Sodium salts in E-ring ice grains from an ocean below the

Nature 459, 1098-1101 DOI: 10.1038/nature08046

Citation Report

#	Article	IF	CITATIONS
1	Biogenesis and Early Life on Earth and Europa: Favored by an Alkaline Ocean?. Astrobiology, 2002, 2, 123-130.	1.5	53
2	The production of platinum-coated silicate nanoparticle aggregates for use in hypervelocity impact experiments. Planetary and Space Science, 2009, 57, 2081-2086.	0.9	30
3	No sodium in the vapour plumes of Enceladus. Nature, 2009, 459, 1102-1104.	13.7	41
4	Liquid water on Enceladus from observations of ammonia and 40Ar in the plume. Nature, 2009, 460, 487-490.	13.7	470
5	Enceladus with a grain of salt. Nature, 2009, 459, 1067-1068.	13.7	5
6	The stress of forming blood cells. Nature, 2009, 459, 1068-1069.	13.7	13
7	Discriminating contamination from particle components in spectra of Cassini's dust detector CDA. Planetary and Space Science, 2009, 57, 1359-1374.	0.9	35
8	Interior Models of Icy Satellites and Prospects of Investigation. Proceedings of the International Astronomical Union, 2009, 5, 113-120.	0.0	0
9	Europa, Enceladus, and Titan as possible sites for life. Proceedings of the International Astronomical Union, 2009, 5, 676-677.	0.0	2
11	On the thermal history of Saturn's satellites Titan and Enceladus. Solar System Research, 2010, 44, 192-201.	0.3	6
12	Sounding of Titan's atmosphere at submillimeter wavelengths from an orbiting spacecraft. Planetary and Space Science, 2010, 58, 1724-1739.	0.9	20
13	Induced Magnetic Fields in Solar System Bodies. Space Science Reviews, 2010, 152, 391-421.	3.7	58
14	Atmospheric/Exospheric Characteristics of Icy Satellites. Space Science Reviews, 2010, 153, 155-184.	3.7	31
15	Rheological and Thermal Properties of Icy Materials. Space Science Reviews, 2010, 153, 273-298.	3.7	87
16	Surface, Subsurface and Atmosphere Exchanges onÂtheÂSatellites ofÂtheÂOuter Solar System. Space Science Reviews, 2010, 153, 375-410.	3.7	19
17	Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Processes. Space Science Reviews, 2010, 153, 485-510.	3.7	83
18	Environments in the Outer Solar System. Space Science Reviews, 2010, 153, 11-59.	3.7	8
19	Chemical Composition of Icy Satellite Surfaces. Space Science Reviews, 2010, 153, 113-154.	3.7	65

2

#	Article	IF	CITATIONS
20	Basaltic glass as a habitat for microbial life: Implications for astrobiology and planetary exploration. Planetary and Space Science, 2010, 58, 583-591.	0.9	34
21	How the Enceladus dust plume feeds Saturn's E ring. Icarus, 2010, 206, 446-457.	1.1	125
22	Shell thickness variations and the long-wavelength topography of Titan. Icarus, 2010, 208, 896-904.	1.1	87
23	The four hundred years of planetary science since Galileo and Kepler. Nature, 2010, 466, 575-584.	13.7	11
24	Instrumentation for the search for habitable ecosystems in the future exploration of Europa and Ganymede. International Journal of Astrobiology, 2010, 9, 101-108.	0.9	23
25	An Evolving View of Saturn's Dynamic Rings. Science, 2010, 327, 1470-1475.	6.0	127
27	Sodium chloride as a geophysical probe of a subsurface ocean on Enceladus. Geophysical Research Letters, 2010, 37, .	1.5	25
28	Io's Tortured Interior. Science, 2011, 332, 1157-1158.	6.0	0
29	Limits of Enceladus's ice shell thickness from tidally driven tiger stripe shear failure. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	30
30	High heat flow from Enceladus' south polar region measured using 10–600 cm ^{â°'1} Cassini/CIRS data. Journal of Geophysical Research, 2011, 116, .	3.3	145
31	Joule heating of the south polar terrain on Enceladus. Journal of Geophysical Research, 2011, 116, .	3.3	8
32	Chaos terrain, storms, and past climate on Mars. Journal of Geophysical Research, 2011, 116, .	3.3	13
33	The composition and structure of the Enceladus plume. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	136
34	A fracture history on Enceladus provides evidence for a global ocean. Geophysical Research Letters, 2011, 38, n/a-n/a.	1.5	74
35	Stream particles as the probe of the dust-plasma-magnetosphere interaction at Saturn. Journal of Geophysical Research, 2011, 116, n/a-n/a.	3.3	25
36	Astronomy and Civilization in the New Enlightenment. , 2011, , .		1
37	Novel instrument for Dust Astronomy: Dust Telescope. , 2011, , .		9
38	Watery Enceladus. Physics Today, 2011, 64, 38-44.	0.3	19

0.			D	
	TAT	ON	Repo	דעו
\sim				

#	Article	IF	CITATIONS
39	Compositional mapping of planetary moons by mass spectrometry of dust ejecta. Planetary and Space Science, 2011, 59, 1815-1825.	0.9	33
40	Total particulate mass in Enceladus plumes and mass of Saturn's E ring inferred from Cassini ISS images. Icarus, 2011, 216, 492-506.	1.1	64
41	Astrobiology: From Extremophiles in the Solar System to Extraterrestrial Civilizations. , 2011, , 237-246.		1
42	Dusty Plasma Effects in Near Earth Space and Interplanetary Medium. Space Science Reviews, 2011, 161, 1-47.	3.7	52
43	Mapping Magnetospheric Equatorial Regions at Saturn from Cassini Prime Mission Observations. Space Science Reviews, 2011, 164, 1-83.	3.7	40
44	The cosmic dust analyser onboard cassini: ten years of discoveries. CEAS Space Journal, 2011, 2, 3-16.	1.1	26
45	Modeling the secondary emission yield of salty ice dust grains. Icarus, 2011, 212, 367-372.	1.1	5
46	Characteristics of the dust–plasma interaction near Enceladus' South Pole. Planetary and Space Science, 2011, 59, 17-25.	0.9	43
47	A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature, 2011, 474, 620-622.	13.7	394
48	<i>SPITZER</i> EVIDENCE FOR A LATE-HEAVY BOMBARDMENT AND THE FORMATION OF UREILITES IN η CORVI At â^¼1 Gyr. Astrophysical Journal, 2012, 747, 93.	1.6	80
49	Habitable Environments by Extremophiles on Earth, the Solar System, and Elsewhere. Cellular Origin and Life in Extreme Habitats, 2012, , 859-870.	0.3	3
50	The Likelihood of Halophilic Life in the Universe. Cellular Origin and Life in Extreme Habitats, 2012, , 345-365.	0.3	0
51	An optimum opportunity for interstellar dust measurements by the JUICE mission. Planetary and Space Science, 2012, 71, 142-146.	0.9	4
52	Prebiotic chemistry in eutectic solutions at the water–ice matrix. Chemical Society Reviews, 2012, 41, 5404.	18.7	81
53	Aqueous fluid composition in Cl chondritic materials: Chemical equilibrium assessments in closed systems. Icarus, 2012, 220, 713-729.	1.1	81
54	Modeling ammonia–ammonium aqueous chemistries in the Solar System's icy bodies. Icarus, 2012, 220, 932-946.	1.1	56
55	Experimental determination of H2O–NaCl liquidi to 25mass% NaCl and 1.4GPa: Application to the Jovian satellite Europa. Geochimica Et Cosmochimica Acta, 2012, 92, 117-128.	1.6	13
56	Life in the Saturnian Neighborhood. Cellular Origin and Life in Extreme Habitats, 2012, , 485-522.	0.3	0

