iPS cells produce viable mice through tetraploid comple

Nature 461, 86-90 DOI: 10.1038/nature08267

Citation Report

#	Article	IF	CITATIONS
2	The Effect of Sodium Chloride on Solute Potential and Proline Accumulation in Soybean Leaves. Plant Physiology, 1987, 83, 238-240.	2.3	99
4	Building the bridge from bench to bedside. Nature Reviews Drug Discovery, 2008, 7, 463-464.	21.5	24
5	Transcriptional Regulatory Networks in Embryonic Stem Cells. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 203-209.	2.0	70
6	Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations. Stem Cells and Cloning: Advances and Applications, 2009, , 13.	2.3	6
8	Induced pluripotent stem cells: advances to applications. Stem Cells and Cloning: Advances and Applications, 2010, 3, 29.	2.3	21
11	Embryonic and Induced Pluripotent Stem Cells as a Model for Liver Disease. Critical Reviews in Biomedical Engineering, 2009, 37, 377-398.	0.5	8
12	Induced Pluripotent Stem Cells and the Promise of Proliferation. Circulation Research, 2009, 105, 1159-1161.	2.0	1
13	DERIVATION AND THERAPEUTIC POTENTIALS OF INDUCED PLURIPOTENT STEM CELLS. Gene Therapy and Regulation, 2009, 04, 81-104.	0.3	0
14	Of mice and men: skin cells, stem cells and ethical uncertainties. Regenerative Medicine, 2009, 4, 791-791.	0.8	2
15	On the Road to iPS Cell Cardiovascular Applications. Circulation Research, 2009, 105, 617-619.	2.0	36
16	Embryos, stem cells and moral status: a response to George and Lee. EMBO Reports, 2009, 10, 1283-1283.	2.0	4
17	To be, or not to be?. EMBO Reports, 2009, 10, 1285-1287.	2.0	14
18	Mice made from induced stem cells. Nature, 2009, 460, 560-560.	13.7	5
19	Ethical concerns over use of new cloning technique in humans. Nature, 2009, 461, 341-341.	13.7	8
20	A safer stem cell: inducing pluripotency. Nature Medicine, 2009, 15, 1001-1002.	15.2	9
22	AN INCLUSIVE ETHICS FOR THE TWENTYâ€FIRST CENTURY: IMPLICATIONS FOR STEM CELL RESEARCH. Journal of Religious Ethics, 2009, 37, 683-722.	0.1	1
23	Expression and activation of the reprogramming transcription factors. Biochemical and Biophysical Research Communications, 2009, 390, 1081-1086.	1.0	11
24	Pluripotent Stem Cells and Disease Modeling. Cell Stem Cell, 2009, 5, 244-247.	5.2	100

#	Article	IF	CITATIONS
25	PARylation: Strengthening the Connection between Cancer and Pluripotency. Cell Stem Cell, 2009, 5, 349-350.	5.2	13
26	Gold Standards in the Diamond Age: The Commodification of Pluripotency. Cell Stem Cell, 2009, 5, 360-363.	5.2	10
27	What to Do with the Grail Now that We Have It? iPSCs, Potentiality, and Public Policy. Cell Stem Cell, 2009, 5, 358-359.	5.2	13
28	Technical Challenges in Using Human Induced Pluripotent Stem Cells to Model Disease. Cell Stem Cell, 2009, 5, 584-595.	5.2	379
29	Application of induced pluripotent stem cells to hematologic disease. Cytotherapy, 2009, 11, 980-989.	0.3	23
31	Generation of Induced Pluripotent Stem Cells by Reprogramming Mouse Embryonic Fibroblasts with a Four Transcription Factor, Doxycycline Inducible Lentiviral Transduction System. Journal of Visualized Experiments, 2009, , .	0.2	14
32	Generation of Induced Pluripotent Stem Cells by Reprogramming Human Fibroblasts with the Stemgent Human TF Lentivirus Set. Journal of Visualized Experiments, 2009, , .	0.2	11
33	iPSç″èfžã•ã,‰ãfžã,¦ã,¹å€<体ã,'作製. Nature Digest, 2009, 6, 23-24.	0.0	0
34	Improving islet transplantation: a road map for a widespread application for the cure of persons with type I diabetes. Current Opinion in Organ Transplantation, 2009, 14, 683-687.	0.8	31
35	Inducible pluripotent stem cells: not quite ready for prime time?. Current Opinion in Organ Transplantation, 2010, 15, 61-67.	0.8	33
36	In vitro derivation of germ cells from embryonic stem cells in mammals. Molecular Reproduction and Development, 2010, 77, 586-594.	1.0	27
37	Induction of primordial germ cells from mouse induced pluripotent stem cells derived from adult hepatocytes. Molecular Reproduction and Development, 2010, 77, 802-811.	1.0	76
39	Animal transgenesis: an overview. Brain Structure and Function, 2010, 214, 91-109.	1.2	122
40	Complete reprogramming to all-iPS mice. Protein and Cell, 2010, 1, 2-3.	4.8	1
41	Cellular models for disease exploring and drug screening. Protein and Cell, 2010, 1, 355-362.	4.8	9
42	From synthetic genome to creation of life. Protein and Cell, 2010, 1, 501-502.	4.8	3
43	iPS cells—Alternative pluripotent cells to embryo stem cells. Science China Life Sciences, 2010, 53, 154-156.	2.3	2
44	Embryonic and adult neural stem cell research in China. Science China Life Sciences, 2010, 53, 338-341.	2.3	9

#	Article	IF	CITATIONS
45	Epigenetic reprogramming: roads to pluripotency. Frontiers in Biology, 2010, 5, 8-11.	0.7	1
46	Roads to pluripotency. Frontiers in Biology, 2010, 5, 2-2.	0.7	Ο
47	Understanding of stem cells in bone biology and translation into clinical applications. Frontiers in Biology, 2010, 5, 396-406.	0.7	4
48	The Promise of Stem Cell Research in Pigs and Other Ungulate Species. Stem Cell Reviews and Reports, 2010, 6, 31-41.	5.6	76
49	The iPS Technique Provides Hope for Parkinson's Disease Treatment. Stem Cell Reviews and Reports, 2010, 6, 398-404.	5.6	11
50	Viable Fertile Mice Generated from Fully Pluripotent iPS Cells Derived from Adult Somatic Cells. Stem Cell Reviews and Reports, 2010, 6, 390-397.	5.6	48
51	Strategies for the Derivation of Pluripotent Cells from Farm Animals. Reproduction in Domestic Animals, 2010, 45, 25-31.	0.6	4
52	ExprEssence - Revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Systems Biology, 2010, 4, 164.	3.0	71
53	Induction of pluripotency by defined factors. Experimental Cell Research, 2010, 316, 2565-2570.	1.2	77
54	Porcine induced pluripotent stem cells may bridge the gap between mouse and human iPS. IUBMB Life, 2010, 62, 277-282.	1.5	14
55	The Janus face of pluripotent stem cells – Connection between pluripotency and tumourigenicity. BioEssays, 2010, 32, 993-1002.	1.2	14
56	Hemangioblastic Derivatives from Human Induced Pluripotent Stem Cells Exhibit Limited Expansion and Early Senescence. Stem Cells, 2010, 28, 704-712.	1.4	354
57	Memory in Induced Pluripotent Stem Cells: Reprogrammed Human Retinal-Pigmented Epithelial Cells Show Tendency for Spontaneous Redifferentiation. Stem Cells, 2010, 28, 1981-1991.	1.4	173
58	Different responses between diploid and tetraploid H1 embryonic stem cells appeared during long-term culturing in L15F10 medium without leukemia inhibitory factor. Human Cell, 2010, 23, 134-140.	1.2	3
59	An introduction to induced pluripotent stem cells. British Journal of Haematology, 2010, 151, 16-24.	1.2	23
60	Efficient and rapid generation of induced pluripotent stem cells using an alternative culture medium. Cell Research, 2010, 20, 383-386.	5.7	27
61	Induced pluripotent stem cells: paths to new medicines. EMBO Reports, 2010, 11, 161-165.	2.0	30
62	Aberrant silencing of imprinted genes on chromosome 12qF1 in mouse induced pluripotent stem cells. Nature, 2010, 465, 175-181.	13.7	727

#	Article	IF	CITATIONS
63	Epigenetic memory in induced pluripotent stem cells. Nature, 2010, 467, 285-290.	13.7	2,011
64	Dynamic single-cell imaging of direct reprogramming reveals an early specifying event. Nature Biotechnology, 2010, 28, 521-526.	9.4	201
65	Induced pluripotent stem cell technology for the study of human disease. Nature Methods, 2010, 7, 25-27.	9.0	48
66	Production of mice using iPS cells and tetraploid complementation. Nature Protocols, 2010, 5, 963-971.	5.5	37
67	The challenge of immunogenicity in the quest for induced pluripotency. Nature Reviews Immunology, 2010, 10, 868-875.	10.6	72
68	Direct reprogramming 101. Development Growth and Differentiation, 2010, 52, 319-333.	0.6	17
69	Kinetics of reprogramming in cell fusion hybrids. International Journal of Developmental Biology, 2010, 54, 1697-1702.	0.3	2
70	Faithful reprogramming to pluripotency in mammals - what does nuclear transfer teach us?. International Journal of Developmental Biology, 2010, 54, 1609-1621.	0.3	8
71	Enhancing somatic nuclear reprogramming by Oct4 gain-of-function in cloned mouse embryos. International Journal of Developmental Biology, 2010, 54, 1649-1657.	0.3	24
72	Natural and artificial routes to pluripotency. International Journal of Developmental Biology, 2010, 54, 1545-1564.	0.3	13
73	Comparison of reprogramming ability of mouse ES and iPS cells measured by somatic cell fusion. International Journal of Developmental Biology, 2010, 54, 1723-1728.	0.3	6
74	Analysis of Human and Mouse Reprogramming of Somatic Cells to Induced Pluripotent Stem Cells. What Is in the Plate?. PLoS ONE, 2010, 5, e12664.	1.1	47
76	An Unknown Piece of Early Work of Nuclear Reprogramming in Fish Eggs. International Journal of Biological Sciences, 2010, 6, 190-191.	2.6	3
77	Future perspective of induced pluripotent stem cells for diagnosis, drug screening and treatment of human diseases. Thrombosis and Haemostasis, 2010, 104, 39-44.	1.8	46
78	Induced pluripotent stem cell–derived hepatocytes have the functional and proliferative capabilities needed for liver regeneration in mice. Journal of Clinical Investigation, 2010, 120, 3120-3126.	3.9	168
79	The Efficient Generation of Induced Pluripotent Stem (iPS) Cells from Adult Mouse Adipose Tissue-Derived and Neural Stem Cells. Cell Transplantation, 2010, 19, 525-536.	1.2	70
80	Progress toward the clinical application of patient-specific pluripotent stem cells. Journal of Clinical Investigation, 2010, 120, 51-59.	3.9	310
81	Induced Pluripotent Stem Cell Technology in Regenerative Medicine and Biology. , 2010, 123, 127-141.		23

	Сітатіс	on Report	
# 82	ARTICLE Generation of Human Induced Pluripotent Stem Cells from Umbilical Cord Matrix and Amniotic Membrane Mesenchymal Cells, Journal of Biological Chemistry, 2010, 285, 11227-11234	lF 1.6	Citations
83	Acceptance of Embryonic Stem Cells by a Wide Developmental Range of Mouse Tetraploid Embryos1. Biology of Reproduction, 2010, 83, 177-184.	1.2	11
84	Reprogramming with defined factors: from induced pluripotency to induced transdifferentiation. Molecular Human Reproduction, 2010, 16, 856-868.	1.3	71
85	Tumorigenicity of pluripotent stem cells: biological insights from molecular imaging. Journal of the Royal Society Interface, 2010, 7, S753-63.	1.5	95
86	Stem Cells of the Breast and Cancer Therapy. Women's Health, 2010, 6, 205-219.	0.7	4
87	Induced Pluripotent Stem Cells: A New Approach for Physiological Research. Cellular Physiology and Biochemistry, 2010, 26, 105-124.	1.1	16
88	Translational prospects for human induced pluripotent stem cells. Regenerative Medicine, 2010, 5, 509-519.	0.8	41
89	Viable iPSC mice: a step closer to therapeutic applications in humans?. Molecular Human Reproduction, 2010, 16, 57-62.	1.3	5
90	The Mighty Mice Prove Pluripotency for iPSCs. Journal of Molecular Cell Biology, 2010, 2, 171-172.	1.5	0
91	Mice Cloned from Induced Pluripotent Stem Cells (iPSCs)1. Biology of Reproduction, 2010, 83, 238-243.	1.2	46
92	Micro-orchestrating differentiation in cancer. Cell Cycle, 2010, 9, 918-922.	1.3	9
93	Minireview: β-Cell Replacement Therapy for Diabetes in the 21st Century: Manipulation of Cell Fate by Directed Differentiation. Molecular Endocrinology, 2010, 24, 1501-1511.	3.7	22
94	Tinkering with Transcription Factors Uncovers Plasticity of Somatic Cells. Genes and Cancer, 2010, 1, 1089-1099.	0.6	6
95	Successful generation of cloned mice using nuclear transfer from induced pluripotent stem cells. Cell Research, 2010, 20, 850-853.	5.7	38
96	Liver Regeneration From Induced Pluripotent Stem Cells. Molecular Therapy, 2010, 18, 2044-2045.	3.7	2
97	An imprinted signature helps isolate ESC-equivalent iPSCs. Cell Research, 2010, 20, 974-976.	5.7	3
98	Novel Therapies in Childhood Heart Failure: Today and Tomorrow. Heart Failure Clinics, 2010, 6, 591-621.	1.0	8
99	Spermatogonial stem cells, <i>in vivo</i> transdifferentiation and human regenerative medicine. Expert Opinion on Biological Therapy, 2010, 10, 519-530.	1.4	12

