Enhancing CD8 T-cell memory by modulating fatty acid

Nature 460, 103-107 DOI: 10.1038/nature08097

Citation Report

#	Article	IF	CITATIONS
1	Pharmacologic Induction of CD8 ⁺ T Cell Memory: Better Living Through Chemistry. Science Translational Medicine, 2009, 1, 11ps12.	5.8	61
2	Editorial. European Journal of Immunology, 2009, 39, 1979-1981.	1.6	0
3	The Possible Cellular Mechanism for Extending Lifespan of Mice with Rapamycin. Biological Procedures Online, 2009, 11, 1-2.	1.4	7
4	Does diabetes therapy influence the risk of cancer?. Diabetologia, 2009, 52, 1699-1708.	2.9	308
5	Thanks for the memory. Reviews in Medical Virology, 2009, 19, 315-316.	3.9	0
6	Decreasing the TORC on memory CD8 Tâ€cell formation. Immunology and Cell Biology, 2009, 87, 571-573.	1.0	0
7	A metabolic switch to memory. Nature, 2009, 460, 41-42.	13.7	61
8	Photons pushed together. Nature, 2009, 460, 42-44.	13.7	19
9	Notable advances. Nature Medicine, 2009, 15, 1349-1349.	15.2	0
11	The precursors of memory: models and controversies. Nature Reviews Immunology, 2009, 9, 662-668.	10.6	170
12	Diversity in T Cell Memory: An Embarrassment of Riches. Immunity, 2009, 31, 859-871.	6.6	344
13	Time to rethink immunosuppression by mTOR inhibitors?. Nature Reviews Nephrology, 2009, 5, 611-612.	4.1	9
15	The persistence of T cell memory. Cellular and Molecular Life Sciences, 2010, 67, 2863-2878.	2.4	12
16	The mTOR Kinase Determines Effector versus Memory CD8+ T Cell Fate by Regulating the Expression of Transcription Factors T-bet and Eomesodermin. Immunity, 2010, 32, 67-78.	6.6	560
17	Immune memory and aging: an infinite or finite resource?. Current Opinion in Immunology, 2010, 22, 535-540.	2.4	55
18	Metabolic properties of chicken embryonic stem cells. Science China Life Sciences, 2010, 53, 1073-1084.	2.3	6
19	Immunotherapy of pediatric brain tumor patients should include an immunoprevention strategy: a medical hypothesis paper. Journal of Neuro-Oncology, 2010, 97, 159-169.	1.4	9
20	Immune Memory: the Basics and How to Trigger an Efficient Long-Term Immune Memory. Journal of Comparative Pathology, 2010, 142, S91-S95.	0.1	3

#	Article	IF	CITATIONS
21	Transcriptome analysis of Traf6 function in the innate immune response of zebrafish embryos. Molecular Immunology, 2010, 48, 179-190.	1.0	55
22	Targeting the autophagy pathway for cancer chemoprevention. Current Opinion in Cell Biology, 2010, 22, 218-225.	2.6	33
23	Metabolism in T cell activation and differentiation. Current Opinion in Immunology, 2010, 22, 314-320.	2.4	244
24	mTOR signalling and metabolic regulation of T cell differentiation. Current Opinion in Immunology, 2010, 22, 655-661.	2.4	78
25	Interleukin-2 Receptor Signaling: At the Interface between Tolerance and Immunity. Immunity, 2010, 33, 153-165.	6.6	654
26	The Mammalian Target of Rapamycin: Linking T Cell Differentiation, Function, and Metabolism. Immunity, 2010, 33, 301-311.	6.6	429
27	From Vaccines to Memory and Back. Immunity, 2010, 33, 451-463.	6.6	523
28	The metabolic life and times of a Tâ€cell. Immunological Reviews, 2010, 236, 190-202.	2.8	154
29	Generation of effector CD8 ⁺ T cells and their conversion to memory T cells. Immunological Reviews, 2010, 236, 151-166.	2.8	229
30	Terminating the immune response. Immunological Reviews, 2010, 236, 5-10.	2.8	34
31	Leukocyte Pyruvate Kinase Expression is Reduced in Normal Human Pregnancy but not in Preâ€eclampsia. American Journal of Reproductive Immunology, 2010, 64, 137-151.	1.2	11
32	Tâ€cell exhaustion: characteristics, causes and conversion. Immunology, 2010, 129, 474-481.	2.0	506
33	Once a killer, always a killer: from cytotoxic T cell to memory cell. Immunological Reviews, 2010, 235, 206-218.	2.8	84
34	The role of mTOR in memory CD8 ⁺ Tâ€cell differentiation. Immunological Reviews, 2010, 235, 234-243.	2.8	157
35	New Strategies in Pancreatic Cancer: Emerging Epidemiologic and Therapeutic Concepts: Fig. 1 Clinical Cancer Research, 2010, 16, 4313-4318.	3.2	56
36	Balancing biosynthesis and bioenergetics: metabolic programs in oncogenesis. Endocrine-Related Cancer, 2010, 17, R287-R304.	1.6	62
37	Differential effects of STAT5 and PI3K/AKT signaling on effector and memory CD8 T-cell survival. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 16601-16606.	3.3	186
38	Early events governing memory CD8+ T-cell differentiation. International Immunology, 2010, 22, 619-625.	1.8	66

#	Article	IF	CITATIONS
39	Reduced Functional Avidity Promotes Central and Effector Memory CD4 T Cell Responses to Tumor-Associated Antigens. Journal of Immunology, 2010, 185, 6545-6554.	0.4	53
40	CD8 T-Cell Memory Differentiation during Acute and Chronic Viral Infections. Advances in Experimental Medicine and Biology, 2010, 684, 79-95.	0.8	58
42	Wnt/β-Catenin Signaling in T-Cell Immunity and Cancer Immunotherapy. Clinical Cancer Research, 2010, 16, 4695-4701.	3.2	145
43	Pathogenic virus-specific T cells cause disease during treatment with the calcineurin inhibitor FK506: implications for transplantation. Journal of Experimental Medicine, 2010, 207, 2355-2367.	4.2	33
44	Fine-tuning CD8 ⁺ T-cell functional responses: mTOR acts as a rheostat for regulating CD8 ⁺ T-cell proliferation, survival and differentiation?. Cell Cycle, 2010, 9, 3068-3073.	1.3	18
45	Cutting Edge: Expression of the Transcription Factor E74-Like Factor 4 Is Regulated by the Mammalian Target of Rapamycin Pathway in CD8+ T Cells. Journal of Immunology, 2010, 185, 3824-3828.	0.4	22
46	Distinct Pathogenesis and Host Responses during Infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathogens, 2010, 6, e1000982.	2.1	297
47	Shaping Successful and Unsuccessful CD8 T Cell Responses Following Infection. Journal of Biomedicine and Biotechnology, 2010, 2010, 1-12.	3.0	26
48	Sirolimus for calcineurin inhibitors in organ transplantation: contra. Kidney International, 2010, 78, 1068-1074.	2.6	46
49	Revealing the molecular relationship between type 2 diabetes and the metabolic changes induced by a very-low-carbohydrate low-fat ketogenic diet. Nutrition and Metabolism, 2010, 7, 88.	1.3	18
50	The burden of obesity on infectious disease. Experimental Biology and Medicine, 2010, 235, 1412-1424.	1.1	241
51	Metformin and Other Biguanides in Oncology: Advancing the Research Agenda. Cancer Prevention Research, 2010, 3, 1060-1065.	0.7	205
52	Molecular pathways regulating CD4+ T cell differentiation, anergy and memory with implications for vaccines. Trends in Molecular Medicine, 2010, 16, 478-491.	3.5	34
53	Identification of Stem Cell Transcriptional Programs Normally Expressed in Embryonic and Neural Stem Cells in Alloreactive CD8+ T Cells Mediating Graft-versus-Host Disease. Biology of Blood and Marrow Transplantation, 2010, 16, 751-771.	2.0	19
54	Metformin and cancer: licence to heal?. Expert Opinion on Investigational Drugs, 2010, 19, 913-917.	1.9	32
55	Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood, 2010, 115, 4742-4749.	0.6	998
56	How Tolerogenic Dendritic Cells Induce Regulatory T Cells. Advances in Immunology, 2010, 108, 111-165.	1.1	468
57	Cutting Edge: Distinct Glycolytic and Lipid Oxidative Metabolic Programs Are Essential for Effector and Regulatory CD4+ T Cell Subsets. Journal of Immunology, 2011, 186, 3299-3303.	0.4	1,645

#	Article	IF	CITATIONS
58	Akt Requires Glucose Metabolism to Suppress Puma Expression and Prevent Apoptosis of Leukemic T Cells. Journal of Biological Chemistry, 2011, 286, 5921-5933.	1.6	94
59	Inhibition of fatty acid metabolism ameliorates disease activity in an animal model of multiple sclerosis. Scientific Reports, 2011, 1, 79.	1.6	81
60	Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nature Immunology, 2011, 12, 1230-1237.	7.0	165
61	Expression of chemokine receptor CXCR3 on T cells affects the balance between effector and memory CD8 T-cell generation. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, E118-27.	3.3	153
62	HIF1α–dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. Journal of Experimental Medicine, 2011, 208, 1367-1376.	4.2	1,447
63	Impact of Metformin on the Prognosis of Cirrhosis Induced by Viral Hepatitis C in Diabetic Patients. Journal of Clinical Endocrinology and Metabolism, 2011, 96, 2601-2608.	1.8	152
64	Strategies and Implications for Prime-Boost Vaccination to Generate Memory CD8 T Cells. Advances in Experimental Medicine and Biology, 2011, 780, 69-83.	0.8	35
65	A human memory T cell subset with stem cell–like properties. Nature Medicine, 2011, 17, 1290-1297.	15.2	1,547
67	Memory in disguise. Nature Medicine, 2011, 17, 1182-1183.	15.2	20
68	Alternative Macrophage Activation and Metabolism. Annual Review of Pathology: Mechanisms of Disease, 2011, 6, 275-297.	9.6	507
70	Metronomic scheduling of anticancer treatment: the next generation of multitarget therapy?. Future Oncology, 2011, 7, 385-394.	1.1	41
71	Metformine et cancer. Du diabète au cancerÂ: de nouvelles perspectives thérapeutiques pour la metformine. Medecine Des Maladies Metaboliques, 2011, 5, 29-37.	0.1	4
72	Aberrant CD8+ T-Cell Responses and Memory Differentiation upon Viral Infection of an Ataxia-Telangiectasia Mouse Model Driven by Hyper-Activated Akt and mTORC1 Signaling. American Journal of Pathology, 2011, 178, 2740-2751.	1.9	11
73	Opposing Signals from the Bcl6 Transcription Factor and the Interleukin-2 Receptor Generate T Helper 1 Central and Effector Memory Cells. Immunity, 2011, 35, 583-595.	6.6	378
74	An Interleukin-21- Interleukin-10-STAT3 Pathway Is Critical for Functional Maturation of Memory CD8+ T Cells. Immunity, 2011, 35, 792-805.	6.6	331
75	The Transcription Factor Myc Controls Metabolic Reprogramming upon T Lymphocyte Activation. Immunity, 2011, 35, 871-882.	6.6	1,698
76	T Cell Myc-tabolism. Immunity, 2011, 35, 845-846.	6.6	20
77	Cytokines and the inception of CD8 T cell responses. Trends in Immunology, 2011, 32, 180-186.	2.9	107

ARTICLE IF CITATIONS # FOXP3 Orchestrates H4K16 Acetylation and H3K4 Trimethylation for Activation of Multiple Genes by 4.5 67 78 Recruiting MOF and Causing Displacement of PLU-1. Molecular Cell, 2011, 44, 770-784. Gerosuppressant Metformin: less is more. Aging, 2011, 3, 348-362. 79 1.4 The Dynamic Processing of CD46 Intracellular Domains Provides a Molecular Rheostat for T Cell 80 1.1 58 Activation. PLoS ONE, 2011, 6, e16287. Temporal Regulation of Rapamycin on Memory CTL Programming by IL-12. PLoS ONE, 2011, 6, e25177. 1.1 mTOR Signaling and Metabolic Regulation of T Cells: New Potential Therapeutic Targets in 82 0.9 29 Autoimmune Diseases. Current Pharmaceutical Design, 2011, 17, 3888-3897. Next-generation leukemia immunotherapy. Blood, 2011, 118, 2951-2959. Immunologic considerations for generating memory CD8 T cells through vaccination. Cellular 84 1.1 65 Microbiology, 2011, 13, 925-933. Therapeutic cancer vaccines: are we there yet?. Immunological Reviews, 2011, 239, 27-44. 2.8 249 A nonâ€human primate model for analysis of safety, persistence, and function of adoptively transferred 86 0.3 16 T cells. Journal of Medical Primatology, 2011, 40, 88-103. Phosphoproteomic analysis reveals an intrinsic pathway for the regulation of histone deacetylase 7 that controls the function of cytotoxic T lymphocytes. Nature Immunology, 2011, 12, 352-361. Origins of CD4+ effector and central memory T cells. Nature Immunology, 2011, 12, 467-471. 88 7.0 325 Metabolism, migration and memory in cytotoxic T cells. Nature Reviews Immunology, 2011, 11, 109-117. 203 Metformin as an antitumor agent in cancer prevention and treatment. Journal of Diabetes, 2011, 3, 90 0.8 59 320-327. Sirolimus Enhances the Magnitude and Quality of Viral-Specific CD8+ T-Cell Responses to Vaccinia 2.6 94 Virus Vaccination in Rhesus Macaques. American Journal of Transplantation, 2011, 11, 613-618. Paradoxical Aspects of Rapamycin Immunobiology in Transplantation. American Journal of 92 2.6 65 Transplantation, 2011, 11, 654-659. Therapy With m-TOR Inhibitors Decreases the Response to the Pandemic Influenza A H1N1 Vaccine in Solid Organ Transplant Recipients. American Journal of Transplantation, 2011, 11, 2205-2213. LKB1 loss of function studied in vivo. FEBS Letters, 2011, 585, 958-966. 94 1.317 TOR in the immune system. Current Opinion in Cell Biology, 2011, 23, 707-715.

#	Article	IF	CITATIONS
96	The Liver Kinase B1 Is a Central Regulator of T Cell Development, Activation, and Metabolism. Journal of Immunology, 2011, 187, 4187-4198.	0.4	202
97	Optimizing vaccine-induced CD8+T-cell immunity: focus on recombinant adenovirus vectors. Expert Review of Vaccines, 2011, 10, 1307-1319.	2.0	31
98	Therapeutic effects of metformin in breast cancer: involvement of the immune system?. Cancer Immunology, Immunotherapy, 2011, 60, 1221-1225.	2.0	17
99	Protein Kinase B Controls Transcriptional Programs that Direct Cytotoxic T Cell Fate but Is Dispensable for T Cell Metabolism. Immunity, 2011, 34, 224-236.	6.6	235
100	A Central Role for mTOR Kinase in Homeostatic Proliferation Induced CD8+ T Cell Memory and Tumor Immunity. Immunity, 2011, 34, 541-553.	6.6	142
101	Genetically retargeting CD8+ lymphocyte subsets for cancer immunotherapy. Current Opinion in Immunology, 2011, 23, 299-305.	2.4	35
102	CD4+ memory T cell survival. Current Opinion in Immunology, 2011, 23, 319-323.	2.4	40
103	The Tuberous Sclerosis Complex–Mammalian Target of Rapamycin Pathway Maintains the Quiescence and Survival of Naive T Cells. Journal of Immunology, 2011, 187, 1106-1112.	0.4	80
104	ATP Inhibits the Generation and Function of Regulatory T Cells Through the Activation of Purinergic P2X Receptors. Science Signaling, 2011, 4, ra12.	1.6	246
105	Characterization of the Metabolic Phenotype of Rapamycin-Treated CD8+ T Cells with Augmented Ability to Generate Long-Lasting Memory Cells. PLoS ONE, 2011, 6, e20107.	1.1	56
106	Manipulating the Bioenergetics of Alloreactive T Cells Causes Their Selective Apoptosis and Arrests Graft-Versus-Host Disease. Science Translational Medicine, 2011, 3, 67ra8.	5.8	153
107	Pathogen-Induced Inflammatory Environment Controls Effector and Memory CD8+ T Cell Differentiation. Journal of Immunology, 2011, 187, 4967-4978.	0.4	144
108	Metabolic Stress Boosts Humoral Responses In Vivo Independently of Inflammasome and Inflammatory Reaction. Journal of Immunology, 2011, 186, 2245-2253.	0.4	6
109	Cutting Edge: CD40–CD40 Ligand Pathway Plays a Critical CD8-Intrinsic and -Extrinsic Role during Rescue of Exhausted CD8 T Cells. Journal of Immunology, 2011, 187, 4421-4425.	0.4	56
110	The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nature Immunology, 2011, 12, 888-897.	7.0	247
111	Epigenetic tumor suppression by BRCA1. Nature Medicine, 2011, 17, 1183-1185.	15.2	3
112	Resolution of infection promotes a state of dormancy and long survival of CD4 memory T cells. Immunology and Cell Biology, 2011, 89, 870-881.	1.0	22
113	Chemokine receptor CXCR3 facilitates CD8+ T cell differentiation into short-lived effector cells leading to memory degeneration. Journal of Experimental Medicine, 2011, 208, 1605-1620.	4.2	175

		CITATION REPORT		
#	Article		IF	CITATIONS
114	Metformin in prostate cancer: two for the price of one. Annals of Oncology, 2011, 22, 2	2556-2560.	0.6	61
115	Targeting the Mammalian Target of Rapamycin (mTOR) in Cancer Therapy: Lessons from Perspectives. Cancers, 2011, 3, 2478-2500.	n Past and Future	1.7	44
116	Stomatin-like Protein 2 Deficiency in T Cells Is Associated with Altered Mitochondrial Re Defective CD4+ T Cell Responses. Journal of Immunology, 2012, 189, 4349-4360.	spiration and	0.4	44
117	Distinct Effects of Saracatinib on Memory CD8+ T Cell Differentiation. Journal of Immur 188, 4323-4333.	iology, 2012,	0.4	15
118	Preferential Expansion of Human Virus-Specific Multifunctional Central Memory T Cells Targeting of the IL-2 Receptor Signaling Pathway: The Key Role of CD4+ T Cells. Journal 2012, 188, 5189-5198.	by Partial of Immunology,	0.4	22
119	Differential Regulation of Primary and Memory CD8 T Cell Immune Responses by Diacyl Kinases. Journal of Immunology, 2012, 188, 2111-2117.	glycerol	0.4	38
120	Regulating Mammalian Target of Rapamycin To Tune Vaccination-Induced CD8+ T Cell F Tumor Immunity. Journal of Immunology, 2012, 188, 3080-3087.	Responses for	0.4	72
121	Transient Enhanced IL-2R Signaling Early during Priming Rapidly Amplifies Development CD8+ T Effector-Memory Cells. Journal of Immunology, 2012, 189, 4321-4330.	of Functional	0.4	17
122	Leptin-Induced mTOR Activation Defines a Specific Molecular and Transcriptional Signat Controlling CD4+ Effector T Cell Responses. Journal of Immunology, 2012, 189, 2941-2	ture 953.	0.4	121
123	Memory immune response: a major challenge in vaccination. Biomolecular Concepts, 20	012, 3, 479-486.	1.0	8
124	CD8 T cell memory: it takes all kinds. Frontiers in Immunology, 2012, 3, 353.		2.2	13
125	Homeostatic Division Is Not Necessary for Antigen-Specific CD4+ Memory T Cell Persist Immunology, 2012, 189, 3378-3385.	ence. Journal of	0.4	2
126	Cellular Mechanisms of Restored Â-Cell Tolerance Mediated by Protective Alleles of Idd3 Diabetes, 2012, 61, 166-174.	and Idd5.	0.3	7
127	Multiplex meta-analysis of RNA expression to identify genes with variants associated wi dysfunction. Journal of the American Medical Informatics Association: JAMIA, 2012, 19,	th immune 284-288.	2.2	3
128	Metformin and cancer therapy. Current Opinion in Oncology, 2012, 24, 103-108.		1.1	77
129	The immune diet: meeting the metabolic demands of lymphocyte activation. F1000 Bio 4, 9.	logy Reports, 2012,	4.0	25
130	Autophagy inhibition in cancer therapy: metabolic considerations for antitumor immuni Immunological Reviews, 2012, 249, 176-194.	ty.	2.8	87
131	Distinct metabolic programs in activated T cells: opportunities for selective immunomo Immunological Reviews, 2012, 249, 104-115.	dulation.	2.8	97

#	Article	IF	CITATIONS
132	Metabolic switching and fuel choice during Tâ€cell differentiation and memory development. Immunological Reviews, 2012, 249, 27-42.	2.8	429
133	<scp>mTOR</scp> , metabolism, and the regulation of Tâ€cell differentiation and function. Immunological Reviews, 2012, 249, 43-58.	2.8	335
134	<scp>LKB</scp> 1 and <scp>AMPK</scp> : central regulators of lymphocyte metabolism and function. Immunological Reviews, 2012, 249, 59-71.	2.8	65
135	Metabolism and autophagy in the immune system: immunometabolism comes of age. Immunological Reviews, 2012, 249, 5-13.	2.8	54
136	Matched and mismatched metabolic fuels in lymphocyte function. Seminars in Immunology, 2012, 24, 405-413.	2.7	43
137	FOXO transcription factors throughout T cell biology. Nature Reviews Immunology, 2012, 12, 649-661.	10.6	284
138	<i>miR-146a</i> controls the resolution of T cell responses in mice. Journal of Experimental Medicine, 2012, 209, 1655-1670.	4.2	251
139	Energy metabolism and rheumatic diseases: from cell to organism. Arthritis Research and Therapy, 2012, 14, 216.	1.6	37
140	Investigating Metformin for Cancer Prevention and Treatment: The End of the Beginning. Cancer Discovery, 2012, 2, 778-790.	7.7	443
141	miR-146a and NF-ÂB1 Regulate Mast Cell Survival and T Lymphocyte Differentiation. Molecular and Cellular Biology, 2012, 32, 4432-4444.	1.1	56
142	NAD+-dependent Sirtuin 1 and 6 Proteins Coordinate a Switch from Glucose to Fatty Acid Oxidation during the Acute Inflammatory Response. Journal of Biological Chemistry, 2012, 287, 25758-25769.	1.6	293
143	Paths to stemness: building the ultimate antitumour T cell. Nature Reviews Cancer, 2012, 12, 671-684.	12.8	487
144	mTOR. Methods in Molecular Biology, 2012, , .	0.4	4
145	Leptin as an immunomodulator. Molecular Aspects of Medicine, 2012, 33, 35-45.	2.7	248
146	Mitochondrial Respiratory Capacity Is a Critical Regulator of CD8+ T Cell Memory Development. Immunity, 2012, 36, 68-78.	6.6	1,208
147	Fueling Memories. Immunity, 2012, 36, 3-5.	6.6	10
148	Transcription Factor Foxo1 Represses T-bet-Mediated Effector Functions and Promotes Memory CD8+ T Cell Differentiation. Immunity, 2012, 36, 374-387.	6.6	243
149	Intracellular metabolic pathways control immune tolerance. Trends in Immunology, 2012, 33, 1-7.	2.9	60