#	Article	IF	CITATIONS
57	Impact ionization mass spectra of anorthite cosmic dust analogue particles. Journal of Geophysical Research, 2012, 117, .	3.3	15
58	Enceladus: A hypothesis for bringing both heat and chemicals to the surface. Icarus, 2012, 221, 53-62.	1.1	46
59	Small Habitable Worlds. , 2012, , 201-228.		7
60	The impact of a weak south pole on thermal convection in Enceladus' ice shell. Icarus, 2012, 218, 320-330.	1.1	24
61	Efficiency of neutrino-induced radio measurements to inspect local areas of Enceladus. Icarus, 2012, 218, 555-560.	1.1	2
62	The surface composition of lapetus: Mapping results from Cassini VIMS. Icarus, 2012, 218, 831-860.	1.1	136
63	Linear high resolution dust mass spectrometer for a mission to the Galilean satellites. Planetary and Space Science, 2012, 65, 10-20.	0.9	20
64	Charging of ice grains in Saturn's E ring: theory and observations. Monthly Notices of the Royal Astronomical Society, 2012, 423, 176-184.	1.6	12
65	Polyextremophiles. Cellular Origin and Life in Extreme Habitats, 2013, , .	0.3	32
66	The Science of Solar System Ices. Astrophysics and Space Science Library, 2013, , .	1.0	35
67	Space-Weathering of Solar System Bodies: A Laboratory Perspective. Chemical Reviews, 2013, 113, 9086-9150.	23.0	130
68	Life detection with the Enceladus Orbiting Sequencer. , 2013, , .		4
69	Clathrate Hydrates: Implications for Exchange Processes in the Outer Solar System. Astrophysics and Space Science Library, 2013, , 409-454.	1.0	27
70	Numerical modelling of mineral impact ionisation spectra. Planetary and Space Science, 2013, 89, 159-166.	0.9	1
71	The temperature and width of an active fissure on Enceladus measured with Cassini VIMS during the 14 April 2012 South Pole flyover. Icarus, 2013, 226, 1128-1137.	1.1	69
72	Microbial communities in the subglacial waters of the Vatnajökull ice cap, Iceland. ISME Journal, 2013, 7, 427-437.	4.4	60
73	Enceladus: An Active Ice World in the Saturn System. Annual Review of Earth and Planetary Sciences, 2013, 41, 693-717.	4.6	142
74	Review of Exchange Processes on Ganymede in View of Its Planetary Protection Categorization. Astrobiology, 2013, 13, 991-1004.	1.5	16

#	Article	IF	Citations
75	A novel particle source based on electrospray charging for dust accelerators and its significance for cosmic dust studies. Earth, Planets and Space, 2013, 65, 157-165.	0.9	5
76	Planetary volcanism. , 2013, , 384-413.		4
77	Calibration of relative sensitivity factors for impact ionization detectors with high-velocity silicate microparticles. Icarus, 2014, 241, 336-345.	1.1	22
78	SALINE LAKES A LOGICAL STEP IN EXPLORING HABITABILITY OF "THE FINAL FRONTIER". Palaios, 2014, 29, 231-232.	0.6	1
79	Science goals and mission concept for the future exploration of Titan and Enceladus. Planetary and Space Science, 2014, 104, 59-77.	0.9	15
80	Sylvite and halite on particles recovered from 25143 Itokawa: A preliminary report. Meteoritics and Planetary Science, 2014, 49, 1305-1314.	0.7	11
81	A model of the spatial and size distribution of Enceladus× ³ dust plume. Planetary and Space Science, 2014, 104, 216-233.	0.9	15
82	Planetary habitability: lessons learned from terrestrial analogues. International Journal of Astrobiology, 2014, 13, 81-98.	0.9	107
83	Non-steady state tidal heating of Enceladus. Icarus, 2014, 235, 75-85.	1.1	24
84	Impact ionisation mass spectrometry of polypyrrole-coated pyrrhotite microparticles. Planetary and Space Science, 2014, 97, 9-22.	0.9	21
85	Dust in the Solar System. , 2014, , 657-682.		3
86	Constraining the heat flux between Enceladus' tiger stripes: Numerical modeling of funiscular plains formation. Icarus, 2015, 260, 232-245.	1.1	27
87	Modeling Europa's dust plumes. Geophysical Research Letters, 2015, 42, 10,541.	1.5	24
88	Interiors of Icy Moons from an Astrobiology Perspective: Deep Oceans and Icy Crusts. , 2015, , 459-487.		1
89	SPATIALLY RESOLVED SPECTROSCOPY OF EUROPA: THE DISTINCT SPECTRUM OF LARGE-SCALE CHAOS. Astronomical Journal, 2015, 150, 164.	1.9	55
90	Halophilic Archaea: Life with Desiccation, Radiation and Oligotrophy over Geological Times. Life, 2015, 5, 1487-1496.	1.1	89
91	Assessing the Ecophysiology of Methanogens in the Context of Recent Astrobiological and Planetological Studies. Life, 2015, 5, 1652-1686.	1.1	55
92	Hints of hot springs found on Saturnian moon. Nature, 2015, , .	13.7	0

#	Article	IF	CITATIONS
93	Charge separation and isolation in strong water droplet impacts. Physical Chemistry Chemical Physics, 2015, 17, 6858-6864.	1.3	32
94	Cassini INMS measurements of Enceladus plume density. Icarus, 2015, 257, 139-162.	1.1	24
95	Surface site coordination dependent responses resolved in free clusters: applications for neutral sub-nanometer cluster studies. Physical Chemistry Chemical Physics, 2015, 17, 7012-7022.	1.3	9
96	Hyperdust: An advanced in-situ detection and chemical analysis of microparticles in space. , 2015, , .		3
97	Modeling the total dust production of Enceladus from stochastic charge equilibrium and simulations. Planetary and Space Science, 2015, 119, 208-221.	0.9	10
98	A common origin for ridge-and-trough terrain on icy satellites by sluggish lid convection. Physics of the Earth and Planetary Interiors, 2015, 249, 18-27.	0.7	12
99	The Cassini-Huygens Visit to Saturn. , 2015, , .		25
100	Noble gases, nitrogen, and methane from the deep interior to the atmosphere of Titan. Icarus, 2015, 250, 570-586.	1.1	41
101	Possible evidence for a methane source in Enceladus' ocean. Geophysical Research Letters, 2015, 42, 1334-1339.	1.5	65
102	2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods. Icarus, 2015, 257, 362-376.	1.1	4
103	The fluffy core of Enceladus. Icarus, 2015, 258, 54-66.	1.1	61
104	On understanding the physics of the Enceladus south polar plume via numerical simulation. Icarus, 2015, 253, 205-222.	1.1	34
105	Ongoing hydrothermal activities within Enceladus. Nature, 2015, 519, 207-210.	13.7	382
106	The pH of Enceladus' ocean. Geochimica Et Cosmochimica Acta, 2015, 162, 202-219.	1.6	205
107	High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nature Communications, 2015, 6, 8604.	5.8	152
108	Multiplication of microbes below 0.690 water activity: implications for terrestrial and extraterrestrial life. Environmental Microbiology, 2015, 17, 257-277.	1.8	131
109	Prerequisites for explosive cryovolcanism on dwarf planet-class Kuiper belt objects. Icarus, 2015, 246, 48-64.	1.1	53
110	Possibility for albedo estimation of exomoons: Why should we care about M dwarfs?. Astronomy and Astrophysics, 2016, 592, A139.	2.1	3