ARTICLE IF CITATIONS # Stem cell approaches for the treatment of type 1 diabetes mellitus. Translational Research, 2010, 156, 100 2.2 29 169-179. Pluripotent stem cell-derived natural killer cells for cancer therapy. Translational Research, 2010, 2.2 156, 147-154. 102 Human pluripotent stem cells: From biology to cell therapy. World Journal of Stem Cells, 2010, 2, 24. 1.312 Transcription Factors for the Modulation of Pluripotency and Reprogramming. Cold Spring Harbor Symposia on Quantitative Biology, 2010, 75, 237-244. Evolution of gene regulation of pluripotency - the case for wiki tracks at genome browsers. Biology 104 1.9 4 Direct, 2010, 5, 67. Induced Pluripotent Stem Cellsâ€"A New Foundation in Medicine. Journal of Experimental and Clinical 0.2 Medicine, 2010, 2, 202-217. Stem cells and regenerative medicine in urology, part 1: General concepts, kidney, testis and urinary 106 0.2 1 incontinence. Actas UrolÃ³gicas Españolas (Ĕnglish Edition), 2010, 34, 510-515. Lessons for cardiac regeneration and repair through development. Trends in Molecular Medicine, 3.5 2010, 16, 426-434. 108 Induced pluripotent stem cells: A new era for hepatology. Journal of Hepatology, 2010, 53, 738-751. 77 1.8 Reprogramming of somatic cells induced by fusion of embryonic stem cells using hemagglutinating 109 virus of Japan envelope (HVJ-E). Biochemical and Biophysical Research Communications, 2010, 394, 1.0 1053-1057. Pluripotency and Cellular Reprogramming: Facts, Hypotheses, Unresolved Issues. Cell, 2010, 143, 110 13.5635 508-525. Vitamin C Enhances the Generation of Mouse and Human Induced Pluripotent Stem Cells. Cell Stem 5.2 878 Cell, 2010, 6, 71-79. Cloning Mice and Men: Prohibiting the Use of iPS Cells for Human Reproductive Cloning. Cell Stem 112 5.2 36 Cell, 2010, 6, 16-20. Chromatin Structure and Gene Expression Programs of Human Embryonic and Induced Pluripotent Stem Cells. Cell Stem Cell, 2010, 7, 249-257. 5.2 Lab-Specific Gene Expression Signatures in Pluripotent Stem Cells. Cell Stem Cell, 2010, 7, 258-262. 114 5.2 195 Female Human iPSCs Retain an Inactive X Chromosome. Cell Stem Cell, 2010, 7, 329-342. 261 Recreating Pluripotency?. Cell Stem Cell, 2010, 7, 137-139. 116 5.2 14 MicroRNA Profiling Reveals Two Distinct p53-Related Human Pluripotent Stem Cell States. Cell Stem 5.2 Cell, 2010, 7, 671-681.

#	Article	IF	CITATIONS
118	Induced pluripotent stem cells – alchemist's tale or clinical reality?. Expert Reviews in Molecular Medicine, 2010, 12, 25.	1.6	16
119	Induced pluripotent stem cells (iPSCs)—a new era of reprogramming. Journal of Genetics and Genomics, 2010, 37, 415-421.	1.7	21
120	Derivation of embryonic stem cells from Brown Norway rats blastocysts. Journal of Genetics and Genomics, 2010, 37, 467-473.	1.7	21
121	Induced pluripotent stem (iPS) cells and endothelial cell generation: SIRT-ainly a good idea!. Atherosclerosis, 2010, 212, 36-39.	0.4	3
122	Induced pluripotent stem cells: developmental biology to regenerative medicine. Nature Reviews Cardiology, 2010, 7, 700-710.	6.1	125
123	Induced pluripotency: history, mechanisms, and applications. Genes and Development, 2010, 24, 2239-2263.	2.7	678
124	Activation of the Imprinted Dlk1-Dio3 Region Correlates with Pluripotency Levels of Mouse Stem Cells. Journal of Biological Chemistry, 2010, 285, 19483-19490.	1.6	253
125	Induced Pluripotent Stem Cells. Methods in Enzymology, 2010, 476, 309-325.	0.4	16
126	Proteome of mouse oocytes at different developmental stages. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 17639-17644.	3.3	209
127	Disparate Companions: Tissue Engineering Meets Cancer Research. Cells Tissues Organs, 2010, 192, 141-157.	1.3	6
128	Bioreactor Systems for Tissue Engineering II. , 2010, , .		2
129	Advancing stem cell research with microtechnologies: opportunities and challenges. Integrative Biology (United Kingdom), 2010, 2, 305.	0.6	36
130	Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4335-4340.	3.3	927
131	Pluripotent Human Stem Cells. BioDrugs, 2010, 24, 99-108.	2.2	22
132	Transcriptomic analysis of pluripotent stem cells: insights into health and disease. Genome Medicine, 2011, 3, 68.	3.6	7
133	Reprogramming of ovine adult fibroblasts to pluripotency via drug-inducible expression of defined factors. Cell Research, 2011, 21, 600-608.	5.7	108
134	Chromatin structure of pluripotent stem cells and induced pluripotent stem cells. Briefings in Functional Genomics, 2011, 10, 37-49.	1.3	28
135	The Science and Ethics of Induced Pluripotency: What Will Become of Embryonic Stem Cells?. Mayo Clinic Proceedings, 2011, 86, 634-640.	1.4	48

#	Article	IF	Citations
136	Reprogramming to pluripotency: stepwise resetting of the epigenetic landscape. Cell Research, 2011, 21, 486-501.	5.7	165
137	Critical Roles of Stromal Fibroblasts in the Cancer Microenvironments. , 2011, , 3-19.		0
138	Induced pluripotent stem cells — opportunities for disease modelling and drug discovery. Nature Reviews Drug Discovery, 2011, 10, 915-929.	21.5	417
139	Production of Embryonic and Fetal-Like Red Blood Cells from Human Induced Pluripotent Stem Cells. PLoS ONE, 2011, 6, e25761.	1.1	60
140	Transcriptional Regulatory Networks in Embryonic Stem Cells. , 2011, 67, 239-252.		21
141	Translational Stem Cell Research. Pancreatic Islet Biology, 2011, , .	0.1	3
142	Pluripotent Reprogramming of Fibroblasts by Lentiviralmediated Insertion of SOX2, C-MYC, and TCL-1A. Stem Cells and Development, 2011, 20, 169-180.	1.1	32
143	Stem Cells & amp; Regenerative Medicine. Pancreatic Islet Biology, 2011, , .	0.1	6
144	Epigenetics and Disease. , 2011, , .		5
145	Generation of induced pluripotent stem cells from bovine embryonic fibroblast cells. Cell Research, 2011, 21, 1509-1512.	5.7	131
146	The timing of retroviral silencing correlates with the quality of induced pluripotent stem cell lines. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 226-235.	1.1	21
147	Induced Pluripotent Stem Cells: Emerging Techniques for Nuclear Reprogramming. Antioxidants and Redox Signaling, 2011, 15, 1799-1820.	2.5	31
148	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2011, , 445-468.		0
149	Creation of Human–Animal Entities for Translational Stem Cell Research: Scientific Explanation of Issues That Are Often Confused. Pancreatic Islet Biology, 2011, , 169-191.	0.1	1
150	HNF4A is essential for specification of hepatic progenitors from human pluripotent stem cells. Development (Cambridge), 2011, 138, 4143-4153.	1.2	178
151	Directed differentiation of murine-induced pluripotent stem cells to functional hepatocyte-like cells. Journal of Hepatology, 2011, 54, 98-107.	1.8	84
152	Choreographing pluripotency and cell fate with transcription factors. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 337-349.	0.9	15
153	Reprogramming Factor Expression Initiates Widespread Targeted Chromatin Remodeling. Cell Stem Cell, 2011, 8, 96-105.	5.2	345

ARTICLE IF CITATIONS # Tet1 Is Dispensable for Maintaining Pluripotency and Its Loss Is Compatible with Embryonic and 5.2 453 154 Postnatal Development. Cell Stem Cell, 2011, 9, 166-175. The Histone Demethylases Jhdm1a/1b Enhance Somatic Cell Reprogramming in a Vitamin-C-Dependent 5.2 Manner. Cell Stem Cell, 2011, 9, 575-587. Reprogramming Factor Stoichiometry Influences the Epigenetic State and Biological Properties of 156 5.2 297 Induced Pluripotent Stem Cells. Cell Stem Cell, 2011, 9, 588-598. Integrating Physiological Regulation with Stem Cell and Tissue Homeostasis. Neuron, 2011, 70, 703-718. Induced pluripotent stem cells: A new tool to confront the challenge of neuropsychiatric disorders. 158 2.0 46 Neuropharmacology, 2011, 60, 1355-1363. Induced Pluripotent Stem Cells., 2011, , 187-205. Use of implantable temperature transponders for the determination of air cell temperature, eggshell water vapor conductance, and their functional relationships in embryonated broiler hatching eggs,. 160 1.5 13 Poultry Science, 2011, 90, 1191-1196. Association of telomere length with authentic pluripotency of ES/iPS cells. Cell Research, 2011, 21, 5.7 779-792. The prospect of induced pluripotent stem cells for diabetes mellitus treatment. Therapeutic Advances 162 29 1.4 in Endocrinology and Metabolism, 2011, 2, 197-210. The Efficiency of Cell Fusion-Based Reprogramming Is Affected by the Somatic Cell Type and the <i>In Vitro</i>Age of Somatic Cells. Cellular Reprogramming, 2011, 13, 331-344. Proteomic Analysis of Mouse Oocytes Reveals 28 Candidate Factors of the "Reprogrammomeâ€. Journal 164 1.8 86 of Proteome Research, 2011, 10, 2140-2153. Generation of iPS Cells Using a BacMam Multigene Expression System. Cell Structure and Function, 19 2011, 36, 209-222. Induced Pluripotent Stem Cells as Human Disease Models. Annual Reports in Medicinal Chemistry, 2011, 166 0.5 4 46, 369-383. Battle for Pluripotency: Derivation of Induced Pluripotent Stem Cells. Recent Patents on Regenerative Medicine, 2011, 1, 123-130. 0.4 168 Methods to Generate Chimeric Mice from Embryonic Stem Cells., 2011,,. 2 Application of Magnet-based Nanofection in Embryonic Stem Cell Research., 2011,,. Hepatic Differentiation of Murine Disease-Specific Induced Pluripotent Stem Cells Allows Disease 170 1.2 6 ModellingIn Vitro. Stem Cells International, 2011, 2011, 1-11. 171 Induced Pluripotent Stem Cells., 2011, , 203-215.

