Self-assembly of DNA into nanoscale three-dimensional

Nature

459, 414-418

DOI: 10.1038/nature08016

Citation Report

#	Article	IF	CITATIONS
8	Fabricating Nature. Technoetic Arts, 2009, 7, 165-173.	0.0	7
9	Designer Curvature. Science, 2009, 325, 685-686.	6.0	9
10	ARTIFICIALLY DESIGNED DNA NANOSTRUCTURES. Nano, 2009, 04, 119-139.	0.5	20
11	Design and self-assembly of DNA into nanoscale 3D shapes. , 2009, , .		О
12	Chemical Approaches to DNA Nanotechnology. ChemBioChem, 2009, 10, 2420-2443.	1.3	166
13	Processive Motion of Bipedal DNA Walkers. ChemPhysChem, 2009, 10, 2593-2597.	1.0	42
16	DNA Origami as a Nanoscopic Ruler for Superâ€Resolution Microscopy. Angewandte Chemie - International Edition, 2009, 48, 8870-8873.	7.2	260
17	Evolution of DNA Origami. Angewandte Chemie - International Edition, 2009, 48, 9406-9408.	7.2	24
18	Origins and emergences of supramolecular chemistry. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2009, 65, 221-235.	1.6	13
20	Another dimension for DNA art. Nature, 2009, 459, 331-332.	13.7	23
21	The edge of reductionism. Nature, 2009, 459, 332-333.	13.7	18
22	Coordinating corners. Nature Chemistry, 2009, 1, 339-340.	6.6	2
24	Cell-Targeted Self-Assembled DNA Nanostructures. Journal of the American Chemical Society, 2009, 131, 14237-14239.	6.6	42
25	Folding DNA Origami from a Double-Stranded Source of Scaffold. Journal of the American Chemical Society, 2009, 131, 9154-9155.	6.6	107
26	Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Research, 2009, 37, 5001-5006.	6.5	1,054
27	Multilayer DNA Origami Packed on a Square Lattice. Journal of the American Chemical Society, 2009, 131, 15903-15908.	6.6	380
28	Polymerase Chain Reaction Based Scaffold Preparation for the Production of Thin, Branched DNA Origami Nanostructures of Arbitrary Sizes. Nano Letters, 2009, 9, 4302-4305.	4.5	116
29	Force-Driven Separation of Short Double-Stranded DNA. Biophysical Journal, 2009, 97, 3158-3167.	0.2	29

#	Article	IF	Citations
30	Folding DNA into Twisted and Curved Nanoscale Shapes. Science, 2009, 325, 725-730.	6.0	1,189
31	Surface-Mediated DNA Self-Assembly. Journal of the American Chemical Society, 2009, 131, 13248-13249.	6.6	120
32	Facile Method for Constructing Metallic Nanoarrays on a Solid Surface. Analytical Sciences, 2009, 25, 1387-1396.	0.8	9
33	Molecular Behavior of DNA Origami in Higher-Order Self-Assembly. Journal of the American Chemical Society, 2010, 132, 13545-13552.	6.6	123
34	Biomolecule-Based Nanomaterials and Nanostructures. Nano Letters, 2010, 10, 3805-3815.	4.5	262
35	Plasmonic Circular Dichroism of Chiral Metal Nanoparticle Assemblies. Nano Letters, 2010, 10, 2580-2587.	4.5	440
36	DNA Nanotweezers Studied with a Coarse-Grained Model of DNA. Physical Review Letters, 2010, 104, 178101.	2.9	162
37	Nanomaterials Based on DNA. Annual Review of Biochemistry, 2010, 79, 65-87.	5.0	933
38	DNA modified with metal complexes: Applications in the construction of higher order metal–DNA nanostructures. Coordination Chemistry Reviews, 2010, 254, 2403-2415.	9.5	95
39	Metal–base pairing in DNA. Coordination Chemistry Reviews, 2010, 254, 2391-2402.	9.5	228
40	From Cellular Mechanotransduction to Biologically Inspired Engineering. Annals of Biomedical Engineering, 2010, 38, 1148-1161.	1.3	85
41	DNA self-assembly: prospectus and its future application. Journal of Materials Science, 2010, 45, 2543-2552.	1.7	6
42	Knitting complex weaves with DNA origami. Current Opinion in Structural Biology, 2010, 20, 276-282.	2.6	128
43	Organizing protein–DNA hybrids as nanostructures with programmed functionalities. Trends in Biotechnology, 2010, 28, 619-628.	4.9	55
44	Using Synthetic Biology to Understand the Evolution of Gene Expression. Current Biology, 2010, 20, R772-R779.	1.8	14
45	Make them Blink: Probes for Superâ€Resolution Microscopy. ChemPhysChem, 2010, 11, 2475-2490.	1.0	183
46	Printed Origami Structures. Advanced Materials, 2010, 22, 2251-2254.	11.1	144
47	Asymmetric DNA Origami for Spatially Addressable and Indexâ€Free Solutionâ€Phase DNA Chips. Advanced Materials, 2010, 22, 2672-2675.	11.1	62

#	Article	IF	CITATIONS
48	A DNA Nanostructureâ€based Biomolecular Probe Carrier Platform for Electrochemical Biosensing. Advanced Materials, 2010, 22, 4754-4758.	11.1	484
49	Amyloid Assemblies: Protein Legos at a Crossroads in Bottomâ€Up Synthetic Biology. ChemBioChem, 2010, 11, 2347-2357.	1.3	29
50	Programmedâ€Assembly System Using DNA Jigsaw Pieces. Chemistry - A European Journal, 2010, 16, 5362-5368.	1.7	76
51	Hierarchical Crystalline Superstructures of Conducting Polymers with Homohelicity. Chemistry - A European Journal, 2010, 16, 8626-8630.	1.7	22
56	A Route to Scale Up DNA Origami Using DNA Tiles as Folding Staples. Angewandte Chemie - International Edition, 2010, 49, 1414-1417.	7.2	122
57	DNA as a Versatile Chemical Component for Catalysis, Encoding, and Stereocontrol. Angewandte Chemie - International Edition, 2010, 49, 7180-7201.	7.2	221
58	Molecular Logic Gates Connected through DNA Fourâ€Way Junctions. Angewandte Chemie - International Edition, 2010, 49, 4459-4462.	7.2	70
59	Orthogonal Protein Decoration of DNA Origami. Angewandte Chemie - International Edition, 2010, 49, 9378-9383.	7.2	259
60	Prediction and design of DNA and RNA structures. New Biotechnology, 2010, 27, 184-193.	2.4	39
61	DNA origami: a history and current perspective. Current Opinion in Chemical Biology, 2010, 14, 608-615.	2.8	161
62	Self-assembly of three-dimensional DNA nanostructures and potential biological applications. Current Opinion in Chemical Biology, 2010, 14, 597-607.	2.8	78
63	Functional nucleic acid nanostructures and DNA machines. Current Opinion in Biotechnology, 2010, 21, 376-391.	3.3	223
64	Controllable stacked disk morphologies of charged diblock copolymers. Chemical Physics Letters, 2010, 487, 272-278.	1.2	7
65	DNA Minicircles Connected via Gâ€Quadruplex Interaction Modules. Small, 2010, 6, 1347-1352.	5.2	29
66	A DNAâ€Origami Chip Platform for Labelâ€Free SNP Genotyping Using Toeholdâ€Mediated Strand Displacement. Small, 2010, 6, 1854-1858.	5.2	125
67	Novel DNA materials and their applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2010, 2, 648-669.	3.3	79
68	Topâ€Down Nanomechanical Machining of Threeâ€Dimensional Nanostructures by Atomic Force Microscopy. Small, 2010, 6, 724-728.	5.2	115
69	A polyhedron made of tRNAs. Nature Chemistry, 2010, 2, 772-779.	6.6	187

#	Article	IF	CITATIONS
70	Synergistic self-assembly of RNA and DNA molecules. Nature Chemistry, 2010, 2, 1050-1055.	6.6	117
71	Large-area spatially ordered arrays of gold nanoparticles directed by lithographically confined DNA origami. Nature Nanotechnology, 2010, 5, 121-126.	15.6	388
72	Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nature Nanotechnology, 2010, 5, 520-524.	15.6	354
73	Folding and cutting DNA into reconfigurable topological nanostructures. Nature Nanotechnology, 2010, 5, 712-717.	15.6	289
74	Single-molecule chemical reactions on DNA origami. Nature Nanotechnology, 2010, 5, 200-203.	15.6	478
76	Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain. Journal of Microbiology and Biotechnology, 2010, 20, 1529-1533.	0.9	13
77	SNARE tagging allows stepwise assembly of a multimodular medicinal toxin. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18197-18201.	3.3	47
78	Self-assembly of three-legged patchy particles into polyhedral cages. Journal of Physics Condensed Matter, 2010, 22, 104103.	0.7	23
79	Self-assembly of (sub-)micron particles into supermaterials. Journal of Micromechanics and Microengineering, 2010, 20, 064001.	1.5	18
80	Regulation of DNA Methylation Using Different Tensions of Double Strands Constructed in a Defined DNA Nanostructure. Journal of the American Chemical Society, 2010, 132, 1592-1597.	6.6	204
81	DNA-functionalized colloids: Physical properties and applications. Soft Matter, 2010, 6, 4647.	1.2	136
82	Self-assembled filamentous nanostructures for drug/gene delivery applications. Expert Opinion on Drug Delivery, 2010, 7, 341-351.	2.4	27
83	Structural stability versus conformational sampling in biomolecular systems: Why is the charge transfer efficiency in G4-DNA better than in double-stranded DNA?. Journal of Chemical Physics, 2010, 133, 035103.	1.2	52
84	DNA Origami as a Nanoscopic Ruler For Super-Resolution Microscopy. Biophysical Journal, 2010, 98, 184a.	0.2	43
85	Nanotribology Results Show that DNA Forms a Mechanically Resistant 2D Network in Metaphase Chromatin Plates. Biophysical Journal, 2010, 99, 3951-3958.	0.2	13
86	ssDNA Binding Reveals the Atomic Structure of Graphene. Langmuir, 2010, 26, 18078-18082.	1.6	81
87	Covalently Linked DNA Nanotubes. Nano Letters, 2010, 10, 1458-1465.	4.5	20
88	Block Copolymerâ^'Surfactant Complexes in Thin Films for Multiple Usages from Hierarchical Structure to Nano-Objects. Macromolecules, 2010, 43, 442-447.	2.2	29

#	Article	IF	CITATIONS
89	Structural DNA Nanotechnology: Growing Along with <i>Nano Letters</i> . Nano Letters, 2010, 10, 1971-1978.	4.5	157
90	Effective Click Construction of <i>Bridged</i> and <i>Spiro</i> Multicyclic Polymer Topologies with Tailored Cyclic Prepolymers (<i>kyklo</i> Telechelics). Journal of the American Chemical Society, 2010, 132, 14790-14802.	6.6	129
91	Self-Assembled Nucleic Acid Nanoparticles Capable of Controlled Disassembly in Response to a Single Nucleotide Mismatch. Biomacromolecules, 2010, 11, 1705-1709.	2.6	4
92	Hexagonal Superlattice of Chiral Conducting Polymers Self-Assembled by Mimicking \hat{l}^2 -Sheet Proteins with Anisotropic Electrical Transport. Journal of the American Chemical Society, 2010, 132, 12006-12012.	6.6	67
93	Dielectrophoretic Trapping and Polarizability of DNA: The Role of Spatial Conformation. Analytical Chemistry, 2010, 82, 7141-7149.	3.2	56
94	DNA-Templated Covalent Coupling of G4 PAMAM Dendrimers. Journal of the American Chemical Society, 2010, 132, 18054-18056.	6.6	55
95	Structural DNA Nanotechnology: From Bases to Bricks, From Structure to Function. Journal of Physical Chemistry Letters, 2010, 1, 1994-2005.	2.1	63
96	DNA origami: Fold, stick, and beyond. Nanoscale, 2010, 2, 310-322.	2.8	136
97	Facile synthesis of urchin-like gold submicrostructures for nonenzymatic glucose sensing. Talanta, 2010, 82, 1845-1852.	2.9	71
98	Single-Molecule Kinetics and Super-Resolution Microscopy by Fluorescence Imaging of Transient Binding on DNA Origami. Nano Letters, 2010, 10, 4756-4761.	4.5	716
99	Chemical complexityâ€"supramolecular self-assembly of synthetic and biological building blocks in water. Chemical Society Reviews, 2010, 39, 2806.	18.7	165
100	Single-molecule derivation of salt dependent base-pair free energies in DNA. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 15431-15436.	3.3	215
101	In vitro assembly of cubic RNA-based scaffolds designed in silico. Nature Nanotechnology, 2010, 5, 676-682.	15.6	330
102	Weave Tile Architecture Construction Strategy for DNA Nanotechnology. Journal of the American Chemical Society, 2010, 132, 14481-14486.	6.6	42
103	Interconnecting Gold Islands with DNA Origami Nanotubes. Nano Letters, 2010, 10, 5065-5069.	4.5	93
104	A Bird's Eye View. Methods in Enzymology, 2010, 475, 121-148.	0.4	34
105	IntroductionIntroduction and Some Physical Principlesphysical principles., 2010,, 1-47.		1
106	Exterior modification of a DNA tetrahedron. Chemical Communications, 2010, 46, 6792.	2.2	37

#	ARTICLE	IF	CITATIONS
107	Single Molecule Atomic Force Microscopy Studies of Photosensitized Singlet Oxygen Behavior on a DNA Origami Template. ACS Nano, 2010, 4, 7475-7480.	7.3	55
108	Natural Computing. Proceedings in Information and Communications Technology, 2010, , .	0.2	1
109	dsDNA-triggered energy transfer and lanthanide sensitization processes. Luminescent probing of specific A/T sequences. Chemical Communications, 2010, 46, 5518.	2.2	26
110	Bioinspired organic chemistry. Annual Reports on the Progress of Chemistry Section B, 2010, 106, 447.	0.8	4
111	Predicting the self-assembly of a model colloidal crystal. Soft Matter, 2011, 7, 6294.	1.2	35
112	Amphiphilic DNA-dendron hybrid: a new building block for functional assemblies. Soft Matter, 2011, 7, 7187.	1.2	55
113	Rapid metallization of lambda DNA and DNA origami using a Pd seeding method. Journal of Materials Chemistry, 2011, 21, 12126.	6.7	49
114	DNA-templated assembly of dyes and extended π-conjugated systems. Chemical Communications, 2011, 47, 4340.	2.2	86
115	Programmed placement of gold nanoparticles onto a slit-type DNA origami scaffold. Chemical Communications, 2011, 47, 10743.	2.2	35
116	Ligand inducible assembly of a DNA tetrahedron. Chemical Communications, 2011, 47, 3499.	2.2	20
117	Growth of immobilized DNA by polymerase: bridging nanoelectrodes with individual dsDNA molecules. Nanoscale, 2011, 3, 3788.	2.8	5
118	Probing the role of aromaticity in the design of dipeptide based nanostructures. Nanoscale, 2011, 3, 945.	2.8	27
119	Stabilization of DNA nanostructures by photo-cross-linking. Soft Matter, 2011, 7, 10931.	1.2	45
120	DNA-based switchable devices and materials. NPG Asia Materials, 2011, 3, 109-114.	3.8	101
121	Geometrical self-assembly. Nature Chemistry, 2011, 3, 580-581.	6.6	12
122	Analysis and Design of Magnetically Driven Nanomachines. IEEE Nanotechnology Magazine, 2011, 10, 1131-1140.	1.1	3
123	Functional Patterning of DNA Origami by Parallel Enzymatic Modification. Bioconjugate Chemistry, 2011, 22, 819-823.	1.8	47
124	DNA Coiled Coil Superstructures in Oligonucleotide Crystals. Industrial & Engineering Chemistry Research, 2011, 50, 5218-5224.	1.8	2

#	Article	IF	CITATIONS
125	Monte Carlo study of the molecular mechanisms of surface-layer protein self-assembly. Journal of Chemical Physics, 2011, 134, 125103.	1.2	15
126	Design and Construction of Double-Decker Tile as a Route to Three-Dimensional Periodic Assembly of DNA. Journal of the American Chemical Society, 2011, 133, 3843-3845.	6.6	57
127	Metallization of Branched DNA Origami for Nanoelectronic Circuit Fabrication. ACS Nano, 2011, 5, 2240-2247.	7.3	171
128	Simulative Analysis of a Truncated Octahedral DNA Nanocage Family Indicates the Single-Stranded Thymidine Linkers as the Major Player for the Conformational Variability. Journal of Physical Chemistry C, 2011, 115, 16819-16827.	1.5	14
129	Highly Compressed Assembly of Deformable Nanogels into Nanoscale Suprastructures and Their Application in Nanomedicine. ACS Nano, 2011, 5, 2671-2680.	7.3	53
130	Improving the Yield of Mono-DNA-Functionalized Gold Nanoparticles through Dual Steric Hindrance. Journal of the American Chemical Society, 2011, 133, 15284-15287.	6.6	89
131	Cooperative Hybridization of Oligonucleotides. Journal of the American Chemical Society, 2011, 133, 1077-1086.	6.6	98
132	Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. Journal of Chemical Physics, 2011, 134, 085101.	1.2	379
133	Self-assembly of DNA nanotubes with controllable diameters. Nature Communications, 2011, 2, 540.	5.8	74
134	DNA-based nanowires. Towards bottom-up nanoscale electronics. Annual Reports on the Progress of Chemistry Section A, 2011, 107, 21.	0.8	22
135	DNA origami: a quantum leap for self-assembly of complex structures. Chemical Society Reviews, 2011, 40, 5636.	18.7	444
136	Control of DNA hybridization by photoswitchable molecular glue. Chemical Society Reviews, 2011, 40, 5718.	18.7	52
137	Engineering DNA-based functional materials. Chemical Society Reviews, 2011, 40, 5730.	18.7	263
138	Functionalization of DNA nanostructures with proteins. Chemical Society Reviews, 2011, 40, 5910.	18.7	188
139	Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces. Chemical Communications, 2011, 47, 6254.	2.2	102
140	A synthetic icosahedral DNA-based host–cargo complex for functional in vivo imaging. Nature Communications, 2011, 2, 339.	5.8	215
141	DNA architectures for templated material growth. , 2011, , .		1
142	Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polymer Chemistry, 2011, 2, 1930.	1.9	255

#	Article	IF	CITATIONS
143	DNA origami-based nanoribbons: assembly, length distribution, and twist. Nanotechnology, 2011, 22, 275301.	1.3	59
144	Stability of DNA Origami Nanoarrays in Cell Lysate. Nano Letters, 2011, 11, 1477-1482.	4.5	303
145	Self-assembling DNA templates for programmed artificial biomineralization. Soft Matter, 2011, 7, 3240.	1.2	31
146	Recent Progress in DNA Origami Technology. Current Protocols in Nucleic Acid Chemistry, 2011, 45, Unit12.8.	0.5	6
147	Challenges and opportunities for structural DNA nanotechnology. Nature Nanotechnology, 2011, 6, 763-772.	15.6	1,169
148	A Revertible, Autonomous, Self-Assembled DNA-Origami Nanoactuator. Nano Letters, 2011, 11, 5449-5454.	4.5	49
149	Carbon nanotube field-effect transistors with molecular interface. Applied Physics Letters, 2011, 98, 123110.	1.5	3
150	Direct Mechanical Measurements Reveal the Material Properties of Three-Dimensional DNA Origami. Nano Letters, 2011, 11, 5558-5563.	4.5	183
151	STRUCTURAL DNA NANOTECHNOLOGY: INFORMATION GUIDED SELF-ASSEMBLY., 2011,, 65-84.		1
152	Organizing DNA Origami Tiles into Larger Structures Using Preformed Scaffold Frames. Nano Letters, 2011, 11, 2997-3002.	4.5	174
153	Photo-Cross-Linking-Assisted Thermal Stability of DNA Origami Structures and Its Application for Higher-Temperature Self-Assembly. Journal of the American Chemical Society, 2011, 133, 14488-14491.	6.6	177
154	Computational design approaches and tools for synthetic biology. Integrative Biology (United) Tj ETQq $1\ 1\ 0.784$	314 rgBT /	Oygrlock 10
155	Three-dimensional mesoporous structures fabricated by independent stacking of self-assembled films on suspended membranes. Nanotechnology, 2011, 22, 035603.	1.3	24
156	Defined-size DNA triple crossover construct for molecular electronics: modification, positioning and conductance properties. Nanotechnology, 2011, 22, 275610.	1.3	15
157	Self-Assembling RNA Nanorings Based on RNAI/II Inverse Kissing Complexes. Nano Letters, 2011, 11, 878-887.	4.5	219
158	DNA Cage Delivery to Mammalian Cells. ACS Nano, 2011, 5, 5427-5432.	7.3	506
159	Electrostatic interactions in biological DNA-related systems. Physical Chemistry Chemical Physics, 2011, 13, 9942.	1.3	141
160	A facile, modular and high yield method to assemble three-dimensional DNA structures. Chemical Communications, 2011, 47, 8925.	2.2	30

#	Article	IF	CITATIONS
161	Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature Nanotechnology, 2011, 6, 558-562.	15.6	214
162	Janus-type AT nucleosides: synthesis, solid and solution state structures. Organic and Biomolecular Chemistry, 2011, 9, 5692.	1.5	26
163	Direct AFM observation of an opening event of a DNA cuboid constructed via a prism structure. Organic and Biomolecular Chemistry, 2011, 9, 2075.	1.5	25
164	Programmable molecular recognition based on the geometry of DNA nanostructures. Nature Chemistry, 2011, 3, 620-627.	6.6	341
165	Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chemical Society Reviews, 2011, 40, 5745.	18.7	177
166	DNA Origami with Complex Curvatures in Three-Dimensional Space. Science, 2011, 332, 342-346.	6.0	1,074
167	Nanofabrication Yields. Hybridization and Click-Fixation of Polycyclic DNA Nanoassemblies. ACS Nano, 2011, 5, 7565-7575.	7.3	19
168	Single-Molecule Four-Color FRET Visualizes Energy-Transfer Paths on DNA Origami. Journal of the American Chemical Society, 2011, 133, 4193-4195.	6.6	252
169	Direct imaging and chemical analysis of unstained DNA origami performed with a transmission electron microscope. Chemical Communications, 2011, 47, 9375.	2.2	14
170	Development of DNA Based Active Macro–Materials for Biology and Medicine: A Review. , 2011, , .		1
171	A Structurally Variable Hinged Tetrahedron Framework from DNA Origami. Journal of Nucleic Acids, 2011, 2011, 1-9.	0.8	26
172	Nanoengineering a single-molecule mechanical switch using DNA self-assembly. Nanotechnology, 2011, 22, 494005.	1.3	60
173	Topological Polymer Chemistry: New Synthesis of Cyclic and Multicyclic Polymers and <i>Topology Effects</i> Thereby. Kobunshi Ronbunshu, 2011, 68, 782-794.	0.2	4
174	DNA charge transport over 34Ânm. Nature Chemistry, 2011, 3, 228-233.	6.6	304
175	A primer to scaffolded DNA origami. Nature Methods, 2011, 8, 221-229.	9.0	824
176	Recovery of intact DNA nanostructures after agarose gel–based separation. Nature Methods, 2011, 8, 192-194.	9.0	88
177	Synthetic RNA–protein complex shaped like an equilateral triangle. Nature Nanotechnology, 2011, 6, 116-120.	15.6	114
178	Direct observation of stepwise movement of a synthetic molecular transporter. Nature Nanotechnology, 2011, 6, 166-169.	15.6	351