#	Article	IF	CITATIONS
111	New experimental capability to investigate the hypervelocity micrometeoroid bombardment of cryogenic surfaces. Review of Scientific Instruments, 2016, 87, 024502.	0.6	4
112	Enceladus's internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophysical Research Letters, 2016, 43, 5653-5660.	1.5	141
113	Geophysical controls of chemical disequilibria in Europa. Geophysical Research Letters, 2016, 43, 4871-4879.	1.5	153
114	Controlled boiling on Enceladus. 1. Model of the vapor-driven jets. Icarus, 2016, 272, 309-318.	1.1	30
115	Orbitrap mass analyser for in situ characterisation of planetary environments: Performance evaluation of a laboratory prototype. Planetary and Space Science, 2016, 131, 33-45.	0.9	47
116	Enceladus Life Finder: The search for life in a habitable Moon. , 2016, , .		39
117	Advancing the search for extra-terrestrial genomes. , 2016, , .		12
118	Ocean worlds in the outer solar system. Journal of Geophysical Research E: Planets, 2016, 121, 1378-1399.	1.5	149
119	Effect of the tiger stripes on the deformation of Saturn's moon Enceladus. Geophysical Research Letters, 2016, 43, 7417-7423.	1.5	26
120	Controlled boiling on Enceladus. 2. Model of the liquid-filled cracks. Icarus, 2016, 272, 319-326.	1.1	38
121	The diurnal libration and interior structure of Enceladus. Icarus, 2016, 277, 311-318.	1.1	41
122	THEO concept mission: Testing the Habitability of Enceladus's Ocean. Advances in Space Research, 2016, 58, 1117-1137.	1.2	13
123	Bright carbonate deposits as evidence of aqueous alteration on (1) Ceres. Nature, 2016, 536, 54-57.	13.7	240
124	Genesis of volatile components at Saturn's regular satellites. Origin of Titan's atmosphere. Geochemistry International, 2016, 54, 7-26.	0.2	8
125	Modelling the Interior Structure of Enceladus Based on the 2014's Cassini Gravity Data. Origins of Life and Evolution of Biospheres, 2016, 46, 283-288.	0.8	5
126	Sustained eruptions on Enceladus explained by turbulent dissipation in tiger stripes. Proceedings of the United States of America, 2016, 113, 3972-3975.	3.3	74
128	Habitability: A Review. Astrobiology, 2016, 16, 89-117.	1.5	246
129	Aggregate particles in the plumes of Enceladus. Icarus, 2016, 264, 227-238.	1.1	16

#	Article	IF	CITATIONS
130	Investigation of diurnal variability of water vapor in Enceladus' plume by the Cassini ultraviolet imaging spectrograph. Geophysical Research Letters, 2017, 44, 672-677.	1.5	20
131	On the in-situ detectability of Europa's water vapour plumes from a flyby mission. Icarus, 2017, 289, 270-280.	1.1	10
132	The Effects of HZE Particles, γ and X-ray Radiation on the Survival and Genetic Integrity of <i>Halobacterium salinarum</i> NRC-1, <i>Halococcus hamelinensis</i> , and <i>Halococcus morrhuae</i> . Astrobiology, 2017, 17, 110-117.	1.5	20
133	Temperature―and pressureâ€dependent structural transformation of methane hydrates in salt environments. Geophysical Research Letters, 2017, 44, 2129-2137.	1.5	8
134	Cassini finds molecular hydrogen in the Enceladus plume: Evidence for hydrothermal processes. Science, 2017, 356, 155-159.	6.0	396
135	Detecting molecular hydrogen on Enceladus. Science, 2017, 356, 132-133.	6.0	7
136	Liquid Beam Desorption Mass Spectrometry for the Investigation of Continuous Flow Reactions in Microfluidic Chips. Analytical Chemistry, 2017, 89, 6175-6181.	3.2	7
137	Alternative Energy: Production of H ₂ by Radiolysis of Water in the Rocky Cores of Icy Bodies. Astrophysical Journal Letters, 2017, 840, L8.	3.0	37
138	The search for and analysis of direct samples of early Solar System aqueous fluids. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20150386.	1.6	15
139	Aqueous origins of bright salt deposits on Ceres. Icarus, 2017, 296, 289-304.	1.1	48
140	Organism-substrate interactions and astrobiology: Potential, models and methods. Earth-Science Reviews, 2017, 171, 141-180.	4.0	7
141	Ion trapping by dust grains: Simulation applications to the Enceladus plume. Journal of Geophysical Research E: Planets, 2017, 122, 729-743.	1.5	5
142	The impact of a pressurized regional sea or global ocean on stresses on Enceladus. Journal of Geophysical Research E: Planets, 2017, 122, 1258-1275.	1.5	12
143	Deciphering sub-micron ice particles on Enceladus surface. Icarus, 2017, 290, 183-200.	1.1	22
144	Origin and Evolution of Volatile-rich Asteroids. , 2017, , 92-114.		11
145	Thermally anomalous features in the subsurface of Enceladus's south polar terrain. Nature Astronomy, 2017, 1, .	4.2	41
146	Enceladus Plume Structure and Time Variability: Comparison of Cassini Observations. Astrobiology, 2017, 17, 926-940.	1.5	43
147	Highly compressed water structure observed in a perchlorate aqueous solution. Nature Communications, 2017, 8, 919.	5.8	39

