinking. ChemBioChem, 2016, 17, 1163-1170.	1.3	21
317	<scp>DNA</scp> origami and biotechnology applications: a perspective. Journal of Chemical Technology and Biotechnology, 2016, 91, 843-846.	1.6	25
318	Nucleic Acid Nanostructures for Chemical and Biological Sensing. Small, 2016, 12, 2689-2700.	5.2	39
319	Co-Immobilization of Proteins and DNA Origami Nanoplates to Produce High-Contrast Biomolecular Nanoarrays. Small, 2016, 12, 2877-2884.	5.2	7
320	Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem, 2016, 17, 1081-1089.	1.3	79
321	Directing folding pathways for multi-component DNA origami nanostructures with complex topology. New Journal of Physics, 2016, 18, 055005.	1.2	33
322	Construction of DNA nanotubes with controllable diameters and patterns using hierarchical DNA sub-tiles. Nanoscale, 2016, 8, 14785-14792.	2.8	43
323	Inâ€Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs. ChemBioChem, 2016, 17, 1132-1137.	1.3	9

#	Article	IF	CITATIONS
324	How Small DNA Minicircles Can Be Applied to Construct DNA Nanotubes?. Chinese Journal of Chemistry, 2016, 34, 326-330.	2.6	5
325	Constructing higher order DNA origami arrays using DNA junctions of anti-parallel/parallel double crossovers. Japanese Journal of Applied Physics, 2016, 55, 06GL04.	0.8	4
326	Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model. ACS Nano, 2016, 10, 4236-4247.	7.3	35
327	Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials. Journal of the American Chemical Society, 2016, 138, 7733-7740.	6.6	172
328	Sensitive Electrochemiluminescence Immunosensor for Detection of <i>N</i> -Acetyl-β- <scp>d</scp> -glucosaminidase Based on a "Light-Switch―Molecule Combined with DNA Dendrimer. Analytical Chemistry, 2016, 88, 5797-5803.	3.2	52
329	Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. Nano Letters, 2016, 16, 4282-4287.	4.5	70
330	Nucleic acid crystallization and X-ray crystallography facilitated by single selenium atom. Frontiers of Chemical Science and Engineering, 2016, 10, 196-202.	2.3	20
331	Nanoparticles and DNA – a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
332	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	18.7	146
333	Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth. ACS Nano, 2016, 10, 9156-9164.	7.3	31
334	Interfacing DNA nanodevices with biology: challenges, solutions and perspectives. New Journal of Physics, 2016, 18, 085005.	1.2	17
335	Complementary Hydrogen Bonding Modulates Electronic Properties and Controls Selfâ€Assembly of Donor/Acceptor Semiconductors. Chemistry - A European Journal, 2016, 22, 17251-17261.	1.7	21
336	Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures. Journal of the American Chemical Society, 2016, 138, 13579-13585.	6.6	49
337	Protein patterning by a DNA origami framework. Nanoscale, 2016, 8, 15233-15240.	2.8	10
340	Effects of Concentration and Temperature on DNA Hybridization by Two Closely Related Sequences via Large-Scale Coarse-Grained Simulations. Journal of Physical Chemistry B, 2016, 120, 7795-7806.	1.2	22
341	Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Research, 2016, 44, 7989-7996.	6.5	27
342	Construction and Structure Determination of a Three-Dimensional DNA Crystal. Journal of the American Chemical Society, 2016, 138, 10047-10054.	6.6	63
343	DNA Nanocages. Chemistry of Materials, 2016, 28, 5569-5581.	3.2	81

	CHATION R	EPORT	
#	Article	IF	CITATIONS
344	Nanoscale Structure and Elasticity of Pillared DNA Nanotubes. ACS Nano, 2016, 10, 7780-7791.	7.3	28
345	Fluorescence and Energy Transfer in Dye-Labeled DNA Crystals. Journal of Physical Chemistry B, 2016, 120, 12287-12292.	1.2	13
346	Regular Nanoscale Protein Patterns via Directed Adsorption through Self-Assembled DNA Origami Masks. ACS Applied Materials & Interfaces, 2016, 8, 31239-31247.	4.0	52
347	Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nature Reviews Materials, 2016, 1, .	23.3	281
348	Re-entrant DNA gels. Nature Communications, 2016, 7, 13191.	5.8	69
349	Assembly of multienzyme complexes on DNA nanostructures. Nature Protocols, 2016, 11, 2243-2273.	5.5	100
350	2D DNA lattices constructed from two-tile DAE-O systems possessing circular central strands. Nanoscale, 2016, 8, 18870-18875.	2.8	20
351	Three-Dimensional Uracil Network with Sodium as a Linker. Journal of Physical Chemistry C, 2016, 120, 26342-26349.	1.5	18
352	Materials perspective on Casimir and van der Waals interactions. Reviews of Modern Physics, 2016, 88,	16.4	276
353	Stabilisation of self-assembled DNA crystals by triplex-directed photo-cross-linking. Chemical Communications, 2016, 52, 8014-8017.	2.2	32
355	Self-organized architectures from assorted DNA-framed nanoparticles. Nature Chemistry, 2016, 8, 867-873.	6.6	210
356	From Nano to Macro through Hierarchical Selfâ€Assembly: The DNA Paradigm. ChemBioChem, 2016, 17, 1063-1080.	1.3	52
357	A â€~tile' tale: Hierarchical self-assembly of DNA lattices. Applied Materials Today, 2016, 2, 7-16.	2.3	41
358	DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly. Nano Letters, 2016, 16, 736-741.	4.5	77
359	Evolution of DNA origami scaffolds. Materials Letters, 2016, 170, 221-224.	1.3	20
360	Lattice engineering through nanoparticle–DNA frameworks. Nature Materials, 2016, 15, 654-661.	13.3	198
361	Programmable DNA scaffolds for spatially-ordered protein assembly. Nanoscale, 2016, 8, 4436-4446.	2.8	55
362	Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano, 2016, 10, 3069-3077.	7.3	37

#	Article	IF	CITATIONS
363	MicroRNA-induced cascaded and catalytic self-assembly of DNA nanostructures for enzyme-free and sensitive fluorescence detection of microRNA from tumor cells. Chemical Communications, 2016, 52, 2501-2504.	2.2	15
364	A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane. Nature Nanotechnology, 2016, 11, 152-156.	15.6	303
365	Counter machines and crystallographic structures. Natural Computing, 2016, 15, 97-113.	1.8	3
366	Programmable DNA Nanoswitches for Detection of Nucleic Acid Sequences. ACS Sensors, 2016, 1, 120-123.	4.0	55
367	Placing molecules with Bohr radius resolution using DNA origami. Nature Nanotechnology, 2016, 11, 47-52.	15.6	175
368	DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, 2016, 76, 68-79.	5.3	147
369	Enhancement of RecA-mediated self-assembly in DNA nanostructures through basepair mismatches and single-strand nicks. Scientific Reports, 2017, 7, 41081.	1.6	6
370	A four-helix bundle DNA nanostructure with binding pockets for pyrimidine nucleotides. Nanoscale, 2017, 9, 7047-7054.	2.8	6
371	Automated Quantification of the Impact of Defects on the Mechanical Behavior of Deoxyribonucleic Acid Origami Nanoplates. Journal of Biomechanical Engineering, 2017, 139, .	0.6	1
372	Shape Control of Soft Nanoparticles and Their Assemblies. Chemistry of Materials, 2017, 29, 1918-1945.	3.2	84
373	Geometric Principles for Designing Highly Symmetric Self-Assembling Protein Nanomaterials. Annual Review of Biophysics, 2017, 46, 23-42.	4.5	96
374	Click-based functionalization of a 2′-O-propargyl-modified branched DNA nanostructure. Journal of Materials Chemistry B, 2017, 5, 2074-2077.	2.9	12
375	Self-assembly of multi-stranded RNA motifs into lattices and tubular structures. Nucleic Acids Research, 2017, 45, 5449-5457.	6.5	28
376	Crystallization of Amphiphilic DNA C-Stars. Nano Letters, 2017, 17, 3276-3281.	4.5	45
377	DNA nanostructures constructed with multi-stranded motifs. Nucleic Acids Research, 2017, 45, 3606-3611.	6.5	16
378	A Crystalline DNA Device. CheM, 2017, 2, 614-616.	5.8	0
379	Structure and conformational dynamics of scaffolded DNA origami nanoparticles. Nucleic Acids Research, 2017, 45, 6284-6298.	6.5	22
380	An Organic Semiconductor Organized into 3D DNA Arrays by "Bottomâ€up―Rational Design. Angewandte Chemie, 2017, 129, 6545-6548.	1.6	10