#	Article	IF	Citations
180	Programmed Two-Dimensional Self-Assembly of Multiple DNA Origami Jigsaw Pieces. ACS Nano, 2011, 5, 665-671.	7.3	189
181	DNA-SWNT hybrid hydrogel. Chemical Communications, 2011, 47, 5545-5547.	2.2	81
182	Two-dimensional DNA origami assemblies using a four-way connector. Chemical Communications, 2011, 47, 3213.	2.2	78
183	Cellular Immunostimulation by CpG-Sequence-Coated DNA Origami Structures. ACS Nano, 2011, 5, 9696-9702.	7.3	433
184	Helical Metal Nanoparticle Assemblies with Defects: Plasmonic Chirality and Circular Dichroism. Journal of Physical Chemistry C, 2011, 115, 13254-13261.	1.5	129
185	DNA compaction: fundamentals and applications. Soft Matter, 2011, 7, 6746.	1.2	161
186	Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Analytical Chemistry, 2011, 83, 4453-4488.	3.2	430
187	Emergences of supramolecular chemistry: from supramolecular chemistry to supramolecular science. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2011, 71, 251-274.	1.6	20
188	Thin Multilayer Films and Microcapsules Containing DNA Quadruplex Motifs. Small, 2011, 7, 101-111.	5.2	11
189	Assembly of Singleâ€Walled Carbon Nanotubes on DNAâ€Origami Templates through Streptavidin–Biotin Interaction. Small, 2011, 7, 746-750.	5.2	86
190	Siteâ€Specific Attachment of Proteins onto a 3D DNA Tetrahedron through Backboneâ€Modified Phosphorothioate DNA. Small, 2011, 7, 1427-1430.	5.2	39
191	A Light Trigger for DNA Nanotechnology. Small, 2011, 7, 2163-2167.	5.2	27
192	DNA Origamiâ€Templated Growth of Arbitrarily Shaped Metal Nanoparticles. Small, 2011, 7, 1795-1799.	5.2	133
193	Selfâ€Assembled DNAâ€Based Fluorescence Waveguide with Selectable Output. Small, 2011, 7, 3178-3185.	5.2	39
194	Orthogonal Protein Decoration of DNA Nanostructures. Small, 2011, 7, 3211-3218.	5.2	45
195	Controlling forces and pathways in selfâ€assembly using viruses and DNA. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2011, 3, 282-297.	3.3	10
196	Single molecule microscopy methods for the study of DNA origami structures. Microscopy Research and Technique, 2011, 74, 688-698.	1.2	23
197	Visualization of bionanostructures using transmission electron microscopical techniques. Microscopy Research and Technique, 2011, 74, 642-663.	1.2	32

#	Article	IF	CITATIONS
198	Using Magnetic Levitation for Three Dimensional Selfâ€Assembly. Advanced Materials, 2011, 23, 4134-4140.	11.1	131
199	Singleâ€Molecule FRET Ruler Based on Rigid DNA Origami Blocks. ChemPhysChem, 2011, 12, 689-695.	1.0	129
205	Nucleic Acid Based Molecular Devices. Angewandte Chemie - International Edition, 2011, 50, 3124-3156.	7.2	527
206	Encapsulation of Gold Nanoparticles in a DNA Origami Cage. Angewandte Chemie - International Edition, 2011, 50, 2041-2044.	7.2	135
207	Branched DNA That Forms a Solid at 95 °C. Angewandte Chemie - International Edition, 2011, 50, 3227-3231.	7.2	66
208	Selfâ€Assembly of a Bifunctional DNA Carrier for Drug Delivery. Angewandte Chemie - International Edition, 2011, 50, 6098-6101.	7.2	82
209	DNA‣inked Nanoparticle Building Blocks for Programmable Matter. Angewandte Chemie - International Edition, 2011, 50, 9185-9190.	7.2	88
211	Synthetic, biofunctional nucleic acid-based molecular devices. Current Opinion in Biotechnology, 2011, 22, 475-484.	3.3	30
212	Design and synthesis of DNA four-helix bundles. Nanotechnology, 2011, 22, 235601.	1.3	19
213	Self-Assembly-Based Structural DNA Nanotechnology. Current Organic Chemistry, 2011, 15, 534-547.	0.9	3
214	Algorithm for a Microfluidic Assembly Line. Physical Review Letters, 2011, 106, 094503.	2.9	38
215	Stability and electronic structure of <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi> M</mml:mi> </mml:mrow> </mml:math> -DNA: Role of metal position. Physical Review B, 2011, 84, .	1.1	6
216	Self-assembly of magnetically interacting cubes by a turbulent fluid flow. Physical Review E, 2011, 83, 017301.	0.8	15
217	Predicted photonic band gaps in diamond-lattice crystals built from silicon truncated tetrahedrons. Journal of Applied Physics, 2011, 110, 043107.	1.1	8
218	A simple DNA gate motif for synthesizing large-scale circuits. Journal of the Royal Society Interface, 2011, 8, 1281-1297.	1.5	210
219	Promoting RNA helical stacking via A-minor junctions. Nucleic Acids Research, 2011, 39, 1066-1080.	6.5	69
220	Algorithmic design of self-folding polyhedra. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19885-19890.	3.3	94
221	Nucleic acid-based nanoengineering: novel structures for biomedical applications. Interface Focus, 2011, 1, 702-724.	1.5	48

#	Article	IF	CITATIONS
222	DNA-Based Soft Phases. Topics in Current Chemistry, 2011, 318, 225-279.	4.0	29
223	Swedish Medical Nanoscience Center at Karolinska Institutet. Nanotechnology Reviews, 2012, 1, .	2.6	O
224	DNA as scaffolding for nanophotonic structures. Journal of Nanophotonics, 2012, 6, 064505-1.	0.4	21
225	Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. Nucleic Acids Research, 2012, 40, 2862-2868.	6.5	327
226	Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions. Journal of the Royal Society Interface, 2012, 9, 1637-1653.	1.5	11
227	DNA origami as biocompatible surface to match single-molecule and ensemble experiments. Nucleic Acids Research, 2012, 40, e110-e110.	6.5	49
228	Far-Field Nanoscopy with Conventional Fluorophores: Photostability, Photophysics, and Transient Binding. Springer Series on Fluorescence, 2012, , 215-242.	0.8	2
229	Folding of DNA origamis. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2012, 6, 11-18.	1.1	2
230	Modeling the mechanical properties of DNA nanostructures. Physical Review E, 2012, 86, 051912.	0.8	25
231	Folding of small origamis. Journal of Chemical Physics, 2012, 136, 065102.	1.2	8
232	Non-specific binding of Na + and Mg 2+ to RNA determined by force spectroscopy methods. Nucleic Acids Research, 2012, 40, 6922-6935.	6.5	78
233	Assembly of DNA Architectures in a Non-Aqueous Solution. Nanomaterials, 2012, 2, 275-285.	1.9	8
234	A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads. Science, 2012, 335, 831-834.	6.0	1,918
235	Three-Dimensional Structures Self-Assembled from DNA Bricks. Science, 2012, 338, 1177-1183.	6.0	1,062
236	DNA Polyhedra with T-Linkage. ACS Nano, 2012, 6, 5138-5142.	7.3	42
237	DNA-based assembly lines and nanofactories. Current Opinion in Biotechnology, 2012, 23, 516-521.	3.3	85
238	Multilayer DNA Origami Packed on Hexagonal and Hybrid Lattices. Journal of the American Chemical Society, 2012, 134, 1770-1774.	6.6	119
239	DNA Origami as a Carrier for Circumvention of Drug Resistance. Journal of the American Chemical Society, 2012, 134, 13396-13403.	6.6	653

#	Article	IF	CITATIONS
240	Rapid Folding of DNA into Nanoscale Shapes at Constant Temperature. Science, 2012, 338, 1458-1461.	6.0	252
241	Tile Complexity of Linear Assemblies. SIAM Journal on Computing, 2012, 41, 1051-1073.	0.8	10
242	Intracellular Transport: New Tools Provide Insights into Multi-motor Transport. Current Biology, 2012, 22, R1053-R1055.	1.8	4
243	Programmable multivalent display of receptor ligands using peptide nucleic acid nanoscaffolds. Nature Communications, 2012, 3, 614.	5.8	94
244	LEGO-like DNA Structures. Science, 2012, 338, 1159-1160.	6.0	33
245	Nanostructures Conjugated to Nucleic Acids and Their Applications. ACS Symposium Series, 2012, , 259-288.	0.5	0
246	Cryo-EM structure of a 3D DNA-origami object. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20012-20017.	3.3	219
247	DNA Origami Gatekeepers for Solidâ€ S tate Nanopores. Angewandte Chemie - International Edition, 2012, 51, 4864-4867.	7.2	168
248	Alternative DNA Base Pairing through Metal Coordination. Metal lons in Life Sciences, 2012, 10, 269-294.	2.8	18
249	Structural DNA Nanotechnology: From Design to Applications. International Journal of Molecular Sciences, 2012, 13, 7149-7162.	1.8	74
250	Three-Dimensional Organization of Block Copolymers on "DNA-Minimal―Scaffolds. Journal of the American Chemical Society, 2012, 134, 4280-4286.	6.6	78
251	Coating of Single DNA Molecules by Genetically Engineered Protein Diblock Copolymers. Small, 2012, 8, 3491-3501.	5.2	46
252	Spatially-Interactive Biomolecular Networks Organized by Nucleic Acid Nanostructures. Accounts of Chemical Research, 2012, 45, 1215-1226.	7.6	140
253	Programming and evolving physical self-assembling systems in three dimensions. Natural Computing, 2012, 11, 475-498.	1.8	7
254	Functionalized DNA nanostructures for light harvesting and charge separation. Coordination Chemistry Reviews, 2012, 256, 2399-2413.	9.5	90
255	Effect of nano-structured polymer surfaces on the phenotype control of preosteoblasts. Macromolecular Research, 2012, 20, 1205-1208.	1.0	1
257	Fabrication of Nanopatterned Surfaces for Tissue Engineering. , 2012, , .		2
258	Sequence-Selective Single-Molecule Alkylation with a Pyrrole–Imidazole Polyamide Visualized in a DNA Nanoscaffold. Journal of the American Chemical Society, 2012, 134, 4654-4660.	6.6	37

#	Article	IF	Citations
259	Two design strategies for enhancement of multilayer–DNA-origami folding: underwinding for specific intercalator rescue and staple-break positioning. Chemical Science, 2012, 3, 2587.	3.7	113
260	Bio-switchable optofluidic lasers based on DNA Holliday junctions. Lab on A Chip, 2012, 12, 3673.	3.1	58
261	Self-repairable copolymers that change color. RSC Advances, 2012, 2, 135-143.	1.7	41
262	Different superstructures formed by Janus-type nucleosides. Chemical Communications, 2012, 48, 6097.	2.2	19
263	Rolling Up Gold Nanoparticle-Dressed DNA Origami into Three-Dimensional Plasmonic Chiral Nanostructures. Journal of the American Chemical Society, 2012, 134, 146-149.	6.6	382
264	Reversible Regulation of Protein Binding Affinity by a DNA Machine. Journal of the American Chemical Society, 2012, 134, 1416-1418.	6.6	118
265	Direct Visualization of Transient Thermal Response of a DNA Origami. Journal of the American Chemical Society, 2012, 134, 9844-9847.	6.6	76
266	Transcription Regulation System Mediated by Mechanical Operation of a DNA Nanostructure. Journal of the American Chemical Society, 2012, 134, 2852-2855.	6.6	24
267	Ferrochemical Materials. Macromolecules, 2012, 45, 2478-2484.	2.2	2
268	pH-induced formation of various hierarchical structures from amphiphilic core–shell nanotubes. RSC Advances, 2012, 2, 1303.	1.7	4
269	Reversibly Switching the Surface Porosity of a DNA Tetrahedron. Journal of the American Chemical Society, 2012, 134, 11998-12001.	6.6	39
270	Effect of DNA Hairpin Loops on the Twist of Planar DNA Origami Tiles. Langmuir, 2012, 28, 1959-1965.	1.6	28
271	Multitemplates for the Hierarchical Synthesis of Diverse Inorganic Materials. Journal of the American Chemical Society, 2012, 134, 2325-2331.	6.6	68
272	Squaring the Circle in Peptide Assembly: From Fibers to Discrete Nanostructures by <i>de Novo</i> Design. Journal of the American Chemical Society, 2012, 134, 15457-15467.	6.6	87
273	Three-Dimensional DNA Crystals with pH-Responsive Noncanonical Junctions. Journal of the American Chemical Society, 2012, 134, 12557-12564.	6.6	24
274	A Synthetic Chemomechanical Machine Driven by Ligand–Receptor Bonding. Nano Letters, 2012, 12, 4983-4987.	4.5	13
275	Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nature Chemistry, 2012, 4, 832-839.	6.6	252
276	Increased anticoagulant activity of thrombin-binding DNA aptamers by nanoscale organization on DNA nanostructures. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 673-681.	1.7	39

#	Article	IF	CITATIONS
277	A DNA Nanostructure Platform for Directed Assembly of Synthetic Vaccines. Nano Letters, 2012, 12, 4254-4259.	4.5	280
278	Experimental and Computational Studies Reveal an Alternative Supramolecular Structure for Fmoc-Dipeptide Self-Assembly. Biomacromolecules, 2012, 13, 3562-3571.	2.6	79
279	Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas. Science, 2012, 338, 506-510.	6.0	603
282	A Molecular Translator that Acts by Bindingâ€Induced DNA Strand Displacement for a Homogeneous Protein Assay. Angewandte Chemie - International Edition, 2012, 51, 9317-9320.	7.2	98
283	A DNA-based molecular motor that can navigate a network of tracks. Nature Nanotechnology, 2012, 7, 169-173.	15.6	340
284	Synthetic Lipid Membrane Channels Formed by Designed DNA Nanostructures. Science, 2012, 338, 932-936.	6.0	659
285	DNA nanostructures as scaffolds for metal nanoparticles. Polymer Journal, 2012, 44, 452-460.	1.3	22
286	Assembly and Microscopic Characterization of DNA Origami Structures. Advances in Experimental Medicine and Biology, 2012, 733, 87-96.	0.8	3
287	Nanorobots grab cellular control. Nature Materials, 2012, 11, 276-277.	13.3	90
288	Dynamic Supramolecular Polymers. , 2012, , 587-628.		0
289	Nano- and Biotechniques for Electronic Device Packaging. , 2012, , 49-76.		1
290	Nanopatterning and Self-Assembly in Microsystems: An Overview. , 2012, , 179-208.		0
291	Magnesium-free self-assembly of multi-layer DNA objects. Nature Communications, 2012, 3, 1103.	5.8	147
292	Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami. ACS Nano, 2012, 6, 10050-10053.	7.3	120
293	DNA Origami Delivery System for Cancer Therapy with Tunable Release Properties. ACS Nano, 2012, 6, 8684-8691.	7.3	470
294	DNA origami – art, science, and engineering. Frontiers in Life Science: Frontiers of Interdisciplinary Research in the Life Sciences, 2012, 6, 3-9.	1.1	5
295	Designing biological compartmentalization. Trends in Cell Biology, 2012, 22, 662-670.	3.6	257
296	DNA: multiple architectures for use in electronics applications. Proceedings of SPIE, 2012, , .	0.8	О

#	Article	IF	CITATIONS
297	Optimizing the specificity of nucleic acid hybridization. Nature Chemistry, 2012, 4, 208-214.	6.6	347
298	Materials self-assembly and fabrication in confined spaces. Journal of Materials Chemistry, 2012, 22, 10389.	6.7	75
299	A Logical Molecular Circuit for Programmable and Autonomous Regulation of Protein Activity Using DNA Aptamer–Protein Interactions. Journal of the American Chemical Society, 2012, 134, 20797-20804.	6.6	111
300	Responses of preosteoblasts on nano-structured polymer surfaces prepared from block copolymer–surfactant complexes. Soft Matter, 2012, 8, 7898.	1.2	6
301	Nano-Biotechnology for Biomedical and Diagnostic Research. Advances in Experimental Medicine and Biology, 2012, , .	0.8	5
302	DNA Origami Nanopores. Nano Letters, 2012, 12, 512-517.	4.5	267
303	DNA Bimodified Gold Nanoparticles. Langmuir, 2012, 28, 1966-1970.	1.6	24
304	Quasi 3D imaging of DNA–gold nanoparticle tetrahedral structures. Journal of Physics Condensed Matter, 2012, 24, 164203.	0.7	5
305	DNA Base–Gold Nanocluster Complex as a Potential Catalyzing Agent: An Attractive Route for CO Oxidation Process. Journal of Physical Chemistry C, 2012, 116, 17063-17069.	1.5	20
306	Coassembly of Aromatic Dipeptides into Biomolecular Necklaces. ACS Nano, 2012, 6, 9559-9566.	7.3	82
307	Coarse-Grained Modelling of DNA and DNA Self-Assembly. Springer Theses, 2012, , .	0.0	29
308	Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold. Science, 2012, 338, 662-665.	6.0	383
309	Functionalized DNA Nanostructures. Chemical Reviews, 2012, 112, 2528-2556.	23.0	359
310	FOLDNA, a Web Server for Self-Assembled DNA Nanostructure Autoscaffolds and Autostaples. Journal of Nanotechnology, 2012, 2012, 1-5.	1.5	3
312	DNA Pillars Constructed from an iâ€Motif Stem and Duplex Branches. Small, 2012, 8, 552-556.	5.2	24
313	Nanoscale imaging in DNA nanotechnology. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2012, 4, 66-81.	3.3	20
314	Controlling the Formation of DNA Origami Structures with External Signals. Small, 2012, 8, 2016-2020.	5.2	12
315	Formation of 1D and 2D Gold Nanoparticle Arrays by Divalent DNA–Gold Nanoparticle Conjugates. Small, 2012, 8, 2335-2340.	5 . 2	27

#	Article	IF	CITATIONS
316	DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature, 2012, 483, 311-314.	13.7	1,868
317	DNA Origami: Synthesis and Selfâ€Assembly. Current Protocols in Nucleic Acid Chemistry, 2012, 48, Unit 12.9.1-18.	0.5	18
318	DNA Origami with Double-Stranded DNA As a Unified Scaffold. ACS Nano, 2012, 6, 8209-8215.	7.3	77
319	HolT Hunter: Software for identifying and characterizing lowâ€strain DNA holliday triangles. Journal of Computational Chemistry, 2012, 33, 1393-1405.	1.5	1
320	The importance of being modular. Nature, 2012, 485, 584-585.	13.7	24
321	Reprogramming the injured heart. Nature, 2012, 485, 585-586.	13.7	14
322	Complex shapes self-assembled from single-stranded DNA tiles. Nature, 2012, 485, 623-626.	13.7	835
323	DNA-Multichromophore Systems. Chemical Reviews, 2012, 112, 4221-4245.	23.0	292
328	DNAâ€Directed Threeâ€Dimensional Protein Organization. Angewandte Chemie - International Edition, 2012, 51, 3382-3385.	7.2	88
329	Direct Visualization of the Movement of a Single T7â€RNA Polymerase and Transcription on a DNA Nanostructure. Angewandte Chemie - International Edition, 2012, 51, 8778-8782.	7.2	39
330	Controlling the Chirality of DNA Nanocages. Angewandte Chemie - International Edition, 2012, 51, 7999-8002.	7.2	31
331	DNA Architectonics: towards the Next Generation of Bioâ€inspired Materials. Chemistry - A European Journal, 2012, 18, 4456-4469.	1.7	82
332	Beyond Watson and Crick: Programming DNA self-assembly for nanofabrication., 2012,,.		5
333	Biomolecular computing systems: principles, progress and potential. Nature Reviews Genetics, 2012, 13, 455-468.	7.7	367
335	Recent developments in single-molecule DNA mechanics. Current Opinion in Structural Biology, 2012, 22, 304-312.	2.6	74
336	Cell-free synthetic biology: Thinking outside the cell. Metabolic Engineering, 2012, 14, 261-269.	3.6	365
337	Engineering of Micro―and Nanostructured Surfaces with Anisotropic Geometries and Properties. Advanced Materials, 2012, 24, 1628-1674.	11.1	203
339	Singleâ€Molecule Analysis Using DNA Origami. Angewandte Chemie - International Edition, 2012, 51, 874-890.	7.2	189

#	Article	IF	CITATIONS
340	DNA Origami: The Art of Folding DNA. Angewandte Chemie - International Edition, 2012, 51, 58-66.	7.2	320
341	DNA and RNA Nanobiotechnologies in Medicine: Diagnosis and Treatment of Diseases. , 2013, , .		8
342	Nanoscale Structure and Microscale Stiffness of DNA Nanotubes. ACS Nano, 2013, 7, 6700-6710.	7.3	100
343	Nucleic acid nanostructures for biomedical applications. Nanomedicine, 2013, 8, 105-121.	1.7	67
344	A Spherical Nucleic Acid Platform Based on Self-Assembled DNA Biopolymer for High-Performance Cancer Therapy. ACS Nano, 2013, 7, 6545-6554.	7.3	91
345	DNA Nanotechnology. , 2013, , .		5
346	Selfâ€Assembly of DNA Origami and Singleâ€Stranded Tile Structures at Room Temperature. Angewandte Chemie - International Edition, 2013, 52, 9219-9223.	7.2	53
347	DNA nanotechnology with one-dimensional self-assembled nanostructures. Current Opinion in Biotechnology, 2013, 24, 562-574.	3.3	45
348	Mapping the Thermal Behavior of DNA Origami Nanostructures. Journal of the American Chemical Society, 2013, 135, 6165-6176.	6.6	73
349	Reversible switches of DNA nanostructures between "Closed―and "Open―states and their biosensing applications. Nanoscale, 2013, 5, 7505.	2.8	15
350	Nanorobotics., 2013,,.		32
351	Tile Complexity of Approximate Squares. Algorithmica, 2013, 66, 1-17.	1.0	3
352	Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nature Chemistry, 2013, 5, 868-875.	6.6	192
353	Enzymatic Ligation of Large Biomolecules to DNA. ACS Nano, 2013, 7, 8098-8104.	7.3	41
354	3D DNA origami designed with caDNAno. Science Bulletin, 2013, 58, 3019-3022.	1.7	8
355	Transforming Synthetic Biology with Cell-Free Systems. , 2013, , 277-301.		6
356	Isothermal Self-Assembly of Complex DNA Structures under Diverse and Biocompatible Conditions. Nano Letters, 2013, 13, 4242-4248.	4.5	50
357	Micromechanical Design Criteria for Tissue Engineering Biomaterials. , 2013, , 1165-1178.		1

