Surface hydrophobin prevents immune recognition of a

Nature 460, 1117-1121 DOI: 10.1038/nature08264

Citation Report

#	Article	IF	Citations
4	The utility of antifungal agents for asthma. Current Opinion in Pulmonary Medicine, 2010, 16, 36-41.	1.2	8
6	Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood, 2010, 116, 5394-5402.	0.6	259
7	Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia, 2010, 24, 2032-2038.	3.3	67
8	Fungal Secondary Metabolites and Their Fundamental Roles in Human Mycoses. Current Fungal Infection Reports, 2010, 4, 256-265.	0.9	9
9	Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus. BMC Genomics, 2010, 11, 358.	1.2	61
10	Functional genomic profiling of <i>Aspergillus fumigatus</i> biofilm reveals enhanced production of the mycotoxin gliotoxin. Proteomics, 2010, 10, 3097-3107.	1.3	82
11	Enemy of the (immunosuppressed) state: an update on the pathogenesis of <i>Aspergillus fumigatus</i> infection. British Journal of Haematology, 2010, 150, 406-417.	1.2	111
13	Exit from dormancy in microbial organisms. Nature Reviews Microbiology, 2010, 8, 890-896.	13.6	172
14	Tasting the fungal cell wall. Cellular Microbiology, 2010, 12, 863-872.	1.1	280
15	Aspergillus fumigatus: contours of an opportunistic human pathogen. Cellular Microbiology, 2010, 12, 1535-1543.	1.1	157
16	Generation of IL-23 Producing Dendritic Cells (DCs) by Airborne Fungi Regulates Fungal Pathogenicity via the Induction of TH-17 Responses. PLoS ONE, 2010, 5, e12955.	1.1	105
17	Pulmonary aspergillosis: clinical presentation, diagnostic tests, management and complications. Current Opinion in Pulmonary Medicine, 2010, 16, 1.	1.2	77
18	The Aspergillus fumigatus <i>cspA</i> Gene Encoding a Repeat-Rich Cell Wall Protein Is Important for Normal Conidial Cell Wall Architecture and Interaction with Host Cells. Eukaryotic Cell, 2010, 9, 1403-1415.	3.4	58
19	Heptahelical Receptors GprC and GprD of <i>Aspergillus fumigatus</i> Are Essential Regulators of Colony Growth, Hyphal Morphogenesis, and Virulence. Applied and Environmental Microbiology, 2010, 76, 3989-3998.	1.4	46
20	Recognition of Yeast by Murine Macrophages Requires Mannan but Not Glucan. Eukaryotic Cell, 2010, 9, 1776-1787.	3.4	82
21	Local innate host response and filamentous fungi in patients with cystic fibrosis. Medical Mycology, 2010, 48, S22-S31.	0.3	15
22	TLR9 Is Actively Recruited to <i>Aspergillus</i> â€^ <i>fumigatus</i> Phagosomes and Requires the N-Terminal Proteolytic Cleavage Domain for Proper Intracellular Trafficking. Journal of Immunology, 2010, 185, 7614-7622.	0.4	66
23	Innate Recognition of Fungal Cell Walls. PLoS Pathogens, 2010, 6, e1000758.	2.1	153

TATION PEDO

#	Article	IF	CITATIONS
24	Intranasally delivered siRNA targeting PI3K/Akt/mTOR inflammatory pathways protects from aspergillosis. Mucosal Immunology, 2010, 3, 193-205.	2.7	64
25	Creating Surface Properties Using a Palette of Hydrophobins. Materials, 2010, 3, 4607-4625.	1.3	42
26	Fungal hydrophobins form a sheath preventing immune recognition of airborne conidia. Virulence, 2010, 1, 185-187.	1.8	30
27	Novel Cytosolic Allergens of <i>Aspergillus fumigatus</i> Identified from Germinating Conidia. Journal of Proteome Research, 2010, 9, 5530-5541.	1.8	35
28	Production of Extracellular Traps against Aspergillus fumigatus In Vitro and in Infected Lung Tissue Is Dependent on Invading Neutrophils and Influenced by Hydrophobin RodA. PLoS Pathogens, 2010, 6, e1000873.	2.1	362
29	Indoor fungal composition is geographically patterned and more diverse in temperate zones than in the tropics. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 13748-13753.	3.3	335
30	Yeast Cell Adhesion Molecules Have Functional Amyloid-Forming Sequences. Eukaryotic Cell, 2010, 9, 393-404.	3.4	145
31	Proteome Profiling and Functional Classification of Intracellular Proteins from Conidia of the Human-Pathogenic Mold <i>Aspergillus fumigatus</i> . Journal of Proteome Research, 2010, 9, 3427-3442.	1.8	86
32	Interaction of phagocytes with filamentous fungi. Current Opinion in Microbiology, 2010, 13, 409-415.	2.3	122
33	Multifunctional Hydrophobin: Toward Functional Coatings for Drug Nanoparticles. ACS Nano, 2010, 4, 1750-1758.	7.3	121
34	<i>Aspergillus fumigatus</i> LaeA-Mediated Phagocytosis Is Associated with a Decreased Hydrophobin Layer. Infection and Immunity, 2010, 78, 823-829.	1.0	60
35	High-frequency Triazole Resistance Found In Nonculturable Aspergillus fumigatus from Lungs of Patients with Chronic Fungal Disease. Clinical Infectious Diseases, 2011, 52, 1123-1129.	2.9	264
36	Thematic Issue: Immunity, Inflammation and Fungal Infections. Immunological Investigations, 2011, 40, 670-675.	1.0	0
37	Identification of a <i>Nosema bombycis</i> (Microsporidia) spore wall protein corresponding to spore phagocytosis. Parasitology, 2011, 138, 1102-1109.	0.7	33
38	Innate Immunity Against Moulds: Lessons Learned from Invertebrate Models. Immunological Investigations, 2011, 40, 676-691.	1.0	4
39	Immune response toAspergillus fumigatusin compromised hosts: from bedside to bench. Future Microbiology, 2011, 6, 73-83.	1.0	15
40	Role of NADPH oxidase in host defense against aspergillosis. Medical Mycology, 2011, 49, S144-S149.	0.3	14
41	Allergic Bronchopulmonary Aspergillosis and Related Allergic Syndromes. Seminars in Respiratory and Critical Care Medicine, 2011, 32, 682-692.	0.8	72

ARTICLE IF CITATIONS # Assembly of live micro-organisms on microstructured PDMS stamps by convective/capillary deposition 42 1.3 59 for AFM bio-experiments. Nanotechnology, 2011, 22, 395102. Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi. Genome Biology, 2011, 12, R7. Identification of lethal Aspergillus at early growth stages based on matrix-assisted laser 44 desorption/ionization time-of-flight mass spectrometry. Diagnostic Microbiology and Infectious 0.8 13 Disease, 2011, 70, 344-354. Innate Antifungal Immunity: The Key Role of Phagocytes. Annual Review of Immunology, 2011, 29, 1-21. Phagocyte responses towards Aspergillus fumigatus. International Journal of Medical Microbiology, 1.5 46 50 2011, 301, 436-444. Genetic susceptibility to Aspergillus fumigatus infections. International Journal of Medical Microbiology, 2011, 301, 445-452. 1.5 24 Molecular mechanism of Aspergillus fumigatus adherence to host constituents. Current Opinion in 48 2.3 88 Microbiology, 2011, 14, 375-379. Current perspectives on echinocandin class drugs. Future Microbiology, 2011, 6, 441-457. 49 1.0 Direct Observation of Phagocytosis and NET-formation by Neutrophils in Infected Lungs using 50 0.2 16 2-photon Microscopy. Journal of Visualized Experiments, 2011, , . Conidial Dihydroxynaphthalene Melanin of the Human Pathogenic Fungus Aspergillus fumigatus 1.5 133 Interferes with the Host Endocytosis Pathway. Frontiers in Microbiology, 2011, 2, 96. Fungal Surface and Innate Immune Recognition of Filamentous Fungi. Frontiers in Microbiology, 2011, 52 1.5 33 2, 248. The Danger Signal S100B Integrates Pathogen– and Danger–Sensing Pathways to Restrain 2.1 Inflammation. PLoS Pathogens, 2011, 7, e1001315. Role of Germination in Murine Airway CD8+ T-Cell Responses to Aspergillus Conidia. PLoS ONE, 2011, 6, 54 1.1 26 e18777. Automated Image Analysis of the Host-Pathogen Interaction between Phagocytes and Aspergillus fumigatus. PLoS ONE, 2011, 6, e19591. 1.1 The ice nucleation ability of one of the most abundant types of fungal spores found in the 1.9 105 56 atmosphere. Atmospheric Chemistry and Physics, 2011, 11, 1191-1201. Immune responses against Aspergillus fumigatus. Current Opinion in Infectious Diseases, 2011, 24, 101 315-322. Cross-protective TH1 immunity against Aspergillus fumigatus and Candida albicans. Blood, 2011, 117, 58 0.6 120 5881-5891. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by 1.1 sustained PI3K/Akt signalling. Cellular Microbiology, 2011, 13, 1130-1148.

#	Article	IF	CITATIONS
60	Two hydrophobins are involved in fungal spore coat rodlet layer assembly and each play distinct roles in surface interactions, development and pathogenesis in the entomopathogenic fungus, <i>Beauveria bassiana</i> . Molecular Microbiology, 2011, 80, 811-826.	1.2	211
61	Immunity to fungal infections. Nature Reviews Immunology, 2011, 11, 275-288.	10.6	1,136
62	Transcriptomic and Proteomic Profile of Aspergillus fumigatus on Exposure to Artemisinin. Mycopathologia, 2011, 172, 331-346.	1.3	54
63	High-yield production of hydrophobins RodA and RodB from Aspergillus fumigatus in Pichia pastoris. Applied Microbiology and Biotechnology, 2011, 90, 1923-1932.	1.7	20
64	Impact of <i>Aspergillus fumigatus</i> in allergic airway diseases. Clinical and Translational Allergy, 2011, 1, 4.	1.4	76
65	Diffusion of hydrophobin proteins in solution and interactions with a graphite surface. BMC Biophysics, 2011, 4, 9.	4.4	17
66	Lack of evidence for a role of hydrophobins in conferring surface hydrophobicity to conidia and hyphae of Botrytis cinerea. BMC Microbiology, 2011, 11, 10.	1.3	43
67	Proteomics of eukaryotic microorganisms: The medically and biotechnologically important fungal genus <i>Aspergillus</i> . Proteomics, 2011, 11, 3232-3243.	1.3	43
68	Characterization of a hydrophobin of the ascomycete <i>Paecilomyces farinosus</i> . Journal of Basic Microbiology, 2011, 51, 404-414.	1.8	4
69	ILâ€22 in antifungal immunity. European Journal of Immunology, 2011, 41, 270-275.	1.6	33
70	Recruitment of Class I Hydrophobins to the Air:Water Interface Initiates a Multi-step Process of Functional Amyloid Formation. Journal of Biological Chemistry, 2011, 286, 15955-15963.	1.6	61
71	The Proteomic Signature of Aspergillus fumigatus During Early Development. Molecular and Cellular Proteomics, 2011, 10, M111.010108.	2.5	37
72	Targeted Disruption of Nonribosomal Peptide Synthetase <i>pes3</i> Augments the Virulence of Aspergillus fumigatus. Infection and Immunity, 2011, 79, 3978-3992.	1.0	55
73	Necessary and Sufficient Role for T Helper Cells To Prevent Fungal Dissemination in Allergic Lung Disease. Infection and Immunity, 2011, 79, 4459-4471.	1.0	41
74	<i>Aspergillus terreus</i> accessory conidia are multinucleated, hyperpolarizing structures that display differential dectin staining and can induce heightened inflammatory responses in a pulmonary model of aspergillosis. Virulence, 2011, 2, 200-207.	1.8	22
75	Fungal Chitin from Asthma-Associated Home Environments Induces Eosinophilic Lung Infiltration. Journal of Immunology, 2011, 187, 2261-2267.	0.4	114
76	Human Natural Killer Cells Exhibit Direct Activity Against Aspergillus fumigatus Hyphae, But Not Against Resting Conidia. Journal of Infectious Diseases, 2011, 203, 430-435.	1.9	102
77	Primary biological aerosol particles in the atmosphere: a review. Tellus, Series B: Chemical and Physical Meteorology, 2022, 64, 15598.	0.8	988