#	Article	IF	CITATIONS
381	Supramolecular Wireframe <scp>DNA</scp> Polyhedra: Assembly and Applications. Chinese Journal of Chemistry, 2017, 35, 801-810.	2.6	8
382	Directionally Interacting Spheres and Rods Form Ordered Phases. ACS Nano, 2017, 11, 4950-4959.	7.3	19
383	An Organic Semiconductor Organized into 3D DNA Arrays by "Bottomâ€up―Rational Design. Angewandte Chemie - International Edition, 2017, 56, 6445-6448.	7.2	47
384	Surface-Sensitive and Surface-Specific Ultrafast Two-Dimensional Vibrational Spectroscopy. Chemical Reviews, 2017, 117, 10623-10664.	23.0	114
385	Precisely Tailored DNA Nanostructures and their Theranostic Applications. Chemical Record, 2017, 17, 1213-1230.	2.9	28
386	DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews, 2017, 117, 12584-12640.	23.0	834
387	Catalytic, Asymmetric Alkylation via Excited-State Iminium Ions. CheM, 2017, 2, 616-618.	5.8	1
388	Core–Shell and Layerâ€by‣ayer Assembly of 3D DNA Crystals. Advanced Materials, 2017, 29, 1701019.	11.1	17
389	Nucleic acid based polymer and nanoparticle conjugates: Synthesis, properties and applications. Progress in Materials Science, 2017, 88, 136-185.	16.0	24
390	Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science, 2017, 355, .	6.0	137
391	An optimizationâ€based approach for structural design of selfâ€assembled DNA tiles. AICHE Journal, 2017, 63, 1804-1817.	1.8	3
392	A device that operates within a self-assembled 3D DNA crystal. Nature Chemistry, 2017, 9, 824-827.	6.6	64
393	Discrete DNA three-dimensional nanostructures: the synthesis and applications. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1-24.	2.0	27
394	Programmed Assembly of Host–Guest Protein Crystals. Small, 2017, 13, 1602703.	5.2	23
395	Self-Assembly of 3D DNA Crystals Containing a Torsionally Stressed Component. Cell Chemical Biology, 2017, 24, 1401-1406.e2.	2.5	20
396	Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nature Chemistry, 2017, 9, 1056-1067.	6.6	259
397	DNA nanotubes assembled from tensegrity triangle tiles with circular DNA scaffolds. Nanoscale, 2017, 9, 17181-17185.	2.8	17
398	Selfâ€Assembly of DNA Nanostructures Using Threeâ€Way Junctions on Small Circular DNAs. ChemNanoMat, 2017, 3, 740-744.	1.5	4

	CITATION RE	CITATION REPORT	
#	Article	IF	CITATIONS
399	Valency Control and Functional Synergy in DNAâ€Bonded Nanomolecules. ChemNanoMat, 2017, 3, 698-712.	1.5	18
401	One DNA strand homo-polymerizes into defined nanostructures. Nanoscale, 2017, 9, 10601-10605.	2.8	17
402	Tuning the Cavity Size and Chirality of Self-Assembling 3D DNA Crystals. Journal of the American Chemical Society, 2017, 139, 11254-11260.	6.6	47
403	A DNA nanoribbon as a potent inhibitor of metallo-β-lactamases. Chemical Communications, 2017, 53, 8878-8881.	2.2	25
404	Application Progress of DNA Nanostructures in Drug Delivery and Smart Drug Carriers. Chinese Journal of Analytical Chemistry, 2017, 45, 1078-1087.	0.9	8
405	Time lapse microscopy of temperature control during self-assembly of 3D DNA crystals. Journal of Crystal Growth, 2017, 476, 1-5.	0.7	4
407	Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures. Liquid Crystals, 0, , 1-19.	0.9	14
408	Selfâ€Assembled DNA Nanostructures for Biomedical Applications. ChemNanoMat, 2017, 3, 713-724.	1.5	21
409	Construction of a Polyhedral DNA 12-Arm Junction for Self-Assembly of Wireframe DNA Lattices. ACS Nano, 2017, 11, 9041-9047.	7.3	18
410	Sculpting light by arranging optical components with DNA nanostructures. MRS Bulletin, 2017, 42, 936-942.	1.7	32
411	Chiral expression from molecular to macroscopic level via pH modulation in terbium coordination polymers. Nature Communications, 2017, 8, 2131.	5.8	35
412	Single-stranded DNA and RNA origami. Science, 2017, 358, .	6.0	202
413	Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature, 2017, 552, 72-77.	13.7	335
414	Practical aspects of structural and dynamic DNA nanotechnology. MRS Bulletin, 2017, 42, 889-896.	1.7	23
415	Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. MRS Bulletin, 2017, 42, 904-912.	1.7	30
416	Fungal Nanotechnology: A Pandora to Agricultural Science and Engineering. Fungal Biology, 2017, , 1-33.	0.3	9
417	Non-invasive detection of gastric cancer relevant <scp>d</scp> -amino acids with luminescent DNA/silver nanoclusters. Nanoscale, 2017, 9, 19367-19373.	2.8	60
418	Versatile DNA Origami Nanostructures in Simplified and Modular Designing Framework. ACS Nano, 2017, 11, 8199-8206.	7.3	14

#	Article	IF	CITATIONS
419	The competing effects of core rigidity and linker flexibility in the nanoassembly of trivalent small molecule-DNA hybrids (SMDH ₃ s)–a synergistic experimental-modeling study. Nanoscale, 2017, 9, 12652-12663.	2.8	3
420	Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure. Methods in Molecular Biology, 2017, 1500, 153-164.	0.4	1
421	Generation of Largeâ€Scale DNA Hydrogels with Excellent Blood and Cell Compatibility. Macromolecular Bioscience, 2017, 17, 1600252.	2.1	22
422	Direct Nanofabrication Using DNA Nanostructure. Methods in Molecular Biology, 2017, 1500, 217-235.	0.4	1
423	Designed 3D DNA Crystals. Methods in Molecular Biology, 2017, 1500, 3-10.	0.4	1
424	Effects of metal ions and cosolutes on G-quadruplex topology. Journal of Inorganic Biochemistry, 2017, 166, 190-198.	1.5	57
425	Programmable disorder in random DNA tilings. Nature Nanotechnology, 2017, 12, 251-259.	15.6	81
426	Design tools for reporter strands and DNA origami scaffold strands. Theoretical Computer Science, 2017, 671, 69-78.	0.5	9
427	Electrochemiluminescent immunosensing. , 2017, , 171-206.		10
429	A tip of the hat to evolutionary change. Nature, 2017, 552, 35-37.	13.7	0
430	DNA self-assembly scaled up. Nature, 2017, 552, 34-35.	13.7	37
431	DNA Nanobiosensors: An Outlook on Signal Readout Strategies. Journal of Nanomaterials, 2017, 2017, 1-9.	1.5	23
432	Supramolecular DNA Nanotechnology. , 2017, , 441-486.		3
434	DNA nanochannels. F1000Research, 2017, 6, 503.	0.8	6
435	Multifunctional nanomedicine with silica: Role of silica in nanoparticles for theranostic, imaging, and drug monitoring. Journal of Colloid and Interface Science, 2018, 521, 261-279.	5.0	140
436	Naturally-derived biopolymer nanocomposites: Interfacial design, properties and emerging applications. Materials Science and Engineering Reports, 2018, 125, 1-41.	14.8	182
437	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
438	Recent Advances in Multicomponent Particle Assembly. Chemistry - A European Journal, 2018, 24, 16196-16208.	1.7	11