#	ARTICLE	IF	CITATIONS
358	DNA as a Molecular Wire: Distance and Sequence Dependence. Analytical Chemistry, 2013, 85, 8634-8640.	3.2	62
359	DNA-directed self-assembly of shape-controlled hydrogels. Nature Communications, 2013, 4, 2275.	5.8	238
360	In vitro regulatory models for systems biology. Biotechnology Advances, 2013, 31, 789-796.	6.0	13
361	Optimization of collective enzyme activity via spatial localization. Journal of Chemical Physics, 2013, 135101.	1.2	21
363	DNA ORIGAMI SITE-SPECIFIC ARRANGEMENT OF GOLD NANOPARTICLES. Nano, 2013, 08, 1350064.	0.5	2
364	Three dimensional self-assembly at the nanoscale. , 2013, , .		2
365	Dual-Color Nanoscale Assemblies of Structurally Stable, Few-Atom Silver Clusters, As Reported by Fluorescence Resonance Energy Transfer. ACS Nano, 2013, 7, 9798-9807.	7.3	42
366	Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface., 2013, , 845-872.		0
367	DNA origami technology for biomaterials applications. Biomaterials Science, 2013, 1, 347-360.	2.6	86
368	Design Space for Complex DNA Structures. Journal of the American Chemical Society, 2013, 135, 18080-18088.	6.6	36
370	Temperature-Controlled Encapsulation and Release of an Active Enzyme in the Cavity of a Self-Assembled DNA Nanocage. ACS Nano, 2013, 7, 9724-9734.	7.3	132
371	Binding Assistance Triggering Attachments of Hairpin DNA onto Gold Nanoparticles. Analytical Chemistry, 2013, 85, 11973-11978.	3.2	5
372	Cooperativity in the annealing of DNA origamis. Journal of Chemical Physics, 2013, 138, 015105.	1.2	29
374	Directing Self-Assembly of DNA Nanotubes Using Programmable Seeds. Nano Letters, 2013, 13, 4006-4013.	4.5	85
375	Hierarchically assembled DNA origami tubules with reconfigurable chirality. Nanotechnology, 2013, 24, 435601.	1.3	16
376	Hairpin embedded DNA lattices grown on a mica substrate. RSC Advances, 2013, 3, 19876.	1.7	5
377	Multi-modal switching in responsive DNA block co-polymer conjugates. Physical Chemistry Chemical Physics, 2013, 15, 16263.	1.3	7
378	Self-assembly of DNA nanoprisms with only two component strands. Chemical Communications, 2013, 49, 2807.	2.2	19

#	Article	IF	CITATIONS
379	Simple Design for DNA Nanotubes from a Minimal Set of Unmodified Strands: Rapid, Room-Temperature Assembly and Readily Tunable Structure. ACS Nano, 2013, 7, 3022-3028.	7.3	48
380	Detection of Glutathione <i>in Vitro</i> and in Cells by the Controlled Self-Assembly of Nanorings. Analytical Chemistry, 2013, 85, 1280-1284.	3.2	67
381	Plasmonic Coupling and Long-Range Transfer of an Excitation along a DNA Nanowire. ACS Nano, 2013, 7, 1291-1298.	7. 3	12
382	Emerging chirality in nanoscience. Chemical Society Reviews, 2013, 42, 2930-2962.	18.7	468
383	M1.3 – a small scaffold for DNA origamiÂ. Nanoscale, 2013, 5, 284-290.	2.8	63
384	Molecular Robotics: A New Paradigm for Artifacts. New Generation Computing, 2013, 31, 27-45.	2.5	129
385	Molecular Motions in Functional Self-Assembled Nanostructures. International Journal of Molecular Sciences, 2013, 14, 2303-2333.	1.8	52
386	Temperature Dependence of Electrochemical DNA Charge Transport: Influence of a Mismatch. Analytical Chemistry, 2013, 85, 1462-1467.	3.2	24
387	Self-assembled amphiphilic DNA-cholesterol/DNA-peptide hybrid duplexes with liposome-like structure for doxorubicin delivery. Biomaterials, 2013, 34, 4183-4190.	5.7	26
388	Self-Assembly of DNA Rings from Scaffold-Free DNA Tiles. Nano Letters, 2013, 13, 1862-1866.	4 . 5	27
389	Synthesis of nucleosides and dNTPs bearing oligopyridine ligands linked through an octadiyne tether, their incorporation into DNA and complexation with transition metal cations. Organic and Biomolecular Chemistry, 2013, 11, 78-89.	1.5	9
390	Functionalizing Nanoparticles with Biological Molecules: Developing Chemistries that Facilitate Nanotechnology. Chemical Reviews, 2013, 113, 1904-2074.	23.0	1,173
391	Fabrication of three-dimensional electrical connections by means of directed actin self-organization. Nature Materials, 2013, 12, 416-421.	13.3	55
392	Electrically Conductive Gold- and Copper-Metallized DNA Origami Nanostructures. Langmuir, 2013, 29, 3482-3490.	1.6	72
393	Nanoscale assemblies and their biomedical applications. Journal of the Royal Society Interface, 2013, 10, 20120740.	1.5	106
395	Complex DNA Nanostructures from Oligonucleotide Ensembles. ACS Synthetic Biology, 2013, 2, 180-185.	1.9	16
396	One-Pot Assembly of a Hetero-dimeric DNA Origami from Chip-Derived Staples and Double-Stranded Scaffold. ACS Nano, 2013, 7, 903-910.	7.3	32
398	Nano-Encrypted Morse Code: A Versatile Approach to Programmable and Reversible Nanoscale Assembly and Disassembly. Journal of the American Chemical Society, 2013, 135, 2931-2934.	6.6	46

#	Article	IF	CITATIONS
399	DNA Origami Nanopillars as Standards for Three-Dimensional Superresolution Microscopy. Nano Letters, 2013, 13, 781-785.	4.5	76
400	Transfer of a protein pattern from self-assembled DNA origami to a functionalized substrate. Chemical Communications, 2013, 49, 1927.	2.2	21
401	DNA nanotubes for NMR structure determination of membrane proteins. Nature Protocols, 2013, 8, 755-770.	5.5	58
402	DNA Nanorobotics. , 2013, , 355-382.		11
403	Metallized DNA nanolithography for encoding and transferring spatial information for graphene patterning. Nature Communications, 2013, 4, 1663.	5.8	155
404	Plasmonic fluorescence enhancement by metal nanostructures: shaping the future of bionanotechnology. Physical Chemistry Chemical Physics, 2013, 15, 15709.	1.3	161
405	Ligand-induced electron spin-assembly on a DNA tile. Chemical Communications, 2013, 49, 6370.	2.2	18
406	Regulation of an Enzyme Cascade Reaction by a DNA Machine. Small, 2013, 9, 3088-3091.	5.2	141
407	A Method to Encapsulate Molecular Cargo Within DNA Icosahedra. Methods in Molecular Biology, 2013, 991, 65-80.	0.4	4
408	Switchable domain partitioning and diffusion of DNA origami rods on membranes. Faraday Discussions, 2013, 161, 31-43.	1.6	76
409	Longâ€range assembly of DNA into nanofibers and highly ordered networks. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 266-285.	3.3	16
410	Making connectionsâ€"strategies for single molecule fluorescence biophysics. Current Opinion in Chemical Biology, 2013, 17, 691-698.	2.8	16
411	Smart Drug Delivery Nanocarriers with Selfâ€Assembled DNA Nanostructures. Advanced Materials, 2013, 25, 4386-4396.	11.1	378
412	Overview of DNA origami for molecular selfâ€assembly. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 150-162.	3.3	29
413	Tough Composites Inspired by Mineralized Natural Materials: Computation, 3D printing, and Testing. Advanced Functional Materials, 2013, 23, 4629-4638.	7.8	310
414	Multifactorial Modulation of Binding and Dissociation Kinetics on Two-Dimensional DNA Nanostructures. Nano Letters, 2013, 13, 2754-2759.	4.5	42
415	Functional Nucleic Acids for DNA Nanotechnology. , 2013, , 7-28.		0
416	A Smart DNA Tetrahedron That Isothermally Assembles or Dissociates in Response to the Solution pH Value Changes. Biomacromolecules, 2013, 14, 1711-1714.	2.6	71

#	Article	IF	Citations
417	Enzymatic production of 'monoclonal stoichiometric' single-stranded DNA oligonucleotides. Nature Methods, 2013, 10, 647-652.	9.0	111
418	PNA-Peptide Assembly in a 3D DNA Nanocage at Room Temperature. Journal of the American Chemical Society, 2013, 135, 6985-6993.	6.6	34
419	Synthesis and Applications of \hat{I}^3 -Tungsten Oxide Hierarchical Nanostructures. Crystal Growth and Design, 2013, 13, 759-769.	1.4	75
420	Three-Dimensional Plasmonic Chiral Tetramers Assembled by DNA Origami. Nano Letters, 2013, 13, 2128-2133.	4.5	254
422	Multiplexed ionic current sensing with glass nanopores. Lab on A Chip, 2013, 13, 1859.	3.1	63
423	Silver Nanoassemblies Constructed from Boranephosphonate DNA. Journal of the American Chemical Society, 2013, 135, 6234-6241.	6.6	34
424	DNAâ€Nanotechnologie. Chemie in Unserer Zeit, 2013, 47, 164-173.	0.1	5
425	DNA Origami Nanopores for Controlling DNA Translocation. ACS Nano, 2013, 7, 6024-6030.	7.3	118
426	The enabled state of DNA nanotechnology. Current Opinion in Biotechnology, 2013, 24, 555-561.	3.3	152
427	Coarse-graining DNA for simulations of DNA nanotechnology. Physical Chemistry Chemical Physics, 2013, 15, 20395.	1.3	173
428	Dynamic DNA Assemblies Mediated by Binding-Induced DNA Strand Displacement. Journal of the American Chemical Society, 2013, 135, 2443-2446.	6.6	195
429	Controlling and Monitoring Orientation of DNA Nanoconstructs on Lipid Surfaces. Langmuir, 2013, 29, 285-293.	1.6	14
430	Structure and thermodynamics of ssDNA oligomers near hydrophobic and hydrophilic surfaces. Soft Matter, 2013, 9, 11521.	1.2	26
431	Allosterically Tunable, DNA-Based Switches Triggered by Heavy Metals. Journal of the American Chemical Society, 2013, 135, 13238-13241.	6.6	99
433	Band smearing of PCR amplified bacterial 16S rRNA genes: Dependence on initial PCR target diversity. Journal of Microbiological Methods, 2013, 95, 186-194.	0.7	4
434	Direct interactions between Z-DNA and alkaline earth cations, discovered in the presence of high concentrations of MgCl2 and CaCl2. Journal of Inorganic Biochemistry, 2013, 124, 15-25.	1.5	19
435	In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20099-20104.	3.3	144
436	Programming the Dynamics of Biochemical Reaction Networks. ACS Nano, 2013, 7, 6-10.	7.3	22

#	Article	IF	Citations
437	Rational Design of DNA Motors: Fuel Optimization through Single-Molecule Fluorescence. Journal of the American Chemical Society, 2013, 135, 11935-11941.	6.6	86
438	Single-Step Rapid Assembly of DNA Origami Nanostructures for Addressable Nanoscale Bioreactors. Journal of the American Chemical Society, 2013, 135, 696-702.	6.6	242
439	Nanoscale Growth and Patterning of Inorganic Oxides Using DNA Nanostructure Templates. Journal of the American Chemical Society, 2013, 135, 6778-6781.	6.6	97
440	Angular modulation of single-molecule fluorescence by gold nanoparticles on DNA origami templates. Nanophotonics, 2013, 2, 167-172.	2.9	12
441	Nonâ€covalent Single Transcription Factor Encapsulation Inside a DNA Cage. Angewandte Chemie - International Edition, 2013, 52, 2284-2288.	7.2	63
442	Scaling down DNA circuits with competitive neural networks. Journal of the Royal Society Interface, 2013, 10, 20130212.	1.5	46
443	Purification of DNA-origami nanostructures by rate-zonal centrifugation. Nucleic Acids Research, 2013, 41, e40-e40.	6.5	133
444	Designing a Bio-responsive Robot from DNA Origami. Journal of Visualized Experiments, 2013, , e50268.	0.2	2
445	Nucleosideâ€Based Diarylethene Photoswitches and Their Facile Incorporation into Photoswitchable DNA. Angewandte Chemie - International Edition, 2013, 52, 3186-3190.	7.2	117
446	Unidirectional Scaffoldâ€Strand Arrangement in DNA Origami. Angewandte Chemie - International Edition, 2013, 52, 9031-9034.	7.2	19
447	Unified model for conductance through DNA with the Landauer-Býttiker formalism. Physical Review B, 2013, 87, .	1.1	46
448	Reliability of multi-path virus nanonetworks. , 2013, , .		1
449	A nanopore machine promotes the vectorial transport of DNA across membranes. Nature Communications, 2013, 4, 2415.	5.8	63
451	DNA Gridiron Nanostructures Based on Four-Arm Junctions. Science, 2013, 339, 1412-1415.	6.0	246
452	Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nature Communications, 2013, 4, 2948.	5.8	289
455	Rigid DNA Beams for Highâ∈Resolution Singleâ∈Molecule Mechanics. Angewandte Chemie - International Edition, 2013, 52, 7766-7771.	7.2	104
457	Functional DNA Nanostructures for Photonic and Biomedical Applications. Small, 2013, 9, 2210-2222.	5.2	54
459	Engineered RNA Nanodesigns for Applications in RNA Nanotechnology. DNA and RNA Nanotechnology, 2013, 1, 1-15.	0.7	25

#	Article	IF	CITATIONS
460	Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif. PLoS ONE, 2013, 8, e69856.	1.1	10
461	Self-Assembled DNA-Based Structures for Nanoelectronics. Journal of Self-Assembly and Molecular Electronics (SAME), 0, , .	0.0	5
462	Developments in the Tools and Methodologies of Synthetic Biology. Frontiers in Bioengineering and Biotechnology, 2014, 2, 60.	2.0	78
463	GENESUS: A two-step sequence design program for DNA nanostructure self-assembly. BioTechniques, 2014, 56, 180-5.	0.8	0
465	Designer three-dimensional DNA architectures. Current Opinion in Structural Biology, 2014, 27, 122-128.	2.6	22
466	Co-transcriptional production of RNA–DNA hybrids for simultaneous release of multiple split functionalities. Nucleic Acids Research, 2014, 42, 2085-2097.	6.5	54
467	Self-assembling hybrid diamond–biological quantum devices. New Journal of Physics, 2014, 16, 093002.	1.2	38
468	Nanolithography Based on Metalized DNA Templates for Graphene Patterning. Current Protocols in Chemical Biology, 2014, 6, 53-64.	1.7	1
470	Sequence-defined shuttles for targeted nucleic acid and protein delivery. Therapeutic Delivery, 2014, 5, 1025-1045.	1.2	3
471	Engineering Defined Motor Ensembles with DNA Origami. Methods in Enzymology, 2014, 540, 169-188.	0.4	8
472	The Self-Assembled Behavior of DNA Bases on the Interface. International Journal of Molecular Sciences, 2014, 15, 1901-1914.	1.8	33
473	Detection and Characterization of Cancer Cells and Pathogenic Bacteria Using Aptamer-Based Nano-Conjugates. Sensors, 2014, 14, 18302-18327.	2.1	37
474	Construction and Computation with Nucleic Acids on the Cell Surface., 2014, , 157-173.		0
475	Assembling CdSe/ZnS core–shell quantum dots on localized DNA nanostructures. RSC Advances, 2014, 4, 53201-53205.	1.7	1
476	Programmed folding of DNA origami structures through single-molecule force control. Nature Communications, 2014, 5, 5654.	5.8	43
477	Simulation study of the effects of surface chemistry and temperature on the conformations of ssDNA oligomers near hydrophilic and hydrophobic surfaces. Journal of Chemical Physics, 2014, 140, .	1.2	8
479	Directed self-assembly of genomic sequences into monomeric and polymeric branched DNA structures. RSC Advances, 2014, 4, 54506-54511.	1.7	19
480	Lattice-free prediction of three-dimensional structure of programmed DNA assemblies. Nature Communications, 2014, 5, 5578.	5.8	101

#	Article	IF	CITATIONS
481	Preparation of Chemically Modified RNA Origami Nanostructures. Chemistry - A European Journal, 2014, 20, 15330-15333.	1.7	52
482	Synthesis of Eight-Arm, Branched Oligonucleotide Hybrids and Studies on the Limits of DNA-Driven Assembly. Journal of Organic Chemistry, 2014, 79, 11558-11566.	1.7	19
483	Helical DNA Origami Tubular Structures with Various Sizes and Arrangements. Angewandte Chemie - International Edition, 2014, 53, 7484-7490.	7.2	22
484	A Facile Method for Preparation of Tailored Scaffolds for DNAâ€Origami. Small, 2014, 10, 73-77.	5.2	44
485	Assembly of Barcodeâ€like Nucleic Acid Nanostructures. Small, 2014, 10, 3923-3926.	5.2	5
486	Sensing Viruses by Mechanical Tension of DNA in Responsive Hydrogels. Physical Review X, 2014, 4, .	2.8	21
487	Optimized Assembly and Covalent Coupling of Single-Molecule DNA Origami Nanoarrays. ACS Nano, 2014, 8, 12030-12040.	7.3	105
488	Singleâ€Molecule Mechanochemical Sensing Using DNA Origami Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 8137-8141.	7.2	74
490	DNA Nanotechnology: From Biology and Beyond. Nucleic Acids and Molecular Biology, 2014, , 135-169.	0.2	2
491	Gold Nanoparticle 3Dâ€DNA Building Blocks: High Purity Preparation and Use for Modular Access to Nanoparticle Assemblies. Small, 2014, 10, 660-666.	5.2	42
492	A protein adaptor to locate a functional protein dimer on molecular switchboard. Methods, 2014, 67, 142-150.	1.9	28
493	Design and application of multifunctional DNA nanocarriers for therapeutic delivery. Acta Biomaterialia, 2014, 10, 1683-1691.	4.1	39
494	Ultrasensitive electrochemical cocaine biosensor based on reversible DNA nanostructure. Biosensors and Bioelectronics, 2014, 51, 191-194.	5.3	43
495	DNA from natural sources in design of functional devices. Methods, 2014, 67, 105-115.	1.9	6
496	Universal computing by DNA origami robots in a living animal. Nature Nanotechnology, 2014, 9, 353-357.	15.6	334
497	Polyhedra Self-Assembled from DNA Tripods and Characterized with 3D DNA-PAINT. Science, 2014, 344, 65-69.	6.0	299
498	Helical nanostructures based on DNA self-assembly. Nanoscale, 2014, 6, 9331.	2.8	27
499	Directed Selfâ€Assembly of DNA Tiles into Complex Nanocages. Angewandte Chemie - International Edition, 2014, 53, 8041-8044.	7.2	66

#	ARTICLE	IF	CITATIONS
500	Sequence-specific recognition of DNA nanostructures. Methods, 2014, 67, 123-133.	1.9	10
501	3D plasmonic chiral colloids. Nanoscale, 2014, 6, 2077.	2.8	98
502	Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT. Nature Methods, 2014, 11, 313-318.	9.0	881
503	Voltage-Dependent Properties of DNA Origami Nanopores. Nano Letters, 2014, 14, 1270-1274.	4.5	58
504	DNA Origami Structures Directly Assembled from Intact Bacteriophages. Small, 2014, 10, 1765-1769.	5.2	39
505	Learning from nature – Novel synthetic biology approaches for biomaterial design. Acta Biomaterialia, 2014, 10, 1761-1769.	4.1	57
506	DNA Origami Compliant Nanostructures with Tunable Mechanical Properties. ACS Nano, 2014, 8, 27-34.	7.3	114
507	Towards XNA nanotechnology: new materials from synthetic genetic polymers. Trends in Biotechnology, 2014, 32, 321-328.	4.9	110
508	A versatile framework for microbial engineering using synthetic non-coding RNAs. Nature Reviews Microbiology, 2014, 12, 341-354.	13.6	126
509	Virus-Inspired Membrane Encapsulation of DNA Nanostructures To Achieve <i>In Vivo</i> Stability. ACS Nano, 2014, 8, 5132-5140.	7.3	429
510	DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering. Nature Communications, 2014, 5, 3448.	5.8	377
511	DNA based strategy to nanoparticle superlattices. Methods, 2014, 67, 215-226.	1.9	12
512	DNA origami–based standards for quantitative fluorescence microscopy. Nature Protocols, 2014, 9, 1367-1391.	5.5	147
513	Modeling and additive manufacturing of bio-inspired composites with tunable fracture mechanical properties. Soft Matter, 2014, 10, 4436.	1.2	111
514	Large-scale de novo DNA synthesis: technologies and applications. Nature Methods, 2014, 11, 499-507.	9.0	644
516	Single Molecule Visualization and Characterization of Sox2–Pax6 Complex Formation on a Regulatory DNA Element Using a DNA Origami Frame. Nano Letters, 2014, 14, 2286-2292.	4.5	38
517	Plasmonic DNA-Origami Nanoantennas for Surface-Enhanced Raman Spectroscopy. Nano Letters, 2014, 14, 2914-2919.	4.5	187
518	Hierarchical assembly of metal nanoparticles, quantum dots and organic dyes using DNA origami scaffolds. Nature Nanotechnology, 2014, 9, 74-78.	15.6	417

#	Article	IF	CITATIONS
519	Single-Molecule Fluorescence and in Vivo Optical Traps: How Multiple Dyneins and Kinesins Interact. Chemical Reviews, 2014, 114, 3335-3352.	23.0	29
520	DNA Nanocages Swallow Gold Nanoparticles (AuNPs) to Form AuNP@DNA Cage Core–Shell Structures. ACS Nano, 2014, 8, 1130-1135.	7.3	87
521	Disruption of Helix-Capping Residues 671 and 674 Reveals a Role in HIV-1 Entry for a Specialized Hinge Segment of the Membrane Proximal External Region of gp41. Journal of Molecular Biology, 2014, 426, 1095-1108.	2.0	34
522	Nucleic Acid Nanotechnology. Nucleic Acids and Molecular Biology, 2014, , .	0.2	5
523	Fluorescence resonance energy transfer between green fluorescent protein and doxorubicin enabled by DNA nanotechnology. Electrophoresis, 2014, 35, 3290-3301.	1.3	8
524	Environmentally friendly synthesis of noble metal nanoparticles assisted by biodegradable dextranâ€graftâ€lactone copolymers. Polymers for Advanced Technologies, 2014, 25, 372-379.	1.6	7
525	Programmable energy landscapes for kinetic control of DNA strand displacement. Nature Communications, 2014, 5, 5324.	5.8	172
526	Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science, 2014, 346, 1256272.	6.0	253
527	Large Compound Vesicles from Amphiphilic Block Copolymer/Rigid-Rod Conjugated Polymer Complexes. Journal of Physical Chemistry B, 2014, 118, 12796-12803.	1.2	15
528	Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions. Angewandte Chemie - International Edition, 2014, 53, 12735-12740.	7.2	220
529	Approaching the Limit: Can One DNA Strand Assemble into Defined Nanostructures?. Langmuir, 2014, 30, 5859-5862.	1.6	23
530	Synthesis of Bioconjugated <i>sym</i> -Pentasubstituted Corannulenes: Experimental and Theoretical Investigations of Supramolecular Architectures. Bioconjugate Chemistry, 2014, 25, 115-128.	1.8	28
531	Controlled Growth of DNA Structures From Repeating Units Using the Vernier Mechanism. Biomacromolecules, 2014, 15, 3002-3008.	2.6	7
532	Layered graphene nanostructures functionalized with NH2-rich polyelectrolytes through self-assembly: construction and their application in trace Cu(ii) detection. Journal of Materials Chemistry B, 2014, 2, 2212.	2.9	36
533	DNA brick crystals with prescribed depths. Nature Chemistry, 2014, 6, 994-1002.	6.6	182
534	DNA origami nanopores: developments, challenges and perspectives. Nanoscale, 2014, 6, 14121-14132.	2.8	63
535	Self-assembly of two-dimensional DNA origami lattices using cation-controlled surface diffusion. Nature Communications, 2014, 5, 4889.	5.8	147
536	Conductive porphyrin helix from ternary self-assembly systems. Chemical Communications, 2014, 50, 13537-13539.	2.2	14