ARTICLE IF CITATIONS # The Arthroderma benhamiae Hydrophobin HypA Mediates Hydrophobicity and Influences Recognition by 78 3.4 36 Human Immune Effector Cells. Eukaryotic Cell, 2012, 11, 673-682. Effects of Aspergillus fumigatus colonization on lung function in cystic fibrosis. Current Opinion in 1.2 Pulmonary Medicine, 2012, 18, 632-638. Cystic Fibrosis Transmembrane Conductance Regulator Regulates Epithelial Cell Response to 80 <i>Aspergillus</i> and Resultant Pulmonary Inflammation. American Journal of Respiratory and 2.5 74 Critical Care Medicine, 2012, 185, 301-310. Current understanding of PTX3 protective activity on<i>Aspergillus fumigatus</i>infection. Medical Mycology, 2012, 50, 225-233. Chitin Synthases with a Myosin Motor-Like Domain Control the Resistance of Aspergillus fumigatus to 82 1.4 53 Echinocandins. Antimicrobial Agents and Chemotherapy, 2012, 56, 6121-6131. Identification and characterization of GEO1, a new class II hydrophobin from <i>Geosmithia</i> spp.. Canadian Journal of Microbiology, 2012, 58, 965-972. 0.8 Aspergillus fumigatus conidia induce interferon-Â signalling in respiratory epithelial cells. European 84 3.1 52 Respiratory Journal, 2012, 39, 411-418. Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence. International Journal of 135 Microbiology, 2012, 2012, 1-11. 86 ETosis: A Microbicidal Mechanism beyond Cell Death. Journal of Parasitology Research, 2012, 2012, 1-11. 0.5 140 Host-Fungal Interactions: Pathogenicity versus Immunity. International Journal of Microbiology, 2012, 2012, 1-2 Hydrophobinsâ€"Unique Fungal Proteins. PLoS Pathogens, 2012, 8, e1002700. 88 252 2.1 Back to the Future for Dermatophyte Genomics. MBio, 2012, 3, . 1.8 Systems Biology of Fungal Infection. Frontiers in Microbiology, 2012, 3, 108. 90 1.5 69 Structure of the fungal cell wall. Mycology, 2012, , 29-44. TLR3 essentially promotes protective class lâ€"restricted memory CD8+ T-cell responses to Aspergillus 92 0.6 117 fumigatus in hematopoietic transplanted patients. Blood, 2012, 119, 967-977. Intravenous Delivery of Hydrophobin-Functionalized Porous Silicon Nanoparticles: Stability, Plasma 2.3 146 Protein Adsorption and Biodistribution. Molecular Pharmaceutics, 2012, 9, 654-663. 6 De-Constructing a Mutualist: How the Molecular Blueprints of Model Symbiotic Fungi Are Changing 94 3 Our Understanding of Mutualism., 2012, , 93-117. Self-assembly of Class II Hydrophobins on Polar Surfaces. Langmuir, 2012, 28, 4293-4300. 24

#	Article	IF	CITATIONS
96	Adsorption Behavior of Hydrophobin Proteins on Polydimethylsiloxane Substrates. Journal of Physical Chemistry B, 2012, 116, 12227-12234.	1.2	23
97	The chromatin code of fungal secondary metabolite gene clusters. Applied Microbiology and Biotechnology, 2012, 95, 1389-1404.	1.7	163
98	Species-Specific Recognition of Aspergillus fumigatus by Toll-like Receptor 1 and Toll-like Receptor 6. Journal of Infectious Diseases, 2012, 205, 944-954.	1.9	48
99	Sensing of mammalian IL-17A regulates fungal adaptation and virulence. Nature Communications, 2012, 3, 683.	5.8	84
100	ProFASTA: A pipeline web server for fungal protein scanning with integration of cell surface prediction software. Fungal Genetics and Biology, 2012, 49, 173-179.	0.9	19
101	Phylogenetic, genomic organization and expression analysis of hydrophobin genes in the ectomycorrhizal basidiomycete Laccaria bicolor. Fungal Genetics and Biology, 2012, 49, 199-209.	0.9	47
102	Clear and present danger? Engineered nanoparticles and the immune system. Swiss Medical Weekly, 2012, 142, w13609.	0.8	82
103	The top three areas of basic research on <i>Aspergillus fumigatus</i> in 2011. Annals of the New York Academy of Sciences, 2012, 1273, 74-77.	1.8	3
104	Nanoscale Imaging of the <i>Candida</i> –Macrophage Interaction Using Correlated Fluorescence-Atomic Force Microscopy. ACS Nano, 2012, 6, 10792-10799.	7.3	53
105	Predominant localization of the major Alternaria allergen Alt a 1 in the cell wall of airborne spores. Journal of Allergy and Clinical Immunology, 2012, 129, 1148-1149.	1.5	35
106	Identification of a new major dog allergen highly cross-reactive with Fel d 4 in a population of cat- and dog-sensitized patients. Journal of Allergy and Clinical Immunology, 2012, 129, 1149-1151.e2.	1.5	57
107	Fungi and allergic lower respiratory tract diseases. Journal of Allergy and Clinical Immunology, 2012, 129, 280-291.	1.5	398
108	Role of the Fungal Cell Wall in Pathogenesis and Antifungal Resistance. Current Fungal Infection Reports, 2012, 6, 275-282.	0.9	46
109	Robust polyfunctional T-helper 1 responses to multiple fungal antigens from a cell population generated using an environmental strain of Aspergillus fumigatus. Cytotherapy, 2012, 14, 1119-1130.	0.3	29
110	Self-assembly of functional, amphipathic amyloid monolayers by the fungal hydrophobin EAS. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E804-11.	3.3	113
111	Overview of Allergen Sources in China. Advanced Topics in Science and Technology in China, 2012, , 59-79.	0.0	2
112	Cellular interactions of surface modified nanoporous silicon particles. Nanoscale, 2012, 4, 3184.	2.8	63
113	Hydrophobins: Exceptional proteins for many applications in brewery environment and other bio-industries. Cerevisia, 2012, 37, 3-9.	0.4	34

# 114	ARTICLE Persistence versus Escape: Aspergillus terreus and Aspergillus fumigatus Employ Different Strategies during Interactions with Macrophages. PLoS ONE, 2012, 7, e31223.	IF 1.1	CITATIONS
115	Direct interaction studies between Aspergillus fumigatus and human immune cells; what have we learned about pathogenicity and host immunity?. Frontiers in Microbiology, 2012, 3, 413.	1.5	38
116	The microbiology of asthma. Nature Reviews Microbiology, 2012, 10, 459-471.	13.6	170
117	Simple Assays for Measuring Innate Interactions with Fungi. Methods in Molecular Biology, 2012, 845, 303-317.	0.4	2
118	Targeting carbohydrates: a novel paradigm for fungal control. European Journal of Plant Pathology, 2012, 133, 117-140.	0.8	6
119	Genome-wide analysis of cell wall-related genes in Tuber melanosporum. Current Genetics, 2012, 58, 165-177.	0.8	30
120	Engineering hydrophobin DewA to generate surfaces that enhance adhesion of human but not bacterial cells. Acta Biomaterialia, 2012, 8, 1037-1047.	4.1	31
121	Immunotherapy of aspergillosis. Clinical Microbiology and Infection, 2012, 18, 120-125.	2.8	32
122	Beyond pattern recognition: five immune checkpoints for scaling the microbial threat. Nature Reviews Immunology, 2012, 12, 215-225.	10.6	229
123	Bioinformatics predicts diverse Aspergillus hydrophobins with novel properties. Food Hydrocolloids, 2012, 27, 503-516.	5.6	44
124	Regulation of innate immunity by NADPH oxidase. Free Radical Biology and Medicine, 2012, 53, 72-80.	1.3	126
125	The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials, 2012, 33, 3353-3362.	5.7	125
126	Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clinical and Experimental Allergy, 2013, 43, 850-873.	1.4	666
127	Fungal Spores for Dispersion in Space and Time. Advances in Applied Microbiology, 2013, 85, 43-91.	1.3	115
128	Elimination of Aspergillus fumigatus conidia from the airways of mice with allergic airway inflammation. Respiratory Research, 2013, 14, 78.	1.4	14
129	Crossover fungal pathogens: The biology and pathogenesis of fungi capable of crossing kingdoms to infect plants and humans. Fungal Genetics and Biology, 2013, 61, 146-157.	0.9	83
130	Unraveling the Nanoscale Surface Properties of Chitin Synthase Mutants ofÂAspergillus fumigatus and Their Biological Implications. Biophysical Journal, 2013, 105, 320-327.	0.2	19
131	C-type lectin receptors orchestrate antifungal immunity. Future Microbiology, 2013, 8, 839-854.	1.0	21

#	Article	IF	CITATIONS
132	Infection Structure-Specific Expression of Â-1,3-Glucan Synthase Is Essential for Pathogenicity of Colletotrichum graminicola and Evasion of Â-Glucan-Triggered Immunity in Maize. Plant Cell, 2013, 25, 2356-2378.	3.1	82
134	10 New Insights into Ectomycorrhizal Symbiosis Evolution and Function. , 2013, , 273-293.		1
135	Formation and stability of food foams and aerated emulsions: Hydrophobins as novel functional ingredients. Current Opinion in Colloid and Interface Science, 2013, 18, 292-301.	3.4	110
136	Surface functionalization of carbon nanomaterials by selfâ€assembling hydrophobin proteins. Biopolymers, 2013, 99, 84-94.	1.2	35
137	Surface availability of beta-glucans is critical determinant of host immune response to Cladosporium cladosporioides. Journal of Allergy and Clinical Immunology, 2013, 132, 159-169.e2.	1.5	28
138	Development in Aspergillus. Studies in Mycology, 2013, 74, 1-29.	4.5	281
139	Novel immunologic classification of aspergillosis in adult cystic fibrosis. Journal of Allergy and Clinical Immunology, 2013, 132, 560-566.e10.	1.5	180
140	Cellular immune reactions in the lung. Immunological Reviews, 2013, 251, 189-214.	2.8	53
141	Mechanisms of microbial escape from phagocyte killing. Biochemical Society Transactions, 2013, 41, 475-490.	1.6	62
142	Eosinophils and Anti-Pathogen Host Defense. , 2013, , 277-299.		0
143	Fungal rhinosinusitis: what every allergist should know. Clinical and Experimental Allergy, 2013, 43, 835-849.	1.4	53
144	Fungal glycan interactions with epithelial cells in allergic airway disease. Current Opinion in Microbiology, 2013, 16, 404-408.	2.3	12
146	Kinetics and Control of Self-Assembly of ABH1 Hydrophobin from the Edible White Button Mushroom. Biomacromolecules, 2013, 14, 2283-2293.	2.6	16
147	Cytokine milieu in renal cavities of immunocompetent mice in response to intravenous challenge of Aspergillus flavus leading to aspergillosis. Cytokine, 2013, 61, 63-70.	1.4	9
148	Poly(É>-caprolactone) modified with fusion protein containing self-assembled hydrophobin and functional peptide for selective capture of human blood outgrowth endothelial cells. Colloids and Surfaces B: Biointerfaces, 2013, 101, 361-369.	2.5	18
149	The function and evolution of the Aspergillus genome. Trends in Microbiology, 2013, 21, 14-22.	3.5	72
150	Corticosteroids Block Autophagy Protein Recruitment in <i>Aspergillus fumigatus</i> Phagosomes via Targeting Dectin-1/Syk Kinase Signaling. Journal of Immunology, 2013, 191, 1287-1299.	0.4	124
151	Two forms and two faces, multiple states and multiple uses: Properties and applications of the selfâ€assembling fungal hydrophobins. Biopolymers, 2013, 100, 601-612.	1.2	50