#	Article	IF	CITATIONS
439	DNA Nanostructures at the Interface with Biology. CheM, 2018, 4, 495-521.	5.8	161
440	Instability of the sliding Luttinger liquid. Journal of Physics Condensed Matter, 2018, 30, 185602.	0.7	2
441	Multi-functional DNA nanostructures that puncture and remodel lipid membranes into hybrid materials. Nature Communications, 2018, 9, 1521.	5.8	65
442	DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 47, 4017-4072.	18.7	156
443	Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annual Review of Biomedical Engineering, 2018, 20, 375-401.	5.7	102
444	The Theory of Tensegrity and Spatial Organization of Living Matter. Russian Journal of Developmental Biology, 2018, 49, 87-100.	0.1	4
445	A Threeâ€ S tate System Based on Branched DNA Hybrids. Chemistry - A European Journal, 2018, 24, 4562-4572.	1.7	2
446	Design formalism for DNA self-assembly of polyhedral skeletons using rigid tiles. Journal of Mathematical Chemistry, 2018, 56, 1365-1392.	0.7	3
447	DNA-Assembled Advanced Plasmonic Architectures. Chemical Reviews, 2018, 118, 3032-3053.	23.0	313
448	Programmable and Multifunctional DNAâ€Based Materials for Biomedical Applications. Advanced Materials, 2018, 30, e1703658.	11.1	163
449	Synthesis and characterization of porphyrin–DNA constructs for the self-assembly of modular energy transfer arrays. Journal of Materials Chemistry C, 2018, 6, 2452-2459.	2.7	19
450	DNA Nanostructureâ€Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Advanced Healthcare Materials, 2018, 7, e1701153.	3.9	56
451	Evolution of Structural DNA Nanotechnology. Advanced Materials, 2018, 30, e1703721.	11.1	145
452	Structural polymorphism of a cytosine-rich DNA sequence forming i-motif structure: Exploring pH based biosensors. International Journal of Biological Macromolecules, 2018, 111, 455-461.	3.6	6
453	DNA and DNA computation based on toehold-mediated strand displacement reactions. International Journal of Modern Physics B, 2018, 32, 1840014.	1.0	6
454	Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Research, 2018, 46, 1021-1037.	6.5	81
455	DNA for Assembly and Charge Transport Photocatalytic Reduction of CO ₂ . Advanced Sustainable Systems, 2018, 2, 1700156.	2.7	8
456	Self-assembly of repeat proteins: Concepts and design of new interfaces. Journal of Structural Biology, 2018, 201, 118-129.	1.3	11

		EPORT	
# 457	ARTICLE DNA-based construction at the nanoscale: emerging trends and applications. Nanotechnology, 2018, 29, 062001.	IF 1.3	Citations
458	Programmable autonomous synthesis of single-stranded DNA. Nature Chemistry, 2018, 10, 155-164.	6.6	190
459	DNA nanotechnology. Nature Reviews Materials, 2018, 3, .	23.3	1,268
460	Hierarchical Assembly of DNA Filaments with Designer Elastic Properties. ACS Nano, 2018, 12, 44-55.	7.3	44
461	Creation of Porous Functional Materials based on Self-organization of Multinuclear Metallomacrocycles. Bulletin of Japan Society of Coordination Chemistry, 2018, 71, 39-48.	0.1	0
462	Nonequilibrium associative retrieval of multiple stored self-assembly targets. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E10531-E10538.	3.3	18
463	Overview of DNA Self-Assembling: Progresses in Biomedical Applications. Pharmaceutics, 2018, 10, 268.	2.0	19
464	DNA-Guided Assembly of Nanocellulose Meshes. Lecture Notes in Computer Science, 2018, , 253-265.	1.0	1
465	DNA Origami as Seeds for Promoting Protein Crystallization. ACS Applied Materials & Interfaces, 2018, 10, 44240-44246.	4.0	23
466	DNA-based materials as self-assembling scaffolds for interfacing with cells. , 2018, , 157-175.		3
467	Modulating Selfâ€Assembly of DNA Crystals with Rationally Designed Agents. Angewandte Chemie - International Edition, 2018, 57, 16529-16532.	7.2	21
468	Modulating Selfâ€Assembly of DNA Crystals with Rationally Designed Agents. Angewandte Chemie, 2018, 130, 16767-16770.	1.6	5
469	5′-(CGA) <i> _n </i> sequence-assisted pH-controlled assembly of supramolecular DNA nanostructure. Royal Society Open Science, 2018, 5, 180123.	1.1	1
470	Nanotubes, Plates, and Needles: Pathway-Dependent Self-Assembly of Computationally Designed Peptides. Biomacromolecules, 2018, 19, 4286-4298.	2.6	34
471	Professor Lev Beloussov and the birth of morphomechanics. BioSystems, 2018, 173, 26-35.	0.9	4
472	Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. Journal of the American Chemical Society, 2018, 140, 15384-15392.	6.6	39
473	DNA Nanocarriers: Programmed to Deliver. Trends in Biochemical Sciences, 2018, 43, 997-1013.	3.7	94
474	Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering. Journal of the American Chemical Society, 2018, 140, 14670-14676.	6.6	62

#	Article	IF	CITATIONS
475	Streptavidin-Decorated Algorithmic DNA Lattices Constructed by Substrate-Assisted Growth Method. ACS Biomaterials Science and Engineering, 2018, 4, 3617-3623.	2.6	5
476	Nanostructures: between natural environment and medical practice. Reviews on Environmental Health, 2018, 33, 295-307.	1.1	18
477	3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273.	11.1	150
478	Bio-surface engineering with DNA scaffolds for theranostic applications. Nanofabrication, 2018, 4, 1-16.	1.1	8
479	Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. Angewandte Chemie, 2018, 130, 9485-9489.	1.6	11
480	Rapid Photoactuation of a DNA Nanostructure using an Internal Photocaged Trigger Strand. Angewandte Chemie - International Edition, 2018, 57, 9341-9345.	7.2	51
481	Transient modes of zeolite surface growth from 3D gel-like islands to 2D single layers. Nature Communications, 2018, 9, 2129.	5.8	69
482	Multifunctional nucleic acid nanostructures for gene therapies. Nano Research, 2018, 11, 5017-5027.	5.8	30
483	Comparing proteins and nucleic acidsÂfor next-generation biomolecularÂengineering. Nature Reviews Chemistry, 2018, 2, 113-130.	13.8	44
484	DNA Nanotechnology: From the Pub to Information-Based Chemistry. Methods in Molecular Biology, 2018, 1811, 1-9.	0.4	15
485	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie - International Edition, 2018, 57, 12504-12507.	7.2	43
486	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie, 2018, 130, 12684-12687.	1.6	11
487	The Three S's for Aptamerâ€Mediated Control of DNA Nanostructure Dynamics: Shape, Selfâ€Complementarity, and Spatial Flexibility. ChemBioChem, 2018, 19, 1900-1906.	1.3	4
488	Fabrication and Characterization of Finite-Size DNA 2D Ring and 3D Buckyball Structures. International Journal of Molecular Sciences, 2018, 19, 1895.	1.8	1
489	Complex silica composite nanomaterials templated with DNA origami. Nature, 2018, 559, 593-598.	13.7	346
490	Hierarchical Assembly of DNA Nanostructures Based on Four-Way Toehold-Mediated Strand Displacement. Nano Letters, 2018, 18, 4791-4795.	4.5	12
491	Chemical and Biological Sensing Using Hybridization Chain Reaction. ACS Sensors, 2018, 3, 878-902.	4.0	70
492	Kinetic Trans-Assembly of DNA Nanostructures. ACS Nano, 2018, 12, 9423-9432.	7.3	11

#	Article	IF	CITATIONS
493	Multivalent, multiflavored droplets by design. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9086-9091.	3.3	29
494	Framework Nucleic Acid-Mediated Pull-Down MicroRNA Detection with Hybridization Chain Reaction Amplification. ACS Applied Bio Materials, 2018, 1, 859-864.	2.3	28
495	DNA Origami Nanophotonics and Plasmonics at Interfaces. Langmuir, 2018, 34, 14911-14920.	1.6	39
496	Capturing and Stabilizing Folded Proteins in Lattices Formed with Branched Oligonucleotide Hybrids. ChemBioChem, 2018, 19, 1523-1530.	1.3	3
497	Paranemic Crossover DNA: There and Back Again. Chemical Reviews, 2019, 119, 6273-6289.	23.0	69
498	Microrheology of DNA hydrogel gelling and melting on cooling. Soft Matter, 2018, 14, 6431-6438.	1.2	37
499	Self-Assembly of DNA–Minocycline Complexes by Metal Ions with Controlled Drug Release. ACS Applied Materials & Interfaces, 2019, 11, 29512-29521.	4.0	9
500	DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Research, 2019, 47, 10489-10505.	6.5	92
501	Atomic structures of RNA nanotubes and their comparison with DNA nanotubes. Nanoscale, 2019, 11, 14863-14878.	2.8	18
502	Stabilizing DNA nanostructures through reversible disulfide crosslinking. Nanoscale, 2019, 11, 14921-14928.	2.8	10
503	DNA nanostructures from double-C-shaped motifs with controllable twist and curvature. Nanoscale, 2019, 11, 14569-14572.	2.8	3
504	Solidifying framework nucleic acids with silica. Nature Protocols, 2019, 14, 2416-2436.	5.5	34
505	Turning DNA Binding Motifs into a Material for Flow Cells. Chemistry - A European Journal, 2019, 25, 15288-15294.	1.7	4
506	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
507	Precise Organization of Metal and Metal Oxide Nanoclusters into Arbitrary Patterns on DNA Origami. Journal of the American Chemical Society, 2019, 141, 17968-17972.	6.6	59
508	Synthetic protein-conductive membrane nanopores built with DNA. Nature Communications, 2019, 10, 5018.	5.8	76
509	From DNA Tiles to Functional DNA Materials. Trends in Chemistry, 2019, 1, 799-814.	4.4	43
510	The path towards functional nanoparticle-DNA origami composites. Materials Science and Engineering Reports, 2019, 138, 153-209.	14.8	15