#	ARTICLE	IF	CITATIONS
537	Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends in Biotechnology, 2014, 32, 448-455.	4.9	81
538	Building Polyhedra by Self-Assembly: Theory and Experiment. Artificial Life, 2014, 20, 409-439.	1.0	15
539	Engineered Peptides for Nanohybrid Assemblies. Langmuir, 2014, 30, 2137-2143.	1.6	12
540	Complex Reconfiguration of DNA Nanostructures. Angewandte Chemie - International Edition, 2014, 53, 7475-7479.	7.2	21
541	Robustness of Localized DNA Strand Displacement Cascades. ACS Nano, 2014, 8, 8487-8496.	7.3	81
542	Casting inorganic structures with DNA molds. Science, 2014, 346, 1258361.	6.0	251
544	Multicomponent nanoarchitectures for the design of optical sensing and diagnostic tools. RSC Advances, 2014, 4, 916-942.	1.7	25
545	Quantifying quality in DNA self-assembly. Nature Communications, 2014, 5, 3691.	5.8	37
547	Multiple DNA Architectures with the Participation of Inorganic Metal Ions. ACS Applied Materials & Lamp; Interfaces, 2014, 6, 14919-14922.	4.0	6
548	Load Capacity Improvements in Nucleic Acid Based Systems Using Partially Open Feedback Control. ACS Synthetic Biology, 2014, 3, 617-626.	1.9	4
549	Single-Molecule Positioning in Zeromode Waveguides by DNA Origami Nanoadapters. Nano Letters, 2014, 14, 3499-3503.	4.5	42
550	DNA Nanostructureâ€Based Imaging Probes and Drug Carriers. ChemMedChem, 2014, 9, 2013-2020.	1.6	25
551	lonic Permeability and Mechanical Properties of DNA Origami Nanoplates on Solid-State Nanopores. ACS Nano, 2014, 8, 35-43.	7.3	78
552	Engineering Aqueous Fiber Assembly into Silkâ€Elastinâ€Like Protein Polymers. Macromolecular Rapid Communications, 2014, 35, 1273-1279.	2.0	15
553	A lock-and-key mechanism for the controllable fabrication of DNA origami structures. Chemical Communications, 2014, 50, 8743.	2.2	10
554	A DNA Origami Nanorobot Controlled by Nucleic Acid Hybridization. Small, 2014, 10, 2918-2926.	5.2	47
555	Self-assembly of hard helices: a rich and unconventional polymorphism. Soft Matter, 2014, 10, 8171-8187.	1.2	37
556	High precision and high yield fabrication of dense nanoparticle arrays onto DNA origami at statistically independent binding sites. Nanoscale, 2014, 6, 13928-13938.	2.8	29

#	Article	IF	CITATIONS
557	Nanoscale topographical replication of graphene architecture by artificial DNA nanostructures. Applied Physics Letters, 2014, 104, .	1.5	7
558	Addressing the Instability of DNA Nanostructures in Tissue Culture. ACS Nano, 2014, 8, 8765-8775.	7. 3	311
559	Design of nanostructures based on aromatic peptide amphiphiles. Chemical Society Reviews, 2014, 43, 8150-8177.	18.7	690
560	DNAâ€ŧemplated lithography and nanofabrication for the fabrication of nanoscale electronic circuitry. Critical Reviews in Analytical Chemistry, 2014, 44, 354-370.	1.8	25
561	Assembly of Multiple DNA Components through Target Binding toward Homogeneous, Isothermally Amplified, and Specific Detection of Proteins. Analytical Chemistry, 2014, 86, 7009-7016.	3.2	33
562	Structural DNA Nanotechnology: State of the Art and Future Perspective. Journal of the American Chemical Society, 2014, 136, 11198-11211.	6.6	492
563	Prediction of the structure of a silk-like protein in oligomeric states using explicit and implicit solvent models. Soft Matter, 2014, 10, 5362.	1.2	11
564	Structure and Shape Effects of Molecular Glue on Supramolecular Tubulin Assemblies. ACS Nano, 2014, 8, 904-914.	7.3	39
565	Shape-Controlled Synthesis of Gold Nanostructures Using DNA Origami Molds. Nano Letters, 2014, 14, 6693-6698.	4.5	133
566	Simulating a burnt-bridges DNA motor with a coarse-grained DNA model. Natural Computing, 2014, 13, 535-547.	1.8	30
567	Complex self-assembly of pyrimido [4,5-d] pyrimidine nucleoside supramolecular structures. Nature Communications, 2014, 5, 3108.	5.8	46
569	Developmental Self-Assembly of a DNA Tetrahedron. ACS Nano, 2014, 8, 3251-3259.	7.3	97
570	From Cascaded Catalytic Nucleic Acids to Enzyme–DNA Nanostructures: Controlling Reactivity, Sensing, Logic Operations, and Assembly of Complex Structures. Chemical Reviews, 2014, 114, 2881-2941.	23.0	573
571	Engineering DNA Self-Assemblies as Templates for Functional Nanostructures. Accounts of Chemical Research, 2014, 47, 1654-1662.	7.6	101
572	Reconfigurable 3D plasmonic metamolecules. Nature Materials, 2014, 13, 862-866.	13.3	585
573	DNA Nanoarchitectures: Steps towards Biological Applications. ChemBioChem, 2014, 15, 1374-1390.	1.3	35
574	Spatial control of membrane receptor function using ligand nanocalipers. Nature Methods, 2014, 11, 841-846.	9.0	223
575	A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems. , 2014, , .		0

#	Article	IF	CITATIONS
576	Small Circular DNA Molecules Act as Rigid Motifs To Build DNA Nanotubes. Journal of the American Chemical Society, 2014, 136, 10194-10197.	6.6	42
577	Predictive evaluation for the preparation of a synthetic Y-shaped DNA nanostructure. Biotechnology and Bioprocess Engineering, 2014, 19, 262-268.	1.4	1
578	Self-assembled bionanostructures: proteins following the lead of DNA nanostructures. Journal of Nanobiotechnology, 2014, 12, 4.	4.2	44
579	Single Molecule Characterization of DNA Binding and Strand Displacement Reactions on Lithographic DNA Origami Microarrays. Nano Letters, 2014, 14, 1627-1633.	4.5	54
580	Topography-controlled alignment of DNA origami nanotubes on nanopatterned surfaces. Nanoscale, 2014, 6, 1790-1796.	2.8	44
581	Shape-Controlled Nanofabrication of Conducting Polymer on Planar DNA Templates. Chemistry of Materials, 2014, 26, 3364-3367.	3.2	66
582	Toward quantitative fluorescence microscopy with DNA origami nanorulers. Methods in Cell Biology, 2014, 123, 449-466.	0.5	13
583	Surfaceâ€Assisted Largeâ€Scale Ordering of DNA Origami Tiles. Angewandte Chemie - International Edition, 2014, 53, 7665-7668.	7.2	152
584	Virus-Encapsulated DNA Origami Nanostructures for Cellular Delivery. Nano Letters, 2014, 14, 2196-2200.	4.5	254
585	Refilling drug delivery depots through the blood. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12722-12727.	3.3	84
586	Selfâ€Assembled Silver Nanoparticles in a Bowâ€Tie Antenna Configuration. Small, 2014, 10, 1057-1062.	5.2	18
587	Singleâ€enzyme kinetics with fluorogenic substrates: lessons learnt and future directions. FEBS Letters, 2014, 588, 3553-3563.	1.3	15
588	Aptamer-Targeted DNA Nanostructures for Therapeutic Delivery. Molecular Pharmaceutics, 2014, 11, 1721-1725.	2.3	114
589	Quantification of cellular uptake of DNA nanostructures by qPCR. Methods, 2014, 67, 193-197.	1.9	54
590	Precise organization of metal nanoparticles on DNA origami template. Methods, 2014, 67, 205-214.	1.9	39
591	Search methods for tile sets in patterned DNA self-assembly. Journal of Computer and System Sciences, 2014, 80, 297-319.	0.9	17
592	Structural DNA Nanotechnology for Intelligent Drug Delivery. Small, 2014, 10, 4626-4635.	5. 2	101
593	Site-Specific Metallization of Multiple Metals on a Single DNA Origami Template. Langmuir, 2014, 30, 1134-1141.	1.6	44

#	Article	IF	CITATIONS
594	Nanopores formed by DNA origami: A review. FEBS Letters, 2014, 588, 3564-3570.	1.3	72
595	The Predictive Power of Synthetic Nucleic Acid Technologies in RNA Biology. Accounts of Chemical Research, 2014, 47, 1710-1719.	7.6	12
596	<i>In Silico</i> Design and Enzymatic Synthesis of Functional RNA Nanoparticles. Accounts of Chemical Research, 2014, 47, 1731-1741.	7.6	80
597	Wireframe and Tensegrity DNA Nanostructures. Accounts of Chemical Research, 2014, 47, 1691-1699.	7.6	72
598	From Nonfinite to Finite 1D Arrays of Origami Tiles. Accounts of Chemical Research, 2014, 47, 1750-1758.	7.6	12
599	Developing DNA Nanotechnology Using Single-Molecule Fluorescence. Accounts of Chemical Research, 2014, 47, 1789-1798.	7.6	36
600	Scaffolding along Nucleic Acid Duplexes Using 2′-Amino-Locked Nucleic Acids. Accounts of Chemical Research, 2014, 47, 1768-1777.	7.6	61
601	DNA Nanostructures Interacting with Lipid Bilayer Membranes. Accounts of Chemical Research, 2014, 47, 1807-1815.	7.6	142
602	State-of-the-Art High-Speed Atomic Force Microscopy for Investigation of Single-Molecular Dynamics of Proteins. Chemical Reviews, 2014, 114, 1493-1520.	23.0	78
603	Nanomechanical Molecular Devices made of DNA Origami. Accounts of Chemical Research, 2014, 47, 1742-1749.	7.6	74
604	A brief review of methods for terminal functionalization of DNA. Methods, 2014, 67, 116-122.	1.9	27
605	Phage-based nanomaterials for biomedical applications. Acta Biomaterialia, 2014, 10, 1741-1750.	4.1	48
606	Modelling of high-symmetry nanoscale particles by small-angle scattering. Journal of Applied Crystallography, 2014, 47, 84-94.	1.9	13
607	Chiral Nanostructures with Plasmon and Exciton Resonances. , 2014, , 1-55.		1
608	Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions. Angewandte Chemie, 2014, 126, 12949-12954.	1.6	41
609	When excitons and plasmons meet: Emerging function through synthesis and assembly. MRS Bulletin, 2015, 40, 768-776.	1.7	14
610	Self-assembly formed by a short DNA probe pair: Application for highly sensitive mRNA species detection without reverse transcription. Biochemical and Biophysical Research Communications, 2015, 467, 1012-1018.	1.0	2
611	The Kinematic Principle for Designing DNA Origami Mechanisms: Challenges and Opportunities. , 2015, , .		1

#	Article	IF	CITATIONS
612	Alternative DNA Structures, Switches and Nanomachines. , 2015, , 329-490.		0
613	An elementary singularity-free Rotational Brownian Dynamics algorithm for anisotropic particles. Journal of Chemical Physics, 2015, 142, 114103.	1.2	25
615	Introducing improved structural properties and salt dependence into a coarse-grained model of DNA. Journal of Chemical Physics, 2015, 142, 234901.	1.2	267
616	One-step large-scale deposition of salt-free DNA origami nanostructures. Scientific Reports, 2015, 5, 15634.	1.6	54
617	Enzyme-guided DNA Sewing Architecture. Scientific Reports, 2015, 5, 17722.	1.6	7
618	Scalable amplification of strand subsets from chip-synthesized oligonucleotide libraries. Nature Communications, 2015, 6, 8634.	5.8	80
619	Modelling DNA origami self-assembly at the domain level. Journal of Chemical Physics, 2015, 143, 165102.	1.2	28
620	Meshing complex macro-scale objects into self-assembling bricks. Scientific Reports, 2015, 5, 12257.	1.6	13
621	Scalable lithography from Natural DNA Patterns via polyacrylamide gel. Scientific Reports, 2015, 5, 17872.	1.6	2
623	DNA origami and DNA bricks. , 0, , 150-171.		0
624	Self-assembly of Complex Two-dimensional Shapes from Single-stranded DNA Tiles. Journal of Visualized Experiments, 2015, , e52486.	0.2	4
625	Folding and Characterization of a Bio-responsive Robot from DNA Origami. Journal of Visualized Experiments, 2015, , e51272.	0.2	3
626	Selfâ€assembly of Micrometerâ€long DNA Nanoribbons with Four Oligonucleotides. Chinese Journal of Chemistry, 2015, 33, 522-526.	2.6	2
627	Nanomanufacturing of 2D Transition Metal Dichalcogenide Materials Using Self-Assembled DNA Nanotubes. Small, 2015, 11, 5520-5527.	5. 2	29
630	A Case Study of the Likes and Dislikes of DNA and RNA in Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 15118-15121.	7.2	9
631	A Compact DNA Cube with Side Length 10 nm. Small, 2015, 11, 5200-5205.	5.2	22
632	Sequence-dependent structural changes in a self-assembling DNA oligonucleotide. Acta Crystallographica Section D: Biological Crystallography, 2015, 71, 2471-2478.	2.5	6
633	Advances in Functional Assemblies for Regenerative Medicine. Advanced Healthcare Materials, 2015, 4, 2500-2519.	3.9	4

#	Article	IF	Citations
636	Bottomâ€Up Construction of Mesoporous Nanotubes from 78â€Component Selfâ€Assembled Nanobarrels. Angewandte Chemie - International Edition, 2015, 54, 9844-9848.	7.2	36
637	Câ€5 Propynyl Modifications Enhance the Mechanical Stability of DNA. ChemPhysChem, 2015, 16, 2085-2090.	1.0	6
638	Probing the role of sequence in the assembly of threeâ€dimensional DNA crystals. Biopolymers, 2015, 103, 618-626.	1.2	9
640	Pseudo-Rigid-Body Models of Compliant DNA Origami Mechanisms. , 2015, , .		1
641	Connecting DNA origami structures using the biotin-streptavidin specific binding. African Journal of Biotechnology, 2015, 14, 2258-2264.	0.3	3
642	Nanoparticle Drug Delivery Systems Designed to Improve Cancer Vaccines and Immunotherapy. Vaccines, 2015, 3, 662-685.	2.1	225
643	Comparative Incorporation of PNA into DNA Nanostructures. Molecules, 2015, 20, 17645-17658.	1.7	13
644	DNA-Protected Silver Clusters for Nanophotonics. Nanomaterials, 2015, 5, 180-207.	1.9	105
645	DNA under Force: Mechanics, Electrostatics, and Hydration. Nanomaterials, 2015, 5, 246-267.	1.9	28
646	Multifunctional DNA Nanomaterials for Biomedical Applications. Journal of Nanomaterials, 2015, 2015, 1-21.	1.5	24
647	Meltables., 2015,,.		8
649	Plasmon resonance tuning using DNA origami actuation. Chemical Communications, 2015, 51, 4789-4792.	2.2	22
650	Efficient Production of Single-Stranded Phage DNA as Scaffolds for DNA Origami. Nano Letters, 2015, 15, 4672-4676.	4.5	100
651	Spatial regulation of synthetic and biological nanoparticles by DNA nanotechnology. NPG Asia Materials, 2015, 7, e161-e161.	3.8	21
652	Optimizing gold nanoparticle seeding density on DNA origami. RSC Advances, 2015, 5, 8134-8141.	1.7	19
653	Topological energy storage of work generated by nanomotors. Soft Matter, 2015, 11, 732-740.	1.2	6
654	Fabrication of multi-layered DNA nanostructures using single-strand and double-crossover tile connectors. RSC Advances, 2015, 5, 43234-43241.	1.7	6
656	Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nature Nanotechnology, 2015, 10, 637-644.	15.6	243

#	Article	IF	CITATIONS
657	Custom-shaped metal nanostructures based on DNA origami silhouettes. Nanoscale, 2015, 7, 11267-11272.	2.8	57
658	Use DNA origami as a scaffold for self-assembly of optical metamolecules. , 2015, , .		0
659	Introduction: Overview of DNA Origami as Biomaterials and Application. Springer Theses, 2015, , 1-19.	0.0	0
660	Artificially Controllable Nanodevices Constructed by DNA Origami Technology. Springer Theses, 2015,	0.0	1
661	Recent advances of DNA sequencing via nanopore-based technologies. Science Bulletin, 2015, 60, 287-295.	4.3	21
662	Bioactive DNA-Peptide Nanotubes Enhance the Differentiation of Neural Stem Cells Into Neurons. Nano Letters, 2015, 15, 603-609.	4.5	123
663	Low-cost fabrication technologies for nanostructures: state-of-the-art and potential. Nanotechnology, 2015, 26, 042001.	1.3	64
664	Programmable motion of DNA origami mechanisms. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 713-718.	3.3	341
665	A modular DNA origami-based enzyme cascade nanoreactor. Chemical Communications, 2015, 51, 5351-5354.	2.2	183
666	DNA-Assembled Nanoparticle Rings Exhibit Electric and Magnetic Resonances at Visible Frequencies. Nano Letters, 2015, 15, 1368-1373.	4.5	105
667	Light sensitization of DNA nanostructures via incorporation of photo-cleavable spacers. Chemical Communications, 2015, 51, 5747-5750.	2.2	46
668	Torque Spectroscopy for the Study of Rotary Motion in Biological Systems. Chemical Reviews, 2015, 115, 1449-1474.	23.0	65
669	Directed Enzymatic Activation of 1-D DNA Tiles. ACS Nano, 2015, 9, 1072-1079.	7.3	5
670	Far-Field Optical Nanoscopy. Springer Series on Fluorescence, 2015, , .	0.8	9
671	Mechanistic Study of the Nanoscale Negative-Tone Pattern Transfer from DNA Nanostructures to SiO ₂ . Chemistry of Materials, 2015, 27, 1692-1698.	3.2	25
672	Excitonic AND Logic Gates on DNA Brick Nanobreadboards. ACS Photonics, 2015, 2, 398-404.	3.2	73
673	Enzymatic Synthesis of Periodic DNA Nanoribbons for Intracellular pH Sensing and Gene Silencing. Journal of the American Chemical Society, 2015, 137, 3844-3851.	6.6	113
674	Direct Design of an Energy Landscape with Bistable DNA Origami Mechanisms. Nano Letters, 2015, 15, 1815-1821.	4.5	61

#	Article	IF	CITATIONS
675	Velocity of DNA during Translocation through a Solid-State Nanopore. Nano Letters, 2015, 15, 732-737.	4.5	98
676	Programmable materials and the nature of the DNA bond. Science, 2015, 347, 1260901.	6.0	1,141
677	lonic Conductivity, Structural Deformation, and Programmable Anisotropy of DNA Origami in Electric Field. ACS Nano, 2015, 9, 1420-1433.	7.3	86
678	Reversible Reconfiguration of DNA Origami Nanochambers Monitored by Singleâ€Molecule FRET. Angewandte Chemie - International Edition, 2015, 54, 3592-3597.	7.2	39
679	Atomically Precise Arrays of Fluorescent Silver Clusters: A Modular Approach for Metal Cluster Photonics on DNA Nanostructures. ACS Nano, 2015, 9, 2303-2310.	7.3	71
680	Multifarious assembly mixtures: Systems allowing retrieval of diverse stored structures. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 54-59.	3.3	52
681	Dielectrophoretic trapping of multilayer DNA origami nanostructures and DNA origamiâ€induced local destruction of silicon dioxide. Electrophoresis, 2015, 36, 255-262.	1.3	31
682	Functionalization of quantum rods with oligonucleotides for programmable assembly with DNA origami. Nanoscale, 2015, 7, 2883-2888.	2.8	19
683	DNA based multi-copper ions assembly using combined pyrazole and salen ligandosides. Chemical Science, 2015, 6, 632-638.	3.7	42
684	Fabrication of DNA nanotubes using origami-based nanostructures with sticky ends. Journal of Nanostructure in Chemistry, 2015, 5, 177-183.	5. 3	8
685	Nanoparticle-based autoimmune disease therapy. Clinical Immunology, 2015, 160, 3-13.	1.4	84
686	Polar organic solvents accelerate the rate of DNA strand replacement reaction. Analyst, The, 2015, 140, 2023-2028.	1.7	10
687	Local Heat Activation of Single Myosins Based on Optical Trapping of Gold Nanoparticles. Nano Letters, 2015, 15, 2456-2461.	4. 5	30
688	Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst, The, 2015, 140, 5821-5848.	1.7	33
689	Designing three-dimensional ordered structures from directed self-assembly of block copolymer films in topographical templates. Polymer, 2015, 72, 10-20.	1.8	12
690	DNA-Based Self-Assembly of Fluorescent Nanodiamonds. Journal of the American Chemical Society, 2015, 137, 9776-9779.	6.6	66
691	DNA Nanostructures as Programmable Biomolecular Scaffolds. Bioconjugate Chemistry, 2015, 26, 1381-1395.	1.8	134
692	Dielectric Elastomers. , 2015, , 568-576.		0

#	Article	IF	CITATIONS
693	Stability study of tubular DNA origami in the presence of protein crystallisation buffer. RSC Advances, 2015, 5, 58734-58737.	1.7	30
694	Surface enhanced Raman scattering based molecule detection using self-assembled DNA nanostructures. Current Applied Physics, 2015, 15, 1032-1035.	1.1	3
695	Photocontrolled micellar aggregation of amphiphilic DNA-azobenzene conjugates. Colloids and Surfaces B: Biointerfaces, 2015, 135, 126-132.	2. 5	11
696	Complex wireframe DNA origami nanostructures with multi-arm junction vertices. Nature Nanotechnology, 2015, 10, 779-784.	15.6	349
698	Pathfinder for DNA constructs. Nature, 2015, 523, 412-413.	13.7	3
699	DNA rendering of polyhedral meshes at the nanoscale. Nature, 2015, 523, 441-444.	13.7	576
700	Electron Microscopic Visualization of Protein Assemblies on Flattened DNA Origami. ACS Nano, 2015, 9, 7133-7141.	7.3	20
701	Controlling Hybridization Chain Reactions with pH. Nano Letters, 2015, 15, 5539-5544.	4.5	49
702	RNA and DNA Diagnostics. RNA Technologies, 2015, , .	0.2	5
703	DNA-based plasmonic nanostructures. Materials Today, 2015, 18, 326-335.	8.3	68
704	Low-temperature solvothermal synthesis of hierarchical flower-like WO ₃ nanostructures and their sensing properties for H ₂ S. CrystEngComm, 2015, 17, 5710-5716.	1.3	63
705	Folding and Imaging of DNA Nanostructures in Anhydrous and Hydrated Deepâ€Eutectic Solvents. Angewandte Chemie - International Edition, 2015, 54, 6765-6769.	7.2	65
706	Tunable optical activity of plasmonic dimers assembled by DNA origami. Nanoscale, 2015, 7, 9147-9152.	2.8	29
708	Modelling Toehold-Mediated RNA Strand Displacement. Biophysical Journal, 2015, 108, 1238-1247.	0.2	54
709	Computational and Experimental Studies of Reassociating RNA/DNA Hybrids Containing Split Functionalities. Methods in Enzymology, 2015, 553, 313-334.	0.4	12
710	Amphipathic DNA Origami Nanoparticles to Scaffold and Deform Lipid Membrane Vesicles. Angewandte Chemie - International Edition, 2015, 54, 6501-6505.	7.2	107
711	Prospects for using self-assembled nucleic acid structures. Biochemistry (Moscow), 2015, 80, 391-399.	0.7	3
712	Purification of Functionalized DNA Origami Nanostructures. ACS Nano, 2015, 9, 4968-4975.	7.3	102