		CITATION RE	PORT	
#	Article		IF	CITATIONS
148	Water and Volatiles in the Outer Solar System. Space Science Reviews, 2017, 212, 835	j-875.	3.7	44
149	Plume Activity and Tidal Deformation on Enceladus Influenced by Faults and Variable Ic Thickness. Astrobiology, 2017, 17, 941-954.	e Shell	1.5	35
150	Laboratory Studies of Methane and Its Relationship to Prebiotic Chemistry. Astrobiolog 786-812.	y, 2017, 17,	1.5	20
151	Aqueous geochemistry in icy world interiors: Equilibrium fluid, rock, and gas composition of antifreezes and radionuclides. Geochimica Et Cosmochimica Acta, 2017, 212, 324-3	ons, and fate 71.	1.6	74
152	Could It Be Snowing Microbes on Enceladus? Assessing Conditions in Its Plume and Im Future Missions. Astrobiology, 2017, 17, 876-901.	plications for	1.5	67
153	Keeping the ocean warm. Nature Astronomy, 2017, 1, 821-822.		4.2	0
154	Antarctic environments as models of planetary habitats: University Valley as a model fo and Lake Untersee as a model for Enceladus and ancient Mars. Polar Journal, 2017, 7, 3		0.4	10
155	Powering prolonged hydrothermal activity inside Enceladus. Nature Astronomy, 2017,	1, 841-847.	4.2	158
157	Feasibility of Detecting Bioorganic Compounds in Enceladus Plumes with the Enceladus Analyzer. Astrobiology, 2017, 17, 902-912.	s Organic	1.5	35
158	Constraining the Enceladus plume using numerical simulation and Cassini data. Icarus, 357-378.	2017, 281,	1.1	14
159	Decadal timescale variability of the Enceladus plumes inferred from Cassini images. Ica 260-275.	rus, 2017, 282,	1.1	29
160	Interior thermal state of Enceladus inferred from the viscoelastic state of the ice shell. I 284, 387-393.	carus, 2017,	1.1	25
161	A Community Grows around the Geysering World of Enceladus. Astrobiology, 2017, 17	', 815-819.	1.5	4
162	Cassini–Huygens: Saturn, rings and moons. Astronomy and Geophysics, 2017, 58, 4.	20-4.25.	0.1	1
163	Role of Salts in Phase Transformation of Clathrate Hydrates under Brine Environments. Sustainable Chemistry and Engineering, 2018, 6, 5003-5010.	ACS	3.2	11
164	Biological methane production under putative Enceladus-like conditions. Nature Comm 2018, 9, 748.	nunications,	5.8	91
165	Dusty Rings. , 0, , 308-337.			6
166	Laboratory Studies of Planetary Ring Systems. , 0, , 494-516.			1

#	Article	IF	CITATIONS
167	Halogens on and Within the Ocean Worlds of the Outer Solar System. Springer Geochemistry, 2018, , 997-1016.	0.1	2
168	The UK Centre for Astrobiology: A Virtual Astrobiology Centre. Accomplishments and Lessons Learned, 2011–2016. Astrobiology, 2018, 18, 224-243.	1.5	5
169	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Science Reviews, 2018, 214, 1.	3.7	33
170	Cold cases: What we don't know about Saturn's Moons. Planetary and Space Science, 2018, 155, 41-49.	0.9	5
171	Nature, formation, and distribution of carbonates on Ceres. Science Advances, 2018, 4, e1701645.	4.7	83
172	Sea ice, extremophiles and life on extra-terrestrial ocean worlds. International Journal of Astrobiology, 2018, 17, 1-16.	0.9	62
173	Energetic electron measurements near Enceladus by Cassini during 2005–2015. Icarus, 2018, 306, 256-274.	1.1	4
174	Icy Saturnian satellites: Disk-integrated UV-IR characteristics and links to exogenic processes. Icarus, 2018, 300, 103-114.	1.1	25
175	Impact ionisation mass spectrometry of platinum-coated olivine and magnesite-dominated cosmic dust analogues. Planetary and Space Science, 2018, 156, 96-110.	0.9	16
176	Explorer of Enceladus and Titan (E2T): Investigating ocean worlds' evolution and habitability in the solar system. Planetary and Space Science, 2018, 155, 73-90.	0.9	26
177	Occupied and Empty Regions of the Space of Extremophile Parameters. , 2018, , 199-230.		5
178	Enceladus' near-surface CO2 gas pockets and surface frost deposits. Icarus, 2018, 302, 18-26.	1.1	8
179	Life in the Universe. , 2018, , .		23
180	Compaction and Melt Transport in Ammoniaâ€Rich Ice Shells: Implications for the Evolution of Triton. Journal of Geophysical Research E: Planets, 2018, 123, 3105-3118.	1.5	25
182	The Habitability of Icy Ocean Worlds in the Solar System. , 2018, , 2855-2877.		2
183	Dust Emission by Active Moons. Space Science Reviews, 2018, 214, 1.	3.7	3
184	Measuring Perchlorate and Sulfate in Planetary Brines Using Raman Spectroscopy. ACS Earth and Space Chemistry, 2018, 2, 1068-1074.	1.2	4
185	Effects of Gamma and Electron Radiation on the Structural Integrity of Organic Molecules and Macromolecular Biomarkers Measured by Microarray Immunoassays and Their Astrobiological Implications. Astrobiology, 2018, 18, 1497-1516.	1.5	23

#	Article	IF	CITATIONS
186	Primordial N2 provides a cosmochemical explanation for the existence of Sputnik Planitia, Pluto. Icarus, 2018, 313, 79-92.	1.1	21
187	Review of Saturn's icy moons following the Cassini mission. Reports on Progress in Physics, 2018, 81, 065901.	8.1	9
188	Low Energy Subsurface Environments as Extraterrestrial Analogs. Frontiers in Microbiology, 2018, 9, 1605.	1.5	37
189	Ceres's global and localized mineralogical composition determined by Dawn's Visible and Infrared Spectrometer (<scp>VIR</scp>). Meteoritics and Planetary Science, 2018, 53, 1844-1865.	0.7	29
190	Nature, distribution and origin of CO2 on Enceladus. Icarus, 2019, 317, 491-508.	1.1	14
191	Follow the High Subcritical Water. Geosciences (Switzerland), 2019, 9, 249.	1.0	3
192	Analogue spectra for impact ionization mass spectra of water ice grains obtained at different impact speeds in space. Rapid Communications in Mass Spectrometry, 2019, 33, 1751-1760.	0.7	21
193	Interstellar Dust in the Solar System. Space Science Reviews, 2019, 215, 1.	3.7	20
194	Peptide Synthesis under the Alkaline Hydrothermal Conditions on Enceladus. ACS Earth and Space Chemistry, 2019, 3, 2559-2568.	1.2	20
195	Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. Monthly Notices of the Royal Astronomical Society, 2019, 489, 5231-5243.	1.6	98
196	Using dust shed from asteroids as microsamples to link remote measurements with meteorite classes. Meteoritics and Planetary Science, 2019, 54, 2046-2066.	0.7	4
197	The Dawn of Dust Astronomy. Space Science Reviews, 2019, 215, 1.	3.7	19
198	Chemical Ionization Mass Spectrometry: Applications for the In Situ Measurement of Nonvolatile Organics at Ocean Worlds. Astrobiology, 2019, 19, 1196-1210.	1.5	9
199	Astrobiologie - die Suche nach außerirdischem Leben. , 2019, , .		2
201	Circumplanetary Dust Populations. Space Science Reviews, 2019, 215, 1.	3.7	8
202	Survival of subsurface microbial communities over geological times and the implications for astrobiology. , 2019, , 169-187.		2
203	Enceladus's crust as a non-uniform thin shell: II tidal dissipation. Icarus, 2019, 332, 66-91.	1.1	31
204	Cassini-Huygens' exploration of the Saturn system: 13 years of discovery. Science, 2019, 364, 1046-1051.	6.0	35