#	Article	IF	CITATIONS
511	Making Engineered 3D DNA Crystals Robust. Journal of the American Chemical Society, 2019, 141, 15850-15855.	6.6	43
512	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
513	Structure and stimuli-responsiveness of all-DNA dendrimers: theory and experiment. Nanoscale, 2019, 11, 1604-1617.	2.8	12
514	Hierarchically ordered carbon tube-sheet superstructure via template-directed self-assembly of polyimide. Chemical Engineering Journal, 2019, 364, 201-207.	6.6	16
515	Flexibility defines structure in crystals of amphiphilic DNA nanostars. Journal of Physics Condensed Matter, 2019, 31, 074003.	0.7	24
516	Designing Higher Resolution Self-Assembled 3D DNA Crystals via Strand Terminus Modifications. ACS Nano, 2019, 13, 7957-7965.	7.3	40
517	Controlling Matter at the Molecular Scale with DNA Circuits. Annual Review of Biomedical Engineering, 2019, 21, 469-493.	5.7	45
518	Encoding Reversible Hierarchical Structures with Supramolecular Peptide–DNA Materials. Bioconjugate Chemistry, 2019, 30, 1864-1869.	1.8	18
519	Selfâ€Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angewandte Chemie, 2019, 131, 12251-12255.	1.6	9
520	Selfâ€Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angewandte Chemie - International Edition, 2019, 58, 12123-12127.	7.2	24
521	Programming Structured DNA Assemblies to Probe Biophysical Processes. Annual Review of Biophysics, 2019, 48, 395-419.	4.5	56
522	Nucleic Acid Nanotechnology. , 2019, , 13-34.		1
523	Designed Two- and Three-Dimensional Protein Nanocage Networks Driven by Hydrophobic Interactions Contributed by Amyloidogenic Motifs. Nano Letters, 2019, 19, 4023-4028.	4.5	31
524	Create Nanoscale Patterns with DNA Origami. Small, 2019, 15, e1805554.	5.2	51
525	Autonomous dynamic control of DNA nanostructure self-assembly. Nature Chemistry, 2019, 11, 510-520.	6.6	178
526	The Stability of a Nanoparticle Diamond Lattice Linked by DNA. Nanomaterials, 2019, 9, 661.	1.9	5
527	Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. Small, 2019, 15, 1900256.	5.2	12
528	Complex wireframe DNA nanostructures from simple building blocks. Nature Communications, 2019, 10, 1067.	5.8	63

#	Article	IF	CITATIONS
529	Towards atomic and close-to-atomic scale manufacturing. International Journal of Extreme Manufacturing, 2019, 1, 012001.	6.3	98
530	Synthetic Biology for Multiscale Designed Biomimetic Assemblies: From Designed Self-Assembling Biopolymers to Bacterial Bioprinting. Biochemistry, 2019, 58, 2095-2104.	1.2	14
531	Dynamic DNA Structures. Small, 2019, 15, e1900228.	5.2	76
532	Conformation and Dynamics of Long-Chain End-Tethered Polymers in Microchannels. Polymers, 2019, 11, 488.	2.0	9
533	Nucleic Acid–Based Functional Nanomaterials as Advanced Cancer Therapeutics. Small, 2019, 15, e1900172.	5.2	80
534	Stimuliâ€Responsive DNA Selfâ€Assembly: From Principles to Applications. Chemistry - A European Journal, 2019, 25, 9785-9798.	1.7	22
535	Nanofabrication based on DNA nanotechnology. Nano Today, 2019, 26, 123-148.	6.2	36
536	A Temperature-Gated Nanovalve Self-Assembled from DNA to Control Molecular Transport across Membranes. ACS Nano, 2019, 13, 3334-3340.	7.3	60
537	Tile-Based DNA Nanostructures. , 2019, , 35-60.		2
538	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nature Communications, 2019, 10, 1006.	5.8	26
539	Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224.	23.3	178
540	3D Lattice Engineering of Nanoparticles by DNA Shells. Small, 2019, 15, e1805401.	5.2	13
541	Rationally designed DNA-based nanocarriers. Advanced Drug Delivery Reviews, 2019, 147, 2-21.	6.6	77
542	A minimalist's approach for DNA nanoconstructions. Advanced Drug Delivery Reviews, 2019, 147, 22-28.	6.6	17
543	Optical decomposition of DNA gel and modification of object mobility on micrometre scale. Scientific Reports, 2019, 9, 19858.	1.6	0
544	Control of the stepwise assembly–disassembly of DNA origami nanoclusters by pH stimuli-responsive DNA triplexes. Nanoscale, 2019, 11, 18026-18030.	2.8	18
545	Manipulating Enzymes Properties with DNA Nanostructures. Molecules, 2019, 24, 3694.	1.7	30
546	The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chemical Society Reviews, 2019, 48, 5564-5595.	18.7	110

#	Article	IF	CITATIONS
547	The Fusion of Lipid and DNA Nanotechnology. Genes, 2019, 10, 1001.	1.0	20
548	Preparation of a 1:1.5 cocrystal of kaempferol with 4,4′-bipyridine based on analyzing intermolecular interaction of building units. Journal of Molecular Structure, 2019, 1177, 107-116.	1.8	19
549	Designed and Evolved Nucleic Acid Nanotechnology: Contrast and Complementarity. Bioconjugate Chemistry, 2019, 30, 2-12.	1.8	4
550	Lattice engineering enables definition of molecular features allowing for potent small-molecule inhibition of HIV-1 entry. Nature Communications, 2019, 10, 47.	5.8	50
551	A study on a special DNA nanotube assembled from two single-stranded tiles. Nanotechnology, 2019, 30, 115602.	1.3	11
552	Plasmonic dynamics measured with frequency-comb-referenced phase spectroscopy. Nature Physics, 2019, 15, 132-137.	6.5	15
553	An In-Depth Look at DNA Crystals through the Prism of Molecular Dynamics Simulations. CheM, 2019, 5, 649-663.	5.8	11
554	Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles. ACS Nano, 2019, 13, 1839-1848.	7.3	21
555	Molecular bionics – engineering biomaterials at the molecular level using biological principles. Biomaterials, 2019, 192, 26-50.	5.7	35
556	Fabrication of Metal Nanostructures on DNA Templates. ACS Applied Materials & Interfaces, 2019, 11, 13835-13852.	4.0	52
557	DNAâ€Guided Assembly of Molecules, Materials, and Cells. Advanced Intelligent Systems, 2020, 2, 1900101.	3.3	6
558	Building machines with DNA molecules. Nature Reviews Genetics, 2020, 21, 5-26.	7.7	198
559	Nucleic acid based nanodevices in biological imaging and their therapeutic use. Journal of Drug Delivery Science and Technology, 2020, 55, 101497.	1.4	2
560	Characterizing the length-dependence of DNA nanotube end-to-end joining rates. Molecular Systems Design and Engineering, 2020, 5, 544-558.	1.7	2
561	The History of Nanoscience and Nanotechnology: From Chemical–Physical Applications to Nanomedicine. Molecules, 2020, 25, 112.	1.7	800
562	Designer Structures Assembled from Modular DNA Superbricks. ACS Applied Bio Materials, 2020, 3, 2850-2853.	2.3	3
563	Programmable Assembly of DNA-protein Hybrid Structures. Chemical Research in Chinese Universities, 2020, 36, 211-218.	1.3	4
564	Programmable DNA Nanoflowers for Biosensing, Bioimaging, and Therapeutics. Chemistry - A European Journal, 2020, 26, 14512-14524.	1.7	32