#	Article	IF	CITATIONS
172	Efficient preparation and labeling of human induced pluripotent stem cells by nanotechnology. International Journal of Nanomedicine, 2011, 6, 425.	3.3	41
174	A Virus-Free Poly-Promoter Vector Induces Pluripotency in Quiescent Bovine Cells under Chemically Defined Conditions of Dual Kinase Inhibition. PLoS ONE, 2011, 6, e24501.	1.1	68
175	Estimating the Quality of Reprogrammed Cells Using ES Cell Differentiation Expression Patterns. PLoS ONE, 2011, 6, e15336.	1.1	2
176	Neural Stem Cells Achieve and Maintain Pluripotency without Feeder Cells. PLoS ONE, 2011, 6, e21367.	1.1	6
177	iPS cells for transplantation. Current Opinion in Organ Transplantation, 2011, 16, 96-100.	0.8	8
178	Stem Cells in Pharmaceutical Biotechnology. Current Pharmaceutical Biotechnology, 2011, 12, 1760-1773.	0.9	6
179	Stem Cells: A Personal Perspective. Balkan Journal of Medical Genetics, 2011, 14, 7-12.	0.5	2
181	Will Cell Reprogramming Resolve the Embryonic Stem Cell Controversy? A Narrative Review. Annals of Internal Medicine, 2011, 155, 114.	2.0	18
182	Global Transcriptional Analysis of Oocyte-Based and Factor-Based Nuclear Reprogramming in the Nonhuman Primate. Cellular Reprogramming, 2011, 13, 473-481.	0.5	9
183	From embryonic stem cells to iPS $\hat{a} \in \hat{a}$ an ethical perspective. Cell Proliferation, 2011, 44, 70-84.	2.4	6
184	Annual Research Review: The promise of stem cell research for neuropsychiatric disorders. Journal of Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 504-516.	3.1	33
185	From skin to the treatment of diseases - the possibilities of iPS cell research in dermatology. Experimental Dermatology, 2011, 20, 523-528.	1.4	27
186	iPS cells forgive but do not forget. Nature Cell Biology, 2011, 13, 523-525.	4.6	14
187	Transforming ER exit: protein secretion meets oncogenesis. Nature Cell Biology, 2011, 13, 525-526.	4.6	2
188	Progress in understanding reprogramming to the induced pluripotent state. Nature Reviews Genetics, 2011, 12, 253-265.	7.7	257
189	Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature, 2011, 471, 68-73.	13.7	1,442
190	Epigenomics of human embryonic stem cells and induced pluripotent stem cells: insights into pluripotency and implications for disease. Genome Medicine, 2011, 3, 36.	3.6	49
191	Transcriptional control of embryonic and induced pluripotent stem cells. Epigenomics, 2011, 3, 323-343.	1.0	13

#	ARTICLE	IF	CITATIONS
192	New approaches for the generation of induced pluripotent stem cells. Expert Opinion on Biological Therapy, 2011, 11, 569-579.	1.4	24
193	Control of the Embryonic Stem Cell State. Cell, 2011, 144, 940-954.	13.5	1,050
194	Rederivation of transgenic mice from iPS cells derived from frozen tissue. Transgenic Research, 2011, 20, 167-175.	1.3	3
195	Induced pluripotent cancer cells: progress and application. Journal of Cancer Research and Clinical Oncology, 2011, 137, 1-8.	1.2	27
196	Present state and future perspectives of using pluripotent stem cells in toxicology research. Archives of Toxicology, 2011, 85, 79-117.	1.9	143
197	Application of iPS in Assisted Reproductive Technology: Sperm from Somatic Cells?. Stem Cell Reviews and Reports, 2011, 7, 714-721.	5.6	15
198	Do we Still Need Human Embryonic Stem Cells for Stem Cell-Based Therapies? Epistemic and Ethical Aspects. Stem Cell Reviews and Reports, 2011, 7, 761-774.	5.6	23
199	Induced pluripotent stem cells and neurodegenerative diseases. Neuroscience Bulletin, 2011, 27, 107-114.	1.5	19
200	Embryonic stem (ES) cells and induced pluripotent stem (iPS) cells in rats. Reproductive Medicine and Biology, 2011, 10, 231-238.	1.0	1
201	Induction of oligodendrocyte differentiation from adult human fibroblast-derived induced pluripotent stem cells. In Vitro Cellular and Developmental Biology - Animal, 2011, 47, 464-469.	0.7	47
202	Brief Report: Combined Chemical Treatment Enables <i>Oct4</i> -Induced Reprogramming from Mouse Embryonic Fibroblasts. Stem Cells, 2011, 29, 549-553.	1.4	121
203	Reprogramming of Trophoblast Stem Cells into Pluripotent Stem Cells by Oct4. Stem Cells, 2011, 29, 755-763.	1.4	63
204	Mechanistic insights into reprogramming to induced pluripotency. Journal of Cellular Physiology, 2011, 226, 868-878.	2.0	45
205	A guide to stem cell identification: Progress and challenges in systemâ€wide predictive testing with complex biomarkers. BioEssays, 2011, 33, 880-890.	1.2	17
206	Viable mice produced from three-factor induced pluripotent stem (iPS) cells through tetraploid complementation. Cell Research, 2011, 21, 546-549.	5.7	30
207	Mouse cloning and somatic cell reprogramming using electrofused blastomeres. Cell Research, 2011, 21, 770-778.	5.7	13
208	iPS cells generated without c-Myc have active Dlk1-Dio3 region and are capable of producing full-term mice through tetraploid complementation. Cell Research, 2011, 21, 550-553.	5.7	24
209	Defining pluripotent stem cells through quantitative proteomic analysis. Expert Review of Proteomics, 2011, 8, 29-42.	1.3	26

#	Article	IF	CITATIONS
210	Modeling neurological diseases using patient-derived induced pluripotent stem cells. Future Neurology, 2011, 6, 363-373.	0.9	37
211	Comparison of Human Induced Pluripotent and Embryonic Stem Cells: Fraternal or Identical Twins?. Molecular Therapy, 2011, 19, 635-638.	3.7	113
212	Mice generated from tetraploid complementation competent iPS cells show similar developmental features as those from ES cells but are prone to tumorigenesis. Cell Research, 2011, 21, 1634-1637.	5.7	39
213	Stage prediction of embryonic stem cell differentiation from genome-wide expression data. Bioinformatics, 2011, 27, 2546-2553.	1.8	18
214	De novo DNA methylation by Dnmt3a and Dnmt3b is dispensable for nuclear reprogramming of somatic cells to a pluripotent state. Genes and Development, 2011, 25, 1035-1040.	2.7	104
215	FULLY-PLURIPOTENT iPS CELLS: MOUSE TETRAPLOID COMPLEMENTATION, ETHICAL HUMAN ES-LIKE CELLS AND REPRODUCTIVE CLONING BAN. Gene Therapy and Regulation, 2011, 06, 21-32.	0.3	0
216	FROM TETRAPLOID-COMPLEMENTING MOUSE ıPS CELLS TO FULLY PLURIPOTENT PATIENT-SPECIFIC iPS CELLS. Gene Therapy and Regulation, 2011, 06, 5-20.	0.3	0
217	The different shades of mammalian pluripotent stem cells. Human Reproduction Update, 2011, 17, 254-271.	5.2	47
218	The labyrinth of nuclear reprogramming. Journal of Molecular Cell Biology, 2011, 3, 327-329.	1.5	4
219	Mouse chimeras as a system to investigate development, cell and tissue function, disease mechanisms and organ regeneration. Cell Cycle, 2011, 10, 2091-2099.	1.3	27
220	Effects of electric field on early preimplantation development in vitro in mice and rats. Human Reproduction, 2011, 26, 662-670.	0.4	11
221	Human procreation in unchartered territory: new twists in ethical discussions. Human Reproduction, 2011, 26, 1284-1287.	0.4	6
222	Pluripotent Stem Cells and Reprogrammed Cells in Farm Animals. Microscopy and Microanalysis, 2011, 17, 474-497.	0.2	48
223	Lithium, an anti-psychotic drug, greatly enhances the generation of induced pluripotent stem cells. Cell Research, 2011, 21, 1424-1435.	5.7	103
224	Diploid Oocyte Formation and Tetraploid Embryo Development Induced by Cytochalasin B in Bovine. Cellular Reprogramming, 2011, 13, 37-45.	0.5	9
225	Global epigenetic changes during somatic cell reprogramming to iPS cells. Journal of Molecular Cell Biology, 2011, 3, 341-350.	1.5	110
226	Generation of Healthy Mice from Gene-Corrected Disease-Specific Induced Pluripotent Stem Cells. PLoS Biology, 2011, 9, e1001099.	2.6	50
227	Animal Models of Human Pathology 2012. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-2.	3.0	2

#	Article	IF	CITATIONS
228	Prospects and Challenges of Reprogrammed Cells in Hematology and Oncology. Pediatric Hematology and Oncology, 2012, 29, 507-528.	0.3	7
229	MicroRNAs and Induced Pluripotent Stem Cells for Human Disease Mouse Modeling. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-7.	3.0	6
230	Induced Pluripotent Stem Cells Show Metabolomic Differences to Embryonic Stem Cells in Polyunsaturated Phosphatidylcholines and Primary Metabolism. PLoS ONE, 2012, 7, e46770.	1.1	68
231	Generation of Porcine-Induced Pluripotent Stem Cells by Using OCT4 and KLF4 Porcine Factors. Cellular Reprogramming, 2012, 14, 505-513.	0.5	40
232	Transcription Factor-mediated Epigenetic Reprogramming. Journal of Biological Chemistry, 2012, 287, 30922-30931.	1.6	22
233	Stem Cells as a Novel Tool for Drug Screening and Treatment of Degenerative Diseases. Current Pharmaceutical Design, 2012, 18, 2644-2656.	0.9	21
234	Cyclin A ₁ Is Essential for Setting the Pluripotent State and Reducing Tumorigenicity of Induced Pluripotent Stem Cells. Stem Cells and Development, 2012, 21, 2891-2899.	1.1	19
235	NUCLEAR REPROGRAMMING AND THE CURRENT CHALLENGES IN ADVANCING PERSONALIZED PLURIPOTENT STEM CELL-BASED THERAPIES. Gene Therapy and Regulation, 2012, 07, 1230002.	0.3	3
236	Molecular insights into the heterogeneity of telomere reprogramming in induced pluripotent stem cells. Cell Research, 2012, 22, 757-768.	5.7	77
237	Generation of Mice Derived from Induced Pluripotent Stem Cells. Journal of Visualized Experiments, 2012, , e4003.	0.2	10
238	Hair Follicle Stem Cells Derived from Single Rat Vibrissa via Organ Culture Reconstitute Hair Follicles in Vivo. Cell Transplantation, 2012, 21, 1075-1085.	1.2	18
239	Time to Reconsider Stem Cell Induction Strategies. Cells, 2012, 1, 1293-1312.	1.8	7
240	Reprogramming Pig Fetal Fibroblasts Reveals a Functional LIF Signaling Pathway. Cellular Reprogramming, 2012, 14, 112-122.	0.5	28
242	Induced pluripotent stem cells and severe combined immunodeficiency: merely disease modeling or potentially a novel cure?. Pediatric Research, 2012, 71, 427-432.	1.1	6
243	Residual Undifferentiated Cells During Differentiation of Induced Pluripotent Stem Cells In Vitro and In Vivo. Stem Cells and Development, 2012, 21, 521-529.	1.1	43
244	Generation of a Drug-inducible Reporter System to Study Cell Reprogramming in Human Cells. Journal of Biological Chemistry, 2012, 287, 40767-40778.	1.6	17
245	Reprogramming of Human Fibroblasts into Pluripotent Cells: Role of Lentiviral Mediated Transcription Factors. , 2012, , 201-211.		0
246	The Identity of Living Beings, Epigenetics, and the Modesty of Philosophy. Erkenntnis, 2012, 76, 279-298.	0.6	26

#	Article	IF	CITATIONS
247	The roles of the reprogramming factors Oct4, Sox2 and Klf4 in resetting the somatic cell epigenome during induced pluripotent stem cell generation. Genome Biology, 2012, 13, 251.	13.9	92
248	Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Experimental Cell Research, 2012, 318, 2482-2489.	1.2	26
249	Reprogramming and the mammalian germline: the Weismann barrier revisited. Current Opinion in Cell Biology, 2012, 24, 716-723.	2.6	43
250	Investigating cellular identity and manipulating cell fate using induced pluripotent stem cells. Stem Cell Research and Therapy, 2012, 3, 8.	2.4	8
251	Stem cells and regenerative medicine— future perspectives. Canadian Journal of Physiology and Pharmacology, 2012, 90, 327-335.	0.7	62
252	Ascorbic acid enhances the cardiac differentiation of induced pluripotent stem cells through promoting the proliferation of cardiac progenitor cells. Cell Research, 2012, 22, 219-236.	5.7	202
253	Stem Cell Science On the Rise in China. Cell Stem Cell, 2012, 10, 12-15.	5.2	22
254	Generation and characterization of reprogrammed sheep induced pluripotent stem cells. Theriogenology, 2012, 77, 338-346.e1.	0.9	87
255	Induced Pluripotent Stem–Induced Cells Show Better Constitutive Heterochromatin Remodeling and Developmental Potential After Nuclear Transfer Than Their Parental Cells. Stem Cells and Development, 2012, 21, 3001-3009.	1.1	11
256	Lineage conversion methodologies meet the reprogramming toolbox. Nature Cell Biology, 2012, 14, 892-899.	4.6	101
257	Single-Cell Expression Analyses during Cellular Reprogramming Reveal an Early Stochastic and a Late Hierarchic Phase. Cell, 2012, 150, 1209-1222.	13.5	769
258	Mast cell transcription factors—Regulators of cell fate and phenotype. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2012, 1822, 42-48.	1.8	27
259	Reprogramming Cellular Identity for Regenerative Medicine. Cell, 2012, 148, 1110-1122.	13.5	174
261	Generation of Induced Pluripotent Stem Cells from Somatic Cells. Progress in Molecular Biology and Translational Science, 2012, 111, 1-26.	0.9	17
262	Vitamin C improves the quality of somatic cell reprogramming. Nature Genetics, 2012, 44, 366-367.	9.4	100
263	Efficient Hematopoietic Redifferentiation of Induced Pluripotent Stem Cells Derived from Primitive Murine Bone Marrow Cells. Stem Cells and Development, 2012, 21, 689-701.	1.1	28
264	Mouse-Induced Pluripotent Stem Cells. Results and Problems in Cell Differentiation, 2012, 55, 395-411.	0.2	0
265	Wnt3a is involved in the early stage of miPSC and mESC haemopoietic differentiation. Cell Biology	1.4	3