#	Article	IF	CITATIONS
153	The Immune Interplay between the Host and the Pathogen in <i>Aspergillus fumigatus</i> Lung Infection. BioMed Research International, 2013, 2013, 1-14.	0.9	50
154	Aspergillus Galactosaminogalactan Mediates Adherence to Host Constituents and Conceals Hyphal β-Glucan from the Immune System. PLoS Pathogens, 2013, 9, e1003575.	2.1	256
155	Deletion of the α-(1,3)-Glucan Synthase Genes Induces a Restructuring of the Conidial Cell Wall Responsible for the Avirulence of Aspergillus fumigatus. PLoS Pathogens, 2013, 9, e1003716.	2.1	110
156	Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick. Eukaryotic Cell, 2013, 12, 470-481.	3.4	246
157	Circulating human basophils lack the features of professional antigen presenting cells. Scientific Reports, 2013, 3, 1188.	1.6	48
158	N-Glycosylation of Gel1 or Gel2 is vital for cell wall Â-glucan synthesis in Aspergillus fumigatus. Glycobiology, 2013, 23, 955-968.	1.3	13
159	Natural Killer Cells and Antifungal Host Response. Vaccine Journal, 2013, 20, 452-458.	3.2	47
160	The Impact of <i>Aspergillus fumigatus</i> Viability and Sensitization to Its Allergens on the Murine Allergic Asthma Phenotype. BioMed Research International, 2013, 2013, 1-17.	0.9	11
161	Immunological Aspects of <i>Candida</i> and <i>Aspergillus</i> Systemic Fungal Infections. Interdisciplinary Perspectives on Infectious Diseases, 2013, 2013, 1-7.	0.6	9
162	The RodA Hydrophobin on <i>Aspergillus fumigatus</i> Spores Masks Dectin-1– and Dectin-2–Dependent Responses and Enhances Fungal Survival In Vivo. Journal of Immunology, 2013, 191, 2581-2588.	0.4	154
163	PfaH2: A novel hydrophobin from the ascomycete <i>Paecilomyces farinosus</i> . Biotechnology and Applied Biochemistry, 2013, 60, 147-154.	1.4	5
164	Monocyte- and Macrophage-Targeted NADPH Oxidase Mediates Antifungal Host Defense and Regulation of Acute Inflammation in Mice. Journal of Immunology, 2013, 190, 4175-4184.	0.4	75
165	Composite Survival Index to Compare Virulence Changes in Azole-Resistant Aspergillus fumigatus Clinical Isolates. PLoS ONE, 2013, 8, e72280.	1.1	20
166	Aspergillus fumigatus melanins: interference with the host endocytosis pathway and impact on virulence. Frontiers in Microbiology, 2012, 3, 440.	1.5	169
167	Hyphal Growth of Phagocytosed Fusarium oxysporum Causes Cell Lysis and Death of Murine Macrophages. PLoS ONE, 2014, 9, e101999.	1.1	9
168	Human Fungal Infections. , 2014, , 652-652.		2
170	Transcriptomics in Health and Disease. , 2014, , .		3
173	A questionnaire-based study on the role of environmental factors in allergic bronchopulmonary aspergillosis. Lung India, 2014, 31, 232.	0.3	16

ARTICLE

IF CITATIONS

174	Trichoderma Secretome. , 2014, , 103-114.
-----	---

15

175	A Polysaccharide Virulence Factor from Aspergillus fumigatus Elicits Anti-inflammatory Effects through Induction of Interleukin-1 Receptor Antagonist. PLoS Pathogens, 2014, 10, e1003936.	2.1	117
176	Pulmonary immune responses toAspergillus fumigatusin an immunocompetent mouse model of repeated exposures. Journal of Immunotoxicology, 2014, 11, 180-189.	0.9	13
177	Hydrophobin Film Structure for HFBI and HFBII and Mechanism for Accelerated Film Formation. PLoS Computational Biology, 2014, 10, e1003745.	1.5	27
178	Endoplasmic reticulum localized <scp>PerA</scp> is required for cell wall integrity, azole drug resistance, and virulence in <scp><i>A</i></scp> <i>spergillus fumigatus</i> . Molecular Microbiology, 2014, 92, 1279-1298.	1.2	18
179	In vitrostudies on the main beer protein Z4 ofHordeum vulgareconcerning heat stability, protease inhibition and gushing. Journal of the Institute of Brewing, 2014, 120, 85-92.	0.8	12
180	The importance of connections between the cell wall integrity pathway and the unfolded protein response in filamentous fungi. Briefings in Functional Genomics, 2014, 13, 456-470.	1.3	50
181	Hydrophobin Fusion of an Influenza Virus Hemagglutinin Allows High Transient Expression in Nicotiana benthamiana, Easy Purification and Immune Response with Neutralizing Activity. PLoS ONE, 2014, 9, e115944.	1.1	15
182	Electrochemical properties of honeycomb-like structured HFBI self-organized membranes on HOPG electrodes. Colloids and Surfaces B: Biointerfaces, 2014, 123, 803-808.	2.5	8
183	Aspergillus and cystic fibrosis. Current Opinion in Pulmonary Medicine, 2014, 20, 632-638.	1.2	18
184	Comparative Genomic and Transcriptomic Analysis of <i>Wangiella dermatitidis</i> , A Major Cause of Phaeohyphomycosis and a Model Black Yeast Human Pathogen. G3: Genes, Genomes, Genetics, 2014, 4, 561-578.	0.8	58
185	Developmental Cell Fate and Virulence Are Linked to Trehalose Homeostasis in Cryptococcus neoformans. Eukaryotic Cell, 2014, 13, 1158-1168.	3.4	18
186	Activation of NF-κB and respiratory burst following Aspergillus fumigatus stimulation of macrophages. Immunobiology, 2014, 219, 25-36.	0.8	37
187	Widespread horizontal transfer of the cerato-ulmin gene between Ophiostoma novo-ulmi and Geosmithia species. Fungal Biology, 2014, 118, 663-674.	1.1	16
189	Eosinophils Are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus Infection. Infection and Immunity, 2014, 82, 3199-3205.	1.0	68
190	Fungi in the cystic fibrosis lung: Bystanders or pathogens?. International Journal of Biochemistry and Cell Biology, 2014, 52, 161-173.	1.2	107
191	Induction of innate immunity by Aspergillus fumigatus cell wall polysaccharides is enhanced by the composite presentation of chitin and beta-glucan. Immunobiology, 2014, 219, 179-188.	0.8	43
192	Solution structure and interfaceâ€driven selfâ€assembly of NC2, a new member of the Class II hydrophobin proteins. Proteins: Structure, Function and Bioinformatics, 2014, 82, 990-1003.	1.5	24

#	Article	IF	CITATIONS
193	<i>Aspergillus</i> , <i>Penicillium</i> and <i>Talaromyces</i> isolated from house dust samples collected around the world. Studies in Mycology, 2014, 78, 63-139.	4.5	218
194	Neutrophil Responses to Aspergillosis: New Roles for Old Players. Mycopathologia, 2014, 178, 387-393.	1.3	31
195	Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus. International Journal of Medical Microbiology, 2014, 304, 1160-1168.	1.5	38
196	Identification of Immunogenic Antigens from <i>Aspergillus fumigatus</i> by Direct Multiparameter Characterization of Specific Conventional and Regulatory CD4+ T Cells. Journal of Immunology, 2014, 193, 3332-3343.	0.4	58
197	Antigen-specific expansion of human regulatory T cells as a major tolerance mechanism against mucosal fungi. Mucosal Immunology, 2014, 7, 916-928.	2.7	110
198	Fungal allergy in asthma–state of the art and research needs. Clinical and Translational Allergy, 2014, 4, 14.	1.4	264
199	Surface Structure Characterization of Aspergillus fumigatus Conidia Mutated in the Melanin Synthesis Pathway and Their Human Cellular Immune Response. Infection and Immunity, 2014, 82, 3141-3153.	1.0	113
200	Fungal model systems and the elucidation of pathogenicity determinants. Fungal Genetics and Biology, 2014, 70, 42-67.	0.9	133
201	Immunoevasive Aspergillus Virulence Factors. Mycopathologia, 2014, 178, 363-370.	1.3	53
202	Microbiota control of a tryptophan–AhR pathway in disease tolerance to fungi. European Journal of Immunology, 2014, 44, 3192-3200.	1.6	78
203	Distinct Innate Immune Phagocyte Responses to Aspergillus fumigatus Conidia and Hyphae in Zebrafish Larvae. Eukaryotic Cell, 2014, 13, 1266-1277.	3.4	82
204	Self-assembly of proteins into a three-dimensional multilayer system: Investigation of the surface of the human fungal pathogen Aspergillus fumigatus. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1137-1144.	1.1	18
205	Aspergillus fumigatus induces microRNA-132 in human monocytes and dendritic cells. International Journal of Medical Microbiology, 2014, 304, 592-596.	1.5	28
206	Aspergillus Cell Wall and Biofilm. Mycopathologia, 2014, 178, 371-377.	1.3	108
207	Functional duality of the cell wall. Current Opinion in Microbiology, 2014, 20, 111-117.	2.3	121
208	Novel hydrophobin-coated docetaxel nanoparticles for intravenous delivery: In vitro characteristics and in vivo performance. European Journal of Pharmaceutical Sciences, 2014, 60, 1-9.	1.9	46
209	Fungal glycans and the innate immune recognition. Frontiers in Cellular and Infection Microbiology, 2014, 4, 145.	1.8	84
211	<i>Aspergillus</i> Biofilm <i>In Vitro</i> and <i>In Vivo</i> . Microbiology Spectrum, 2015, 3, .	1.2	59

#	ARTICLE	IF	CITATIONS
212	In silico modeling of spore inhalation reveals fungal persistence following low dose exposure. Scientific Reports, 2015, 5, 13958.	1.6	27
213	Comparative genomics, proteomics and transcriptomics give new insight into the exoproteome of the basidiomycete <i><scp>H</scp>ebeloma cylindrosporum</i> and its involvement in ectomycorrhizal symbiosis. New Phytologist, 2015, 208, 1169-1187.	3.5	78
214	<i>Aspergillus</i> Biofilm <i>In Vitro</i> and <i>In Vivo</i> ., 0, , 149-161.		49
215	Challenges and Strategies for Proteome Analysis of the Interaction of Human Pathogenic Fungi with Host Immune Cells. Proteomes, 2015, 3, 467-495.	1.7	7
216	Co-recognition of β-glucan and chitin and programming of adaptive immunity to Aspergillus fumigatus. Frontiers in Microbiology, 2015, 6, 344.	1.5	34
217	Paving the way for predictive diagnostics and personalized treatment of invasive aspergillosis. Frontiers in Microbiology, 2015, 6, 411.	1.5	26
218	Cell wall proteome of pathogenic fungi. Acta Biochimica Polonica, 2015, 62, 339-351.	0.3	43
219	Identification and Deletion of Tft1, a Predicted Glycosyltransferase Necessary for Cell Wall β-1,3;1,4-Clucan Synthesis in Aspergillus fumigatus. PLoS ONE, 2015, 10, e0117336.	1.1	26
220	A Multifaceted Study of Scedosporium boydii Cell Wall Changes during Germination and Identification of GPI-Anchored Proteins. PLoS ONE, 2015, 10, e0128680.	1.1	18
221	The Aspergillus fumigatus pkcAG579R Mutant Is Defective in the Activation of the Cell Wall Integrity Pathway but Is Dispensable for Virulence in a Neutropenic Mouse Infection Model. PLoS ONE, 2015, 10, e0135195.	1.1	51
222	Transcriptome Profiles of Human Lung Epithelial Cells A549 Interacting with Aspergillus fumigatus by RNA-Seq. PLoS ONE, 2015, 10, e0135720.	1.1	50
223	Indoleamine 2,3-Dioxygenase Is Involved in the Inflammation Response of Corneal Epithelial Cells to Aspergillus fumigatus Infections. PLoS ONE, 2015, 10, e0137423.	1.1	35
224	Transcription Factor SomA Is Required for Adhesion, Development and Virulence of the Human Pathogen Aspergillus fumigatus. PLoS Pathogens, 2015, 11, e1005205.	2.1	57
225	Activation of Vitamin D Regulates Response of Human Bronchial Epithelial Cells toAspergillus fumigatusin an Autocrine Fashion. Mediators of Inflammation, 2015, 2015, 1-14.	1.4	6
226	Antibody testing in aspergillosis—quo vadis?. Medical Mycology, 2015, 53, 417-439.	0.3	81
227	The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Frontiers in Microbiology, 2015, 06, 325.	1.5	186
228	The Aspergillus fumigatus sitA Phosphatase Homologue Is Important for Adhesion, Cell Wall Integrity, Biofilm Formation, and Virulence. Eukaryotic Cell, 2015, 14, 728-744.	3.4	66
229	Pathogenic Fungi Regulate Immunity by Inducing Neutrophilic Myeloid-Derived Suppressor Cells. Cell Host and Microbe, 2015, 17, 507-514.	5.1	99