#	ARTICLE	IF	CITATIONS
713	Multiplexed DNA detection based on positional encoding/decoding with self-assembled DNA nanostructures. Chemical Science, 2015, 6, 930-934.	3.7	15
714	Exploiting weak interactions in DNA self-assembly. Science, 2015, 347, 1417-1418.	6.0	10
715	Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components. Science, 2015, 347, 1446-1452.	6.0	577
716	Ab initio calculation of the neutron-proton mass difference. Science, 2015, 347, 1452-1455.	6.0	263
717	Membrane-Assisted Growth of DNA Origami Nanostructure Arrays. ACS Nano, 2015, 9, 3530-3539.	7.3	151
718	Defect-Tolerant Bioinspired Hierarchical Composites: Simulation and Experiment. ACS Biomaterials Science and Engineering, 2015, 1, 295-304.	2.6	75
719	Nanoparticle strategies for cancer therapeutics: Nucleic acids, polyamines, bovine serum amine oxidase and iron oxide nanoparticles (Review). International Journal of Oncology, 2015, 46, 5-16.	1.4	45
720	Designing ordered nucleic acid self-assembly processes. Current Opinion in Structural Biology, 2015, 31, 57-63.	2.6	2
721	Self-assembled multifunctional DNA nanospheres for biosensing and drug delivery into specific target cells. Nanoscale, 2015, 7, 7361-7367.	2.8	41
722	Diffusive Transport of Molecular Cargo Tethered to a DNA Origami Platform. Nano Letters, 2015, 15, 2693-2699.	4.5	46
723	DNA nanotubes as intracellular delivery vehicles inÂvivo. Biomaterials, 2015, 53, 453-463.	5.7	98
724	DNA Nanostructures as Smart Drug-Delivery Vehicles and Molecular Devices. Trends in Biotechnology, 2015, 33, 586-594.	4.9	216
725	Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures. Nature Communications, 2015, 6, 8052.	5.8	176
726	From Ribbons to Networks: Hierarchical Organization of DNA-Grafted Supramolecular Polymers. Journal of the American Chemical Society, 2015, 137, 14051-14054.	6.6	50
727	Cooperativity-based modeling of heterotypic DNA nanostructure assembly. Nucleic Acids Research, 2015, 43, 6587-6595.	6.5	7
728	Characterizing the bending and flexibility induced by bulges in DNA duplexes. Journal of Chemical Physics, 2015, 142, 165101.	1.2	16
729	Application of Nanoparticles in Manufacturing. , 2015, , 1-53.		4
730	Protein nanorings organized by poly(styrene-block-ethylene oxide) self-assembled thin films. Nanoscale, 2015, 7, 19940-19948.	2.8	11

#	Article	IF	Citations
731	A plasmonic nanorod that walks on DNA origami. Nature Communications, 2015, 6, 8102.	5.8	257
732	Guiding the folding pathway of DNA origami. Nature, 2015, 525, 82-86.	13.7	146
733	Routing of individual polymers in designed patterns. Nature Nanotechnology, 2015, 10, 892-898.	15.6	189
734	Computational Approaches to Nucleic Acid Origami. ACS Combinatorial Science, 2015, 17, 535-547.	3.8	22
735	Dendrimers and Hyperbranched Polymers in Medicine. , 2015, , 534-540.		1
736	Size-controllable DNA nanoribbons assembled from three types of reusable brick single-strand DNA tiles. Soft Matter, 2015, 11, 8484-8492.	1.2	18
737	DNA origami based assembly of gold nanoparticle dimers for SERS detection. Proceedings of SPIE, 2015,	0.8	1
738	Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions. Nature Communications, 2015, 6, 8127.	5.8	93
739	Computational design of co-assembling protein–DNA nanowires. Nature, 2015, 525, 230-233.	13.7	77
740	Designing DNA nanodevices for compatibility with the immune system of higher organisms. Nature Nanotechnology, 2015, 10, 741-747.	15.6	203
741	DNA nanotechnology from the test tube to the cell. Nature Nanotechnology, 2015, 10, 748-760.	15.6	501
742	Sensing beyond the limit. Nature Nanotechnology, 2015, 10, 734-735.	15.6	22
743	DNA origami rewired. Nature Nanotechnology, 2015, 10, 733-734.	15.6	3
744	Probabilistic Analysis of Localized DNA Hybridization Circuits. ACS Synthetic Biology, 2015, 4, 898-913.	1.9	32
745	DNA nanotechnology: understanding and optimisation through simulation. Molecular Physics, 2015, 113, 1-15.	0.8	34
746	Deadly DNA. Nature Chemistry, 2015, 7, 17-18.	6.6	4
747	Systems and Synthetic Biology., 2015,,.		7
748	Triggering of RNA Interference with RNA–RNA, RNA–DNA, and DNA–RNA Nanoparticles. ACS Nano, 2015, 9, 251-259.	7.3	100

#	ARTICLE	IF	CITATIONS
749	Preparation and Selfâ€folding of Amphiphilic DNA Origami. Small, 2015, 11, 1161-1164.	5.2	15
751	"Postâ€It―Type Connected DNA Created with a Reversible Covalent Crossâ€Link. Angewandte Chemie - International Edition, 2015, 54, 796-800.	7.2	28
752	A restriction enzyme-powered autonomous DNA walking machine: its application for a highly sensitive electrochemiluminescence assay of DNA. Nanoscale, 2015, 7, 981-986.	2.8	42
7 53	Isothermal DNA origami folding: avoiding denaturing conditions for one-pot, hybrid-component annealing. Nanoscale, 2015, 7, 2102-2106.	2.8	22
754	Assembly of RNA nanostructures on supported lipid bilayers. Nanoscale, 2015, 7, 583-596.	2.8	20
755	Constructing Higher-Order DNA Nanoarchitectures with Highly Purified DNA Nanocages. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13174-13179.	4.0	37
756	Synthesis of 3D hierarchical porous iron oxides for adsorption of Congo red from dye wastewater. Journal of Alloys and Compounds, 2015, 622, 587-595.	2.8	67
757	A Bipedal DNA Motor that Travels Back and Forth between Two DNA Origami Tiles. Small, 2015, 11, 568-575.	5.2	61
758	DNA Origami Reorganizes upon Interaction with Graphite: Implications for High-Resolution DNA Directed Protein Patterning. Nanomaterials, 2016, 6, 196.	1.9	10
759	DNA Modified with Metal Nanoparticles: Preparation and Characterization of Ordered Metal-DNA Nanostructures in a Solution and on a Substrate. Journal of Nanomaterials, 2016, 2016, 1-12.	1.5	17
760	Sensitivity Analysis for the Mechanical Properties of DNA Bundles. Journal of Nanomaterials, 2016, 2016, 1-7.	1.5	3
761	Solid-State Nanopore-Based DNA Sequencing Technology. Journal of Nanomaterials, 2016, 2016, 1-13.	1.5	21
762	The role of alkyl substituents in deazaadenine-based diarylethene photoswitches. Beilstein Journal of Organic Chemistry, 2016, 12, 1103-1110.	1.3	21
763	Bottom-Up Synthesis and Sensor Applications of Biomimetic Nanostructures. Materials, 2016, 9, 53.	1.3	49
764	DNA-Based Enzyme Reactors and Systems. Nanomaterials, 2016, 6, 139.	1.9	63
765	Metallic Nanostructures Based on DNA Nanoshapes. Nanomaterials, 2016, 6, 146.	1.9	16
766	Structural Basis for Elastic Mechanical Properties of the DNA Double Helix. PLoS ONE, 2016, 11, e0153228.	1.1	17
767	DNA Nanotechnology for Cancer Therapeutics. Theranostics, 2016, 6, 710-725.	4.6	127

#	Article	IF	Citations
768	Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures. Beilstein Journal of Nanotechnology, 2016, 7, 948-956.	1.5	3
769	Engineering and mapping nanocavity emission via precision placement of DNA origami. Nature, 2016, 535, 401-405.	13.7	213
770	Multifunctional Nanoparticles Selfâ€Assembled from Small Organic Building Blocks for Biomedicine. Advanced Materials, 2016, 28, 7304-7339.	11.1	155
771	Transfer of Twoâ€Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNAâ€Origamiâ€Based Nanoimprinting Lithography. Angewandte Chemie, 2016, 128, 8168-8172.	1.6	14
772	Computerâ€Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes. Angewandte Chemie - International Edition, 2016, 55, 8869-8872.	7.2	53
773	Enhancing DNA Crystal Durability through Chemical Crosslinking. ChemBioChem, 2016, 17, 1163-1170.	1.3	21
774	<scp>DNA</scp> origami and biotechnology applications: a perspective. Journal of Chemical Technology and Biotechnology, 2016, 91, 843-846.	1.6	25
775	DNA Nanotechnology for Precise Control over Drug Delivery and Gene Therapy. Small, 2016, 12, 1117-1132.	5.2	110
776	Suspending DNA Origami Between Four Gold Nanodots. Small, 2016, 12, 169-173.	5.2	7
777	Daunorubicin‣oaded DNA Origami Nanostructures Circumvent Drugâ€Resistance Mechanisms in a Leukemia Model. Small, 2016, 12, 308-320.	5. 2	191
778	Beyond the Fold: Emerging Biological Applications of DNA Origami. ChemBioChem, 2016, 17, 1081-1089.	1.3	79
779	Directing folding pathways for multi-component DNA origami nanostructures with complex topology. New Journal of Physics, 2016, 18, 055005.	1.2	33
780	Transfer of Twoâ€Dimensional Oligonucleotide Patterns onto Stereocontrolled Plasmonic Nanostructures through DNAâ€Origamiâ€Based Nanoimprinting Lithography. Angewandte Chemie - International Edition, 2016, 55, 8036-8040.	7.2	74
781	Conformational Changes and Flexibility of DNA Devices Observed by Small-Angle X-ray Scattering. Nano Letters, 2016, 16, 4871-4879.	4.5	33
782	Mitochondrial Delivery of Therapeutic Agents by Amphiphilic DNA Nanocarriers. Small, 2016, 12, 770-781.	5.2	31
783	Gap-Dependent Coupling of Ag–Au Nanoparticle Heterodimers Using DNA Origami-Based Self-Assembly. ACS Photonics, 2016, 3, 1589-1595.	3.2	75
784	Computerâ€Aided Production of Scaffolded DNA Nanostructures from Flat Sheet Meshes. Angewandte Chemie, 2016, 128, 9015-9018.	1.6	5
785	Investigation of the selfâ€assembly process for discrete and polymerized bivalve DNA origami structures. IEEJ Transactions on Electrical and Electronic Engineering, 2016, 11, S164.	0.8	1

#	Article	IF	Citations
786	Probing Nucleosome Stability with a DNA Origami Nanocaliper. ACS Nano, 2016, 10, 7073-7084.	7.3	90
787	Highly Stable Doubleâ€Stranded DNA Containing Sequential Silver(I)â€Mediated 7â€Deazaadenine/Thymine Watson–Crick Base Pairs. Angewandte Chemie - International Edition, 2016, 55, 6170-6174.	7.2	66
788	Topological DNA Assemblies Containing Identical or Fraternal Twins. ChemBioChem, 2016, 17, 1142-1145.	1.3	3
789	Inâ€Phase Assembly of Slim DNA Lattices with Small Circular DNA Motifs via Short Connections of 11 and 16 Base Pairs. ChemBioChem, 2016, 17, 1132-1137.	1.3	9
790	Phosphoramidate Ligation of Oligonucleotides in Nanoscale Structures. ChemBioChem, 2016, 17, 1150-1155.	1.3	32
791	How Small DNA Minicircles Can Be Applied to Construct DNA Nanotubes?. Chinese Journal of Chemistry, 2016, 34, 326-330.	2.6	5
792	Selfâ€Assembled DNA Nanostructures for Drug Delivery. Chinese Journal of Chemistry, 2016, 34, 265-272.	2.6	18
793	DNA Origami: Folded DNAâ€Nanodevices That Can Direct and Interpret Cell Behavior. Advanced Materials, 2016, 28, 5509-5524.	11.1	54
794	Highly Stable Doubleâ€Stranded DNA Containing Sequential Silver(I)â€Mediated 7â€Deazaadenine/Thymine Watson–Crick Base Pairs. Angewandte Chemie, 2016, 128, 6278-6282.	1.6	31
795	Constructing higher order DNA origami arrays using DNA junctions of anti-parallel/parallel double crossovers. Japanese Journal of Applied Physics, 2016, 55, 06GL04.	0.8	4
796	Pseudorigid-Body Models of Compliant DNA Origami Mechanisms. Journal of Mechanisms and Robotics, 2016, 8, .	1.5	13
797	Uncovering the forces between nucleosomes using DNA origami. Science Advances, 2016, 2, e1600974.	4.7	179
798	Ballistic induced pumping of hypersonic heat current in DNA nano wire. European Physical Journal B, 2016, 89, 1.	0.6	2
799	A programmable DNA origami nanospring that reveals force-induced adjacent binding of myosin VI heads. Nature Communications, 2016, 7, 13715.	5.8	79
800	Investigating the dynamics of surface-immobilized DNA nanomachines. Scientific Reports, 2016, 6, 29581.	1.6	26
801	Folding complex DNA nanostructures from limited sets of reusable sequences. Nucleic Acids Research, 2016, 44, e102-e102.	6.5	19
802	Characterizing DNA Star-Tile-Based Nanostructures Using a Coarse-Grained Model. ACS Nano, 2016, 10, 4236-4247.	7.3	35
803	Designer nanoscale DNA assemblies programmed from the top down. Science, 2016, 352, 1534-1534.	6.0	500

#	Article	IF	CITATIONS
804	Effect of anchor positioning on binding and diffusion of elongated 3D DNA nanostructures on lipid membranes. Journal Physics D: Applied Physics, 2016, 49, 194001.	1.3	31
805	DNA Nanostructures on Membranes as Tools for Synthetic Biology. Biophysical Journal, 2016, 110, 1698-1707.	0.2	7 3
806	In Situ Monitored Self-Assembly of Three-Dimensional Polyhedral Nanostructures. Nano Letters, 2016, 16, 3655-3660.	4.5	23
807	Shape and Interhelical Spacing of DNA Origami Nanostructures Studied by Small-Angle X-ray Scattering. Nano Letters, 2016, 16, 4282-4287.	4.5	70
808	DNA-programmable particle superlattices: Assembly, phases, and dynamic control. MRS Bulletin, 2016, 41, 381-387.	1.7	19
809	Light-Triggered Release of Bioactive Molecules from DNA Nanostructures. Nano Letters, 2016, 16, 2781-2785.	4.5	87
810	A Simple and Fast Semiautomatic Procedure for the Atomistic Modeling of Complex DNA Polyhedra. Journal of Chemical Information and Modeling, 2016, 56, 941-949.	2.5	20
811	Alignment and Graphene-Assisted Decoration of Lyotropic Chromonic Liquid Crystals Containing DNA Origami Nanostructures. Small, 2016, 12, 1658-1666.	5.2	11
812	Use of complementary nucleobase-containing synthetic polymers to prepare complex self-assembled morphologies in water. Polymer Chemistry, 2016, 7, 2836-2846.	1.9	29
813	Nanoparticles and DNA \hat{a} a powerful and growing functional combination in bionanotechnology. Nanoscale, 2016, 8, 9037-9095.	2.8	181
814	Nanoscale rotary apparatus formed from tight-fitting 3D DNA components. Science Advances, 2016, 2, e1501209.	4.7	138
815	Toward Self-Assembled Plasmonic Devices: High-Yield Arrangement of Gold Nanoparticles on DNA Origami Templates. ACS Nano, 2016, 10, 5374-5382.	7.3	128
816	High Field Solid-State NMR Spectroscopy Investigation of ¹⁵ N-Labeled Rosette Nanotubes: Hydrogen Bond Network and Channel-Bound Water. Journal of the American Chemical Society, 2016, 138, 6115-6118.	6.6	22
817	Assembly and Assessment of DNA Scaffolded Vaccines. Methods in Molecular Biology, 2016, 1404, 301-311.	0.4	1
818	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	18.7	146
819	Challenges in fabrication towards realization of practical metamaterials. Microelectronic Engineering, 2016, 163, 7-20.	1.1	66
820	Cationic polymers for DNA origami coating $\hat{a} \in \text{``examining their binding efficiency and tuning the enzymatic reaction rates. Nanoscale, 2016, 8, 11674-11680.}$	2.8	109
821	Hybrid Structures for Surfaceâ€Enhanced Raman Scattering: DNA Origami/Gold Nanoparticle Dimer/Graphene. Small, 2016, 12, 5458-5467.	5.2	36

#	Article	IF	CITATIONS
822	Impact of Heterogeneity and Lattice Bond Strength on DNA Triangle Crystal Growth. ACS Nano, 2016, 10, 9156-9164.	7.3	31
823	Interfacing DNA nanodevices with biology: challenges, solutions and perspectives. New Journal of Physics, 2016, 18, 085005.	1,2	17
824	Mechanical properties of DNA origami nanoassemblies are determined by Holliday junction mechanophores. Nucleic Acids Research, 2016, 44, 6574-6582.	6.5	36
825	Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications. Nanotechnology, 2016, 27, 412001.	1.3	282
826	Hierarchical Assembly of Cylindrical Block Comicelles Mediated by Spatially Confined Hydrogen-Bonding Interactions. Journal of the American Chemical Society, 2016, 138, 12902-12912.	6.6	62
827	Single-molecule dissection of stacking forces in DNA. Science, 2016, 353, .	6.0	180
828	Electrotransfection of Polyamine Folded DNA Origami Structures. Nano Letters, 2016, 16, 6683-6690.	4. 5	61
829	Retrosynthetic Analysis-Guided Breaking Tile Symmetry for the Assembly of Complex DNA Nanostructures. Journal of the American Chemical Society, 2016, 138, 13579-13585.	6.6	49
830	Optimized DNA "Nanosuitcases―for Encapsulation and Conditional Release of siRNA. Journal of the American Chemical Society, 2016, 138, 14030-14038.	6.6	182
831	Generalized Potential Energy Finite Elements for Modeling Molecular Nanostructures. Journal of Chemical Information and Modeling, 2016, 56, 1963-1978.	2.5	6
832	Toward Single Electron Nanoelectronics Using Self-Assembled DNA Structure. Nano Letters, 2016, 16, 6780-6786.	4.5	44
833	Quantitative Single-Molecule Surface-Enhanced Raman Scattering by Optothermal Tuning of DNA Origami-Assembled Plasmonic Nanoantennas. ACS Nano, 2016, 10, 9809-9815.	7.3	127
835	DNA Origami Seesaws as Comparative Binding Assay. ChemBioChem, 2016, 17, 1093-1096.	1.3	14
837	Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein. Angewandte Chemie, 2016, 128, 12182-12186.	1.6	6
838	Recent Advances in Various Metal–Organic Channels for Photochemistry beyond Confined Spaces. Accounts of Chemical Research, 2016, 49, 1835-1843.	7.6	72
839	A modular clamp-like mechanism to regulate the activity of nucleic-acid target-responsive nanoswitches with external activators. Nanoscale, 2016, 8, 18057-18061.	2.8	25
840	Precipitantless Crystallization of Protein Molecules Induced by High Surface Potential. Crystal Growth and Design, 2016, 16, 5323-5329.	1.4	4
841	Reciprocal Self-Assembly of Peptide-DNA Conjugates into a Programmable Sub-10-nm Supramolecular Deoxyribonucleoprotein. Angewandte Chemie - International Edition, 2016, 55, 12003-12007.	7.2	33

#	Article	IF	Citations
842	DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. Angewandte Chemie - International Edition, 2016, 55, 11412-11416.	7.2	40
843	DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching. Angewandte Chemie, 2016, 128, 11584-11588.	1.6	19
844	3D Framework DNA Origami with Layered Crossovers. Angewandte Chemie - International Edition, 2016, 55, 12832-12835.	7.2	31
845	Precisely Controlled 2D Freeâ€Floating Nanosheets of Amphiphilic Molecules through Frameâ€Guided Assembly. Advanced Materials, 2016, 28, 9819-9823.	11.1	59
846	Temperature-Dependent Charge Transport through Individually Contacted DNA Origami-Based Au Nanowires. Langmuir, 2016, 32, 10159-10165.	1.6	49
847	Self-assembly of fully addressable DNA nanostructures from double crossover tiles. Nucleic Acids Research, 2016, 44, 7989-7996.	6.5	27
848	3D Framework DNA Origami with Layered Crossovers. Angewandte Chemie, 2016, 128, 13024-13027.	1.6	12
849	Methods to Characterize the Oligonucleotide Functionalization of Quantum Dots. Small, 2016, 12, 4763-4771.	5.2	10
850	Nanoscale Structure and Elasticity of Pillared DNA Nanotubes. ACS Nano, 2016, 10, 7780-7791.	7.3	28
851	Design and Applications of Protein ageâ€Based Nanomaterials. Chemistry - an Asian Journal, 2016, 11, 2814-2828.	1.7	49
853	Exploring Nucleosome Unwrapping Using DNA Origami. Nano Letters, 2016, 16, 7891-7898.	4.5	52
854	Theranostic barcoded nanoparticles for personalized cancer medicine. Nature Communications, 2016, 7, 13325.	5.8	111
856	Regulation at a distance of biomolecular interactions using a DNA origami nanoactuator. Nature Communications, 2016, 7, 10935.	5 . 8	124
857	Cellular delivery of enzyme-loaded DNA origami. Chemical Communications, 2016, 52, 14161-14164.	2.2	65
860	Molecular transport through large-diameter DNA nanopores. Nature Communications, 2016, 7, 12787.	5 . 8	160
861	A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation. Scientific Reports, 2016, 6, 31379.	1.6	9
862	3D DNA Origami Cuboids as Monodisperse Patchy Nanoparticles for Switchable Hierarchical Self-Assembly. Nano Letters, 2016, 16, 7870-7874.	4.5	70
863	Design of a molecular support for cryo-EM structure determination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E7456-E7463.	3.3	93

#	Article	IF	Citations
864	Using DNA to program the self-assembly of colloidal nanoparticles and microparticles. Nature Reviews Materials, 2016, 1 , .	23.3	281
865	Long-range movement of large mechanically interlocked DNA nanostructures. Nature Communications, 2016, 7, 12414.	5.8	98
866	Genetic encoding of DNA nanostructures and their self-assembly in living bacteria. Nature Communications, 2016, 7, 11179.	5.8	65
867	Assembly of multienzyme complexes on DNA nanostructures. Nature Protocols, 2016, 11, 2243-2273.	5.5	100
868	2D DNA lattices constructed from two-tile DAE-O systems possessing circular central strands. Nanoscale, 2016, 8, 18870-18875.	2.8	20
869	Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp. Science, 2016, 354, 305-307.	6.0	234
870	Dynamic Chemistry of Disulfide Terminated Oligonucleotides in Duplexes and Double rossover Tiles. ChemBioChem, 2016, 17, 1122-1126.	1.3	24
871	Molecular mechanics of DNA bricks: <i>in situ</i> structure, mechanical properties and ionic conductivity. New Journal of Physics, 2016, 18, 055012.	1.2	21
872	DNA nanovehicles and the biological barriers. Advanced Drug Delivery Reviews, 2016, 106, 183-191.	6.6	66
873	Ordering Gold Nanoparticles with DNA Origami Nanoflowers. ACS Nano, 2016, 10, 7303-7306.	7.3	87
874	Hetero-assembly of gold nanoparticles on a DNA origami template. Science China Chemistry, 2016, 59, 730-734.	4.2	27
875	Protein Conformational Motions: Enzyme Catalysis. , 2016, , 45-70.		0
876	Functionalizing large nanoparticles for small gaps in dimer nanoantennas. New Journal of Physics, 2016, 18, 045012.	1.2	25
877	From Nano to Macro through Hierarchical Selfâ€Assembly: The DNA Paradigm. ChemBioChem, 2016, 17, 1063-1080.	1.3	52
878	Observing and Controlling the Folding Pathway of DNA Origami at the Nanoscale. ACS Nano, 2016, 10, 1978-1987.	7.3	38
879	Direct Simulation of the Self-Assembly of a Small DNA Origami. ACS Nano, 2016, 10, 1724-1737.	7.3	86
880	Programmed Switching of Single Polymer Conformation on DNA Origami. ACS Nano, 2016, 10, 2243-2250.	7.3	46
881	DNAzyme-Based Logic Gate-Mediated DNA Self-Assembly. Nano Letters, 2016, 16, 736-741.	4.5	77