#	Article	IF	CITATIONS
266	The role of induced pluripotent stem cells in research and therapy of primary immunodeficiencies. Current Opinion in Immunology, 2012, 24, 617-624.	2.4	12
267	Epigenetic obstacles encountered by transcription factors: reprogramming against all odds. Current Opinion in Genetics and Development, 2012, 22, 409-415.	1.5	24
268	Avian-Induced Pluripotent Stem Cells Derived Using Human Reprogramming Factors. Stem Cells and Development, 2012, 21, 394-403.	1.1	62
269	Induced Pluripotent Stem Cells (iPSCs). SpringerBriefs in Stem Cells, 2012, , 11-19.	0.1	Ο
272	Neural Development and Stem Cells. , 2012, , .		0
273	Pluripotency of induced pluripotent stem cells. Journal of Animal Science and Biotechnology, 2012, 3, 5.	2.1	15
274	Kinetic Analysis of Porcine Fibroblast Reprogramming Toward Pluripotency by Defined Factors. Cellular Reprogramming, 2012, 14, 312-323.	0.5	16
275	Shared Gene Regulation during Human Somatic Cell Reprogramming. Journal of Genetics and Genomics, 2012, 39, 613-623.	1.7	3
276	Reprogramming of Mouse, Rat, Pig, and Human Fibroblasts into iPS Cells. Current Protocols in Molecular Biology, 2012, 97, Unit-23.15	2.9	13
278	Should we sacrifice embryos to cure people?. Human Affairs, 2012, 22, 623-635.	0.1	0
279	Differential Coupling of Self-Renewal Signaling Pathways in Murine Induced Pluripotent Stem Cells. PLoS ONE, 2012, 7, e30234.	1.1	12
280	Zfp296 Is a Novel, Pluripotent-Specific Reprogramming Factor. PLoS ONE, 2012, 7, e34645.	1.1	37
281	Induced Pluripotent Stem Cells Generated from Human Adipose-Derived Stem Cells Using a Non-Viral Polycistronic Plasmid in Feeder-Free Conditions. PLoS ONE, 2012, 7, e48161.	1.1	35
282	Characterization of Bovine Induced Pluripotent Stem Cells by Lentiviral Transduction of Reprogramming Factor Fusion Proteins. International Journal of Biological Sciences, 2012, 8, 498-511.	2.6	69
283	Genetic Modification of Domestic Animals for Agriculture and Biomedical Applications. , 2012, , .		2
284	The gene expression profiles of induced pluripotent stem cells (iPSCs) generated by a non-integrating method are more similar to embryonic stem cells than those of iPSCs generated by an integrating method. Genetics and Molecular Biology, 2012, 35, 693-700.	0.6	15
285	Monocytes Do Not Transdifferentiate into Proper Osteoblasts. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	5
286	Proteins Reprogramming: Present and Future. Scientific World Journal, The, 2012, 2012, 1-5.	0.8	3

#	Article	IF	CITATIONS
287	Concise Review: Induced Pluripotent Stem Cells Versus Embryonic Stem Cells: Close Enough or Yet Too Far Apart?. Stem Cells, 2012, 30, 33-41.	1.4	184
288	Concise Review: Oct4 and More: The Reprogramming Expressway. Stem Cells, 2012, 30, 15-21.	1.4	98
289	Concise Review: Embryonic Stem Cells Versus Induced Pluripotent Stem Cells: The Game Is On. Stem Cells, 2012, 30, 10-14.	1.4	129
290	Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. Journal of Tissue Engineering and Regenerative Medicine, 2012, 6, 462-472.	1.3	62
291	The molecular circuitry underlying pluripotency in embryonic stem cells. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2012, 4, 443-456.	6.6	12
292	MiRâ€138 Promotes Induced Pluripotent Stem Cell Generation Through the Regulation of the p53 Signaling. Stem Cells, 2012, 30, 1645-1654.	1.4	90
293	Maintaining differentiated cellular identity. Nature Reviews Genetics, 2012, 13, 429-439.	7.7	145
294	The genomic stability of induced pluripotent stem cells. Protein and Cell, 2012, 3, 271-277.	4.8	14
295	Ability of tetraploid rat blastocysts to support fetal development after complementation with embryonic stem cells. Molecular Reproduction and Development, 2012, 79, 402-412.	1.0	12
296	An Elaborate Regulation of Mammalian Target of Rapamycin Activity Is Required for Somatic Cell Reprogramming Induced by Defined Transcription Factors. Stem Cells and Development, 2012, 21, 2630-2641.	1.1	47
297	Somatic cell reprogramming for regenerative medicine: SCNT vs. iPS cells. BioEssays, 2012, 34, 472-476.	1.2	15
298	The promise of induced pluripotent stem cells in research and therapy. Nature, 2012, 481, 295-305.	13.7	976
299	High Efficiency of Reprogramming CD34+ Cells Derived from Human Amniotic Fluid into Induced Pluripotent Stem Cells with Oct4. Stem Cells and Development, 2012, 21, 2322-2332.	1.1	59
300	Large animal induced pluripotent stem cells as preâ€clinical models for studying human disease. Journal of Cellular and Molecular Medicine, 2012, 16, 1196-1202.	1.6	23
301	A novel variant of Oct3/4 gene in mouse embryonic stem cells. Stem Cell Research, 2012, 9, 69-76.	0.3	19
302	Pluripotency of a polyploid H1 (ES) cell system without leukaemia inhibitory factor. Cell Proliferation, 2012, 45, 140-147.	2.4	3
303	Derivation of male germ cells from induced pluripotent stem cells <i>in vitro</i> and in reconstituted seminiferous tubules. Cell Proliferation, 2012, 45, 91-100.	2.4	61
304	Twenty Years of Embryonic Stem Cell Research in Farm Animals. Reproduction in Domestic Animals, 2012, 47, 80-85.	0.6	31

#	Article	IF	CITATIONS
305	Prospects for pluripotent stem cell therapies: Into the clinic and back to the bench. Journal of Cellular Biochemistry, 2012, 113, 381-387.	1.2	34
306	Rapid conversion of human ESCs into mouse ESC-like pluripotent state by optimizing culture conditions. Protein and Cell, 2012, 3, 71-79.	4.8	33
307	Induced Pluripotent Stem Cell Technology and Direct Conversion: New Possibilities to Study and Treat Parkinson's Disease. Stem Cell Reviews and Reports, 2013, 9, 505-513.	5.6	11
308	Is aging a barrier to reprogramming? Lessons from induced pluripotent stem cells. Biogerontology, 2013, 14, 591-602.	2.0	16
309	Induction of Pluripotency. Advances in Experimental Medicine and Biology, 2013, 786, 5-25.	0.8	0
310	Evolutionary and Functional Analysis of the Key Pluripotency Factor Oct4 and Its Family Proteins. Journal of Genetics and Genomics, 2013, 40, 399-412.	1.7	7
312	MicroRNA-323-3p Regulates the Activity of Polycomb Repressive Complex 2 (PRC2) via Targeting the mRNA of Embryonic Ectoderm Development (Eed) Gene in Mouse Embryonic Stem Cells. Journal of Biological Chemistry, 2013, 288, 23659-23665.	1.6	8
313	Cellular Reprogramming of Human Peripheral Blood Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 264-274.	3.0	50
314	Donor chimera model for tolerance induction in transplantation. Human Immunology, 2013, 74, 550-556.	1.2	2
315	Direct Cardiac Reprogramming. Circulation Research, 2013, 113, 915-921.	2.0	41
317	The Advent of the Golden Era of Animal Alternatives. , 2013, , 49-73.		2
318	Improved Hepatic Differentiation Strategies for Human Induced Pluripotent Stem Cells. Current Molecular Medicine, 2013, 13, 842-855.	0.6	30
319	Induced pluripotent stem cells: origins, applications, and future perspectives. Journal of Zhejiang University: Science B, 2013, 14, 1059-1069.	1.3	25
320	Induced Pluripotency for Translational Research. Genomics, Proteomics and Bioinformatics, 2013, 11, 288-293.	3.0	9
321	Clinical Therapy Using iPSCs: Hopes and Challenges. Genomics, Proteomics and Bioinformatics, 2013, 11, 294-298.	3.0	41
322	In vivo reprogramming in inflammatory bowel disease. Gene Therapy, 2013, 20, 1111-1118.	2.3	7
323	The case for induced pluripotent stem cellâ€derived cardiomyocytes in pharmacological screening. British Journal of Pharmacology, 2013, 169, 304-317.	2.7	59
324	Standardization of human stem cell pluripotency using bioinformatics. Stem Cell Research and Therapy, 2013, 4, 37.	2.4	14

#	Article	IF	CITATIONS
325	Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annual Review of Medicine, 2013, 64, 277-290.	5.0	124
327	WNT3A modulates chondrogenesis via canonical and non-canonical Wnt pathways in MSCsÂ. Frontiers in Bioscience - Landmark, 2013, 18, 493.	3.0	31
328	microRNA-29b is a novel mediator of Sox2 function in the regulation of somatic cell reprogramming. Cell Research, 2013, 23, 142-156.	5.7	84
329	Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature, 2013, 494, 100-104.	13.7	455
330	The evolving field of induced pluripotency: Recent progress and future challenges. Journal of Cellular Physiology, 2013, 228, 267-275.	2.0	43
331	Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective. Cell Research, 2013, 23, 49-69.	5.7	152
332	Induced Pluripotent Mesenchymal Stromal Cell Clones Retain Donor-derived Differences in DNA Methylation Profiles. Molecular Therapy, 2013, 21, 240-250.	3.7	54
333	Zscan4 promotes genomic stability during reprogramming and dramatically improves the quality of iPS cells as demonstrated by tetraploid complementation. Cell Research, 2013, 23, 92-106.	5.7	124
335	Promoting Reprogramming by FGF2 Reveals that the Extracellular Matrix Is a Barrier for Reprogramming Fibroblasts to Pluripotency. Stem Cells, 2013, 31, 729-740.	1.4	44
336	Driving pluripotency and reprogramming: Nuclear receptors at the helm. Seminars in Cell and Developmental Biology, 2013, 24, 670-678.	2.3	6
337	Pluripotency of Induced Pluripotent Stem Cells. Genomics, Proteomics and Bioinformatics, 2013, 11, 299-303.	3.0	12
338	Reconsidering pluripotency tests: Do we still need teratoma assays?. Stem Cell Research, 2013, 11, 552-562.	0.3	76
339	Immediate expression of Cdh2 is essential for efficient neural differentiation of mouse induced pluripotent stem cells. Stem Cell Research, 2013, 10, 338-348.	0.3	18
340	Critical regulation of miR-200/ZEB2 pathway in Oct4/Sox2-induced mesenchymal-to-epithelial transition and induced pluripotent stem cell generation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2858-2863.	3.3	158
341	MicroRNAs in somatic cell reprogramming. Current Opinion in Cell Biology, 2013, 25, 208-214.	2.6	43
342	Replacement of Oct4 by Tet1 during iPSC Induction Reveals an Important Role of DNA Methylation and Hydroxymethylation in Reprogramming. Cell Stem Cell, 2013, 12, 453-469.	5.2	321
343	Melatonin improves the reprogramming efficiency of murineâ€induced pluripotent stem cells using a secondary inducible system. Journal of Pineal Research, 2013, 55, 31-39.	3.4	22
344	Generation of Mouse and Human Induced Pluripotent Stem Cells (iPSC) from Primary Somatic Cells. Stem Cell Reviews and Reports, 2013, 9, 435-450.	5.6	31