#	Article	IF	CITATIONS
230	Removal of Viable Airborne Fungi from Indoor Environments by Benzalkonium Chloride-Based Aerosol Disinfectants. Human and Ecological Risk Assessment (HERA), 2015, 21, 2174-2191.	1.7	6
231	Virulence determinants of the human pathogenic fungus <scp><i>A</i></scp> <i>spergillus fumigatus</i> protect against soil amoeba predation. Environmental Microbiology, 2015, 17, 2858-2869.	1.8	85
232	Fungal Morphogenesis. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019679-a019679.	2.9	45
234	Assessing the Abundance of Airborne Fungi in a Dairy Cattle Barn. Polish Journal of Environmental Studies, 2015, 24, 241-248.	0.6	5
235	The Serum Opsonin L-ficolin Is Detected in Lungs of Human Transplant Recipients Following Fungal Infections and Modulates Inflammation and Killing of <i>Aspergillus fumigatus</i> . Journal of Infectious Diseases, 2015, 212, 234-246.	1.9	44
236	Globular Protein-Coated Paclitaxel Nanosuspensions: Interaction Mechanism, Direct Cytosolic Delivery, and Significant Improvement in Pharmacokinetics. Molecular Pharmaceutics, 2015, 12, 1485-1500.	2.3	41
237	Interference of Aspergillus fumigatus with the immune response. Seminars in Immunopathology, 2015, 37, 141-152.	2.8	112
238	The interplay between inflammasome activation and antifungal host defense. Immunological Reviews, 2015, 265, 172-180.	2.8	53
239	The Gβ-like protein CpcB is required for hyphal growth, conidiophore morphology and pathogenicity in Aspergillus fumigatus. Fungal Genetics and Biology, 2015, 81, 120-131.	0.9	25
240	The innate immune response to <i>Aspergillus fumigatus</i> at the alveolar surface. FEMS Microbiology Reviews, 2015, 39, 670-687.	3.9	103
241	Charge-Based Engineering of Hydrophobin HFBI: Effect on Interfacial Assembly and Interactions. Biomacromolecules, 2015, 16, 1283-1292.	2.6	29
242	In Situ Production of Biofunctionalized Few‣ayer Defectâ€Free Microsheets of Graphene. Advanced Functional Materials, 2015, 25, 2771-2779.	7.8	63
243	Identification ofAspergillus fumigatusSurface Components That Mediate Interaction of Conidia and Hyphae With Human Platelets. Journal of Infectious Diseases, 2015, 212, 1140-1149.	1.9	49
244	Purification of a novel hydrophobin PN1 involved in antibacterial activity from an edible mushroom Pleurotus nebrodensis. European Journal of Plant Pathology, 2015, 143, 823-831.	0.8	4
245	Atomic Force Microscopy Tools to Characterize the Physicochemical and Mechanical Properties of Pathogens. NATO Science for Peace and Security Series A: Chemistry and Biology, 2015, , 1-15.	0.5	0
246	Identification of the antiphagocytic trypacidin gene cluster in the human-pathogenic fungus Aspergillus fumigatus. Applied Microbiology and Biotechnology, 2015, 99, 10151-10161.	1.7	52
247	Immune Interactions with Pathogenic and Commensal Fungi: A Two-Way Street. Immunity, 2015, 43, 845-858.	6.6	117
248	Immune responses to airborne fungi and non-invasive airway diseases. Seminars in Immunopathology, 2015, 37, 83-96.	2.8	25

#	Article	IF	CITATIONS
249	The Spectrum of Fungi That Infects Humans. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019273-a019273.	2.9	233
250	Hydrophobins from aerial conidia of Beauveria bassiana interfere with Ceratitis capitata oviposition behavior. Biological Control, 2015, 81, 37-43.	1.4	10
251	Aspergillus fumigatus and Related Species. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019786-a019786.	2.9	180
252	The protective role of immunoglobulins in fungal infections and inflammation. Seminars in Immunopathology, 2015, 37, 187-197.	2.8	37
253	Fungal Pathogens: Survival and Replication within Macrophages. Cold Spring Harbor Perspectives in Medicine, 2015, 5, a019661.	2.9	72
254	Novel insights into host-fungal pathogen interactions derived from live-cell imaging. Seminars in Immunopathology, 2015, 37, 131-139.	2.8	32
255	1H, 13C and 15N resonance assignments of the RodA hydrophobin from the opportunistic pathogen Aspergillus fumigatus. Biomolecular NMR Assignments, 2015, 9, 113-118.	0.4	16
256	Conidial germination in Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans: influence of growth conditions and antifungal susceptibility profiles. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 484-494.	0.8	15
257	Expression of indoleamine 2,3-dioxygenase in a murine model of Aspergillus fumigatus keratitis. International Journal of Ophthalmology, 2016, 9, 491-6.	0.5	11
258	Immunology of Fungal Infections. , 2016, , 75-82.		2
258 259	Immunology of Fungal Infections. , 2016, , 75-82. Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354.	0.6	2 76
	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016,	0.6	
259	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354. Anti-Immune Strategies of Pathogenic Fungi. Frontiers in Cellular and Infection Microbiology, 2016, 6,		76
259 260	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354. Anti-Immune Strategies of Pathogenic Fungi. Frontiers in Cellular and Infection Microbiology, 2016, 6, 142. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati.	1.8	76 67
259 260 261	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354. Anti-Immune Strategies of Pathogenic Fungi. Frontiers in Cellular and Infection Microbiology, 2016, 6, 142. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Frontiers in Microbiology, 2015, 6, 1485. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by	1.8 1.5	76 67 66
259 260 261 262	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354. Anti-Immune Strategies of Pathogenic Fungi. Frontiers in Cellular and Infection Microbiology, 2016, 6, 142. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Frontiers in Microbiology, 2015, 6, 1485. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Frontiers in Microbiology, 2015, 6, 1527. First Line of Defense: Innate Cell-Mediated Control of Pulmonary Aspergillosis. Frontiers in	1.8 1.5 1.5	76 67 66 46
259 260 261 262 263	Allergic Fungal Airway Disease. Journal of Investigational Allergology and Clinical Immunology, 2016, 26, 344-354. Anti-Immune Strategies of Pathogenic Fungi. Frontiers in Cellular and Infection Microbiology, 2016, 6, 142. Extrolites of Aspergillus fumigatus and Other Pathogenic Species in Aspergillus Section Fumigati. Frontiers in Microbiology, 2015, 6, 1485. Members of the Candida parapsilosis Complex and Candida albicans are Differentially Recognized by Human Peripheral Blood Mononuclear Cells. Frontiers in Microbiology, 2015, 6, 1527. First Line of Defense: Innate Cell-Mediated Control of Pulmonary Aspergillosis. Frontiers in Microbiology, 2016, 7, 272. Interactions of Aspergillus fumigatus Conidia with Airway Epithelial Cells: A Critical Review.	1.8 1.5 1.5 1.5	 76 67 66 46 63

	Сіт.	ATION REPORT	
#	Article	IF	CITATIONS
267	Induced Fit in Protein Multimerization: The HFBI Case. PLoS Computational Biology, 2016, 12, e100520	02. 1.5	4
268	GH16 and GH81 family β-(1,3)-glucanases in <i>Aspergillus fumigatus</i> are essential for conidial cell wall morphogenesis. Cellular Microbiology, 2016, 18, 1285-1293.	1.1	47
269	Convergent evolution of filamentous microbes towards evasion of glycanâ€ŧriggered immunity. New Phytologist, 2016, 212, 896-901.	3.5	61
270	Alarmin(g) the innate immune system to invasive fungal infections. Current Opinion in Microbiology, 2016, 32, 135-143.	2.3	20
271	Insights into Adaptations to a Near-Obligate Nematode Endoparasitic Lifestyle from the Finished Genome of Drechmeria coniospora. Scientific Reports, 2016, 6, 23122.	1.6	32
272	Self-assembled hydrophobin for producing water-soluble and membrane permeable fluorescent dye. Scientific Reports, 2016, 6, 23061.	1.6	14
273	Fungal Exposure and Asthma: IgE and Non-IgE-Mediated Mechanisms. Current Allergy and Asthma Reports, 2016, 16, 86.	2.4	53
274	The Perfect Slime: Microbial Extracellular Polymeric Substances (EPS). Water Intelligence Online, 2016, 15, 9781780407425-9781780407425.	0.3	30
275	Pediatric Asthma and the Indoor Microbial Environment. Current Environmental Health Reports, 2016, 3, 238-249.	3.2	22
277	Gene Expression Systems in Industrial Ascomycetes: Advancements and Applications. Fungal Biology, 2016, , 3-22.	0.3	0
278	Aspergillosis and stem cell transplantation: An overview of experimental pathogenesis studies. Virulence, 2016, 7, 950-966.	1.8	16
279	RNA Sequencing-Based Genome Reannotation of the Dermatophyte <i>Arthroderma benhamiae</i> an Characterization of Its Secretome and Whole Gene Expression Profile during Infection. MSystems, 2016, 1, .	1.7	31
280	Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Angewandte Chemie, 2016, 128, 10419-10423.	1.6	10
282	LC3-associated phagocytosis: a crucial mechanism for antifungal host defence against <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2016, 18, 1208-1216.	1.1	42
283	Design of Highly Stable Echogenic Microbubbles through Controlled Assembly of Their Hydrophobin Shell. Angewandte Chemie - International Edition, 2016, 55, 10263-10267.	7.2	24
284	The good, the bad and the tasty: The many roles of mushrooms. Studies in Mycology, 2016, 85, 125-15	57. 4.5	81
285	NOX2-dependent regulation of inflammation. Clinical Science, 2016, 130, 479-490.	1.8	155
286	Developments in the diagnosis and treatment of allergic bronchopulmonary aspergillosis. Expert Review of Respiratory Medicine, 2016, 10, 1317-1334.	1.0	124

#	Article	IF	CITATIONS
287	Krüppel-like Factor 4 modulates interleukin-6 release in human dendritic cells after in vitro stimulation with Aspergillus fumigatus and Candida albicans. Scientific Reports, 2016, 6, 27990.	1.6	29
288	How to invade a susceptible host: cellular aspects of aspergillosis. Current Opinion in Microbiology, 2016, 34, 136-146.	2.3	21
289	Influence of <i>Aspergillus fumigatus</i> conidia viability on murine pulmonary micro <scp>RNA</scp> and m <scp>RNA</scp> expression following subchronic inhalation exposure. Clinical and Experimental Allergy, 2016, 46, 1315-1327.	1.4	55
290	Deciphering the Counterplay of Aspergillus fumigatus Infection and Host Inflammation by Evolutionary Games on Graphs. Scientific Reports, 2016, 6, 27807.	1.6	24
291	New advances in invasive aspergillosis immunobiology leading the way towards personalized therapeutic approaches. Cytokine, 2016, 84, 63-73.	1.4	10
292	Proteomic analysis of <i>Aspergillus fumigatus</i> – clinical implications. Expert Review of Proteomics, 2016, 13, 635-649.	1.3	12
293	The importance of subclasses of chitin synthase enzymes with myosin-like domains for the fitness of fungi. Fungal Biology Reviews, 2016, 30, 1-14.	1.9	33
294	The role of melanin pathways in extremotolerance and virulence of <i>Fonsecaea</i> revealed by <i>de novo</i> assembly transcriptomics using illumina paired-end sequencing. Studies in Mycology, 2016, 83, 1-18.	4.5	35
295	The Diverse Structures and Functions of Surfactant Proteins. Trends in Biochemical Sciences, 2016, 41, 610-620.	3.7	33
296	The spectrum of allergic fungal diseases of the upper and lower airways. Expert Review of Clinical Immunology, 2016, 12, 531-550.	1.3	26
297	The impact of nanoparticle protein corona on cytotoxicity, immunotoxicity and target drug delivery. Nanomedicine, 2016, 11, 81-100.	1.7	499
298	Signaling pathways for stress responses and adaptation in <i>Aspergillus</i> species: stress biology in the post-genomic era. Bioscience, Biotechnology and Biochemistry, 2016, 80, 1667-1680.	0.6	65
299	Conidiation of Penicillium camemberti in submerged liquid cultures is dependent on the nitrogen source. Biotechnology Letters, 2016, 38, 329-335.	1.1	1
300	Interactions of fungal pathogens with phagocytes. Nature Reviews Microbiology, 2016, 14, 163-176.	13.6	550
301	Vmh2 hydrophobin layer entraps glucose: A quantitative characterization by label-free optical and gravimetric methods. Applied Surface Science, 2016, 364, 201-207.	3.1	10
302	Dectin-1 Controls TLR9 Trafficking to Phagosomes Containing β-1,3 Glucan. Journal of Immunology, 2016, 196, 2249-2261.	0.4	42
303	Moniliophthora roreri Genome and Transcriptome. , 2016, , 97-135.		1
304	Aspergillus Cell Wall Melanin Blocks LC3-Associated Phagocytosis to Promote Pathogenicity. Cell Host and Microbe, 2016, 19, 79-90.	5.1	183