	CITATION R	EPORI	
#	Article	IF	Citations
150	Metabolic pathways in T cell fate and function. Trends in Immunology, 2012, 33, 168-173.	2.9	356
151	Peroxiredoxin II Regulates Effector and Secondary Memory CD8 ⁺ T Cell Responses. Journal of Virology, 2012, 86, 13629-13641.	1.5	12
152	Transcriptional control of effector and memory CD8+ T cell differentiation. Nature Reviews Immunology, 2012, 12, 749-761.	10.6	1,203
153	Metabolic checkpoints in activated T cells. Nature Immunology, 2012, 13, 907-915.	7.0	413
154	From memory to antifungal vaccine design. Trends in Immunology, 2012, 33, 467-474.	2.9	34
155	Metformin as a Novel Component of Metronomic Chemotherapeutic Use: A Hypothesis. Journal of Experimental and Clinical Medicine, 2012, 4, 140-144.	0.2	5
156	Signal transduction via the T cell antigen receptor in naÃ⁻ve and effector/memory T cells. International Journal of Biochemistry and Cell Biology, 2012, 44, 2129-2134.	1.2	29
157	mTOR, linking metabolism and immunity. Seminars in Immunology, 2012, 24, 429-435.	2.7	80
158	The impact of obesity on the immune response to infection. Proceedings of the Nutrition Society, 2012, 71, 298-306.	0.4	345
159	Systems Biology of Vaccination in the Elderly. Current Topics in Microbiology and Immunology, 2012, 363, 117-142.	0.7	28
160	T cell metabolism and the immune response. Seminars in Immunology, 2012, 24, 399-404.	2.7	29
161	Sensing the immune microenvironment to coordinate T cell metabolism, differentiation & function. Seminars in Immunology, 2012, 24, 414-420.	2.7	17
162	mTOR and metabolic pathways in T cell quiescence and functional activation. Seminars in Immunology, 2012, 24, 421-428.	2.7	91
163	Mammalian Target of Rapamycin: A Signaling Kinase for Every Aspect of Cellular Life. Methods in Molecular Biology, 2012, 821, 1-14.	0.4	107
164	Regulatory T cells, mTOR kinase, and metabolic activity. Cellular and Molecular Life Sciences, 2012, 69, 3975-3987.	2.4	13
165	Low Dose Rapamycin Exacerbates Autoimmune Experimental Uveitis. PLoS ONE, 2012, 7, e36589.	1.1	26
166	System Wide Analysis of the Evolution of Innate Immunity in the Nematode Model Species Caenorhabditis elegans and Pristionchus pacificus. PLoS ONE, 2012, 7, e44255.	1.1	52
167	Short-Chain 3-Hydroxyacyl-Coenzyme A Dehydrogenase Associates with a Protein Super-Complex Integrating Multiple Metabolic Pathways. PLoS ONE, 2012, 7, e35048.	1.1	19

#	Article	IF	Citations
168	Heterogeneity within T Cell Memory: Implications for Transplant Tolerance. Frontiers in Immunology, 2012, 3, 36.	2.2	32
169	Host Defense Pathways Against Fungi: The Basis for Vaccines and Immunotherapy. Frontiers in Microbiology, 2012, 3, 176.	1.5	17
170	Metformin and cancer: new applications for an old drug. Medical Oncology, 2012, 29, 1314-1327.	1.2	254
171	Regulation and function of mTOR signalling in T cell fate decisions. Nature Reviews Immunology, 2012, 12, 325-338.	10.6	789
172	TCR signaling requirements for activating T cells and for generating memory. Cellular and Molecular Life Sciences, 2012, 69, 1565-1575.	2.4	75
173	Challenges in T cell receptor gene therapy. Journal of Gene Medicine, 2012, 14, 386-399.	1.4	36
174	Regulation of Immune Responses by mTOR. Annual Review of Immunology, 2012, 30, 39-68.	9.5	689
175	Mammalian Target of Rapamycin Integrates Diverse Inputs To Guide the Outcome of Antigen Recognition in T Cells. Journal of Immunology, 2012, 188, 4721-4729.	0.4	59
176	Beyond blueprints. Nature Chemical Biology, 2012, 8, 495-495.	3.9	1
177	The Role and Regulation of mTOR in T-Lymphocyte Function. Archivum Immunologiae Et Therapiae Experimentalis, 2012, 60, 173-181.	1.0	20
178	Signals controlling rest and reactivation of T helper memory lymphocytes in bone marrow. Cellular and Molecular Life Sciences, 2012, 69, 1609-1613.	2.4	13
179	Normal and cancer cell metabolism: lymphocytes and lymphoma. FEBS Journal, 2012, 279, 2598-2609.	2.2	53
180	Rethinking inflammation: neural circuits in the regulation of immunity. Immunological Reviews, 2012, 248, 188-204.	2.8	327
181	Diabetes and pancreatic cancer. Molecular Carcinogenesis, 2012, 51, 64-74.	1.3	229
182	TRAF molecules in cell signaling and in human diseases. Journal of Molecular Signaling, 2013, 8, 7.	0.5	362
183	Mitochondria: Metabolic regulators of innate immune responses to pathogens and cell stress. International Journal of Biochemistry and Cell Biology, 2013, 45, 2052-2056.	1.2	47
184	Transcriptional regulation of effector and memory CD8+ T cell fates. Current Opinion in Immunology, 2013, 25, 321-328.	2.4	27
185	Immunometabolism of AMPK in insulin resistance and atherosclerosis. Molecular and Cellular Endocrinology, 2013, 366, 224-234.	1.6	64

		CITATION REPC	ORT	
#	Article	I	F	CITATIONS
186	Metabolic Roles of AMPK and Metformin in Cancer Cells. Molecules and Cells, 2013, 36, 279-2	.87. 1	L.O	97
187	Metabolic regulation of the cell cycle. Current Opinion in Cell Biology, 2013, 25, 724-729.	2	2.6	52
188	Crossroads Between Innate and Adaptive Immunity IV. Advances in Experimental Medicine and 2013, , .	l Biology, ().8	5
189	Lineage relationship of effector and memory T cells. Current Opinion in Immunology, 2013, 25	5, 556-563.	2.4	173
190	Transcriptional insights into the CD8+ T cell response to infection and memory T cell formatio Nature Immunology, 2013, 14, 404-412.	n. 7	7.0	303
191	The kinase mTOR modulates the antibody response to provide cross-protective immunity to le infection with influenza virus. Nature Immunology, 2013, 14, 1266-1276.	thal 7	7.0	169
192	Taishan Pinus massoniana pollen polysaccharides promote immune responses of recombinant Bordetella avium ompA in BALB/c mice. International Immunopharmacology, 2013, 17, 793-79		L . 7	26
193	Systems biological approaches to measure and understand vaccine immunity in humans. Sem Immunology, 2013, 25, 209-218.	inars in 2	2.7	58
194	Evidence for Polygenic Adaptation to Pathogens in the Human Genome. Molecular Biology and Evolution, 2013, 30, 1544-1558.	s b	3.5	181
195	Reduced Mycobacterium tuberculosis association with monocytes from diabetes patients that poor glucose control. Tuberculosis, 2013, 93, 192-197.	: have o	0.8	77
196	Fueling Immunity: Insights into Metabolism and Lymphocyte Function. Science, 2013, 342, 12	:42454. e	5.0	1,070
197	<scp>AMPK</scp> : A metabolic switch for <scp>CD</scp> 8 ⁺ <scp>T</scp> â€cel European Journal of Immunology, 2013, 43, 878-881.	l memory. 1	L.6	19
198	Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature, 2013, 493, 346-	355. 1	13.7	946
199	Memory T Cell Subsets, Migration Patterns, and Tissue Residence. Annual Review of Immunolo 31, 137-161.	ogy, 2013, g	9.5	668
200	Metabolic Regulation of T Lymphocytes. Annual Review of Immunology, 2013, 31, 259-283.	ç	9.5	1,050
201	Mitoplasticity: Adaptation Biology of the Mitochondrion to the Cellular Redox State in Physiol and Carcinogenesis. Antioxidants and Redox Signaling, 2013, 18, 808-849.	ogy 2	2.5	40
202	Association of a Genetic Variant of Carnitine Palmitoyltransferase 1A with Infections in Alaska Children. Journal of Pediatrics, 2013, 163, 1716-1721.	Native).9	25
203	Wnt signaling inhibits CTL memory programming. Molecular Immunology, 2013, 56, 423-433.	1	L.O	7

#	Article	IF	CITATIONS
204	Inhibition of TGF-β1 Signaling Promotes Central Memory T Cell Differentiation. Journal of Immunology, 2013, 191, 2299-2307.	0.4	28
205	AMPK: mediating the metabolic effects of salicylate-based drugs?. Trends in Endocrinology and Metabolism, 2013, 24, 481-487.	3.1	68
206	Preexisting High Frequencies of Memory CD8+ T Cells Favor Rapid Memory Differentiation and Preservation of Proliferative Potential upon Boosting. Immunity, 2013, 39, 171-183.	6.6	81
208	T Cell Metabolism: MicroRNAs Cap PTEN to Feed the Expanding Crowd. Immunity, 2013, 38, 847-848.	6.6	4
209	Glycerol-3-Phosphate Acyltransferase-1 Gene Ablation Results in Altered Thymocyte Lipid Content and Reduces Thymic T Cell Production in Mice. Lipids, 2013, 48, 3-12.	0.7	9
210	Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 972-977.	3.3	390
211	Impaired Mitochondrial Metabolism and Mammary Carcinogenesis. Journal of Mammary Gland Biology and Neoplasia, 2013, 18, 75-87.	1.0	16
212	Control of amino-acid transport by antigen receptors coordinates the metabolic reprogramming essential for T cell differentiation. Nature Immunology, 2013, 14, 500-508.	7.0	732
213	Metabolic Pathways in Immune Cell Activation and Quiescence. Immunity, 2013, 38, 633-643.	6.6	1,271
214	Sterol regulatory element–binding proteins are essential for the metabolic programming of effector T cells and adaptive immunity. Nature Immunology, 2013, 14, 489-499.	7.0	394
215	Commensal bacteria at the interface of host metabolism and the immune system. Nature Immunology, 2013, 14, 676-684.	7.0	758
216	mTOR and lymphocyte metabolism. Current Opinion in Immunology, 2013, 25, 347-355.	2.4	85
217	Decisions on the Road to Memory. Advances in Experimental Medicine and Biology, 2013, 785, 107-120.	0.8	22
218	Fatty acids modulate cytokine and chemokine secretion of stimulated human whole blood cultures in diabetes. Clinical and Experimental Immunology, 2013, 172, 383-393.	1.1	11
219	Metformin Enhances Cisplatin Cytotoxicity by Suppressing Signal Transducer and Activator of Transcription–3 Activity Independently of the Liver Kinase B1–AMP-Activated Protein Kinase Pathway. American Journal of Respiratory Cell and Molecular Biology, 2013, 49, 241-250.	1.4	89
220	Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis. Cell, 2013, 153, 1239-1251.	13.5	1,715
221	Metformin: an old but still the best treatment for type 2 diabetes. Diabetology and Metabolic Syndrome, 2013, 5, 6.	1.2	408
222	Metabolic Regulation by the Mitochondrial Phosphatase PTPMT1 Is Required for Hematopoietic Stem Cell Differentiation. Cell Stem Cell, 2013, 12, 62-74.	5.2	282

#	Article	IF	CITATIONS
223	<scp>AMPK</scp> α1: A glucose sensor that controls <scp>CD</scp> 8 <scp>T</scp> â€eell memory. European Journal of Immunology, 2013, 43, 889-896.	1.6	201
225	The Invisible Arm of Immunity in Common Cancer Chemoprevention Agents. Cancer Prevention Research, 2013, 6, 764-773.	0.7	36
226	Differentiation of CD8 memory T cells depends on Foxo1. Journal of Experimental Medicine, 2013, 210, 1189-1200.	4.2	190
227	Inside out: decoding the transcriptome of effector and memory T cells. Immunology and Cell Biology, 2013, 91, 389-390.	1.0	1
228	Diacylglycerol Kinases: Regulated Controllers of T Cell Activation, Function, and Development. International Journal of Molecular Sciences, 2013, 14, 6649-6673.	1.8	35
229	Ways to Enhance Lymphocyte Trafficking into Tumors and Fitness of Tumor Infiltrating Lymphocytes. Frontiers in Oncology, 2013, 3, 231.	1.3	132
230	Modulation of T Cell Metabolism and Function through Calcium Signaling. Frontiers in Immunology, 2013, 4, 324.	2.2	83
231	Illuminating the Petite Picture of T Cell Memory Responses toListeria monocytogenes. BioMed Research International, 2013, 2013, 1-10.	0.9	2
232	The TGF-β-Smad3 pathway inhibits CD28-dependent cell growth and proliferation of CD4 T cells. Genes and Immunity, 2013, 14, 115-126.	2.2	74
233	Tuberous sclerosis 1 (Tsc1)-dependent metabolic checkpoint controls development of dendritic cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4894-903.	3.3	76
234	Memory T cells in transplantation $\hat{a} \in$ " progress and challenges. Current Opinion in Organ Transplantation, 2013, 18, 387-392.	0.8	27
235	N-ras couples antigen receptor signaling to Eomesodermin and to functional CD8+ T cell memory but not to effector differentiation. Journal of Experimental Medicine, 2013, 210, 1463-1479.	4.2	24
236	Genetic Interactions among <i>ldd3</i> , <i>ldd5.1</i> , <i>ldd5.2</i> , and <i>ldd5.3</i> Protective Loci in the Nonobese Diabetic Mouse Model of Type 1 Diabetes. Journal of Immunology, 2013, 190, 3109-3120.	0.4	16
237	MCJ/DnaJC15, an Endogenous Mitochondrial Repressor of the Respiratory Chain That Controls Metabolic Alterations. Molecular and Cellular Biology, 2013, 33, 2302-2314.	1.1	93
238	Metabolic pathways as regulators of HIV infection. Current Opinion in HIV and AIDS, 2013, 8, 182-189.	1.5	15
239	Rapamycin has suppressive and stimulatory effects on human plasmacytoid dendritic cell functions. Clinical and Experimental Immunology, 2013, 174, 389-401.	1.1	31
240	Effector T cells require fatty acid metabolism during murine graft-versus-host disease. Blood, 2013, 122, 3230-3237.	0.6	123
241	Disparate Roles for STAT5 in Primary and Secondary CTL Responses. Journal of Immunology, 2013, 190, 3390-3398.	0.4	10

#	Article	IF	CITATIONS
242	Impaired Autophagy, Defective T Cell Homeostasis, and a Wasting Syndrome in Mice with a T Cell–Specific Deletion of Vps34. Journal of Immunology, 2013, 190, 5086-5101.	0.4	128
243	Distinct energy requirements for human memory CD4 T ell homeostatic functions. FASEB Journal, 2013, 27, 342-349.	0.2	11
244	Genetic Deletion of Catalytic Subunits of AMP-activated Protein Kinase Increases Osteoclasts and Reduces Bone Mass in Young Adult Mice. Journal of Biological Chemistry, 2013, 288, 12187-12196.	1.6	51
245	LAT1 Is a Critical Transporter of Essential Amino Acids for Immune Reactions in Activated Human T Cells. Journal of Immunology, 2013, 191, 4080-4085.	0.4	141
246	mTOR Inhibition Improves Antitumor Effects of Vaccination with Antigen-Encoding RNA. Cancer Immunology Research, 2013, 1, 386-392.	1.6	37
247	A Color-Coded Reporter Model to Study the Effect of Immunosuppressants on CD8+ T-Cell Memory in Antitumor and Alloimmune Responses. Transplantation, 2013, 95, 54-62.	0.5	15
248	The Role of Mechanistic Target of Rapamycin (mTOR) Complexes Signaling in the Immune Responses. Nutrients, 2013, 5, 2231-2257.	1.7	64
249	Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitumor function. Journal of Clinical Investigation, 2013, 123, 4479-4488.	3.9	719
250	Immunostimulatory activity of lifespan-extending agents. Aging, 2013, 5, 793-801.	1.4	27
251	Activation of AMPK Enhances Neutrophil Chemotaxis and Bacterial Killing. Molecular Medicine, 2013, 19, 387-398.	1.9	87
252	Kinase Suppressor of Ras 1 Is Not Required for the Generation of Regulatory and Memory T Cells. PLoS ONE, 2013, 8, e57137.	1.1	4
253	Role of PI3K/Akt signaling in memory CD8 T cell differentiation. Frontiers in Immunology, 2013, 4, 20.	2.2	133
254	Phagocytosis via Complement or Fc-Gamma Receptors Is Compromised in Monocytes from Type 2 Diabetes Patients with Chronic Hyperglycemia. PLoS ONE, 2014, 9, e92977.	1.1	81
255	Adenosine-Mono-Phosphate-Activated Protein Kinase-Independent Effects of Metformin in T Cells. PLoS ONE, 2014, 9, e106710.	1.1	31
257	Autophagy is a critical regulator of memory CD8+ T cell formation. ELife, 2014, 3, .	2.8	276
258	Early Decision: Effector and Effector Memory T Cell Differentiation in Chronic Infection. Current Immunology Reviews, 2014, 9, 190-206.	1.2	33
259	Asymptomatic memory CD8+T cells. Human Vaccines and Immunotherapeutics, 2014, 10, 945-963.	1.4	20
260	The short and sweet of T-cell therapy. Oncolmmunology, 2014, 3, e27573.	2.1	6

	CITATION	Report	
#	Article	IF	Citations
261	mTOR signaling, Tregs and immune modulation. Immunotherapy, 2014, 6, 1295-1311.	1.0	108
262	IL-18 Synergizes with IL-7 To Drive Slow Proliferation of Naive CD8 T Cells by Costimulating Self-Peptide–Mediated TCR Signals. Journal of Immunology, 2014, 193, 3992-4001.	0.4	21
263	Anaplerotic Metabolism of Alloreactive T Cells Provides a Metabolic Approach To Treat Graft-Versus-Host Disease. Journal of Pharmacology and Experimental Therapeutics, 2014, 351, 298-307.	1.3	62
264	Transcriptome profiling of CTLs regulated by rapamycin using RNA-Seq. Immunogenetics, 2014, 66, 625-633.	1.2	11
265	Antibody-based depletion of Foxp3+ T cells potentiates antitumor immune memory stimulated by mTOR inhibition. Oncolmmunology, 2014, 3, e29081.	2.1	1
266	IL-15 maintains T-cell survival via S-nitrosylation-mediated inhibition of caspase-3. Cell Death and Differentiation, 2014, 21, 904-914.	5.0	21
267	c-Myc and AP4: a relay team for metabolic reprogramming of CD8+ T cells. Nature Immunology, 2014, 15, 828-829.	7.0	5
268	mTOR signaling and transcriptional regulation in T lymphocytes. Transcription, 2014, 5, e28263.	1.7	35
269	IRF4 links antigen affinity to CD8 ⁺ T ell metabolism. Immunology and Cell Biology, 2014, 92, 6-7.	1.0	6
270	The Role of Fatty Acid Oxidation in the Metabolic Reprograming of Activatedââ,¬â€°T-Cells. Frontiers in Immunology, 2014, 5, 641.	2.2	25
271	Antigen-Specific Culture of Memory-like CD8 T Cells for Adoptive Immunotherapy. Cancer Immunology Research, 2014, 2, 839-845.	1.6	6
272	Role of host- and pathogen-associated lipids in directing the immune response in mycobacterial infections, with emphasis onMycobacterium aviumsubsp.paratuberculosis. Critical Reviews in Microbiology, 2014, 42, 1-13.	2.7	30
273	The Transcription Factor FoxO1 Sustains Expression of the Inhibitory Receptor PD-1 and Survival of Antiviral CD8+ T Cells during Chronic Infection. Immunity, 2014, 41, 802-814.	6.6	294
275	Autophagy is essential for effector CD8+ T cell survival and memory formation. Nature Immunology, 2014, 15, 1152-1161.	7.0	367
276	MicroRNA regulation in human CD8+ T cell subsets – cytokine exposure alone drives miR-146a expression. Journal of Translational Medicine, 2014, 12, 292.	1.8	15
277	Metformin as adjunct antituberculosis therapy. Science Translational Medicine, 2014, 6, 263ra159.	5.8	404
278	Biochemical Signaling of PD-1 on T Cells and Its Functional Implications. Cancer Journal (Sudbury,) Tj ETQq0 0	0 rgBT /Ove 1.0	rlock 10 Tf 50 146

280	Immune enhancement of Taishan Robinia pseudoacacia polysaccharide on recombinant Proteus mirabilis OmpA in chickens. International Immunopharmacology, 2014, 22, 236-241.	1.7	17	
-----	---	-----	----	--

#	Article	IF	CITATIONS
281	Powering the Immune System: Mitochondria in Immune Function and Deficiency. Journal of Immunology Research, 2014, 2014, 1-8.	0.9	68
282	Protective Effect of Metformin Against Walker 256 Tumor Growth is Not Dependent on Metabolism Improvement. Cellular Physiology and Biochemistry, 2014, 34, 1920-1932.	1.1	12
283	Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Frontiers in Immunology, 2014, 5, 203.	2.2	112
284	Metabolic Influences That Regulate Dendritic Cell Function in Tumors. Frontiers in Immunology, 2014, 5, 24.	2.2	67
285	The Many Unknowns Concerning the Bioenergetics of Exhaustion and Senescence during Chronic Viral Infection. Frontiers in Immunology, 2014, 5, 468.	2.2	17
286	Targeting T Cell Immunometabolism for Cancer Immunotherapy; Understanding the Impact of the Tumor Microenvironment. Frontiers in Oncology, 2014, 4, 107.	1.3	62
287	Essential role for autophagy during invariant NKT cell development. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E5678-87.	3.3	95
288	TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKÉ> supports the anabolic demands of dendritic cell activation. Nature Immunology, 2014, 15, 323-332.	7.0	861
290	Metabolism of activated T lymphocytes. Current Opinion in Immunology, 2014, 27, 60-74.	2.4	173
291	Blood and beyond: Properties of circulating and tissueâ€resident human virusâ€specific αβ CD8 ⁺ T cells. European Journal of Immunology, 2014, 44, 934-944.	1.6	22
292	Metabolic Regulation of Immune Responses. Annual Review of Immunology, 2014, 32, 609-634.	9.5	666
293	Cancer biology in diabetes. Journal of Diabetes Investigation, 2014, 5, 251-264.	1.1	25
294	A systematic survey of lipids across mouse tissues. American Journal of Physiology - Endocrinology and Metabolism, 2014, 306, E854-E868.	1.8	67
295	Metformin—mode of action and clinical implications for diabetes and cancer. Nature Reviews Endocrinology, 2014, 10, 143-156.	4.3	955
296	A central role for Notch in effector CD8+ T cell differentiation. Nature Immunology, 2014, 15, 1143-1151.	7.0	115
297	Molecular regulation of effector and memory T cell differentiation. Nature Immunology, 2014, 15, 1104-1115.	7.0	462
298	Metformin: From Mechanisms of Action to Therapies. Cell Metabolism, 2014, 20, 953-966.	7.2	1,019
299	Tsc1 promotes the differentiation of memory CD8 ⁺ T cells via orchestrating the transcriptional and metabolic programs. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14858-14863.	3.3	64