#	Article	IF	CITATIONS
205	Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Frontiers in Microbiology, 2019, 10, 780.	1.5	339
206	Kinetic regimes in aggregating systems with spontaneous and collisional fragmentation. Journal of Physics A: Mathematical and Theoretical, 2019, 52, 205001.	0.7	9
207	Enceladus: Evidence and Unsolved Questions for an Ice-Covered Habitable World. , 2019, , 399-407.		1
208	Close Cassini flybys of Saturn's ring moons Pan, Daphnis, Atlas, Pandora, and Epimetheus. Science, 2019, 364, .	6.0	24
209	How Adsorption Affects the Gas–Ice Partitioning of Organics Erupted from Enceladus. Astrophysical Journal, 2019, 873, 28.	1.6	16
210	Tidal dissipation in Enceladus' uneven, fractured ice shell. Icarus, 2019, 328, 218-231.	1.1	32
211	Sodium and Potassium Signatures of Volcanic Satellites Orbiting Close-in Gas Giant Exoplanets. Astrophysical Journal, 2019, 885, 168.	1.6	38
212	NIR reflectance spectroscopy of hydrated and anhydrous sodium carbonates at different temperatures. Icarus, 2019, 317, 388-411.	1.1	18
213	Introduction to Volatiles in the Martian Crust. , 2019, , 1-12.		5
214	The Microstructural Evolution of Water Ice in the Solar System Through Sintering. Journal of Geophysical Research E: Planets, 2019, 124, 243-277.	1.5	30
215	Do tidally-generated inertial waves heat the subsurface oceans of Europa and Enceladus?. Icarus, 2019, 321, 126-140.	1.1	31
216	Dust in the Jupiter system outside the rings. Astrodynamics, 2019, 3, 17-29.	1.5	6
217	Long-term stability of Enceladus' uneven ice shell. Icarus, 2019, 319, 476-484.	1.1	59
218	Parametric study of water vapor and water ice particle plumes based on DSMC calculations: Application to the Enceladus geysers. Icarus, 2019, 319, 729-744.	1.1	4
219	Carbonate-hydroxide chemical-garden tubes in the soda ocean of Enceladus: Abiotic membranes and microtubular forms of calcium carbonate. Icarus, 2019, 319, 337-348.	1.1	21
220	Surface deposition of the Enceladus plume and the zenith angle of emissions. Icarus, 2019, 319, 33-42.	1.1	36
221	Bright carbonate surfaces on Ceres as remnants of salt-rich water fountains. Icarus, 2019, 320, 39-48.	1.1	42
222	Collecting amino acids in the Enceladus plume. International Journal of Astrobiology, 2019, 18, 47-59.	0.9	24

#	Article	IF	CITATIONS
223	The effect of high-velocity dust particle impacts on microchannel plate (MCP) detectors. Planetary and Space Science, 2020, 183, 104628.	0.9	8
224	The composition and structure of Ceres' interior. Icarus, 2020, 335, 113404.	1.1	19
225	Cooling patterns in rotating thin spherical shells — Application to Titan's subsurface ocean. Icarus, 2020, 338, 113509.	1.1	28
226	Scaling of heat transfer in stagnant lid convection for the outer shell of icy moons: Influence of rheology. Icarus, 2020, 338, 113448.	1.1	8
227	Analog Experiments for the Identification of Trace Biosignatures in Ice Grains from Extraterrestrial Ocean Worlds. Astrobiology, 2020, 20, 179-189.	1.5	37
228	Electrochemistry for Life Detection on Ocean Worlds. ChemElectroChem, 2020, 7, 614-623.	1.7	4
229	The composition and structure of Enceladus' plume from the complete set of Cassini UVIS occultation observations. Icarus, 2020, 344, 113461.	1.1	29
230	Feasibility of Enceladus plume biosignature analysis: Successful capture of organic ice particles in hypervelocity impacts. Meteoritics and Planetary Science, 2020, 55, .	0.7	10
231	Tectonics of Enceladus' South Pole: Block Rotation of the Tiger Stripes. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006471.	1.5	8
232	On the Habitability and Future Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	3.7	36
233	Experimental Investigations on the Effects of Dissolved Gases on the Freezing Dynamics of Ocean Worlds. Journal of Geophysical Research E: Planets, 2020, 125, e2020JE006528.	1.5	2
234	Heat Production and Tidally Driven Fluid Flow in the Permeable Core of Enceladus. Journal of Geophysical Research E: Planets, 2020, 125, e2019JE006209.	1.5	18
235	Key Technologies and Instrumentation for Subsurface Exploration of Ocean Worlds. Space Science Reviews, 2020, 216, 1.	3.7	18
236	Returning Samples From Enceladus for Life Detection. Frontiers in Astronomy and Space Sciences, 2020, 7, .	1.1	32
237	The Dual-Rasp Sampling System for an Enceladus Lander. , 2020, , .		3
238	Strength Evolution of Ice Plume Deposit Analogs of Enceladus and Europa. Geophysical Research Letters, 2020, 47, e2020GL088953.	1.5	10
239	In Situ Formation of Monohydrocalcite in Alkaline Saline Lakes of the Valley of Gobi Lakes: Prediction for Mg, Ca, and Total Dissolved Carbonate Concentrations in Enceladus' Ocean and Alkaline-Carbonate Ocean Worlds. Minerals (Basel, Switzerland), 2020, 10, 669.	0.8	12
240	Magnetospheric Studies: A Requirement for Addressing Interdisciplinary Mysteries in the Ice Giant Systems. Space Science Reviews, 2020, 216, 1.	3.7	16

#	Article	IF	CITATIONS
241	Alkaline exospheres of exoplanet systems: evaporative transmission spectra. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5271-5291.	1.6	26
242	Molecular evolution during hydrothermal reactions from formaldehyde and ammonia simulating aqueous alteration in meteorite parent bodies. Icarus, 2020, 347, 113827.	1.1	18
243	Relict Ocean Worlds: Ceres. Space Science Reviews, 2020, 216, 1.	3.7	14
244	Organic Matter in the Solar System—Implications for Future on-Site and Sample Return Missions. Space Science Reviews, 2020, 216, 1.	3.7	19
245	Discriminating Abiotic and Biotic Fingerprints of Amino Acids and Fatty Acids in Ice Grains Relevant to Ocean Worlds. Astrobiology, 2020, 20, 1168-1184.	1.5	38
246	Large cluster ions: soft local probes and tools for organic and bio surfaces. Physical Chemistry Chemical Physics, 2020, 22, 17427-17447.	1.3	29
247	Forecasting Rates of Volcanic Activity on Terrestrial Exoplanets and Implications for Cryovolcanic Activity on Extrasolar Ocean Worlds. Publications of the Astronomical Society of the Pacific, 2020, 132, 084402.	1.0	19
248	Hydrogen, Hydrocarbons, and Habitability Across the Solar System. Elements, 2020, 16, 47-52.	0.5	22
249	ORIGIN: a novel and compact Laser Desorption – Mass Spectrometry system for sensitive in situ detection of amino acids on extraterrestrial surfaces. Scientific Reports, 2020, 10, 9641.	1.6	24
250	Viability of Bacillus subtilis Spores Exposed to Ultraviolet Light at Ocean World Surface Temperatures. Astrobiology, 2020, 20, 889-896.	1.5	3
251	lce Giant Systems: The scientific potential of orbital missions to Uranus and Neptune. Planetary and Space Science, 2020, 191, 105030.	0.9	39
252	Ice-Ocean Exchange Processes in the Jovian and Saturnian Satellites. Space Science Reviews, 2020, 216, 1.	3.7	43
253	Characterizing organic particle impacts on inert metal surfaces: Foundations for capturing organic molecules during hypervelocity transits of Enceladus plumes. Meteoritics and Planetary Science, 2020, 55, 465-479.	0.7	19
254	Detecting Laser-Volatilized Salts with a Miniature 100-GHz Spectrometer. Journal of Physical Chemistry A, 2020, 124, 1429-1436.	1.1	2
255	Experimental and Simulation Efforts in the Astrobiological Exploration of Exooceans. Space Science Reviews, 2020, 216, 9.	3.7	25
256	The Carbonate Geochemistry of Enceladus' Ocean. Geophysical Research Letters, 2020, 47, e2019GL085885.	1.5	64
257	Towards Determining Biosignature Retention in Icy World Plumes. Life, 2020, 10, 40.	1.1	7
258	Processing of 72-K water-rich ices by keV and MeV oxygen ions: implications for the Saturnian moon Enceladus. Monthly Notices of the Royal Astronomical Society, 2020, 494, 2396-2409.	1.6	7

