NAADP mobilizes calcium from acidic organelles throug

Nature 459, 596-600 DOI: 10.1038/nature08030

Citation Report

#	Article	IF	CITATIONS
1	Mining free compound databases to identify candidates selected by virtual screening. Expert Opinion on Drug Discovery, 2009, 4, 901-906.	5.0	12
2	Essential requirement for two-pore channel 1 in NAADP-mediated calcium signaling. Journal of Cell Biology, 2009, 186, 201-209.	5.2	376
3	In with the TRP Channels: Intracellular Functions for TRPM1 and TRPM2. Science Signaling, 2009, 2, pe69.	3.6	26
4	Analogues of the Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Antagonist Ned-19 Indicate Two Binding Sites on the NAADP Receptor. Journal of Biological Chemistry, 2009, 284, 34930-34934.	3.4	40
5	Ca2+-stores in sperm: their identities and functions. Reproduction, 2009, 138, 425-437.	2.6	181
6	Second Messenger Signaling: Multiple Receptors for NAADP. Current Biology, 2009, 19, R521-R523.	3.9	34
7	DNA Repair: Common Approaches to Fixing Double-Strand Breaks. Current Biology, 2009, 19, R523-R525.	3.9	26
8	The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca2+ release channels. Pflugers Archiv European Journal of Physiology, 2009, 458, 869-876.	2.8	86
9	The two-pore channel TPCN2 mediates NAADP-dependent Ca2+-release from lysosomal stores. Pflugers Archiv European Journal of Physiology, 2009, 458, 891-899.	2.8	244
10	The tissue-specific expression of TRPML2 (MCOLN-2) gene is influenced by the presence of TRPML1. Pflugers Archiv European Journal of Physiology, 2009, 459, 79-91.	2.8	69
11	A Voltage-Dependent Ca2+ Influx Pathway Regulates the Ca2+-Dependent Clâ^' Conductance of Renal IMCD-3 Cells. Journal of Membrane Biology, 2009, 230, 57-68.	2.1	2
12	Ion Channel Regulation by AMPK. Annals of the New York Academy of Sciences, 2009, 1177, 89-100.	3.8	42
13	Ca ²⁺ Channels on the Move. Biochemistry, 2009, 48, 12062-12080.	2.5	37
14	Regulation of acinar cell function in the pancreas. Current Opinion in Gastroenterology, 2010, 26, 478-483.	2.3	60
15	Sarcoplasmic Reticulum Function in Smooth Muscle. Physiological Reviews, 2010, 90, 113-178.	28.8	154
16	Two-pore channels for integrative Ca ²⁺ signaling. Communicative and Integrative Biology, 2010, 3, 12-17.	1.4	34
17	Lysosome-dependent Ca ²⁺ release response to Fas activation in coronary arterial myocytes through NAADP: evidence from CD38 gene knockouts. American Journal of Physiology - Cell Physiology, 2010, 298, C1209-C1216.	4.6	38
18	Calcium- and polyphosphate-containing acidic granules of sea urchin eggs are similar to acidocalcisomes, but are not the targets for NAADP. Biochemical Journal, 2010, 429, 485-495.	3.7	41

#	Article	IF	CITATIONS
19	NAADP as an intracellular messenger regulating lysosomal calcium-release channels. Biochemical Society Transactions, 2010, 38, 1424-1431.	3.4	91
20	Calcium Signaling in the Islets. Advances in Experimental Medicine and Biology, 2010, 654, 235-259.	1.6	47
21	Transient receptor potential channelopathies. Pflugers Archiv European Journal of Physiology, 2010, 460, 437-450.	2.8	137
22	Acidic calcium stores open for business: expanding the potential for intracellular Ca2+ signaling. Trends in Cell Biology, 2010, 20, 277-286.	7.9	233
23	Purified TPC Isoforms Form NAADP Receptors with Distinct Roles for Ca2+ Signaling and Endolysosomal Trafficking. Current Biology, 2010, 20, 703-709.	3.9	234
24	Aberrant Ca2+ handling in lysosomal storage disorders. Cell Calcium, 2010, 47, 103-111.	2.4	46
25	Intracellular Ca2+ storage in health and disease: A dynamic equilibrium. Cell Calcium, 2010, 47, 297-314.	2.4	169
26	Two-pore channels: Regulation by NAADP and customized roles in triggering calcium signals. Cell Calcium, 2010, 47, 480-490.	2.4	86
27	Mucolipins: Intracellular TRPML1â€3 channels. FEBS Letters, 2010, 584, 2013-2021.	2.8	212
28	TPCs: Endolysosomal channels for Ca ²⁺ mobilization from acidic organelles triggered by NAADP. FEBS Letters, 2010, 584, 1966-1974.	2.8	71
29	Calcium channels in photosynthetic eukaryotes: implications for evolution of calciumâ€based signalling. New Phytologist, 2010, 187, 23-43.	7.3	153
30	TRP channels of intracellular membranes. Journal of Neurochemistry, 2010, 113, 313-328.	3.9	153
31	Lipids on Trial: The Search for the Offending Metabolite in Niemann-Pick type C Disease. Traffic, 2010, 11, 419-428.	2.7	170
32	Epac2-dependent mobilization of intracellular Ca ²⁺ by glucagon-like peptide-1 receptor agonist exendin-4 is disrupted in β-cells of phospholipase C-É> knockout mice. Journal of Physiology, 2010, 588, 4871-4889.	2.9	61
33	Suppression subtractive hybridization analysis of low-protein diet- and vitamin D-induced gene expression from rat kidney inner medullary base. Physiological Genomics, 2010, 41, 203-211.	2.3	6
34	Deviant Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Ca2+ Signaling upon Lysosome Proliferation. Journal of Biological Chemistry, 2010, 285, 13321-13325.	3.4	24
35	An Ancestral Deuterostome Family of Two-pore Channels Mediates Nicotinic Acid Adenine Dinucleotide Phosphate-dependent Calcium Release from Acidic Organelles. Journal of Biological Chemistry, 2010, 285, 2897-2901.	3.4	112
36	An NAADP-gated Two-pore Channel Targeted to the Plasma Membrane Uncouples Triggering from Amplifying Ca2+ Signals. Journal of Biological Chemistry, 2010, 285, 38511-38516.	3.4	153

#	Article	IF	CITATIONS
37	Nicotinic acid adenine dinucleotide phosphate regulates skeletal muscle differentiation via action at two-pore channels. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19927-19932.	7.1	64
38	TPC2 Is a Novel NAADP-sensitive Ca2+ Release Channel, Operating as a Dual Sensor of Luminal pH and Ca2+. Journal of Biological Chemistry, 2010, 285, 35039-35046.	3.4	197
39	Characterization of Two-pore Channel 2 (TPCN2)-mediated Ca2+ Currents in Isolated Lysosomes. Journal of Biological Chemistry, 2010, 285, 21219-21222.	3.4	129
40	TPC2 Proteins Mediate Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)- and Agonist-evoked Contractions of Smooth Muscle. Journal of Biological Chemistry, 2010, 285, 24925-24932.	3.4	71
41	Degeneration of an Intracellular Ion Channel in the Primate Lineage by Relaxation of Selective Constraints. Molecular Biology and Evolution, 2010, 27, 2352-2359.	8.9	56
42	Acidic NAADP-sensitive Calcium Stores in the Endothelium. Journal of Biological Chemistry, 2010, 285, 37133-37137.	3.4	57
43	PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nature Communications, 2010, 1, 38.	12.8	498
44	A Single Residue in a Novel ADP-ribosyl Cyclase Controls Production of the Calcium-mobilizing Messengers Cyclic ADP-ribose and Nicotinic Acid Adenine Dinucleotide Phosphate. Journal of Biological Chemistry, 2010, 285, 19900-19909.	3.4	11
45	CD38-mediated Ca2+ Signaling Contributes to Angiotensin II-induced Activation of Hepatic Stellate Cells. Journal of Biological Chemistry, 2010, 285, 576-582.	3.4	58
46	The Ecto-enzyme CD38 Is a Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Synthase That Couples Receptor Activation to Ca2+ Mobilization from Lysosomes in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2010, 285, 38251-38259.	3.4	94
47	A Functional Role for Nicotinic Acid Adenine Dinucleotide Phosphate in Oxytocin-Mediated Contraction of Uterine Smooth Muscle from Rat. Journal of Pharmacology and Experimental Therapeutics, 2010, 333, 726-735.	2.5	28
48	Ca2+ Release from the Endoplasmic Reticulum of NY-ESO-1–Specific T Cells Is Modulated by the Affinity of TCR and by the Use of the CD8 Coreceptor. Journal of Immunology, 2010, 184, 1829-1839.	0.8	36
49	An emerging role for NAADP-mediated Ca ²⁺ signaling in the pancreatic β-cell. Islets, 2010, 2, 323-330.	1.8	29
50	The autoimmunity-related GIMAP5 GTPase is a lysosome-associated protein. Self/nonself, 2010, 1, 259-268.	2.0	32
51	Calcium signaling via two-pore channels: local or global, that is the question. American Journal of Physiology - Cell Physiology, 2010, 298, C430-C441.	4.6	117
52	Ca2+ Signalling in Damaged Endothelium: Do Connexin Hemichannels Aid in Filling the Gap?. Current Drug Therapy, 2010, 5, 277-287.	0.3	10
53	Planar Patch Clamp Approach to Characterize Ionic Currents from Intact Lysosomes. Science Signaling, 2010, 3, pl3.	3.6	51
54	Calcium Signals: The Lead Currency of Plant Information Processing. Plant Cell, 2010, 22, 541-563.	6.6	918

#	Article	IF	CITATIONS
55	Surface-Enhanced Raman Spectroscopy as a Tool for Detecting Ca2+Mobilizing Second Messengers in Cell Extracts. Analytical Chemistry, 2010, 82, 6770-6774.	6.5	28
57	Use of Cells Expressing \hat{I}^3 Subunit Variants to Identify Diverse Mechanisms of AMPK Activation. Cell Metabolism, 2010, 11, 554-565.	16.2	661
58	Endolysosomal calcium regulation and disease. Biochemical Society Transactions, 2010, 38, 1458-1464.	3.4	56
59	The Role of Transient Receptor Potential Cation Channels in Ca2+ Signaling. Cold Spring Harbor Perspectives in Biology, 2010, 2, a003962-a003962.	5.5	344
60	Molecular Basis of Calcium Signaling in Lymphocytes: STIM and ORAI. Annual Review of Immunology, 2010, 28, 491-533.	21.8	684
61	Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Review of Dermatology, 2011, 6, 97-108.	0.3	167
62	Molecular mechanisms of endolysosomal Ca2+ signalling in health and disease. Biochemical Journal, 2011, 439, 349-378.	3.7	329
63	Receptor Signaling Integration by TRP Channelsomes. Advances in Experimental Medicine and Biology, 2011, 704, 373-389.	1.6	9
64	Nuclear calcium signaling: An emerging topic in plants. Biochimie, 2011, 93, 2068-2074.	2.6	20
65	Calcium signalling in T-lymphocytes. Biochimie, 2011, 93, 2087-2094.	2.6	37
66	The Ca2+ Pumps of the Endoplasmic Reticulum and Golgi Apparatus. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004184-a004184.	5.5	173
67	Sodium Leak Channels in Neuronal Excitability and Rhythmic Behaviors. Neuron, 2011, 72, 899-911.	8.1	128
68	Human hair melanins: what we have learned and have not learned from mouse coat color pigmentation. Pigment Cell and Melanoma Research, 2011, 24, 63-74.	3.3	120
69	Organellar Calcium Buffers. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004069-a004069.	5.5	105
70	Identification of Intracellular and Plasma Membrane Calcium Channel Homologues in Pathogenic Parasites. PLoS ONE, 2011, 6, e26218.	2.5	107
71	Molecular mechanisms of pancreatic injury. Current Opinion in Gastroenterology, 2011, 27, 444-451.	2.3	93
72	NAADP links histamine H1 receptors to secretion of von Willebrand factor in human endothelial cells. Blood, 2011, 117, 4968-4977.	1.4	71
73	Differential contribution of EFâ€hands to the Ca ²⁺ â€dependent activation in the plant twoâ€pore channel TPC1. Plant Journal, 2011, 68, 424-432.	5.7	68