#	Article	IF	CITATIONS
300	IL-12 is required for mTOR regulation of memory CTLs during viral infection. Genes and Immunity, 2014, 15, 413-423.	2.2	10
301	Uncoupling Tâ€cell expansion from effector differentiation in cellâ€based immunotherapy. Immunological Reviews, 2014, 257, 264-276.	2.8	102
302	Memory CD8+ T Cells Use Cell-Intrinsic Lipolysis to Support the Metabolic Programming Necessary for Development. Immunity, 2014, 41, 75-88.	6.6	650
303	Glucose and Glutamine Metabolism Regulate Human Hematopoietic Stem Cell Lineage Specification. Cell Stem Cell, 2014, 15, 169-184.	5.2	226
304	Mechanistic Target of Rapamycin Inhibition Extends Cellular Lifespan in Dendritic Cells by Preserving Mitochondrial Function. Journal of Immunology, 2014, 193, 2821-2830.	0.4	116
305	Bcl-6 directly represses the gene program of the glycolysis pathway. Nature Immunology, 2014, 15, 957-964.	7.0	168
306	Cutting Edge: Generation of Effector Cells That Localize to Mucosal Tissues and Form Resident Memory CD8 T Cells Is Controlled by mTOR. Journal of Immunology, 2014, 193, 2067-2071.	0.4	59
307	The Glucose Transporter Glut1 Is Selectively Essential for CD4ÂT Cell Activation and Effector Function. Cell Metabolism, 2014, 20, 61-72.	7.2	876
308	Immune Memory–Boosting Dose of Rapamycin Impairs Macrophage Vesicle Acidification and Curtails Glycolysis in Effector CD8 Cells, Impairing Defense against Acute Infections. Journal of Immunology, 2014, 193, 757-763.	0.4	29
309	Integrating canonical and metabolic signalling programmes in the regulation of T cell responses. Nature Reviews Immunology, 2014, 14, 435-446.	10.6	323
310	Bcl-6 gets T cells off the sugar. Nature Immunology, 2014, 15, 904-905.	7.0	5
311	Cellular metabolism modulation in T lymphocyte immunity. Immunology, 2014, , n/a-n/a.	2.0	11
312	Metabolic Reprogramming Is Required for Antibody Production That Is Suppressed in Anergic but Exaggerated in Chronically BAFF-Exposed B Cells. Journal of Immunology, 2014, 192, 3626-3636.	0.4	425
313	Does metabolic reprogramming underpin age-associated changes in T cell phenotype and function?. Free Radical Biology and Medicine, 2014, 71, 26-35.	1.3	18
314	Regulator of Fatty Acid Metabolism, Acetyl Coenzyme A Carboxylase 1, Controls T Cell Immunity. Journal of Immunology, 2014, 192, 3190-3199.	0.4	152
315	CD8+ T-cell senescence: no role for mTOR. Biochemical Society Transactions, 2015, 43, 734-739.	1.6	8
316	Early Effector CD8 T Cells Display Plasticity in Populating the Short-Lived Effector and Memory-Precursor Pools Following Bacterial or Viral Infection. Scientific Reports, 2015, 5, 12264.	1.6	41
317	TNF Receptor-Associated Factor (TRAF) Signaling Network in CD4 ⁺ T-Lymphocytes. Tohoku Journal of Experimental Medicine, 2015, 236, 139-154.	0.5	34

#	Article	IF	CITATIONS
318	Thymic emigration patterns in patients with type 2 diabetes treated with metformin. Immunology, 2015, 146, 456-469.	2.0	17
319	Tumor necrosis factor receptor―associated factor 6 (<scp>TRAF</scp> 6) regulation of development, function, and homeostasis of the immune system. Immunological Reviews, 2015, 266, 72-92.	2.8	330
320	The Evolving Roles of Memory Immune Cells in Transplantation. Transplantation, 2015, 99, 2029-2037.	0.5	15
321	IL-15–PI3K–AKT–mTOR: A Critical Pathway in the Life Journey of Natural Killer Cells. Frontiers in Immunology, 2015, 6, 355.	2.2	102
322	Targeting CD8 T-Cell Metabolism in Transplantation. Frontiers in Immunology, 2015, 6, 547.	2.2	26
323	TCR Signaling in T Cell Memory. Frontiers in Immunology, 2015, 6, 617.	2.2	76
324	Targeting Transcriptional Regulators of CD8+ T Cell Dysfunction to Boost Anti-Tumor Immunity. Vaccines, 2015, 3, 771-802.	2.1	11
325	Cellular Size as a Means of Tracking mTOR Activity and Cell Fate of CD4+ T Cells upon Antigen Recognition. PLoS ONE, 2015, 10, e0121710.	1.1	39
326	IFN-γPriming Effects on the Maintenance of Effector Memory CD4+T Cells and on Phagocyte Function: Evidences from Infectious Diseases. Journal of Immunology Research, 2015, 2015, 1-8.	0.9	23
327	Mitochondrial Ca2+ and membrane potential, an alternative pathway for Interleukin 6 to regulate CD4 cell effector function. ELife, 2015, 4, .	2.8	70
328	Co-adjuvant effects of plant polysaccharide and propolis on chickens inoculated with <i>Bordetella avium</i> inactivated vaccine. Avian Pathology, 2015, 44, 248-253.	0.8	19
329	Mitochondrial Metabolism in T Cell Activation and Senescence: A Mini-Review. Gerontology, 2015, 61, 131-138.	1.4	50
330	TCR-Signaling Events in Cellular Metabolism and Specialization. Frontiers in Immunology, 2015, 6, 292.	2.2	19
331	Vaccinology in the era of high-throughput biology. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140146.	1.8	55
332	Beyond adjuvants: Immunomodulation strategies to enhance T cell immunity. Vaccine, 2015, 33, B21-B28.	1.7	28
333	Environmental and Metabolic Sensors That Control T Cell Biology. Frontiers in Immunology, 2015, 6, 99.	2.2	45
334	mTOR signaling promotes a robust and continuous production of IFNâ€Ĵ³ by human memory CD8 ⁺ T cells and their proliferation. European Journal of Immunology, 2015, 45, 893-902.	1.6	14
336	Asymmetric PI3K Signaling Driving Developmental and Regenerative Cell Fate Bifurcation. Cell Reports, 2015, 13, 2203-2218.	2.9	111

#	Article	IF	CITATIONS
337	Feeding an army: The metabolism of T cells in activation, anergy, and exhaustion. Molecular Immunology, 2015, 68, 492-496.	1.0	65
338	Tâ€cell receptor gene therapy — ready to go viral?. Molecular Oncology, 2015, 9, 2019-2042.	2.1	21
339	Repurposing metformin: an old drug with new tricks in its binding pockets. Biochemical Journal, 2015, 471, 307-322.	1.7	224
340	Inhibition of PGC-1α after chemotherapy-mediated insult confines multiple myeloma cell survival by affecting ROS accumulation. Oncology Reports, 2015, 33, 899-904.	1.2	9
341	PGC-1α is responsible for survival of multiple myeloma cells under hyperglycemia and chemotherapy. Oncology Reports, 2015, 33, 2086-2092.	1.2	12
342	Mode of Bioenergetic Metabolism during B Cell Differentiation in the Intestine Determines the Distinct Requirement for Vitamin B1. Cell Reports, 2015, 13, 122-131.	2.9	96
343	Sugar, fat, and protein: new insights into what T cells crave. Current Opinion in Immunology, 2015, 33, 49-54.	2.4	19
344	mTOR Signaling in T Cell Immunity and Autoimmunity. International Reviews of Immunology, 2015, 34, 50-66.	1.5	66
345	Memory B cells. Nature Reviews Immunology, 2015, 15, 149-159.	10.6	539
346	GOS2 modulates homeostatic proliferation of naÃ ⁻ ve CD8 ⁺ T cells and inhibits oxidative phosphorylation in mitochondria. Immunology and Cell Biology, 2015, 93, 605-615.	1.0	11
347	Friends Not Foes: CTLA-4 Blockade and mTOR Inhibition Cooperate during CD8+ T Cell Priming To Promote Memory Formation and Metabolic Readiness. Journal of Immunology, 2015, 194, 2089-2098.	0.4	39
348	Immune-mediated antitumor effect by type 2 diabetes drug, metformin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 1809-1814.	3.3	450
349	The Energy Sensor AMPK Regulates T Cell Metabolic Adaptation and Effector Responses InÂVivo. Immunity, 2015, 42, 41-54.	6.6	505
350	Akt Inhibition Enhances Expansion of Potent Tumor-Specific Lymphocytes with Memory Cell Characteristics. Cancer Research, 2015, 75, 296-305.	0.4	283
351	microRNAs function in CD8+T cell biology. Journal of Leukocyte Biology, 2015, 97, 487-497.	1.5	49
352	FoxO3 is a negative regulator of primary CD8 ⁺ Tâ€cell expansion but not of memory formation. Immunology and Cell Biology, 2015, 93, 120-125.	1.0	16
353	Targeting T cell metabolism for therapy. Trends in Immunology, 2015, 36, 71-80.	2.9	204
354	AMPK Helps T Cells Survive Nutrient Starvation. Immunity, 2015, 42, 4-6.	6.6	23

#	Article	IF	CITATIONS
355	Taking T Cell Priming Down a Notch: Signaling through Notch Receptors Enhances T Cell Sensitivity to Antigen. Immunity, 2015, 42, 6-8.	6.6	7
356	Fatty acid metabolism in the regulation of T cell function. Trends in Immunology, 2015, 36, 81-91.	2.9	324
357	Mitochondria: A target for bacteria. Biochemical Pharmacology, 2015, 94, 173-185.	2.0	74
358	T-cell metabolism in autoimmune disease. Arthritis Research and Therapy, 2015, 17, 29.	1.6	118
359	PD-1 alters T-cell metabolic reprogramming by inhibiting glycolysis and promoting lipolysis and fatty acid oxidation. Nature Communications, 2015, 6, 6692.	5.8	834
360	BNIP3- and BNIP3L-Mediated Mitophagy Promotes the Generation of Natural Killer Cell Memory. Immunity, 2015, 43, 331-342.	6.6	240
361	Early treatment with metformin induces resistance against tumor growth in adult rats. Cancer Biology and Therapy, 2015, 16, 958-964.	1.5	4
362	mTOR Links Environmental Signals to T Cell Fate Decisions. Frontiers in Immunology, 2014, 5, 686.	2.2	60
363	Mitochondrial function provides instructive signals for activation-induced B-cell fates. Nature Communications, 2015, 6, 6750.	5.8	138
364	Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9412-9417.	3.3	79
365	The New Era of Cancer Immunotherapy. Advances in Cancer Research, 2015, 128, 1-68.	1.9	41
366	Synthetic biology in cell-based cancer immunotherapy. Trends in Biotechnology, 2015, 33, 449-461.	4.9	61
367	The effect of environmental chemicals on the tumor microenvironment. Carcinogenesis, 2015, 36, S160-S183.	1.3	97
368	Evolving Perspectives of mTOR Complexes in Immunity and Transplantation. American Journal of Transplantation, 2015, 15, 891-902.	2.6	46
369	Normalization of CD4 ⁺ T cell metabolism reverses lupus. Science Translational Medicine, 2015, 7, 274ra18.	5.8	502
370	Helminth infections and type 2 diabetes: a cluster-randomized placebo controlled SUGARSPIN trial in Nangapanda, Flores, Indonesia. BMC Infectious Diseases, 2015, 15, 133.	1.3	34
371	mTOR and metabolic regulation of conventional and regulatory T cells. Journal of Leukocyte Biology, 2015, 97, 837-847.	1.5	46
372	Mitochondria in the Regulation of Innate and Adaptive Immunity. Immunity, 2015, 42, 406-417.	6.6	693

#	Article	IF	CITATIONS
373	4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nature Medicine, 2015, 21, 581-590.	15.2	1,304
374	Essential role of mitochondrial energy metabolism in Foxp3 ⁺ Tâ€regulatory cell function and allograft survival. FASEB Journal, 2015, 29, 2315-2326.	0.2	213
375	IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8+ T Cell Longevity. Cell, 2015, 161, 750-761.	13.5	268
376	T-cell energy metabolism as a controller of cell fate in transplantation. Current Opinion in Organ Transplantation, 2015, 20, 21-28.	0.8	22
377	Cancer Risk in HBV Patients With Statin and Metformin Use. Medicine (United States), 2015, 94, e462.	0.4	68
378	New mechanisms of metformin action: Focusing on mitochondria and the gut. Journal of Diabetes Investigation, 2015, 6, 600-609.	1.1	133
379	Global transcriptional characterization of CD8+ T cell memory. Seminars in Immunology, 2015, 27, 4-9.	2.7	12
380	Rapid linkage of innate immunological signals to adaptive immunity by the brain-fat axis. Nature Immunology, 2015, 16, 525-533.	7.0	34
381	Survival of Effector CD8+ T Cells during Influenza Infection Is Dependent on Autophagy. Journal of Immunology, 2015, 194, 4277-4286.	0.4	59
382	Rethinking the paradigm: How comparative studies on fatty acid oxidation inform our understanding of T cell metabolism. Molecular Immunology, 2015, 68, 564-574.	1.0	16
383	The Interleukin-2-mTORc1 Kinase Axis Defines the Signaling, Differentiation, and Metabolism of T Helper 1 and Follicular B Helper T Cells. Immunity, 2015, 43, 690-702.	6.6	252
384	T cell metabolism drives immunity. Journal of Experimental Medicine, 2015, 212, 1345-1360.	4.2	937
385	Persistent Antigen and Prolonged AKT–mTORC1 Activation Underlie Memory CD8 T Cell Impairment in the Absence of CD4 T Cells. Journal of Immunology, 2015, 195, 1591-1598.	0.4	15
386	Synchronizing transcriptional control of T cell metabolism and function. Nature Reviews Immunology, 2015, 15, 574-584.	10.6	111
387	Dysregulated metabolism contributes to oncogenesis. Seminars in Cancer Biology, 2015, 35, S129-S150.	4.3	225
388	Metabolic regulation of T cell differentiation and function. Molecular Immunology, 2015, 68, 497-506.	1.0	34
389	Transcriptional regulation of T cell metabolism. Molecular Immunology, 2015, 68, 520-526.	1.0	18
390	Glucose, glycolysis and lymphocyte responses. Molecular Immunology, 2015, 68, 513-519.	1.0	141

#	Article	IF	CITATIONS
391	2-Methoxyestradiol: A Hormonal Metabolite Modulates Stimulated T-Cells Function and proliferation. Transplantation Proceedings, 2015, 47, 2057-2066.	0.3	7
392	Immunological and protective effects of Bordetella bronchiseptica subunit vaccines based on the recombinant N-terminal domain of dermonecrotic toxin. International Immunopharmacology, 2015, 28, 952-959.	1.7	6
393	Interactions between adipose tissue and the immune system in health and malnutrition. Seminars in Immunology, 2015, 27, 322-333.	2.7	70
394	CAR Tâ€cell immunotherapy: The path from the byâ€road toÂthe freeway?. Molecular Oncology, 2015, 9, 1994-2018.	2.1	43
395	Leptin. , 2015, , .		4
396	Notch controls the survival of memory CD4+ T cells by regulating glucose uptake. Nature Medicine, 2015, 21, 55-61.	15.2	131
397	Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends in Immunology, 2015, 36, 13-20.	2.9	163
398	Immunomodulatory effects of Taishan Pinus massoniana pollen polysaccharide and propolis on immunosuppressed chickens. Microbial Pathogenesis, 2015, 78, 7-13.	1.3	28
399	Cellular Metabolism on T-Cell Development and Function. International Reviews of Immunology, 2015, 34, 19-33.	1.5	42
400	AMPK in Lymphocyte Metabolism and Function. International Reviews of Immunology, 2015, 34, 67-81.	1.5	29
401	Metabolic Mysteries of the Inflammatory Response: T Cell Polarization and Plasticity. International Reviews of Immunology, 2015, 34, 3-18.	1.5	21
402	Autophagy in Tâ€cell development, activation and differentiation. Immunology and Cell Biology, 2015, 93, 25-34.	1.0	97
403	Metabolic control of regulatory T cell development and function. Trends in Immunology, 2015, 36, 3-12.	2.9	227
404	Metformin aggravates immune-mediated liver injury in mice. Archives of Toxicology, 2015, 89, 437-450.	1.9	34
405	Cellular Metabolism Controls Lymphocyte Activation and Differentiation. , 2016, , 38-43.		0
406	Metabolic Regulation of Natural Killer Cell IFN-Î ³ Production. Critical Reviews in Immunology, 2016, 36, 131-147.	1.0	101
407	Repurposing metformin for cancer treatment: current clinical studies. Oncotarget, 2016, 7, 40767-40780.	0.8	252
408	Roles of Mechanistic Target of Rapamycin in the Adaptive and Innate Immune Systems. , 2016, , 277-292.		0

#	Article	IF	CITATIONS
409	Tumor Microenvironment Metabolism: A New Checkpoint for Anti-Tumor Immunity. Vaccines, 2016, 4, 46.	2.1	87
410	T Cells and Gene Regulation: The Switching On and Turning Up of Genes after T Cell Receptor Stimulation in CD8 T Cells. Frontiers in Immunology, 2016, 7, 76.	2.2	63
411	Immunometabolism in Tuberculosis. Frontiers in Immunology, 2016, 7, 150.	2.2	82
412	mTOR Regulation of Lymphoid Cells in Immunity to Pathogens. Frontiers in Immunology, 2016, 7, 180.	2.2	38
413	The PD1:PD-L1/2 Pathway from Discovery to Clinical Implementation. Frontiers in Immunology, 2016, 7, 550.	2.2	409
414	Early changes in the metabolic profile of activated CD8+ T cells. BMC Cell Biology, 2016, 17, 28.	3.0	31
415	Metabolic programming in chronically stimulated TÂcells: Lessons from cancer and viral infections. European Journal of Immunology, 2016, 46, 1574-1582.	1.6	10
416	Alphaâ€methylacyl oA racemase deletion has mutually counteracting effects on Tâ€cell responses, associated with unchanged course of EAE. European Journal of Immunology, 2016, 46, 570-581.	1.6	7
418	Lactic acid in tumor microenvironments causes dysfunction of NKT cells by interfering with mTOR signaling. Science China Life Sciences, 2016, 59, 1290-1296.	2.3	55
419	Energy metabolism of T-lymphocytes and its biological significance. Science Bulletin, 2016, 61, 1270-1280.	4.3	2
420	Diabetes and Cancer: a Review of Current Knowledge. Experimental and Clinical Endocrinology and Diabetes, 2016, 124, 263-275.	0.6	158
421	Fine-Tuning of CD8 + T Cell Mitochondrial Metabolism by the Respiratory Chain Repressor MCJ Dictates Protection to Influenza Virus. Immunity, 2016, 44, 1299-1311.	6.6	61
422	Assessment of NK Cell Metabolism. Methods in Molecular Biology, 2016, 1441, 27-42.	0.4	7
423	Immunometabolism of regulatory T cells. Nature Immunology, 2016, 17, 618-625.	7.0	259
424	Asymmetric inheritance of mTORC1 kinase activity during division dictates CD8+ T cell differentiation. Nature Immunology, 2016, 17, 704-711.	7.0	199
425	The mitochondrial phospholipid cardiolipin is involved in the regulation of T-cell proliferation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 748-754.	1.2	9
426	UV-inactivated HSV-1 potently activates NK cell killing of leukemic cells. Blood, 2016, 127, 2575-2586.	0.6	28
427	T-cell immunometabolism against cancer. Cancer Letters, 2016, 382, 255-258.	3.2	49

#	Article	IF	CITATIONS
428	Optimal Generation of Tissue-Resident but Not Circulating Memory T Cells during Viral Infection Requires Crosspriming by DNGR-1 + Dendritic Cells. Immunity, 2016, 45, 847-860.	6.6	182
429	Metformin: Candidate host-directed therapy for tuberculosis inÂdiabetes and non-diabetes patients. Tuberculosis, 2016, 101, S69-S72.	0.8	48
430	Metformin: An anti-diabetic drug to fight cancer. Pharmacological Research, 2016, 113, 675-685.	3.1	125
431	Bioenergetic Insufficiencies Due to Metabolic Alterations Regulated by the Inhibitory Receptor PD-1 Are an Early Driver of CD8 + T Cell Exhaustion. Immunity, 2016, 45, 358-373.	6.6	560
432	Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature, 2016, 537, 417-421.	13.7	1,371
433	The PI3K pathway in B cell metabolism. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 359-378.	2.3	106
434	The AMP analog AICAR modulates the T _{reg} /T _h 17 axis through enhancement of fatty acid oxidation. FASEB Journal, 2016, 30, 3800-3809.	0.2	89
435	Clinical significance of T cell metabolic reprogramming in cancer. Clinical and Translational Medicine, 2016, 5, 29.	1.7	69
436	Complement-Mediated Regulation of Metabolism and Basic Cellular Processes. Immunity, 2016, 45, 240-254.	6.6	116
437	Autophagy Networks in Inflammation. , 2016, , .		3
438	Leveraging premalignant biology for immune-based cancer prevention. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10750-10758.	3.3	57
439	Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against <i>Mycobacterium tuberculosis</i> in human and murine cells. European Journal of Immunology, 2016, 46, 2574-2586.	1.6	118
440	Distinct Metabolic Requirements of Exhausted and Functional Virus-Specific CD8ÂT Cells in the Same Host. Cell Reports, 2016, 16, 1243-1252.	2.9	176
441	L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell, 2016, 167, 829-842.e13.	13.5	1,077
442	Autophagy in Host Defense Against Viruses. , 2016, , 185-199.		0
443	The Human Vaccines Project: A roadmap for cancer vaccine development. Science Translational Medicine, 2016, 8, 334ps9.	5.8	162
444	S-2-hydroxyglutarate regulates CD8+ T-lymphocyte fate. Nature, 2016, 540, 236-241.	13.7	306
445	Constitutive Glycolytic Metabolism Supports CD8+ T Cell Effector Memory Differentiation during Viral Infection. Immunity, 2016, 45, 1024-1037.	6.6	167