#	Article	IF	CITATIONS
259	The effect of Europa and Enceladus analog seawater composition on isotopic measurements of volatile CO2. Icarus, 2021, 358, 114216.	1.1	1
260	Partitioning of Crystalline and Amorphous Phases During Freezing of Simulated Enceladus Ocean Fluids. Journal of Geophysical Research E: Planets, 2021, 126, .	1.5	21
261	Oxidation processes diversify the metabolic menu on Enceladus. Icarus, 2021, 364, 114248.	1.1	29
262	Science Goals and Mission Objectives for the Future Exploration of Ice Giants Systems: A Horizon 2061 Perspective. Space Science Reviews, 2021, 217, 1.	3.7	11
263	Seeding Biochemistry on Other Worlds: Enceladus as a Case Study. Astrobiology, 2021, 21, 177-190.	1.5	10
264	Method for detecting and quantitating capture of organic molecules in hypervelocity impacts. MethodsX, 2021, 8, 101239.	0.7	5
265	Identification of Possible Heat Sources for the Thermal Output of Enceladus. Planetary Science Journal, 2021, 2, 29.	1.5	1
266	Current state of athalassohaline deepâ€sea hypersaline anoxic basin research—recommendations for future work and relevance to astrobiology. Environmental Microbiology, 2021, 23, 3360-3369.	1.8	10
267	A pole-to-equator ocean overturning circulation on Enceladus. Nature Geoscience, 2021, 14, 185-189.	5.4	29
268	Analytical Chemistry in Astrobiology. Analytical Chemistry, 2021, 93, 5981-5997.	3.2	7
269	Dione's Wispy Terrain: A Cryovolcanic Story?. Planetary Science Journal, 2021, 2, 83.	1.5	6
270	Understanding Hypervelocity Sampling of Biosignatures in Space Missions. Astrobiology, 2021, 21, 421-442.	1.5	31
271	Prokaryotic Diversity and Metabolically Active Communities in Brines from Two Perennially Ice-Covered Antarctic Lakes. Astrobiology, 2021, 21, 551-565.	1.5	8
272	Sampling Plume Deposits on Enceladus' Surface to Explore Ocean Materials and Search for Traces of Life or Biosignatures. Planetary Science Journal, 2021, 2, 100.	1.5	8
273	Characterizing the ice-ocean interface of icy worlds: A theoretical approach. Icarus, 2021, 360, 114318.	1.1	21
274	Salt – A critical material to consider when exploring the solar system. Icarus, 2021, 359, 114328.	1.1	7
274 275			7 16

#	Article	IF	CITATIONS
277	Triton: Fascinating Moon, Likely Ocean World, Compelling Destination!. Planetary Science Journal, 2021, 2, 137.	1.5	15
278	The Science Case for a Return to Enceladus. Planetary Science Journal, 2021, 2, 132.	1.5	40
279	On the Feasibility of Informative Biosignature Measurements Using an Enceladus Plume Organic Analyzer. Planetary Science Journal, 2021, 2, 163.	1.5	6
280	Capillary electrophoresis method for analysis of inorganic and organic anions related to habitability and the search for life. Electrophoresis, 2021, 42, 1956-1964.	1.3	11
281	Short lifespans of serpentinization in the rocky core of Enceladus: Implications for hydrogen production. Icarus, 2021, 364, 114461.	1.1	18
282	NIR-MID Reflectance and Emissivity Study at Different Temperatures of Sodium Carbonate Minerals: Spectra Characterization and Implication for Remote Sensing Identification. Minerals (Basel,) Tj ETQq1 1 0.7843	140g8T /C)ve3lock 10 T
283	Ocean Circulation on Enceladus with a High- versus Low-salinity Ocean. Planetary Science Journal, 2021, 2, 151.	1.5	31
284	Salt grains in hypervelocity impacts in the laboratory: Methods to sample plumes from the ice worlds Enceladus and Europa. Meteoritics and Planetary Science, 2021, 56, 1652-1668.	0.7	4
285	Laboratory exploration of mineral precipitates from Europa's subsurface ocean. Journal of Applied Crystallography, 2021, 54, 1455-1479.	1.9	1
286	Quantitative evaluation of the feasibility of sampling the ice plumes at Enceladus for biomarkers of extraterrestrial life. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
287	Tiger: Concept Study for a New Frontiers Enceladus Habitability Mission. Planetary Science Journal, 2021, 2, 195.	1.5	5
288	The opportune location for a kinetic impactor to disrupt potentially hazardous asteroids. Planetary and Space Science, 2021, 206, 105305.	0.9	2
289	Detecting the surface composition of geological features on Europa and Ganymede using a surface dust analyzer. Planetary and Space Science, 2021, 208, 105343.	0.9	11
290	The Geochemistry of Icy Moons. , 2021, , 207-216.		2
291	Possible detection of hydrazine on Saturnâ \in $^{ m Ms}$ moon Rhea. Science Advances, 2021, 7, .	4.7	2
292	Ring Particle Composition and Size Distribution. , 2009, , 459-509.		58
293	Diffuse Rings. , 2009, , 511-536.		22
294	Enceladus: An Active Cryovolcanic Satellite. , 2009, , 683-724.		65