#	ARTICLE	IF	CITATIONS
74	Monitoring the intracellular store Ca2+ concentration in agonistâ€stimulated, intact human platelets by using Fluoâ€5N. Journal of Thrombosis and Haemostasis, 2011, 9, 540-551.	3.8	23
75	Diversity of human hair pigmentation as studied by chemical analysis of eumelanin and pheomelanin. Journal of the European Academy of Dermatology and Venereology, 2011, 25, 1369-1380.	2.4	99
76	Calcium in tumour metastasis: new roles for known actors. Nature Reviews Cancer, 2011, 11, 609-618.	28.4	514
77	Electrophysiology of pancreatic β-cells in intact mouse islets of Langerhans. Progress in Biophysics and Molecular Biology, 2011, 107, 224-235.	2.9	87
78	Molecular physiology of glucagon-like peptide-1 insulin secretagogue action in pancreatic Î ² cells. Progress in Biophysics and Molecular Biology, 2011, 107, 236-247.	2.9	95
79	Compartmentation of NAD ⁺ â€dependent signalling. FEBS Letters, 2011, 585, 1651-1656.	2.8	108
80	NAADP mediates ATP-induced Ca ²⁺ signals in astrocytes. FEBS Letters, 2011, 585, 2300-2306.	2.8	25
81	Acidic NAADP-releasable Ca2+ compartments in the megakaryoblastic cell line MEG01. Biochimica Et Biophysica Acta - Molecular Cell Research, 2011, 1813, 1483-1494.	4.1	30
82	Acidic Ca2+ stores in platelets. Cell Calcium, 2011, 50, 168-174.	2.4	23
83	Role of secretory granules in inositol 1,4,5-trisphosphate-dependent Ca2+ signaling: From phytoplankton to mammals. Cell Calcium, 2011, 50, 175-183.	2.4	12
84	Sea urchin eggs in the acid reign. Cell Calcium, 2011, 50, 147-156.	2.4	27
85	The plant vacuole: Emitter and receiver of calcium signals. Cell Calcium, 2011, 50, 120-128.	2.4	121
86	Aberrant Ca2+ signalling through acidic calcium stores in pancreatic acinar cells. Cell Calcium, 2011, 50, 193-199.	2.4	31
87	Acidic Ca2+ stores come to the fore. Cell Calcium, 2011, 50, 109-112.	2.4	61
88	Lysosomal Ca2+ homeostasis: Role in pathogenesis of lysosomal storage diseases. Cell Calcium, 2011, 50, 200-205.	2.4	122
89	The endo-lysosomal system as an NAADP-sensitive acidic Ca2+ store: Role for the two-pore channels. Cell Calcium, 2011, 50, 157-167.	2.4	60
90	TRPML: Transporters of metals in lysosomes essential for cell survival?. Cell Calcium, 2011, 50, 288-294.	2.4	59
91	NAADP influences excitation–contraction coupling by releasing calcium from lysosomes in atrial myocytes. Cell Calcium, 2011, 50, 449-458.	2.4	54

#	Article	IF	Citations
92	Cyclic ADP-ribose and NAADP: fraternal twin messengers for calcium signaling. Science China Life Sciences, 2011, 54, 699-711.	4.9	59
93	Physiological roles of NAADP-mediated Ca2+ signaling. Science China Life Sciences, 2011, 54, 725-732.	4.9	26
94	Role of TRP Channels in the Regulation of the Endosomal Pathway. Physiology, 2011, 26, 14-22.	3.1	60
95	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Regulates Autophagy in Cultured Astrocytes. Journal of Biological Chemistry, 2011, 286, 27875-27881.	3.4	109
96	NAADP Receptors. Cold Spring Harbor Perspectives in Biology, 2011, 3, a004036-a004036.	5.5	52
97	Mechanisms of Control of the Free Ca2+ Concentration in the Endoplasmic Reticulum of Mouse Pancreatic β-Cells. Diabetes, 2011, 60, 2533-2545.	0.6	85
98	Two-pore Channels Form Homo- and Heterodimers. Journal of Biological Chemistry, 2011, 286, 37058-37062.	3.4	51
99	Calcium Signaling in Sperm: Help from Prostasomes. Science Signaling, 2011, 4, pe27.	3.6	12
100	Cyclic Adenosine Diphosphate Ribose Activates Ryanodine Receptors, whereas NAADP Activates Two-pore Domain Channels. Journal of Biological Chemistry, 2011, 286, 9136-9140.	3.4	78
101	Mucolipin-3 Regulates Luminal Calcium, Acidification, and Membrane Fusion in the Endosomal Pathway. Journal of Biological Chemistry, 2011, 286, 9826-9832.	3.4	67
102	Transient Receptor Potential Mucolipin 1 (TRPML1) and Two-pore Channels Are Functionally Independent Organellar Ion Channels. Journal of Biological Chemistry, 2011, 286, 22934-22942.	3.4	91
103	Dendritic cell maturation and chemotaxis is regulated by TRPM2â€mediated lysosomal Ca ²⁺ release. FASEB Journal, 2011, 25, 3529-3542.	0.5	123
104	Intracellular Cannabinoid Type 1 (CB1) Receptors Are Activated by Anandamide. Journal of Biological Chemistry, 2011, 286, 29166-29174.	3.4	83
105	Critical Role for CD38-mediated Ca2+ Signaling in Thrombin-induced Procoagulant Activity of Mouse Platelets and Hemostasis. Journal of Biological Chemistry, 2011, 286, 12952-12958.	3.4	41
106	Membrane Topology of NAADP-sensitive Two-pore Channels and Their Regulation by N-linked Glycosylation. Journal of Biological Chemistry, 2011, 286, 9141-9149.	3.4	57
107	Calcium Channels in the Development, Maturation, and Function of Spermatozoa. Physiological Reviews, 2011, 91, 1305-1355.	28.8	295
108	Endothelial and Smooth Muscle Cell Ion Channels in Pulmonary Vasoconstriction and Vascular Remodeling. , 2011, 1, 1555-1602.		38
109	TPC1 – SV Channels Gain Shape. Molecular Plant, 2011, 4, 428-441.	8.3	143

#	Article	IF	CITATIONS
110	Reconstitution of lysosomal NAADP-TRP-ML1 signaling pathway and its function in TRP-ML1 ^{â^'/â^'} cells. American Journal of Physiology - Cell Physiology, 2011, 301, C421-C430.	4.6	46
111	Raf-1 Kinase Inhibitory Protein (RKIP) Mediates Ethanol-induced Sensitization of Secretagogue Signaling in Pancreatic Acinar Cells. Journal of Biological Chemistry, 2012, 287, 33377-33388.	3.4	9
112	Photoaffinity Labeling of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Targets in Mammalian Cells*. Journal of Biological Chemistry, 2012, 287, 2296-2307.	3.4	150
113	Pathogenic mechanisms of acute pancreatitis. Current Opinion in Gastroenterology, 2012, 28, 507-515.	2.3	138
114	A Mechanism of Intracellular P2X Receptor Activation*. Journal of Biological Chemistry, 2012, 287, 28315-28326.	3.4	19
115	Cyclic ADP-ribose and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) as Messengers for Calcium Mobilization. Journal of Biological Chemistry, 2012, 287, 31633-31640.	3.4	181
116	Defense-Related Calcium Signaling Mutants Uncovered via a Quantitative High-Throughput Screen in Arabidopsis thaliana. Molecular Plant, 2012, 5, 115-130.	8.3	69
117	Role of TRPML and Two-Pore Channels in Endolysosomal Cation Homeostasis. Journal of Pharmacology and Experimental Therapeutics, 2012, 342, 236-244.	2.5	72
118	Membrane Potential Regulates Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Dependence of the pH- and Ca2+-sensitive Organellar Two-pore Channel TPC1. Journal of Biological Chemistry, 2012, 287, 20407-20416.	3.4	71
119	Critical Role of CD38 for Generation of Ca ² ⁺ Signaling Messengers in Angiotensin II-Stimulated Kupffer Cells. Messenger (Los Angeles, Calif: Print), 2012, 1, 77-85.	0.3	3
120	The intracellular Ca ²⁺ channels of membrane traffic. Channels, 2012, 6, 344-351.	2.8	24
121	Intracellular localization and physiological function of a rice Ca ²⁺ -permeable channel OsTPC1. Plant Signaling and Behavior, 2012, 7, 1428-1430.	2.4	22
122	The Molecular Basis for Ca ² ⁺ Signalling by NAADP: Two-Pore Channels in a Complex?. Messenger (Los Angeles, Calif: Print), 2012, 1, 63-76.	0.3	22
123	Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in <i>Ulva compressa</i> Exposed to Copper Excess Â. Plant Physiology, 2012, 158, 1451-1462.	4.8	157
124	Roles of cADPR and NAADP in pancreatic cells. Acta Biochimica Et Biophysica Sinica, 2012, 44, 719-729.	2.0	14
125	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Degradation by Alkaline Phosphatase. Journal of Biological Chemistry, 2012, 287, 32525-32534.	3.4	29
126	Photoaffinity Labeling of High Affinity Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-Binding Proteins in Sea Urchin Egg. Journal of Biological Chemistry, 2012, 287, 2308-2315.	3.4	110
127	Store-operated Ca2+ entry (SOCE) pathways. , 2012, , .		2

#	Article	IF	CITATIONS
128	Constitutive lysosome exocytosis releases ATP and engages P2Y receptors in human monocytes. Journal of Cell Science, 2012, 125, 4567-75.	2.0	41
129	Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in Experimental Medicine and Biology, 2012, 740, 305-323.	1.6	10
130	Identification of Two-pore Channel 2 as a Novel Regulator of Osteoclastogenesis. Journal of Biological Chemistry, 2012, 287, 35057-35064.	3.4	25
131	Leucine-rich repeat kinase 2 regulates autophagy through a calcium-dependent pathway involving NAADP. Human Molecular Genetics, 2012, 21, 511-525.	2.9	285
132	Lipids and Lysosomes. Current Drug Metabolism, 2012, 13, 1371-1387.	1.2	27
133	Ca2+ Signalling in Damaged Endothelium and Arterial Remodelling: Do Connexin Hemichannels Provide a Suitable Target to Prevent In-stent Restenosis?. Current Drug Therapy, 2012, 7, 268-280.	0.3	4
134	<i>MESSENGER</i> The Cyclic ADP-Ribose/NAADP/CD38-Signaling Pathway: Past and Present. Messenger (Los Angeles, Calif: Print), 2012, 1, 16-33.	0.3	15
135	Nicotinic Acid Adenine Dinucleotide 2 -Phosphate (NAADP) Binding Proteins in T-Lymphocytes. Messenger (Los Angeles, Calif: Print), 2012, 1, 86-94.	0.3	47
136	Fatty Acids - Induced Lipotoxicity and Inflammation. Current Drug Metabolism, 2012, 13, 1358-1370.	1.2	88
137	Effect ofm-3m3FBS on Ca2+handling and viability in OC2 human oral cancer cells. Acta Physiologica Hungarica, 2012, 99, 74-86.	0.9	4
138	Triggering of Ca2+ signals by NAADP-gated two-pore channels: a role for membrane contact sites?. Biochemical Society Transactions, 2012, 40, 153-157.	3.4	31
139	NAADP regulates human platelet function. Biochemical Journal, 2012, 441, 435-442.	3.7	18
140	Domain assembly of NAADP-gated two-pore channels. Biochemical Journal, 2012, 441, 317-323.	3.7	32
141	ER Stress and UPR Through Dysregulated ER Ca2+ Homeostasis and Signaling. , 2012, , 107-142.		3
142	Signaling Pathways Induced by G-protein-coupled Receptors. , 2012, , 75-96.		3
143	Lysosomes shape Ins(1,4,5) <i>P</i> 3-evoked Ca2+ signals by selectively sequestering Ca2+ released from the endoplasmic reticulum. Journal of Cell Science, 2013, 126, 289-300.	2.0	121
144	From Eggs to Hearts: What Is the Link between Cyclic ADPâ€Ribose and Ryanodine Receptors?. Cardiovascular Therapeutics, 2012, 30, 109-116.	2.5	21
145	TPC Proteins Are Phosphoinositide- Activated Sodium-Selective Ion Channels in Endosomes and Lysosomes. Cell, 2012, 151, 372-383.	28.9	456

		CITATION REPORT		
#	Article		IF	CITATIONS
146	The luminal Ca2+ chelator, TPEN, inhibits NAADP-induced Ca2+ release. Cell Calcium, 20)12, 52, 481-487.	2.4	11
147	Spatial organization of intracellular Ca2+ signals. Seminars in Cell and Developmental B 23, 172-180.	iology, 2012,	5.0	43
148	Fertilization in echinoderms. Biochemical and Biophysical Research Communications, 20 588-594.)12, 425,	2.1	61
149	The Role of CD38 in Fcl ³ Receptor (Fcl ³ R)-mediated Phagocytosis in Murine Macrophage Biological Chemistry, 2012, 287, 14502-14514.	es. Journal of	3.4	42
150	TRPML Channels in Function, Disease, and Prospective Therapies. Methods in Pharmaco Toxicology, 2012, , 159-191.	logy and	0.2	0
151	A link between LRRK2, autophagy and NAADP-mediated endolysosomal calcium signallir Society Transactions, 2012, 40, 1140-1146.	ng. Biochemical	3.4	26
152	Two-pore channel 2 (TPC2) modulates store-operated Ca2+ entry. Biochimica Et Biophy Molecular Cell Research, 2012, 1823, 1976-1983.	sica Acta -	4.1	15
153	Ÿ-Adrenergic receptor signaling increases NAADP and cADPR levels in the heart. Bioche Biophysical Research Communications, 2012, 427, 326-329.	mical and	2.1	33
154	Presenilin-null cells have altered two-pore calcium channel expression and lysosomal cal Implications for lysosomal function. Brain Research, 2012, 1489, 8-16.	cium:	2.2	45
155	NAADP Activates Two-Pore Channels on T Cell Cytolytic Granules to Stimulate Exocytos Current Biology, 2012, 22, 2331-2337.	is and Killing.	3.9	121
156	Sphingolipids: Critical players in Alzheimer's disease. Progress in Lipid Research, 201	.2, 51, 378-393.	11.6	143
157	Direct mobilisation of lysosomal Ca2+ triggers complex Ca2+ signals. Journal of Cell Scio 126, 60-66.	ence, 2013,	2.0	161
158	On Ca2+ signalling research. Science China Life Sciences, 2012, 55, 744-746.		4.9	3
159	NAADP on Target. Advances in Experimental Medicine and Biology, 2012, 740, 325-347		1.6	26
160	Linking NAADP to Ion Channel Activity: A Unifying Hypothesis. Science Signaling, 2012,	5, pe18.	3.6	72
161	Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysos release. Nature Communications, 2012, 3, 731.	omal calcium	12.8	387
162	Effects of Ionomycin on Egg Activation and Early Development in Starfish. PLoS ONE, 20)12, 7, e39231.	2.5	43
163	Identification of New Therapeutic Targets by Genome-Wide Analysis of Gene Expression Ipsilateral Cortex of Aged Rats after Stroke. PLoS ONE, 2012, 7, e50985.	in the	2.5	53