#	Article	IF	CITATIONS
882	Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials, 2016, 91, 44-56.	5.7	186
883	Synthesis of ¹⁹ F nucleic acid–polymer conjugates as real-time MRI probes of biorecognition. Polymer Chemistry, 2016, 7, 2180-2191.	1.9	10
884	<i>De novo</i> reconstruction of DNA origami structures through atomistic molecular dynamics simulation. Nucleic Acids Research, 2016, 44, 3013-3019.	6.5	67
885	Orthogonale Assemblierung von Proteinen auf DNAâ€Nanostrukturen mithilfe von Relaxasen. Angewandte Chemie, 2016, 128, 4421-4425.	1.6	7
886	Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases. Angewandte Chemie - International Edition, 2016, 55, 4348-4352.	7.2	40
887	The Building Game: From Enumerative Combinatorics to Conformational Diffusion. Journal of Nonlinear Science, 2016, 26, 815-845.	1.0	2
888	Evolution of DNA origami scaffolds. Materials Letters, 2016, 170, 221-224.	1.3	20
889	Design and Synthesis of Triangulated DNA Origami Trusses. Nano Letters, 2016, 16, 2108-2113.	4.5	64
890	Controlled interaction of nanoparticles with cells. Science, 2016, 351, 814-815.	6.0	21
891	Spatially Organized Enzymes Drive Cofactor-Coupled Cascade Reactions. Journal of the American Chemical Society, 2016, 138, 3012-3021.	6.6	145
892	Self-Assembly of Structures with Addressable Complexity. Journal of the American Chemical Society, 2016, 138, 2457-2467.	6.6	73
893	Nanocaged enzymes with enhanced catalytic activity and increased stability against protease digestion. Nature Communications, 2016, 7, 10619.	5.8	346
894	Lattice engineering through nanoparticle–DNA frameworks. Nature Materials, 2016, 15, 654-661.	13.3	198
895	A switchable DNA origami nanochannel for regulating molecular transport at the nanometer scale. Nanoscale, 2016, 8, 3944-3948.	2.8	30
896	Diamond family of nanoparticle superlattices. Science, 2016, 351, 582-586.	6.0	331
897	Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA. ACS Nano, 2016, 10, 3069-3077.	7.3	37
898	Influence of Proton and Salt Concentration on the Chromonic Liquid Crystal Phase Diagram of Disodium Cromoglycate Solutions: Prospects and Limitations of a Host for DNA Nanostructures. Journal of Physical Chemistry B, 2016, 120, 3250-3256.	1.2	8
899	A Programmable DNA Origami Platform to Organize SNAREs for Membrane Fusion. Journal of the American Chemical Society, 2016, 138, 4439-4447.	6.6	78

#	Article	IF	Citations
900	RNA Study Using DNA Nanotechnology. Progress in Molecular Biology and Translational Science, 2016, 139, 121-163.	0.9	0
901	MicroRNA-induced cascaded and catalytic self-assembly of DNA nanostructures for enzyme-free and sensitive fluorescence detection of microRNA from tumor cells. Chemical Communications, 2016, 52, 2501-2504.	2.2	15
902	The fractal nature of folds and the Walsh copolymers. Journal of Mathematical Chemistry, 2016, 54, 559-571.	0.7	2
903	Supramolecular Polymers in Aqueous Media. Chemical Reviews, 2016, 116, 2414-2477.	23.0	625
904	Programmable DNA Nanoswitches for Detection of Nucleic Acid Sequences. ACS Sensors, 2016, 1, 120-123.	4.0	55
905	Exploration of DNA Nanostructures for Rational Design of Vaccines. , 2016, , 279-293.		0
906	DNA-triggered asymmetric ZnO nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 489, 336-342.	2.3	2
907	Placing molecules with Bohr radius resolution using DNA origami. Nature Nanotechnology, 2016, 11, 47-52.	15.6	175
908	DNA nanotechnology-enabled biosensors. Biosensors and Bioelectronics, 2016, 76, 68-79.	5.3	147
909	DNAâ€Origamiâ€Driven Lithography for Patterning on Gold Surfaces with Subâ€10 nm Resolution. Advanced Materials, 2017, 29, 1603233.	11.1	21
910	Reconfigurable Three-Dimensional Gold Nanorod Plasmonic Nanostructures Organized on DNA Origami Tripod. ACS Nano, 2017, 11, 1172-1179.	7.3	129
911	Biochemical Machines for the Interconversion of Mutual Information and Work. Physical Review Letters, 2017, 118, 028101.	2.9	46
912	Moderne Anorganische Aerogele. Angewandte Chemie, 2017, 129, 13380-13403.	1.6	11
913	Modern Inorganic Aerogels. Angewandte Chemie - International Edition, 2017, 56, 13200-13221.	7.2	303
914	Construction of Multichromophoric Spectra from Monomer Data: Applications to Resonant Energy Transfer. Physical Review Letters, 2017, 118, 013001.	2.9	15
915	Anisotropic Electroless Deposition on DNA Origami Templates To Form Small Diameter Conductive Nanowires. Langmuir, 2017, 33, 726-735.	1.6	39
916	Binary self-assembly of highly symmetric DNA nanocages via sticky-end engineering. Chinese Chemical Letters, 2017, 28, 851-856.	4.8	12
917	DNA origami structures as calibration standards for nanometrology. Measurement Science and Technology, 2017, 28, 034001.	1.4	11

#	Article	IF	Citations
918	A four-helix bundle DNA nanostructure with binding pockets for pyrimidine nucleotides. Nanoscale, 2017, 9, 7047-7054.	2.8	6
919	Atomic clusters with addressable complexity. Journal of Chemical Physics, 2017, 146, 054306.	1.2	8
920	Optical methods for measuring DNA folding. Modern Physics Letters B, 2017, 31, 1730001.	1.0	6
921	The Beauty and Utility of DNA Origami. CheM, 2017, 2, 359-382.	5 . 8	269
922	Specific distribution of orientated C70-fullerene triggered by solvent-tuned macrocycle adlayer. Nano Research, 2017, 10, 991-1000.	5.8	13
923	Shape Control of Soft Nanoparticles and Their Assemblies. Chemistry of Materials, 2017, 29, 1918-1945.	3.2	84
924	Probing the structure and in silico stability of cargo loaded DNA icosahedra using MD simulations. Nanoscale, 2017, 9, 4467-4477.	2.8	14
925	New degrees of freedom in nonlinear metamaterials. Physica Status Solidi (B): Basic Research, 2017, 254, 1600462.	0.7	15
926	Surface-assisted DNA self-assembly: An enzyme-free strategy towards formation of branched DNA lattice. Biochemical and Biophysical Research Communications, 2017, 485, 492-498.	1.0	16
927	Measuring true localization accuracy in super resolution microscopy with DNA-origami nanostructures. New Journal of Physics, 2017, 19, 025013.	1.2	12
928	Deposition of DNA Nanostructures on Highly Oriented Pyrolytic Graphite. Langmuir, 2017, 33, 3991-3997.	1.6	13
929	Selective control of reconfigurable chiral plasmonic metamolecules. Science Advances, 2017, 3, e1602803.	4.7	178
930	Designing Uniquely Addressable Bio-orthogonal Synthetic Scaffolds for DNA and RNA Origami. ACS Synthetic Biology, 2017, 6, 1140-1149.	1.9	21
931	Process Principles for Large-Scale Nanomanufacturing. Annual Review of Chemical and Biomolecular Engineering, 2017, 8, 201-226.	3.3	10
932	DNA nanostructures constructed with multi-stranded motifs. Nucleic Acids Research, 2017, 45, 3606-3611.	6.5	16
933	Structure and conformational dynamics of scaffolded DNA origami nanoparticles. Nucleic Acids Research, 2017, 45, 6284-6298.	6.5	22
934	Hotspot-mediated non-dissipative and ultrafast plasmon passage. Nature Physics, 2017, 13, 761-765.	6.5	97
935	Studies on Composition and Sequence Effects in Surface-Mediated Octapeptide Assemblies by Using Scanning Tunneling Microscopy. Journal of Physical Chemistry C, 2017, 121, 10364-10369.	1.5	5

#	Article	IF	CITATIONS
936	Supramolecular Wireframe <scp>DNA</scp> Polyhedra: Assembly and Applications. Chinese Journal of Chemistry, 2017, 35, 801-810.	2.6	8
937	DNAâ€Origamiâ€Based Assembly of Anisotropic Plasmonic Gold Nanostructures. Small, 2017, 13, 1603991.	5.2	35
938	Projection kinematic analysis of DNA origami mechanisms based on a two-dimensional TEM image. Mechanism and Machine Theory, 2017, 109, 22-38.	2.7	6
939	Coâ€existence of Distinct Supramolecular Assemblies in Solution and in the Solid State. Chemistry - A European Journal, 2017, 23, 2315-2322.	1.7	28
940	Formation of Annular Protofibrillar Assembly by Cysteine Tripeptide: Unraveling the Interactions with NMR, FTIR, and Molecular Dynamics. Journal of Physical Chemistry B, 2017, 121, 6367-6379.	1.2	14
941	Synthetic biology engineering of biofilms as nanomaterials factories. Biochemical Society Transactions, 2017, 45, 585-597.	1.6	33
942	Precisely Tailored DNA Nanostructures and their Theranostic Applications. Chemical Record, 2017, 17, 1213-1230.	2.9	28
943	DNA Origami: Scaffolds for Creating Higher Order Structures. Chemical Reviews, 2017, 117, 12584-12640.	23.0	834
944	Core–Shell and Layerâ€byâ€Layer Assembly of 3D DNA Crystals. Advanced Materials, 2017, 29, 1701019.	11.1	17
945	Super-resolution microscopy with DNA-PAINT. Nature Protocols, 2017, 12, 1198-1228.	5.5	689
946	Stepping operation of a rotary DNA origami device. Chemical Communications, 2017, 53, 7716-7719.	2.2	26
947	Rapid and annealing-free self-assembly of DNA building blocks for 3D hydrogel chaperoned by cationic comb-type copolymers. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 1511-1524.	1.9	5
948	Sub–100-nm metafluorophores with digitally tunable optical properties self-assembled from DNA. Science Advances, 2017, 3, e1602128.	4.7	58
949	Reconfiguration of DNA molecular arrays driven by information relay. Science, 2017, 357, .	6.0	160
950	Placing and shaping liposomes with reconfigurable DNA nanocages. Nature Chemistry, 2017, 9, 653-659.	6.6	178
951	Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nature Materials, 2017, 16, 849-856.	13.3	85
952	Oligolysine-based coating protects DNA nanostructures from low-salt denaturation and nuclease degradation. Nature Communications, 2017, 8, 15654.	5.8	362
953	Theoretical study of gas and solvent phase stability and molecular adsorption of noncanonical guanine bases on graphene. Physical Chemistry Chemical Physics, 2017, 19, 16819-16830.	1.3	5

#	Article	IF	CITATIONS
954	Dynamic DNA Origami Device for Measuring Compressive Depletion Forces. ACS Nano, 2017, 11, 6566-6573.	7.3	59
955	Aqueous self-assembly of hydrophobic macromolecules with adjustable rigidity of the backbone. Soft Matter, 2017, 13, 5130-5136.	1.2	10
956	Chemistry Can Make Strict and Fuzzy Controls for Bio-Systems: DNA Nanoarchitectonics and Cell-Macromolecular Nanoarchitectonics. Bulletin of the Chemical Society of Japan, 2017, 90, 967-1004.	2.0	257
957	Self-assembly of genetically encoded DNA-protein hybrid nanoscale shapes. Science, 2017, 355, .	6.0	137
958	Confined space facilitates G-quadruplex formation. Nature Nanotechnology, 2017, 12, 582-588.	15.6	76
959	DNA origami-based shape IDs for single-molecule nanomechanical genotyping. Nature Communications, 2017, 8, 14738.	5.8	73
960	A DNA Nanodevice That Loads and Releases a Cargo with Hemoglobin-Like Allosteric Control and Cooperativity. Nano Letters, 2017, 17, 3225-3230.	4.5	25
962	Barcode extension for analysis and reconstruction of structures. Nature Communications, 2017, 8, 14698.	5.8	17
963	Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angewandte Chemie - International Edition, 2017, 56, 5460-5464.	7.2	172
964	Block Copolymer Micellization as a Protection Strategy for DNA Origami. Angewandte Chemie, 2017, 129, 5552-5556.	1.6	29
965	The Kinematic Principle for Designing Deoxyribose Nucleic Acid Origami Mechanisms: Challenges and Opportunities1. Journal of Mechanical Design, Transactions of the ASME, 2017, 139, .	1.7	6
966	Precise Coating of a Wide Range of DNA Templates by a Protein Polymer with a DNA Binding Domain. ACS Nano, 2017, 11, 144-152.	7. 3	48
967	Discrete DNA three-dimensional nanostructures: the synthesis and applications. Chinese Journal of Polymer Science (English Edition), 2017, 35, 1-24.	2.0	27
968	Autonomous assembly of ordered metastable DNA nanoarchitecture and in situ visualizing of intracellular microRNAs. Biomaterials, 2017, 120, 57-65.	5.7	38
969	Cuboid Vesicles Formed by Frameâ€Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie - International Edition, 2017, 56, 1586-1589.	7.2	85
970	Cuboid Vesicles Formed by Frameâ€Guided Assembly on DNA Origami Scaffolds. Angewandte Chemie, 2017, 129, 1608-1611.	1.6	14
971	Engineered Diblock Polypeptides Improve DNA and Gold Solubility during Molecular Assembly. ACS Nano, 2017, 11, 831-842.	7.3	30
972	Self-assembling DNA nanotubes to connect molecular landmarks. Nature Nanotechnology, 2017, 12, 312-316.	15.6	81

#	Article	IF	CITATIONS
973	Palladiumâ€Mediated Labeling of Nucleic Acids. ChemBioChem, 2017, 18, 426-431.	1.3	35
974	Directional Photonic Wire Mediated by Homo-Förster Resonance Energy Transfer on a DNA Origami Platform. ACS Nano, 2017, 11, 11264-11272.	7.3	61
975	Assembly of silver Trigons into a buckyball-like Ag ₁₈₀ nanocage. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12132-12137.	3.3	177
976	Characterizing the Motion of Jointed DNA Nanostructures Using a Coarse-Grained Model. ACS Nano, 2017, 11, 12426-12435.	7.3	51
978	NanoVelcro: Theory of Guided Folding in Atomically Thin Sheets with Regions of Complementary Doping. Nano Letters, 2017, 17, 6708-6714.	4.5	8
979	Cationâ€Induced Stabilization and Denaturation of DNA Origami Nanostructures in Urea and Guanidinium Chloride. Small, 2017, 13, 1702100.	5.2	32
980	Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nature Chemistry, 2017, 9, 1056-1067.	6.6	259
981	Assembly of a functional and responsive microstructure by heat bonding of DNA-grafted colloidal brick. Scientific Reports, 2017, 7, 9104.	1.6	4
982	DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. Accounts of Chemical Research, 2017, 50, 2906-2914.	7.6	141
983	Engineering Cell Surface Function with DNA Origami. Advanced Materials, 2017, 29, 1703632.	11.1	101
984	Design of coiled-coil protein-origami cages that self-assemble in vitro and in vivo. Nature Biotechnology, 2017, 35, 1094-1101.	9.4	143
985	DNA-based nanoscale walking devices and their applications. RSC Advances, 2017, 7, 47425-47434.	1.7	33
986	DNA as Building Material at the Nanoscale: From Concepts to Software-aided Design. , 2017, , 27-56.		0
987	Control of enzyme reactions by a reconfigurable DNA nanovault. Nature Communications, 2017, 8, 992.	5.8	160
988	Triblock peptide–oligonucleotide chimeras (POCs): programmable biomolecules for the assembly of morphologically tunable and responsive hybrid materials. Chemical Communications, 2017, 53, 12221-12224.	2.2	8
989	Selfâ∈Assembly of DNA Nanostructures Using Threeâ∈Way Junctions on Small Circular DNAs. ChemNanoMat, 2017, 3, 740-744.	1.5	4
990	Selfâ€Assembly of Heterogeneously Shaped Nanoparticles into Plasmonic Metamolecules on DNA Origami. Chemistry - A European Journal, 2017, 23, 14177-14181.	1.7	23
991	A Stochastic Approach to Shortcut Bridging in Programmable Matter. Lecture Notes in Computer Science, 2017, , 122-138.	1.0	2

#	ARTICLE	IF	CITATIONS
992	Terminating DNA Tile Assembly with Nanostructured Caps. ACS Nano, 2017, 11, 9770-9779.	7.3	23
993	DNA nanostructure-based drug delivery nanosystems in cancer therapy. International Journal of Pharmaceutics, 2017, 533, 169-178.	2.6	35
994	DNA-based materials as chemical reactors for synthesis of metal nanoparticles. Polymer Science - Series C, 2017, 59, 18-28.	0.8	4
995	Directional Growth of DNA-Functionalized Nanorods to Enable Continuous, Site-Specific Metallization of DNA Origami Templates. Langmuir, 2017, 33, 10143-10152.	1.6	32
996	AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures. Angewandte Chemie - International Edition, 2017, 56, 13633-13636.	7.2	14
997	Protein Coating of DNA Nanostructures for Enhanced Stability and Immunocompatibility. Advanced Healthcare Materials, 2017, 6, 1700692.	3.9	166
998	How We Make DNA Origami. ChemBioChem, 2017, 18, 1873-1885.	1.3	134
999	A DNA nanoribbon as a potent inhibitor of metallo- \hat{l}^2 -lactamases. Chemical Communications, 2017, 53, 8878-8881.	2.2	25
1000	<scp>DNA</scp> origami applications in cancer therapy. Cancer Science, 2017, 108, 1535-1543.	1.7	77
1001	Fabrication of three-dimensional suspended, interlayered and hierarchical nanostructures by accuracy-improved electron beam lithography overlay. Scientific Reports, 2017, 7, 6668.	1.6	61
1002	Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures. Liquid Crystals, 0, , 1-19.	0.9	14
1003	Electric field influence on electronic transport in a periodic DNA molecules. AIP Conference Proceedings, 2017, , .	0.3	1
1004	Angular reconstitution-based 3D reconstructions of nanomolecular structures from superresolution light-microscopy images. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9273-9278.	3.3	36
1005	How the stability of a folded protein depends on interfacial water properties and residue-residue interactions. Journal of Molecular Liquids, 2017, 245, 129-139.	2.3	22
1006	Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT. Nature Communications, 2017, 8, 2090.	5.8	125
1007	Polymorphic design of DNA origami structures through mechanical control of modular components. Nature Communications, 2017, 8, 2067.	5.8	33
1008	Single-stranded DNA and RNA origami. Science, 2017, 358, .	6.0	202
1009	Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components. Nature, 2017, 552, 72-77.	13.7	335

#	Article	IF	CITATIONS
1010	Practical aspects of structural and dynamic DNA nanotechnology. MRS Bulletin, 2017, 42, 889-896.	1.7	23
1011	DNA Nanotechnology: A foundation for Programmable Nanoscale Materials. MRS Bulletin, 2017, 42, 882-888.	1.7	67
1012	Three-dimensional molecular and nanoparticle crystallization by DNA nanotechnology. MRS Bulletin, 2017, 42, 904-912.	1.7	30
1013	Formation of supramolecular protein structures on gold surfaces. Biointerphases, 2017, 12, 04E405.	0.6	12
1014	An Introduction to Chiral Nanomaterials: Origin, Construction, and Optical Application., 0, , 1-28.		1
1015	Silver-Mediated Double Helix: Structural Parameters for a Robust DNA Building Block. ACS Omega, 2017, 2, 7343-7348.	1.6	26
1016	A tensegrity driven DNA nanopore. Nanoscale, 2017, 9, 9762-9769.	2.8	13
1017	Nano Ag-doped magnetic-Fe3O4@mesoporous TiO2 core–shell hollow spheres: synthesis and enhanced catalytic activity in A3 and KA2 coupling reactions. Monatshefte FÃ⅓r Chemie, 2017, 148, 1793-1805.	0.9	23
1018	Molecular Precision at Micrometer Length Scales: Hierarchical Assembly of DNA–Protein Nanostructures. ACS Nano, 2017, 11, 6623-6629.	7.3	17
1019	Versatile DNA Origami Nanostructures in Simplified and Modular Designing Framework. ACS Nano, 2017, 11, 8199-8206.	7.3	14
1020	Chemostat studies of bacteriophage M13 infected Escherichia coli JM109 for continuous ssDNA production. Journal of Biotechnology, 2017, 258, 92-100.	1.9	3
1021	Antiparallel d-stable traces and a stronger version of ore problem. Journal of Mathematical Biology, 2017, 75, 109-127.	0.8	2
1022	Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure. Methods in Molecular Biology, 2017, 1500, 153-164.	0.4	1
1023	Many-body dispersion effects on the binding of TCNQ and F4-TCNQ with graphene. Carbon, 2017, 111, 513-518.	5.4	14
1024	Specific growth rate and multiplicity of infection affect highâ€cellâ€density fermentation with bacteriophage M13 for ssDNA production. Biotechnology and Bioengineering, 2017, 114, 777-784.	1.7	32
1025	Lipid Membrane Encapsulation of a 3D DNA Nano Octahedron. Methods in Molecular Biology, 2017, 1500, 165-184.	0.4	6
1026	Direct Nanofabrication Using DNA Nanostructure. Methods in Molecular Biology, 2017, 1500, 217-235.	0.4	1
1027	Purification Techniques for Three-Dimensional DNA Nanostructures. Methods in Molecular Biology, 2017, 1500, 109-119.	0.4	1

#	Article	IF	CITATIONS
1028	Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs. Methods in Molecular Biology, 2017, 1500, 11-26.	0.4	3
1029	Molecular selfâ€assembly using peptide nucleic acids. Biopolymers, 2017, 108, e22930.	1.2	40
1030	DNA-assisted oligomerization of pore-forming toxin monomers into precisely-controlled protein channels. Nucleic Acids Research, 2017, 45, 12057-12068.	6.5	27
1031	Derivation of nearest-neighbor DNA parameters in magnesium from single molecule experiments. Nucleic Acids Research, 2017, 45, 12921-12931.	6.5	39
1032	DNA Origami as a Tool to Design Asymmetric Gold Nanostructures. Journal of Materials Science Research, 2017, 7, 1.	0.1	1
1033	Design and preparation of biomimetic and bioinspired materials. , 2017, , 1-44.		3
1034	A tip of the hat to evolutionary change. Nature, 2017, 552, 35-37.	13.7	0
1035	DNA self-assembly scaled up. Nature, 2017, 552, 34-35.	13.7	37
1036	Supramolecular DNA Nanotechnology. , 2017, , 441-486.		3
1037	Engineering DNA Molecules for Morphological Reconfiguration. , 2017, , 195-206.		2
1038	Analysis of self-oscillating behaviors aimed at the development of a molecular robot with organic acids as fuel. IOP Conference Series: Materials Science and Engineering, 2017, 242, 012095.	0.3	0
1040	Optimizing nucleic acid sequences for a molecular data recorder. , 2017, , .		1
1041	DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews, 2019, 119, 6459-6506.	23.0	768
1042	Direct Observation of Activated Kinetics and Downhill Dynamics in DNA Dehybridization. Journal of Physical Chemistry B, 2018, 122, 3088-3100.	1.2	40
1043	Membrane sculpting by curved DNA origami scaffolds. Nature Communications, 2018, 9, 811.	5.8	173
1044	An anionic single-walled metal–organic nanotube with an armchair (3,3) topology as an extremely smart adsorbent for the effective and selective adsorption of cationic carcinogenic dyes. Chemical Communications, 2018, 54, 3006-3009.	2.2	67
1045	DNA-Mold Templated Assembly of Conductive Gold Nanowires. Nano Letters, 2018, 18, 2116-2123.	4.5	93
1046	Restriction Enzymes as a Target for DNA-Based Sensing and Structural Rearrangement. ACS Omega, 2018, 3, 495-502.	1.6	15