		CITATION R	EPORT	
#	Article		IF	Citations
295	Induced Magnetic Fields in Solar System Bodies. Space Sciences Series of ISSI, 2009, ,	391-421.	0.0	5
296	Dynamics, Composition, and Origin of Jovian and Saturnian Dust-Stream Particles. Ast Space Science Library, 2012, , 77-117.	rophysics and	1.0	9
297	Survival Strategies of Halophilic Oligotrophic and Desiccation Resistant Prokaryotes. C and Life in Extreme Habitats, 2013, , 233-248.	Cellular Origin	0.3	4
298	Heating of Enceladus due to the dissipation of ocean tides. Icarus, 2020, 348, 113821		1.1	16
299	Macromolecular organic compounds from the depths of Enceladus. Nature, 2018, 558	, 564-568 .	13.7	282
300	Exploring Deep-Sea Brines as Potential Terrestrial Analogues of Oceans in the Icy Moor Solar System. Current Issues in Molecular Biology, 2020, 38, 123-162.	ns of the Outer	1.0	16
301	Exploration of Enceladus^ ^apos; Water-Rich Plumes toward Understanding of Chemi Biology of the Interior Ocean. Transactions of the Japan Society for Aeronautical and S Aerospace Technology Japan, 2014, 12, Tk_7-Tk_11.		0.1	5
302	The Geochemistry of Enceladus: Composition and Controls. , 2018, , .			35
303	Geophysics and Tidal-Thermal Evolution of Enceladus. , 2018, , .			5
304	Formation, Composition, and History of the Pluto System: A Post-New Horizons Synth	esis. , 2020, , 1-1.		4
305	Instantaneous Habitable Windows in the Parameter Space of Enceladus' Ocean. Journa Research E: Planets, 2021, 126, e2021JE006951.	al of Geophysical	1.5	10
306	Sodium traces hint at subsurface ocean on Enceladus. Nature, 0, , .		13.7	0
307	Environments in the Outer Solar System. Space Sciences Series of ISSI, 2010, , 11-59.		0.0	0
308	Chemical Composition of Icy Satellite Surfaces. Space Sciences Series of ISSI, 2010, , 1	.11-152.	0.0	0
309	Atmospheric/Exospheric Characteristics of Icy Satellites. Space Sciences Series of ISSI,	2010, , 153-182.	0.0	0
310	Surface, Subsurface and Atmosphere Exchanges onÂtheÂSatellites ofÂtheÂOuter Sola Sciences Series of ISSI, 2010, , 373-408.	r System. Space	0.0	1
311	Rheological and Thermal Properties of Icy Materials. Space Sciences Series of ISSI, 201	0, , 271-295.	0.0	0
312	Subsurface Water Oceans on Icy Satellites: Chemical Composition and Exchange Proc Sciences Series of ISSI, 2010, , 483-508.	esses. Space	0.0	1

#	Article	IF	CITATIONS
313	Saturn's moon has never-ending winter. Nature, 0, , .	13.7	0
314	The ring system. , 2015, , 285-320.		0
315	Wonder of the Solar System: Icy Geysers and Liquid Water on Enceladus. , 2016, , 37-44.		0
316	Die Ursprünge des Lebendigen. , 2017, , 153-220.		Ο
317	Water and Volatiles in the Outer Solar System. Space Sciences Series of ISSI, 2017, , 191-231.	0.0	0
318	The Habitability of Icy Ocean Worlds in the Solar System. , 2018, , 1-23.		Ο
319	Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Sciences Series of ISSI, 2018, , 343-375.	0.0	0
320	Ursprung und Evolution des Lebendigen. , 2019, , 193-279.		Ο
322	Detection Limits for Chiral Amino Acids Using a Polarization Camera. Planetary Science Journal, 2020, 1, 46.	1.5	4
323	VIS-IR spectroscopy of magnesium chlorides at cryogenic temperatures. Icarus, 2022, 373, 114756.	1.1	4
324	Enceladus as a Potential Niche for Methanogens and Estimation of Its Biomass. Life, 2021, 11, 1182.	1.1	5
325	The Deep Rocky Biosphere: New Geomicrobiological Insights and Prospects. Frontiers in Microbiology, 2021, 12, 785743.	1.5	3
326	Enceladus as a potential oasis for life: Science goals and investigations for future explorations. Experimental Astronomy, 2022, 54, 809-847.	1.6	5
327	Near-infrared reflectance spectroscopy of sublimating salty ice analogues. Implications for icy moons. Planetary and Space Science, 2022, 211, 105391.	0.9	2
328	Enceladus and Titan: emerging worlds of the Solar System. Experimental Astronomy, 0, , 1.	1.6	1
329	Comparative Na and K Mercury and Moon Exospheres. Space Science Reviews, 2022, 218, 1.	3.7	12
330	Cryovolcanism. , 2022, , 161-234.		3
331	A perturbation method for evaluating the magnetic field induced from an arbitrary, asymmetric ocean world analytically. Icarus, 2022, 376, 114840.	1.1	9

#	Article	IF	CITATIONS
332	Quantitative and Compositional Analysis of Trace Amino Acids in Icy Moon Analogues Using a Microcapillary Electrophoresis Laser-Induced Fluorescence Detection System. ACS Earth and Space Chemistry, 2022, 6, 333-345.	1.2	2
333	The Most Volatile Elements and Compounds. , 2022, , 271-297.		0
335	Modeling the complete set of Cassini's UVIS occultation observations of Enceladus' plume. Icarus, 2022, 383, 114918.	1.1	1
336	Cooling Crusts Create Concomitant Cryovolcanic Cracks. Geophysical Research Letters, 2022, 49, .	1.5	8
337	Ceres' Surface Composition. , 2022, , 105-120.		0
338	Analytical Chemistry Throughout This Solar System. Annual Review of Analytical Chemistry, 2022, 15, 197-219.	2.8	2
339	Exploring Ocean Circulation on Icy Moons Heated From Below. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	24
340	VIS spectroscopy of NaCl – water ice mixtures irradiated with 1 and 5ÂkeV electrons under Europa's conditions: Formation of colour centres and Na colloids. Icarus, 2022, 379, 114977.	1.1	0
343	The Tides of Enceladus' Porous Core. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	20
344	Is the Ocean of Enceladus in a Primitive Evolutionary Stage?. , 0, , .		0
345	Chemical, Thermal, and Radiation Resistance of an Iron Porphyrin: A Model Study of Biosignature Stability. Astrobiology, 2022, 22, 776-799.	1.5	4
346	Production and Impact Characterization of Enceladus Ice Grain Analogues. ACS Earth and Space Chemistry, 2022, 6, 1813-1822.	1.2	9
347	Contribution of Nonâ€Water Ices to Salinity and Electrical Conductivity in Ocean Worlds. Geophysical Research Letters, 2022, 49, .	1.5	9
348	Ice Shell Structure and Composition of Ocean Worlds: Insights from Accreted Ice on Earth. Astrobiology, 2022, 22, 937-961.	1.5	15
349	Formation of Vitreous Salt Hydrates Under Conditions Relevant to Europa. Planetary Science Journal, 2022, 3, 151.	1.5	4
350	How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites?. Science Advances, 2022, 8, .	4.7	31
351	Contamination analysis of Arctic ice samples as planetary field analogs and implications for future life-detection missions to Europa and Enceladus. Scientific Reports, 2022, 12, .	1.6	5
352	Different Ice-shell Geometries on Europa and Enceladus due to Their Different Sizes: Impacts of Ocean Heat Transport. Astrophysical Journal, 2022, 934, 116.	1.6	12