#	Article	IF	CITATIONS
345	The TGFβ superfamily in stem cell biology and early mammalian embryonic development. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2268-2279.	1.1	64
346	Induced Pluripotent Stem Cells. , 2013, , 197-218.		0
347	MicroRNAs in pluripotency, reprogramming and cell fate induction. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1894-1903.	1.9	51
348	MicroRNA-122 Influences the Development of Sperm Abnormalities from Human Induced Pluripotent Stem Cells by Regulating <i>TNP2</i> Expression. Stem Cells and Development, 2013, 22, 1839-1850.	1.1	46
350	Mechanisms and models of somatic cell reprogramming. Nature Reviews Genetics, 2013, 14, 427-439.	7.7	397
351	Induced pluripotency and direct reprogramming: a new window for treatment of neurodegenerative diseases. Protein and Cell, 2013, 4, 415-424.	4.8	5
352	Identification of small molecules for human hepatocyte expansion and iPS differentiation. Nature Chemical Biology, 2013, 9, 514-520.	3.9	230
353	Directed neuronal differentiation of mouse embryonic and induced pluripotent stem cells and their gene expression profiles. International Journal of Molecular Medicine, 2013, 32, 25-34.	1.8	17
354	Modeling Stem Cell Induction Processes. PLoS ONE, 2013, 8, e60240.	1.1	5
355	Mitigating the Risk of Immunogenicity in the Pursuit of Induced Pluripotency. , 2013, , 77-94.		0
356	Construction of Human Embryonic Stem Cell Banks: Prospects for Tissue Matching. , 2013, , 111-128.		2
357	Potential therapeutic applications of differentiated induced pluripotent stem cells (iPSCs) in the treatment of neurodegenerative diseases. Neuroscience, 2013, 228, 47-59.	1.1	16
358	Bioinformatics Studies on Induced Pluripotent Stem Cell. Current Bioinformatics, 2013, 8, 80-86.	0.7	2
359	Current status of stem cell therapy in China. International Journal of Hematologic Oncology, 2013, 2, 289-297.	0.7	0
360	Distinct iPS Cells Show Different Cardiac Differentiation Efficiency. Stem Cells International, 2013, 2013, 1-11.	1.2	14
361	Systematic Review of Induced Pluripotent Stem Cell Technology as a Potential Clinical Therapy for Spinal Cord Injury. Cell Transplantation, 2013, 22, 571-617.	1.2	49
362	Differentiation of Induced Pluripotent Stem Cells into Male Germ CellsIn Vitrothrough Embryoid Body Formation and Retinoic Acid or Testosterone Induction. BioMed Research International, 2013, 2013, 1-9.	0.9	20
363	Programmed Cells from Basic Neuroscience to Therapy. Research and Perspectives in Neurosciences, 2013, , .	0.4	1

#	Article	IF	CITATIONS
364	Disease modelling using induced pluripotent stem cells: Status and prospects. BioEssays, 2013, 35, 271-280.	1.2	16
365	Concise Review: The Dynamics of Induced Pluripotency and Its Behavior Captured in Gene Network Motifs. Stem Cells, 2013, 31, 838-848.	1.4	10
366	Generation of Transgenic Rats through Induced Pluripotent Stem Cells. Journal of Biological Chemistry, 2013, 288, 27150-27158.	1.6	10
367	Higher Methylation in Genomic DNA Indicates Incomplete Reprogramming in Induced Pluripotent Stem Cells. Cellular Reprogramming, 2013, 15, 92-99.	0.5	12
368	Identification of a small molecule 1,4-bis-[4-(3-phenoxy-propoxy)-but-2-ynyl]-piperazine as a novel inhibitor of the transcription factor p53. Acta Pharmacologica Sinica, 2013, 34, 805-810.	2.8	4
369	Multiple coagulation factor deficiency protein 2 contains the ability to support stem cell selfâ€renewal. FASEB Journal, 2013, 27, 3298-3305.	0.2	7
370	Induced Pluripotent Stem Cells. , 2013, , 1-19.		0
371	Primate and human somatic cell nuclear transfer. , 0, , 274-284.		1
372	Low Immunogenicity of Neural Progenitor Cells Differentiated from Induced Pluripotent Stem Cells Derived from Less Immunogenic Somatic Cells. PLoS ONE, 2013, 8, e69617.	1.1	42
373	Direct Reprogramming into Desired Cell Types by Defined Factors. Keio Journal of Medicine, 2013, 62, 74-82.	0.5	13
374	KSR-Based Medium Improves the Generation of High-Quality Mouse iPS Cells. PLoS ONE, 2014, 9, e105309.	1.1	19
375	Improved Derivation Efficiency and Pluripotency of Stem Cells from the Refractory Inbred C57BL/6 Mouse Strain by Small Molecules. PLoS ONE, 2014, 9, e106916.	1.1	4
376	Induced Pluripotent Stem Cells. , 2014, , 581-594.		6
377	Understanding the roadmaps to induced pluripotency. Cell Death and Disease, 2014, 5, e1232-e1232.	2.7	25
378	Positive Correlation Between the Efficiency of Induced Pluripotent Stem Cells and the Development Rate of Nuclear Transfer Embryos When the Same Porcine Embryonic Fibroblast Lines Are Used As Donor Cells. Cellular Reprogramming, 2014, 16, 206-214.	0.5	8
379	Regenerative Biology of the Eye. Pancreatic Islet Biology, 2014, , .	0.1	4
380	Advances in Pluripotent and Adult Stem Cells for Eye Research. Pancreatic Islet Biology, 2014, , 101-119.	0.1	0
381	Tetraploid Complementation Assay. , 2014, , 107-111.		0

#	Article	IF	CITATIONS
382	Co-regulation of pluripotency and genetic integrity at the genomic level. Stem Cell Research, 2014, 13, 508-519.	0.3	8
383	The moral value of induced pluripotent stem cells: a Japanese bioethics perspective on human embryo research. Journal of Medical Ethics, 2014, 40, 766-769.	1.0	10
384	Therapeutic effects of induced pluripotent stem cells in chimeric mice with Â-thalassemia. Haematologica, 2014, 99, 1304-1311.	1.7	11
385	Somatic Cell Reprogramming into Cardiovascular Lineages. Journal of Cardiovascular Pharmacology and Therapeutics, 2014, 19, 340-349.	1.0	8
386	Design of a Microchannelâ€Nanochannelâ€Microchannel Array Based Nanoelectroporation System for Precise Gene Transfection. Small, 2014, 10, 1015-1023.	5.2	53
388	Divergent reprogramming routes lead to alternative stem-cell states. Nature, 2014, 516, 192-197.	13.7	123
389	An epigenomic roadmap to induced pluripotency reveals DNA methylation as a reprogramming modulator. Nature Communications, 2014, 5, 5619.	5.8	108
390	Proteome adaptation in cell reprogramming proceeds via distinct transcriptional networks. Nature Communications, 2014, 5, 5613.	5.8	45
391	Totipotency: What It Is and What It Is Not. Stem Cells and Development, 2014, 23, 796-812.	1.1	106
392	Functional Evaluation of ES–Somatic Cell Hybrids <i>In Vitro</i> and <i>In Vivo</i> . Cellular Reprogramming, 2014, 16, 167-174.	0.5	1
393	Nucleosome organizations in induced pluripotent stem cells reprogrammed from somatic cells belonging to three different germ layers. BMC Biology, 2014, 12, 109.	1.7	11
394	Human Pluripotent Stem Cell Strategies for Age-Related Macular Degeneration. Optometry and Vision Science, 2014, 91, 887-893.	0.6	6
395	Role of iPSC-Producing Factors in Pre-Implantation Embryos. , 2014, , 473-484.		0
396	Generation of germ cells in vitro in the era of induced pluripotent stem cells. Molecular Reproduction and Development, 2014, 81, 2-19.	1.0	26
397	Scientific principles of regenerative medicine and their application in the female reproductive system. Maturitas, 2014, 77, 12-19.	1.0	22
398	Telomere regulation in pluripotent stem cells. Protein and Cell, 2014, 5, 194-202.	4.8	56
399	Neural progenitor cells from human induced pluripotent stem cells generated less autogenous immune response. Science China Life Sciences, 2014, 57, 162-170.	2.3	16
400	Bioinformatic analysis of the four transcription factors used to induce pluripotent stem cells. Cytotechnology, 2014, 66, 967-978.	0.7	4

#	Article	IF	CITATIONS
401	Reconstitution of Gametogenesis InÂVitro: Meiosis Is the Biggest Obstacle. Journal of Genetics and Genomics, 2014, 41, 87-95.	1.7	31
402	Adult Stem Cells. Pancreatic Islet Biology, 2014, , .	0.1	2
403	Small molecule compound induces chromatin de-condensation and facilitates induced pluripotent stem cell generation. Journal of Molecular Cell Biology, 2014, 6, 409-420.	1.5	27
404	Comparison of Reprogramming Genes in Induced Pluripotent Stem Cells and Nuclear Transfer Cloned Embryos. Stem Cell Reviews and Reports, 2014, 10, 548-560.	5.6	4
405	Generation of male germ cells from mouse induced pluripotent stem cells in vitro. Stem Cell Research, 2014, 12, 517-530.	0.3	36
406	The Potential of Cell-based Therapy for Diabetes and Diabetes-related Vascular Complications. Current Diabetes Reports, 2014, 14, 469.	1.7	13
407	Reactivation of inactive X chromosome and post-transcriptional reprogramming of Xist in induced pluripotent stem cells. Journal of Cell Science, 2014, 128, 81-7.	1.2	15
408	Reprogramming Sertoli Cells into Pluripotent Stem Cells. Cellular Reprogramming, 2014, 16, 196-205.	0.5	11
409	Germ cells from human embryonic stem cells?. Reproductive BioMedicine Online, 2014, 29, 273.	1.1	0
410	Directed Differentiation of Pluripotent Stem Cells to Kidney Cells. Seminars in Nephrology, 2014, 34, 445-461.	0.6	38
411	The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection. Cell Stem Cell, 2014, 15, 295-309.	5.2	137
412	A Systems Biology Approach for Defining the Molecular Framework of the Hematopoietic Stem Cell Niche. Cell Stem Cell, 2014, 15, 376-391.	5.2	63
413	Generation of tetraploid complementation mice from embryonic stem cells cultured with chemical defined medium. Science Bulletin, 2014, 59, 2743-2748.	1.7	2
414	Chromatin Changes in Reprogramming of Mammalian Somatic Cells. Rejuvenation Research, 2014, 17, 3-10.	0.9	1
415	High-throughput sequencing reveals the disruption of methylation of imprinted gene in induced pluripotent stem cells. Cell Research, 2014, 24, 293-306.	5.7	50
416	Epigenetic Regulation of Pluripotency and Differentiation. Circulation Research, 2014, 115, 311-324.	2.0	205
417	Application of iPS Cells in Dental Bioengineering and Beyond. Stem Cell Reviews and Reports, 2014, 10, 663-670.	5.6	18
418	Transitions between epithelial and mesenchymal states during cell fate conversions. Protein and Cell, 2014, 5, 580-591.	4.8	44

#	Article	IF	CITATIONS
419	Human-induced pluripotent stem cells: potential for neurodegenerative diseases. Human Molecular Genetics, 2014, 23, R17-R26.	1.4	101
420	Genetic Modification and Screening in Rat Using Haploid Embryonic Stem Cells. Cell Stem Cell, 2014, 14, 404-414.	5.2	85
421	Induced Pluripotent Stem Cells for Post–Myocardial Infarction Repair. Circulation Research, 2014, 114, 1328-1345.	2.0	119
422	Induction of pluripotency by defined factors. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2014, 90, 83-96.	1.6	30
423	Induced pluripotent stem cells: Landscape for studying and treating hereditary hearing loss. Journal of Otology, 2014, 9, 151-155.	0.4	5
424	Challenges in Retinal Circuit Regeneration. Biological and Pharmaceutical Bulletin, 2015, 38, 341-357.	0.6	7
425	Improvement in Mouse iPSC Induction by Rab32 Reveals the Importance of Lipid Metabolism during Reprogramming. Scientific Reports, 2015, 5, 16539.	1.6	15
426	Immunogenicity and functional evaluation of iPSC-derived organs for transplantation. Cell Discovery, 2015, 1, 15015.	3.1	12
427	Modeling Kidney Disease with iPS Cells. Biomarker Insights, 2015, 10s1, BMI.S20054.	1.0	41
428	Human Induced Pluripotent Stem Cell and Nanotechnology-Based Therapeutics. Cell Transplantation, 2015, 24, 2185-2195.	1.2	15
429	Barriers for Deriving Transgene-Free Pig iPS Cells with Episomal Vectors. Stem Cells, 2015, 33, 3228-3238.	1.4	60
430	Chromatin Dynamics in Lineage Commitment and Cellular Reprogramming. Genes, 2015, 6, 641-661.	1.0	15
431	Ovine Hair Follicle Stem Cells Derived from Single Vibrissae Reconstitute Haired Skin. International Journal of Molecular Sciences, 2015, 16, 17779-17797.	1.8	13
432	Effects of Integrating and Non-Integrating Reprogramming Methods on Copy Number Variation and Genomic Stability of Human Induced Pluripotent Stem Cells. PLoS ONE, 2015, 10, e0131128.	1.1	57
433	The Efficient Derivation of Trophoblast Cells from Porcine In Vitro Fertilized and Parthenogenetic Blastocysts and Culture with ROCK Inhibitor Y-27632. PLoS ONE, 2015, 10, e0142442.	1.1	15
434	Non-Viral Methods For Generating Integration-Free, Induced Pluripotent Stem Cells. Current Stem Cell Research and Therapy, 2015, 10, 153-158.	0.6	50
435	Induced Pluripotent Stem-Cell-Derived Neural Cell Types in Treatment of Stroke. , 2015, , 147-172.		1
436	Role of Zscan4 in secondary murine iPSC derivation mediated by protein extracts of ESC or iPSC. Biomaterials, 2015, 59, 102-115.	5.7	6