# 446	ARTICLE Rapamycin Does Not Impede Survival or Induction of Antibody Responses to Primary and Heterosubtypic Influenza Infections in Mice. Viral Immunology, 2016, 29, 487-493.	IF 0.6	Citations
447	Potential of immunomodulatory agents as adjunct host-directed therapies for multidrug-resistant tuberculosis. BMC Medicine, 2016, 14, 89.	2.3	57
448	Combination of TLR1/2 and TLR3 ligands enhances CD4+ T cell longevity and antibody responses by modulating type I IFN production. Scientific Reports, 2016, 6, 32526.	1.6	14
449	The effect of porcine reproductive and respiratory syndrome virus and porcine epidemic diarrhea virus challenge on growing pigs I: Growth performance and digestibility1. Journal of Animal Science, 2016, 94, 514-522.	0.2	32
450	Translating nutritional immunology into drug development for inflammatory bowel disease. Current Opinion in Gastroenterology, 2016, 32, 443-449.	1.0	4
451	Metformin and other glucose-lowering drug initiation and rates of community-based antibiotic use and hospital-treated infections in patients with type 2 diabetes: a Danish nationwide population-based cohort study. BMJ Open, 2016, 6, e011523.	0.8	31
452	Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming. Cell, 2016, 166, 63-76.	13.5	1,025
453	Obesity-associated cancer: an immunological perspective. Proceedings of the Nutrition Society, 2016, 75, 125-138.	0.4	30
455	Mammalian Target of Rapamycin Complex 2 Controls CD8ÂT Cell Memory Differentiation in a Foxo1-Dependent Manner. Cell Reports, 2016, 14, 1206-1217.	2.9	111
456	Natural killer cell memory in context. Seminars in Immunology, 2016, 28, 368-376.	2.7	30
457	Measuring Bioenergetics in T Cells Using a Seahorse Extracellular Flux Analyzer. Current Protocols in Immunology, 2016, 113, 3.16B.1-3.16B.14.	3.6	123
458	The multifaceted role of CD4+ T cells in CD8+ T cell memory. Nature Reviews Immunology, 2016, 16, 102-111.	10.6	440
459	Immunometabolism: Cellular Metabolism Turns Immune Regulator. Journal of Biological Chemistry, 2016, 291, 1-10.	1.6	332
460	Mitochondrial Membrane Potential Identifies Cells with Enhanced Stemness for Cellular Therapy. Cell Metabolism, 2016, 23, 63-76.	7.2	291
461	The Immune-Metabolic Basis of Effector Memory CD4+ T Cell Function under Hypoxic Conditions. Journal of Immunology, 2016, 196, 106-114.	0.4	72
462	Modulation of mTOR Signalling Triggers the Formation of Stem Cell-like Memory T Cells. EBioMedicine, 2016, 4, 50-61.	2.7	89
463	Immuno-enhancement of Taishan Pinus massoniana pollen polysaccharides on recombinant Bordetella avium ompA expressed in Pichia pastoris. Microbial Pathogenesis, 2016, 95, 54-61.	1.3	10
464	Host-directed therapies for infectious diseases: current status, recent progress, and future prospects. Lancet Infectious Diseases, The, 2016, 16, e47-e63.	4.6	265

#	Article	IF	CITATIONS
465	Emerging concepts of T cell metabolism as a target of immunotherapy. Nature Immunology, 2016, 17, 364-368.	7.0	289
466	Distinct Signaling of Coreceptors Regulates Specific Metabolism Pathways and Impacts Memory Development in CAR T Cells. Immunity, 2016, 44, 380-390.	6.6	811
467	Shortened Intervals during Heterologous Boosting Preserve Memory CD8 T Cell Function but Compromise Longevity. Journal of Immunology, 2016, 196, 3054-3063.	0.4	24
468	The beneficial effects of a gas-permeable flask for expansion of Tumor-Infiltrating lymphocytes as reflected in their mitochondrial function and respiration capacity. Oncolmmunology, 2016, 5, e1057386.	2.1	22
469	Memory T cells in organ transplantation: progress and challenges. Nature Reviews Nephrology, 2016, 12, 339-347.	4.1	49
470	Intermediates of Metabolism: From Bystanders to Signalling Molecules. Trends in Biochemical Sciences, 2016, 41, 460-471.	3.7	137
471	Regulatory T cell memory. Nature Reviews Immunology, 2016, 16, 90-101.	10.6	287
472	Regulation of effector and memory CD8+ T cell function by inflammatory cytokines. Cytokine, 2016, 82, 16-23.	1.4	43
473	CD4 memory T cells develop and acquire functional competence by sequential cognate interactions and stepwise gene regulation. International Immunology, 2016, 28, 267-282.	1.8	7
474	Activation of mTOR (mechanistic target of rapamycin) in rheumatic diseases. Nature Reviews Rheumatology, 2016, 12, 169-182.	3.5	256
475	High-Resolution Metabolomics. Biological Research for Nursing, 2016, 18, 12-22.	1.0	26
476	The AMPK enzyme-complex: from the regulation of cellular energy homeostasis to a possible new molecular target in the management of chronic inflammatory disorders. Expert Opinion on Therapeutic Targets, 2016, 20, 179-191.	1.5	41
477	4-1BB signaling activates glucose and fatty acid metabolism to enhance CD8+ T cell proliferation. Cellular and Molecular Immunology, 2017, 14, 748-757.	4.8	66
478	Energy Homeostasis of Immune Cells: Translating Cell Bioenergetics into Clinical Application in Rheumatoid Arthritis. , 2017, , 123-144.		0
479	Targeting Metabolism as a Novel Therapeutic Approach to Autoimmunity, Inflammation, and Transplantation. Journal of Immunology, 2017, 198, 999-1005.	0.4	82
480	Survival of tissue-resident memory T cells requires exogenous lipid uptake and metabolism. Nature, 2017, 543, 252-256.	13.7	520
481	Low-dose controlled release of mTOR inhibitors maintains T cell plasticity and promotes central memory T cells. Journal of Controlled Release, 2017, 263, 151-161.	4.8	28
482	Inhibiting Oxidative Phosphorylation In Vivo Restrains Th17 Effector Responses and Ameliorates Murine Colitis. Journal of Immunology, 2017, 198, 2735-2746.	0.4	56

#	Article	IF	CITATIONS
483	Amino-acid transporters in T-cell activation and differentiation. Cell Death and Disease, 2017, 8, e2655-e2655.	2.7	102
485	New insight for metformin against bladder cancer. Genes and Environment, 2017, 39, 13.	0.9	20
486	Metabolic reprograming of anti-tumor immunity. Current Opinion in Immunology, 2017, 46, 14-22.	2.4	85
487	Mitochondria are the powerhouses of immunity. Nature Immunology, 2017, 18, 488-498.	7.0	704
488	Homeostatic Immunity and the Microbiota. Immunity, 2017, 46, 562-576.	6.6	840
489	Phenformin Inhibits Myeloid-Derived Suppressor Cells and Enhances theÂAnti-Tumor Activity of PD-1 Blockade inÂMelanoma. Journal of Investigative Dermatology, 2017, 137, 1740-1748.	0.3	107
490	Metabolic and Epigenetic Coordination of T Cell and Macrophage Immunity. Immunity, 2017, 46, 714-729.	6.6	234
491	Progress in the application and mechanism of metformin in treating non-small cell lung cancer. Oncology Letters, 2017, 13, 2873-2880.	0.8	18
492	Metabolic Instruction of Immunity. Cell, 2017, 169, 570-586.	13.5	871
493	Label-free Analysis of CD8+ T Cell Subset Proteomes Supports a Progressive Differentiation Model of Human-Virus-Specific T Cells. Cell Reports, 2017, 19, 1068-1079.	2.9	40
495	The role of AMPK in T cell metabolism and function. Current Opinion in Immunology, 2017, 46, 45-52.	2.4	103
496	CD8 T Cells. , 2017, , 131-142.		0
497	Targeting T cell metabolism to regulate T cell activation, differentiation and function in disease. Current Opinion in Immunology, 2017, 46, 82-88.	2.4	88
498	MenTORing Immunity: mTOR Signaling in the Development and Function of Tissue-Resident Immune Cells. Immunity, 2017, 46, 730-742.	6.6	179
499	Memory T cells: A helpful guard for allogeneic hematopoietic stem cell transplantation without causing graft-versus-host disease. Hematology/ Oncology and Stem Cell Therapy, 2017, 10, 211-219.	0.6	22
500	Cytochrome c Oxidase Activity Is a Metabolic Checkpoint that Regulates Cell Fate Decisions During T Cell Activation and Differentiation. Cell Metabolism, 2017, 25, 1254-1268.e7.	7.2	125
501	mTOR signaling in the differentiation and function of regulatory and effector T cells. Current Opinion in Immunology, 2017, 46, 103-111.	2.4	137
502	Targeting Metabolic Reprogramming by Influenza Infection for Therapeutic Intervention. Cell Reports, 2017, 19, 1640-1653.	2.9	127

# 503	ARTICLE Elimination of cancer stem cells and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking inhibition of tumorigenesis and the potential eradication of HIV-1.	IF 0.8	CITATIONS 8
504	Medical Hypotheses, 2017, 104, 133-146. T cell metabolism in metabolic disease-associated autoimmunity. Immunobiology, 2017, 222, 925-936.	0.8	12
505	The transcriptional repressor HIC1 regulates intestinal immune homeostasis. Mucosal Immunology, 2017, 10, 1518-1528.	2.7	30
506	MYC and HIF in shaping immune response and immune metabolism. Cytokine and Growth Factor Reviews, 2017, 35, 63-70.	3.2	69
507	Enhancing adoptive cancer immunotherapy with VÎ 3 2VÎ 2 T cells through pulse zoledronate stimulation. , 2017, 5, 9.		49
508	Obstacles Posed by the Tumor Microenvironment to TÂcell Activity: A Case for Synergistic Therapies. Cancer Cell, 2017, 31, 311-325.	7.7	502
509	Metformin-like antidiabetic, cardio-protective and non-glycemic effects of naringenin: Molecular and pharmacological insights. European Journal of Pharmacology, 2017, 803, 103-111.	1.7	68
510	T-cell Metabolism as a Target to Control Autoreactive T Cells in β-Cell Autoimmunity. Current Diabetes Reports, 2017, 17, 24.	1.7	9
511	Metabolic regulation of inflammation. Nature Reviews Rheumatology, 2017, 13, 267-279.	3.5	211
512	The Therapeutic Potential of T Cell Metabolism. American Journal of Transplantation, 2017, 17, 1705-1712.	2.6	7
513	Microbial stimulation of different Toll-like receptor signalling pathways induces diverse metabolic programmes in human monocytes. Nature Microbiology, 2017, 2, 16246.	5.9	228
514	mTOR Promotes Antiviral Humoral Immunity by Differentially Regulating CD4 Helper T Cell and B Cell Responses. Journal of Virology, 2017, 91, .	1.5	41
515	Autonomous Metabolic Oscillations Robustly Gate the Early and Late Cell Cycle. Molecular Cell, 2017, 65, 285-295.	4.5	150
517	Integrating T cell metabolism in cancer immunotherapy. Cancer Letters, 2017, 411, 12-18.	3.2	30
518	The Kinase mTORC1 Promotes the Generation and Suppressive Function of Follicular Regulatory T Cells. Immunity, 2017, 47, 538-551.e5.	6.6	93
519	Metabolic Regulation of T Cell Immunity. Advances in Experimental Medicine and Biology, 2017, 1011, 87-130.	0.8	5
520	Metabolic orchestration of T lineage differentiation and function. FEBS Letters, 2017, 591, 3104-3118.	1.3	19
521	Mitochondrial Priming by CD28. Cell, 2017, 171, 385-397.e11.	13.5	212

29

#	Article	IF	CITATIONS
522	Autophagy-Dependent Generation of Free Fatty Acids Is Critical for Normal Neutrophil Differentiation. Immunity, 2017, 47, 466-480.e5.	6.6	230
524	Metabolic reprogramming and apoptosis sensitivity: Defining the contours of a T cell response. Cancer Letters, 2017, 408, 190-196.	3.2	28
525	Cell-Intrinsic Glycogen Metabolism Supports Early Glycolytic Reprogramming Required for Dendritic Cell Immune Responses. Cell Metabolism, 2017, 26, 558-567.e5.	7.2	188
526	mTOR signaling in immune cells and its implications for cancer immunotherapy. Cancer Letters, 2017, 408, 182-189.	3.2	35
527	Metabolism in Immune Cell Differentiation and Function. Advances in Experimental Medicine and Biology, 2017, 1011, 1-85.	0.8	14
528	Transcriptional Regulation of T Cell Metabolism Reprograming. Advances in Experimental Medicine and Biology, 2017, 1011, 131-152.	0.8	1
529	Regulation of Metabolism Across Different Subsets of T Cells in Cancer. Advances in Experimental Medicine and Biology, 2017, 1011, 197-209.	0.8	2
530	Innate and Adaptive Immune Cell Metabolism in Tumor Microenvironment. Advances in Experimental Medicine and Biology, 2017, 1011, 211-223.	0.8	22
531	Metabolic control of the scaffold protein TKS5 in tissue-invasive, proinflammatory T cells. Nature Immunology, 2017, 18, 1025-1034.	7.0	103
532	Translation is actively regulated during the differentiation of CD8+ effector T cells. Nature Immunology, 2017, 18, 1046-1057.	7.0	126
533	Metformin: Insights into its anticancer potential with special reference to AMPK dependent and independent pathways. Life Sciences, 2017, 185, 53-62.	2.0	55
534	Histone deacetylase 3 is required for iNKT cell development. Scientific Reports, 2017, 7, 5784.	1.6	28
535	Manipulating Glucose Metabolism during Different Stages of Viral Pathogenesis Can Have either Detrimental or Beneficial Effects. Journal of Immunology, 2017, 199, 1748-1761.	0.4	36
536	AMBRA1 is involved in T cell receptor-mediated metabolic reprogramming through an ATG7-independent pathway. Biochemical and Biophysical Research Communications, 2017, 491, 1098-1104.	1.0	5
537	The effects of metformin on gut microbiota and the immune system as research frontiers. Diabetologia, 2017, 60, 1662-1667.	2.9	79
538	Impact of the Tumor Microenvironment on Tumor-Infiltrating Lymphocytes: Focus on Breast Cancer. Breast Cancer: Basic and Clinical Research, 2017, 11, 117822341773156.	0.6	36
539	Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes and Development, 2017, 31, 2067-2084.	2.7	57
540	32nd Annual Meeting and Pre-Conference Programs of the Society for Immunotherapy of Cancer (SITC) Tj ETQq1	1 0.78431	4.rgBT /Ove

#	ARTICLE Similarities and Distinctions of Cancer and Immune Metabolism in Inflammation and Tumors. Cell	IF	CITATIONS
541 542	Metabolism, 2017, 26, 49-70. Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy. Cell Metabolism,	7.2	268 374
543	2017, 26, 94-109. Mitochondrial control of immunity: beyond ATP. Nature Reviews Immunology, 2017, 17, 608-620.	10.6	306
544	T ell metabolism governing activation, proliferation and differentiation; a modular view. Immunology, 2017, 150, 35-44.	2.0	136
545	Epigenetics of Inflammation. , 2017, , 971-992.		0
546	Metabolic Regulation of Immunity. , 2017, , 318-326.		1
547	T Lymphocytes. , 2017, , 189-206.		0
548	Mitochondrial Dysfunction and Immune Cell Metabolism in Sepsis. Infection and Chemotherapy, 2017, 49, 10.	1.0	40
549	MYC in Regulating Immunity: Metabolism and Beyond. Genes, 2017, 8, 88.	1.0	67
550	Metabolic Hallmarks of Tumor and Immune Cells in the Tumor Microenvironment. Frontiers in Immunology, 2017, 8, 248.	2.2	274
551	Engineering Chimeric Antigen Receptor T-Cells for Racing in Solid Tumors: Don't Forget the Fuel. Frontiers in Immunology, 2017, 8, 267.	2.2	61
552	Impact of Metabolism in on T-Cell Differentiation and Function and Cross Talk with Tumor Microenvironment. Frontiers in Immunology, 2017, 8, 270.	2.2	103
553	Immunometabolic Regulations Mediated by Coinhibitory Receptors and Their Impact on T Cell Immune Responses. Frontiers in Immunology, 2017, 8, 330.	2.2	44
554	What Fuels Natural Killers? Metabolism and NK Cell Responses. Frontiers in Immunology, 2017, 8, 367.	2.2	83
555	Sugar or Fat?—Metabolic Requirements for Immunity to Viral Infections. Frontiers in Immunology, 2017, 8, 1311.	2.2	42
556	Cholesterol Metabolism in T Cells. Frontiers in Immunology, 2017, 8, 1664.	2.2	63
557	Metabolic Cooperation and Competition in the Tumor Microenvironment: Implications for Therapy. Frontiers in Oncology, 2017, 7, 68.	1.3	142
558	IL-21 augments rapamycin in expansion of alpha fetoprotein antigen specific stem-cell-like memory T cells in vitro. Pan African Medical Journal, 2017, 27, 163.	0.3	8

	CITATION R	CITATION REPORT	
#	ARTICLE Assessment of metabolic and mitochondrial dynamics in CD4+ and CD8+ T cells in virologically	IF	CITATIONS
559	suppressed HIV-positive individuals on combination antiretroviral therapy. PLoS ONE, 2017, 12, e0183931.	1.1	29
560	Metabolomics. Advances in Virus Research, 2017, 98, 57-81.	0.9	51
561	A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malaria Journal, 2017, 16, 455.	0.8	15
562	Anti-tumor activity of metformin: from metabolic and epigenetic perspectives. Oncotarget, 2017, 8, 5619-5628.	0.8	65
563	Understanding Subset Diversity in T Cell Memory. Immunity, 2018, 48, 214-226.	6.6	389
564	Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. Oncolmmunology, 2018, 7, e1442167.	2.1	67
565	Celastrol mediates Th17 and Treg cell generation via metabolic signaling. Biochemical and Biophysical Research Communications, 2018, 497, 883-889.	1.0	27
566	Activation of <scp>AMPK</scp> by simvastatin inhibited breast tumor angiogenesis via impeding <scp>HIF</scp> â€lαâ€induced proâ€angiogenic factor. Cancer Science, 2018, 109, 1627-1637.	1.7	46
567	Unraveling the Complex Interplay Between T Cell Metabolism and Function. Annual Review of Immunology, 2018, 36, 461-488.	9.5	537
568	Obesity induced T cell dysfunction and implications for cancer immunotherapy. Current Opinion in Immunology, 2018, 51, 181-186.	2.4	52
569	Differential glucose requirement in skin homeostasis and injury identifies a therapeutic target for psoriasis. Nature Medicine, 2018, 24, 617-627.	15.2	117
570	Fatty acid metabolism in <scp>CD</scp> 8 ⁺ T cell memory: Challenging current concepts. Immunological Reviews, 2018, 283, 213-231.	2.8	103
571	KLRG1+ Effector CD8+ T Cells Lose KLRG1, Differentiate into All Memory T Cell Lineages, and Convey Enhanced Protective Immunity. Immunity, 2018, 48, 716-729.e8.	6.6	300
572	Interplay Between Metabolic Sensors and Immune Cell Signaling. Experientia Supplementum (2012), 2018, 109, 115-196.	0.5	2
573	Emerging Concepts for Immune Checkpoint Blockade-Based Combination Therapies. Cancer Cell, 2018, 33, 581-598.	7.7	393
574	Toward precision manufacturing of immunogene T-cell therapies. Cytotherapy, 2018, 20, 623-638.	0.3	21
575	Colorectal cancer prevention: Immune modulation taking the stage. Biochimica Et Biophysica Acta: Reviews on Cancer, 2018, 1869, 138-148.	3.3	53

576	TRAF6 Mediates Basal Activation of NF- $\hat{I}^{2}B$ Necessary for Hematopoietic Stem Cell Homeostasis. Cell Reports, 2018, 22, 1250-1262.	2.9	62
-----	---	-----	----

#	Article	IF	CITATIONS
577	Metformin: Prevention of genomic instability and cancer: A review. Mutation Research - Genetic Toxicology and Environmental Mutagenesis, 2018, 827, 1-8.	0.9	57
578	Metabolic exhaustion in infection, cancer and autoimmunity. Nature Immunology, 2018, 19, 213-221.	7.0	84
579	Reactive Oxygen Species: Involvement in T Cell Signaling and Metabolism. Trends in Immunology, 2018, 39, 489-502.	2.9	229
580	ZEB1, ZEB2, and the miR-200 family form a counterregulatory network to regulate CD8+ T cell fates. Journal of Experimental Medicine, 2018, 215, 1153-1168.	4.2	106
581	Metformin-Induced Reduction of CD39 and CD73 Blocks Myeloid-Derived Suppressor Cell Activity in Patients with Ovarian Cancer. Cancer Research, 2018, 78, 1779-1791.	0.4	202
582	Antitumor T-cell Reconditioning: Improving Metabolic Fitness for Optimal Cancer Immunotherapy. Clinical Cancer Research, 2018, 24, 2473-2481.	3.2	49
583	Autophagy and T cell metabolism. Cancer Letters, 2018, 419, 20-26.	3.2	45
584	Spermidine in health and disease. Science, 2018, 359, .	6.0	616
585	Immunologic Approaches to Breast Cancer Therapy. , 2018, , 924-933.e4.		2
586	Cancer, obesity and immunometabolism – Connecting the dots. Cancer Letters, 2018, 417, 11-20.		36
		3.2	
587	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413.	4.2	97
	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental		97 93
587	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual	4.2	
587 588	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246. Hyaluronanâ€binding by CD44 reduces the memory potential of activated murine CD8 T cells. European	4.2 9.5	93
587 588 589	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246. Hyaluronanâ€binding by CD44 reduces the memory potential of activated murine CD8 T cells. European Journal of Immunology, 2018, 48, 803-814.	4.2 9.5 1.6	93 6
587 588 589 590	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246. Hyaluronanâ€binding by CD44 reduces the memory potential of activated murine CD8 T cells. European Journal of Immunology, 2018, 48, 803-814. Metabolic Barriers to T Cell Function in Tumors. Journal of Immunology, 2018, 200, 400-407. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature	4.29.51.60.4	93 6 144
587 588 589 590	B1a B cells require autophagy for metabolic homeostasis and self-renewal. Journal of Experimental Medicine, 2018, 215, 399-413. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation. Annual Review of Immunology, 2018, 36, 221-246. Hyaluronanâ€binding by CD44 reduces the memory potential of activated murine CD8 T cells. European Journal of Immunology, 2018, 48, 803-814. Metabolic Barriers to T Cell Function in Tumors. Journal of Immunology, 2018, 200, 400-407. Short-chain fatty acids regulate systemic bone mass and protect from pathological bone loss. Nature Communications, 2018, 9, 55.	 4.2 9.5 1.6 0.4 5.8 	 93 6 144 393