#	Article	IF	CITATIONS
305	An environmental route of exposure affects the formation of nanoparticle coronas in blood plasma. Journal of Proteomics, 2016, 137, 52-58.	1.2	25
306	High-Resolution Ultrasound Including Contrast-Enhanced Ultrasound (CEUS) for the Detection of Gas Formation during Aspergillus Fumigatus Infection in Mice. Ultraschall in Der Medizin, 2016, 37, 277-282.	0.8	5
307	Prediction of the <i>in planta Phakopsora pachyrhizi</i> secretome and potential effector families. Molecular Plant Pathology, 2017, 18, 363-377.	2.0	30
308	Ecology of aspergillosis: insights into the pathogenic potency of <i>Aspergillus fumigatus</i> and some other <i>Aspergillus</i> species. Microbial Biotechnology, 2017, 10, 296-322.	2.0	216
309	Molecular Characteristics and Biological Functions of Surface-Active and Surfactant Proteins. Annual Review of Biochemistry, 2017, 86, 585-608.	5.0	46
310	Talaromyces marneffei Mp1p Is a Virulence Factor that Binds and Sequesters a Key Proinflammatory Lipid to Dampen Host Innate Immune Response. Cell Chemical Biology, 2017, 24, 182-194.	2.5	26
311	Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs. European Journal of Pharmaceutical Sciences, 2017, 100, 238-248.	1.9	35
312	The propensity of the bacterial rodlin protein RdlB to form amyloid fibrils determines its function in Streptomyces coelicolor. Scientific Reports, 2017, 7, 42867.	1.6	22
313	Characterization of a Basidiomycota hydrophobin reveals the structural basis for a high-similarity Class I subdivision. Scientific Reports, 2017, 7, 45863.	1.6	32
314	Immunity to Fungal Infections. , 2017, , 35-83.		3
314 315	Immunity to Fungal Infections. , 2017, , 35-83. The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII. Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117.	2.5	3
	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII. Colloids and	2.5	
315	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII. Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117.		7
315 316	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII. Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, . Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing	1.2	7 736
315 316 317	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBIL. Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, . Green synthesis of luminescent and defect-free bio-nanosheets of MoS < sub > 2 < /sub >: interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408. Selfâ€assembly of two hydrophobins from marine fungi affected by interaction with surfaces.	1.2 1.7	7 736 31
315 316 317 318	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBIL Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, . Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408. Selfâ€essembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnology and Bioengineering, 2017, 114, 2173-2186. Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal	1.2 1.7 1.7	7 736 31 16
 315 316 317 318 319 	The dynamics of multimer formation of the amphiphilic hydrophobin protein HFBII. Colloids and Surfaces B: Biointerfaces, 2017, 155, 111-117. The Fungal Cell Wall: Structure, Biosynthesis, and Function. Microbiology Spectrum, 2017, 5, . Green synthesis of luminescent and defect-free bio-nanosheets of MoS ₂ : interfacing two-dimensional crystals with hydrophobins. RSC Advances, 2017, 7, 22400-22408. Selfâ€assembly of two hydrophobins from marine fungi affected by interaction with surfaces. Biotechnology and Bioengineering, 2017, 114, 2173-2186. Real-time visualization of immune cell clearance of Aspergillus fumigatus spores and hyphae. Fungal Genetics and Biology, 2017, 105, 52-54.	1.2 1.7 1.7 0.9	7 736 31 16 23

#	Article	IF	CITATIONS
323	Immunogenetics of Fungal Diseases. , 2017, , .		2
324	Design of antibacterial biointerfaces by surface modification of poly (ε-caprolactone) with fusion protein containing hydrophobin and PA-1. Colloids and Surfaces B: Biointerfaces, 2017, 151, 255-263.	2.5	21
325	Introduction to Medical Mycology. , 2017, , 1-27.		0
326	When Aspergillus fumigatus Meets the Man. , 2017, , 119-137.		1
327	Quantitative Analysis of Proteome Modulations in Alveolar Epithelial Type II Cells in Response to Pulmonary Aspergillus fumigatus Infection. Molecular and Cellular Proteomics, 2017, 16, 2184-2198.	2.5	26
328	Aspergillus fumigatus Cell Wall α-(1,3)-Glucan Stimulates Regulatory T-Cell Polarization by Inducing PD-L1 Expression on Human Dendritic Cells. Journal of Infectious Diseases, 2017, 216, 1281-1294.	1.9	81
329	Aspergillus fumigatus morphology and dynamic host interactions. Nature Reviews Microbiology, 2017, 15, 661-674.	13.6	402
330	Long-Distance Dispersal of Fungi. Microbiology Spectrum, 2017, 5, .	1.2	100
331	MybA, a transcription factor involved in conidiation and conidial viability of the human pathogen <i>Aspergillus fumigatus</i> . Molecular Microbiology, 2017, 105, 880-900.	1.2	31
332	Bioreducible Hydrophobin-Stabilized Supraparticles for Selective Intracellular Release. ACS Nano, 2017, 11, 9413-9423.	7.3	44
333	Mucorales spores induce a proinflammatory cytokine response in human mononuclear phagocytes and harbor no rodlet hydrophobins. Virulence, 2017, 8, 1708-1718.	1.8	25
334	Electrostatically driven scalable synthesis of MoS ₂ –graphene hybrid films assisted by hydrophobins. RSC Advances, 2017, 7, 50166-50175.	1.7	23
335	A mutant of hydrophobin HGFI tuning the self-assembly behaviour and biosurfactant activity. Applied Microbiology and Biotechnology, 2017, 101, 8419-8430.	1.7	10
336	Nanoscale Mapping of Multiple Lectins on Cell Surfaces by Singleâ€Molecule Force Spectroscopy. Advanced Biology, 2017, 1, e1700050.	3.0	5
337	The Cell Wall of the Human Fungal Pathogen <i>Aspergillus fumigatus</i> : Biosynthesis, Organization, Immune Response, and Virulence. Annual Review of Microbiology, 2017, 71, 99-116.	2.9	157
338	Are allergic fungal rhinosinusitis and allergic bronchopulmonary aspergillosis lifelong conditions?. Medical Mycology, 2017, 55, 87-95.	0.3	20
339	30 years of battling the cell wall. Medical Mycology, 2017, 55, 4-9.	0.3	27
340	Protein bio-corona: critical issue in immune nanotoxicology. Archives of Toxicology, 2017, 91, 1031-1048.	1.9	182

#	ARTICLE	IF	CITATIONS
341	The Fungal Cell Wall: Structure, Biosynthesis, and Function. , 0, , 267-292.		65
342	Long-Distance Dispersal of Fungi. , 0, , 309-333.		27
343	Fungi that Infect Humans. , 2017, , 811-843.		8
344	A new family and genus in Dothideales for Aureobasidium-like species isolated from house dust. IMA Fungus, 2017, 8, 299-315.	1.7	24
345	NK Cells and Their Role in Invasive Mold Infection. Journal of Fungi (Basel, Switzerland), 2017, 3, 25.	1.5	10
346	Fungal Strategies to Evade the Host Immune Recognition. Journal of Fungi (Basel, Switzerland), 2017, 3, 51.	1.5	86
347	Role of nanostructure molecules in enhancing the bioavailability of oral drugs. , 2017, , 375-407.		8
348	Understanding the Entanglement: Neutrophil Extracellular Traps (NETs) in Cystic Fibrosis. Frontiers in Cellular and Infection Microbiology, 2017, 7, 104.	1.8	72
349	Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae. Frontiers in Cellular and Infection Microbiology, 2017, 7, 497.	1.8	40
350	Control of Phagocytosis by Microbial Pathogens. Frontiers in Immunology, 2017, 8, 1368.	2.2	201
351	Natural Killer Cells in Antifungal Immunity. Frontiers in Immunology, 2017, 8, 1623.	2.2	55
352	Lipoxygenase Activity Accelerates Programmed Spore Germination in Aspergillus fumigatus. Frontiers in Microbiology, 2017, 8, 831.	1.5	16
353	Invasive Aspergillus terreus morphological transitions and immunoadaptations mediating antifungal resistance. Infection and Drug Resistance, 2017, Volume 10, 425-436.	1.1	10
354	Immunity against fungi. JCI Insight, 2017, 2, .	2.3	105
355	Elastin increases biofilm and extracellular matrix production of Aspergillus fumigatus. Brazilian Journal of Microbiology, 2018, 49, 675-682.	0.8	8
356	Recognition of DHN-melanin by a C-type lectin receptor is required for immunity to Aspergillus. Nature, 2018, 555, 382-386.	13.7	157
357	Singleâ€Molecule Force Spectroscopy Reveals Selfâ€Assembly Enhanced Surface Binding of Hydrophobins. Chemistry - A European Journal, 2018, 24, 9224-9228.	1.7	16
358	An overview of lectin–glycan interactions: a key event in initiating fungal infection and pathogenesis. Archives of Microbiology, 2018, 200, 371-382.	1.0	15

	CITATION	Report	
#	Article	IF	CITATIONS
359	Pathogenesis and Pathology of Invasive Aspergillosis. Current Fungal Infection Reports, 2018, 12, 23-32.	0.9	13
360	Fungal melanin stimulates surfactant protein D–mediated opsonization of and host immune response to Aspergillus fumigatus spores. Journal of Biological Chemistry, 2018, 293, 4901-4912.	1.6	36
361	Differential Kinetics of Aspergillus nidulans and Aspergillus fumigatus Phagocytosis. Journal of Innate Immunity, 2018, 10, 145-160.	1.8	16
362	Host Sensing by Pathogenic Fungi. Advances in Applied Microbiology, 2018, 102, 159-221.	1.3	9
363	Mitogen activated protein kinases (MAPK) and protein phosphatases are involved in Aspergillus fumigatus adhesion and biofilm formation. Cell Surface, 2018, 1, 43-56.	1.5	20
364	Lung Epithelial Cells Coordinate Innate Lymphocytes and Immunity against Pulmonary Fungal Infection. Cell Host and Microbe, 2018, 23, 511-522.e5.	5.1	62
365	Role of PTX3 in corneal epithelial innate immunity against Aspergillus fumigatus infection. Experimental Eye Research, 2018, 167, 152-162.	1.2	15
366	Characterization and pro-inflammatory responses of spore and hyphae samples from various mold species. Indoor Air, 2018, 28, 28-39.	2.0	17
367	Amyloid-Like Î ² -Aggregates as Force-Sensitive Switches in Fungal Biofilms and Infections. Microbiology and Molecular Biology Reviews, 2018, 82, .	2.9	50
368	Atomic Force Microscopy: A Promising Tool for Deciphering the Pathogenic Mechanisms of Fungi in Cystic Fibrosis. Mycopathologia, 2018, 183, 291-310.	1.3	3
369	Crocin reduces Aspergillus fumigatus â€induced airway inflammation and NFâ€î®B signal activation. Journal of Cellular Biochemistry, 2018, 119, 1746-1754.	1.2	20
370	Green Surface Cleaning in a Radical Vapor Reactor to Remove Organic Fouling on a Substrate. Electrochemistry, 2018, 86, 355-362.	0.6	4
371	Structure Formation in Classâ€I and Classâ€II Hydrophobins at the Air–Water Interface under Multiple Compression/Expansion Cycles. ChemistryOpen, 2018, 7, 1005-1013.	0.9	2
372	Host Soluble Mediators: Defying the Immunological Inertness of Aspergillus fumigatus Conidia. Journal of Fungi (Basel, Switzerland), 2018, 4, 3.	1.5	15
373	Fungal Fragments and Fungal Aerosol Composition in Sawmills. Annals of Work Exposures and Health, 2018, 62, 559-570.	0.6	14
374	Immunomodulation as a Therapy for Aspergillus Infection: Current Status and Future Perspectives. Journal of Fungi (Basel, Switzerland), 2018, 4, 137.	1.5	21
375	Human NK cells adapt their immune response towards increasing multiplicities of infection of Aspergillus fumigatus. BMC Immunology, 2018, 19, 39.	0.9	14
376	Label-Free Bioaerosol Sensing Using Mobile Microscopy and Deep Learning. ACS Photonics, 2018, 5, 4617-4627.	3.2	59