#	Article	IF	Citations
" 164	A Link between Autophagy and the Pathophysiology of LRRK2 in Parkinson's Disease. Parkinson's		21
104	Disease, 2012, 2012, 1-9.	1,1	21
165	Stimulus-secretion Coupling in Pancreatic Acinar Cells. , 2012, , 1361-1398.		16
166	Kidney ADP-Ribosyl Cyclase Inhibitors as a Therapeutic Tool for Diabetic Nephropathy. , 2012, , .		0
167	The cellular pathology of lysosomal diseases. Journal of Pathology, 2012, 226, 241-254.	4.5	178
168	Regulation of a Proteinaceous Elicitor-induced Ca2+ Influx and Production of Phytoalexins by a Putative Voltage-gated Cation Channel, OsTPC1, in Cultured Rice Cells. Journal of Biological Chemistry, 2012, 287, 9931-9939.	3.4	39
169	Mitochondria as sensors and regulators of calcium signalling. Nature Reviews Molecular Cell Biology, 2012, 13, 566-578.	37.0	1,369
170	Hemichannels: permeants and their effect on development, physiology and death. Cell Biochemistry and Function, 2012, 30, 89-100.	2.9	59
171	New Aspects of the Contribution of ER to SOCE Regulation. , 2012, , 163-175.		0
172	Lysosomal Acidification Mechanisms. Annual Review of Physiology, 2012, 74, 69-86.	13.1	896
173	The Natural Cell-Penetrating Peptide Crotamine Targets Tumor Tissue <i>in Vivo</i> and Triggers a Lethal Calcium-Dependent Pathway in Cultured Cells. Molecular Pharmaceutics, 2012, 9, 211-221.	4.6	62
174	Arachidonic acid mobilizes Ca2+ from the endoplasmic reticulum and an acidic store in rat pancreatic β cells. Cell Calcium, 2012, 51, 140-148.	2.4	11
175	Calcium dynamics in the secretory granules of neuroendocrine cells. Cell Calcium, 2012, 51, 331-337.	2.4	7
176	An Nâ€Terminal Dileucine Motif Directs Twoâ€Pore Channels to the Tonoplast of Plant Cells. Traffic, 2012, 13, 1012-1022.	2.7	43
177	Intracellular Ca2+ channels – A growing community. Molecular and Cellular Endocrinology, 2012, 353, 21-28.	3.2	19
178	Ancient Origin of Four-Domain Voltage-gated Na+ Channels Predates the Divergence of Animals and Fungi. Journal of Membrane Biology, 2012, 245, 117-123.	2.1	27
179	Intracellular organelles in the saga of Ca2+ homeostasis: different molecules for different purposes?. Cellular and Molecular Life Sciences, 2012, 69, 1077-1104.	5.4	58
180	Nanospaces between endoplasmic reticulum and mitochondria as control centres of pancreatic β-cell metabolism and survival. Protoplasma, 2012, 249, 49-58.	2.1	11
181	Comparative biology of sperm factors and fertilizationâ€induced calcium signals across the animal kingdom. Molecular Reproduction and Development, 2013, 80, 787-815.	2.0	83

#	Article	IF	CITATIONS
182	Multifaceted roles of STIM proteins. Pflugers Archiv European Journal of Physiology, 2013, 465, 1383-1396.	2.8	32
183	Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. Pflugers Archiv European Journal of Physiology, 2013, 465, 829-838.	2.8	15
184	The Role of Calcium Stores in Apoptosis and Autophagy. Current Molecular Medicine, 2013, 13, 252-265.	1.3	99
185	Heterogeneity of Ca2+ handling among and within Golgi compartments. Journal of Molecular Cell Biology, 2013, 5, 266-276.	3.3	50
186	Autocrine/Paracrine Function of Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) for Glucose Homeostasis in Pancreatic β-Cells and Adipocytes. Journal of Biological Chemistry, 2013, 288, 35548-35558.	3.4	28
187	Lysosomal Membrane Proteins and Their Central Role in Physiology. Traffic, 2013, 14, 739-748.	2.7	175
188	mTOR Regulates Lysosomal ATP-Sensitive Two-Pore Na+ Channels to Adapt to Metabolic State. Cell, 2013, 152, 778-790.	28.9	313
189	Regulation of Ion Channels by Pyridine Nucleotides. Circulation Research, 2013, 112, 721-741.	4.5	77
190	Haxâ€1 identified as a twoâ€pore channel (TPC)â€binding protein. FEBS Letters, 2013, 587, 3782-3786.	2.8	20
191	Calcium pathway machinery at fertilization in echinoderms. Cell Calcium, 2013, 53, 16-23.	2.4	23
192	Signals from the lysosome: a control centre for cellular clearance and energy metabolism. Nature Reviews Molecular Cell Biology, 2013, 14, 283-296.	37.0	1,317
193	The endoplasmic reticulum and junctional membrane communication during calcium signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2542-2559.	4.1	99
194	Calcium Signaling in the Liver. , 2013, 3, 515-539.		91
195	Targeting Ca ²⁺ transport in cancer: close reality or long perspective?. Expert Opinion on Therapeutic Targets, 2013, 17, 225-241.	3.4	50
196	NAADP/TPC2/Ca2+Signaling Inhibits Autophagy. Communicative and Integrative Biology, 2013, 6, e27595.	1.4	25
197	Crystal Structures of Human CD38 in Complex with NAADP and ADPRP. Messenger (Los Angeles, Calif:) Tj ETQq1	10,7843	14 ₆ rgBT /O
198	Are TPCs the Target of NAADP?. Messenger (Los Angeles, Calif: Print), 2013, 2, 106-107.	0.3	0
199	An Improved Enzymatic Cycling Assay for NAADP. Messenger (Los Angeles, Calif: Print), 2013, 2, 96-105.	0.3	7

#	Article	IF	CITATIONS
200	Bidirectional Ca2+ signaling occurs between the endoplasmic reticulum and acidic organelles. Journal of Cell Biology, 2013, 200, 789-805.	5.2	137
201	N-terminal tagging of two-pore channels interferes with NAADP action. Biochemical Journal, 2013, 453, e1-e2.	3.7	1
202	Calcium-permeable ion channels in control of autophagy and cancer. Frontiers in Physiology, 2013, 4, 272.	2.8	101
203	Generation and characterization of a lysosomally targeted, genetically encoded Ca2+-sensor. Biochemical Journal, 2013, 449, 449-457.	3.7	37
204	The N-terminal region of two-pore channel 1 regulates trafficking and activation by NAADP. Biochemical Journal, 2013, 453, 147-151.	3.7	26
205	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Is a Second Messenger in Muscarinic Receptor-induced Contraction of Guinea Pig Trachea. Journal of Biological Chemistry, 2013, 288, 10986-10993.	3.4	16
206	Acidocalcisomes of <i>Trypanosoma brucei</i> have an inositol 1,4,5-trisphosphate receptor that is required for growth and infectivity. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1887-1892.	7.1	87
207	The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Physiological Roles. Journal of Biological Chemistry, 2013, 288, 10750-10758.	3.4	131
208	Adenine Dinucleotide Second Messengers and T-lymphocyte Calcium Signaling. Frontiers in Immunology, 2013, 4, 259.	4.8	33
209	Ca 2+ signals evoked by histamine H 1 receptors are attenuated by activation of prostaglandin EP 2 and EP 4 receptors in human aortic smooth muscle cells. British Journal of Pharmacology, 2013, 169, 1624-1634.	5.4	15
210	On the cellular site of twoâ€pore channel TPC 1 action in the Poaceae. New Phytologist, 2013, 200, 663-674.	7.3	29
211	Hypoxic pulmonary vasoconstriction in the absence of pretone: essential role for intracellular Ca ²⁺ release. Journal of Physiology, 2013, 591, 4473-4498.	2.9	36
212	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Activates Global and Heterogeneous Local Ca2+ Signals from NAADP- and Ryanodine Receptor-gated Ca2+ Stores in Pulmonary Arterial Myocytes. Journal of Biological Chemistry, 2013, 288, 10381-10394.	3.4	26
213	Panâ€junctional sarcoplasmic reticulum in vascular smooth muscle: nanospace Ca ²⁺ transport for site―and functionâ€specific Ca ²⁺ signalling. Journal of Physiology, 2013, 591, 2043-2054.	2.9	39
214	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP)-mediated Calcium Signaling and Arrhythmias in the Heart Evoked by β-Adrenergic Stimulation. Journal of Biological Chemistry, 2013, 288, 16017-16030.	3.4	41
215	Cytolytic granules supply Ca2+for their own exocytosis via NAADP and resident two-pore channels. Communicative and Integrative Biology, 2013, 6, e24175.	1.4	7
216	Two Pore Channel 2 (TPC2) Inhibits Autophagosomal-Lysosomal Fusion by Alkalinizing Lysosomal pH. Journal of Biological Chemistry, 2013, 288, 24247-24263.	3.4	88
217	Intracellular Ca ²⁺ signaling: A novel player in the canonical mTOR-controlled autophagy pathway. Communicative and Integrative Biology, 2013, 6, e25429.	1.4	14

ARTICLE

Cyclic ADP-Ribose and NAADP in Vascular Regulation and Diseases. Messenger (Los Angeles, Calif:) Tj ETQq0 0 0 rg $\beta_{.3}^{T}$ /Overlock 10 Tf 50

219	NAADP-Induced Ca ²⁺ Release: Two-Pore or Not Two-Pore?. Messenger (Los) Tj ETQq1	1 0.784314 0.3	rgBT /Over
220	Questioning Regulation of Two-Pore Channels by NAADP. Messenger (Los Angeles, Calif: Print), 2013, 2, 113-119.	0.3	28
221	Ca ²⁺ –Sensor Proteins in the Autophagic and Endocytic Traffic. Current Protein and Peptide Science, 2013, 14, 97-110.	1.4	26
222	Two Pore Channel 2 Differentially Modulates Neural Differentiation of Mouse Embryonic Stem Cells. PLoS ONE, 2013, 8, e66077.	2.5	45
223	Calcium Signals from the Vacuole. Plants, 2013, 2, 589-614.	3.5	48
224	Physiological Characterisation of Human iPS-Derived Dopaminergic Neurons. PLoS ONE, 2014, 9, e87388.	2.5	128
225	Role of intracellular calcium stores in hair-cell ribbon synapse. Frontiers in Cellular Neuroscience, 2014, 8, 162.	3.7	20
226	Two-pore channels function in calcium regulation in sea star oocytes and embryos. Development (Cambridge), 2014, 141, 4598-4609.	2.5	15
227	The Two-pore channel (TPC) interactome unmasks isoform-specific roles for TPCs in endolysosomal morphology and cell pigmentation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 13087-13092.	7.1	109
228	Convergent regulation of the lysosomal two-pore channel-2 by Mg2+, NAADP, PI(3,5)P2 and multiple protein kinases. EMBO Journal, 2014, 33, 501-511.	7.8	162
229	Identification of a Novel Gene for Diabetic Traits in Rats, Mice, and Humans. Genetics, 2014, 198, 17-29.	2.9	44
230	A "mix-and-match―approach to designing Ca ²⁺ microdomains at membrane-contact sites. Communicative and Integrative Biology, 2014, 7, e29586.	1.4	5
231	Reconstituted Human TPC1 Is a Proton-Permeable Ion Channel and Is Activated by NAADP or Ca ²⁺ . Science Signaling, 2014, 7, ra46.	3.6	79
232	Dysregulation of lysosomal morphology by pathogenic LRRK2 is corrected by two-pore channel 2 inhibition. Journal of Cell Science, 2015, 128, 232-8.	2.0	148
233	Ca ²⁺ signals, <scp>NAADP</scp> and twoâ€pore channels: role in cellular differentiation. Acta Physiologica, 2014, 211, 285-296.	3.8	21
234	Molecular biology and biophysical properties of ion channel gating pores. Quarterly Reviews of Biophysics, 2014, 47, 364-388.	5.7	23
235	A non-inactivating high-voltage-activated two-pore Na+ channel that supports ultra-long action potentials and membrane bistability. Nature Communications, 2014, 5, 5015.	12.8	36