#	Article	IF	Citations
595	The CPT1a inhibitor, etomoxir induces severe oxidative stress at commonly used concentrations. Scientific Reports, 2018, 8, 6289.	1.6	119
596	Facilitation of hippocampal long-term potentiation and reactivation of latent HIV-1 via AMPK activation: Common mechanism of action linking learning, memory, and the potential eradication of HIV-1. Medical Hypotheses, 2018, 116, 61-73.	0.8	8
597	TLR-mediated metabolic reprogramming in the tumor microenvironment: potential novel strategies for cancer immunotherapy. Cellular and Molecular Immunology, 2018, 15, 428-437.	4.8	116
598	Do the Microbiota Influence Vaccines and Protective Immunity to Pathogens?. Cold Spring Harbor Perspectives in Biology, 2018, 10, a028860.	2.3	27
599	Pyridine Dinucleotides from Molecules to Man. Antioxidants and Redox Signaling, 2018, 28, 180-212.	2.5	24
600	Survival of the fittest: Cancer challenges T cell metabolism. Cancer Letters, 2018, 412, 216-223.	3.2	27
601	Dendritic cell vaccine induces antigen-specific CD8 ⁺ T cells that are metabolically distinct from those of peptide vaccine and is well-combined with PD-1 checkpoint blockade. Oncolmmunology, 2018, 7, e1395124.	2.1	20
602	Mitochondrial activity in T cells. Mitochondrion, 2018, 41, 51-57.	1.6	107
603	The spectrum of T cell metabolism in health and disease. Nature Reviews Immunology, 2018, 18, 19-34.	10.6	315
604	Mitochondrial Dynamics at the Interface of Immune Cell Metabolism and Function. Trends in Immunology, 2018, 39, 6-18.	2.9	248
605	A Pck1-directed glycogen metabolic program regulates formation and maintenance of memory CD8+ T cells. Nature Cell Biology, 2018, 20, 21-27.	4.6	130
606	Metabolic Control of CD8+ T Cell Fate Decisions and Antitumor Immunity. Trends in Molecular Medicine, 2018, 24, 30-48.	3.5	158
607	Early Inhibition of Fatty Acid Synthesis Reduces Generation of Memory Precursor Effector T Cells in Chronic Infection. Journal of Immunology, 2018, 200, 643-656.	0.4	26
608	Targeting immuno-metabolism to improve anti-cancer therapies. Cancer Letters, 2018, 414, 127-135.	3.2	13
609	The regulation effect of AMPK in immune related diseases. Science China Life Sciences, 2018, 61, 523-533.	2.3	21
610	Autophagy dictates metabolism and differentiation of inflammatory immune cells. Autophagy, 2018, 14, 199-206.	4.3	80
611	NaÃ ⁻ ve CD8+ T-Cells Engage a Versatile Metabolic Program Upon Activation in Humans and Differ Energetically From Memory CD8+ T-Cells. Frontiers in Immunology, 2018, 9, 2736.	2.2	53
612	CD8+ T cells. Aids, 2018, 32, 2835-2838.	1.0	1

#	Article	IF	CITATIONS
613	Harnessing the Induction of CD8+ T-Cell Responses Through Metabolic Regulation by Pathogen-Recognition-Receptor Triggering in Antigen Presenting Cells. Frontiers in Immunology, 2018, 9, 2372.	2.2	25
614	T-Cell Exhaustion in Chronic Infections: Reversing the State of Exhaustion and Reinvigorating Optimal Protective Immune Responses. Frontiers in Immunology, 2018, 9, 2569.	2.2	241
615	T cell Allorecognition Pathways in Solid Organ Transplantation. Frontiers in Immunology, 2018, 9, 2548.	2.2	154
616	Metabolic regulation of infection and inflammation. Cytokine, 2018, 112, 1-11.	1.4	28
617	Metformin Promotes the Protection of Mice Infected With Plasmodium yoelii Independently of γδT Cell Expansion. Frontiers in Immunology, 2018, 9, 2942.	2.2	16
618	Resident-Memory T Cells in Tissue-Restricted Immune Responses: For Better or Worse?. Frontiers in Immunology, 2018, 9, 2827.	2.2	71
619	Selective Effects of mTOR Inhibitor Sirolimus on NaÃ⁻ve and CMV-Specific T Cells Extending Its Applicable Range Beyond Immunosuppression. Frontiers in Immunology, 2018, 9, 2953.	2.2	33
620	Statins improve survival in patients previously treated with nivolumab for advanced non‑small cell lung cancer: An observational study. Molecular and Clinical Oncology, 2018, 10, 137-143.	0.4	39
621	mTOR Regulation of Glycolytic Metabolism in T Cells. Frontiers in Cell and Developmental Biology, 2018, 6, 122.	1.8	142
622	The effect of metformin on culture conversion in tuberculosis patients with diabetes mellitus. Korean Journal of Internal Medicine, 2018, 33, 933-940.	0.7	61
623	Metformin exerts antitumor activity via induction of multiple death pathways in tumor cells and activation of a protective immune response. Oncotarget, 2018, 9, 25808-25825.	0.8	64
624	Breast Cancer Chemo-immunotherapy through Liposomal Delivery of an Immunogenic Cell Death Stimulus Plus Interference in the IDO-1 Pathway. ACS Nano, 2018, 12, 11041-11061.	7.3	200
625	Metabolomics of Immunity and Its Clinical Applications. Translational Bioinformatics, 2018, , 73-95.	0.0	0
626	Clonal expansion of vaccine-elicited T cells is independent of aerobic glycolysis. Science Immunology, 2018, 3, .	5.6	44
627	Genetic Alterations of TRAF Proteins in Human Cancers. Frontiers in Immunology, 2018, 9, 2111.	2.2	67
628	Immune response to influenza vaccination in the elderly is altered by chronic medication use. Immunity and Ageing, 2018, 15, 19.	1.8	23
629	Forkhead box transcription factors as context-dependent regulators of lymphocyte homeostasis. Nature Reviews Immunology, 2018, 18, 703-715.	10.6	18
630	Sprouty branches out to control T cell memory. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9339-9341.	3.3	1

#	Article	IF	CITATIONS
631	Regulation of fatty acid synthesis in immune cells. Scandinavian Journal of Immunology, 2018, 88, e12713.	1.3	37
632	Lipidomics in Health & Disease. Translational Bioinformatics, 2018, , .	0.0	1
633	Differential gene expression of a feed-spiked super-producing CHO cell line. Journal of Biotechnology, 2018, 285, 23-37.	1.9	14
634	Regulation of Immune Cell Functions by Metabolic Reprogramming. Journal of Immunology Research, 2018, 2018, 1-12.	0.9	57
635	Glycolytic metabolism is essential for CCR7 oligomerization and dendritic cell migration. Nature Communications, 2018, 9, 2463.	5.8	144
636	The multifaceted contributions of mitochondria to cellular metabolism. Nature Cell Biology, 2018, 20, 745-754.	4.6	969
637	Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. Cell Metabolism, 2018, 28, 504-515.e7.	7.2	264
638	Recent Advances in the Clinical Development of Immune Checkpoint Blockade Therapy for Mismatch Repair Proficient (pMMR)/non-MSI-H Metastatic Colorectal Cancer. Clinical Colorectal Cancer, 2018, 17, 258-273.	1.0	41
639	Fatty acid metabolism complements glycolysis in the selective regulatory T cell expansion during tumor growth. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6546-E6555.	3.3	234
640	The purinergic receptor P2RX7 directs metabolic fitness of long-lived memory CD8+ T cells. Nature, 2018, 559, 264-268.	13.7	209
641	The Fate Choice Between Effector and Memory T Cell Lineages: Asymmetry, Signal Integration, and Feedback to Create Bistability. Advances in Immunology, 2018, 137, 43-82.	1.1	18
642	Immunometabolism of T cells and NK cells: metabolic control of effector and regulatory function. Inflammation Research, 2018, 67, 813-828.	1.6	47
643	Diverse Roles of Mitochondria in Immune Responses: Novel Insights Into Immuno-Metabolism. Frontiers in Immunology, 2018, 9, 1605.	2.2	298
644	CAR T Cells in Solid Tumors: Blueprints for Building Effective Therapies. Frontiers in Immunology, 2018, 9, 1740.	2.2	155
645	Endometrium receptivity in premature ovarian insufficiency – how to improve fertility rate and predict diseases?. Gynecological Endocrinology, 2018, 34, 1011-1015.	0.7	7
646	T-Cell Metabolism in Hematopoietic Cell Transplantation. Frontiers in Immunology, 2018, 9, 176.	2.2	29
647	Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy. Frontiers in Immunology, 2018, 9, 353.	2.2	140
648	Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Frontiers in Immunology, 2018, 9, 1055.	2.2	315

#	Article	IF	CITATIONS
649	Metabolic Reprogramming in Modulating T Cell Reactive Oxygen Species Generation and Antioxidant Capacity. Frontiers in Immunology, 2018, 9, 1075.	2.2	75
650	Metabolic Reprogramming and Longevity of Tissue-Resident Memory T Cells. Frontiers in Immunology, 2018, 9, 1347.	2.2	59
651	When fats commit crimes: fatty acid metabolism, cancer stemness and therapeutic resistance. Cancer Communications, 2018, 38, 1-12.	3.7	107
653	Metabolic Stress in the Immune Function of T Cells, Macrophages and Dendritic Cells. Cells, 2018, 7, 68.	1.8	54
654	The metabolic axis of macrophage and immune cell polarization. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	46
655	Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Letters, 2018, 435, 92-100.	3.2	279
656	Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy. Frontiers in Oncology, 2018, 8, 237.	1.3	123
657	Multiple effects of CD40–CD40L axis in immunity against infection and cancer. ImmunoTargets and Therapy, 2018, Volume 7, 55-61.	2.7	50
658	Regulation of T cell immunity by cellular metabolism. Frontiers of Medicine, 2018, 12, 463-472.	1.5	33
659	Lack of Sprouty 1 and 2 enhances survival of effector CD8 ⁺ T cells and yields more protective memory cells. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8939-E8947.	3.3	22
660	Lymphocyte Autophagy in Homeostasis, Activation, and Inflammatory Diseases. Frontiers in Immunology, 2018, 9, 1801.	2.2	30
661	Potential of memory T cells in bridging preoperative chemoradiation and immunotherapy in rectal cancer. Radiotherapy and Oncology, 2018, 127, 361-369.	0.3	4
662	Divergent mechanisms of metabolic dysfunction drive fibroblast and T-cell senescence. Ageing Research Reviews, 2018, 47, 24-30.	5.0	10
663	Metabolism of T Lymphocytes in Health and Disease. International Review of Cell and Molecular Biology, 2019, 342, 95-148.	1.6	20
664	Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. Journal of Experimental Medicine, 2019, 216, 2619-2634.	4.2	51
665	mTOR and other effector kinase signals that impact T cell function and activity. Immunological Reviews, 2019, 291, 134-153.	2.8	53
666	Dissecting the heterogeneity of DENV vaccine-elicited cellular immunity using single-cell RNA sequencing and metabolic profiling. Nature Communications, 2019, 10, 3666.	5.8	47
667	The Bone Marrow Protects and Optimizes Immunological Memory during Dietary Restriction. Cell, 2019, 178, 1088-1101.e15.	13.5	160

		15	0
#	ARTICLE	IF	CITATIONS
668	Mitochondrial functionality and metabolism in T cells from progressive multiple sclerosis patients. European Journal of Immunology, 2019, 49, 2204-2221.	1.6	24
669	Targeting metabolism to regulate immune responses in autoimmunity and cancer. Nature Reviews Drug Discovery, 2019, 18, 669-688.	21.5	176
670	Diabetes and Cancer. , 2019, , 919-937.		0
671	Dynamic Metabolic State of Tissue Resident CD8 T Cells. Frontiers in Immunology, 2019, 10, 1683.	2.2	41
672	Common gamma chain cytokines and CD8 T cells in cancer. Seminars in Immunology, 2019, 42, 101307.	2.7	25
673	Cutting Edge: Elevated Glycolytic Metabolism Limits the Formation of Memory CD8+ T Cells in Early Life. Journal of Immunology, 2019, 203, 2571-2576.	0.4	17
674	Targeting T Cell Metabolism in Inflammatory Skin Disease. Frontiers in Immunology, 2019, 10, 2285.	2.2	19
675	Tuberculosis Vaccine Development: Progress in Clinical Evaluation. Clinical Microbiology Reviews, 2019, 33, .	5.7	70
676	The Metabolic Profile of Tumor and Virally Infected Cells Shapes Their Microenvironment Counteracting T Cell Immunity. Frontiers in Immunology, 2019, 10, 2309.	2.2	19
677	Mitochondria—hubs for regulating cellular biochemistry: emerging concepts and networks. Open Biology, 2019, 9, 190126.	1.5	69
678	Metabolism and Autoimmune Responses: The microRNA Connection. Frontiers in Immunology, 2019, 10, 1969.	2.2	21
679	Immunometabolic Checkpoints of Treg Dynamics: Adaptation to Microenvironmental Opportunities and Challenges. Frontiers in Immunology, 2019, 10, 1889.	2.2	56
680	The Transcription Factor Bhlhe40 Programs Mitochondrial Regulation of Resident CD8+ T Cell Fitness and Functionality. Immunity, 2019, 51, 491-507.e7.	6.6	148
681	A recombinant vaccine of Riemerella anatipestifer OmpA fused with duck IgY Fc and Schisandra chinensis polysaccharide adjuvant enhance protective immune response. Microbial Pathogenesis, 2019, 136, 103707.	1.3	12
682	Blocking CXCR4 alleviates desmoplasia, increases T-lymphocyte infiltration, and improves immunotherapy in metastatic breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 4558-4566.	3.3	274
683	mTOR Signaling pathway as a master regulator of memory CD8 ⁺ Tâ€cells, Th17, and NK cells development and their functional properties. Journal of Cellular Physiology, 2019, 234, 12353-12368.	2.0	49
684	Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation. Leukemia, 2019, 33, 1783-1796.	3.3	54
685	Role of Complement Activation in Allograft Inflammation. Current Transplantation Reports, 2019, 6, 52-59.	0.9	5

#	Article	IF	CITATIONS
686	The Lysophosphatidylcholine Transporter MFSD2A Is Essential for CD8+ Memory T Cell Maintenance and Secondary Response to Infection. Journal of Immunology, 2019, 203, 117-126.	0.4	22
687	CD271 is a molecular switch with divergent roles in melanoma and melanocyte development. Scientific Reports, 2019, 9, 7696.	1.6	21
688	Mitochondria as central hub of the immune system. Redox Biology, 2019, 26, 101255.	3.9	187
689	Metformin as an archetype immuno-metabolic adjuvant for cancer immunotherapy. Oncolmmunology, 2019, 8, e1633235.	2.1	70
690	The metabolic spectrum of memory T cells. Immunology and Cell Biology, 2019, 97, 636-646.	1.0	53
691	Immunometabolism around the Clock. Trends in Molecular Medicine, 2019, 25, 612-625.	3.5	47
692	Immune Control by TRAF6-Mediated Pathways of Epithelial Cells in the EIME (Epithelial Immune) Tj ETQq0 0 0 rgE	3T /Overloo 2.2	2k 10 Tf 50 5
693	Comprehensive Characterization of a Next-Generation Antiviral T-Cell Product and Feasibility for Application in Immunosuppressed Transplant Patients. Frontiers in Immunology, 2019, 10, 1148.	2.2	9
694	PD-1 signaling affects cristae morphology and leads to mitochondrial dysfunction in human CD8+ T lymphocytes. , 2019, 7, 151.		83
695	Inhibition of urothelial carcinoma through targeted type I interferon-mediated immune activation. OncoImmunology, 2019, 8, e1577125.	2.1	10
696	Immunometabolism and Pulmonary Infections: Implications for Protective Immune Responses and Host-Directed Therapies. Frontiers in Microbiology, 2019, 10, 962.	1.5	18
697	Translation of cancer immunotherapy from the bench to the bedside. Advances in Cancer Research, 2019, 143, 1-62.	1.9	28
698	miR-155 harnesses Phf19 to potentiate cancer immunotherapy through epigenetic reprogramming of CD8+ T cell fate. Nature Communications, 2019, 10, 2157.	5.8	55
699	Chimeric Antigen Receptor T Cell Bearing Herpes Virus Entry Mediator Co-stimulatory Signal Domain Exhibits High Functional Potency. Molecular Therapy - Oncolytics, 2019, 14, 27-37.	2.0	12
700	Chimeric antigen receptor T cell persistence and memory cell formation. Immunology and Cell Biology, 2019, 97, 664-674.	1.0	142
701	A Metabolism Toolbox for CAR T Therapy. Frontiers in Oncology, 2019, 9, 322.	1.3	54
702	Dissecting the Multiplicity of Immune Effects of Immunosuppressive Drugs to Better Predict the Risk of de novo Malignancies in Solid Organ Transplant Patients. Frontiers in Oncology, 2019, 9, 160.	1.3	28
703	T cell metabolism in chronic viral infection. Clinical and Experimental Immunology, 2019, 197, 143-152.	1.1	39

# 704	ARTICLE IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype. Cancer Immunology Research, 2019, 7, 759-772.	IF 1.6	CITATIONS 235
705	Metabolic Targets for Improvement of Allogeneic Hematopoietic Stem Cell Transplantation and Graft-vsHost Disease. Frontiers in Immunology, 2019, 10, 295.	2.2	20
706	Exosomes in Allergic Airway Diseases. Current Allergy and Asthma Reports, 2019, 19, 26.	2.4	28
707	Navigating metabolic pathways to enhance antitumour immunity and immunotherapy. Nature Reviews Clinical Oncology, 2019, 16, 425-441.	12.5	452
708	Modulation of asymmetric cell division as a mechanism to boost CD8 ⁺ T cell memory. Science Immunology, 2019, 4, .	5.6	42
709	Innate lymphoid cell memory. Cellular and Molecular Immunology, 2019, 16, 423-429.	4.8	49
710	Immunometabolism and natural killer cell responses. Nature Reviews Immunology, 2019, 19, 282-290.	10.6	254
711	Outsmarting and outmuscling cancer cells with synthetic and systems immunology. Current Opinion in Biotechnology, 2019, 60, 111-118.	3.3	5
712	Immune Exhaustion: Past Lessons and New Insights from Lymphocytic Choriomeningitis Virus. Viruses, 2019, 11, 156.	1.5	32
713	Selective inhibition of low-affinity memory CD8+ T cells by corticosteroids. Journal of Experimental Medicine, 2019, 216, 2701-2713.	4.2	82
715	Memory T cells delay the progression of atherosclerosis via AMPK signaling pathway. Annals of Translational Medicine, 2019, 7, 782-782.	0.7	7
717	The clock is ticking: the impact of ageing on T cell metabolism. Clinical and Translational Immunology, 2019, 8, e01091.	1.7	30
718	MicroRNA regulation of CD8+ T cell responses. Non-coding RNA Investigation, 2019, 3, 24-24.	0.6	16
719	Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function. Immunity, 2019, 51, 1074-1087.e9.	6.6	72
720	Some Aspects of CD8+ T-Cell Exhaustion Are Associated With Altered T-Cell Mitochondrial Features and ROS Content in HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2019, 82, 211-219.	0.9	14
721	Repurposing Food and Drug Administration–Approved Drugs to Promote Antitumor Immunity. Cancer Journal (Sudbury, Mass), 2019, 25, 88-99.	1.0	5
722	Targeting mTOR and Metabolism in Cancer: Lessons and Innovations. Cells, 2019, 8, 1584.	1.8	149
723	Obesity-Induced Changes in T-Cell Metabolism Are Associated With Impaired Memory T-Cell Response to Influenza and Are Not Reversed With Weight Loss. Journal of Infectious Diseases, 2019, 219, 1652-1661.	1.9	52

			_
#	ARTICLE	IF	CITATIONS
724	Activation of Peroxisome Proliferator-Activated Receptors α and δ Synergizes with Inflammatory Signals to Enhance Adoptive Cell Therapy. Cancer Research, 2019, 79, 445-451.	0.4	43
725	ACC1 determines memory potential of individual CD4+ T cells by regulating de novo fatty acid biosynthesis. Nature Metabolism, 2019, 1, 261-275.	5.1	48
726	TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy. Cell Metabolism, 2019, 29, 103-123.e5.	7.2	149
727	Autophagy in the renewal, differentiation and homeostasis of immune cells. Nature Reviews Immunology, 2019, 19, 170-183.	10.6	240
728	Influence of obesity on the response to influenza infection and vaccination. , 2019, , 227-259.		13
729	Mitochondrial metabolism: Inducer or therapeutic target in tumor immune-resistance?. Seminars in Cell and Developmental Biology, 2020, 98, 80-89.	2.3	14
730	Metformin in breast cancer: preclinical and clinical evidence. Current Problems in Cancer, 2020, 44, 100488.	1.0	81
731	Expression of bovine interleukin 15 in Pichia pastoris and study on its biological activity: a T-cell activator. Animal Biotechnology, 2020, 31, 357-364.	0.7	1
732	Gut bacteria signaling to mitochondria in intestinal inflammation and cancer. Gut Microbes, 2020, 11, 285-304.	4.3	148
733	Pathogenic CD8+ Epidermis-Resident Memory T Cells Displace Dendritic Epidermal T Cells in Allergic Dermatitis. Journal of Investigative Dermatology, 2020, 140, 806-815.e5.	0.3	28
734	Metabolic coordination of T cell quiescence and activation. Nature Reviews Immunology, 2020, 20, 55-70.	10.6	393
735	Autophagy is critical for group 2 innate lymphoid cell metabolic homeostasis and effector function. Journal of Allergy and Clinical Immunology, 2020, 145, 502-517.e5.	1.5	47
736	Metformin Effects on FOXP3 + and CD8 + T Cell Infiltrates of Head and Neck Squamous Cell Carcinoma. Laryngoscope, 2020, 130, E490-E498.	1.1	24
737	Control of Inflammation by Calorie Restriction Mimetics: On the Crossroad of Autophagy and Mitochondria. Cells, 2020, 9, 82.	1.8	62
738	Current issues and perspectives in PD-1 blockade cancer immunotherapy. International Journal of Clinical Oncology, 2020, 25, 790-800.	1.0	120
739	Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin. Biochemical Pharmacology, 2020, 174, 113787.	2.0	35
740	Ketogenesis-generated β-hydroxybutyrate is an epigenetic regulator of CD8+ T-cell memory development. Nature Cell Biology, 2020, 22, 18-25.	4.6	104
741	Using two phases of the <scp>CD</scp> 4 T cell response to bloodâ€stage murine malaria to understand regulation of systemic immunity and placental pathology in <i>Plasmodium falciparum</i> infection. Immunological Reviews, 2020, 293, 88-114.	2.8	11