		CITATION R	EPORT	
#	Article		IF	CITATIONS
377	Molecular Dynamics Simulation of Protein Biosurfactants. Colloids and Interfaces, 2018,	2, 39.	0.9	11
378	The Genus Wallemia—From Contamination of Food to Health Threat. Microorganisms,	2018, 6, 46.	1.6	62
379	Proteome Analysis Reveals the Conidial Surface Protein CcpA Essential for Virulence of th Pathogenic Fungus <i>Aspergillus fumigatus</i> . MBio, 2018, 9, .	he	1.8	53
380	Termites shape their collective behavioural response based on stage of infection. Scienti 2018, 8, 14433.	fic Reports,	1.6	47
381	Galleria mellonella as an insect model for P. destructans, the cause of White-nose Syndro PLoS ONE, 2018, 13, e0201915.	ome in bats.	1.1	11
382	Validation of a simplified in vitro Transwell® model of the alveolar surface to assess hos induced by different morphotypes of Aspergillus fumigatus. International Journal of Med Microbiology, 2018, 308, 1009-1017.	t immunity ical	1.5	10
383	Differential susceptibility of Dectinâ€1 isoforms to functional inactivation by neutrophil proteases. FASEB Journal, 2018, 32, 3385-3397.	and fungal	0.2	26
384	Nanomaterial–microbe cross-talk: physicochemical principles and (patho)biological co Chemical Society Reviews, 2018, 47, 5312-5337.	nsequences.	18.7	44
385	Nanoparticle decoration impacts airborne fungal pathobiology. Proceedings of the Natio of Sciences of the United States of America, 2018, 115, 7087-7092.	nal Academy	3.3	15
386	Dual-functional protein for one-step production of a soluble and targeted fluorescent dy Theranostics, 2018, 8, 3111-3125.	e.	4.6	17
387	Characterisation of the cellular and proteomic response of Galleria mellonella larvae to the development of invasive aspergillosis. BMC Microbiology, 2018, 18, 63.	าย	1.3	27
388	Innate and adaptive immune responses to fungi in the airway. Journal of Allergy and Clin Immunology, 2018, 142, 353-363.	ical	1.5	81
389	Additional oxidative stress reroutes the global response of Aspergillus fumigatus to iron BMC Genomics, 2018, 19, 357.	depletion.	1.2	41
390	Molecular Insights Into Development and Virulence Determinants of Aspergilli: A Proteor Perspective. Frontiers in Cellular and Infection Microbiology, 2018, 8, 180.	nic	1.8	19
391	Role of Hydrophobins in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 201	18, 4, 2.	1.5	93
392	Anti-Aspergillus Activities of the Respiratory Epithelium in Health and Disease. Journal of	Fungi (Basel,) Tj ETQq1	1 0,78431 1.5	4 rgBT /Over
393	Molecular architecture of fungal cell walls revealed by solid-state NMR. Nature Communi 2018, 9, 2747.	ications,	5.8	204
394	Probing Structural Changes during Self-assembly of Surface-Active Hydrophobin Proteins Functional Amyloids in Fungi. Journal of Molecular Biology, 2018, 430, 3784-3801.	s that Form	2.0	19

#	Article	IF	Citations
395	Diseases Caused by Aspergillus fumigatus. , 2018, , .		1
397	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
398	Aspergillus fumigatus and Aspergillosis in 2019. Clinical Microbiology Reviews, 2019, 33, .	5.7	534
399	In Vivo Effects of A Pro-PO System Inhibitor on the Phagocytosis of Xenorhabdus Nematophila in Galleria Mellonella Larvae. Insects, 2019, 10, 263.	1.0	8
400	Members of chitin synthase family in Metarhizium acridum differentially affect fungal growth, stress tolerances, cell wall integrity and virulence. PLoS Pathogens, 2019, 15, e1007964.	2.1	47
401	Enzyme activity and biochemical changes during production of Lentinula edodes (Berk.) Pegler. Food Science and Technology, 2019, 39, 774-780.	0.8	6
402	The prevalence of Aspergillus fumigatus in early cystic fibrosis disease is underestimated by culture-based diagnostic methods. Journal of Microbiological Methods, 2019, 164, 105683.	0.7	17
403	Conidial surface proteins at the interface of fungal infections. PLoS Pathogens, 2019, 15, e1007939.	2.1	22
404	Epsilon-poly-l-lysine decorated ordered mesoporous silica contributes to the synergistic antifungal effect and enhanced solubility of a lipophilic drug. Materials Science and Engineering C, 2019, 99, 231-240.	3.8	32
405	How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. Journal of Molecular Biology, 2019, 431, 2982-3009.	2.0	31
406	Genome description of Phlebia radiata 79 with comparative genomics analysis on lignocellulose decomposition machinery of phlebioid fungi. BMC Genomics, 2019, 20, 430.	1.2	16
407	Early Interaction of Alternaria infectoria Conidia with Macrophages. Mycopathologia, 2019, 184, 383-392.	1.3	6
408	Microbial functional amyloids serve diverse purposes for structure, adhesion and defence. Biophysical Reviews, 2019, 11, 287-302.	1.5	60
409	Different Hydrophobins of Fusarium graminearum Are Involved in Hyphal Growth, Attachment, Water-Air Interface Penetration and Plant Infection. Frontiers in Microbiology, 2019, 10, 751.	1.5	44
410	Assembly and disassembly of Aspergillus fumigatus conidial rodlets. Cell Surface, 2019, 5, 100023.	1.5	30
411	Recovery of Fungal Cells from Air Samples: a Tale of Loss and Gain. Applied and Environmental Microbiology, 2019, 85, .	1.4	21
412	Mitogen-Activated Protein Kinase Cross-Talk Interaction Modulates the Production of Melanins in Aspergillus fumigatus. MBio, 2019, 10, .	1.8	56
413	Pathophysiological aspects of <i>Aspergillus</i> colonization in disease. Medical Mycology, 2019, 57, S219-S227.	0.3	79

		CITATION REPORT	
#	Article	IF	CITATIONS
414	The different morphologies of yeast and filamentous fungi trigger distinct killing and feeding mechanisms in a fungivorous amoeba. Environmental Microbiology, 2019, 21, 1809-1820.	1.8	25
415	Effect of gene copy number and chaperone coexpression on recombinant hydrophobin HFBI biosurfactant production in <i>Pichia pastoris</i> . Biotechnology and Bioengineering, 2019, 116 2029-2040.	ō, 1.7	18
416	Transcriptomic Insights into Benzenamine Effects on the Development, Aflatoxin Biosynthesis, a Virulence of Aspergillus flavus. Toxins, 2019, 11, 70.	nd 1.5	12
417	Highly flexible infection programs in a specialized wheat pathogen. Ecology and Evolution, 2019, 275-294.	,9, 0.8	79
418	Hide and Seek: Nanomaterial Interactions With the Immune System. Frontiers in Immunology, 20 133.	019, 10, 2.2	87
419	Hydrophobins: multifunctional biosurfactants for interface engineering. Journal of Biological Engineering, 2019, 13, 10.	2.0	61
420	Fungal infection strategies. Virulence, 2019, 10, 835-838.	1.8	7
421	Hydrophobin Rodlets on the Fungal Cell Wall. Current Topics in Microbiology and Immunology, 2 425, 29-51.	.019, 0.7	16
422	Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Imm Surveillance. Current Topics in Microbiology and Immunology, 2019, 425, 297-330.	une 0.7	16
423	Resistance to Nano-Based Antifungals Is Mediated by Biomolecule Coronas. ACS Applied Materia & Interfaces, 2019, 11, 104-114.	ls 4.0	8
424	The puzzling construction of the conidial outer layer of <i>Aspergillus fumigatus</i> . Cellular Microbiology, 2019, 21, e12994.	1.1	30
425	Fast and Quantitative Evaluation of Human Leukocyte Interaction with Aspergillus fumigatus Co by Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cyto 2019, 95, 332-338.		28
426	Identification of the proteoforms of surface localized Rod A of Aspergillus flavus and determinati of the mechanism of proteoform generation. Journal of Proteomics, 2019, 193, 62-70.	on 1.2	6
428	Characteristics of atmospheric bacterial and fungal communities in PM2.5 following biomass bur disturbance in a rural area of North China Plain. Science of the Total Environment, 2019, 651, 27	ning 3.9 27-2739. 3.9	71
429	Phagocytes as central players in the defence against invasive fungal infection. Seminars in Cell a Developmental Biology, 2019, 89, 3-15.	nd 2.3	13
430	Neutrophil extracellular traps in fungal infection. Seminars in Cell and Developmental Biology, 20 89, 47-57.	019, 2.3	76
431	Mac-1 triggers neutrophil DNA extracellular trap formation to <i>Aspergillus fumigatus</i> independently of PAD4 histone citrullination. Journal of Leukocyte Biology, 2020, 107, 69-83.	1.5	53
433	Cancerâ€Targeted Nanomedicine: Overcoming the Barrier of the Protein Corona. Advanced Ther 2020, 3, 1900124.	apeutics, 1.6	77

	CITATION REI	PORT	
Article		IF	CITATIONS
Simple production of hydrophobin-fused domain III of dengue envelope protein and induc neutralizing antibodies against the homotypic serotype of dengue virus. Biotechnology Le 42, 419-428.	tion of etters, 2020,	1.1	2
A Comprehensive Phylogenetic and Bioinformatics Assessment of Hydrophobin Protein (H Drug Delivery: an In Silico Analysis. International Journal of Peptide Research and Therapeu 26, 1893-1903.		0.9	1
Sensing the threat posed by Aspergillus infection. Current Opinion in Microbiology, 2020,	58, 47-55.	2.3	7
HYD3, a conidial hydrophobin of the fungal entomopathogen Metarhizium acridum inductimmunity of its specialist host locust. International Journal of Biological Macromolecules, 1303-1311.	es the 2020, 165,	3.6	8
Anti-fungal T cell responses in the lung and modulation by the gut-lung axis. Current Opin Microbiology, 2020, 56, 67-73.	ion in	2.3	11
Chitin and chitosan—important structural components in Trichoderma cell wall remodel 243-280.	ing. , 2020, ,		3
The Fungal Cell Wall. Current Topics in Microbiology and Immunology, 2020, , .		0.7	7
Exploring malted barley waste for fungi producing surface active proteins like hydrophobi Applied Sciences, 2020, 2, 1.	ns. SN	1.5	2
The Role of RodA-Conserved Cysteine Residues in the Aspergillus fumigatus Conidial Surfa Organization. Journal of Fungi (Basel, Switzerland), 2020, 6, 151.	ICE	1.5	9
Mechanisms of nanotoxicity – biomolecule coronas protect pathological fungi against nanoparticle-based eradication. Nanotoxicology, 2020, 14, 1157-1174.		1.6	8
Biotinylated Surfome Profiling Identifies Potential Biomarkers for Diagnosis and Therapy o Aspergillus fumigatus Infection. MSphere, 2020, 5, .	f	1.3	8
<p>Fungal Isolates of the Respiratory Tract in Symptomatic Patients Hospitalized in Units: A Mycological and Molecular Epidemiologic Study</p> . Journal of Multidiscipli Healthcare, 2020, Volume 13, 661-669.	Pulmonary nary	1.1	12
Skin Immunity to Dermatophytes: From Experimental Infection Models to Human Disease Immunology, 2020, 11, 605644.	. Frontiers in	2.2	36
Boosting nanotoxicity to combat multidrug-resistant bacteria in pathophysiological enviro Nanoscale Advances, 2020, 2, 5428-5440.	onments.	2.2	9
Phagosomal removal of fungal melanin reprograms macrophage metabolism to promote a immunity. Nature Communications, 2020, 11, 2282.	antifungal	5.8	68
Platelets are critical for survival and tissue integrity during murine pulmonary Aspergillus f infection. PLoS Pathogens, 2020, 16, e1008544.	umigatus	2.1	16

450	Aspergillus fumigatus DHN-Melanin. Current Topics in Microbiology and Immunology, 2020, 425, 17-28.	0.7	10

451	Jos Wessels, 30 May 1934–30 October 2019. Mycologia, 2020, 112, 852-855.	0.8	0

#

434

436

438

440

442

444

446

448

#	Article	IF	CITATIONS
452	Enhanced Antitumor Efficacy of Curcumin-Loaded PLGA Nanoparticles Coated with Unique Fungal Hydrophobin. AAPS PharmSciTech, 2020, 21, 171.	1.5	8
453	Differential Interactions of Serum and Bronchoalveolar Lavage Fluid Complement Proteins with Conidia of Airborne Fungal Pathogen Aspergillus fumigatus. Infection and Immunity, 2020, 88, .	1.0	9
454	Hydrophobin-enhanced stability, dispersions and release of curcumin nanoparticles in water. Journal of Biomaterials Science, Polymer Edition, 2020, 31, 1793-1805.	1.9	6
455	Bronchial Epithelial Cells on the Front Line to Fight Lung Infection-Causing Aspergillus fumigatus. Frontiers in Immunology, 2020, 11, 1041.	2.2	19
456	PAMPs of the Fungal Cell Wall and Mammalian PRRs. Current Topics in Microbiology and Immunology, 2020, 425, 187-223.	0.7	29
457	Microbiomics: A Focal Point in GCBR and Biosecurity. , 2020, , 333-360.		1
458	Monocytes and the Host Response to Fungal Pathogens. Frontiers in Cellular and Infection Microbiology, 2020, 10, 34.	1.8	33
459	Signal Encoder of Real-Time Bio-Aerosol Counter Using 280 nm UV-LED Induced Fluorescence. IEEE Sensors Journal, 2020, 20, 13471-13479.	2.4	4
460	Dectin-1 Promotes Type I and III Interferon Expression to Support Optimal Antifungal Immunity in the Lung. Frontiers in Cellular and Infection Microbiology, 2020, 10, 321.	1.8	20
461	Degradation mechanism of Saccharomyces cerevisiae β-D-glucan by ionic liquid and dynamic high pressure microfluidization. Carbohydrate Polymers, 2020, 241, 116123.	5.1	9
462	Fungal Melanin Rewires Macrophage Metabolism. Trends in Biochemical Sciences, 2020, 45, 728-730.	3.7	2
463	Evolutionary compromises in fungal fitness: hydrophobins can hinder the adverse dispersal of conidiospores and challenge their survival. ISME Journal, 2020, 14, 2610-2624.	4.4	43
464	Murine Intraepithelial Dendritic Cells Interact With Phagocytic Cells During Aspergillus fumigatus-Induced Inflammation. Frontiers in Immunology, 2020, 11, 298.	2.2	4
465	Cell-free expression of natively folded hydrophobins. Protein Expression and Purification, 2020, 170, 105591.	0.6	6
466	Characterization and proâ€inflammatory potential of indoor mold particles. Indoor Air, 2020, 30, 662-681.	2.0	17
467	Targeting proinsulin to local immune cells using an intradermal microneedle delivery system; a potential antigen-specific immunotherapy for type 1 diabetes. Journal of Controlled Release, 2020, 322, 593-601.	4.8	21
468	The Fungal Cell Wall: Candida, Cryptococcus, and Aspergillus Species. Frontiers in Microbiology, 2019, 10, 2993.	1.5	416
469	Aspergillus fumigatus Cell Wall Promotes Apical Airway Epithelial Recruitment of Human Neutrophils. Infection and Immunity, 2020, 88, .	1.0	15