#	Article	IF	CITATIONS
565	DNA-GEL, Novel Nanomaterial for Biomedical Applications and Delivery of Bioactive Molecules. Frontiers in Pharmacology, 2020, 11, 01345.	1.6	17
566	Self-assembly of bioinspired and biologically functional materials. MRS Bulletin, 2020, 45, 832-840.	1.7	7
567	Biomineralization: An Opportunity and Challenge of Nanoparticle Drug Delivery Systems for Cancer Therapy. Advanced Healthcare Materials, 2020, 9, e2001117.	3.9	45
568	Adenita: interactive 3D modelling and visualization of DNA nanostructures. Nucleic Acids Research, 2020, 48, 8269-8275.	6.5	33
569	Design, fabrication and applications of tetrahedral DNA nanostructure-based multifunctional complexes in drug delivery and biomedical treatment. Nature Protocols, 2020, 15, 2728-2757.	5.5	211
570	DNA Functional Materials Assembled from Branched DNA: Design, Synthesis, and Applications. Chemical Reviews, 2020, 120, 9420-9481.	23.0	313
571	Protein-Assisted Room-Temperature Assembly of Rigid, Immobile Holliday Junctions and Hierarchical DNA Nanostructures. Molecules, 2020, 25, 5099.	1.7	1
572	Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS Applied Bio Materials, 2020, 3, 7265-7277.	2.3	25
573	Hybrid DNA/RNA nanostructures with 2′-5′ linkages. Nanoscale, 2020, 12, 21583-21590.	2.8	8
574	Bottom-Up Self-Assembly Based on DNA Nanotechnology. Nanomaterials, 2020, 10, 2047.	1.9	27
575	Rationally Designed DNA Nanostructures for Drug Delivery. Frontiers in Chemistry, 2020, 8, 751.	1.8	27
576	Gene Therapy Based on Nucleic Acid Nanostructure. Advanced Healthcare Materials, 2020, 9, e2001046.	3.9	29
577	DNA Nanotechnology. Topics in Current Chemistry Collections, 2020, , .	0.2	0
578	Feedback regulation of crystal growth by buffering monomer concentration. Nature Communications, 2020, 11, 6057.	5.8	11
579	Molecular Packing Interaction in DNA Crystals. Crystals, 2020, 10, 1093.	1.0	3
580	Functionalization of Tileâ€based DNA Nanocages with Gold Nanoparticles (AuNPs) to Form AuNP Clusterâ€DNA Cage Hybrids. ChemNanoMat, 2020, 6, 1175-1178.	1.5	4
581	Leveraging Hierarchical Self-Assembly Pathways for Realizing Colloidal Photonic Crystals. ACS Nano, 2020, 14, 5348-5359.	7.3	43
582	Small Circular DNA Molecules as Triangular Scaffolds for the Growth of 3D Single Crystals. Biomolecules, 2020, 10, 814.	1.8	2

#	Article	IF	CITATIONS
583	DNA Origami as Emerging Technology for the Engineering of Fluorescent and Plasmonic-Based Biosensors. Materials, 2020, 13, 2185.	1.3	27
584	<i>In Vivo</i> Enzyme Entrapment in a Protein Crystal. Journal of the American Chemical Society, 2020, 142, 9879-9883.	6.6	39
585	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie, 2020, 132, 18778-18785.	1.6	6
586	De novo nanomaterial crystals from DNA frameworks. Nature Materials, 2020, 19, 706-707.	13.3	10
587	Complex assemblies and crystals guided by DNA. Nature Materials, 2020, 19, 694-700.	13.3	18
588	A Selfâ€Assembled Rhombohedral DNA Crystal Scaffold with Tunable Cavity Sizes and Highâ€Resolution Structural Detail. Angewandte Chemie - International Edition, 2020, 59, 18619-18626.	7.2	22
589	Towards Active Self-Assembly Through DNA Nanotechnology. Topics in Current Chemistry, 2020, 378, 33.	3.0	15
590	Visualization of unstained homo/heterogeneous DNA nanostructures by low-voltage scanning transmission electron microscopy. Scientific Reports, 2020, 10, 4868.	1.6	1
591	Rational Synthesis of a Hierarchical Supramolecular Porous Material Created via Self-Assembly of Metal–Organic Framework Nanosheets. Inorganic Chemistry, 2020, 59, 3983-3992.	1.9	16
592	Programmable patterns in a DNA-based reaction–diffusion system. Soft Matter, 2020, 16, 3555-3563.	1.2	17
593	Directional Assembly of Nanoparticles by DNA Shapes: Towards Designed Architectures and Functionality. Topics in Current Chemistry, 2020, 378, 36.	3.0	18
594	Programming Diffusion and Localization of DNA Signals in 3Dâ€Printed DNAâ€Functionalized Hydrogels. Small, 2020, 16, e2001815.	5.2	20
595	Processing DNA-Based Molecular Signals into Graphical Displays. ACS Synthetic Biology, 2020, 9, 1490-1498.	1.9	5
596	Oncogenetic engagement with mechanosensing. Nature Materials, 2020, 19, 707-709.	13.3	3
597	Programming the Nucleation of DNA Brick Selfâ€Assembly with a Seeding Strand. Angewandte Chemie - International Edition, 2020, 59, 8594-8600.	7.2	12
598	Programming the Nucleation of DNA Brick Selfâ€Assembly with a Seeding Strand. Angewandte Chemie, 2020, 132, 8672-8678.	1.6	2
599	DNA Nanostructures as Drug Carriers for Cellular Delivery. Chemical Research in Chinese Universities, 2020, 36, 177-184.	1.3	7
600	DNA nanostructure-based fluorescent probes for cellular sensing. Analytical Methods, 2020, 12, 1415-1429.	1.3	13

	CITATION R	EPORT	
#	Article	IF	CITATIONS
601	Hybrid Nanostructures from the Self-Assembly of Proteins and DNA. CheM, 2020, 6, 364-405.	5.8	69
602	Scaling Up DNA Self-Assembly. ACS Applied Bio Materials, 2020, 3, 2805-2815.	2.3	18
603	Three-dimensional DNA-programmable nanoparticle superlattices. Current Opinion in Biotechnology, 2020, 63, 142-150.	3.3	17
604	High-order structures from nucleic acids for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 1074-1088.	3.2	15
605	Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nature Materials, 2020, 19, 789-796.	13.3	172
606	Near-Atomic Fabrication with Nucleic Acids. ACS Nano, 2020, 14, 1319-1337.	7.3	22
607	Porous crystals as scaffolds for structural biology. Current Opinion in Structural Biology, 2020, 60, 85-92.	2.6	16
608	DNA Nanotechnology at 40. Nano Letters, 2020, 20, 1477-1478.	4.5	50
609	3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material. ACS Nano, 2020, 14, 6582-6588.	7.3	12
610	DNA Nanoribbonâ€Templated Selfâ€Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angewandte Chemie - International Edition, 2020, 59, 11836-11844.	7.2	60
611	From Interaction to Function in DNAâ€Templated Supramolecular Selfâ€Assemblies. ChemistryOpen, 2020, 9, 480-498.	0.9	19
612	DNA-Scaffolded Proximity Assembly and Confinement of Multienzyme Reactions. Topics in Current Chemistry, 2020, 378, 38.	3.0	26
613	Dynamics of lattice defects in mixed DNA origami monolayers. Nanoscale, 2020, 12, 9733-9743.	2.8	10
614	DNA Nanoribbonâ€Templated Selfâ€Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angewandte Chemie, 2020, 132, 11934-11942.	1.6	5
615	Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discovery Today, 2021, 26, 1018-1029.	3.2	8
616	Designer DNA nanostructures for therapeutics. CheM, 2021, 7, 1156-1179.	5.8	91
617	Selfâ€assembled, Programmable DNA Nanodevices for Biological and Biomedical Applications. ChemBioChem, 2021, 22, 763-778.	1.3	13
618	Construction of Smart Stimuliâ€Responsive DNA Nanostructures for Biomedical Applications. Chemistry - A European Journal, 2021, 27, 3929-3943.	1.7	19