#	ARTICLE	IF	Citations
1047	Oligonucleotide conjugated multi-functional adeno-associated viruses. Scientific Reports, 2018, 8, 3589.	1.6	40
1048	Position Accuracy of Gold Nanoparticles on DNA Origami Structures Studied with Small-Angle X-ray Scattering. Nano Letters, 2018, 18, 2609-2615.	4.5	43
1049	DNA Nanostructures at the Interface with Biology. CheM, 2018, 4, 495-521.	5.8	161
1050	Studies on the properties of Nano metal oxides doped DNA - CTMA Matrix. Materials Today: Proceedings, 2018, 5, 2582-2587.	0.9	2
1051	Gene assembly <i>via</i> one-pot chemical ligation of DNA promoted by DNA nanostructures. Chemical Communications, 2018, 54, 4529-4532.	2.2	10
1052	Construction of a Holliday Junction in Small Circular DNA Molecules for Stable Motifs and Twoâ€Dimensional Lattices. ChemBioChem, 2018, 19, 1379-1385.	1.3	15
1053	DNA metallization: principles, methods, structures, and applications. Chemical Society Reviews, 2018, 47, 4017-4072.	18.7	156
1054	Synthetic DNA filaments: from design to applications. Biological Chemistry, 2018, 399, 773-785.	1.2	8
1055	Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research. Annual Review of Biomedical Engineering, 2018, 20, 375-401.	5.7	102
1056	Nanostructure and Microstructure Fabrication: From Desired Properties to Suitable Processes. Small, 2018, 14, e1703401.	5.2	55
1058	Templateâ€Directed Solidification of Eutectic Optical Materials. Advanced Optical Materials, 2018, 6, 1800071.	3.6	19
1059	Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nature Communications, 2018, 9, 1417.	5.8	189
1060	Complexing DNA Origami Frameworks through Sequential Selfâ€Assembly Based on Directed Docking. Angewandte Chemie, 2018, 130, 7179-7183.	1.6	10
1061	Complexing DNA Origami Frameworks through Sequential Selfâ€Assembly Based on Directed Docking. Angewandte Chemie - International Edition, 2018, 57, 7061-7065.	7.2	40
1062	Gold nanocrystal-mediated sliding of doublet DNA origami filaments. Nature Communications, 2018, 9, 1454.	5.8	51
1063	Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers. Nature Communications, 2018, 9, 1446.	5.8	105
1064	Structural Transformation of Wireframe DNA Origami <i>via</i> DNA Polymerase Assisted Gap-Filling. ACS Nano, 2018, 12, 2546-2553.	7.3	38
1065	Beyond the smiley face: applications of structural DNA nanotechnology. Nano Reviews & Experiments, 2018, 9, 1430976.	3.6	20

#	Article	IF	CITATIONS
1066	An aptamer-enabled DNA nanobox for protein sensing. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 1161-1168.	1.7	46
1067	Plasmonic nanostructures through DNA-assisted lithography. Science Advances, 2018, 4, eaap8978.	4.7	117
1068	Coiled coil protein origami: from modular design principles towards biotechnological applications. Chemical Society Reviews, 2018, 47, 3530-3542.	18.7	99
1069	Visualization of the Cellular Uptake and Trafficking of DNA Origami Nanostructures in Cancer Cells. Journal of the American Chemical Society, 2018, 140, 2478-2484.	6.6	194
1070	RNA-based micelles: A novel platform for paclitaxel loading and delivery. Journal of Controlled Release, 2018, 276, 17-29.	4.8	46
1071	Optical Voltage Sensing Using DNA Origami. Nano Letters, 2018, 18, 1962-1971.	4.5	43
1072	Metal-ion responsive reversible assembly of DNA origami dimers: G-quadruplex induced intermolecular interaction. Nanoscale, 2018, 10, 3626-3630.	2.8	18
1073	Design formalism for DNA self-assembly of polyhedral skeletons using rigid tiles. Journal of Mathematical Chemistry, 2018, 56, 1365-1392.	0.7	3
1074	DNA-Assembled Advanced Plasmonic Architectures. Chemical Reviews, 2018, 118, 3032-3053.	23.0	313
1075	Programmable and Multifunctional DNAâ€Based Materials for Biomedical Applications. Advanced Materials, 2018, 30, e1703658.	11.1	163
1076	Selfâ€Collapsing of Single Molecular Polyâ€Propylene Oxide (PPO) in a 3D DNA Network. Small, 2018, 14, 1703426.	5.2	17
1077	A self-assembled nanoscale robotic arm controlled by electric fields. Science, 2018, 359, 296-301.	6.0	306
1078	Remote control of nanoscale devices. Science, 2018, 359, 279-279.	6.0	3
1079	Selfâ€Assembly of Bidirectionalâ€Signal Nanoclusters for Two miRNAs Simultaneously Monitoring in Single Cancer Cells. Particle and Particle Systems Characterization, 2018, 35, 1700330.	1.2	2
1080	DNA Origamiâ€Guided Assembly of the Roundest 60–100 nm Gold Nanospheres into Plasmonic Metamolecules. Advanced Functional Materials, 2018, 28, 1707309.	7.8	53
1081	DNA Origami Route for Nanophotonics. ACS Photonics, 2018, 5, 1151-1163.	3.2	171
1082	Binary control of enzymatic cleavage of DNA origami by structural antideterminants. Nucleic Acids Research, 2018, 46, 995-1006.	6.5	26
1083	Strong Plasmonic Enhancement of a Single Peridinin–Chlorophyll <i>a</i> àê"Protein Complex on DNA Origami-Based Optical Antennas. ACS Nano, 2018, 12, 1650-1655.	7.3	38

#	Article	IF	CITATIONS
1084	DNA Nanostructureâ€Based Systems for Intelligent Delivery of Therapeutic Oligonucleotides. Advanced Healthcare Materials, 2018, 7, e1701153.	3.9	56
1085	Strong Hydrogen Bonds at the Interface between Proton-Donating and -Accepting Self-Assembled Monolayers on Au(111). Langmuir, 2018, 34, 2189-2197.	1.6	16
1086	Evolution of Structural DNA Nanotechnology. Advanced Materials, 2018, 30, e1703721.	11.1	145
1087	Self-assembled DNA nanomaterials with highly programmed structures and functions. Materials Chemistry Frontiers, 2018, 2, 423-436.	3.2	58
1088	Folding DNA into a Lipid onjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie, 2018, 130, 2094-2098.	1.6	11
1089	Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label. Small, 2018, 14, 1701718.	5.2	23
1090	The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics. Natural Computing, 2018, 17, 3-29.	1.8	28
1091	Folding DNA into a Lipidâ€Conjugated Nanobarrel for Controlled Reconstitution of Membrane Proteins. Angewandte Chemie - International Edition, 2018, 57, 2072-2076.	7.2	36
1092	Nucleic acidâ€based nanotechnology. EMBO Reports, 2018, 19, 13-17.	2.0	10
1093	Vom Design der Moleküle des Lebens zum Design von Leben: Zukünftige Anwendungen von DNAâ€Technologien. Angewandte Chemie, 2018, 130, 4395-4411.	1.6	5
1094	From Designing the Molecules of Life to Designing Life: Future Applications Derived from Advances in DNA Technologies. Angewandte Chemie - International Edition, 2018, 57, 4313-4328.	7. 2	27
1095	Rapid detection of a dengue virus RNA sequence with single molecule sensitivity using tandem toehold-mediated displacement reactions. Chemical Communications, 2018, 54, 968-971.	2.2	25
1096	A coarse-grained model for DNA origami. Nucleic Acids Research, 2018, 46, 1102-1112.	6.5	30
1097	Triggering nucleic acid nanostructure assembly by conditional kissing interactions. Nucleic Acids Research, 2018, 46, 1052-1058.	6.5	10
1098	Triplex-forming oligonucleotides: a third strand for DNA nanotechnology. Nucleic Acids Research, 2018, 46, 1021-1037.	6.5	81
1099	DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size. Nucleic Acids Research, 2018, 46, 1553-1561.	6.5	33
1100	Framework-Nucleic-Acid-Enabled Biosensor Development. ACS Sensors, 2018, 3, 903-919.	4.0	106
1101	Molecular Imprinting: Materials Nanoarchitectonics with Molecular Information. Bulletin of the Chemical Society of Japan, 2018, 91, 1075-1111.	2.0	215

#	Article	IF	CITATIONS
1102	DNA nanostructure-directed assembly of metal nanoparticle superlattices. Journal of Nanoparticle Research, 2018, 20, 119.	0.8	49
1103	T7 RNA polymerase non-specifically transcribes and induces disassembly of DNA nanostructures. Nucleic Acids Research, 2018, 46, 5332-5343.	6.5	15
1104	Quantifying absolute addressability in DNA origami with molecular resolution. Nature Communications, 2018, 9, 1600.	5.8	97
1105	Remote Electronic Control of DNA-Based Reactions and Nanostructure Assembly. Nano Letters, 2018, 18, 2918-2923.	4.5	22
1106	The Quest for Optical Multiplexing in Bio-discoveries. CheM, 2018, 4, 997-1021.	5.8	65
1107	(Poly)cation-induced protection of conventional and wireframe DNA origami nanostructures. Nanoscale, 2018, 10, 7494-7504.	2.8	70
1108	Time-Resolved Small-Angle X-ray Scattering Reveals Millisecond Transitions of a DNA Origami Switch. Nano Letters, 2018, 18, 2672-2676.	4.5	42
1109	Molecular dynamics study of thrombin capture by aptamers TBA26 and TBA29 coupled to a DNA origami. Molecular Simulation, 2018, 44, 749-756.	0.9	11
1110	Progress and Opportunities in Soft Photonics and Biologically Inspired Optics. Advanced Materials, 2018, 30, 1702669.	11.1	102
1111	Design methods for 3D wireframe DNA nanostructures. Natural Computing, 2018, 17, 147-160.	1.8	11
1112	Selective Nascent Polymer Catchâ€andâ€Release Enables Scalable Isolation of Multiâ€Kilobase Singleâ€Stranded DNA. Angewandte Chemie, 2018, 130, 722-726.	1.6	2
1113	DNA-based construction at the nanoscale: emerging trends and applications. Nanotechnology, 2018, 29, 062001.	1.3	45
1114	Direct Single-Molecule Observation of Mode and Geometry of RecA-Mediated Homology Search. ACS Nano, 2018, 12, 272-278.	7.3	26
1115	Selective Nascent Polymer Catchâ€andâ€Release Enables Scalable Isolation of Multiâ€Kilobase Singleâ€6tranded DNA. Angewandte Chemie - International Edition, 2018, 57, 714-718.	7.2	29
1116	DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns. Nature Chemistry, 2018, 10, 184-192.	6.6	80
1117	Programmable autonomous synthesis of single-stranded DNA. Nature Chemistry, 2018, 10, 155-164.	6.6	190
1118	DNA nanotechnology. Nature Reviews Materials, 2018, 3, .	23.3	1,268
1119	Vildagliptin loaded triangular DNA nanospheres coated with eudragit for oral delivery and better glycemic control in type 2 diabetes mellitus. Biomedicine and Pharmacotherapy, 2018, 97, 1250-1258.	2.5	39

#	ARTICLE	IF	CITATIONS
1120	Rhombic‧haped Nanostructures and Mechanical Properties of 2D DNA Origami Constructed with Different Crossover/Nick Designs. Small, 2018, 14, 1702028.	5.2	3
1121	Hierarchical Assembly of DNA Filaments with Designer Elastic Properties. ACS Nano, 2018, 12, 44-55.	7.3	44
1122	DNA origami nanorobot fiber optic genosensor to TMV. Biosensors and Bioelectronics, 2018, 99, 209-215.	5.3	18
1123	Magnetic studies of Co2+, Ni2+, and Zn2+â^'modified DNA doubleâ^'crossover lattices. Applied Surface Science, 2018, 427, 416-421.	3.1	1
1124	Orbital angular momentum dichroism in nanoantennas. Communications Physics, 2018, 1, .	2.0	45
1125	DNA-encircled lipid bilayers. Nanoscale, 2018, 10, 18463-18467.	2.8	35
1126	Self-assembly of supramolecular nanotubes/microtubes from 3,5-dimethyl-4-iodopyrazole for plasmonic nanoparticle organization. Nanoscale, 2018, 10, 20804-20812.	2.8	6
1127	Searching for Maximum Clique by DNA Origami. , 2018, , .		О
1128	Temporal and Reversible Control of a DNAzyme by Orthogonal Photoswitching. Journal of the American Chemical Society, 2018, 140, 16868-16872.	6.6	48
1129	A minimal requirement for self-assembly of lines in polylogarithmic time. Natural Computing, 2018, 17, 743-757.	1.8	1
1130	Origami meets electrospinning: a new strategy for 3D nanofiber scaffolds. Bio-Design and Manufacturing, 2018, 1, 254-264.	3.9	19
1131	DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angewandte Chemie, 2018, 130, 17204-17212.	1.6	10
1132	Force Spectroscopy and Beyond: Innovations and Opportunities. Biophysical Journal, 2018, 115, 2279-2285.	0.2	16
1133	Triggered Reversible Reconfiguration of G-Quadruplex-Bridged "Domino―Type Origami Dimers: Application of the Systems for Programmed Catalysis. ACS Nano, 2018, 12, 12324-12336.	7.3	33
1134	DNA Surface Technology: From Gene Sensors to Integrated Systems for Life and Materials Sciences. Angewandte Chemie - International Edition, 2018, 57, 16959-16967.	7.2	44
1135	Siliciumdioxidwachstum auf DNAâ€Origamitemplaten durch Solâ€Gelâ€Chemie. Angewandte Chemie, 2019, 131, 924-928.	1.6	8
1136	Construction of a novel phagemid to produce custom DNA origami scaffolds. Synthetic Biology, 2018, 3, .	1.2	43
1137	Lattice models and Monte Carlo methods for simulating DNA origami self-assembly. Journal of Chemical Physics, 2018, 149, 234905.	1.2	12

#	Article	IF	Citations
1138	Overview of DNA Self-Assembling: Progresses in Biomedical Applications. Pharmaceutics, 2018, 10, 268.	2.0	19
1139	Stereochemical conversion of nucleic acid circuits via strand displacement. Communications Chemistry, 2018, 1, .	2.0	12
1140	Concept and Development of Framework Nucleic Acids. Journal of the American Chemical Society, 2018, 140, 17808-17819.	6.6	202
1141	Recent Advances in Novel DNA Guiding Nanofabrication and Nanotechnology. Nanofabrication, 2018, 4, 32-52.	1.1	7
1142	DNA-Assisted Assembly of Gold Nanostructures and Their Induced Optical Properties. Nanomaterials, 2018, 8, 994.	1.9	17
1143	DNA-based materials as self-assembling scaffolds for interfacing with cells. , 2018, , 157-175.		3
1144	Polymer Nanowires with Highly Precise Internal Morphology and Topography. Journal of the American Chemical Society, 2018, 140, 12736-12740.	6.6	33
1145	Structural stability of DNA origami nanostructures under application-specific conditions. Computational and Structural Biotechnology Journal, 2018, 16, 342-349.	1.9	132
1146	A stochastic approach to shortcut bridging in programmable matter. Natural Computing, 2018, 17, 723-741.	1.8	10
1147	Switchable DNA-origami nanostructures that respond to their environment and their applications. Biophysical Reviews, 2018, 10, 1283-1293.	1.5	28
1148	Design and operation of reconfigurable two-dimensional DNA molecular arrays. Nature Protocols, 2018, 13, 2312-2329.	5 . 5	30
1149	Control of Membrane Binding and Diffusion of Cholesteryl-Modified DNA Origami Nanostructures by DNA Spacers. Langmuir, 2018, 34, 14921-14931.	1.6	39
1150	Dynamic Plasmonic System That Responds to Thermal and Aptamer-Target Regulations. Nano Letters, 2018, 18, 7395-7399.	4.5	76
1151	Amphiphilic-DNA Platform for the Design of Crystalline Frameworks with Programmable Structure and Functionality. Journal of the American Chemical Society, 2018, 140, 15384-15392.	6.6	39
1152	Paper Origamiâ€Inspired Design and Actuation of DNA Nanomachines with Complex Motions. Small, 2018, 14, e1802580.	5,2	32
1153	Layered-Crossover Tiles with Precisely Tunable Angles for 2D and 3D DNA Crystal Engineering. Journal of the American Chemical Society, 2018, 140, 14670-14676.	6.6	62
1154	Self-assembly of polycyclic supramolecules using linear metal-organic ligands. Nature Communications, 2018, 9, 4575.	5.8	49
1155	DNA-Assembled Plasmonic Waveguides for Nanoscale Light Propagation to a Fluorescent Nanodiamond. Nano Letters, 2018, 18, 7323-7329.	4.5	58

#	Article	IF	CITATIONS
1156	Nucleic acid based nanocomposites and their applications in biomedicine. Composites Communications, 2018, 10, 194-204.	3.3	16
1157	Streptavidin-Decorated Algorithmic DNA Lattices Constructed by Substrate-Assisted Growth Method. ACS Biomaterials Science and Engineering, 2018, 4, 3617-3623.	2.6	5
1158	Circular Dichroism of Chiral Molecules in DNA-Assembled Plasmonic Hotspots. ACS Nano, 2018, 12, 9110-9115.	7. 3	110
1159	Effects of Design Choices on the Stiffness of Wireframe DNA Origami Structures. ACS Nano, 2018, 12, 9291-9299.	7.3	36
1160	DNA logic circuits based amplification system for quencher-free and highly sensitive detection of DNA and adenosine triphosphate. Journal of Pharmaceutical and Biomedical Analysis, 2018, 161, 393-398.	1.4	3
1161	Four-Point Probe Electrical Measurements on Templated Gold Nanowires Formed on Single DNA Origami Tiles. Langmuir, 2018, 34, 15069-15077.	1.6	31
1162	Cation-Activated Avidity for Rapid Reconfiguration of DNA Nanodevices. ACS Nano, 2018, 12, 9484-9494.	7.3	54
1163	Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering. ACS Nano, 2018, 12, 5791-5799.	7.3	35
1164	3D DNA Origami Crystals. Advanced Materials, 2018, 30, e1800273.	11.1	150
1165	Bio-surface engineering with DNA scaffolds for theranostic applications. Nanofabrication, 2018, 4, 1-16.	1.1	8
1166	Optical properties of hybrid spherical nanoclusters containing quantum emitters and metallic nanoparticles. Physical Review B, 2018, 97, .	1.1	17
1167	Common Principles of Molecular Electronics and Nanoscale Electrochemistry. Analytical Chemistry, 2018, 90, 7095-7106.	3.2	40
1168	Modulation of the Cellular Uptake of DNA Origami through Control over Mass and Shape. Nano Letters, 2018, 18, 3557-3564.	4.5	183
1169	Multifluorophore DNA Origami Beacon as a Biosensing Platform. ACS Nano, 2018, 12, 5699-5708.	7.3	94
1170	On the Stability of DNA Origami Nanostructures in Lowâ€Magnesium Buffers. Angewandte Chemie, 2018, 130, 9614-9618.	1.6	29
1171	On the Stability of DNA Origami Nanostructures in Lowâ€Magnesium Buffers. Angewandte Chemie - International Edition, 2018, 57, 9470-9474.	7.2	168
1172	Comparing proteins and nucleic acidsÂfor next-generation biomolecularÂengineering. Nature Reviews Chemistry, 2018, 2, 113-130.	13.8	44
1173	3D DNA Origami Nanoparticles: From Basic Design Principles to Emerging Applications in Soft Matter and (Bioâ€)Nanosciences. Angewandte Chemie - International Edition, 2018, 57, 10436-10448.	7.2	41

#	Article	IF	CITATIONS
1174	Mixâ€andâ€match nanobiosensor design: Logical and spatial programming of biosensors using selfâ€assembled DNA nanostructures. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1518.	3.3	15
1175	A Practical Guide to Molecular Dynamics Simulations of DNA Origami Systems. Methods in Molecular Biology, 2018, 1811, 209-229.	0.4	6
1176	Tuning Gold Nanoparticles Plasmonic Properties by DNA Nanotechnology. Methods in Molecular Biology, 2018, 1811, 279-297.	0.4	2
1177	DNA-Assisted Molecular Lithography. Methods in Molecular Biology, 2018, 1811, 299-314.	0.4	2
1178	Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nature Nanotechnology, 2018, 13, 730-738.	15.6	85
1179	Three-Dimensional DNA Origami as Programmable Anchoring Points for Bioreceptors in Fiber Optic Surface Plasmon Resonance Biosensing. ACS Applied Materials & Surface Plasmon Resonance Biosensing.	4.0	60
1180	DNA Nanotechnology: From the Pub to Information-Based Chemistry. Methods in Molecular Biology, 2018, 1811, 1-9.	0.4	15
1181	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie - International Edition, 2018, 57, 12504-12507.	7.2	43
1182	DNA Origami Nanomachines. Molecules, 2018, 23, 1766.	1.7	68
1183	DNA Origami-Based Förster Resonance Energy-Transfer Nanoarrays and Their Application as Ratiometric Sensors. ACS Applied Materials & Samp; Interfaces, 2018, 10, 23295-23302.	4.0	32
1184	Functional Two- and Three-Dimensional Architectures of Immobilized Metal Nanoparticles. CheM, 2018, 4, 2301-2328.	5.8	14
1185	Construction of integrated gene logic-chip. Nature Nanotechnology, 2018, 13, 933-940.	15.6	42
1186	Functional and Biomimetic DNA Nanostructures on Lipid Membranes. Langmuir, 2018, 34, 14721-14730.	1.6	19
1187	Tethered multifluorophore motion reveals equilibrium transition kinetics of single DNA double helices. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7512-E7521.	3.3	33
1188	Dynamic DNA Origami Devices: from Strand-Displacement Reactions to External-Stimuli Responsive Systems. International Journal of Molecular Sciences, 2018, 19, 2114.	1.8	73
1189	Selfâ€Assembly of a 3D DNA Crystal Structure with Rationally Designed Sixâ€Fold Symmetry. Angewandte Chemie, 2018, 130, 12684-12687.	1.6	11
1190	Fabrication and Characterization of Finite-Size DNA 2D Ring and 3D Buckyball Structures. International Journal of Molecular Sciences, 2018, 19, 1895.	1.8	1
1191	DNA Origami and G-Quadruplex Hybrid Complexes Induce Size Control of Single-Walled Carbon Nanotubes <i>via</i> Biological Activation. ACS Nano, 2018, 12, 7986-7995.	7.3	26