#	Article	IF	CITATIONS
236	NAADP and the two-pore channel protein 1 participate in the acrosome reaction in mammalian spermatozoa. Molecular Biology of the Cell, 2014, 25, 948-964.	2.1	53
237	Two-pore channels provide insight into the evolution of voltage-gated Ca ²⁺ and Na ⁺ channels. Science Signaling, 2014, 7, ra109.	3.6	98
238	NAADP-sensitive two-pore channels are present and functional in gastric smooth muscle cells. Cell Calcium, 2014, 56, 51-58.	2.4	16
239	Mammalian Transient Receptor Potential (TRP) Cation Channels. Handbook of Experimental Pharmacology, 2014, , .	1.8	24
240	Transport activity and presence of ClCâ€7/Ostm1 complex account for different cellular functions. EMBO Reports, 2014, 15, 784-791.	4.5	51
241	The voltage-gated sodium channel TPC1 confers endolysosomal excitability. Nature Chemical Biology, 2014, 10, 463-469.	8.0	142
242	Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall. Pharmacological Reviews, 2014, 66, 513-569.	16.0	95
243	Structural organization of signalling to and from IP3 receptors. Biochemical Society Transactions, 2014, 42, 63-70.	3.4	35
244	Intracellular calcium channels in protozoa. European Journal of Pharmacology, 2014, 739, 4-18.	3.5	18
245	Ion transport in pigmentation. Archives of Biochemistry and Biophysics, 2014, 563, 35-41.	3.0	46
246	VEGF-induced neoangiogenesis is mediated by NAADP and two-pore channel-2–dependent Ca ²⁺ signaling. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E4706-15.	7.1	138
247	Calcium signaling in pancreatic β-cells in health and in Type 2 diabetes. Cell Calcium, 2014, 56, 340-361.	2.4	158
248	The "Sweet―Side of Ion Channels. Reviews of Physiology, Biochemistry and Pharmacology, 2014, 167, 67-114.	1.6	23
250	Decoding Calcium Signaling Across the Nucleus. Physiology, 2014, 29, 361-368.	3.1	27
251	Calcium regulation and Alzheimer's disease. Asian Pacific Journal of Tropical Disease, 2014, 4, S513-S518.	0.5	11
252	TPC1 Has Two Variant Isoforms, and Their Removal Has Different Effects on Endo-Lysosomal Functions Compared to Loss of TPC2. Molecular and Cellular Biology, 2014, 34, 3981-3992.	2.3	76
253	P2X4 Forms Functional ATP-activated Cation Channels on Lysosomal Membranes Regulated by Luminal pH. Journal of Biological Chemistry, 2014, 289, 17658-17667.	3.4	115
254	The phosphoinositide PI(3,5)P2 mediates activation of mammalian but not plant TPC proteins: functional expression of endolysosomal channels in yeast and plant cells. Cellular and Molecular Life Sciences, 2014, 71, 4275-4283.	5.4	63

		CITATION REPORT		
#	Article	IF	С	ITATIONS
255	Twoâ€pore channels (<scp>TPC</scp> s): Current controversies. BioEssays, 2014, 36, 173-183.	2.5	i 9	6
256	Calcium signaling and the secretory activity of bile duct epithelia. Cell Calcium, 2014, 55, 317-324	4. 2.4	19	9
257	Nuclear BK channels regulate gene expression via the control of nuclear calcium signaling. Nature Neuroscience, 2014, 17, 1055-1063.	14.	.8 93	3
258	Arachidonic acid activates release of calcium ions from reticulum via ryanodine receptor channels C2C12 skeletal myotubes. Biochemistry (Moscow), 2014, 79, 435-439.	in 1.5	6	
259	High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nature Communicat 2014, 5, 4699.	cions, 12.	.8 10	64
260	Acidic intracellular Ca2+ stores and caveolae in Ca2+ signaling and diabetes. Cell Calcium, 2014, 323-331.	56, 2.4	9	
261	Role of acidic stores in secretory epithelia. Cell Calcium, 2014, 55, 346-354.	2.4	1	3
262	Lysosomal storage diseases and the heat shock response: convergences and therapeutic opportu Journal of Lipid Research, 2014, 55, 2198-2210.	nities. 4.2	2 3:	2
263	A computational model of lysosome-ER Ca2+ microdomains. Journal of Cell Science, 2014, 127, 2	934-43. 2.0) 50	6
266	Two-pore channels at the intersection of endolysosomal membrane traffic. Biochemical Society Transactions, 2015, 43, 434-441.	3.4	- 54	4
267	Regulation of TRPML1 function. Biochemical Society Transactions, 2015, 43, 442-446.	3.4	⊦ 24	4
268	Expression of Ca ²⁺ â€permeable twoâ€pore channels rescues <scp>NAADP</scp> s <scp>TPC</scp> â€deficient cells. EMBO Journal, 2015, 34, 1743-1758.	signalling in 7.8	14	44
269	Two-Pore Channels: Lessons from Mutant Mouse Models. Messenger (Los Angeles, Calif: Print), 20 4-22.	015, 4, 0.3	3 2:	2
270	Poring Over Two-Pore Channel Pore Mutants. Messenger (Los Angeles, Calif: Print), 2015, 4, 46-5.	2. 0.3	3 5	
271	The Roles of NAADP, Two Pore Channels and Lysosomes in Ca ²⁺ Signaling in Cardia Muscle. Messenger (Los Angeles, Calif: Print), 2015, 4, 23-33.	ac 0.3	3 3	
272	A Special Issue of Messenger 2016. Messenger (Los Angeles, Calif: Print), 2015, 4, 1-3.	0.3	3 0	
273	Departure gate of acidic Ca ²⁺ confirmed. EMBO Journal, 2015, 34, 1737-1739.	7.8	5 12	2
275	Connecting Two-Pore Channel Structure with Single Channel Permeability Measurements. Messer (Los Angeles, Calif: Print), 2015, 4, 34-45.	nger 0.3	3 0	

#	Article	IF	CITATIONS
276	Two-Pore Channel 2 activity is required for slow muscle cell-generated Ca2+ signaling during myogenesis in intact zebrafish. International Journal of Developmental Biology, 2015, 59, 313-325.	0.6	30
277	Calcium signals regulated by NAADP and two-pore channels - their role in development, differentiation and cancer. International Journal of Developmental Biology, 2015, 59, 341-355.	0.6	15
278	Intracellular sphingosine releases calcium from lysosomes. ELife, 2015, 4, .	6.0	115
279	Pleiotropic and Sex-Specific Effects of Cancer GWAS SNPs on Melanoma Risk in the Population Architecture Using Genomics and Epidemiology (PAGE) Study. PLoS ONE, 2015, 10, e0120491.	2.5	19
280	Calcium Signalling Triggered by NAADP in T Cells Determines Cell Shape and Motility During Immune Synapse Formation. Messenger (Los Angeles, Calif: Print), 2015, 4, 104-111.	0.3	7
281	Ca2+ homeostasis and endoplasmic reticulum (ER) stress: An integrated view of calcium signaling. Biochemical and Biophysical Research Communications, 2015, 460, 114-121.	2.1	416
282	Alterations in late endocytic trafficking related to the pathobiology of LRRK2-linked Parkinson's disease. Biochemical Society Transactions, 2015, 43, 390-395.	3.4	28
283	TPC: the NAADP discovery channel?. Biochemical Society Transactions, 2015, 43, 384-389.	3.4	41
284	The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium, 2015, 58, 48-56.	2.4	166
285	A primer of NAADP-mediated Ca2+ signalling: From sea urchin eggs to mammalian cells. Cell Calcium, 2015, 58, 27-47.	2.4	110
286	Calcium mobilizing second messengers derived from NAD. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1132-1137.	2.3	71
287	A novel Ca2+-mediated cross-talk between endoplasmic reticulum and acidic organelles: Implications for NAADP-dependent Ca2+ signalling. Cell Calcium, 2015, 57, 89-100.	2.4	78
288	Lysosomal Physiology. Annual Review of Physiology, 2015, 77, 57-80.	13.1	768
289	Lysosome electrophysiology. Methods in Cell Biology, 2015, 126, 197-215.	1.1	7
290	Imaging approaches to measuring lysosomal calcium. Methods in Cell Biology, 2015, 126, 159-195.	1.1	36
291	Increasing complexity and versatility: How the calcium signaling toolkit was shaped during plant land colonization. Cell Calcium, 2015, 57, 231-246.	2.4	122
292	Evolution of acidic Ca2+ stores and their resident Ca2+-permeable channels. Cell Calcium, 2015, 57, 222-230.	2.4	74
293	Measuring relative lysosomal volume for monitoring lysosomal storage diseases. Methods in Cell Biology, 2015, 126, 331-347.	1.1	4

		CITATION REPORT		
#	Article		IF	CITATIONS
294	Methods for monitoring lysosomal morphology. Methods in Cell Biology, 2015, 126, 1-1	9.	1.1	17
295	Two-pore channels control Ebola virus host cell entry and are drug targets for disease tre Science, 2015, 347, 995-998.	atment.	12.6	454
296	Lysosomal calcium signalling regulates autophagy through calcineurin and TFEB. Nature 2015, 17, 288-299.	Cell Biology,	10.3	1,006
297	Sedimentary DNA from a submerged site reveals wheat in the British Isles 8000 years ago 347, 998-1001.	p. Science, 2015,	12.6	99
298	Lysosomal Two-pore Channel Subtype 2 (TPC2) Regulates Skeletal Muscle Autophagic Si of Biological Chemistry, 2015, 290, 3377-3389.	gnaling. Journal	3.4	69
299	Organelle-specific Subunit Interactions of the Vertebrate Two-pore Channel Family. Jourr Biological Chemistry, 2015, 290, 1086-1095.	al of	3.4	24
300	Fluorescence methods for analysis of interactions between Ca2+ signaling, lysosomes, a endoplasmic reticulum. Methods in Cell Biology, 2015, 126, 237-259.	nd	1.1	0
301	CD38 Mediates Angiotensin II–Induced Intracellular Ca ²⁺ Release in Rat I Arterial Smooth Muscle Cells. American Journal of Respiratory Cell and Molecular Biology 332-341.	Pulmonary , 2015, 52,	2.9	30
302	Function and dysfunction of two-pore channels. Science Signaling, 2015, 8, re7.		3.6	135
303	Coupling acidic organelles with the ER through Ca2+ microdomains at membrane contac Calcium, 2015, 58, 387-396.	rt sites. Cell	2.4	64
304	Absence of Intracellular Ion Channels TPC1 and TPC2 Leads to Mature-Onset Obesity in I to Impaired Lipid Availability for Thermogenesis in Brown Adipose Tissue. Endocrinology, 975-986.	Vale Mice, Due 2015, 156,	2.8	21
305	Calcium release through P2X4 activates calmodulin to promote endolysosomal membrai Journal of Cell Biology, 2015, 209, 879-894.	ne fusion.	5.2	108
306	Nicotinic Acid Adenine Dinucleotide Phosphate Analogues Substituted on the Nicotinic A Adenine Ribosides. Effects on ReceptorMediated Ca ²⁺ Release. Journal of N Chemistry, 2015, 58, 3593-3610.	vcid and 1edicinal	6.4	13
307	Organellar channels and transporters. Cell Calcium, 2015, 58, 1-10.		2.4	83
309	Ruling out pyridine dinucleotides as true TRPM2 channel activators reveals novel direct a ADP-ribose-2′-phosphate. Journal of General Physiology, 2015, 145, 419-430.	gonist	1.9	53
310	Phosphatidylinositol-3,4,5-trisphosphate stimulates Ca2+ elevation and Akt phosphoryla constitute a major mechanism of thromboxane A2 formation in human platelets. Cellular 2015, 27, 1488-1498.		3.6	8
311	Release of calcium from endolysosomes increases calcium influx through N-type calcium Evidence for acidic store-operated calcium entry in neurons. Cell Calcium, 2015, 58, 617		2.4	30
312	Presenilin 1 Maintains Lysosomal Ca2+ Homeostasis via TRPML1 by Regulating vATPase- Lysosome Acidification. Cell Reports, 2015, 12, 1430-1444.	Mediated	6.4	272

#	Article	IF	CITATIONS
313	The gastrin and cholecystokinin receptors mediated signaling network: a scaffold for data analysis and new hypotheses on regulatory mechanisms. BMC Systems Biology, 2015, 9, 40.	3.0	46
314	Both RyRs and TPCs are required for NAADP-induced intracellular Ca2+ release. Cell Calcium, 2015, 58, 237-245.	2.4	50
315	Regulation and roles of Ca2+ stores in human sperm. Reproduction, 2015, 150, R65-R76.	2.6	96
316	Two-pore Channels (TPC2s) and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) at Lysosomal-Sarcoplasmic Reticular Junctions Contribute to Acute and Chronic β-Adrenoceptor Signaling in the Heart. Journal of Biological Chemistry, 2015, 290, 30087-30098.	3.4	63
317	Inhibition of NAADP signalling on reperfusion protects the heart by preventing lethal calcium oscillations via two-pore channel 1 and opening of the mitochondrial permeability transition pore. Cardiovascular Research, 2015, 108, 357-366.	3.8	44
319	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Endolysosomal Two-pore Channels Modulate Membrane Excitability and Stimulus-Secretion Coupling in Mouse Pancreatic β Cells. Journal of Biological Chemistry, 2015, 290, 21376-21392.	3.4	48
320	TPC2 mediates new mechanisms of platelet dense granule membrane dynamics through regulation of Ca ²⁺ release. Molecular Biology of the Cell, 2015, 26, 3263-3274.	2.1	40
321	TPC1 Knockout Knocks Out TPC1. Molecular and Cellular Biology, 2015, 35, 1882-1883.	2.3	5
322	Fluorescent biosensors illuminate calcium levels within defined beta-cell endosome subpopulations. Cell Calcium, 2015, 57, 263-274.	2.4	50
323	Two-pore channel 1 interacts with citron kinase, regulating completion of cytokinesis. Channels, 2015, 9, 21-29.	2.8	17
324	CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models. Canadian Journal of Physiology and Pharmacology, 2015, 93, 145-153.	1.4	40
325	The Role of Calcium and Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) in Human Osteoclast Formation and Resorption. Calcified Tissue International, 2015, 96, 73-79.	3.1	5
326	Acidic Ca ² ⁺ Stores in Neurodegeneration. Messenger (Los Angeles, Calif:) Tj ETQq0 0 (OrgBT ∕Ov	erlock 10 Tf !
327	Carvedilol Inhibits cADPR- and IP3-Induced Ca2+ Release. Messenger (Los Angeles, Calif: Print), 2016, 5, 92-99.	0.3	3
328	Lysosomal Calcium in Neurodegeneration. Messenger (Los Angeles, Calif: Print), 2016, 5, 56-66.	0.3	21
329	Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy, 2016, 12, 1487-1506.	9.1	37
330	Endolysosomal twoâ€pore channels regulate autophagy in cardiomyocytes. Journal of Physiology, 2016, 594, 3061-3077.	2.9	70
331	Endoplasmic reticulum stress is activated in acute pancreatitis. Journal of Digestive Diseases, 2016, 17, 295-303.	1.5	28