#	Article	IF	CITATIONS
470	Biology and Function of Exo-Polysaccharides from Human Fungal Pathogens. Current Clinical Microbiology Reports, 2020, 7, 1-11.	1.8	8
471	The Cell Wall Integrity Pathway Contributes to the Early Stages of <i>Aspergillus fumigatus</i> Asexual Development. Applied and Environmental Microbiology, 2020, 86, .	1.4	20
472	The Effect of Surface Hydrophobicity on the Attachment of Fungal Conidia to Substrates of Polyvinyl Acetate and Polyvinyl Alcohol. Journal of Polymers and the Environment, 2020, 28, 1450-1464.	2.4	20
473	Soluble hydrophobin mutants produced in Escherichia coli can self-assemble at various interfaces. Journal of Colloid and Interface Science, 2020, 573, 384-395.	5.0	2
474	Molecular Mechanisms of Conidial Germination in <i>Aspergillus</i> spp. Microbiology and Molecular Biology Reviews, 2020, 84, .	2.9	68
475	A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. Materials Science and Engineering C, 2020, 113, 110975.	3.8	64
476	Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends in Microbiology, 2021, 29, 416-427.	3.5	19
477	The role of fungi in fungal keratitis. Experimental Eye Research, 2021, 202, 108372.	1.2	37
478	Fungal infections—Background to specific fungal species. , 2021, , 15-48.		2
479	Development of a size-selective sampler combined with an adenosine triphosphate bioluminescence assay for the rapid measurement of bioaerosols. Environmental Research, 2021, 194, 110615.	3.7	3
480	The infectious propagules of <i>Aspergillus fumigatus</i> are coated with antimicrobial peptides. Cellular Microbiology, 2021, 23, e13301.	1.1	1
481	Comparative host transcriptome in response to pathogenic fungi identifies common and species-specific transcriptional antifungal host response pathways. Computational and Structural Biotechnology Journal, 2021, 19, 647-663.	1.9	16
482	Aspergillus and Aspergillosis. , 2022, , 330-347.		1
483	Wood as a hostile habitat for ligninolytic fungi. Advances in Botanical Research, 2021, 99, 115-149.	0.5	7
484	Amyloid Proteins in Plant-Associated Microbial Communities. Microbial Physiology, 2021, 31, 88-98.	1.1	7
485	The Cell Wall of Medically Relevant Yeasts and Molds. , 2021, , 12-22.		0
486	Neutrophil and Eosinophil DNA Extracellular Trap Formation: Lessons From Pathogenic Fungi. Frontiers in Microbiology, 2021, 12, 634043.	1.5	15
487	<i>In vitro</i> infection models to study fungal–host interactions. FEMS Microbiology Reviews, 2021, 45, .	3.9	16

#	Article	IF	CITATIONS
488	Peptides Derived From the α-Core and γ-Core Regions of a Putative Silybum marianum Flower Defensin Show Antifungal Activity Against Fusarium graminearum. Frontiers in Microbiology, 2021, 12, 632008.	1.5	8
489	Fungal immunity and pathogenesis in mammals versus the invertebrate model organism <i>Galleria mellonella</i> . Pathogens and Disease, 2021, 79, .	0.8	23
490	Species-Specific Immunological Reactivities Depend on the Cell-Wall Organization of the Two Aspergillus, Aspergillus fumigatus and A. flavus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 643312.	1.8	7
491	Allergic Diseases Caused by Aspergillus Species in Patients with Cystic Fibrosis. Antibiotics, 2021, 10, 357.	1.5	5
492	Effective adsorption of nisin on the surface of polystyrene using hydrophobin HGFI. International Journal of Biological Macromolecules, 2021, 173, 399-408.	3.6	6
493	Antibody-guided in vivo imaging of Aspergillus fumigatus lung infections during antifungal azole treatment. Nature Communications, 2021, 12, 1707.	5.8	29
494	Identifying Conserved Generic Aspergillus spp. Co-Expressed Gene Modules Associated with Germination Using Cross-Platform and Cross-Species Transcriptomics. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT	/Outerlock	: 1 0 Tf 50 493
495	Neutrophil-Derived Tumor Necrosis Factor Drives Fungal Acute Lung Injury in Chronic Granulomatous Disease. Journal of Infectious Diseases, 2021, 224, 1225-1235.	1.9	7
496	Understanding the fundamental role of virulence determinants to combat Aspergillus fumigatus infections: exploring beyond cell wall. Mycological Progress, 2021, 20, 365-380.	0.5	2
498	Characterization of the mbsA Gene Encoding a Putative APSES Transcription Factor in Aspergillus fumigatus. International Journal of Molecular Sciences, 2021, 22, 3777.	1.8	9
499	At least three families of hyphosphere small secreted cysteineâ€rich proteins can optimize surface properties to a moderately hydrophilic state suitable for fungal attachment. Environmental Microbiology, 2021, 23, 5750-5768.	1.8	12
500	Membrane Remodeling by DNA Origami Nanorods: Experiments Exploring the Parameter Space for Vesicle Remodeling. Langmuir, 2021, 37, 6219-6231.	1.6	5
501	Nutrient sensing and acquisition in fungi: mechanisms promoting pathogenesis in plant and human hosts. Fungal Biology Reviews, 2021, 36, 1-14.	1.9	16
502	Fungal biosurfactants, from nature to biotechnological product: bioprospection, production and potential applications. Bioprocess and Biosystems Engineering, 2021, 44, 2003-2034.	1.7	46
503	Characterisation and comparative analysis of hydrophobin isolated from Pleurotus floridanus (PfH). Protein Expression and Purification, 2021, 182, 105834.	0.6	4
504	Characterisation of Aspergillus fumigatus Endocytic Trafficking within Airway Epithelial Cells Using High-Resolution Automated Quantitative Confocal Microscopy. Journal of Fungi (Basel, Switzerland), 2021, 7, 454.	1.5	14
505	Structures of Pathological and Functional Amyloids and Prions, a Solid-State NMR Perspective. Frontiers in Molecular Neuroscience, 2021, 14, 670513.	1.4	18
506	Elizabethkingia anophelis , an emerging pathogen, inhibits RAW 264.7 macrophage function. Microbiology and Immunology, 2021, 65, 317-324.	0.7	1

#	Article	IF	CITATIONS
507	Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Critical Reviews in Microbiology, 2022, 48, 197-221.	2.7	11
508	Pyomelanin Synthesis in Alternaria alternata Inhibits DHN-Melanin Synthesis and Decreases Cell Wall Chitin Content and Thickness. Frontiers in Microbiology, 2021, 12, 691433.	1.5	16
509	The growth of marine fungi on seaweed polysaccharides produces cerato-platanin and hydrophobin self-assembling proteins. Microbiological Research, 2021, 251, 126835.	2.5	5
510	Pathogenic Aspergillus and Fusarium as important causes of blinding corneal infections — the role of neutrophils in fungal killing, tissue damage and cytokine production. Current Opinion in Microbiology, 2021, 63, 195-203.	2.3	17
511	Effective drug delivery system based on hydrophobin and halloysite clay nanotubes for sustained release of doxorubicin. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 628, 127351.	2.3	11
512	Aspergillus Lung Disease. , 2022, , 40-57.		1
513	Hiding in Plain Sight. Cell Host and Microbe, 2021, 29, 5-7.	5.1	1
514	GPI Anchored Proteins in Aspergillus fumigatus and Cell Wall Morphogenesis. Current Topics in Microbiology and Immunology, 2020, 425, 167-186.	0.7	16
515	Imaging Living Yeast Cells and Quantifying Their Biophysical Properties by Atomic Force Microscopy. Fungal Biology, 2015, , 125-141.	0.3	3
516	Fungal Hydrophobins and Their Self-Assembly into Functional Nanomaterials. Advances in Experimental Medicine and Biology, 2019, 1174, 161-185.	0.8	12
517	All-Natural Smart Mycelium Surface with Tunable Wettability. ACS Applied Bio Materials, 2021, 4, 1015-1022.	2.3	21
518	Functional amyloid: widespread in Nature, diverse in purpose. Essays in Biochemistry, 2014, 56, 207-219.	2.1	123
524	The Putative APSES Transcription Factor RgdA Governs Growth, Development, Toxigenesis, and Virulence in Aspergillus fumigatus. MSphere, 2020, 5, .	1.3	13
525	Necrotising pneumonia and bronchiectasis in a previously healthy 30-year-old man. BMJ Case Reports, 2015, 2015, bcr2014207747-bcr2014207747.	0.2	2
526	CD4+ T cell vaccination overcomes defective cross-presentation of fungal antigens in a mouse model of chronic granulomatous disease. Journal of Clinical Investigation, 2012, 122, 1816-1831.	3.9	71
527	Healthy Human T-Cell Responses to Aspergillus fumigatus Antigens. PLoS ONE, 2010, 5, e9036.	1.1	79
528	The Temporal Dynamics of Differential Gene Expression in Aspergillus fumigatus Interacting with Human Immature Dendritic Cells In Vitro. PLoS ONE, 2011, 6, e16016.	1.1	72
529	Dual Organism Transcriptomics of Airway Epithelial Cells Interacting with Conidia of Aspergillus fumigatus. PLoS ONE, 2011, 6, e20527.	1.1	79

		CITATION REP	ORT	
#	Article		IF	CITATIONS
530	Characterisation of Innate Fungal Recognition in the Lung. PLoS ONE, 2012, 7, e35675.		1.1	45
531	Characterization of PbPga1, an Antigenic GPI-Protein in the Pathogenic Fungus Paracocci brasiliensis. PLoS ONE, 2012, 7, e44792.	dioides	1.1	24
532	Strain Dependent Variation of Immune Responses to A. fumigatus: Definition of Pathoger PLoS ONE, 2013, 8, e56651.	ic Species.	1.1	88
533	Six Hydrophobins Are Involved in Hydrophobin Rodlet Formation in Aspergillus nidulans an Contribute to Hydrophobicity of the Spore Surface. PLoS ONE, 2014, 9, e94546.	nd	1.1	61
534	Gene Expression Profiles of Human Dendritic Cells Interacting with Aspergillus fumigatus Model of the Alveolar Epithelium/Endothelium Interface. PLoS ONE, 2014, 9, e98279.	n a Bilayer	1.1	24
535	Isolate-Dependent Growth, Virulence, and Cell Wall Composition in the Human Pathogen fumigatus. PLoS ONE, 2014, 9, e100430.	Aspergillus	1.1	37
536	A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumiga PLoS ONE, 2014, 9, e109855.	tus Conidia.	1.1	23
537	Metagenomic Human Repiratory Air in a Hospital Environment. PLoS ONE, 2015, 10, e013	9044.	1.1	6
538	Allergic Aspergillosis and the Antigens of Aspergillus fumigatus. Current Protein and Pepti 2014, 15, 403-423.	de Science,	0.7	18
539	Recognition of Fungal Components by the Host Immune System. Current Protein and Pep 2020, 21, 245-264.	tide Science,	0.7	9
540	Proteome Analysis Revealed Jak/Stat Signaling and Cytoskeleton Rearrangement Proteins Lung Epithelial Cells During Interaction with Aspergillus terreus. Current Signal Transduct Therapy, 2019, 14, 55-67.	in Human on	0.3	4
541	Allergic bronchopulmonary aspergillosis. Indian Journal of Medical Research, 2020, 151, 5	29.	0.4	60
542	Proteomic Differences between Azole-Susceptible and -Resistant <i>Aspergillus fumigatus</i> Strains. Advances in Microbiology, 2018, 08, 77-99.		0.3	5
543	Understanding the Assembly Mechanism of Proteins from Monte Carlo Simulations. Appli Mathematics, 2017, 08, 280-292.	ed	0.1	1
545	Aspergillus Infections. New England Journal of Medicine, 2021, 385, 1496-1509.		13.9	74
546	Novel acute hypersensitivity pneumonitis model induced by airway mycosis and high dose lipopolysaccharide. Respiratory Research, 2021, 22, 263.		1.4	2
549	Allergic bronchopulmonary aspergillosis and other fungal diseases. , 2011, , 97-114.			2
551	A Retrospective Study of the Risk Factors for Invasive Aspergillosis in Iran. , 2013, 02, .			2