#	Article	IF	CITATIONS
353	Developing a Laser Induced Liquid Beam Ion Desorption Spectral Database as Reference for Spaceborne Mass Spectrometers. Earth and Space Science, 2022, 9, .	1.1	9
354	Hydroxychlorideâ€Bearing Fluid Inclusions in Ultramafic Rocks From New Caledonia: Implications for Serpentinization in Saline Environments on Earth and Beyond. Journal of Geophysical Research: Solid Earth, 2022, 127, .	1.4	3
355	Chemical Fractionation Modeling of Plumes Indicates a Gas-rich, Moderately Alkaline Enceladus Ocean. Planetary Science Journal, 2022, 3, 191.	1.5	15
356	Detection of Biosignatures by Capillary Electrophoresis Mass Spectrometry in the Presence of Salts Relevant to Ocean Worlds Missions. Astrobiology, 2022, 22, 914-925.	1.5	11
357	Advances in Mass Spectrometers for Flyby Space Missions for the Analysis of Biosignatures and Other Complex Molecules. Universe, 2022, 8, 416.	0.9	3
358	On Icy Ocean Worlds, Size Controls Ice Shell Geometry. Astrophysical Journal, 2022, 935, 103.	1.6	6
359	Autonomous CE Massâ€ S pectra Examination for the Ocean Worlds Life Surveyor. Earth and Space Science, 2022, 9, .	1.1	2
360	Abundant phosphorus expected for possible life in Enceladus's ocean. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	3.3	16
361	Ocean dynamics and tracer transport over the south pole geysers of Enceladus. Monthly Notices of the Royal Astronomical Society, 2022, 517, 3485-3494.	1.6	9
362	The viscosity of aqueous solutions as analogs to cryovolcanic liquids. Geochimica Et Cosmochimica Acta, 2022, 339, 97-114.	1.6	0
363	A multi-lander New Frontiers mission concept study for Enceladus: SILENUS. Frontiers in Astronomy and Space Sciences, 0, 9, .	1.1	3
364	Detection of the amino acid histidine and its breakup products in hypervelocity impact ice spectra. Icarus, 2023, 391, 115319.	1.1	7
365	The role of ocean circulation in driving hemispheric symmetry breaking of the ice shell of Enceladus. Earth and Planetary Science Letters, 2022, 599, 117845.	1.8	5
366	Complementary Mass Spectral Analysis of Isomeric O-bearing Organic Compounds and Fragmentation Differences through Analog Techniques for Spaceborne Mass Spectrometers. Planetary Science Journal, 2022, 3, 254.	1.5	5
367	Layering by Doubleâ€Diffusive Convection in the Subsurface Oceans of Europa and Enceladus. Journal of Geophysical Research E: Planets, 2022, 127, .	1.5	7
368	Survival, metabolic activity, and ultrastructural damages of Antarctic black fungus in perchlorates media. Frontiers in Microbiology, 0, 13, .	1.5	4
369	Toward Detecting Biosignatures of DNA, Lipids, and Metabolic Intermediates from Bacteria in Ice Grains Emitted by Enceladus and Europa. Astrobiology, 2023, 23, 60-75.	1.5	11
370	Moonraker: Enceladus Multiple Flyby Mission. Planetary Science Journal, 2022, 3, 268.	1.5	5

		CITATION R	EPORT	
#	Article		IF	CITATIONS
371	Effect of Salts on the Formation and Hypervelocity-Induced Fragmentation of Icy Clust Embedded Amino Acids. ACS Earth and Space Chemistry, 2023, 7, 168-181.	ers with	1.2	5
372	Highlight Advances in Planetary Physics in the Solar System: In Situ Detection Over the Space: Science & Technology, 2023, 3, .	e Past 20 Years.	1.0	0
373	Surviving in Ocean Worlds: Experimental Characterization of Fiber Optic Tethers acros Ice Faults and Unraveling the Sliding Behavior of Ice. Planetary Science Journal, 2023, 4		1.5	3
374	Mapping the surface composition of Europa with SUDA. Planetary and Space Science,	2023, 227, 105633.	0.9	8
375	Terrestrial analogs & submarine hydrothermal vents—their roles in exploring oce habitability, andAlife beyond earth. , 2023, , 311-358.	an worlds,		0
376	Could near-Earth watery asteroid Ceres be a likely ocean world and habitable?. , 2023,	, 523-544.		0
377	Salty ocean and submarine hydrothermal vents on Saturn's Moon Enceladus—Ta of water vapor & organic-enriched ice particles spewing from its south pole. , 202			0
378	Dispersion of Bacteria by Low-Pressure Boiling: Life Detection in Enceladus' Plume Mat Astrobiology, 2023, 23, 269-279.	erial.	1.5	3
379	The Fermi Paradox and Astrobiology. , 2023, , 209-266.			0
380	Charged Ice Particle Beams with Selected Narrow Mass and Kinetic Energy Distributior the American Society for Mass Spectrometry, 0, , .	is. Journal of	1.2	1
381	Studying the temperature dependence of NIR reflectance spectra of selected hydrated in water: The case of natron, mirabilite and epsomite as representative for icy-world su 2023, 394, 115444.	salts dissolved rfaces. Icarus,	1.1	2
382	OLYMPIA-LILBID: A New Laboratory Setup to Calibrate Spaceborne Hypervelocity Ice G Using High-Resolution Mass Spectrometry. Analytical Chemistry, 2023, 95, 3621-3628		3.2	1
383	Spectroscopic Detection of Biosignatures in Natural Ice Samples as a Proxy for Icy Mod 13, 478.	ons. Life, 2023,	1.1	0
384	Particle entrainment and rotating convection in Enceladus' ocean. Communicatior Environment, 2023, 4, .	ns Earth &	2.6	4
385	On the identification of hyperhydrated sodium chloride hydrates, stable at icy moon co Proceedings of the National Academy of Sciences of the United States of America, 202		3.3	4
386	Mass Spectrometric Fingerprints of Organic Compounds in NaCl-Rich Ice Grains from E Enceladus. ACS Earth and Space Chemistry, 2023, 7, 735-752.	Europa and	1.2	7
387	Geometry of Freezing Impacts Ice Composition: Implications for Icy Satellites. Journal o Research E: Planets, 2023, 128, .	of Geophysical	1.5	1
388	Testing of Ion Exchange Solid Phase Extraction Media for Extraterrestrial <i>In Situ</i> Preparation on Liquid Samples. ACS Earth and Space Chemistry, 0, , .	Sample	1.2	0

#	Article	IF	CITATIONS
389	Discriminating Aromatic Parent Compounds and Their Derivative Isomers in Ice Grains From Enceladus and Europa Using a Laboratory Analogue for Spaceborne Mass Spectrometers. Earth and Space Science, 2023, 10, .	1.1	2
390	Instrumentation for Planetary Exploration. , 2023, , 277-307.		Ο
399	Reliably Analyzing the Chemical Composition of Plumes during Flybys at Velocities Exceeding 5 km/s. , 2023, , .		0
400	Ultra-Long Baseline Time-of-Flight Mass Spectrometry with the AMIGAS Multi-Spacecraft Concept. , 2023, , .		Ο
422	Titan, Enceladus, and other icy moons of Saturn. , 2024, , 315-356.		0