#	Article	IF	CITATIONS
619	Funktionelle Nukleinsäreâ€Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angewandte Chemie, 2021, 133, 6966-6995.	1.6	4
620	Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angewandte Chemie - International Edition, 2021, 60, 6890-6918.	7.2	122
621	Recent progress of frame nucleic acids studies towards atomic fabrications. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 026201.	0.2	1
622	DNA nanostructures as templates for biomineralization. Nature Reviews Chemistry, 2021, 5, 93-108.	13.8	46
623	DNA nanostructure-based nucleic acid probes: construction and biological applications. Chemical Science, 2021, 12, 7602-7622.	3.7	74
624	DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chemical Society Reviews, 2021, 50, 5650-5667.	18.7	73
625	Harnessing the physicochemical properties of DNA as a multifunctional biomaterial for biomedical and other applications. Chemical Society Reviews, 2021, 50, 7779-7819.	18.7	23
626	Auxetic Twoâ€Dimensional Nanostructures from DNA**. Angewandte Chemie - International Edition, 2021, 60, 7165-7173.	7.2	15
627	Auxetic Twoâ€Dimensional Nanostructures from DNA**. Angewandte Chemie, 2021, 133, 7241-7249.	1.6	1
628	DNA Ringâ€Opening Polymerization Driven by Base Stacking. ChemBioChem, 2021, 22, 1621-1626.	1.3	1
629	DNA Nanodevices as Mechanical Probes of Protein Structure and Function. Applied Sciences (Switzerland), 2021, 11, 2802.	1.3	5
630	3D DNA Nanostructures: The Nanoscale Architect. Applied Sciences (Switzerland), 2021, 11, 2624.	1.3	6
631	Constructing Large 2D Lattices Out of DNA-Tiles. Molecules, 2021, 26, 1502.	1.7	15
632	Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Science Advances, 2021, 7, .	4.7	45
633	Unresolved Issues in RNA Therapeutics in Vascular Diseases With a Focus on Aneurysm Disease. Frontiers in Cardiovascular Medicine, 2021, 8, 571076.	1.1	4
634	Nucleic Acids-based Functional Nanomaterials for Bioimaging. Journal of Analysis and Testing, 2021, 5, 142-154.	2.5	13
635	Microchemomechanical devices using DNA hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
636	Hybrid Nanoassemblies from Viruses and DNA Nanostructures. Nanomaterials, 2021, 11, 1413.	1.9	3

		EPORT	
#	Article	IF	CITATIONS
637	DNA origami single crystals with Wulff shapes. Nature Communications, 2021, 12, 3011.	5.8	38
638	Emerging self-regulated micro/nano drug delivery devices: A step forward towards intelligent diagnosis and therapy. Nano Today, 2021, 38, 101127.	6.2	12
639	Stimuli Responsive, Programmable DNA Nanodevices for Biomedical Applications. Frontiers in Chemistry, 2021, 9, 704234.	1.8	10
641	Redefining Protein Interfaces within Protein Single Crystals with DNA. Journal of the American Chemical Society, 2021, 143, 8925-8934.	6.6	16
642	Designed and biologically active protein lattices. Nature Communications, 2021, 12, 3702.	5.8	25
643	DNA Nanotechnologyâ€Based Biosensors and Therapeutics. Advanced Healthcare Materials, 2021, 10, e2002205.	3.9	51
644	Bioinspired Selfâ€Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 2021, 31, 2104819.	7.8	21
645	Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chemical Reviews, 2021, 121, 13797-13868.	23.0	84
646	DNA-Grafted 3D Superlattice Self-Assembly. International Journal of Molecular Sciences, 2021, 22, 7558.	1.8	8
647	Selfâ€assembled freeâ€floating nanomaterials from sequenceâ€defined polymers. Journal of Polymer Science, 2021, 59, 2378.	2.0	4
648	DNA Origami Meets Bottom-Up Nanopatterning. ACS Nano, 2021, 15, 10769-10774.	7.3	24
649	Cryogenic Electron Microscopy for Resolving DNA Nanostructures and Their Complexes. Small Structures, 2021, 2, 2100053.	6.9	4
650	A DNA-Based Molecular System That Can Autonomously Add and Extract Components. ACS Applied Materials & Interfaces, 2021, 13, 41004-41011.	4.0	1
651	Structures of artificially designed discrete RNA nanoarchitectures at near-atomic resolution. Science Advances, 2021, 7, eabf4459.	4.7	5
652	5′-Phosphorylation Strengthens Sticky-End Cohesions. Journal of the American Chemical Society, 2021, 143, 14987-14991.	6.6	7
653	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie, 2022, 134, .	1.6	7
654	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
655	DNAs catalyzing DNA nanoconstruction. CheM, 2021, 7, 2556-2568.	5.8	13

	CHATION	ILPORT	
# 656	ARTICLE Cut-and-project graphs and other complexes. Theoretical Computer Science, 2021, 894, 172-172.	IF 0.5	Citations
657	Nanobiotechnological advancements in agriculture and food industry: Applications, nanotoxicity, and future perspectives. Science of the Total Environment, 2021, 792, 148359.	3.9	92
658	Reconfigurable Twoâ€Dimensional DNA Lattices: Static and Dynamic Angle Control. Angewandte Chemie, 2021, 133, 25985-25990.	1.6	5
659	Reconfigurable Twoâ€Dimensional DNA Lattices: Static and Dynamic Angle Control. Angewandte Chemie - International Edition, 2021, 60, 25781-25786.	7.2	19
660	The hierarchical assembly of a multi-level DNA ring-based nanostructure in a precise order and its application for screening tumor cells. Biomaterials Science, 2021, 9, 2262-2270.	2.6	1
662	Nucleic acid–based aggregates and their biomedical applications. Aggregate, 2021, 2, 133-144.	5.2	16
663	DNA Nanodevices with Selective Immune Cell Interaction and Function. ACS Nano, 2021, 15, 4394-4404.	7.3	19
664	DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems. Biophysics and Physicobiology, 2021, 18, 116-126.	0.5	2
665	Nanoscopic observation of a DNA crystal surface and its dynamic formation and degradation using atomic force microscopy. Chemical Communications, 2021, 57, 1651-1654.	2.2	2
666	DNA structures embedded with functionalized nanomaterials for biophysical applications. Journal of the Korean Physical Society, 2021, 78, 449-460.	0.3	3
668	DNA nanostructureâ€encoded fluorescent barcodes. Aggregate, 2020, 1, 107-116.	5.2	8
669	Melting Transitions of DNA-Capped Gold Nanoparticle Assemblies. International Journal of Behavioral and Consultation Therapy, 2012, , 269-282.	0.4	11
670	Nanotechnology: A Boost for the Urgently Needed Second Green Revolution in Indian Agriculture. Nanotechnology in the Life Sciences, 2020, , 15-33.	0.4	3
671	Languages Associated with Crystallographic Symmetry. Lecture Notes in Computer Science, 2014, , 216-228.	1.0	3
672	Unknotted Strand Routings of Triangulated Meshes. Lecture Notes in Computer Science, 2017, , 46-63.	1.0	1
673	Design of a Functional Nanomaterial with Recognition Ability for Constructing Light-Driven Nanodevices. Lecture Notes in Computer Science, 2011, , 112-122.	1.0	3
675	DNA-Directed Assembly of Nanophase Materials: An Updated Review. , 2013, , 157-183.		2
676	Tile-Based DNA Nano-assemblies. Nucleic Acids and Molecular Biology, 2014, , 71-92.	0.2	1

#	Article	IF	CITATIONS
678	DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. Advances in Experimental Medicine and Biology, 2019, 1174, 331-370.	0.8	6
679	In silico modelling of DNA nanostructures. Computational and Structural Biotechnology Journal, 2020, 18, 1191-1201.	1.9	13
680	Molecular shape as a key source of prebiotic information. Journal of Theoretical Biology, 2020, 499, 110316.	0.8	5
682	A complete rule set for designing symmetry combination materials from protein molecules. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31817-31823.	3.3	29
683	The potential of DNA origami to build multifunctional materials. Multifunctional Materials, 2020, 3, 032001.	2.4	48
688	What macromolecular crystallogenesis tells us – what is needed in the future. IUCrJ, 2017, 4, 340-349.	1.0	11
689	Nanostructures and Nanomaterials via DNA-Based Self-Assembly. , 2011, , 13-48.		2
690	Recent Advances in Self-Assembled Fluorescent DNA Structures and Probes. Current Topics in Medicinal Chemistry, 2015, 15, 1162-1178.	1.0	4
691	Triggered, Nanostructured Biodegradables (TNBs) for Surgical Implants. Micro and Nanosystems, 2011, 3, 284-289.	0.3	4
692	Fen Bilgisi Öğretmen Adaylarının 3D Teknolojilerini Öğrenme ve Uygulama Deneyimleri: Tinkercad Örne Trakya EÄŸitim Dergisi, 0, , .	2ÄŸi. 0:1	2
693	Regulating and Programming Biological Systems With Modular Molecular Parts. Progress in Biochemistry and Biophysics, 2012, 39, 119-125.	0.3	1
694	Impact of the Protein Data Bank Across Scientific Disciplines. Data Science Journal, 2020, 19, 25.	0.6	17
695	DNA and DNA computation based on toehold-mediated strand-displacement reactions. Wuli Xuebao/Acta Physica Sinica, 2016, 65, 178106.	0.2	2
696	Manipulating the Assembly of DNA Nanostructures and Their Enzymatic Properties by Incorporating a 5′-5′ Polarity of Inversion Site in the G-Tract. ACS Macro Letters, 2021, 10, 1359-1364.	2.3	1
697	Empowering single-molecule analysis with self-assembled DNA nanostructures. Matter, 2021, 4, 3121-3145.	5.0	10
698	Configuration Analysis of a Lizard Skin-like Pattern Formed by DNA Self-Assembly. ACS Omega, 2021, 6, 27038-27044.	1.6	3
699	The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy, 2021, 6, 351.	7.1	110
700	Automated exploration of DNA-based structure self-assembly networks. Royal Society Open Science, 2021, 8, 210848.	1.1	0