#	Article	IF	CITATIONS
332	Differential effects of two-pore channel protein 1 and 2 silencing in MDA-MB-468 breast cancer cells. Biochemical and Biophysical Research Communications, 2016, 477, 731-736.	2.1	22
333	Inseparable tandem: evolution chooses ATP and Ca ²⁺ to control life, death and cellular signalling. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150419.	4.0	48
334	Principles of Virus Uncoating: Cues and the Snooker Ball. Traffic, 2016, 17, 569-592.	2.7	105
335	cAMP-dependent recruitment of acidic organelles for Ca2+ signaling in the salivary gland. American Journal of Physiology - Cell Physiology, 2016, 311, C697-C709.	4.6	3
336	A melanosomal two-pore sodium channel regulates pigmentation. Scientific Reports, 2016, 6, 26570.	3.3	64
337	Suppression of histamine-induced relaxation of rat aorta and calcium signaling in endothelial cells by two-pore channel blocker trans-NED19 and hydrogen peroxide. Biology Bulletin, 2016, 43, 366-373.	0.5	2
338	Metabolic alterations derived from absence of Two-Pore Channel 1 at cardiac level. Journal of Biosciences, 2016, 41, 643-658.	1.1	7
339	NAADP-Dependent Ca2+ Signaling Controls Melanoma Progression, Metastatic Dissemination and Neoangiogenesis. Scientific Reports, 2016, 6, 18925.	3.3	35
340	Exosomes in the Preservation of Cellular Homeostasis. Oxidative Stress in Applied Basic Research and Clinical Practice, 2016, , 17-45.	0.4	0
341	Isolated pores dissected from human two-pore channel 2 are functional. Scientific Reports, 2016, 6, 38426.	3.3	9
342	Endo-lysosomal TRP mucolipin-1 triggers global ER Ca2+ release and Ca2+ influx. Journal of Cell Science, 2016, 129, 3859-3867.	2.0	57
343	Characterization of Two-Pore Channel 2 by Nuclear Membrane Electrophysiology. Scientific Reports, 2016, 6, 20282.	3.3	19
344	Two-Pore Channels and Parkinson's Disease: Where's the Link?. Messenger (Los Angeles, Calif: Print), 2016, 5, 67-75.	0.3	4
345	Connecting Ca2+ and Lysosomes to Parkinson Disease. Messenger (Los Angeles, Calif: Print), 2016, 5, 76-86.	0.3	5
346	The two pore channel TPC2 is dispensable in pancreatic β-cells for normal Ca2+ dynamics and insulin secretion. Cell Calcium, 2016, 59, 32-40.	2.4	26
347	Role of Ion Channels in the Sperm Acrosome Reaction. Advances in Anatomy, Embryology and Cell Biology, 2016, 220, 35-69.	1.6	30
348	Sperm Acrosome Biogenesis and Function During Fertilization. Advances in Anatomy, Embryology and Cell Biology, 2016, , .	1.6	8
349	Pathophysiological mechanisms in acute pancreatitis: Current understanding. Indian Journal of Gastroenterology, 2016, 35, 153-166.	1.4	73

#	Article	IF	Citations
350	TPC2 controls pigmentation by regulating melanosome pH and size. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 5622-5627.	7.1	100
351	Using a Genetically Encoded Sensor to Identify Inhibitors of Toxoplasma gondii Ca2+ Signaling. Journal of Biological Chemistry, 2016, 291, 9566-9580.	3.4	61
352	The function of the two-pore channel TPC1 depends on dimerization of its carboxy-terminal helix. Cellular and Molecular Life Sciences, 2016, 73, 2565-2581.	5.4	28
353	Intracellular Ca 2+ signaling and Ca 2+ microdomains in the control of cell survival, apoptosis and autophagy. Cell Calcium, 2016, 60, 74-87.	2.4	215
354	Modulation of Calcium Entry by the Endo-lysosomal System. Advances in Experimental Medicine and Biology, 2016, 898, 423-447.	1.6	12
355	Exploring the biophysical evidence that mammalian twoâ€pore channels are NAADPâ€activated calciumâ€permeable channels. Journal of Physiology, 2016, 594, 4171-4179.	2.9	37
356	Regulation of lysosomal ion homeostasis by channels and transporters. Science China Life Sciences, 2016, 59, 777-791.	4.9	84
357	From contraction to gene expression: nanojunctions of the sarco/endoplasmic reticulum deliver site- and function-specific calcium signals. Science China Life Sciences, 2016, 59, 749-763.	4.9	22
358	On the move, lysosomal CAX drives Ca2+ transport and motility. Journal of Cell Biology, 2016, 212, 755-757.	5.2	10
359	Ca2+ dialogue between acidic vesicles and ER. Biochemical Society Transactions, 2016, 44, 546-553.	3.4	29
360	Immuno-targeting the multifunctional CD38 using nanobody. Scientific Reports, 2016, 6, 27055.	3.3	61
361	The hills and valleys of calcium signaling. Science China Life Sciences, 2016, 59, 743-748.	4.9	7
362	Transcriptomic analysis of the ion channelome of human platelets and megakaryocytic cell lines. Thrombosis and Haemostasis, 2016, 116, 272-284.	3.4	28
363	A New Perspective of Lysosomal Cation Channel-Dependent Homeostasis in Alzheimer's Disease. Molecular Neurobiology, 2016, 53, 1672-1678.	4.0	11
364	Intracellular Calcium. , 2016, , 381-439.		4
365	The role of Ca2+ signaling on the self-renewal and neural differentiation of embryonic stem cells (ESCs). Cell Calcium, 2016, 59, 67-74.	2.4	34
366	Ca 2+ microdomains, NAADP and type 1 ryanodine receptor in cell activation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 1379-1384.	4.1	14
367	SIDT2 is involved in the NAADP-mediated release of calcium from insulin secretory granules. Journal of Molecular Endocrinology, 2016, 56, 249-259.	2.5	18

ARTICLE IF CITATIONS # Structure, inhibition and regulation of two-pore channel TPC1 from Arabidopsis thaliana. Nature, 368 27.8 155 2016, 531, 258-264. Structure of the voltage-gated two-pore channel TPC1 from Arabidopsis thaliana. Nature, 2016, 531, 27.8 196-201. Ebolavirus Glycoprotein Directs Fusion through NPC1 ⁺ Endolysosomes. Journal of 370 3.4 67 Virology, 2016, 90, 605-610. Using the plant vacuole as a biological system to investigate the functional properties of exogenous 371 channels and transporters. Biochimica Et Biophysica Acta - Biomembranes, 2016, 1858, 607-612. Tuning the ion selectivity of two-pore channels. Proceedings of the National Academy of Sciences of 372 7.1 106 the United States of America, 2017, 114, 1009-1014. Two-Pore Channel Function Is Crucial for the Migration of Invasive Cancer Cells. Cancer Research, Nanojunctions of the Sarcoplasmic Reticulum Deliver Site- and Function-Specific Calcium Signaling in 374 2.0 6 Vascular Smooth Muscles. Advances in Pharmacology, 2017, 78, 1-47. An Endosomal NAADP-Sensitive Two-Pore Ca 2+ Channel Regulates ER-Endosome Membrane Contact 6.4 Sites to Control Growth Factor Signaling. Cell Reports, 2017, 18, 1636-1645. BAPTA-AM decreases cellular pH, inhibits acidocalcisome acidification and autophagy in amino 376 1.1 4 acid-starved T. brucei. Molecular and Biochemical Parasitology, 2017, 213, 26-29. The human two-pore channel 1 is modulated by cytosolic and luminal calcium. Scientific Reports, 2017, 3.3 7,43900. Ca 2+ release via two-pore channel type 2 (TPC2) is required for slow muscle cell myofibrillogenesis 378 22 2.0 and myotomal patterning in intact zebrafish embryos. Developmental Biology, 2017, 425, 109-129. Tobacco Smoke Constituents Trigger Cytoplasmic Calcium Release. Applied in Vitro Toxicology, 2017, 3, 379 1.1 193-198. A well-known potassium channel plays a critical role in lysosomes. Journal of Cell Biology, 2017, 216, 380 5.2 4 1513-1515. Mitochondrial Calcium Handling in Physiology and Disease. Advances in Experimental Medicine and Biology, 2017, 982, 25-47. 1.6 382 Regulation of Sperm Behaviour., 2017, , 126-142. 4 The lysosomal Ca2+ release channel TRPML1 regulates lysosome size by activating calmodulin. Journal 84 of Biological Chemistry, 2017, 292, 8424-8435. Annexin A6 in the liver: From the endocytic compartment to cellular physiology. Biochimica Et 384 4.1 52 Biophysica Acta - Molecular Cell Research, 2017, 1864, 933-946. Activity-Dependent Exocytosis of Lysosomes Regulates the Structural Plasticity of Dendritic Spines. 8.1 Neuron, 2017, 93, 132-146.

#	Article	IF	CITATIONS
386	Methods for monitoring Ca 2+ and ion channels in the lysosome. Cell Calcium, 2017, 64, 20-28.	2.4	26
387	NAADP-evoked Ca 2+ signals through two-pore channel-1 require arginine residues in the first S4-S5 linker. Cell Calcium, 2017, 68, 1-4.	2.4	20
388	Organelle Communication at Membrane Contact Sites (MCS): From Curiosity to Center Stage in Cell Biology and Biomedical Research. Advances in Experimental Medicine and Biology, 2017, 997, 1-12.	1.6	34
389	The Role of Mitochondria in the Activation/Maintenance of SOCE: Membrane Contact Sites as Signaling Hubs Sustaining Store-Operated Ca2+ Entry. Advances in Experimental Medicine and Biology, 2017, 993, 277-296.	1.6	9
390	TPC2 polymorphisms associated with a hair pigmentation phenotype in humans result in gain of channel function by independent mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8595-E8602.	7.1	55
391	New Aspects of the Contribution of ER to SOCE Regulation: TRPC Proteins as a Link Between Plasma Membrane Ion Transport and Intracellular Ca2+ Stores. Advances in Experimental Medicine and Biology, 2017, 993, 239-255.	1.6	16
392	The two-pore channel TPC1 is required for efficient protein processing through early and recycling endosomes. Scientific Reports, 2017, 7, 10038.	3.3	40
393	Small Molecules for Early Endosome-Specific Patch Clamping. Cell Chemical Biology, 2017, 24, 907-916.e4.	5.2	34
394	IP3 receptor signaling and endothelial barrier function. Cellular and Molecular Life Sciences, 2017, 74, 4189-4207.	5.4	12
395	Mitochondrial Ca ²⁺ transport in the endothelium: regulation by ions, redox signalling and mechanical forces. Journal of the Royal Society Interface, 2017, 14, 20170672.	3.4	25
396	Evolutionary History of Voltage-Gated Sodium Channels. Handbook of Experimental Pharmacology, 2017, 246, 3-32.	1.8	10
397	Role of lysosomal channel protein TPC2 in osteoclast differentiation and bone remodeling under normal and low-magnesium conditions. Journal of Biological Chemistry, 2017, 292, 20998-21010.	3.4	17
398	High resolution structural evidence suggests the Sarcoplasmic Reticulum forms microdomains with Acidic Stores (lysosomes) in the heart. Scientific Reports, 2017, 7, 40620.	3.3	59
399	Naringenin Impairs Two-Pore Channel 2 Activity And Inhibits VEGF-Induced Angiogenesis. Scientific Reports, 2017, 7, 5121.	3.3	77
400	Two-pore channels (TPCs): Novel voltage-gated ion channels with pleiotropic functions. Channels, 2017, 11, 20-33.	2.8	13
401	Beyond Intracellular Signaling: The Ins and Outs of Second Messengers Microdomains. Advances in Experimental Medicine and Biology, 2017, 981, 279-322.	1.6	17
402	Two-Pore Channels: Catalyzers of Endolysosomal Transport and Function. Frontiers in Pharmacology, 2017, 08, 45.	3.5	67
403	IP3 Receptor-Mediated Calcium Signaling and Its Role in Autophagy in Cancer. Frontiers in Oncology, 2017, 7, 140.	2.8	123