#	Article	IF	CITATIONS
437	Interspecific <i>in vitro</i> assay for the chimera-forming ability of human pluripotent stem cells. Development (Cambridge), 2015, 142, 3222-30.	1.2	53
438	Generation of Viable Mice from Induced Pluripotent Stem Cells (iPSCs) Through Tetraploid Complementation. Methods in Molecular Biology, 2015, 1330, 125-132.	0.4	1
439	"Mouse Clone Model―for evaluating the immunogenicity and tumorigenicity of pluripotent stem cells. Stem Cell Research and Therapy, 2015, 6, 255.	2.4	1
440	Computational Biology Methods for Characterization of Pluripotent Cells. Methods in Molecular Biology, 2015, 1357, 195-220.	0.4	1
441	Can modern biology interpret the mystery of the birth of Christ?. Journal of Maternal-Fetal and Neonatal Medicine, 2015, 28, 240-244.	0.7	8
442	Tetraploid complementation proves pluripotency of induced pluripotent stem cells derived from adipose tissue. Cell Proliferation, 2015, 48, 39-46.	2.4	8
443	Inducing pluripotency <i>in vitro</i> : recent advances and highlights in induced pluripotent stem cells generation and pluripotency reprogramming. Cell Proliferation, 2015, 48, 140-156.	2.4	34
444	The ethics of stem cells revisited. Advanced Drug Delivery Reviews, 2015, 82-83, 176-180.	6.6	50
445	Generation of Fully Pluripotent Female Murine-Induced Pluripotent Stem Cells1. Biology of Reproduction, 2015, 92, 123.	1.2	8
446	Generation of fertile offspring from Kitw/Kitwv mice through differentiation of gene corrected nuclear transfer embryonic stem cells. Cell Research, 2015, 25, 851-863.	5.7	17
448	Direct Cardiac Reprogramming. Circulation Research, 2015, 116, 1378-1391.	2.0	118
449	Generation of an LncRNA Gtl2-GFP Reporter for Rapid Assessment of Pluripotency in Mouse Induced Pluripotent Stem Cells. Journal of Genetics and Genomics, 2015, 42, 125-128.	1.7	6
450	Present and future challenges of induced pluripotent stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140367.	1.8	118
451	Research of methods to detect genomic mutations induced by CRISPR/Cas systems. Journal of Biotechnology, 2015, 214, 128-132.	1.9	17
452	Progress in understanding epigenetic remodeling during induced pluripotency. Science Bulletin, 2015, 60, 1713-1721.	4.3	4
453	Co-participation of paternal and maternal genomes before the blastocyst stage is not required for full-term development of mouse embryos: FigureÂ1. Journal of Molecular Cell Biology, 2015, 7, 486-488.	1.5	4
454	Induction of pluripotency in human umbilical cord mesenchymal stem cells in feeder layer-free condition. Tissue and Cell, 2015, 47, 575-582.	1.0	6
455	A developmental framework for induced pluripotency. Development (Cambridge), 2015, 142, 3274-3285.	1.2	94

#	Article	IF	CITATIONS
456	Induced Pluripotency and Epigenetic Reprogramming. Cold Spring Harbor Perspectives in Biology, 2015, 7, a019448.	2.3	84
457	Human stem cell-based disease modeling: prospects and challenges. Current Opinion in Cell Biology, 2015, 37, 84-90.	2.6	31
458	Understanding the Molecular Basis of Heterogeneity in Induced Pluripotent Stem Cells. Cellular Reprogramming, 2015, 17, 427-440.	0.5	2
459	Sweat gland regeneration after burn injury: is stem cell therapy a new hope?. Cytotherapy, 2015, 17, 526-535.	0.3	33
460	Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays, 2015, 37, 52-59.	1.2	19
461	Clinically relevant aspects of stem cell technologies: current state of play. ANZ Journal of Surgery, 2015, 85, 615-619.	0.3	2
462	The Combination of Tet1 with Oct4 Generates High-Quality Mouse-Induced Pluripotent Stem Cells. Stem Cells, 2015, 33, 686-698.	1.4	39
463	Nuclear Reprogramming. Methods in Molecular Biology, 2015, , .	0.4	4
464	A review of Rett syndrome (RTT) with induced pluripotent stem cells. Stem Cell Investigation, 2016, 3, 52-52.	1.3	15
465	Pluripotent Stem Cells: Current Understanding and Future Directions. Stem Cells International, 2016, 2016, 1-20.	1.2	111
466	Neural Engineering. , 2016, , .		8
467	Cellâ€based strategies for vascular regeneration. Journal of Biomedical Materials Research - Part A, 2016, 104, 1297-1314.	2.1	19
468	Calcineurin-NFAT Signaling Controls Somatic Cell Reprogramming in a Stage-Dependent Manner. Journal of Cellular Physiology, 2016, 231, 1151-1162.	2.0	10
469	Stem Cells, Bioengineering, and 3-D Scaffolds for Nervous System Repair and Regeneration. , 2016, , 25-81.		7
470	10th anniversary of iPS cells: the challenges that lie ahead. Journal of Biochemistry, 2016, 160, 121-129.	0.9	28
471	Stem cell toxicology: a powerful tool to assess pollution effects on human health. National Science Review, 2016, 3, 430-450.	4.6	22
472	Derivation and application of pluripotent stem cells for regenerative medicine. Science China Life Sciences, 2016, 59, 576-583.	2.3	3
473	Application of biomaterials to in vitro pluripotent stem cell disease modeling of the skeletal system. Journal of Materials Chemistry B, 2016, 4, 3482-3489.	2.9	7

	C	ITATION REPORT	
#	Article	IF	CITATIONS
474	Induced Pluripotent Stem Cells Meet Genome Editing. Cell Stem Cell, 2016, 18, 573-586.	5.2	398
475	Trends and Prospects of Stem Cell Research in China. Chinese Medical Sciences Journal, 2016, 31, 116-120.	0.2	0
476	Looking to the future following 10 years of induced pluripotent stem cell technologies. Nature Protocols, 2016, 11, 1579-1585.	5.5	31
477	DNA methylation dynamics: identification and functional annotation. Briefings in Functional Genomics, 2016, 15, elw029.	1.3	13
479	Molecular Obstacles to Clinical Translation of iPSCs. Cell Stem Cell, 2016, 19, 298-309.	5.2	116
480	In Vivo Generation of Neural Stem Cells Through Teratoma Formation. Stem Cells and Development, 2016, 25, 1311-1317.	1.1	10
481	p18 inhibits reprogramming through inactivation of Cdk4/6. Scientific Reports, 2016, 6, 31085.	1.6	8
482	The Genetic Programs Regulating Embryonic Lung Development and Induced Pluripotent Stem Cell Differentiation. , 0, , 1-21.		3
484	Will stem cells bring hope to pathological skin scar treatment?. Cytotherapy, 2016, 18, 943-956.	0.3	26
485	Genome-wide gene expression analyses reveal unique cellular characteristics related to the amenability of HPC/HSCs into high-quality induced pluripotent stem cells. Stem Cell Research and Therapy, 2016, 7, 40.	2.4	4
486	A decade of transcription factor-mediated reprogramming to pluripotency. Nature Reviews Molecular Cell Biology, 2016, 17, 183-193.	16.1	684
487	Patient-Derived Induced Pluripotent Stem Cells Provide a Regenerative Medicine Platform for Duchenne Muscular Dystrophy Heart Failure. Pancreatic Islet Biology, 2016, , 129-155.	0.1	0
488	Complete Meiosis from Embryonic Stem Cell-Derived Germ Cells InÂVitro. Cell Stem Cell, 2016, 18, 330-340.	5.2	327
489	Cell-of-Origin-Specific 3D Genome Structure Acquired during Somatic Cell Reprogramming. Cell Ster Cell, 2016, 18, 597-610.	5.2	187
490	Induced Pluripotent Stem Cells Can Effectively Differentiate into Multiple Functional Lymphocyte Lineages In Vivo with Negligible Bias. Stem Cells and Development, 2016, 25, 462-471.	1.1	8
491	Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabolic disorder. Science 2016, 351, 397-400.	, 6.0	1,042
495	Some Ethical Concerns About Human Induced Pluripotent Stem Cells. Science and Engineering Ethics 2016, 22, 1277-1284.	5, 1.7	46
496	Nuclear Reprogramming by Defined Factors: Quantity Versus Quality. Trends in Cell Biology, 2016, 2065-75.	6, 3.6	22

#	Article	IF	CITATIONS
497	Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?. Molecular Neurobiology, 2017, 54, 1858-1873.	1.9	13
498	China's landscape in regenerative medicine. Biomaterials, 2017, 124, 78-94.	5.7	18
499	A Pathway to Personalizing Therapy for Metastases Using Liver-on-a-Chip Platforms. Stem Cell Reviews and Reports, 2017, 13, 364-380.	5.6	22
500	Lineage-Specific Differentiation Is Influenced by State of Human Pluripotency. Cell Reports, 2017, 19, 20-35.	2.9	53
501	Fatty acid synthesis is critical for stem cell pluripotency via promoting mitochondrial fission. EMBO Journal, 2017, 36, 1330-1347.	3.5	110
502	Derivation of Transgene-Free Rat Induced Pluripotent Stem Cells Approximating the Quality of Embryonic Stem Cells. Stem Cells Translational Medicine, 2017, 6, 340-351.	1.6	5
503	Reprogramming Mouse Fibroblasts with <i>piggyBac</i> Transposons. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot092627.	0.2	7
504	Rat embryonic stem cells produce fertile offspring through tetraploid complementation. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 11974-11979.	3.3	15
505	Quality control towards the application of induced pluripotent stem cells. Current Opinion in Genetics and Development, 2017, 46, 164-169.	1.5	4
506	Replacing reprogramming factors with antibodies selected from combinatorial antibody libraries. Nature Biotechnology, 2017, 35, 960-968.	9.4	34
507	Epigenetic foundations of pluripotent stem cells that recapitulate in vivo pluripotency. Laboratory Investigation, 2017, 97, 1133-1141.	1.7	33
508	Chemical reprogramming and transdifferentiation. Current Opinion in Genetics and Development, 2017, 46, 104-113.	1.5	75
509	Engineering-derived approaches for iPSC preparation, expansion, differentiation and applications. Biofabrication, 2017, 9, 032001.	3.7	26
510	Molecular and functional resemblance of differentiated cells derived from isogenic human iPSCs and SCNT-derived ESCs. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E11111-E11120.	3.3	68
511	Integrated analysis of hematopoietic differentiation outcomes and molecular characterization reveals unbiased differentiation capacity and minor transcriptional memory in HPC/HSC-iPSCs. Stem Cell Research and Therapy, 2017, 8, 13.	2.4	5
513	Paving the road for biomedicine: genome editing and stem cells in primates. National Science Review, 2017, 4, 543-549.	4.6	8
514	CRISPR Genome Engineering for Human Pluripotent Stem Cell Research. Theranostics, 2017, 7, 4445-4469.	4.6	22
515	Mesenchymal Stem/Stromal Cells Derived From Pluripotent Stem Cells. , 2017, , 103-119.		1

#	Article	IF	CITATIONS
516	Strategies for retinal cell generation from human pluripotent stem cells. Stem Cell Investigation, 2017, 4, 65-65.	1.3	13
517	TGFβ signaling hyperactivation-induced tumorigenicity during the derivation of neural progenitors from mouse ESCs. Journal of Molecular Cell Biology, 2018, 10, 216-228.	1.5	8
518	Stem Cells: Cellular and Extracellular Requirements for Generation and Use. , 2018, , 71-88.		0
519	Applying iPSCs for Preserving Endangered Species and Elucidating the Evolution of Mammalian Sex Determination. BioEssays, 2018, 40, e1700152.	1.2	5
520	Manipulating cell fate while confronting reproducibility concerns. Biochemical Pharmacology, 2018, 151, 144-156.	2.0	6
521	miR-208a-3p Suppresses Osteoblast Differentiation and Inhibits Bone Formation by Targeting ACVR1. Molecular Therapy - Nucleic Acids, 2018, 11, 323-336.	2.3	36
522	Stem-Cell Therapy Advances in China. Human Gene Therapy, 2018, 29, 188-196.	1.4	11
523	What's hot, what's new: Report from the American Transplant Congress 2017. American Journal of Transplantation, 2018, 18, 308-320.	2.6	1
524	Characterization of companion animal pluripotent stem cells. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2018, 93, 137-148.	1.1	16
525	Derivation of hypermethylated pluripotent embryonic stem cells with high potency. Cell Research, 2018, 28, 22-34.	5.7	43
526	Mitochondrially produced ATP affects stem cell pluripotency <i>via</i> Actl6aâ€mediated histone acetylation. FASEB Journal, 2018, 32, 1891-1902.	0.2	17
527	Pluripotent stem cells secrete Activin A to improve theirÂepiblast competency after injection into recipient embryos. Protein and Cell, 2018, 9, 717-728.	4.8	9
528	What is a stem cell?. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e323.	5.9	27
529	Generation of Bimaternal and Bipaternal Mice from Hypomethylated Haploid ESCs with Imprinting Region Deletions. Cell Stem Cell, 2018, 23, 665-676.e4.	5.2	56
530	Comparative genomic analysis of embryonic, lineage-converted, and stem cell-derived motor neurons. Development (Cambridge), 2018, 145, .	1.2	10
531	The development of methods for primary mast cells in vitro and ex vivo: An historical review. Experimental Cell Research, 2018, 369, 179-186.	1.2	8
532	Recent review of the effect of nanomaterials on stem cells. RSC Advances, 2018, 8, 17656-17676.	1.7	37
533	The miR-590/Acvr2a/Terf1 Axis Regulates Telomere Elongation and Pluripotency of Mouse iPSCs. Stem Cell Reports, 2018, 11, 88-101.	2.3	8