		FORT	
#	Article	IF	Citations
701	3D Hexagonal Arrangement of DNA Tensegrity Triangles. ACS Nano, 2021, 15, 16788-16793.	7.3	16
702	Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers. Nano Letters, 2021, 21, 10547-10554.	4.5	15
703	DNA in 3D. Nature Chemistry, 0, , .	6.6	0
704	Bionanotechnology, Nanomedicine and the Future. , 2010, , 231-256.		0
705	Title is missing!. Journal of the Robotics Society of Japan, 2010, 28, 1158-1161.	0.0	0
707	Atomically Precise Manufacturing: The Opportunity, Challenges, and Impact. Advances in Atom and Single Molecule Machines, 2012, , 89-106.	0.0	1
709	Looking at Science through Water. , 2012, , 161-206.		0
710	DNA-DNA Recognition: From Tight Contact to Fatal Attraction. , 0, , .		Ο
711	DNA-Directed Assembly of Multicomponent Single-Walled Carbon Nanotube Devices. The Electrical Engineering Handbook, 2012, , 1017-1036.	0.2	0
712	A Molecular Solution to the Three-Partition Problem. Journal of Information Technology Research, 2012, 5, 14-29.	0.3	0
713	DNA: Molecular Recognition and Information Storage. Springer Theses, 2013, , 11-28.	0.0	0
714	Characterizing Functionalized DNA for Use in Nanomedicine. , 2013, , 11-41.		0
715	Nucleic Acid-Based Encapsulations for Cancer Diagnostics and Drug Delivery. , 2013, , 163-187.		0
716	DNA-Nanotube-Enabled NMR Structure Determination of Membrane Proteins. , 2013, , 335-352.		Ο
717	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
720	Nano World. Advances in Multimedia and Interactive Technologies Book Series, 2014, , 218-247.	0.1	0
722	DNA Origami as Programmable Nanofabrication Tools. , 2015, , 1-22.		0
723	DNA Origami as Programmable Nanofabrication Tools. , 2016, , 827-847.		0

#	Article	IF	Citations
724	Traversal Languages Capturing Isomorphism Classes of Sierpiński Gaskets. Lecture Notes in Computer Science, 2016, , 155-167.	1.0	0
725	Complex DNA Brick Assembly. Methods in Molecular Biology, 2017, 1500, 41-49.	0.4	0
727	DNA as a Nanoscale Building Material. , 2020, , 25-61.		0
730	Bio-inspired Functional DNA Architectures. Nanostructure Science and Technology, 2022, , 259-280.	0.1	0
731	Framework Nucleic Acids in Nuclear Medicine Imaging: shedding light on nanoâ€bio interactions. Angewandte Chemie, 0, , .	1.6	2
732	Framework Nucleic Acids in Nuclear Medicine Imaging: Shedding Light on Nano–Bio Interactions. Angewandte Chemie - International Edition, 2022, 61, .	7.2	7
733	Amphiphilic DNA nanostructures for bottom-up synthetic biology. Chemical Communications, 2021, 57, 12725-12740.	2.2	24
734	Nucleic acidâ€based electrochemical biosensor: Recent advances in probe immobilization and signal amplification strategies. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, e1765.	3.3	28
735	Stimuliâ€Responsive DNA Origami Nanodevices and Their Biological Applications. ChemMedChem, 2022, 17,	1.6	17
736	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
737	Characterizing Functionalized DNA for Use in Nanomedicine. , 2013, , 11-41.		0
738	Nucleic Acid-Based Encapsulations for Cancer Diagnostics and Drug Delivery. , 2013, , 163-187.		0
740	DNA nanostructures directed by RNA clamps. Nanoscale, 2021, , .	2.8	1
741	Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angewandte Chemie, 2022, 134, .	1.6	2
742	Engineering Inorganic Materials with DNA Nanostructures. ACS Central Science, 2021, 7, 1969-1979.	5.3	38
743	Orienting an Organic Semiconductor into DNA 3D Arrays by Covalent Bonds. Angewandte Chemie - International Edition, 2022, 61, .	7.2	8
744	Nanoscale self-assembly: concepts, applications and challenges. Nanotechnology, 2022, 33, 132001.	1.3	32
746	Structural specificity of groove binding mechanism between imidazolium-based ionic liquids and DNA revealed by synchrotron-UV Resonance Raman spectroscopy and molecular dynamics simulations. Journal of Molecular Liquids, 2022, 347, 118350.	2.3	5

#	Article	IF	CITATIONS
747	The influence of substitutes on the room temperature photoluminescence of 2-amino-4-oxobut-2-enoic acid molecular crystals. Photonics and Nanostructures - Fundamentals and Applications, 2022, 48, 100990.	1.0	20
748	Structural DNA nanotechnology: Immobile Holliday junctions to artificial robots. Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	2
749	Low-entropy lattices engineered through bridged DNA origami frames. Chemical Science, 2021, 13, 283-289.	3.7	3
750	Engineering bacterial surface interactions using DNA as a programmable material. Chemical Communications, 2022, 58, 3086-3100.	2.2	12
751	Chemically modified DNA nanostructures for drug delivery. Innovation(China), 2022, 3, 100217.	5.2	8
752	DNA Tile Self-assembly Driven by Antibody-mediated Four-way Branch Migration. Analyst, The, 2022, , .	1.7	2
753	DNA nanotechnology based point-of-care theranostics devices. , 2022, , 399-414.		0
754	Acid-Resistant and Physiological pH-Responsive DNA Hydrogel Composed of A-Motif and i-Motif toward Oral Insulin Delivery. Journal of the American Chemical Society, 2022, 144, 5461-5470.	6.6	66
755	Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers. Nucleic Acids Research, 2022, , .	6.5	2
756	Powering â‰^50 Âμm Motion by a Molecular Event in DNA Crystals. Advanced Materials, 2022, 34, e2200441.	11.1	21
757	Enhanced Immunostimulatory Activity of Covalent DNA Dendrons, ChemBioChem, 2022, 23		9
		1.3	
758	Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials, 2022, 5, 97-104.	1.3 2.3	2
758 759	Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials, 2022, 5, 97-104. Research progress on the application of framework nucleic acid in bone regeneration. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 624-632.	1.3 2.3 0.1	2 0
758 759 762	Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials, 2022, 5, 97-104. Research progress on the application of framework nucleic acid in bone regeneration. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 624-632. Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745.	1.3 2.3 0.1 6.6	2 0 18
758 759 762 763	Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials, 2022, 5, 97-104. Research progress on the application of framework nucleic acid in bone regeneration. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 624-632. Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745. Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS Applied Bio Materials, 2022, 5, 4652-4667.	1.3 2.3 0.1 6.6 2.3	2 0 18 12
758 759 762 763 764	Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials, 2022, 5, 97-104. Research progress on the application of framework nucleic acid in bone regeneration. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 624-632. Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745. Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS Applied Bio Materials, 2022, 5, 4652-4667. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	 1.3 2.3 0.1 6.6 2.3 4.2 	2 0 18 12 9
758 759 762 763 764	Construction and Configuration Analysis of Zelkova Serrata Lenticel-Like Patterns Generated through DNA Algorithmic Self-Assembly. ACS Applied Bio Materials, 2022, 5, 97-104. Research progress on the application of framework nucleic acid in bone regeneration. Hua Xi Kou Qiang Yi Xue Za Zhi = Huaxi Kouqiang Yixue Zazhi = West China Journal of Stomatology, 2021, 39, 624-632. Programming DNA Self-Assembly by Geometry. Journal of the American Chemical Society, 2022, 144, 8741-8745. Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS Applied Bio Materials, 2022, 5, 4652-4667. Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	 1.3 2.3 0.1 6.6 2.3 4.2 5.8 	2 0 18 12 9 24