#	Article	IF	CITATIONS
404	The phosphatidylinositol-3-phosphate 5-kinase inhibitor apilimod blocks filoviral entry and infection. PLoS Neglected Tropical Diseases, 2017, 11, e0005540.	3.0	97
405	Annexins: Ca2+ Effectors Determining Membrane Trafficking in the Late Endocytic Compartment. Advances in Experimental Medicine and Biology, 2017, 981, 351-385.	1.6	19
406	A negative feedback regulation of MTORC1 activity by the lysosomal Ca ²⁺ channel MCOLN1 (mucolipin 1) using a CALM (calmodulin)-dependent mechanism. Autophagy, 2018, 14, 38-52.	9.1	58
407	Modulation of calcium and potassium permeation in plant TPC channels. Biophysical Chemistry, 2018, 236, 1-7.	2.8	16
408	mTORC1 controls lysosomal Ca ²⁺ release through the two-pore channel TPC2. Science Signaling, 2018, 11, .	3.6	59
409	Integration of nicotinic acid adenine dinucleotide phosphate (NAADP)â€dependent calcium signalling. Journal of Physiology, 2018, 596, 2735-2743.	2.9	28
410	Phosphatidylinositol-3,5-bisphosphate lipid-binding-induced activation of the human two-pore channel 2. Cellular and Molecular Life Sciences, 2018, 75, 3803-3815.	5.4	28
411	TPC2-mediated Ca2+ signaling is required for the establishment of synchronized activity in developing zebrafish primary motor neurons. Developmental Biology, 2018, 438, 57-68.	2.0	10
412	The hidden potential of lysosomal ion channels: A new era of oncogenes. Cell Calcium, 2018, 72, 91-103.	2.4	40
413	Structural insights into the voltage and phospholipid activation of the mammalian TPC1 channel. Nature, 2018, 556, 130-134.	27.8	153
414	Adrenaline Stimulates Glucagon Secretion by Tpc2-Dependent Ca2+ Mobilization From Acidic Stores in Pancreatic α-Cells. Diabetes, 2018, 67, 1128-1139.	0.6	61
415	Calcium Signaling Deficits in Glia and Autophagic Pathways Contributing to Neurodegenerative Disease. Antioxidants and Redox Signaling, 2018, 29, 1158-1175.	5.4	40
416	On the structure and mechanism of twoâ \in pore channels. FEBS Journal, 2018, 285, 233-243.	4.7	38
417	Ion channels in the regulation of autophagy. Autophagy, 2018, 14, 3-21.	9.1	77
418	The regulation of autophagy by calcium signals: Do we have a consensus?. Cell Calcium, 2018, 70, 32-46.	2.4	189
419	Ca2+ channels and Ca2+ signals involved in abiotic stress responses in plant cells: recent advances. Plant Cell, Tissue and Organ Culture, 2018, 132, 413-424.	2.3	29
420	Recent advances in the molecular mechanism of mitochondrial calcium uptake. F1000Research, 2018, 7, 1858.	1.6	46
421	Hippocampal mGluR1-dependent long-term potentiation requires NAADP-mediated acidic store Ca ²⁺ signaling. Science Signaling, 2018, 11, .	3.6	41

#	Article	IF	CITATIONS
422	ORAI1, STIM1/2, and RYR1 shape subsecond Ca ²⁺ microdomains upon T cell activation. Science Signaling, 2018, 11, .	3.6	59
423	Lysosomal exocytosis of ATP is coupled to P2Y2 receptor in marginal cells in the stria vascular in neonatal rats. Cell Calcium, 2018, 76, 62-71.	2.4	12
424	Maturation and fertilization of echinoderm eggs: Role of actin cytoskeleton dynamics. Biochemical and Biophysical Research Communications, 2018, 506, 361-371.	2.1	26
425	Organellar TRP channels. Nature Structural and Molecular Biology, 2018, 25, 1009-1018.	8.2	41
426	<i>Tpcn2</i> knockout mice have improved insulin sensitivity and are protected against high-fat diet-induced weight gain. Physiological Genomics, 2018, 50, 605-614.	2.3	3
427	Regulation of bile secretion by calcium signaling in health and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1761-1770.	4.1	22
428	Physiology of Astroglia. Physiological Reviews, 2018, 98, 239-389.	28.8	1,044
429	Two-pore channels open up. Nature, 2018, 556, 38-40.	27.8	9
430	Roles of Nicotinamide Adenine Dinucleotide (NAD+) in Biological Systems. Challenges, 2018, 9, 3.	1.7	9
431	PLC and IP3-evoked Ca2+ release initiate the fast block to polyspermy in <i>Xenopus laevis</i> eggs. Journal of General Physiology, 2018, 150, 1239-1248.	1.9	17
432	TPC2 mediates autophagy progression and extracellular vesicle secretion in cancer cells. Experimental Cell Research, 2018, 370, 478-489.	2.6	34
433	Two-pore channels and disease. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1678-1686.	4.1	52
434	Beneficial effects of naringenin in liver diseases: Molecular mechanisms. World Journal of Gastroenterology, 2018, 24, 1679-1707.	3.3	233
435	NAADP-dependent Ca2+ signaling regulates Middle East respiratory syndrome-coronavirus pseudovirus translocation through the endolysosomal system. Cell Calcium, 2018, 75, 30-41.	2.4	93
436	A screening campaign in sea urchin egg homogenate as a platform for discovering modulators of NAADP-dependent Ca2+ signaling in human cells. Cell Calcium, 2018, 75, 42-52.	2.4	25
437	Role of the endolysosomal system in Parkinson's disease. Journal of Neurochemistry, 2019, 150, 487-506.	3.9	98
438	Calcium Dyshomeostasis and Lysosomal Ca2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells, 2019, 8, 1216.	4.1	28
439	NeurodegenERation: The Central Role for ER Contacts in Neuronal Function and Axonopathy, Lessons From Hereditary Spastic Paraplegias and Related Diseases. Frontiers in Neuroscience, 2019, 13, 1051.	2.8	43

#	Article	lF	CITATIONS
440	The synthesis and characterization of a clickable-photoactive NAADP analog active in human cells. Cell Calcium, 2019, 83, 102060.	2.4	7
441	Resolving the topological enigma in Ca2+ signaling by cyclic ADP-ribose and NAADP. Journal of Biological Chemistry, 2019, 294, 19831-19843.	3.4	61
442	TRPML1 Promotes Protein Homeostasis in Melanoma Cells by Negatively Regulating MAPK and mTORC1 Signaling. Cell Reports, 2019, 28, 2293-2305.e9.	6.4	34
443	Involvement of organelles and inter-organellar signaling in the pathogenesis of HIV-1 associated neurocognitive disorder and Alzheimer's disease. Brain Research, 2019, 1722, 146389.	2.2	16
444	The Role of Two-Pore Channels in Norepinephrine-Induced [Ca2+]i Rise in Rat Aortic Smooth Muscle Cells and Aorta Contraction. Cells, 2019, 8, 1144.	4.1	9
445	Ca2+ Signaling in Cardiac Fibroblasts and Fibrosis-Associated Heart Diseases. Journal of Cardiovascular Development and Disease, 2019, 6, 34.	1.6	44
446	Endolysosomal Ca2+ Signalling and Cancer Hallmarks: Two-Pore Channels on the Move, TRPML1 Lags Behind!. Cancers, 2019, 11, 27.	3.7	45
447	Adenine nucleotides as paracrine mediators and intracellular second messengers in immunity and inflammation. Biochemical Society Transactions, 2019, 47, 329-337.	3.4	17
448	Phosphoinositides modulate the voltage dependence of two-pore channel 3. Journal of General Physiology, 2019, 151, 986-1006.	1.9	17
449	A Cell-Permeant Mimetic of NMN Activates SARM1 to Produce Cyclic ADP-Ribose and Induce Non-apoptotic Cell Death. IScience, 2019, 15, 452-466.	4.1	135
450	NAADP Receptors. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035071.	5.5	43
451	Calmodulin Is the Fundamental Regulator of NADK-Mediated NAD Signaling in Plants. Frontiers in Plant Science, 2019, 10, 681.	3.6	19
452	Revisiting the role of calcium in phagosome formation and maturation. Journal of Leukocyte Biology, 2019, 106, 837-851.	3.3	23
453	Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) Induces Intracellular Ca2+ Release through the Two-Pore Channel TPC1 in Metastatic Colorectal Cancer Cells. Cancers, 2019, 11, 542.	3.7	41
454	Role of Calcium Signaling in GA101-Induced Cell Death in Malignant Human B Cells. Cancers, 2019, 11, 291.	3.7	13
455	Role of NAADP for calcium signaling in the salivary gland. Cell Calcium, 2019, 80, 29-37.	2.4	4
456	Probing Ca2+ release mechanisms using sea urchin egg homogenates. Methods in Cell Biology, 2019, 151, 445-458.	1.1	3
457	The chemistry of the vitamin B3 metabolome. Biochemical Society Transactions, 2019, 47, 131-147.	3.4	48

#	Article	IF	Citations
458	The protein interaction networks of mucolipins and two-pore channels. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1111-1123.	4.1	28
459	Mining of Ebola virus entry inhibitors identifies approved drugs as two-pore channel pore blockers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1151-1161.	4.1	62
460	Characterization of ADP-ribosyl cyclase 1-like (ARC1-like) activity and NAADP signaling during slow muscle cell development in zebrafish embryos. Developmental Biology, 2019, 445, 211-225.	2.0	10
461	Lysosomal Ion Channels as Decoders of Cellular Signals. Trends in Biochemical Sciences, 2019, 44, 110-124.	7.5	105
462	Calcium signalling in T cells. Nature Reviews Immunology, 2019, 19, 154-169.	22.7	306
463	Friend and foe: β-cell Ca2+ signaling and the development of diabetes. Molecular Metabolism, 2019, 21, 1-12.	6.5	57
464	A pH-correctable, DNA-based fluorescent reporter for organellar calcium. Nature Methods, 2019, 16, 95-102.	19.0	115
465	5-Azido-8-ethynyl-NAADP: A bifunctional, clickable photoaffinity probe for the identification of NAADP receptors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 1180-1188.	4.1	15
466	Release and uptake mechanisms of vesicular Ca2+ stores. Protein and Cell, 2019, 10, 8-19.	11.0	76
467	The intersection of lysosomal and endoplasmic reticulum calcium with autophagy defects in lysosomal diseases. Neuroscience Letters, 2019, 697, 10-16.	2.1	17
468	Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035170.	5.5	13
469	Calcium Signaling in Cardiomyocyte Function. Cold Spring Harbor Perspectives in Biology, 2020, 12, a035428.	5.5	58
470	Faraway, so close! Functions of Endoplasmic reticulum–Endosome contacts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158490.	2.4	17
471	Mitochondrial dysfunction plays a key role in the development of neurodegenerative diseases in diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E750-E764.	3.5	36
472	Host Calcium Channels and Pumps in Viral Infections. Cells, 2020, 9, 94.	4.1	104
473	Lysosomal size matters. Traffic, 2020, 21, 60-75.	2.7	130
474	Calcium Ions Directly Interact with the Ebola Virus Fusion Peptide To Promote Structure–Function Changes That Enhance Infection. ACS Infectious Diseases, 2020, 6, 250-260.	3.8	72
475	Inhibition of two-pore channels in antigen-presenting cells promotes the expansion of TNFR2-expressing CD4 ⁺ Foxp3 ⁺ regulatory T cells. Science Advances, 2020, 6, .	10.3	13

#	Article	IF	CITATIONS
476	On a Magical Mystery Tour with 8-Bromo-Cyclic ADP-Ribose: From All-or-None Block to Nanojunctions and the Cell-Wide Web. Molecules, 2020, 25, 4768.	3.8	0
477	Spatial localization of SOCE channels and its modulators regulate neuronal physiology and contributes to pathology. Current Opinion in Physiology, 2020, 17, 50-62.	1.8	4
478	Two-pore channels as master regulators of membrane trafficking and endocytic well-being. Current Opinion in Physiology, 2020, 17, 163-168.	1.8	19
479	TPC1 deficiency or blockade augments systemic anaphylaxis and mast cell activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 18068-18078.	7.1	21
480	Targeting Two-Pore Channels: Current Progress and Future Challenges. Trends in Pharmacological Sciences, 2020, 41, 582-594.	8.7	35
481	Endocytic uptake of SARS-CoV-2: the critical roles of pH, Ca2+, and NAADP. Function, 2020, 1, .	2.3	30
482	The Effects of Chloroquine and Hydroxychloroquine on ACE2-Related Coronavirus Pathology and the Cardiovascular System: An Evidence-Based Review. Function, 2020, 1, .	2.3	12
483	Endo-Lysosomal Cation Channels and Infectious Diseases. Reviews of Physiology, Biochemistry and Pharmacology, 2020, , 259-276.	1.6	19
484	Roles of NAD+ and Its Metabolites Regulated Calcium Channels in Cancer. Molecules, 2020, 25, 4826.	3.8	10
485	α-Synuclein Overexpression Induces Lysosomal Dysfunction and Autophagy Impairment in Human Neuroblastoma SH-SY5Y. Neurochemical Research, 2020, 45, 2749-2761.	3.3	21
486	Loss of Two-Pore Channel 2 (TPC2) Expression Increases the Metastatic Traits of Melanoma Cells by a Mechanism Involving the Hippo Signalling Pathway and Store-Operated Calcium Entry. Cancers, 2020, 12, 2391.	3.7	22
487	Ca2+ Dyshomeostasis Disrupts Neuronal and Synaptic Function in Alzheimer's Disease. Cells, 2020, 9, 2655.	4.1	33
488	The Ion Channel and GPCR Toolkit of Brain Capillary Pericytes. Frontiers in Cellular Neuroscience, 2020, 14, 601324.	3.7	33
489	CD38 Causes Autophagic Flux Inhibition and Cardiac Dysfunction Through a Transcriptional Inhibition Pathway Under Hypoxia/Ischemia Conditions. Frontiers in Cell and Developmental Biology, 2020, 8, 191.	3.7	21
490	Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells, 2020, 9, 1131.	4.1	144
491	Discovery of lipophilic twoâ€pore channel agonists. FEBS Journal, 2020, 287, 5284-5293.	4.7	13
492	Evolutionary Aspects of TRPMLs and TPCs. International Journal of Molecular Sciences, 2020, 21, 4181.	4.1	22
493	TPC2-mediated Ca2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. Journal of Cell Science, 2020, 133, .	2.0	7