#	Article	IF	CITATIONS
742	Assessment of memory formation by metabolically engineered antigen-specific CD8 T cells. Methods in Enzymology, 2020, 631, 77-90.	0.4	0
743	Human Plasma-like Medium Improves T Lymphocyte Activation. IScience, 2020, 23, 100759.	1.9	44
745	Targeting citrate as a novel therapeutic strategy in cancer treatment. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1873, 188332.	3.3	36
746	STAT3 Activation-Induced Fatty Acid Oxidation in CD8+ T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metabolism, 2020, 31, 148-161.e5.	7.2	201
747	Epigenetic Regulation of T Cell Memory: Recalling Therapeutic Implications. Trends in Immunology, 2020, 41, 29-45.	2.9	46
748	T follicular helper and memory cell responses and the mTOR pathway in murine heart transplantation. Journal of Heart and Lung Transplantation, 2020, 39, 134-144.	0.3	6
749	Homeostasis and transitional activation of regulatory T cells require c-Myc. Science Advances, 2020, 6, eaaw6443.	4.7	59
750	High Metabolic Function and Resilience of NKG2A-Educated NK Cells. Frontiers in Immunology, 2020, 11, 559576.	2.2	13
751	Metformin enhances anti-mycobacterial responses by educating CD8+ T-cell immunometabolic circuits. Nature Communications, 2020, 11, 5225.	5.8	40
752	Manipulation of Mitochondrial Plasticity Changes the Metabolic Competition Between "Foe―and "Friend―During Tumor Malignant Transformation. Frontiers in Oncology, 2020, 10, 1692.	1.3	6
753	Metabolism of Natural Killer Cells and Other Innate Lymphoid Cells. Frontiers in Immunology, 2020, 11, 1989.	2.2	36
754	Multiple genetic programs contribute to CD4 T cell memory differentiation and longevity by maintaining T cell quiescence. Cellular Immunology, 2020, 357, 104210.	1.4	8
755	Metformin enhances protection in guinea pigs chronically infected with Mycobacterium tuberculosis. Scientific Reports, 2020, 10, 16257.	1.6	15
756	Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Reports, 2020, 32, 107848.	2.9	100
757	Cardiometabolic risk factors are associated with immune cell mitochondrial respiration in humans. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H481-H487.	1.5	10
758	<p>Glucometabolic Reprogramming in the Hepatocellular Carcinoma Microenvironment: Cause and Effect</p> . Cancer Management and Research, 2020, Volume 12, 5957-5974.	0.9	21
759	Resident Memory T Cells and Their Role within the Liver. International Journal of Molecular Sciences, 2020, 21, 8565.	1.8	9
760	SCENITH: A Flow Cytometry-Based Method to Functionally Profile Energy Metabolism with Single-Cell Resolution. Cell Metabolism, 2020, 32, 1063-1075.e7.	7.2	189

#	Article	IF	CITATIONS
761	Beyond energy storage: roles of glycogen metabolism in health and disease. FEBS Journal, 2021, 288, 3772-3783.	2.2	27
762	Dynamic Cardiolipin Synthesis Is Required for CD8+ T Cell Immunity. Cell Metabolism, 2020, 32, 981-995.e7.	7.2	32
763	Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines, 2020, 8, 526.	1.4	41
764	Chimeric Antigen Receptor Designed to Prevent Ubiquitination and Downregulation Showed Durable Antitumor Efficacy. Immunity, 2020, 53, 456-470.e6.	6.6	83
765	Metabolic conditioning of CD8+ effector T cells for adoptive cell therapy. Nature Metabolism, 2020, 2, 703-716.	5.1	83
766	Metabolic Pathways in Alloreactive T Cells. Frontiers in Immunology, 2020, 11, 1517.	2.2	12
767	Recycling the Purpose of Old Drugs to Treat Ovarian Cancer. International Journal of Molecular Sciences, 2020, 21, 7768.	1.8	18
768	Calcium regulation of T cell metabolism. Current Opinion in Physiology, 2020, 17, 207-223.	0.9	29
769	Modulating NK cell metabolism for cancer immunotherapy. Seminars in Hematology, 2020, 57, 213-224.	1.8	22
770	The Ups and Downs of Metabolism during the Lifespan of a T Cell. International Journal of Molecular Sciences, 2020, 21, 7972.	1.8	21
771	Rewiring Mitochondrial Metabolism for CD8+ T Cell Memory Formation and Effective Cancer Immunotherapy. Frontiers in Immunology, 2020, 11, 1834.	2.2	26
772	To Remember or to Forget: The Role of Good and Bad Memories in Adoptive T Cell Therapy for Tumors. Frontiers in Immunology, 2020, 11, 1915.	2.2	5
773	Molecular Insights Into Regulatory T-Cell Adaptation to Self, Environment, and Host Tissues: Plasticity or Loss of Function in Autoimmune Disease. Frontiers in Immunology, 2020, 11, 1269.	2.2	14
774	Systemic Immunometabolism: Challenges and Opportunities. Immunity, 2020, 53, 496-509.	6.6	73
775	Dietary Regulation of Immunity. Immunity, 2020, 53, 510-523.	6.6	64
776	Premature ovarian insufficiency: an International Menopause Society White Paper. Climacteric, 2020, 23, 426-446.	1.1	121
777	Loss of Mitochondrial Control Impacts Renal Health. Frontiers in Pharmacology, 2020, 11, 543973.	1.6	25
778	Acute Conditioning of Antigen-Expanded CD8+ T Cells via the GSK3β-mTORC Axis Differentially Dictates Their Immediate and Distal Responses after Antigen Rechallenge. Cancers, 2020, 12, 3766.	1.7	5

#	Article	IF	CITATIONS
779	Mechanism by which TRAF6 Participates in the Immune Regulation of Autoimmune Diseases and Cancer. BioMed Research International, 2020, 2020, 1-16.	0.9	13
780	Long-term T cell fitness and proliferation is driven by AMPK-dependent regulation of reactive oxygen species. Scientific Reports, 2020, 10, 21673.	1.6	15
781	The Role of Metabolic Enzymes in the Regulation of Inflammation. Metabolites, 2020, 10, 426.	1.3	11
782	Modulation of mTORC1 Signaling Pathway by HIV-1. Cells, 2020, 9, 1090.	1.8	24
783	Nutrition and metabolism status alteration in advanced hepatocellular carcinoma patients treated with anti-PD-1 immunotherapy. Supportive Care in Cancer, 2020, 28, 5569-5579.	1.0	15
784	Harnessing nanomedicine to overcome the immunosuppressive tumor microenvironment. Acta Pharmacologica Sinica, 2020, 41, 970-985.	2.8	49
785	Remodeling Translation Primes CD8+ T-cell Antitumor Immunity. Cancer Immunology Research, 2020, 8, 587-595.	1.6	17
786	Influence of immune aging on vaccine responses. Journal of Allergy and Clinical Immunology, 2020, 145, 1309-1321.	1.5	187
787	The association of obesity and severe dengue: possible pathophysiological mechanisms. Journal of Infection, 2020, 81, 10-16.	1.7	22
788	Mitochondrial function in immune cells in health and disease. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2020, 1866, 165845.	1.8	115
789	Glycolytic inhibitor 2-deoxyglucose suppresses inflammatory response in innate immune cells and experimental staphylococcal endophthalmitis. Experimental Eye Research, 2020, 197, 108079.	1.2	19
790	The altered metabolism profile in pathogenesis of idiopathic inflammatory myopathies. Seminars in Arthritis and Rheumatism, 2020, 50, 627-635.	1.6	6
791	T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science, 2020, 368, 1371-1376.	6.0	286
792	Role of dendritic cell metabolic reprogramming in tumor immune evasion. International Immunology, 2020, 32, 485-491.	1.8	11
793	Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nature Metabolism, 2020, 2, 635-647.	5.1	150
794	Ageâ€related factors that affect B cell responses to vaccination in mice and humans. Immunological Reviews, 2020, 296, 142-154.	2.8	29
795	Lipids in ultraviolet radiation-induced immune modulation. Photochemical and Photobiological Sciences, 2020, 19, 870-878.	1.6	11
796	Obesity and the Impact on Cutaneous Melanoma: Friend or Foe?. Cancers, 2020, 12, 1583.	1.7	29

#	Article	IF	CITATIONS
797	Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. Journal of Leukocyte Biology, 2020, 108, 1455-1489.	1.5	22
798	Cardiomyocyte Senescence and Cellular Communications Within Myocardial Microenvironments. Frontiers in Endocrinology, 2020, 11, 280.	1.5	103
799	Immunometabolism: new insights and lessons from antigen-directed cellular immune responses. Seminars in Immunopathology, 2020, 42, 279-313.	2.8	37
800	Tumor microenvironmental influences on dendritic cell and T cell function: A focus on clinically relevant immunologic and metabolic checkpoints. Clinical and Translational Medicine, 2020, 10, 374-411.	1.7	33
801	Metabolism in tumor microenvironment: Implications for cancer immunotherapy. MedComm, 2020, 1, 47-68.	3.1	93
802	Fatty Acid Oxidation Controls CD8+ Tissue-Resident Memory T-cell Survival in Gastric Adenocarcinoma. Cancer Immunology Research, 2020, 8, 479-492.	1.6	116
803	Long-lived T follicular helper cells retain plasticity and help sustain humoral immunity. Science Immunology, 2020, 5, .	5.6	78
804	Signaling networks in immunometabolism. Cell Research, 2020, 30, 328-342.	5.7	120
805	A Bump in the Road: How the Hostile AML Microenvironment Affects CAR T Cell Therapy. Frontiers in Oncology, 2020, 10, 262.	1.3	48
806	mTOR signaling at the crossroads of environmental signals and Tâ€cell fate decisions. Immunological Reviews, 2020, 295, 15-38.	2.8	120
807	Successful treatment of BK virus associated-nephropathy in a human immunodeficiency virus-positive kidney transplant recipient. International Journal of STD and AIDS, 2020, 31, 387-391.	0.5	2
808	Targeting immunometabolism as an anti-inflammatory strategy. Cell Research, 2020, 30, 300-314.	5.7	285
809	Functions of acetylcholine-producing lymphocytes in immunobiology. Current Opinion in Neurobiology, 2020, 62, 115-121.	2.0	16
810	Plasticity in T-cell mitochondrial metabolism: A necessary peacekeeper during the troubled times of persistent HIV-1 infection. Cytokine and Growth Factor Reviews, 2020, 55, 26-36.	3.2	7
811	Effect of Increased Lactate Dehydrogenase A Activity and Aerobic Glycolysis on the Proinflammatory Profile of Autoimmune CD8+ T Cells in Rheumatoid Arthritis. Arthritis and Rheumatology, 2020, 72, 2050-2064.	2.9	48
812	Dietary Regulation of Memory T Cells. International Journal of Molecular Sciences, 2020, 21, 4363.	1.8	13
813	Amino Assets: How Amino Acids Support Immunity. Cell Metabolism, 2020, 32, 154-175.	7.2	256
814	Metformin and 2-Deoxyglucose Collaboratively Suppress Human CD4+ T Cell Effector Functions and Activation-Induced Metabolic Reprogramming, Journal of Immunology, 2020, 205, 957-967.	0.4	24

#	Article	IF	CITATIONS
815	Recent advancement and future perspective for the treatment of multidrug-resistant tuberculosis. , 2020, , 231-250.		1
816	Premature Ovarian Insufficiency. , 2020, , 38-47.		2
817	The immunologic Warburg effect: Evidence and therapeutic opportunities in autoimmunity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2020, 12, e1486.	6.6	60
818	Enforced PGC-1α expression promotes CD8 T cell fitness, memory formation and antitumor immunity. Cellular and Molecular Immunology, 2021, 18, 1761-1771.	4.8	73
819	Exploiting immunometabolism and T cell function for solid organ transplantation. Cellular Immunology, 2020, 351, 104068.	1.4	7
820	Tumor hypermetabolism confers resistance to immunotherapy. Seminars in Cancer Biology, 2020, 65, 155-163.	4.3	17
821	Impaired lipid biosynthesis hinders anti-tumor efficacy of intratumoral iNKT cells. Nature Communications, 2020, 11, 438.	5.8	77
822	Targeting PPAR ligands as possible approaches for metabolic reprogramming of T cells in cancer immunotherapy. Immunology Letters, 2020, 220, 32-37.	1.1	14
823	Immunological Memory of Psoriatic Lesions. International Journal of Molecular Sciences, 2020, 21, 625.	1.8	27
824	Impact of Immunometabolism on Cancer Metastasis: A Focus on T Cells and Macrophages. Cold Spring Harbor Perspectives in Medicine, 2020, 10, a037044.	2.9	10
825	Glycolysis – a key player in the inflammatory response. FEBS Journal, 2020, 287, 3350-3369.	2.2	250
826	Fueling influenza and the immune response: Implications for metabolic reprogramming during influenza infection and immunometabolism. Immunological Reviews, 2020, 295, 140-166.	2.8	14
827	Immunometabolism: From basic mechanisms to translation. Immunological Reviews, 2020, 295, 5-14.	2.8	208
828	Impact of Concomitant Medication Administered at the Time of Initiation of Nivolumab Therapy on Outcome in Non-small Cell Lung Cancer. Anticancer Research, 2020, 40, 2209-2217.	0.5	56
829	Immune metabolism in PD-1 blockade-based cancer immunotherapy. International Immunology, 2021, 33, 17-26.	1.8	26
830	How could we forget immunometabolism in SARS-CoV2 infection or COVID-19?. International Reviews of Immunology, 2021, 40, 72-107.	1.5	33
831	Metabolic interventions: A new insight into the cancer immunotherapy. Archives of Biochemistry and Biophysics, 2021, 697, 108659.	1.4	8
832	Immunometabolism and HIV-1 pathogenesis: food for thought. Nature Reviews Immunology, 2021, 21, 5-19.	10.6	55

#	Article	IF	CITATIONS
833	Targeting metabolism to reverse Tâ€cell exhaustion in chronic viral infections. Immunology, 2021, 162, 135-144.	2.0	23
834	Ibrutinib for improved chimeric antigen receptor Tâ€cell production for chronic lymphocytic leukemia patients. International Journal of Cancer, 2021, 148, 419-428.	2.3	42
835	Steatohepatitis Impairs T-cell–Directed Immunotherapies Against Liver Tumors in Mice. Gastroenterology, 2021, 160, 331-345.e6.	0.6	46
836	Effects of Brief Adjunctive Metformin Therapy in Virologically Suppressed HIV-Infected Adults on Polyfunctional HIV-Specific CD8 T Cell Responses to PD-L1 Blockade. AIDS Research and Human Retroviruses, 2021, 37, 24-33.	0.5	6
837	Metabolic regulation of the HBV-specific T cell function. Antiviral Research, 2021, 185, 104989.	1.9	9
838	A metabolic switch to memory CAR T cells: Implications for cancer treatment. Cancer Letters, 2021, 500, 107-118.	3.2	21
839	Functional and metabolic dichotomy of murine γÎ′ T cell subsets in cancer immunity. European Journal of Immunology, 2021, 51, 17-26.	1.6	10
840	How immune ell fate and function are determined by metabolic pathway choice. BioEssays, 2021, 43, e2000067.	1.2	18
841	MEK inhibition reprograms CD8+ T lymphocytes into memory stem cells with potent antitumor effects. Nature Immunology, 2021, 22, 53-66.	7.0	95
842	Immunometabolism in the Tumor Microenvironment. Annual Review of Cancer Biology, 2021, 5, 137-159.	2.3	28
843	Redox regulation of immunometabolism. Nature Reviews Immunology, 2021, 21, 363-381.	10.6	225
844	Addressing Patient to Patient Variability for Autologous CAR T Therapies. Journal of Pharmaceutical Sciences, 2021, 110, 1871-1876.	1.6	12
845	Stress relief for cancer immunotherapy: implications for the ER stress response in tumor immunity. Cancer Immunology, Immunotherapy, 2021, 70, 1165-1175.	2.0	9
846	AMBRA1 controls antigen-driven activation and proliferation of naive T cells. International Immunology, 2021, 33, 107-118.	1.8	3
847	Reinvigorating exhausted CD8 ⁺ cytotoxic T lymphocytes in the tumor microenvironment and current strategies in cancer immunotherapy. Medicinal Research Reviews, 2021, 41, 156-201.	5.0	56
848	Nephropathogenic Infectious Bronchitis Virus Infection Altered the Metabolome Profile and Immune Function of the Bursa of Fabricius in Chicken. Frontiers in Veterinary Science, 2020, 7, 628270.	0.9	3
849	Harnessing metabolism for reinvigorating dysfunctional T cells in cancer. , 2021, , 69-89.		1

ARTICLE IF CITATIONS # Functional Heterogeneity and Therapeutic Targeting of Tissue-Resident Memory T Cells. Cells, 2021, 10, 851 1.8 9 164. Metabolic Choice Tunes Foxp3+ Regulatory T Cell Function. Advances in Experimental Medicine and 0.8 Biology, 2021, 1278, 81-94. Lipid Metabolism in Tumor-Infiltrating T Cells. Advances in Experimental Medicine and Biology, 2021, 853 0.8 4 1316, 149-167. Lipophagy confers a key metabolic advantage that ensures protective CD8A T-cell responses against 854 HIV-1. Autophagy, 2021, 17, 3408-3423. Impact of obesity and SARS-CoV-2 infection: implications for host defence - a living review. Oxford 855 1.2 9 Open Immunology, 2021, 2, iqab001. Repurposing of Metformin as a Multifaceted and Multitasking Preventative and Treatment for Cancer. , 0, , . The Systemic and Cellular Metabolic Phenotype of Infection and Immune Response to Listeria 857 2.2 3 monocytogenes. Frontiers in Immunology, 2020, 11, 614697. Type 2 diabetes and viral infection; cause and effect of disease. Diabetes Research and Clinical Practice, 1.1 26 859 Metformin - its anti-cancer effects in hematologic malignancies. Oncology Reviews, 2021, 15, 514. 0.8 14 Dietary Intervention Impacts Immune Cell Functions and Dynamics by Inducing Metabolic Rewiring. 2.2 Frontiers in Immunology, 2020, 11, 623989. Cutting edge: Metabolic immune reprogramming, reactive oxygen species, and cancer. Journal of 862 2.0 8 Cellular Physiology, 2021, 236, 6168-6189. De Novo Transcriptome Profiling of Brain Tissue from the Annual Killifish Nothobranchius guentheri. 1.1 Life, 2021, 11, 137. Fundamentals of T Cell Metabolism and Strategies to Enhance Cancer Immunotherapy. Frontiers in 865 2.2 69 Immunology, 2021, 12, 645242. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation, 2021, 105, e191-e201. Reprogramming lipid metabolism prevents effector T cell senescence and enhances tumor 867 101 5.8 immunotherapy. Science Translational Medicine, 2021, 13, . Metformin as a potential protective therapy against tuberculosis in patients with diabetes mellitus: A retrospective cohort study in a single teaching hospital. Journal of Diabetes Investigation, 2021, 12, 1.1 1603-1609. Autophagy in inflammation, infection, and immunometabolism. Immunity, 2021, 54, 437-453. 333 869 6.6 870 Stem cell-like memory T cells: A perspective from the dark side. Cellular Immunology, 2021, 361, 104273. 1.4

#	Article	IF	CITATIONS
871	Effects of cellular senescence on metabolic pathways in non-immune and immune cells. Mechanisms of Ageing and Development, 2021, 194, 111428.	2.2	14
872	Gamma-Chain Receptor Cytokines & PD-1 Manipulation to Restore HCV-Specific CD8+ T Cell Response during Chronic Hepatitis C. Cells, 2021, 10, 538.	1.8	4
873	Metabolic Reprogramming and Reactive Oxygen Species in T Cell Immunity. Frontiers in Immunology, 2021, 12, 652687.	2.2	54
874	InÂvivo CRISPR screening reveals nutrient signaling processes underpinning CD8+ TÂcell fate decisions. Cell, 2021, 184, 1245-1261.e21.	13.5	68
876	Mitochondrial Inhibition: a Treatment Strategy in Cancer?. Current Oncology Reports, 2021, 23, 49.	1.8	11
877	Enhanced immune memory through a constant photothermal-metabolism regulation for cancer prevention and treatment. Biomaterials, 2021, 270, 120678.	5.7	19
878	Lifestyle exercise attenuates immunosenescence; flow cytometry analysis. BMC Geriatrics, 2021, 21, 200.	1.1	32
879	How Changes in the Nutritional Landscape Shape Gut Immunometabolism. Nutrients, 2021, 13, 823.	1.7	14
880	Tissue-specific immunity for a changing world. Cell, 2021, 184, 1517-1529.	13.5	58
881	Metabolic regulation of tissue-resident memory CD8+ T cells. Current Opinion in Pharmacology, 2021, 57, 117-124.	1.7	7
882	Metabolic Control of Memory T-Cell Generation and Stemness. Cold Spring Harbor Perspectives in Biology, 2021, 13, a037770.	2.3	6
883	Single-cell analysis by mass cytometry reveals metabolic states of early-activated CD8+ TÂcells during the primary immune response. Immunity, 2021, 54, 829-844.e5.	6.6	68
884	The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Frontiers in Immunology, 2021, 12, 654877.	2.2	19
885	Metabolic and functional impairment of CD8+ T cells from the lungs of influenza-infected obese mice. Journal of Leukocyte Biology, 2021, 111, 147-159.	1.5	9
886	Mitochondrial metabolism is a key regulator of the fibro-inflammatory and adipogenic stromal subpopulations in white adipose tissue. Cell Stem Cell, 2021, 28, 702-717.e8.	5.2	33
887	Targeting immune cell metabolism in kidney diseases. Nature Reviews Nephrology, 2021, 17, 465-480.	4.1	31
888	CpG-ODN induced antimicrobial immunity in neonatal chicks involves a substantial shift in serum metabolic profiles. Scientific Reports, 2021, 11, 9028.	1.6	3
890	Tissue Nutrient Environments and Their Effect on Regulatory T Cell Biology. Frontiers in Immunology, 2021, 12, 637960.	2.2	10