#	ARTICLE	IF	CITATIONS
534	Comparative study of periodontal differentiation propensity of induced pluripotent stem cells from different tissue origins. Journal of Periodontology, 2018, 89, 1230-1240.	1.7	6
535	MicroRNA Regulation Along the Course of Cellular Reprogramming to Pluripotency. Current Molecular Medicine, 2018, 18, 58-64.	0.6	2
536	Dynamics of Telomere Rejuvenation during Chemical Induction to Pluripotent Stem Cells. Stem Cell Reports, 2018, 11, 70-87.	2.3	45
537	Differentiation of Human Induced Pluripotent Stem Cells to Purkinje Neurons. , 2018, , 247-258.		0
538	Role of human oocyte-enriched factors in somatic cell reprograming. Mechanisms of Ageing and Development, 2018, 175, 88-99.	2.2	4
539	Inhibin αâ€subunit inhibits BMP9â€induced osteogenic differentiation through blocking BMP/Smad signal and activating NFâ€₽̂B signal in mesenchymal stem cells. Journal of Cellular Biochemistry, 2018, 119, 8271-8281.	1.2	5
540	Rapid generation of gene-targeted EPS-derived mouse models through tetraploid complementation. Protein and Cell, 2019, 10, 20-30.	4.8	16
542	Reprogramming the Epigenome With Vitamin C. Frontiers in Cell and Developmental Biology, 2019, 7, 128.	1.8	86
543	Construction of nano-scale cellular environments by coating a multilayer nanofilm on the surface of human induced pluripotent stem cells. Nanoscale, 2019, 11, 13541-13551.	2.8	6
544	Receptor interacting protein kinase 3 (RIP3) regulates iPSCs generation through modulating cell cycle progression genes. Stem Cell Research, 2019, 35, 101387.	0.3	9
545	Stem Cell Therapies in Kidney Diseases: Progress and Challenges. International Journal of Molecular Sciences, 2019, 20, 2790.	1.8	55
546	Defining Reprogramming Checkpoints from Single-Cell Analyses of Induced Pluripotency. Cell Reports, 2019, 27, 1726-1741.e5.	2.9	44
547	Seminiferous tubule molecular imaging for evaluation of male fertility: Seeing is believing. Tissue and Cell, 2019, 58, 24-32.	1.0	4
548	From embryonic stem cells to induced pluripotent stem cells—Ready for clinical therapy?. Clinical Transplantation, 2019, 33, e13573.	0.8	12
549	Conversion of Stem Cells to Cancer Stem Cells: Undercurrent of Cancer Initiation. Cancers, 2019, 11, 345.	1.7	136
550	Effects of reprogramming on genomic imprinting and the application of pluripotent stem cells. Stem Cell Research, 2019, 41, 101655.	0.3	8
551	Research and therapy with induced pluripotent stem cells (iPSCs): social, legal, and ethical considerations. Stem Cell Research and Therapy, 2019, 10, 341.	2.4	130
552	Derivation of Haploid Trophoblast Stem Cells via Conversion InÂVitro. IScience, 2019, 11, 508-518.	1.9	24

#	Article	IF	CITATIONS
553	Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development. Physiological Reviews, 2019, 99, 79-114.	13.1	230
554	Prospects for the Use of Induced Pluripotent Stem Cells in Animal Conservation and Environmental Protection. Stem Cells Translational Medicine, 2019, 8, 7-13.	1.6	45
555	Mitochondrial Dynamics Is Critical for the Full Pluripotency and Embryonic Developmental Potential of Pluripotent Stem Cells. Cell Metabolism, 2019, 29, 979-992.e4.	7.2	72
556	Functions of p53 in pluripotent stem cells. Protein and Cell, 2020, 11, 71-78.	4.8	50
557	Essential Current Concepts in Stem Cell Biology. Learning Materials in Biosciences, 2020, , .	0.2	2
558	Domesticated cynomolgus monkey embryonic stem cells allow the generation of neonatal interspecies chimeric pigs. Protein and Cell, 2020, 11, 97-107.	4.8	33
559	Mthfd2 Modulates Mitochondrial Function and DNA Repair to Maintain the Pluripotency of Mouse Stem Cells. Stem Cell Reports, 2020, 15, 529-545.	2.3	25
560	Transient exposure to miRâ \in 203 enhances the differentiation capacity of established pluripotent stem cells. EMBO Journal, 2020, 39, e104324.	3.5	16
561	Integrated Analyses of Mouse Stem Cell Transcriptomes Provide Clues for Stem Cell Maintenance and Transdifferentiation. Frontiers in Genetics, 2020, 11, 563798.	1.1	3
562	Pluripotent Stem Cells for Transgenesis in the Rabbit: A Utopia?. Applied Sciences (Switzerland), 2020, 10, 8861.	1.3	0
563	Reproductive biotechnology and critically endangered species: Merging inÂvitro gametogenesis with inner cell mass transfer. Theriogenology, 2020, 155, 176-184.	0.9	7
564	Overcoming Intrinsic H3K27me3 Imprinting Barriers Improves Post-implantation Development after Somatic Cell Nuclear Transfer. Cell Stem Cell, 2020, 27, 315-325.e5.	5.2	45
565	Small Molecules that Promote Self-Renewal of Stem Cells and Somatic Cell Reprogramming. Stem Cell Reviews and Reports, 2020, 16, 511-523.	1.7	27
566	Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 2020, 8, 83.	2.0	136
567	Endoplasmic Reticulum Stress Activation in Alport Syndrome Varies Between Genotype and Cell Type. Frontiers in Genetics, 2020, 11, 36.	1.1	4
568	Long noncoding RNA <i>lnc-NAP</i> sponges mmu-miR-139-5p to modulate <i>Nanog</i> functions in mouse ESCs and embryos. RNA Biology, 2021, 18, 875-887.	1.5	6
569	Great Expectations: Induced pluripotent stem cell technologies in neurodevelopmental impairments. International Journal of Medical Sciences, 2021, 18, 459-473.	1.1	7
570	Advances in Female Germ Cell Induction from Pluripotent Stem Cells. Stem Cells International, 2021, 2021, 1-13.	1.2	7

#	Article	IF	CITATIONS
571	Induced pluripotent stem cell derivation from myoblasts. , 2021, , 37-55.		3
572	Induced pluripotent stem cells in species conservation: advantages, applications, and the road ahead. , 2021, , 221-245.		2
573	Equine induced pluripotent stem cells. , 2021, , 59-75.		0
574	Genome engineering technologies in rabbits. Journal of Biomedical Research, 2021, 35, 135.	0.7	7
575	Induced pluripotent stem cells versus embryonic stem cells. , 2021, , 289-307.		0
576	Stem Cells and Gene Therapy in Progressive Hearing Loss: the State of the Art. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 95-105.	0.9	15
577	Transcriptome analysis of the transdifferentiation of canine BMSCs into insulin producing cells. BMC Genomics, 2021, 22, 134.	1.2	3
578	Introduction of Mouse Embryonic Fibroblasts into Early Embryos Causes Reprogramming and (Con)fusion. Cells, 2021, 10, 772.	1.8	4
579	Assisted Reproductive Techniques and Genetic Manipulation in the Common Marmoset. ILAR Journal, 2020, 61, 286-303.	1.8	12
580	Genomeâ€wide hypermethylation is closely associated with abnormal expression of genes involved in neural development in induced pluripotent stem cells derived from a Down syndrome mouse model. Cell Biology International, 2021, 45, 1383-1392.	1.4	0
581	China's Stem Cell Research and Knowledge Levels of Medical Practitioners and Students. Stem Cells International, 2021, 2021, 1-8.	1.2	2
582	Aggregation of Leopardus geoffroyi hybrid embryos with domestic cat tetraploid blastomeres. Reproduction, 2021, 161, 539-548.	1.1	3
583	Histone H2B ubiquitination mediated chromatin relaxation is essential for the induction of somatic cell reprogramming. Cell Proliferation, 2021, 54, e13080.	2.4	5
584	Assisted Reproductive Technology in Neotropical Deer: A Model Approach to Preserving Genetic Diversity. Animals, 2021, 11, 1961.	1.0	5
585	Elevated retrotransposon activity and genomic instability in primed pluripotent stem cells. Genome Biology, 2021, 22, 201.	3.8	11
586	Noninvasive System for Tracking NaÃ⁻ve Induced Pluripotent Stem Cells During Reprogramming. IFMBE Proceedings, 2022, , 433-443.	0.2	0
587	The rise of developmental biology in China. Development Growth and Differentiation, 2022, 64, 106-115.	0.6	3
588	Perspective: Why and How Ubiquitously Distributed, Vascular-Associated, Pluripotent Stem Cells in the Adult Body (vaPS Cells) Are the Next Generation of Medicine, Cells, 2021, 10, 2303.	1.8	8

#	Article	IF	CITATIONS
590	Adult Stromal (Skeletal, Mesenchymal) Stem Cells: Advances Towards Clinical Applications. Pancreatic Islet Biology, 2014, , 359-373.	0.1	4
591	Generating Chimeric Mice from Embryonic Stem Cells via Vial Coculturing or Hypertonic Microinjection. Methods in Molecular Biology, 2014, 1194, 77-111.	0.4	2
592	Assessing Reprogramming by Chimera Formation and Tetraploid Complementation. Methods in Molecular Biology, 2015, 1222, 247-254.	0.4	1
593	Mouse Embryos' Fusion for the Tetraploid Complementation Assay. Methods in Molecular Biology, 2015, 1313, 41-59.	0.4	9
594	Generation of Avian Induced Pluripotent Stem Cells. Methods in Molecular Biology, 2015, 1330, 89-99.	0.4	4
595	Generation and Characterization of Induced Pluripotent Stem Cells from Pig. Pancreatic Islet Biology, 2011, , 413-425.	0.1	1
596	Industrial Applications of Stem Cells. Pancreatic Islet Biology, 2011, , 91-102.	0.1	2
597	Cell Therapy for Neurodegenerative Disorders. , 2013, , 1-22.		1
599	Interspecies Mixtures and the Status of Humanity. , 2011, , 129-155.		1
602	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983.	3.9	99
602 603	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261.	3.9 2.6	99 87
602 603 604	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261. Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, .	3.9 2.6 0.2	99 87 4
602 603 604 605	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261. Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, . Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos. PLoS ONE, 2012, 7, e51778.	3.9 2.6 0.2 1.1	99 87 4 65
 602 603 604 605 606 	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261. Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, . Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos. PLoS ONE, 2012, 7, e51778. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues. PLoS ONE, 2013, 8, e65963.	3.9 2.6 0.2 1.1 1.1	 99 87 4 65 58
 602 603 604 605 606 607 	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261. Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, . Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos. PLoS ONE, 2012, 7, e51778. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues. PLoS ONE, 2013, 8, e65963. Comparative Study of Efficacy of Dopaminergic Neuron Differentiation between Embryonic Stem Cell and Protein-Based Induced Pluripotent Stem Cell. PLoS ONE, 2014, 9, e85736.	 3.9 2.6 0.2 1.1 1.1 1.1 	 99 87 4 65 58 14
 602 603 604 605 606 607 608 	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261. Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, . Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos. PLoS ONE, 2012, 7, e51778. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues. PLoS ONE, 2013, 8, e65963. Comparative Study of Efficacy of Dopaminergic Neuron Differentiation between Embryonic Stem Cell and Protein-Based Induced Pluripotent Stem Cell. PLoS ONE, 2014, 9, e85736. Completely ES Cell-Derived Mice Produced by Tetraploid Complementation Using Inner Cell Mass (ICM) Deficient Blastocysts. PLoS ONE, 2014, 9, e94730.	 3.9 2.6 0.2 1.1 1.1 1.1 	 99 87 4 65 58 14 24
 602 603 604 605 606 607 608 609 	Portrait of an oocyte: our obscure origin. Journal of Clinical Investigation, 2010, 120, 973-983. LYN, a Key Gene From Bioinformatics Analysis, Contributes to Development and Progression of Esophageal Adenocarcinoma. Medical Science Monitor Basic Research, 2015, 21, 253-261. Resolving clinical hurdles for autologous pluripotent stem cell-based therapies. OA Stem Cells, 2013, 1, . Porcine Induced Pluripotent Stem Cells Require LIF and Maintain Their Developmental Potential in Early Stage of Embryos. PLoS ONE, 2012, 7, e51778. Induced Pluripotent Stem Cell-Derived Cardiac Progenitors Differentiate to Cardiomyocytes and Form Biosynthetic Tissues. PLoS ONE, 2013, 8, e65963. Comparative Study of Efficacy of Dopaminergic Neuron Differentiation between Embryonic Stem Cell and Protein-Based Induced Pluripotent Stem Cell. PLoS ONE, 2014, 9, e85736. Completely ES Cell-Derived Mice Produced by Tetraploid Complementation Using Inner Cell Mass (ICM) Deficient Blastocysts. PLoS ONE, 2014, 9, e94730. An Improved System for Generation of Diploid Cloned Porcine Embryos Using Induced Pluripotent Stem Cells SONE, 2016, 11, e0160289.	 3.9 2.6 0.2 1.1 1.1 1.1 1.1 1.1 	 99 87 4 65 58 14 24 4