#	Article	IF	CITATIONS
494	Nanoparticle-Mediated Therapeutic Application for Modulation of Lysosomal Ion Channels and Functions. Pharmaceutics, 2020, 12, 217.	4.5	12
495	IP3 receptors and their intimate liaisons. Current Opinion in Physiology, 2020, 17, 9-16.	1.8	3
496	Twoâ€pore channels regulate Tat endolysosome escape and Tatâ€mediated HIVâ€1 LTR transactivation. FASEB Journal, 2020, 34, 4147-4162.	0.5	33
497	Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183318.	2.6	46
498	Resting state structure of the hyperdepolarization activated two-pore channel 3. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 1988-1993.	7.1	14
499	Two-pore and TRPML cation channels: Regulators of phagocytosis, autophagy and lysosomal exocytosis. , 2021, 220, 107713.		21
500	The role of lysosomal ion channels in lysosome dysfunction. Inhalation Toxicology, 2021, 33, 41-54.	1.6	13
501	Endolysosomal Ca2+ signaling in cardiovascular health and disease. International Review of Cell and Molecular Biology, 2021, 363, 203-269.	3.2	18
502	Lysosomal calcium and autophagy. International Review of Cell and Molecular Biology, 2021, 362, 141-170.	3.2	26
503	Endomembrane Tension and Trafficking. Frontiers in Cell and Developmental Biology, 2020, 8, 611326.	3.7	30
504	Lysosome function in glomerular health and disease. Cell and Tissue Research, 2021, 385, 371-392.	2.9	21
505	Two-pore channels affect EGF receptor signaling by receptor trafficking and expression. IScience, 2021, 24, 102099.	4.1	8
507	HN1L/JPT2: A signaling protein that connects NAADP generation to Ca ²⁺ microdomain formation. Science Signaling, 2021, 14, .	3.6	60
508	The lysosomotrope GPN mobilises Ca2+ from acidic organelles. Journal of Cell Science, 2021, 134, .	2.0	14
509	Transport, functions, and interaction of calcium and manganese in plant organellar compartments. Plant Physiology, 2021, 187, 1940-1972.	4.8	47
510	Essential requirement for JPT2 in NAADP-evoked Ca ²⁺ signaling. Science Signaling, 2021, 14,	3.6	69
511	Chemical and biochemical control of skin pigmentation with special emphasis on mixed melanogenesis. Pigment Cell and Melanoma Research, 2021, 34, 730-747.	3.3	38
512	Lysosomal ion channels involved in cellular entry and uncoating of enveloped viruses: Implications for therapeutic strategies against SARS-CoV-2. Cell Calcium, 2021, 94, 102360.	2.4	26

#	Article	IF	CITATIONS
513	Epac activation induces an extracellular Ca 2+ â€independent Ca 2+ wave that triggers acrosome reaction in human spermatozoa. Andrology, 2021, 9, 1227-1241.	3.5	6
514	Pharmacological Modulators of Autophagy as a Potential Strategy for the Treatment of COVID-19. International Journal of Molecular Sciences, 2021, 22, 4067.	4.1	27
515	HIV-1 gp120-Induced Endolysosome de-Acidification Leads to Efflux of Endolysosome Iron, and Increases in Mitochondrial Iron and Reactive Oxygen Species. Journal of NeuroImmune Pharmacology, 2022, 17, 181-194.	4.1	21
516	Deciphering the Role of Endolysosomal Ca2+ Channels in Immunity. Frontiers in Immunology, 2021, 12, 656965.	4.8	3
517	Glucose and NAADP trigger elementary intracellular β-cell Ca2+ signals. Scientific Reports, 2021, 11, 10714.	3.3	9
518	Melanosome Biogenesis in the Pigmentation of Mammalian Skin. Integrative and Comparative Biology, 2021, 61, 1517-1545.	2.0	44
519	TPC2 promotes choroidal angiogenesis and inflammation in a mouse model of neovascular age-related macular degeneration. Life Science Alliance, 2021, 4, e202101047.	2.8	9
520	Calcium, an Emerging Intracellular Messenger for the Hippo Pathway Regulation. Frontiers in Cell and Developmental Biology, 2021, 9, 694828.	3.7	9
521	Acidic pH irreversibly activates the signaling enzyme SARM1. FEBS Journal, 2021, 288, 6783-6794.	4.7	11
522	Dysregulation of host cell calcium signaling during viral infections: Emerging paradigm with high clinical relevance. Molecular Aspects of Medicine, 2021, 81, 101004.	6.4	30
523	Two-Pore Channels Regulate Expression of Various Receptors and Their Pathway-Related Proteins in Multiple Ways. Cells, 2021, 10, 1807.	4.1	2
524	NAADPâ€induced intracellular calcium ion is mediated by the TPCs (twoâ€pore channels) in hypoxiaâ€induced pulmonary arterial hypertension. Journal of Cellular and Molecular Medicine, 2021, 25, 7485-7499.	3.6	7
525	Lysosomal TPCN (two pore segment channel) inhibition ameliorates beta-amyloid pathology and mitigates memory impairment in Alzheimer disease. Autophagy, 2022, 18, 624-642.	9.1	20
526	JPT2: The missing link between intracellular Ca2+ release channels and NAADP?. Cell Calcium, 2021, 97, 102405.	2.4	6
527	LRRK2 is required for CD38-mediated NAADP-Ca ²⁺ signaling and the downstream activation of TFEB (transcription factor EB) in immune cells. Autophagy, 2022, 18, 204-222.	9.1	19
528	Lsm12 is an NAADP receptor and a two-pore channel regulatory protein required for calcium mobilization from acidic organelles. Nature Communications, 2021, 12, 4739.	12.8	52
529	Adenylate Cyclase 1 Links Calcium Signaling to CFTR-Dependent Cytosolic Chloride Elevations in Chick Amacrine Cells. Frontiers in Cellular Neuroscience, 2021, 15, 726605.	3.7	1
530	The CACNA1A Mutant Disrupts Lysosome Calcium Homeostasis in Cerebellar Neurons and the Resulting Endo-Lysosomal Fusion Defect Can be Improved by Calcium Modulation. Neurochemical Research, 2021, , 1.	3.3	5

ARTICLE IF CITATIONS NAADP: From Discovery to Mechanism. Frontiers in Immunology, 2021, 12, 703326. 531 4.8 10 Inhibitors of L-Type Calcium Channels Show Therapeutic Potential for Treating SARS-CoV-2 Infections 3.8 by Preventing Virus Entry and Spread. ACS Infectious Diseases, 2021, 7, 2807-2815. Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and 533 4.1 6 Neurodegenerative Diseases. Cells, 2021, 10, 2518. CD38 in the age of COVID-19: a medical perspective. Physiological Reviews, 2021, 101, 1457-1486. 534 28.8 The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiological 535 28.8 69 Reviews, 2021, 101, 1691-1744. Unraveling the Interconnection Patterns Across Lung Microbiome, Respiratory Diseases, and COVID-19. Frontiers in Cellular and Infection Microbiology, 2020, 10, 619075. Pharmacological hypothesis: TPC2 antagonist tetrandrine as a potential therapeutic agent for 537 2.4 28 COVIDâ€19. Pharmacology Research and Perspectives, 2020, 8, e00653. Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. Advances in 538 1.6 Experimental Medicine and Biology, 2020, 1131, 371-394. Readily Releasable Stores of Calcium in Neuronal Endolysosomes: Physiological and 539 9 1.6 Pathophysiological Relevance. Advances in Experimental Medicine and Biology, 2020, 1131, 681-697. Tissue Specificity: The Role of Organellar Membrane Nanojunctions in Smooth Muscle Ca2+ Signaling. 541 1.6 Advances in Experimental Medicine and Biology, 2017, 993, 321-342. Salicylic Acid-Induced Local and Long-Distance Signaling Models in Plants. Signaling and 542 0.7 5 Communication in Plants, 2013, , 23-52. TRPM2. Handbook of Experimental Pharmacology, 2014, 222, 403-426. 1.8 The name tells the story: Two-pore channels. Cell Calcium, 2020, 89, 102215. 544 2.4 3 Human hair melanins: what we have learned and have not learned from mouse coat color 546 3.3 pigmentation. Pigment Cell and Melanoma Research, 2011, 24, no-no. Involvement of two-pore channels in hydrogen peroxide-induced increase in the level of calcium ions in the cytoplasm of human umbilical vein endothelial cells. Doklady Biochemistry and Biophysics, 2017, 547 0.9 9 474, 209-212. Pancreatic Î²-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiological Reviews, 548 28.8 497 2018, 98, 117-214. GLP-1 stimulates insulin secretion by PKC-dependent TRPM4 and TRPM5 activation. Journal of Clinical 549 8.2 145 Investigation, 2015, 125, 4714-4728. The journey of Ca2+ through the cell $\hat{a} \in \mathcal{C}$ pulsing through the network of ER membrane contact sites. Journal of Cell Science, 2020, 133, .

#	Article	IF	CITATIONS
551	Cytoplasmic nanojunctions between lysosomes and sarcoplasmic reticulum are required for specific calcium signaling. F1000Research, 2014, 3, 93.	1.6	44
552	Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart. PLoS ONE, 2012, 7, e37505.	2.5	46
553	Rapid Recycling of Ca2+ between IP3-Sensitive Stores and Lysosomes. PLoS ONE, 2014, 9, e111275.	2.5	32
554	Genetic Variants of TPCN2 Associated with Type 2 Diabetes Risk in the Chinese Population. PLoS ONE, 2016, 11, e0149614.	2.5	16
555	NAADP-sensitive Сa(2+) stores in permeabilized rat hepatocytes. Ukrainian Biochemical Journal, 2014, 86, 65-73.	0.5	3
556	Integrated omics-analysis reveals Wnt-mediated NAD+ metabolic reprogramming in cancer stem-like cells. Oncotarget, 2016, 7, 48562-48576.	1.8	8
557	Glutamate induces autophagy via the two-pore channels in neural cells. Oncotarget, 2017, 8, 12730-12740.	1.8	45
559	M-3M3FBS-Induced Ca^(2+) Movement and Apoptosis in HA59T Human Hepatoma Cells. Chinese Journal of Physiology, 2013, 56, 26-35.	1.0	10
560	Rise of [Ca^(2+)]i and Apoptosis Induced by M-3M3FBS in SCM1 Human Gastric Cancer Cells. Chinese Journal of Physiology, 2014, 57, 31-40.	1.0	7
561	The endoplasmic reticulum, not the pH gradient, drives calcium refilling of lysosomes. ELife, 2016, 5, .	6.0	160
562	Structural mechanisms of phospholipid activation of the human TPC2 channel. ELife, 2019, 8, .	6.0	103
563	Agonist-specific voltage-dependent gating of lysosomal two-pore Na+ channels. ELife, 2019, 8, .	6.0	32
564	Agonist-mediated switching of ion selectivity in TPC2 differentially promotes lysosomal function. ELife, 2020, 9, .	6.0	108
565	TPC1 and TPC2 Promote Osteoclastogenesis. Journal of Hard Tissue Biology, 2021, 30, 333-338.	0.4	0
566	Intestinal goblet cells sample and deliver lumenal antigens by regulated endocytic uptake and transcytosis. ELife, 2021, 10, .	6.0	34
567	Eosinophil extracellular traps drive asthma progression through neuro-immune signals. Nature Cell Biology, 2021, 23, 1060-1072.	10.3	42
568	A plastid two-pore channel essential for inter-organelle communication and growth of Toxoplasma gondii. Nature Communications, 2021, 12, 5802.	12.8	19
571	TRPML Channels and Mucolipidosis Type IV. , 2014, , 365-379.		0