#	Article	IF	CITATIONS
891	Nutrigenomics and Nutrigenetics in Metabolic- (Dysfunction) Associated Fatty Liver Disease: Novel Insights and Future Perspectives. Nutrients, 2021, 13, 1679.	1.7	14
892	Repurposing metformin for the treatment of gastrointestinal cancer. World Journal of Gastroenterology, 2021, 27, 1883-1904.	1.4	21
893	Rapamycin Improves the Response of Effector and Memory CD8+ T Cells Induced by Immunization With ASP2 of Trypanosoma cruzi. Frontiers in Cellular and Infection Microbiology, 2021, 11, 676183.	1.8	8
894	Butyrate enhances CPT1A activity to promote fatty acid oxidation and iTreg differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	54
895	Aging-dependent mitochondrial dysfunction mediated by ceramide signaling inhibits antitumor TÂcell response. Cell Reports, 2021, 35, 109076.	2.9	35
896	Metabolic reprogramming and epigenetic modifications on the path to cancer. Protein and Cell, 2022, 13, 877-919.	4.8	179
897	CD8+ T cell metabolism in infection and cancer. Nature Reviews Immunology, 2021, 21, 718-738.	10.6	181
898	Interplay Between Reactive Oxygen/Reactive Nitrogen Species and Metabolism in Vascular Biology and Disease. Antioxidants and Redox Signaling, 2021, 34, 1319-1354.	2.5	35
899	How Does B Cell Antigen Presentation Affect Memory CD4 T Cell Differentiation and Longevity?. Frontiers in Immunology, 2021, 12, 677036.	2.2	13
900	Plasma Metabolomics Reveals Dysregulated Metabolic Signatures in HIV-Associated Immune Reconstitution Inflammatory Syndrome. Frontiers in Immunology, 2021, 12, 693074.	2.2	11
901	The Natural History of T Cell Metabolism. International Journal of Molecular Sciences, 2021, 22, 6779.	1.8	9
902	STAT1 potentiates oxidative stress revealing a targetable vulnerability that increases phenformin efficacy in breast cancer. Nature Communications, 2021, 12, 3299.	5.8	24
903	Metabolic Disturbance and Th17/Treg Imbalance Are Associated With Progression of Gingivitis. Frontiers in Immunology, 2021, 12, 670178.	2.2	18
904	Deletion of AMPK minimizes graft-versus-host disease through an early impact on effector donor T cells. JCI Insight, 2021, 6, .	2.3	5
905	Prostate Cancer Progression: as a Matter of Fats. Frontiers in Oncology, 2021, 11, 719865.	1.3	27
906	The Importance of Metabolism for Immune Homeostasis in Allergic Diseases. Frontiers in Immunology, 2021, 12, 692004.	2.2	17
908	Glucose limitation activates AMPK coupled SENP1-Sirt3 signalling in mitochondria for T cell memory development. Nature Communications, 2021, 12, 4371.	5.8	55
909	Fatty acid oxidation: driver of lymph node metastasis. Cancer Cell International, 2021, 21, 339.	1.8	25

#	Article	IF	CITATIONS
910	Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation. Cellular Immunology, 2021, 365, 104378.	1.4	14
911	CD4+ T-cell differentiation and function: Unifying glycolysis, fatty acid oxidation, polyamines NAD mitochondria. Journal of Allergy and Clinical Immunology, 2021, 148, 16-32.	1.5	49
912	Loss of Interleukin-6 Influences Transcriptional Immune Signatures and Alters Bacterial Colonization in the Skin. Frontiers in Microbiology, 2021, 12, 658980.	1.5	2
913	Targeting Aging: Lessons Learned From Immunometabolism and Cellular Senescence. Frontiers in Immunology, 2021, 12, 714742.	2.2	14
914	Single-Cell Transcriptomics Reveals Core Regulatory Programs That Determine the Heterogeneity of Circulating and Tissue-Resident Memory CD8+ T Cells. Cells, 2021, 10, 2143.	1.8	18
915	Metabolic reprogramming of immune cells: Shaping the tumor microenvironment in hepatocellular carcinoma. Cancer Medicine, 2021, 10, 6374-6383.	1.3	19
916	Metabolic regulation of T cells in the tumor microenvironment by nutrient availability and diet. Seminars in Immunology, 2021, 52, 101485.	2.7	24
917	Pharmacological inhibition of GLUT1 as a new immunotherapeutic approach after myocardial infarction. Biochemical Pharmacology, 2021, 190, 114597.	2.0	12
918	Metabolic checkpoints and novel approaches for immunotherapy against cancer. International Journal of Cancer, 2022, 150, 195-207.	2.3	7
919	Discovery of a Carbamoyl Phosphate Synthetase 1–Deficient HCC Subtype With Therapeutic Potential Through Integrative Genomic and Experimental Analysis. Hepatology, 2021, 74, 3249-3268.	3.6	26
920	The Immunometabolic Roles of Various Fatty Acids in Macrophages and Lymphocytes. International Journal of Molecular Sciences, 2021, 22, 8460.	1.8	19
921	Distinct Bioenergetic Features of Human Invariant Natural Killer T Cells Enable Retained Functions in Nutrient-Deprived States. Frontiers in Immunology, 2021, 12, 700374.	2.2	3
922	Therapeutic Repurposing of Biguanides in Cancer. Trends in Cancer, 2021, 7, 714-730.	3.8	32
923	Immunotherapeutic Potential of T Memory Stem Cells. Frontiers in Oncology, 2021, 11, 723888.	1.3	17
924	The Binary Model of Chronic Diseases Applied to COVID-19. Frontiers in Immunology, 2021, 12, 716084.	2.2	6
925	Advances in Liver Transplantation: where are we in the pursuit of transplantation tolerance?. European Journal of Immunology, 2021, 51, 2373-2386.	1.6	6
926	Single-cell profiling defines the prognostic benefit of CD39high tissue resident memory CD8+ T cells in luminal-like breast cancer. Communications Biology, 2021, 4, 1117.	2.0	11
927	Elevated glycolysis imparts functional ability to CD8 ⁺ T cells in HIV infection. Life Science Alliance, 2021, 4, e202101081.	1.3	16

#	ARTICLE	IF	CITATIONS
928	Metabolism as a driver of immunity. Nature Reviews Immunology, 2021, 21, 618-619.	10.6	12
929	Regulating immune memory and reversing tumor thermotolerance through a step-by-step starving-photothermal therapy. Journal of Nanobiotechnology, 2021, 19, 297.	4.2	14
930	Harnessing Metabolic Reprogramming to Improve Cancer Immunotherapy. International Journal of Molecular Sciences, 2021, 22, 10268.	1.8	11
931	Targeted epigenetic induction of mitochondrial biogenesis enhances antitumor immunity in mouse model. Cell Chemical Biology, 2022, 29, 463-475.e6.	2.5	10
932	Metabolic Reprogramming of Immune Cells at the Maternal-Fetal Interface and the Development of Techniques for Immunometabolism. Frontiers in Immunology, 2021, 12, 717014.	2.2	12
933	L-type amino acid transporter 1 as a target for inflammatory disease and cancer immunotherapy. Journal of Pharmacological Sciences, 2022, 148, 31-40.	1.1	15
934	PPARα at the crossroad of metabolic–immune regulation in cancer. FEBS Journal, 2022, 289, 7726-7739.	2.2	18
935	mTOR Signaling: The Interface Linking Cellular Metabolism and Hepatitis B Virus Replication. Virologica Sinica, 2021, 36, 1303-1314.	1.2	9
936	SATB1-dependent mitochondrial ROS production controls TCR signaling in CD4 T cells. Life Science Alliance, 2021, 4, e202101093.	1.3	0
937	Characterization of metabolic landscape in hepatocellular carcinoma. World Journal of Gastrointestinal Oncology, 2021, 13, 1144-1156.	0.8	6
938	Tissue-specific differentiation of CD8+ resident memory T cells. Trends in Immunology, 2021, 42, 876-890.	2.9	30
939	Transcriptional regulation of T cell metabolism and metabolic control of T cell gene expression. Current Opinion in Genetics and Development, 2021, 70, 83-88.	1.5	1
940	Biguanides drugs: Past success stories and promising future for drug discovery. European Journal of Medicinal Chemistry, 2021, 224, 113726.	2.6	15
941	Mitochondrial connections with immune system in Zebrafish. Fish and Shellfish Immunology Reports, 2021, 2, 100019.	0.5	5
942	Asparagine enhances LCK signalling to potentiate CD8+ T-cell activation and anti-tumour responses. Nature Cell Biology, 2021, 23, 75-86.	4.6	83
943	Testing the Specificity of Compounds Designed to Inhibit CPT1A in T Cells. Methods in Molecular Biology, 2020, 2097, 83-90.	0.4	2
944	Utilizing a Retroviral RNAi System to Investigate In Vivo mTOR Functions in T Cells. Methods in Molecular Biology, 2012, 821, 305-316.	0.4	5
945	Advances and Challenges of CAR T Cells in Clinical Trials. Recent Results in Cancer Research, 2020, 214, 93-128.	1.8	10

ARTICLE IF CITATIONS # The Immune Consequences of Lactate in the Tumor Microenvironment. Advances in Experimental 946 0.8 43 Medicine and Biology, 2020, 1259, 113-124. 947 Chimeric Antigen Receptor (CAR) Redirected T Cells. Learning Materials in Biosciences, 2021, , 251-302. 0.2 949 CD8 T Cell Memory to Pathogens., 2016, , 300-317. 6 Context-Dependent Pharmacological Effects of Metformin on the Immune System. Trends in 950 34 Pharmacological Sciences, 2020, 41, 162-171. Targeting p53 and histone methyltransferases restores exhausted CD8+ T cells in HCV infection. 951 5.8 44 Nature Communications, 2020, 11, 604. BATF3 programs CD8+ T cell memory. Nature Immunology, 2020, 21, 1397-1407. 953 T cell metabolism in graft-versus-host disease. Blood Science, 2020, 2, 16-21. 0.4 5 Mecanismos antitumorales de la metformina: señalización, metabolismo, inmunidad y mÃjs allÃj.. 0.2 958 Designing the Next Generation of Vaccines: Relevance for Future Pandemics. MBio, 2020, 11, . 1.8 17 Antioxidant metabolism regulates CD8+ T memory stem cell formation and antitumor immunity. JCI 2.3 84 Insight, 2018, 3, . Targeting liver stage malaria with metformin. JCI Insight, 2019, 4, . 960 2.3 23 PET probes for distinct metabolic pathways have different cell specificities during immune responses 38 in mice. Journal of Clinical Investigation, 2010, 120, 2005-2015 Potential applications for biguanides in oncology. Journal of Clinical Investigation, 2013, 123, 962 3.9 162 3693-3700. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. Journal of Clinical Investigation, 2014, 124, 188-197. Metabolic regulation of immune responses: therapeutic opportunities. Journal of Clinical 964 3.9 78 Investigation, 2016, 126, 2031-2039. Programmed death ligand-1 expression on donor T cells drives graft-versus-host disease lethality. 3.9 Journal of Clinical Investigation, 2016, 126, 2642-2660. Proteasome activity regulates CD8+ T lymphocyte metabolism and fate specification. Journal of 966 3.9 35 Clinical Investigation, 2017, 127, 3609-3623. Signaling in T cells $\hat{a} \in \hat{}$ is anything the m(a)TOR with the picture(s)? F1000Research, 2016, 5, 191.

ARTICLE IF CITATIONS # The Impact of KLF2 Modulation on the Transcriptional Program and Function of CD8 T Cells. PLoS ONE, 968 1.1 30 2013, 8, e77537. Acetyl CoA Carboxylase 2 Is Dispensable for CD8+ T Cell Responses. PLoS ONE, 2015, 10, e0137776. 1.1 9 Mitochondrial Superoxide Signaling Contributes to Norepinephrine-Mediated T-Lymphocyte Cytokine 970 1.1 35 Profiles. PLoS ONE, 2016, 11, e0164609. Dual Specificity Phosphatase 5 Is Essential for T Cell Survival. PLoS ONE, 2016, 11, e0167246. 971 1.1 Advances in the quantification of mitochondrial function in primary human immune cells through 972 1.1 61 extracellular flux analysis. PLoS ONE, 2017, 12, e0170975. Phenotypic and Functional Alterations in Circulating Memory CD8 T Cells with Time after Primary Infection. PLoS Pathogens, 2015, 11, e1005219. 2.1 Dynamic metabolic reprogramming in dendritic cells: An early response to influenza infection that is 974 2.1 13 essential for effector function. PLoS Pathogens, 2020, 16, e1008957. Expression of bovine interleukin 15 and evaluation of its biological activity in vitro. Veterinary World, 2015, 8, 295-300. 976 The Bidirectional Relationship between Metabolism and Immune Responses. Discoveries, 2013, 1, e6. 1.5 26 mTOR Signaling in Regulatory T Cell Differentiation and Expansion. SOJ Immunology, 2015, 3, . 0.2 CD40 Signaling to the Rescue: A CD8 Exhaustion Perspective in Chronic Infectious Diseases. Critical 979 1.0 8 Reviews in Immunology, 2013, 33, 361-378. Metformin: current clinical applications in nondiabetic patients with cancer. Aging, 2020, 12, 980 1.4 3993-4009. IL-21 modulates memory and exhaustion phenotype of T-cells in a fatty acid oxidation-dependent 981 0.8 58 manner. Oncotarget, 2018, 9, 13125-13138. Human melanoma immunotherapy using tumor antigen-specific T cells generated in humanized mice. 0.8 38 Oncotarget, 2016, 7, 6448-6459 Self-Regulation of Memory CD8 T Cell Metabolism through Extracellular ATP Signaling. 983 0.7 18 Immunometabolism, 2019, 1, . Anti-Aging Effect of Metformin: A Molecular and Therapeutical Perspective. Current Pharmaceutical 984 Design, 2020, 26, 4496-4508. Metabolic Reprogramming in CD8+ T Cells During Acute Viral Infections. Frontiers in Immunology, 985 2.227 2020, 11, 1013. The Research Advances in Small Molecules Related With Delaying Aging*. Progress in Biochemistry and Biophysics, 2010, 37, 932-938.

#	Article	IF	CITATIONS
987	New drugs are not enough‑drug repositioning in oncology: An update. International Journal of Oncology, 2020, 56, 651-684.	1.4	50
988	Sepsis-Induced T Cell Immunoparalysis: The Ins and Outs of Impaired T Cell Immunity. Journal of Immunology, 2018, 200, 1543-1553.	0.4	143
989	Metabolic Reprogramming by the Excessive AMPK Activation Exacerbates Antigen-Specific Memory CD8 ⁺ T Cell Differentiation after Acute Lymphocytic Choriomeningitis Virus Infection. Immune Network, 2019, 19, e11.	1.6	7
990	Immunosuppressive potency of mechanistic target of rapamycin inhibitors in solid-organ transplantation. World Journal of Transplantation, 2016, 6, 183.	0.6	49
991	The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation. ELife, 2016, 5, e12444.	2.8	153
992	Glutathione de novo synthesis but not recycling process coordinates with glutamine catabolism to control redox homeostasis and directs murine T cell differentiation. ELife, 2018, 7, .	2.8	116
993	The tumor microenvironment as a metabolic barrier to effector T cells and immunotherapy. ELife, 2020, 9, .	2.8	168
994	Systemic hypoxia inhibits T cell response by limiting mitobiogenesis via matrix substrate-level phosphorylation arrest. ELife, 2020, 9, .	2.8	9
995	Autophagy in T cells from aged donors is maintained by spermidine and correlates with function and vaccine responses. ELife, 2020, 9, .	2.8	55
996	The effects of age and systemic metabolism on anti-tumor T cell responses. ELife, 2020, 9, .	2.8	34
997	The Role of Insulin Resistance in Benign Breast Disease. ISGE Series, 2021, , 171-178.	0.2	0
999	Improving CAR T-Cell Persistence. International Journal of Molecular Sciences, 2021, 22, 10828.	1.8	44
1000	Dichotomous metabolic networks govern human ILC2 proliferation and function. Nature Immunology, 2021, 22, 1367-1374.	7.0	34
1001	Metabolic Profile of Adaptive Immune Cells. , 2022, , 115-132.		0
1002	Metabolic Pathways in Immune Cells Commitment and Fate. , 2022, , 53-82.		0
1003	Crosstalk of Microorganisms and Immune Responses in Autoimmune Neuroinflammation: A Focus on Regulatory T Cells. Frontiers in Immunology, 2021, 12, 747143.	2.2	3
1004	Everolimus: Emerging Evidence of its Therapeutic Impact in Patients with Advanced Renal Cell Carcinoma. Clinical Medicine Reviews in Oncology, 0, 2, 99-107.	0.0	0
1005	Molecular Mechanisms of TRAF6 Ubiquitination and Activation. FASEB Journal, 2010, 24, 843.3.	0.2	0

#	Article	IF	CITATIONS
1007	T Lymphocytes. , 2013, , 174-190.		3
1008	Harnessing Stem Cell-Like Memory T Cells for Adoptive Cell Transfer Therapy of Cancer. Cancer Drug Discovery and Development, 2015, , 183-209.	0.2	4
1009	T Cell Tuning for Tumour Therapy: Enhancing Effector Function and Memory Potential of Therapeutic T cells. Current Gene Therapy, 2015, 15, 289-299.	0.9	0
1010	CD8 T Cells. , 2016, , 1-12.		0
1011	Autophagy in T and B Lymphocytes. , 2016, , 171-184.		0
1012	Systemic Therapies to Reduce the Risk of Recurrence in Early Breast Cancer: New Strategies. , 2016, , 83-91.		0
1013	Features of immune metabolism of lymphocytes in pancreatic lymph nodes during experimental steptozotocin-induced diabetes mellitus and after introduction of metformin Morphologia, 2016, 10, 61-68.	0.1	1
1014	Epidermal Fatty Acid Binding Protein (E-FABP) Is Not Required for the Generation or Maintenance of Effector and Memory T Cells following Infection with Listeria monocytogenes. PLoS ONE, 2016, 11, e0162427.	1.1	2
1016	Responses and response evaluation of immune checkpoint inhibitors in lymphoma. Annals of Lymphoma, 0, 1, 1-1.	4.5	0
1018	Immunosenescence and Cancer Immunotherapy at Old Age: Basics. , 2018, , 1-20.		1
1020	Diabetes with Pancreatic Ductal Adenocarcinoma. , 2019, , 111-131.		0
1026	Immunologisches und energiespeicherndes GedÃ ¤ htnis. , 2020, , 139-147.		0
1027	Immunosenescence and Cancer Immunotherapy at Old Age: Basics. , 2020, , 71-90.		1
1032	Angry, Hungry T-Cells: How Are T-Cell Responses Induced in Low Nutrient Conditions?. Immunometabolism, 2020, , .	0.7	3
1033	T-Cell Metabolism and Its Dysfunction Induced by Cancer. , 2020, , 107-116.		0
1037	Cholesterol-Lowering Intervention Decreases mTOR Complex 2 Signaling and Enhances Antitumor Immunity. Clinical Cancer Research, 2022, 28, 414-424.	3.2	14
1039	Changing the energy of an immune response. American Journal of Clinical and Experimental Immunology, 2013, 2, 30-54.	0.2	46
1041	The role of metabolic reprogramming in T cell fate and function. Current Trends in Immunology, 2016, 17, 1-12.	4.0	29

#	Article	IF	CITATIONS
1042	Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. American Journal of Translational Research (discontinued), 2019, 11, 6965-6976.	0.0	17
1043	Metformin: Possible Use of a Diabetes Drug in Treatment of Cancer. Clinical Research in Diabetes and Endocrinology, 2018, 1, .	0.0	0
1044	Directing T-Cell Immune Responses for Cancer Vaccination and Immunotherapy. Vaccines, 2021, 9, 1392.	2.1	7
1045	Cancer metabolism and tumor microenvironment: fostering each other?. Science China Life Sciences, 2022, 65, 236-279.	2.3	68
1046	O-GlcNAcylation in Chronic Lymphocytic Leukemia and Other Blood Cancers. Frontiers in Immunology, 2021, 12, 772304.	2.2	6
1048	Targeting T cell metabolism for immunotherapy. Journal of Leukocyte Biology, 2021, 110, 1081-1090.	1.5	3
1049	Fatty acid metabolism in adaptive immunity. FEBS Journal, 2023, 290, 584-599.	2.2	13
1050	Mastering an exhausting marathon: how CD8 ⁺ T cells fineâ€ŧune metabolic fitness. Immunology and Cell Biology, 2022, 100, 83-86.	1.0	3
1051	B cells imprint adoptively transferred CD8 ⁺ T cells with enhanced tumor immunity. , 2022, 10, e003078.		7
1052	Remodeling metabolic fitness: Strategies for improving the efficacy of chimeric antigen receptor T cell therapy. Cancer Letters, 2022, 529, 139-152.	3.2	18
1053	Irgm1 regulates metabolism and function in T cell subsets. Scientific Reports, 2022, 12, 850.	1.6	8
1054	Immunometabolic rewiring in tumorigenesis and anti-tumor immunotherapy. Molecular Cancer, 2022, 21, 27.	7.9	35
1055	Protection of Quiescence and Longevity of IgG Memory B Cells by Mitochondrial Autophagy. Journal of Immunology, 2022, 208, 1085-1098.	0.4	8
1056	Breast Cancer Tumor Microenvironment and Molecular Aberrations Hijack Tumoricidal Immunity. Cancers, 2022, 14, 285.	1.7	12
1057	Targeting memory T cell metabolism to improve immunity. Journal of Clinical Investigation, 2022, 132, .	3.9	61
1058	Metabolic adaptation of lymphocytes in immunity and disease. Immunity, 2022, 55, 14-30.	6.6	91
1060	Update on the etiopathogenesis of psoriasis (Review). Experimental and Therapeutic Medicine, 2022, 23, 201.	0.8	22
1061	Metabolic Implications of Immune Checkpoint Proteins in Cancer. Cells, 2022, 11, 179.	1.8	15

#	Article	IF	CITATIONS
1062	Altered Basal Lipid Metabolism Underlies the Functional Impairment of Naive CD8+ T Cells in Elderly Humans. Journal of Immunology, 2022, 208, 562-570.	0.4	15
1063	T Cell Responses to the Microbiota. Annual Review of Immunology, 2022, 40, 559-587.	9.5	42
1064	Metformin alleviates ionizing radiation-induced senescence by restoring BARD1-mediated DNA repair in human aortic endothelial cells. Experimental Gerontology, 2022, 160, 111706.	1.2	12
1065	Control of immunity via nutritional interventions. Immunity, 2022, 55, 210-223.	6.6	44
1066	Metabolic modulation of immune checkpoints and novel therapeutic strategies in cancer. Seminars in Cancer Biology, 2022, 86, 542-565.	4.3	51
1068	The Energy Sensor AMPKα1 Is Critical in Rapamycin-Inhibition of mTORC1-S6K-Induced T-cell Memory. International Journal of Molecular Sciences, 2022, 23, 37.	1.8	7
1069	Coenzyme A fuels TÂcell anti-tumor immunity. Cell Metabolism, 2021, 33, 2415-2427.e6.	7.2	31
1070	Epigenetic regulation of natural killer cell memory*. Immunological Reviews, 2022, 305, 90-110.	2.8	17
1071	Proteomic and Metabolomic Profiling in Soft Tissue Sarcomas. Current Treatment Options in Oncology, 2022, 23, 78-88.	1.3	10
1072	Mitochondria Transfer to CD4+ T Cells May Alleviate Rheumatoid Arthritis by Suppressing Pro-Inflammatory Cytokine Production. Immunometabolism, 2022, 4, .	0.7	4
1073	The Interplay of Hypoxia Signaling on Mitochondrial Dysfunction and Inflammation in Cardiovascular Diseases and Cancer: From Molecular Mechanisms to Therapeutic Approaches. Biology, 2022, 11, 300.	1.3	22
1074	Fighting the SARS-CoV-2 pandemic requires a global approach to understanding the heterogeneity of vaccine responses. Nature Immunology, 2022, 23, 360-370.	7.0	34
1075	IL-6-induced FOXO1 activity determines the dynamics of metabolism in CD8 TÂcells cross-primed by liver sinusoidal endothelial cells. Cell Reports, 2022, 38, 110389.	2.9	10
1076	Immunometabolism at the intersection of metabolic signaling, cell fate, and systems immunology. Cellular and Molecular Immunology, 2022, 19, 299-302.	4.8	19
1077	CD8+ TÂcells and fatty acids orchestrate tumor ferroptosis and immunity via ACSL4. Cancer Cell, 2022, 40, 365-378.e6.	7.7	250
1078	Fatty Acid Metabolism and Cancer Immunotherapy. Current Oncology Reports, 2022, 24, 659-670.	1.8	23
1079	Immune Metabolism–An Opportunity to Better Understand Allergic Pathology and Improve Treatment of Allergic Diseases?. Frontiers in Allergy, 2022, 3, 825931.	1.2	7
1080	Rapamycin limits CD4+ T cell proliferation in simian immunodeficiency virus–infected rhesus macaques on antiretroviral therapy. Journal of Clinical Investigation, 2022, 132, .	3.9	5