#	Article	IF	CITATIONS
768	Conditionally designed luminescent DNA crystals doped by Ln ³⁺ (Eu ³⁺ /Tb ³⁺) complexes or fluorescent proteins with smart drug sensing property. Journal of Materials Chemistry B, 2022, 10, 6443-6452.	2.9	1
769	Research Progress in Construction and Application of Enzyme-Based DNA Logic Gates. IEEE Transactions on Nanobioscience, 2023, 22, 245-258.	2.2	1
771	Ned Seeman and the prediction of amino acid-base pair motifs mediating sequence-specific recognition of nucleic acid duplexes by proteins. Biophysical Journal, 2022, , .	0.2	2
772	Boosted Productivity in Singleâ€Tileâ€Based DNA Polyhedra Assembly by Simple Cation Replacement. ChemBioChem, 0, , .	1.3	3
773	DNA-templated programmable excitonic wires for micron-scale exciton transport. CheM, 2022, 8, 2442-2459.	5.8	12
774	Optimal conditions and generation mechanism of jet atomization for uniform distribution of nano- and micro-droplets. Japanese Journal of Applied Physics, 0, , .	0.8	0
775	Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Advanced Functional Materials, 2022, 32, .	7.8	15
776	Crystallographic legacy of Ned Seeman. Biophysical Journal, 2022, , .	0.2	1
777	Controllable protein network based on DNAâ€origami and biomedical applications. , 2022, 1, .		1
778	The wending rhombus: Self-assembling 3D DNA crystals. Biophysical Journal, 2022, 121, 4759-4765.	0.2	5
779	DNA-assisted nanoparticle assembly. , 2023, , 128-148.		1
780	Programmable mismatch-fueled high-efficiency DNA signal amplifier. Chemical Science, 2022, 13, 11926-11935.	3.7	7
781	Design of Orthogonal DNA Sticky-End Cohesion Based on Configuration-Specific Molecular Recognition. Journal of the American Chemical Society, 2022, 144, 18479-18484.	6.6	2
782	Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS Applied Materials & Interfaces, 2022, 14, 45079-45095.	4.0	9
783	Augmented DNA Nanoâ€Architectures: A Structural Library of 3D Selfâ€Assembling Tensegrity Triangle Variants. Advanced Materials, 0, , 2206876.	11.1	9
784	Hierarchical assembly of DNA origami nanostructures. MRS Communications, 2022, 12, 543-551.	0.8	4
785	Mechanical deformation behaviors and structural properties of ligated DNA crystals. Biophysical Journal, 2022, 121, 4078-4090.	0.2	2
786	The Frame-Guided Assembly of Nucleic Acids. , 2022, , 1-32.		0

#	ARTICLE	١F	CITATIONS
787	A unified analytical form-finding of truncated regular octahedral tensegrities. International Journal	3.6	15
789	of Mechanical Sciences, 2023, 239, 107857. Multiscale Biofabrication: Integrating Additive Manufacturing with DNAâ€Programmable Selfâ€Assembly. Advanced Biology, 2023, 7, .	1.4	5
791	A bistable and reconfigurable molecular system with encodable bonds. Science Advances, 2022, 8, .	4.7	5
792	Highly Symmetric, Selfâ€Assembling 3D DNA Crystals with Cubic and Trigonal Lattices. Small, 2023, 19, .	5.2	9
793	An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly. Small, 2023, 19, .	5.2	7
794	Multi-micron crisscross structures grown from DNA-origami slats. Nature Nanotechnology, 2023, 18, 281-289.	15.6	37
795	Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles. Angewandte Chemie - International Edition, 0, , .	7.2	3
796	Programmable 3D Hexagonal Geometry of DNA Tensegrity Triangles. Angewandte Chemie, 0, , .	1.6	0
797	DNA Nanomaterialsâ \in Based Platforms for Cancer Immunotherapy. Small Methods, 2023, 7, .	4.6	11
798	Multidimensional Honeycomb-like DNA Nanostructures Made of C-Motifs. ACS Biomaterials Science and Engineering, 2023, 9, 608-616.	2.6	2
799	Nucleic Acids Enabledâ€Interfacial Engineering for Biomarker Sensing with Distance Constraint Effects. , 2023, 2, .		1
800	The Rule of Thirds: Controlling Junction Chirality and Polarity in 3D DNA Tiles. Small, 2023, 19, .	5.2	6
801	Nucleic acid nanostructure for delivery of CRISPR/Cas9â€based gene editing system. , 2023, 1, .		7
802	Nucleotides and nucleic acids; oligo- and polynucleotides. , 2011, , 139-216.		0
803	Framework nucleic acids: a promising vehicle for small molecular cargos. Current Drug Metabolism, 2023, 24, .	0.7	1
804	Towards atom manufacturing with framework nucleic acids. Nanotechnology, 2023, 34, 172002.	1.3	1
805	Influence of hydrophobic moieties on the crystallization of amphiphilic DNA nanostructures. Journal of Chemical Physics, 0, , .	1.2	1

#	Article	IF	CITATIONS
806	Mesojunction-Based Design Paradigm of Structural DNA Nanotechnology. Journal of the American Chemical Society, 2023, 145, 2455-2460.	6.6	5
807	Exploring the robustness of DNA nanotubes framework for anticancer theranostics toward the 2D/3D clusters of hypopharyngeal respiratory tumor cells. International Journal of Biological Macromolecules, 2023, 236, 123988.	3.6	3
808	Surface engineering of colloidal nanoparticles. Materials Horizons, 2023, 10, 1185-1209.	6.4	7
809	The Formation and Displacement of Ordered DNA Triplexes in Self-Assembled Three-Dimensional DNA Crystals. Journal of the American Chemical Society, 2023, 145, 3599-3605.	6.6	10
810	Engineering DNA Crystals toward Studying DNA–Guest Molecule Interactions. Journal of the American Chemical Society, 2023, 145, 4853-4859.	6.6	9
811	Programmable Nanostructures Based on Framework-DNA for Applications in Biosensing. Sensors, 2023, 23, 3313.	2.1	3
812	Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews, 2023, 123, 3976-4050.	23.0	42
813	Caffeine-induced release of small molecules from DNA nanostructures. IScience, 2023, 26, 106564.	1.9	2
814	Effects of Univariate Stiffness and Degradation of DNA Hydrogels on the Transcriptomics of Neural Progenitor Cells. Journal of the American Chemical Society, 2023, 145, 8954-8964.	6.6	6
815	Enzymatic Assembly of DNA Nanostructures and Fragments with Sequence Overlaps. Journal of the American Chemical Society, 0, , .	6.6	1
816	DNA-based Nanomaterials in the Immunotherapy. Current Drug Metabolism, 2023, 24, .	0.7	1
817	Construction and application of bionanomaterials. , 2023, , 567-594.		1
820	DNA and RNA Structure. , 2022, , 20-95.		5
824	Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, , .	6.4	0
828	Nucleic Acid in Nanotechnology. , 2023, , 167-211.		1
830	Beyond Watson-Crick: The Next 40 Years of Semantomorphic Science. Natural Computing Series, 2023, , 3-15.	2.2	0
831	Building with DNA: From Curiosity-Driven Research to Practice. Natural Computing Series, 2023, , 173-188.	2.2	0
832	From Molecules toÂMathematics. Natural Computing Series, 2023, , 189-206.	2.2	0

		15	0
#	ARTICLE	IF	CITATIONS
833	Mechanics of dynamic and deformable DNA nanostructures. Chemical Science, 0, , .	3.7	1
837	The Frame-Guided Assembly of Nucleic Acids. , 2023, , 1733-1764.		0
844	Micro and Nanotechnology. Pancreatic Islet Biology, 2023, , 131-174.	0.1	0
852	Structural DNA nanotechnology at the nexus of next-generation bio applications: Challenges and Perspectives. Nanoscale Advances, 0, , .	2.2	О