#	Article	IF	CITATIONS
574	Calcium Signaling in the Islets. , 2015, , 605-632.		1
575	Signaling Pathways in Entamoeba histolytica. , 2015, , 207-230.		0
581	Trans-Ned 19-Mediated Antagonism of Nicotinic Acid Adenine Nucleotide—Mediated Calcium Signaling Regulates Th17 Cell Plasticity in Mice. Cells, 2021, 10, 3039.	4.1	2
583	Self-sufficient copper peroxide loaded pKa-tunable nanoparticles for lysosome-mediated chemodynamic therapy. Nano Today, 2022, 42, 101337.	11.9	41
584	Phosphoinositide regulates dynamic movement of the S4 voltage sensor in the 2nd repeat in Two-pore channel 3. Journal of Biological Chemistry, 2021, 297, 101425.	3.4	4
585	NAADP-binding proteins find their identity. Trends in Biochemical Sciences, 2022, 47, 235-249.	7.5	15
586	The calcium signaling enzyme CD38 - a paradigm for membrane topology defining distinct protein functions. Cell Calcium, 2022, 101, 102514.	2.4	19
587	Acidic Ca2+ stores and immune-cell function. Cell Calcium, 2022, 101, 102516.	2.4	12
588	The ins and outs of virus trafficking through acidic Ca2+ stores. Cell Calcium, 2022, 102, 102528.	2.4	8
589	Lysosomal potassium channels. Cell Calcium, 2022, 102, 102536.	2.4	9
590	Plant and animal two-pore channels. , 2022, , 247-267.		0
591	Structural biology of cation channels important for lysosomal calcium release. Cell Calcium, 2022, 101, 102519.	2.4	5
593	The Putative Drosophila TMEM184B Ortholog Tmep Ensures Proper Locomotion by Restraining Ectopic Firing at the Neuromuscular Junction. Molecular Neurobiology, 2022, 59, 2605-2619.	4.0	1
594	Activation of endo-lysosomal two-pore channels by NAADP and PI(3,5)P2. Five things to know Cell Calcium, 2022, 103, 102543.	2.4	10
595	The CD38 glycohydrolase and the NAD sink: implications for pathological conditions. American Journal of Physiology - Cell Physiology, 2022, 322, C521-C545.	4.6	24
596	TRPMLs and TPCs: Targets for lysosomal storage and neurodegenerative disease therapy?. Cell Calcium, 2022, 103, 102553.	2.4	14
597	Ion Channels and Pumps in Autophagy: A Reciprocal Relationship. Cells, 2021, 10, 3537.	4.1	10
598	Targeting the two-pore channel 2 in cancer progression and metastasis. Exploration of Targeted Anti-tumor Therapy, 0, , 62-89.	0.8	6

# 600	ARTICLE Current methods to analyze lysosome morphology, positioning, motility and function. Traffic, 2022, 23, 238-269.	IF 2.7	Citations 37
601	Regulation of Aging and Longevity by Ion Channels and Transporters. Cells, 2022, 11, 1180.	4.1	4
602	NAADP Signaling: New Kids on the Block. Cells, 2022, 11, 1054.	4.1	4
603	Current Methods to Unravel the Functional Properties of Lysosomal Ion Channels and Transporters. Cells, 2022, 11, 921.	4.1	7
604	Roles of cADPR and NAADP in pancreatic beta cell signaling. Cell Calcium, 2022, 103, 102562.	2.4	6
605	NKG7 Is a T-cell–Intrinsic Therapeutic Target for Improving Antitumor Cytotoxicity and Cancer Immunotherapy. Cancer Immunology Research, 2022, 10, 162-181.	3.4	26
606	Emerging Roles of Calcium Signaling in the Development of Non-Alcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 2022, 23, 256.	4.1	18
607	Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opinion on Therapeutic Targets, 2022, 26, 303-317.	3.4	6
608	Ca2+ Dyshomeostasis Links Risk Factors to Neurodegeneration in Parkinson's Disease. Frontiers in Cellular Neuroscience, 2022, 16, 867385.	3.7	7
609	Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium, 2022, 104, 102582.	2.4	8
621	Niemann-Pick type C disease (NPC). , 2022, , 525-551.		2
622	Genetic Associations and Differential mRNA Expression Levels of Host Genes Suggest a Viral Trigger for Endemic Pemphigus Foliaceus. Viruses, 2022, 14, 879.	3.3	4
623	Two-Pore Channels Regulate Inter-Organellar Ca2+ Homeostasis in Immune Cells. Cells, 2022, 11, 1465.	4.1	3
624	Diversity of two-pore channels and the accessory NAADP receptors in intracellular Ca2+ signaling. Cell Calcium, 2022, 104, 102594.	2.4	6
625	The Three Two-Pore Channel Subtypes from Rabbit Exhibit Distinct Sensitivity to Phosphoinositides, Voltage, and Extracytosolic pH. Cells, 2022, 11, 2006.	4.1	4
628	Unexpected Motherhood-Triggered Hearing Loss in the Two-Pore Channel (TPC) Mutant Mouse. Biomedicines, 2022, 10, 1708.	3.2	2
629	The chemical biology of NAD+ regulation in axon degeneration. Current Opinion in Chemical Biology, 2022, 69, 102176.	6.1	12
630	Identification of ASPDH as a novel NAADP-binding protein. Biochemical and Biophysical Research Communications, 2022, 621, 168-175.	2.1	4

#	Article	IF	CITATIONS
631	NAADP-Mediated Ca2+ Signalling. Handbook of Experimental Pharmacology, 2022, , .	1.8	7
632	Lysosomal Potassium Channels. Handbook of Experimental Pharmacology, 2022, , .	1.8	1
633	Two-pore channel blockade by phosphoinositide kinase inhibitors YM201636 and PI-103 determined by a histidine residue near pore-entrance. Communications Biology, 2022, 5, .	4.4	5
634	Segregated cation flux by TPC2 biases Ca2+ signaling through lysosomes. Nature Communications, 2022, 13, .	12.8	14
635	Electrophysiology of Endolysosomal Two-Pore Channels: A Current Account. Cells, 2022, 11, 2368.	4.1	6
636	<scp>TPC2</scp> rescues lysosomal storage in mucolipidosis type <scp>IV</scp> , <scp>Niemann–Pick</scp> type <scp>C1,</scp> and Batten disease. EMBO Molecular Medicine, 2022, 14, .	6.9	18
637	Determinants, maintenance, and function of organellar pH. Physiological Reviews, 2023, 103, 515-606.	28.8	21
638	Endo-Lysosomal Two-Pore Channels and Their Protein Partners. Handbook of Experimental Pharmacology, 2022, , .	1.8	0
639	NAADP-Dependent TPC Current. Handbook of Experimental Pharmacology, 2022, , .	1.8	1
640	Structure and Function of Plant and Mammalian TPC Channels. Handbook of Experimental Pharmacology, 2022, , 155-180.	1.8	1
641	Expanding the Toolbox: Novel Modulators of Endolysosomal Cation Channels. Handbook of Experimental Pharmacology, 2022, , 249-276.	1.8	3
642	Proteomic mapping and optogenetic manipulation of membrane contact sites. Biochemical Journal, 2022, 479, 1857-1875.	3.7	0
643	The functions of <scp>SID1</scp> transmembrane family, member 2 (<i>Sidt2</i>). FEBS Journal, 2023, 290, 4626-4637.	4.7	2
644	Mu opioid receptor-mediated release of endolysosome iron increases levels of mitochondrial iron, reactive oxygen species, and cell death. , 2022, .		4
645	Lysosomal Ion Channels: What Are They Good For and Are They Druggable Targets?. Annual Review of Pharmacology and Toxicology, 2023, 63, 19-41.	9.4	12
646	Tuning TPC2. Cell Calcium, 2022, 108, 102653.	2.4	0
647	Lysosomal solute and water transport. Journal of Cell Biology, 2022, 221, .	5.2	9
648	Assessing the potential of repurposing ion channel inhibitors to treat emerging viral diseases and the role of this host factor in virus replication. Biomedicine and Pharmacotherapy, 2022, 156, 113850.	5.6	4

#	Article	IF	CITATIONS
650	PI(3,5)P2 and NAADP: Team players or lone warriors? – New insights into TPC activation modes. Cell Calcium, 2023, 109, 102675.	2.4	3
651	The potential impact of melanosomal pH and metabolism on melanoma. Frontiers in Oncology, 0, 12, .	2.8	1
652	NAADP-Evoked Ca2+ Signaling: The DUOX2–HN1L/JPT2–Ryanodine Receptor 1 Axis. Handbook of Experimental Pharmacology, 2023, , 57-70.	1.8	3
654	Vascular mechanotransduction. Physiological Reviews, 2023, 103, 1247-1421.	28.8	36
655	A gain-of-function TPC2 variant R210C increases affinity to PI(3,5)P2 and causes lysosome acidification and hypopigmentation. Nature Communications, 2023, 14, .	12.8	5
656	TRPML1-Induced Lysosomal Ca2+ Signals Activate AQP2 Translocation and Water Flux in Renal Collecting Duct Cells. International Journal of Molecular Sciences, 2023, 24, 1647.	4.1	5
657	TPC Functions in the Immune System. Handbook of Experimental Pharmacology, 2023, , .	1.8	0
658	The Role of CD38 in the Pathogenesis of Cardiorenal Metabolic Disease and Aging, an Approach from Basic Research. Cells, 2023, 12, 595.	4.1	2
659	A Comprehensive Review of Mammalian Pigmentation: Paving the Way for Innovative Hair Colour-Changing Cosmetics. Biology, 2023, 12, 290.	2.8	3
660	Pharmacological inhibition of lysosomal two-pore channel 2 (TPC2) confers neuroprotection in stroke via autophagy regulation. Neurobiology of Disease, 2023, 178, 106020.	4.4	2
661	Determination of the roles of cADPR and NAADP as intracellular calcium mobilizing messengers in S1P-induced contractions in rat bladders having IC/PBS. Life Sciences, 2023, 322, 121651.	4.3	2
662	Conformational rearrangements in the second voltage sensor domain switch PIP ₂ - and voltage-gating modes in two-pore channels. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
663	Endolysosomal TPCs regulate social behavior by controlling oxytocin secretion. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	7.1	2
664	Rac1 and Rac3 GTPases and TPC2 are required for axonal outgrowth and migration of cortical interneurons. Journal of Cell Science, 2023, 136, .	2.0	2
665	Changes in Pancreatic Senescence Mediate Pancreatic Diseases. International Journal of Molecular Sciences, 2023, 24, 3513.	4.1	3
666	Characterization of Endo-Lysosomal Cation Channels Using Calcium Imaging. Handbook of Experimental Pharmacology, 2023, , .	1.8	0
667	NAADP-Evoked Ca2+ Signaling Leads to Mutant Huntingtin Aggregation and Autophagy Impairment in Murine Astrocytes. International Journal of Molecular Sciences, 2023, 24, 5593.	4.1	5
668	Effects of Apocynin, a NADPH Oxidase Inhibitor, in the Protection of the Heart from Ischemia/Reperfusion Injury. Pharmaceuticals, 2023, 16, 492.	3.8	1

#	Article	IF	CITATIONS
669	Niemann-Pick C1 protein regulates platelet membrane–associated calcium ion signaling in thrombo-occlusive diseases in mice. Journal of Thrombosis and Haemostasis, 2023, 21, 1957-1966.	3.8	0
670	Advances in Drug Discovery Targeting Lysosomal Membrane Proteins. Pharmaceuticals, 2023, 16, 601.	3.8	2
671	Ca2+-Mediated Signaling Pathways: A Promising Target for the Successful Generation of Mature and Functional Stem Cell-Derived Pancreatic Beta Cells In Vitro. Biomedicines, 2023, 11, 1577.	3.2	0
672	Blocking Autophagy by the Two-Pore Channels Antagonist Tetrandrine Improves Sorafenib-Induced Death of Hepatocellular Carcinoma Cells. Toxicology in Vitro, 2023, 90, 105603.	2.4	0
673	Unveiling the impact of lysosomal ion channels: balancing ion signaling and disease pathogenesis. Korean Journal of Physiology and Pharmacology, 2023, 27, 311-323.	1.2	1
675	A DNA nanodevice for mapping sodium at single-organelle resolution. Nature Biotechnology, 0, , .	17.5	4
676	Convergent activation of Ca ²⁺ permeability in two-pore channel 2 through distinct molecular routes. Science Signaling, 2023, 16, .	3.6	5
677	Interneuron odyssey: molecular mechanisms of tangential migration. Frontiers in Neural Circuits, 0, 17, .	2.8	0
678	A phase transition reduces the threshold for nicotinamide mononucleotide-based activation of SARM1, an NAD(P) hydrolase, to physiologically relevant levels. Journal of Biological Chemistry, 2023, 299, 105284.	3.4	0
679	Using whole genome sequence findings to assess gene-disease causality in cardiomyopathy and arrhythmia patients. Future Cardiology, 0, , .	1.2	0
680	Two-pore channels (TPCs) acts as a hub for excitation-contraction coupling, metabolism and cardiac hypertrophy signalling. Cell Calcium, 2024, 117, 102839.	2.4	0
681	Two-pore channel-2 and inositol trisphosphate receptors coordinate Ca2+ signals between lysosomes and the endoplasmic reticulum. Cell Reports, 2024, 43, 113628.	6.4	2
682	Neurodegenerative Disease: From Molecular Basis to Therapy. International Journal of Molecular Sciences, 2024, 25, 967.	4.1	0
683	Regulation of autophagy by perilysosomal calcium: a new player in Î ² -cell lipotoxicity. Experimental and Molecular Medicine, 2024, 56, 273-288.	7.7	0
684	Bafilomycin A1 Molecular Effect on ATPase Activity of Subcellular Fraction of Human Colorectal Cancer and Rat Liver. International Journal of Molecular Sciences, 2024, 25, 1657.	4.1	0
685	Inhibition of CD38 enzymatic activity enhances CAR-T cell immune-therapeutic efficacy by repressing glycolytic metabolism. Cell Reports Medicine, 2024, 5, 101400.	6.5	1
686	Calcium and Phosphate Ion Uptake, Distribution, and Homeostasis in Cells of Vertebrate Mineralized Tissues. , 2023, , 181-235.		0