#	Article	IF	CITATIONS
1081	Short-Term Fasting Synergizes with Solid Cancer Therapy by Boosting Antitumor Immunity. Cancers, 2022, 14, 1390.	1.7	8
1082	Insulin and cancer: a tangled web. Biochemical Journal, 2022, 479, 583-607.	1.7	22
1083	Rewiring mitochondrial metabolism to counteract exhaustion of CAR-T cells. Journal of Hematology and Oncology, 2022, 15, 38.	6.9	20
1084	EPHX2 Inhibits Colon Cancer Progression by Promoting Fatty Acid Degradation. Frontiers in Oncology, 2022, 12, 870721.	1.3	11
1085	Circulating Immune Bioenergetic, Metabolic, and Genetic Signatures Predict Melanoma Patients' Response to Anti–PD-1 Immune Checkpoint Blockade. Clinical Cancer Research, 2022, 28, 1192-1202.	3.2	24
1086	Metabolic Regulation of CD8 ⁺ T Cells: From Mechanism to Therapy. Antioxidants and Redox Signaling, 2022, 37, 1234-1253.	2.5	5
1087	Reprogramming dysfunctional CD8+ T cells to promote properties associated with natural HIV control. Journal of Clinical Investigation, 2022, 132, .	3.9	15
1088	Impact of Lipid Metabolism on Antitumor Immune Response. Cancers, 2022, 14, 1850.	1.7	18
1089	Targeting fatty acid \hat{l}^2 -oxidation impairs monocyte differentiation and prolongs heart allograft survival. JCI Insight, 2022, 7, .	2.3	7
1090	Prosurvival IL-7–Stimulated Weak Strength of mTORC1-S6K Controls T Cell Memory via Transcriptional FOXO1–TCF1–Id3 and Metabolic AMPKα1–ULK1–ATC7 Pathways. Journal of Immunology, 2022, 208, I	.59-168.	7
1091	Optimization of metabolism to improve efficacy during CAR-T cell manufacturing. Journal of Translational Medicine, 2021, 19, 499.	1.8	33
1092	Lipid Droplets, the Central Hub Integrating Cell Metabolism and the Immune System. Frontiers in Physiology, 2021, 12, 746749.	1.3	21
1095	Impacts and mechanisms of metabolic reprogramming of tumor microenvironment for immunotherapy in gastric cancer. Cell Death and Disease, 2022, 13, 378.	2.7	37
1105	A comprehensive review of spermidine: Safety, health effects, absorption and metabolism, food materials evaluation, physical and chemical processing, and bioprocessing. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 2820-2842.	5.9	21
1106	The ER-Mitochondria Interface as a Dynamic Hub for T Cell Efficacy in Solid Tumors. Frontiers in Cell and Developmental Biology, 2022, 10, 867341.	1.8	4
1107	Immune Cell Metabolic Fitness for Life. Antibodies, 2022, 11, 32.	1.2	0
1108	Identification of Potential Diagnoses Based on Immune Infiltration and Autophagy Characteristics in Major Depressive Disorder. Frontiers in Genetics, 2022, 13, 702366.	1.1	3
1110	Role of Metabolism in Adoptive T Cell Therapy: Strategies and Challenges. Antioxidants and Redox Signaling, 2022, 37, 1303-1324.	2.5	1

#	Article	IF	CITATIONS
1111	Evidence of immunometabolic dysregulation and airway dysbiosis in athletes susceptible to respiratory illness. EBioMedicine, 2022, 79, 104024.	2.7	5
1112	<scp>CD8</scp> agonism functionally activates memory T cells and enhances antitumor immunity. International Journal of Cancer, 2022, 151, 797-808.	2.3	3
1113	Targeting Metabolic Reprogramming of T-Cells for Enhanced Anti-Tumor Response. Biologics: Targets and Therapy, 2022, Volume 16, 35-45.	3.0	3
1114	Lipid metabolism in T cell signaling and function. Nature Chemical Biology, 2022, 18, 470-481.	3.9	46
1115	Mechanisms of Mitochondrial Malfunction in Alzheimer's Disease: New Therapeutic Hope. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-28.	1.9	16
1117	Protection by metformin against severe Covid-19: An in-depth mechanistic analysis. Diabetes and Metabolism, 2022, 48, 101359.	1.4	13
1118	Global Trends in Research of Lipid Metabolism in T lymphocytes From 1985 to 2022: A Bibliometric Analysis. Frontiers in Immunology, 2022, 13, .	2.2	11
1119	Pyrazinamide enhances persistence of T-cell memory induced by tuberculosis subunit vaccine LT70. Tuberculosis, 2022, , 102220.	0.8	0
1120	Deep Sequencing of Plasma Exosomal microRNA Level in Psoriasis Vulgaris Patients. Frontiers in Medicine, 0, 9, .	1.2	3
1121	Metformin: Is it a drug for all reasons and diseases?. Metabolism: Clinical and Experimental, 2022, 133, 155223.	1.5	92
1123	The perception and response of T cells to a changing environment are based on the law of initial value. Science Signaling, 2022, 15, .	1.6	8
1124	Phenotypic and Immunometabolic Aspects on Stem Cell Memory and Resident Memory CD8+ T Cells. Frontiers in Immunology, 0, 13, .	2.2	1
1125	New Developments in T Cell Immunometabolism and Therapeutic Implications for Type 1 Diabetes. Frontiers in Endocrinology, 0, 13, .	1.5	4
1126	Obesity: A comorbidity-acquired immunodeficiency syndrome (CAIDS). International Reviews of Immunology, 2023, 42, 415-429.	1.5	0
1127	TCR activation directly stimulates PYGB-dependent glycogenolysis to fuel the early recall response in CD8+ memory TÂcells. Molecular Cell, 2022, 82, 3077-3088.e6.	4.5	14
1128	Immunometabolism – The Role of Branched-Chain Amino Acids. Frontiers in Immunology, 0, 13, .	2.2	11
1129	Fatty acid metabolism in T-cell function and differentiation. International Immunology, 2022, 34, 579-587.	1.8	11
1130	Metabolic control of immune responses in women with recurrent pregnancy loss and recurrent implantation failure. , 2022, , 379-394.		0

#	Article	IF	CITATIONS
1131	T Cell-Intrinsic Vitamin A Metabolism and Its Signaling Are Targets for Memory T Cell-Based Cancer Immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	2
1132	Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Frontiers in Immunology, 0, 13, .	2.2	12
1133	The Mechanism of Action of Biguanides: New Answers to a Complex Question. Cancers, 2022, 14, 3220.	1.7	14
1134	P2 Receptors: Novel Disease Markers and Metabolic Checkpoints in Immune Cells. Biomolecules, 2022, 12, 983.	1.8	6
1135	TNFα-induced metabolic reprogramming drives an intrinsic anti-viral state. PLoS Pathogens, 2022, 18, e1010722.	2.1	2
1136	High-fat diet blunts T-cell responsiveness in Nile tilapia. Developmental and Comparative Immunology, 2022, 135, 104495.	1.0	4
1137	Stem cell like memory T cells: A new paradigm in cancer immunotherapy. Clinical Immunology, 2022, 241, 109078.	1.4	12
1139	<i>In Vivo</i> Syngeneic Tumor Models with Acquired Resistance to Anti–PD-1/PD-L1 Therapies. Cancer Immunology Research, 2022, 10, 1013-1027.	1.6	6
1140	Transgenic expression of IL-7 regulates CAR-T cell metabolism and enhances in vivo persistence against tumor cells. Scientific Reports, 2022, 12, .	1.6	17
1141	Regulation of immune cell metabolism in health and disease: Special focus on T and B cell subsets. Cell Biology International, 2022, 46, 1729-1746.	1.4	7
1143	Immunomodulatory and Antiaging Mechanisms of Resveratrol, Rapamycin, and Metformin: Focus on mTOR and AMPK Signaling Networks. Pharmaceuticals, 2022, 15, 912.	1.7	17
1144	Stem-like T cells and niches: Implications in human health and disease. Frontiers in Immunology, 0, 13, .	2.2	2
1145	The Critical Role of AMPKα1 in Regulating Autophagy and Mitochondrial Respiration in IL-15-Stimulated mTORC1Weak Signal-Induced T Cell Memory: An Interplay between Yin (AMPKα1) and Yang (mTORC1) Energy Sensors in T Cell Differentiation. International Journal of Molecular Sciences, 2022, 23, 9534.	1.8	4
1146	Bacteria-mediated metformin-loaded peptide hydrogel reprograms the tumor immune microenvironment in glioblastoma. Biomaterials, 2022, 288, 121711.	5.7	9
1147	Metabolomic and transcriptomic signatures of influenza vaccine response in healthy young and older adults. Aging Cell, 2022, 21, .	3.0	9
1149	Metabolic alterations impair differentiation and effector functions of CD8+ T cells. Frontiers in Immunology, 0, 13, .	2.2	2
1150	mTOR participates in the formation, maintenance, and function of memory CD8+T cells regulated by glycometabolism. Biochemical Pharmacology, 2022, 204, 115197.	2.0	3
1151	Redox regulation of the immune response. , 2022, 19, 1079-1101.		96

#	Article	IF	CITATIONS
1152	Glycolysis in tumor microenvironment as a target to improve cancer immunotherapy. Frontiers in Cell and Developmental Biology, 0, 10, .	1.8	17
1153	Pitavastatin and Ivermectin Enhance the Efficacy of Paclitaxel in Chemoresistant High-Grade Serous Carcinoma. Cancers, 2022, 14, 4357.	1.7	8
1154	A metabolic blueprint of COVID-19 and long-term vaccine efficacy. Drug Metabolism and Personalized Therapy, 2023, 38, 15-29.	0.3	4
1155	Metabolic plasticity and regulation of T cell exhaustion. Immunology, 2022, 167, 482-494.	2.0	14
1158	Belatacept-Based Maintenance Immunosuppression Controls the Post-Transplant Humoral Immune Response in Highly Sensitized Nonhuman Primates. Kidney360, 2022, 3, 2116-2130.	0.9	4
1159	The role of AMP-activated protein kinase in GVHD-causing T cells. Immunometabolism, 2022, 4, e00009.	0.7	0
1160	Loss of immune regulation in aged T-cells: A metabolic review to show lack of ability to control responses within the self. Human Immunology, 2022, 83, 808-817.	1.2	2
1161	Spermidine activates mitochondrial trifunctional protein and improves antitumor immunity in mice. Science, 2022, 378, .	6.0	42
1162	NKT cells adopt a glutamine-addicted phenotype to regulate their homeostasis and function. Cell Reports, 2022, 41, 111516.	2.9	5
1164	CD8+ T cell metabolic changes in breast cancer. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2023, 1869, 166565.	1.8	0
1165	Population dynamics and gene regulation of T cells in response to chronic antigen stimulation. International Immunology, 2023, 35, 67-77.	1.8	0
1166	Metformin: A Promising Antidiabetic Medication for Cancer Treatment. Current Drug Targets, 2023, 24, 41-54.	1.0	6
1167	Research progress on the therapeutic effect and mechanism of metformin for lung cancer (Review). Oncology Reports, 2022, 49, .	1.2	4
1168	mTOR regulates T cell exhaustion and PD-1–targeted immunotherapy response during chronic viral infection. Journal of Clinical Investigation, 2023, 133, .	3.9	18
1169	CD8+ TÂcell metabolic rewiring defined by scRNA-seq identifies a critical role of ASNS expression dynamics in TÂcell differentiation. Cell Reports, 2022, 41, 111639.	2.9	12
1170	Immune Checkpoint Molecules and Glucose Metabolism in HIV-Induced T Cell Exhaustion. Biomedicines, 2022, 10, 2809.	1.4	8
1171	Role of CAR T Cell Metabolism for Therapeutic Efficacy. Cancers, 2022, 14, 5442.	1.7	10
1172	Advances in T Cells Based on Inflammation in Metabolic Diseases. Cells, 2022, 11, 3554.	1.8	7

#	Article	IF	CITATIONS
1173	Repurposing of Metformin for the prevention and treatment of Tuberculosis. Brazilian Journal of Pharmaceutical Sciences, 0, 58, .	1.2	0
1174	Targeting lactate metabolism for cancer immunotherapy - a matter of precision. Seminars in Cancer Biology, 2023, 88, 32-45.	4.3	12
1175	The signaling and the metabolic differences of various CAR T cell designs. International Immunopharmacology, 2023, 114, 109593.	1.7	2
1176	Mitochondria Drive Immune Responses in Critical Disease. Cells, 2022, 11, 4113.	1.8	5
1177	Ammonia detoxification promotes CD8+ T cell memory development by urea and citrulline cycles. Nature Immunology, 2023, 24, 162-173.	7.0	15
1178	The Antineoplastic Effect of Carboplatin Is Potentiated by Combination with Pitavastatin or Metformin in a Chemoresistant High-Grade Serous Carcinoma Cell Line. International Journal of Molecular Sciences, 2023, 24, 97.	1.8	4
1179	Impact of Corticosteroids for IrAEs on the Clinical Outcome of Immunotherapy in Patients With NSCLC. Anticancer Research, 2022, 42, 5961-5969.	0.5	0
1180	S100a9 Protects Against the Effects of Repeated Social Defeat Stress. Biological Psychiatry Global Open Science, 2023, 3, 919-929.	1.0	2
1181	Age-associated remodeling of TÂcell immunity and metabolism. Cell Metabolism, 2023, 35, 36-55.	7.2	19
1182	Construction and validation of a fatty acid metabolism risk signature for predicting prognosis in acute myeloid leukemia. BMC Genomic Data, 2022, 23, .	0.7	0
1183	Lipid metabolism in tumor-infiltrating T cells: mechanisms and applications. , 2022, 1, 211-223.		4
1184	Combination bezafibrate and nivolumab treatment of patients with advanced non–small cell lung cancer. Science Translational Medicine, 2022, 14, .	5.8	6
1186	Antidiabetic agents: Do they hit the right targets?. Frigid Zone Medicine, 2022, 2, 225-243.	0.2	0
1187	Immune Cell Metabolism and Immuno-Oncology. Annual Review of Cancer Biology, 2023, 7, 93-110.	2.3	4
1189	STAT proteins in cancer: orchestration of metabolism. Nature Reviews Cancer, 2023, 23, 115-134.	12.8	49
1190	Single-cell metabolic analysis by mass cytometry reveals distinct transitional states of CD8 T cell differentiation. Journal of Immunology, 2020, 204, 155.18-155.18.	0.4	1
1191	Modulating Glycolysis to Improve Cancer Therapy. International Journal of Molecular Sciences, 2023, 24, 2606.	1.8	40
1192	Metabolomics in clinical diagnosis, prognosis, and treatment of infectious diseases. , 2023, , 71-119.		0

#	Article	IF	CITATIONS
1193	Reduction of Proinflammatory Effector Functions Through Remodeling of Fatty Acid Metabolism in <scp>CD8</scp> + T Cells From Rheumatoid Arthritis Patients. Arthritis and Rheumatology, 2023, 75, 1098-1109.	2.9	5
1194	Exposure to solar ultraviolet radiation establishes a novel immune suppressive lipidome in skin-draining lymph nodes. Frontiers in Immunology, 0, 13, .	2.2	0
1195	Manipulation of metabolic pathways to promote stem-like and memory T cell phenotypes for immunotherapy. Frontiers in Immunology, 0, 13, .	2.2	1
1196	Fatty acid metabolism and radiation-induced anti-tumor immunity. International Review of Cell and Molecular Biology, 2023, , 121-141.	1.6	2
1198	Analysis of causes for poor persistence of CAR-T cell therapy in vivo. Frontiers in Immunology, 0, 14, .	2.2	3
1199	Metabolism along the life journey of T cells. , 2023, 2, .		4
1200	Role of FABP5 in T Cell Lipid Metabolism and Function in the Tumor Microenvironment. Cancers, 2023, 15, 657.	1.7	2
1201	PD-1 blockade and CDK4/6 inhibition augment nonoverlapping features of T cell activation in cancer. Journal of Experimental Medicine, 2023, 220, .	4.2	5
1202	Action Mechanism of Metformin and Its Application in Hematological Malignancy Treatments: A Review. Biomolecules, 2023, 13, 250.	1.8	4
1203	Metabolic Challenges in Anticancer CD8 T Cell Functions. Immune Network, 2023, 23, .	1.6	3
1204	Metformin extends the chronological lifespan of fission yeast by altering energy metabolism and stress resistance capacity. FEMS Yeast Research, 2023, 23, .	1.1	1
1205	Fungal dysbiosis facilitates inflammatory bowel disease by enhancing CD4+ T cell glutaminolysis. Frontiers in Cellular and Infection Microbiology, 0, 13, .	1.8	2
1206	Targeting tumor microenvironment using tumor-infiltrating lymphocytes as therapeutics against tumorigenesis. Immunologic Research, 2023, 71, 588-599.	1.3	21
1207	Metabolic challenges and interventions in CAR T cell therapy. Science Immunology, 2023, 8, .	5.6	13
1208	OXPHOS inhibitors, metabolism and targeted therapies in cancer. Biochemical Pharmacology, 2023, 211, 115531.	2.0	2
1209	Exhausted T cells hijacking the cancer-immunity cycle: Assets and liabilities. Frontiers in Immunology, 0, 14, .	2.2	1
1210	Extracellular acidosis restricts one-carbon metabolism and preserves T cell stemness. Nature Metabolism, 2023, 5, 314-330.	5.1	24
1211	CD8+ T cells pass the acid test. Nature Metabolism, 2023, 5, 201-202.	5.1	1

#	Article	IF	CITATIONS
1212	Immunometabolic Signature during Respiratory Viral Infection: A Potential Target for Host-Directed Therapies. Viruses, 2023, 15, 525.	1.5	2
1213	T-cell exhaustion and stemness in antitumor immunity: Characteristics, mechanisms, and implications. Frontiers in Immunology, 0, 14, .	2.2	5
1214	Caloric restriction for the immunometabolic control of human health. Cardiovascular Research, 2024, 119, 2787-2800.	1.8	6
1215	Goliath induces inflammation in obese mice by linking fatty acid βâ€oxidation to glycolysis. EMBO Reports, 2023, 24, .	2.0	1
1216	Effect of Metformin on the Prognosis of Gastric Cancer Patients with Type 2 Diabetes Mellitus: A Meta-Analysis Based on Retrospective Cohort Studies. International Journal of Endocrinology, 2023, 2023, 1-10.	0.6	0
1217	The Function of Memory CD8+ T Cells in Immunotherapy for Human Diseases. Immune Network, 2023, 23,	1.6	4
1218	Interleukinâ€37 promotes DMBA/TPA skin cancer through SIGIRRâ€mediated inhibition of glycolysis in CD103 ⁺ DC cells. MedComm, 2023, 4, .	3.1	0
1219	Prognosis and Characterization of Microenvironment in Cervical Cancer Influenced by Fatty Acid Metabolism-Related Genes. Journal of Oncology, 2023, 2023, 1-34.	0.6	2
1220	Linoleic acid potentiates CD8+ TÂcell metabolic fitness and antitumor immunity. Cell Metabolism, 2023, 35, 633-650.e9.	7.2	36
1221	Regulation of the immune system by the insulin receptor in health and disease. Frontiers in Endocrinology, 0, 14, .	1.5	7
1222	Targeting of chimeric antigen receptor T cell metabolism to improve therapeutic outcomes. Frontiers in Immunology, 0, 14, .	2.2	4
1224	Modulating T cell Phenotype and Function to Treat Hypertension. Kidney360, 2023, Publish Ahead of Print, .	0.9	1
1225	The lactate dehydrogenase (LDH) isoenzyme spectrum enables optimally controlling T cell glycolysis and differentiation. Science Advances, 2023, 9, .	4.7	3
1226	Premature Ovarian Insufficiency. ISGE Series, 2023, , 157-178.	0.2	0
1227	Metabolic landscape in cardiac aging: insights into molecular biology and therapeutic implications. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	12
1228	Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Communications Biology, 2023, 6, .	2.0	3
1229	Integrating Widely Targeted Lipidomics and Transcriptomics Unravels Aberrant Lipid Metabolism and Identifies Potential Biomarkers of Food Allergies in Rats. Molecular Nutrition and Food Research, 2023, 67, .	1.5	2
1230	A Framework for Understanding Maternal Immunity. Immunology and Allergy Clinics of North America, 2023, , .	0.7	0

#	Article	IF	CITATIONS
1231	The role of lipid metabolism in cancer radioresistance. Clinical and Translational Oncology, 2023, 25, 2332-2349.	1.2	2
1232	Augmenting TCR signal strength and ICOS costimulation results in metabolically fit and therapeutically potent human CAR Th17 cells. Molecular Therapy, 2023, 31, 2120-2131.	3.7	2
1244	Diabetes and Cancer. , 2023, , 1041-1060.		0
1248	T cells in health and disease. Signal Transduction and Targeted Therapy, 2023, 8, .	7.1	36
1256	Effects of altered glycolysis levels on CD8+ T cell activation and function. Cell Death and Disease, 2023, 14, .	2.7	12
1266	Regulation of CD8+ T memory and exhaustion by the mTOR signals. , 2023, 20, 1023-1039.		4
1271	Cardinal features of immune memory in innate lymphocytes. Nature Immunology, 2023, 24, 1803-1812.	7.0	3
1275	Metabolic diversity of tumor-infiltrating T cells as target for anti-immune therapeutics. Cancer Immunology, Immunotherapy, 2023, 72, 3453-3460.	2.0	1
1292	T Lymphocyte Metabolic Features and Techniques to Modulate Them. Biochemistry (Moscow), 2023, 88, 1857-1873.	0.7	0
1312	Cell metabolism: Functional and phenotypic single cell approaches. Methods in Cell Biology, 2024, , .	0.5	Ο