CITAT	DED	ОРТ
CHAD	NEP	UKI

#	Article	IF	CITATIONS
611	Role of Jnk1 in development of neural precursors revealed by iPSC modeling. Oncotarget, 2016, 7, 60919-60928.	0.8	5
612	High throughput sequencing identifies an imprinted gene, Grb10, associated with the pluripotency state in nuclear transfer embryonic stem cells. Oncotarget, 2017, 8, 47344-47355.	0.8	5
613	The Bioethics of Human Pluripotent Stem Cells: Will Induced Pluripotent Stem Cells End the Debate?. Open Stem Cell Journal, 2010, 2, 18-24.	2.0	7
614	Toward using iPS cells to treat spinal cord injury: Their safety and therapeutic efficacy. Inflammation and Regeneration, 2011, 31, 2-9.	1.5	1
615	"Epigenetic Memory―Phenomenon in Induced Pluripotent Stem Cells. Acta Naturae, 2013, 5, 15-21.	1.7	82
616	Induced pluripotent stem (iPS) cells: an up-to-the-minute review. F1000 Biology Reports, 2009, 1, 84.	4.0	10
619	Reprogramming mouse ear mesenchymal stem cells (EMSC) expressing the Dlk1-Dio3 imprinted gene cluster. Stem Cell Discovery, 2013, 03, 64-71.	0.5	1
620	Germline competence of mouse ES and iPS cell lines: Chimera technologies and genetic background. World Journal of Stem Cells, 2009, 1, 22.	1.3	16
621	Reprogramming somatic cells by fusion with embryonic stem cells does not cause silencing of theDlk1-Dio3region in mice. World Journal of Stem Cells, 2012, 4, 87.	1.3	8
622	Induced pluripotent stem cells: An update. International Journal of Blood Transfusion and Immunohematology, 2015, 5, 6.	0.4	1
623	A New Induction Method for the Controlled Differentiation of Human-Induced Pluripotent Stem Cells Using Frozen Sections. Cells, 2021, 10, 2827.	1.8	2
624	Stem-cell induction made simpler. Nature, 0, , .	13.7	0
625	A Quantity Study of Marital Satisfaction, Romantic Jealousy and Female's Aggression (Psychological) Tj ETQc	0 0 0 rgB]	[/Qverlock 10
626	Advances of Nanotechnology in the Stem Cells Research and Development. Nano Biomedicine and Engineering, 2010, 2, .	0.3	2
627	Induced pluripotent stem cells: the long-expected revolution in medical science and practice?. Journal of Nucleic Acids Investigation, 2010, 1, 1.	0.5	1
629	Generation of Induced Pluripotent Stem Cells From Porcine Fibroblasts*. Progress in Biochemistry and Biophysics, 2010, 37, 607-612.	0.3	0
630	Induced Pluripotent Stem Cells: On the Road Toward Clinical Applications. Pancreatic Islet Biology, 2011, , 427-438.	0.1	1
635_	Embryos Grown in Culture Deserve the Same Moral Status as Embryos After Implantation. , 2011, , 55-75.		0

#	Article	IF	CITATIONS
636	Breakthrough in Stem Cell Research? The Reprogramming of Somatic Cells to Pluripotent Stem Cells: Overview and Outlook. , 2011, , 7-24.		0
637	Current Status of Induced Pluripotent Stem Cells. , 2011, , 39-52.		0
638	The Progress of Induced Pluripotent Stem Cells (iPSCs) for Research and Applications. Progress in Biochemistry and Biophysics, 2011, 38, 101-112.	0.3	1
639	Embryonic Stem Cells and the Capture of Pluripotency. , 0, , .		0
642	Pluripotent stem cells and reprogramming in human and farm animals. Acta Agriculturae Slovenica, 2012, 100, .	0.2	0
643	Transdifferentiation in the Nervous System. , 2012, , 245-264.		0
644	Updated Information on Stem Cells for the Neonatologist. , 2012, , 1-13.		0
645	Cellular Reprogramming and Fate Conversion. , 2012, , 211-225.		0
646	Generation of Patient Specific Stem Cells: A Human Model System. , 0, , .		1
647	Technical and Bioethical Challenges Associated with using Stem Cells for Research and Therapy. , 2012, , 154-188.		0
648	Commercial Opportunities for Induced Pluripotent Stem Cells. , 2013, , 177-199.		0
649	Mechanisms of Somatic Cell Reprogramming. Pancreatic Islet Biology, 2013, , 301-316.	0.1	0
650	Bioreactor Expansion of Pluripotent Stem Cells. , 2013, , 129-138.		0
651	What's New in Stem Cell Research or is it Possible to Get a New Organism from Skin Cells?. Visnik Nacional Noi Academii Nauk Ukrai Ni, 2013, , 52-58.	0.0	0
652	Immunogenicity of Stem Cells. Advances in Medical Technologies and Clinical Practice Book Series, 2013, , 96-111.	0.3	0
653	Human-Induced Pluripotent Stem Cells, Embryonic Stem Cells, and Their Cardiomyocyte Derivatives: An Overview. , 2013, , 321-345.		0
654	Bioinformatics Studies on Induced Pluripotent Stem Cell. Current Bioinformatics, 2013, 8, 80-86.	0.7	0
655	Potential of Stem Cell-Derived Motor Neurons for Modeling Amyotrophic Lateral Sclerosis (ALS). Research and Perspectives in Neurosciences, 2013, , 75-91.	0.4	0

	Ст	CITATION REPORT		
#	Article	IF	CITATIONS	
656	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2013, , 505-528.		0	
657	Stem cells and receptors connected with C-proteins – in the vanguard of science again. Ukrainian Biochemical Journal, 2013, 85, 96-106.	0.1	1	
658	Induced Cardiomyocytes. , 2013, , 258-275.		0	
660	Large Animal Induced Pluripotent Stem Cells as Models of Human Diseases. Pancreatic Islet Biology, 2014, , 49-68.	0.1	0	
661	Developmental Potential of Mouse iPSC. Springer Theses, 2014, , 75-89.	0.0	0	
662	Pluripotency of iPSC and the Underlining Mechanism. Springer Theses, 2014, , 53-74.	0.0	0	
663	The future of transgenic farm animal production with emphasis on pigs CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 0, , 1-16.	0.6	0	
664	Epigenetic of Somatic Cells Reprogramming. Cancer Genetics and Epigenetics, 0, , .	0.0	0	
665	Induced pluripotent stem cells are induced pluripotent stem cell-like cells. Journal of Biomedical Research, 2015, 29, 1.	0.7	10	
666	A Place to Call Home: Bioengineering Pluripotential Stem Cell Cultures. AIMS Bioengineering, 2015, 2, 15-28.	0.6	0	
667	Induced Pluripotent Stem Cell, a Rising Star in Regenerative Medicine. Translational Medicine Research, 2015, , 85-109.	0.0	0	
669	Stem Cells and Organ Transplantation: Resetting Our Biological Clocks. Science and Fiction, 2016, , 429-466.	0.0	0	
670	Pluripotent Stem Cells for Kidney Diseases. Pancreatic Islet Biology, 2016, , 69-84.	0.1	0	
671	Regenerative Chimerism Bioengineered Through Stem Cell Reprogramming. , 2016, , 41-64.		0	
672	Induced Pluripotent Stem Cells (iPSCs) and Nuclear Reprogramming. , 2017, , 71-91.		0	
674	The prospect of pluripotent stem cells for diabetes mellitus treatment. World Journal of Personalized Medicine, 2017, 1, 13-17.	0.3	2	
675	Derivation of Haploid Trophoblast Stem Cells <1>Via 1 Conversion <1>In Vitro 1 . SSRN Electronic Journal, 0, , .	0.4	0	
678	Production and development of porcine tetraploid parthenogenetic embryos. Journal of Animal Science and Technology, 2019, 61, 225-233.	0.8	1	

#	Article	IF	CITATIONS
680	Effect of exogenous transcription factors integration sites on safety and pluripotency of induced pluripotent stem cells. Balkan Journal of Medical Genetics, 2020, 23, 5-13.	0.5	0
681	Somatic Reprogramming—Above and Beyond Pluripotency. Cells, 2021, 10, 2888.	1.8	11
682	Epigenetics of Somatic Cell Reprogramming. Learning Materials in Biosciences, 2020, , 137-157.	0.2	0
683	L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming. Acta Naturae, 2020, 12, 5-14.	1.7	1
684	Reconstruction of Alzheimer's Disease Cell Model In Vitro via Extracted Peripheral Blood Molecular Cells from a Sporadic Patient. Stem Cells International, 2020, 2020, 1-10.	1.2	2
685	Human Induced Pluripotent Stem (hiPS) Cells: Generation and Applications. Learning Materials in Biosciences, 2020, , 57-71.	0.2	1
686	Induced Pluripotent Stem Cells. Learning Materials in Biosciences, 2020, , 123-136.	0.2	1
687	Intravenously Injected Pluripotent Stem Cell–derived Cells Form Fetomaternal Vasculature and Prevent Miscarriage in Mouse. Cell Transplantation, 2020, 29, 096368972097045.	1.2	1
688	Induced Pluripotent Stem Cells: Problems and Advantages when Applying them in Regenerative Medicine. Acta Naturae, 2010, 2, 18-28.	1.7	81
689	Epigenetics of pluripotent cells. Acta Naturae, 2012, 4, 28-46.	1.7	7
691	Current protocols in the generation of pluripotent stem cells: theoretical, methodological and clinical considerations. Stem Cells and Cloning: Advances and Applications, 2009, 3, 13-27.	2.3	4
692	"Epigenetic memory" phenomenon in induced pluripotent stem cells. Acta Naturae, 2013, 5, 15-21.	1.7	47
693	Generation of induced pluripotent stem cells with high efficiency from human embryonic renal cortical cells. American Journal of Translational Research (discontinued), 2016, 8, 4982-4993.	0.0	1
695	Rethinking nomenclature for interspecies cell fusions. Nature Reviews Genetics, 2022, , .	7.7	3
697	Uniconazole Augments Abscisic Acid in Promoting Somatic Embryogenesis in Cotton (Gossypium) Tj ETQq0 0 0 r	gBT_/Overl	oçk 10 Tf 50
698	Salidroside promotes the osteogenic and odontogenic differentiation of human dental pulp stem cells through the BMP signaling pathway. Experimental and Therapeutic Medicine, 2021, 23, 55.	0.8	5
709	Epigenetic regulation of cell fate transition: learning from early embryo development and somatic cell reprogramming. Biology of Reproduction, 2022, 107, 183-195.	1.2	7

714	Progress in modern reproductive biology research in China. Biology of Reproduction, 0, , .	1.2	0	

#	Article	IF	CITATIONS
715	Opportunities and impediments of human pluripotent stem cell-derived islets in the treatment of diabetes. Journal of Immunology and Regenerative Medicine, 2022, 17, 100064.	0.2	2
716	A sustainable mouse karyotype created by programmed chromosome fusion. Science, 2022, 377, 967-975.	6.0	10
717	Molecular Signature of Stem Cells Undergoing Cardiomyogenic Differentiation. , 2022, , 1-43.		0
719	Melatonin promotes the proliferation of primordial germ cellâ€like cells derived from porcine skinâ€derived stem cells: A mechanistic analysis. Journal of Pineal Research, 2022, 73, .	3.4	5
720	Creation and Continuation of Life: from Basic Science to Applied Science. Journal of Engineering Studies, 2020, 12, 457-462.	0.0	0
721	Common Ethical Considerations of Human-Induced Pluripotent Stem Cell Research. , 2022, , 1161-1177.		0
722	Molecular Signature of Stem Cells Undergoing Cardiomyogenic Differentiation. , 2022, , 725-767.		0
723	Fluorescent Reporters Distinguish Stem Cell Colony Subtypes During Somatic Cell Reprogramming. Cellular Reprogramming, 2022, 24, 353-362.	0.5	1
724	iPSC Technology: An Innovative Tool for Developing Clean Meat, Livestock, and Frozen Ark. Animals, 2022, 12, 3187.	1.0	1
725	An Optogenetic ontrolled Cell Reprogramming System for Driving Cell Fate and Lightâ€Responsive Chimeric Mice. Advanced Science, 2023, 10, .	5.6	2
726	Cloning in action: can embryo splitting, induced pluripotency and somatic cell nuclear transfer contribute to endangered species conservation?. Biological Reviews, 2023, 98, 1225-1249.	4.7	1
730	Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	17