#	Article	IF	CITATIONS
552	4 Receptor–Ligand Interactions in Fungal Infections. , 2014, , 77-96.		0
553	Transcriptome in Human Mycoses. , 2014, , 227-263.		0
554	Overview of Fungal Pathogens. , 0, , 165-172.		0
555	Fungal Rhinosinusitis. , 2015, , 131-159.		0
556	Allergic bronchopulmonar aspergillosis in asthmatic patients. Russian Journal of Allergy, 2015, 12, 37-46.	0.1	2
557	Immunotherapy of Invasive Fungal Disease. , 2017, , 187-205.		Ο
559	Diseases Caused by Aspergillus fumigatus. , 2018, , 591-599.		0
560	Molecular and Microscopic Identification of Fungi in Micropropagation of Nodal and Shoot Tip Culture of Orange. International Journal of Pure & Applied Bioscience, 2018, 6, 6-19.	0.1	2
561	AMYLOIDS, COMMON PROTEINS AMONG MICROORGANISMS. Postepy Mikrobiologii, 2019, 56, 77-87.	0.1	1
563	Adaptive holographic region of interest illumination with oblique angles for use in single molecule localization microscopy. , 2019, , .		0
566	The Biosynthetic Pathway of 1,6-Branched β-(1,3)-Glucan, the Biopolymer That Constitutes the Core Structure of Fungal Cell Walls. Trends in Glycoscience and Glycotechnology, 2020, 32, J99-J104.	0.0	0
567	Hydrophobins—Exclusive fungal proteins. , 2020, , 57-69.		0
568	Immune Sensing and Potential Immunotherapeutic Approaches to Control Chromoblastomycosis. Journal of Fungi (Basel, Switzerland), 2021, 7, 3.	1.5	7
569	MicroRNA regulation and host interaction in response to Aspergillus exposure. Biocell, 2022, 46, 339-356.	0.4	2
570	3 Genetics of the Unfolded Protein Response in Fungi. , 2020, , 49-76.		0
572	The Biosynthetic Pathway of 1,6-Branched β-(1,3)-Glucan, the Biopolymer That Constitutes the Core Structure of Fungal Cell Walls. Trends in Glycoscience and Glycotechnology, 2020, 32, E119-E125.	0.0	1
574	Bio-offense: Black biology. , 2022, , 109-126.		1
575	Wnt-Î ² -Catenin Signaling in Human Dendritic Cells Mediates Regulatory T-Cell Responses to Fungi via the PD-L1 Pathway. MBio, 2021, 12, e0282421.	1.8	18

#	Article	IF	CITATIONS
576	A review of microbial and chemical assessment of indoor surfaces. Applied Spectroscopy Reviews, 2022, 57, 817-889.	3.4	4
577	Expression of immune response genes in human corneal epithelial cells interacting with Aspergillus flavus conidia. BMC Genomics, 2022, 23, 5.	1.2	6
578	Deficiency of GPI Glycan Modification by Ethanolamine Phosphate Results in Increased Adhesion and Immune Resistance of Aspergillus fumigatus. Frontiers in Cellular and Infection Microbiology, 2021, 11, 780959.	1.8	2
579	The N-terminal tail of the hydrophobin SC16 is not required for rodlet formation. Scientific Reports, 2022, 12, 366.	1.6	2
580	Sensing microbial infections in the Drosophila melanogaster genetic model organism. Immunogenetics, 2022, 74, 35-62.	1.2	15
581	The Gut Mycobiome and Animal Health. The Microbiomes of Humans, Animals, Plants, and the Environment, 2022, , 85-125.	0.2	4
583	Adsorption Kinetics and Self-Assembled Structures of Aspergillus oryzae Hydrophobin RolA on Hydrophobic and Charged Solid Surfaces. Applied and Environmental Microbiology, 2022, 88, AEM0208721.	1.4	3
584	The battle for oxygen during bacterial and fungal infections. Trends in Microbiology, 2022, 30, 643-653.	3.5	17
585	Aspergillus fumigatus—Host Interactions Mediating Airway Wall Remodelling in Asthma. Journal of Fungi (Basel, Switzerland), 2022, 8, 159.	1.5	11
586	A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Current Biology, 2022, 32, 1115-1130.e6.	1.8	22
587	Interactions Between Intracellular Fungal Pathogens and Host Phagocytes. , 2022, , .		0
589	Allergic Bronchopulmonary Aspergillosis. Clinics in Chest Medicine, 2022, 43, 99-125.	0.8	45
590	Recent Advances in Fungal Infections: From Lung Ecology to Therapeutic Strategies With a Focus on Aspergillus spp Frontiers in Medicine, 2022, 9, 832510.	1.2	6
591	Isoeugenol affects expression pattern of conidial hydrophobin gene RodA and transcriptional regulators MedA and SomA responsible for adherence and biofilm formation in Aspergillus fumigatus. Archives of Microbiology, 2022, 204, 214.	1.0	11
592	Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae. Microbiology Spectrum, 2022, 10, e0247821.	1.2	7
593	FIBCD1 Deficiency Decreases Disease Severity in a Murine Model of Invasive Pulmonary Aspergillosis. ImmunoHorizons, 2021, 5, 983-993.	0.8	6
594	Is in vitro cytokine release a suitable marker to improve the diagnosis of suspected mold-related respiratory symptoms? A proof-of-concept study. Allergologie Select, 2022, 6, 133-141.	1.6	1
600	Characterization of β-Glucan-Peanut Protein Isolate/Soy Protein Isolate Conjugates and Their Application on Low-Fat Sausage. Molecules, 2022, 27, 3037.	1.7	6

#	Article	IF	CITATIONS
601	Monoclonal Antibodies and Invasive Aspergillosis: Diagnostic and Therapeutic Perspectives. International Journal of Molecular Sciences, 2022, 23, 5563.	1.8	7
602	Design and synthesis of eugenol/isoeugenol glycoconjugates and other analogues as antifungal agents against <i>Aspergillus fumigatus</i> . RSC Medicinal Chemistry, 2022, 13, 955-962.	1.7	10
604	Characterization of Aspergillus terreus Accessory Conidia and Their Interactions With Murine Macrophages. Frontiers in Microbiology, 0, 13, .	1.5	2
605	Computational Modeling of Macrophage Iron Sequestration during Host Defense against Aspergillus. MSphere, 2022, 7, .	1.3	3
606	Stimulating the autophagic-lysosomal axis enhances host defense against fungal infection in a zebrafish model of invasive Aspergillosis. Autophagy, 2023, 19, 324-337.	4.3	4
607	Aspergillus Hydrophobins: Physicochemical Properties, Biochemical Properties, and Functions in Solid Polymer Degradation. Microorganisms, 2022, 10, 1498.	1.6	6
608	Novel Treatment Approach for Aspergilloses by Targeting Germination. Journal of Fungi (Basel,) Tj ETQq0 0 0 rgBT	/Oyerlock 1.5	10 Tf 50 50
609	Laboratory biomarkers in the diagnosis and follow-up of treatment of allergic bronchopulmonary aspergillosis in cystic fibrosis. Critical Reviews in Clinical Laboratory Sciences, 2023, 60, 1-24.	2.7	3
610	Fungal resilience and host–pathogen interactions: Future perspectives and opportunities. Parasite Immunology, 2023, 45, .	0.7	6
612	A dissemination-prone morphotype enhances extrapulmonary organ entry by Cryptococcus neoformans. Cell Host and Microbe, 2022, 30, 1382-1400.e8.	5.1	21
613	A novel hydrophobin encoded by hgfII from Grifola frondosa exhibiting excellent self-assembly ability. Frontiers in Microbiology, 0, 13, .	1.5	2
614	The TLR-NF-kB axis contributes to the monocytic inflammatory response against a virulent strain of Lichtheimia corymbifera, a causative agent of invasive mucormycosis. Frontiers in Immunology, 0, 13, .	2.2	2
615	Architecture of the dynamic fungal cell wall. Nature Reviews Microbiology, 2023, 21, 248-259.	13.6	59
616	The nature of the fungal cargo induces significantly different temporal programmes of macrophage phagocytosis. Cell Surface, 2022, 8, 100082.	1.5	2
617	Efficient expression of hydrophobin HGFII-his via POT1-mediated δ integration strategy and its potential in curcumin nanoformulation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 656, 130344.	2.3	2
618	Cell-free synthesis of amyloid fibrils with infectious properties and amenable to sub-milligram magic-angle spinning NMR analysis. Communications Biology, 2022, 5, .	2.0	1
619	The Hydrophobin Gene Family Confers a Fitness Trade-off between Spore Dispersal and Host Colonization in Penicillium expansum. MBio, 2022, 13, .	1.8	6
620	Biodegradation of highly crystallized poly(ethylene terephthalate) through cell surface codisplay of bacterial PETase and hydrophobin. Nature Communications, 2022, 13, .	5.8	25

#	Article	IF	CITATIONS
621	Targeting of phagolysosomes containing conidia of the fungus Aspergillus fumigatus with polymeric particles. Applied Microbiology and Biotechnology, 0, , .	1.7	0
622	A Strategy of On-Demand Immune Activation for Antifungal Treatment Using Near-Infrared Responsive Conjugated Polymer Nanoparticles. Nano Letters, 2023, 23, 326-335.	4.5	4
623	Parietal composition of <i>Lichtheimia corymbifera</i> : differences between spore and germ tube stages and host-pathogen interactions. Medical Mycology, 0, , .	0.3	0
624	Immune responses to human fungal pathogens andÂtherapeutic prospects. Nature Reviews Immunology, 2023, 23, 433-452.	10.6	47
625	A Melanin-Deficient Isolate of Venturia inaequalis Reveals Various Roles of Melanin in Pathogen Life Cycle and Fitness. Journal of Fungi (Basel, Switzerland), 2023, 9, 35.	1.5	2
626	Protein-Based Biological Materials: Molecular Design and Artificial Production. Chemical Reviews, 2023, 123, 2049-2111.	23.0	31
627	Conidium Specific Polysaccharides in Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2023, 9, 155.	1.5	4
628	Solid-state NMR molecular snapshots of <i>Aspergillus fumigatus</i> cell wall architecture during a conidial morphotype transition. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	10
629	The Role of the Fusarium oxysporum FTF2 Transcription Factor in Host Colonization and Virulence in Common Bean Plants (Phaseolus vulgaris L.). Pathogens, 2023, 12, 380.	1.2	1
630	The therapeutic role and mechanism of 4-Methoxycinnamic acid in fungal keratitis. International Immunopharmacology, 2023, 116, 109782.	1.7	3
631	Immunity to pathogenic fungi in the eye. Seminars in Immunology, 2023, 67, 101753.	2.7	1
632	The New GPI-Anchored Protein, SwgA, Is Involved in Nitrogen Metabolism in the Pathogenic Filamentous Fungus Aspergillus fumigatus. Journal of Fungi (Basel, Switzerland), 2023, 9, 256.	1.5	1
633	Hydrophobin Gene Cmhyd4 Negatively Regulates Fruiting Body Development in Edible Fungi Cordyceps militaris. International Journal of Molecular Sciences, 2023, 24, 4586.	1.8	1
634	Utilization of agroindustrial and food by-products for the production of amphiphilic proteins and peptides. , 2023, , 163-176.		0
635	"Under Pressure―– How fungi evade, exploit, and modulate cells of the innate immune system. Seminars in Immunology, 2023, 66, 101738.	2.7	2
636	Design and Synthesis of 1,3â€Diynes as Potent Antifungal Agents against <i>Aspergillus fumigatus</i> . ChemMedChem, 2023, 18, .	1.6	1
637	Fungal infections: Immune defense, immunotherapies and vaccines. Advanced Drug Delivery Reviews, 2023, 196, 114775.	6.6	14
648	COVID-19 and secondary fungal infections. , 2023, , 203-221.		0

#	Article	IF	CITATIONS
650	Peptide and Protein Emulsifiers. , 2023, , 431-474.		0
663	Masters of Manipulation: How Our Molecular Understanding of Model Symbiotic Fungi and Their Hosts Is Changing the Face of "Mutualismâ€: , 2024, , 249-272.		0