#	Article	IF	CITATIONS
1192	DNA in Nanotechnology., 2018,, 79-102.		2
1193	Self-Assembly of Large DNA Origami with Custom-Designed Scaffolds. ACS Applied Materials & Samp; Interfaces, 2018, 10, 24344-24348.	4.0	34
1194	Modular Assembly of Plasmonic Nanoparticles Assisted by DNA Origami. Langmuir, 2018, 34, 14963-14968.	1.6	20
1195	Isothermal folding of a light-up bio-orthogonal RNA origami nanoribbon. Scientific Reports, 2018, 8, 6989.	1.6	22
1196	Sequence-programmable covalent bonding of designed DNA assemblies. Science Advances, 2018, 4, eaau1157.	4.7	174
1197	Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality. Angewandte Chemie, 2018, 130, 13683-13686.	1.6	33
1198	Amphiphilic DNA Organic Hybrids: Functional Materials in Nanoscience and Potential Application in Biomedicine. International Journal of Molecular Sciences, 2018, 19, 2283.	1.8	16
1199	Superstructure-Dependent Loading of DNA Origami Nanostructures with a Groove-Binding Drug. ACS Omega, 2018, 3, 9441-9448.	1.6	42
1200	Multivalent, multiflavored droplets by design. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 9086-9091.	3.3	29
1201	Self-assembly of DNA–tetraphenylethylene amphiphiles into DNA-grafted nanosheets as a support for the immobilization of gold nanoparticles: a recyclable catalyst with enhanced activity. Nanoscale, 2018, 10, 17174-17181.	2.8	17
1202	Sensing Picomolar Concentrations of RNA Using Switchable Plasmonic Chirality. Angewandte Chemie - International Edition, 2018, 57, 13495-13498.	7.2	118
1203	Precise surface structure of nanofibres with nearly atomic-level precision. Chemical Communications, 2018, 54, 11084-11087.	2.2	2
1204	DNA-Corralled Nanodiscs for the Structural and Functional Characterization of Membrane Proteins and Viral Entry. Journal of the American Chemical Society, 2018, 140, 10639-10643.	6.6	57
1205	DNA Origami Nanophotonics and Plasmonics at Interfaces. Langmuir, 2018, 34, 14911-14920.	1.6	39
1206	Packaging DNA Origami into Viral Protein Cages. Methods in Molecular Biology, 2018, 1776, 267-277.	0.4	4
1207	3Dâ€DNAâ€Origamiâ€Nanopartikel: von grundlegenden Designprinzipien hin zu neuartigen Anwendungen in der weichen Materie und den (Bioâ€)Nanowissenschaften. Angewandte Chemie, 2018, 130, 10594-10607.	1.6	7
1208	Surface-Guided Chemical Processes on Self-Assembled DNA Nanostructures. Langmuir, 2018, 34, 14954-14962.	1.6	4
1209	DNA nanostructures: chemistry, self-assembly, and applications. , 2018, , 71-94.		7

#	Article	IF	CITATIONS
1210	Microrheology of DNA hydrogel gelling and melting on cooling. Soft Matter, 2018, 14, 6431-6438.	1.2	37
1211	DNA Nanotechnology. Methods in Molecular Biology, 2018, , .	0.4	3
1212	Self-assembly of highly symmetrical, ultrasmall inorganic cages directed by surfactant micelles. Nature, 2018, 558, 577-580.	13.7	86
1213	DNA Nanostructures., 2019, , 1-26.		1
1214	Emerging Biomimetic Applications of DNA Nanotechnology. ACS Applied Materials & Samp; Interfaces, 2019, 11, 13859-13873.	4.0	43
1215	Advances in biological applications of self-assembled DNA tetrahedral nanostructures. Materials Today, 2019, 24, 57-68.	8.3	114
1216	Self-Assembly of DNA–Minocycline Complexes by Metal Ions with Controlled Drug Release. ACS Applied Materials & Drug Release. ACS Applied & Drug Release. ACS Applied Materials & Drug Release. ACS Applied & Drug	4.0	9
1217	Imaging of Unstained DNA Origami Triangles with Electron Microscopy. Small Methods, 2019, 3, 1900393.	4.6	7
1218	Modifying Membrane Morphology and Interactions with DNA Origami Clathrin-Mimic Networks. ACS Nano, 2019, 13, 9973-9979.	7.3	42
1219	Controlling the Bioreceptor Spatial Distribution at the Nanoscale for Single Molecule Counting in Microwell Arrays. ACS Sensors, 2019, 4, 2327-2335.	4.0	11
1220	Peptide Assembly Directed and Quantified Using Megadalton DNA Nanostructures. ACS Nano, 2019, 13, 9927-9935.	7.3	45
1221	Rotation tracking of genome-processing enzymes using DNA origami rotors. Nature, 2019, 572, 136-140.	13.7	79
1222	A programmable DNA-origami platform for studying lipid transfer between bilayers. Nature Chemical Biology, 2019, 15, 830-837.	3.9	66
1223	Metal–DNA Coordinationâ€Driven Selfâ€Assembly: A Conceptual Methodology to Expand the Repertoire of DNA Nanobiotechnology. Chemistry - A European Journal, 2019, 25, 13452-13457.	1.7	20
1224	PEGylated Protamine-Based Adsorbing Improves the Biological Properties and Stability of Tetrahedral Framework Nucleic Acids. ACS Applied Materials & Samp; Interfaces, 2019, 11, 27588-27597.	4.0	35
1225	Fe ^{II} ₄ L ₄ Tetrahedron Binds to Nonpaired DNA Bases. Journal of the American Chemical Society, 2019, 141, 11358-11362.	6.6	36
1226	Barcoded DNA nanostructures for the multiplexed profiling of subcellular protein distribution. Nature Biomedical Engineering, 2019, 3, 684-694.	11.6	53
1227	DNA nanostructures: A versatile lab-bench for interrogating biological reactions. Computational and Structural Biotechnology Journal, 2019, 17, 832-842.	1.9	7

#	Article	IF	Citations
1228	Tailoring the Mechanical Stiffness of DNA Nanostructures Using Engineered Defects. ACS Nano, 2019, 13, 8329-8336.	7.3	25
1229	DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Research, 2019, 47, 10489-10505.	6.5	92
1230	Stabilizing DNA nanostructures through reversible disulfide crosslinking. Nanoscale, 2019, 11, 14921-14928.	2.8	10
1231	DNA nanostructures from double-C-shaped motifs with controllable twist and curvature. Nanoscale, 2019, 11, 14569-14572.	2.8	3
1232	Chemically Functionalizing Controlled Dielectric Breakdown Silicon Nitride Nanopores by Direct Photohydrosilylation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 30411-30420.	4.0	26
1233	Photoâ€Powered Collapse of Supramolecular Polymers Based on an Overcrowded Alkene Switch. Chemistry - an Asian Journal, 2019, 14, 3141-3144.	1.7	4
1234	Construction of a reconfigurable DNA nanocage for encapsulating a TMV disk. Chemical Communications, 2019, 55, 8951-8954.	2.2	6
1235	Reaction of ribulose biphosphate carboxylase/oxygenase assembled on a DNA scaffold. Bioorganic and Medicinal Chemistry, 2019, 27, 115120.	1.4	5
1236	DNA Origami-Mediated Substrate Nanopatterning of Inorganic Structures for Sensing Applications. Journal of Visualized Experiments, 2019, , .	0.2	2
1237	Devices for promising applications. , 2019, , 247-314.		0
1238	Controlling aggregation of cholesterol-modified DNA nanostructures. Nucleic Acids Research, 2019, 47, 11441-11451.	6.5	60
1239	Artificial Multienzyme Scaffolds: Pursuing <i>in Vitro</i> Substrate Channeling with an Overview of Current Progress. ACS Catalysis, 2019, 9, 10812-10869.	5 . 5	115
1240	Biological and Bio-inspired Nanomaterials. Advances in Experimental Medicine and Biology, 2019, , .	0.8	8
1241	Synthetic protein-conductive membrane nanopores built with DNA. Nature Communications, 2019, 10, 5018.	5.8	76
1242	Gene Circuit Compartment on Nanointerface Facilitatating Cascade Gene Expression. Journal of the American Chemical Society, 2019, 141, 19171-19177.	6.6	27
1243	Rapid in vitro production of single-stranded DNA. Nucleic Acids Research, 2019, 47, 11956-11962.	6.5	22
1244	Evolutionary Refinement of DNA Nanostructures Using Coarse-Grained Molecular Dynamics Simulations. ACS Nano, 2019, 13, 12591-12598.	7.3	20
1245	A high-performance flexible direct ethanol fuel cell with drop-and-play function. Nano Energy, 2019, 65, 104052.	8.2	30

#	ARTICLE	IF	CITATIONS
1246	3D Solarâ€Blind Ga ₂ O ₃ Photodetector Array Realized Via Origami Method. Advanced Functional Materials, 2019, 29, 1906040.	7.8	120
1247	From DNA Tiles to Functional DNA Materials. Trends in Chemistry, 2019, 1, 799-814.	4.4	43
1248	Efficient Small-Scale Conjugation of DNA to Primary Antibodies for Multiplexed Cellular Targeting. Bioconjugate Chemistry, 2019, 30, 2384-2392.	1.8	20
1249	Sustained Release of Minor-Groove-Binding Antibiotic Netropsin from Calcium-Coated Groove-Rich DNA Particles. Pharmaceutics, 2019, 11, 387.	2.0	11
1250	Counterion-Dependent Mechanisms of DNA Origami Nanostructure Stabilization Revealed by Atomistic Molecular Simulation. ACS Nano, 2019, 13, 10798-10809.	7.3	44
1251	A Simple Mechanical Model for Synthetic Catch Bonds. Matter, 2019, 1, 911-925.	5.0	15
1252	The path towards functional nanoparticle-DNA origami composites. Materials Science and Engineering Reports, 2019, 138, 153-209.	14.8	15
1253	Enhanced Performance and Stability in DNA-Perovskite Heterostructure-Based Solar Cells. ACS Energy Letters, 2019, 4, 2646-2655.	8.8	45
1254	Rationally Engineered Nucleic Acid Architectures for Biosensing Applications. Chemical Reviews, 2019, 119, 11631-11717.	23.0	207
1255	Reconfigurable Plasmonic Diastereomers Assembled by DNA Origami. ACS Nano, 2019, 13, 13702-13708.	7.3	66
1256	Structure and stimuli-responsiveness of all-DNA dendrimers: theory and experiment. Nanoscale, 2019, 11, 1604-1617.	2.8	12
1257	Uncertainty quantification of a DNA origami mechanism using a coarse-grained model and kinematic variance analysis. Nanoscale, 2019, 11, 1647-1660.	2.8	23
1258	Reversible Covalent Stabilization of Stacking Contacts in DNA Assemblies. Angewandte Chemie, 2019, 131, 2706-2710.	1.6	11
1259	Reversible Covalent Stabilization of Stacking Contacts in DNA Assemblies. Angewandte Chemie - International Edition, 2019, 58, 2680-2684.	7.2	39
1260	One-Dimensional Assemblies of a DNA Tetrahedron: Manipulations on the Structural Conformation and Single-Molecule Behaviors. ACS Applied Bio Materials, 2019, 2, 1278-1285.	2.3	8
1261	Interchromophoric Interactions Determine the Maximum Brightness Density in DNA Origami Structures. Nano Letters, 2019, 19, 1275-1281.	4.5	40
1262	Chiral Plasmonic Nanocrystals for Generation of Hot Electrons: Toward Polarization-Sensitive Photochemistry. Nano Letters, 2019, 19, 1395-1407.	4.5	83
1263	Room Temperature Study of Seeding Growth on Two-Dimensional DNA Nanostructure. Langmuir, 2019, 35, 4140-4145.	1.6	4

#	Article	IF	CITATIONS
1264	Multifunctional DNA Origami Nanoplatforms for Drug Delivery. Chemistry - an Asian Journal, 2019, 14, 2193-2202.	1.7	36
1265	Unconventional Computation and Natural Computation. Lecture Notes in Computer Science, 2019, , .	1.0	2
1267	Distance Dependence of Single-Molecule Energy Transfer to Graphene Measured with DNA Origami Nanopositioners. Nano Letters, 2019, 19, 4257-4262.	4.5	40
1268	Lipid-DNA conjugates for cell membrane modification, analysis, and regulation. Supramolecular Chemistry, 2019, 31, 532-544.	1.5	13
1269	Stiffness and Membrane Anchor Density Modulate DNA-Nanospring-Induced Vesicle Tubulation. ACS Applied Materials & Samp; Interfaces, 2019, 11, 22987-22992.	4.0	23
1270	Algebraic Systems Motivated by DNA Origami. Lecture Notes in Computer Science, 2019, , 164-176.	1.0	3
1271	Simply Constructed and Highly Efficient Classified Cargo-Discharge DNA Robot: A DNA Walking Nanomachine Platform for Ultrasensitive Multiplexed Sensing. Analytical Chemistry, 2019, 91, 8123-8128.	3.2	55
1272	DNA Nanostructures that Self-Heal in Serum. Nano Letters, 2019, 19, 3751-3760.	4.5	33
1273	Edge-outer graph embedding and the complexity of the DNA reporter strand problem. Theoretical Computer Science, 2019, 785, 117-127.	0.5	4
1274	An Exponentially Growing Nubot System Without State Changes. Lecture Notes in Computer Science, 2019, , 122-135.	1.0	2
1275	Realâ€Time Observation of Superstructureâ€Dependent DNA Origami Digestion by DNaseâ€I Using Highâ€Spe Atomic Force Microscopy. ChemBioChem, 2019, 20, 2818-2823.	$ed_{1.3}$	66
1276	Selfâ€Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angewandte Chemie, 2019, 131, 12251-12255.	1.6	9
1277	Selfâ€Assembly of Wireframe DNA Nanostructures from Junction Motifs. Angewandte Chemie - International Edition, 2019, 58, 12123-12127.	7.2	24
1278	Multiplexed DNA detection with DNA tweezers in a one-pot reaction. Materials Science for Energy Technologies, 2019, 2, 503-508.	1.0	9
1279	Peptide–Oligonucleotide Hybrid Molecules for Bioactive Nanomaterials. Bioconjugate Chemistry, 2019, 30, 1915-1922.	1.8	31
1280	Programming Structured DNA Assemblies to Probe Biophysical Processes. Annual Review of Biophysics, 2019, 48, 395-419.	4.5	56
1281	Configurational Design of Mechanical Perturbation for Fine Control of Twisted DNA Origami Structures. ACS Nano, 2019, 13, 6348-6355.	7.3	14
1283	Advances in intracellular delivery through supramolecular self-assembly of oligonucleotides and peptides. Theranostics, 2019, 9, 3191-3212.	4.6	50

#	Article	IF	CITATIONS
1284	Measurement of Radial Elasticity and Original Height of DNA Duplex Using Tapping-Mode Atomic Force Microscopy. Nanomaterials, 2019, 9, 561.	1.9	6
1285	Create Nanoscale Patterns with DNA Origami. Small, 2019, 15, e1805554.	5.2	51
1286	A New Hope: Self-Assembling Peptides with Antimicrobial Activity. Pharmaceutics, 2019, 11, 166.	2.0	85
1287	Autonomous dynamic control of DNA nanostructure self-assembly. Nature Chemistry, 2019, 11, 510-520.	6.6	178
1288	Stable DNA Motifs, 1D and 2D Nanostructures Constructed from Small Circular DNA Molecules. Journal of Visualized Experiments, 2019, , .	0.2	2
1289	The sequence of events during folding of a DNA origami. Science Advances, 2019, 5, eaaw1412.	4.7	43
1290	A Simple and Efficient Microfluidic System for Reverse Chemical Synthesis $(5\hat{a}\in^2-3\hat{a}\in^2)$ of a Short-Chain Oligonucleotide Without Inert Atmosphere. Applied Sciences (Switzerland), 2019, 9, 1357.	1.3	5
1291	Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds. ACS Nano, 2019, 13, 5015-5027.	7. 3	103
1292	Bioproduction of pure, kilobase-scale single-stranded DNA. Scientific Reports, 2019, 9, 6121.	1.6	39
1293	DNA nanostructures in vitro, in vivo and on membranes. Nano Today, 2019, 26, 98-107.	6.2	35
1294	Fabrication of Metal Nanostructures with Programmable Length and Patterns Using a Modular DNA Platform. Nano Letters, 2019, 19, 2707-2714.	4.5	40
1295	DNA nanostructures coordinate gene silencing in mature plants. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7543-7548.	3.3	191
1296	Biomimetic Compartments Scaffolded by Nucleic Acid Nanostructures. Small, 2019, 15, 1900256.	5.2	12
1297	Watching a Single Fluorophore Molecule Walk into a Plasmonic Hotspot. ACS Photonics, 2019, 6, 985-993.	3.2	34
1298	Tunable Nanoscale Cages from Self-Assembling DNA and Protein Building Blocks. ACS Nano, 2019, 13, 3545-3554.	7.3	121
1299	Complex wireframe DNA nanostructures from simple building blocks. Nature Communications, 2019, 10, 1067.	5.8	63
1300	Translocation of tetrahedral DNA nanostructures through a solid-state nanopore. Nanoscale, 2019, 11, 6263-6269.	2.8	13
1301	Framework nucleic acids as programmable carrier for transdermal drug delivery. Nature Communications, 2019, 10, 1147.	5.8	178

#	Article	IF	CITATIONS
1302	A new reporter design based on DNA origami nanostructures for quantification of short oligonucleotides using microbeads. Scientific Reports, 2019, 9, 4769.	1.6	13
1304	DNAâ€Decorated, Helically Twisted Nanoribbons: A Scaffold for the Fabrication of Oneâ€Dimensional, Chiral, Plasmonic Nanostructures. Angewandte Chemie, 2019, 131, 3905-3909.	1.6	4
1305	The Growing Development of DNA Nanostructures for Potential Healthcareâ€Related Applications. Advanced Healthcare Materials, 2019, 8, e1801546.	3.9	60
1306	Label-free detection of conformational changes in switchable DNA nanostructures with microwave microfluidics. Nature Communications, 2019, 10, 1174.	5.8	33
1307	Strategies for Stabilizing DNA Nanostructures to Biological Conditions. ChemBioChem, 2019, 20, 2191-2197.	1.3	28
1308	DNA Origami as Scaffolds for Selfâ€Assembly of Lipids and Proteins. ChemBioChem, 2019, 20, 2422-2431.	1.3	13
1309	Metal and Lanthanide Ion-Co-doped Synthetic and Salmon DNA Thin Films. ACS Omega, 2019, 4, 6530-6537.	1.6	8
1310	Rational Design of Framework Nucleic Acids for Bioanalytical Applications. ChemPlusChem, 2019, 84, 512-523.	1.3	22
1311	Controllable Covalent-Bound Nanoarchitectures from DNA Frames. Journal of the American Chemical Society, 2019, 141, 6797-6801.	6.6	35
1312	Branched DNA Architectures Produced by PCRâ€Based Assembly as Gene Compartments for Cellâ€Free Geneâ€Expression Reactions. ChemBioChem, 2019, 20, 2597-2603.	1.3	26
1313	Fold 2D Woven DNA Origami to Origami ⁺ Structures. Advanced Functional Materials, 2019, 29, 1809097.	7.8	18
1314	Precision immunomodulation with synthetic nucleic acid technologies. Nature Reviews Materials, 2019, 4, 451-458.	23.3	27
1315	Enhancement of Lysozyme Crystallization Using DNA as a Polymeric Additive. Crystals, 2019, 9, 186.	1.0	10
1316	Low-cost, simple, and scalable self-assembly of DNA origami nanostructures. Nano Research, 2019, 12, 1207-1215.	5.8	24
1317	Reversible Self-Assembly of Nanoprobes in Live Cells for Dynamic Intracellular pH Imaging. ACS Nano, 2019, 13, 1421-1432.	7.3	33
1318	Divergent Supramolecular Gelation of Backbone Modified Short Hybrid δ-Peptides. Biomacromolecules, 2019, 20, 1254-1262.	2.6	13
1319	DNAâ€Based Nanofabrication: Pathway to Applications in Surface Engineering. Small, 2019, 15, e1805428.	5.2	24
1320	A Photocaged DNA Nanocapsule for Controlled Unlocking and Opening inside the Cell. Bioconjugate Chemistry, 2019, 30, 1860-1863.	1.8	13

#	Article	IF	CITATIONS
1321	Programming chain-growth copolymerization of DNA hairpin tiles for in-vitro hierarchical supramolecular organization. Nature Communications, 2019, 10, 1006.	5.8	26
1322	Crystal engineering with DNA. Nature Reviews Materials, 2019, 4, 201-224.	23.3	178
1323	3D Lattice Engineering of Nanoparticles by DNA Shells. Small, 2019, 15, e1805401.	5.2	13
1324	A "time-frozen―technique in microchannel used for the thermodynamic studies of DNA origami. Biosensors and Bioelectronics, 2019, 131, 224-231.	5.3	4
1325	Progress toward Understanding the Interactions between DNA Nanostructures and the Cell. Small, 2019, 15, e1805416.	5.2	25
1326	DNA origami directed 3D nanoparticle superlattice <i>via</i> electrostatic assembly. Nanoscale, 2019, 11, 4546-4551.	2.8	42
1327	DNA binding adaptors to assemble proteins of interest on DNA scaffold. Methods in Enzymology, 2019, 617, 287-322.	0.4	5
1328	Rationally designed DNA-based nanocarriers. Advanced Drug Delivery Reviews, 2019, 147, 2-21.	6.6	77
1329	From DNA Nanotechnology to Material Systems Engineering. Advanced Materials, 2019, 31, e1806294.	11.1	119
1330	DNAâ€Decorated, Helically Twisted Nanoribbons: A Scaffold for the Fabrication of Oneâ€Dimensional, Chiral, Plasmonic Nanostructures. Angewandte Chemie - International Edition, 2019, 58, 3865-3869.	7.2	32
1331	Magnetic handshake materials as a scale-invariant platform for programmed self-assembly. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 24402-24407.	3.3	28
1332	Design and synthesis of pleated DNA origami nanotubes with adjustable diameters. Nucleic Acids Research, 2019, 47, 11963-11975.	6.5	7
1333	Control of the stepwise assembly–disassembly of DNA origami nanoclusters by pH stimuli-responsive DNA triplexes. Nanoscale, 2019, 11, 18026-18030.	2.8	18
1334	Towards the crystal structure of thymine: An intermolecular force field development and parallel global cluster optimizations. Journal of Chemical Physics, 2019, 151, 244302.	1.2	6
1335	Protein adaptors assemble functional proteins on DNA scaffolds. Chemical Communications, 2019, 55, 12428-12446.	2.2	25
1336	Addressable DNA nanotubes with repetitive components. Nanoscale, 2019, 11, 23105-23109.	2.8	2
1337	Controlled Self-Assembly of î»-DNA Networks with the Synergistic Effect of a DC Electric Field. Journal of Physical Chemistry B, 2019, 123, 9809-9818.	1.2	9
1338	Large Chiral Nanotubes Self-Assembled by DNA Bricks. Journal of the American Chemical Society, 2019, 141, 19524-19528.	6.6	13

#	Article	IF	CITATIONS
1339	Automated sequence design of 2D wireframe DNA origami with honeycomb edges. Nature Communications, 2019, 10, 5419.	5.8	70
1340	DNA origami cryptography for secure communication. Nature Communications, 2019, 10, 5469.	5.8	84
1341	DNA-assembled nanoarchitectures with multiple components in regulated and coordinated motion. Science Advances, 2019, 5, eaax6023.	4.7	37
1342	Selfâ€Assembly of DNA Origami Heterodimers in High Yields and Analysis of the Involved Mechanisms. Small, 2019, 15, e1902979.	5.2	4
1343	A rotary plasmonic nanoclock. Nature Communications, 2019, 10, 5394.	5.8	50
1344	Direct visualization of human myosin II force generation using DNA origami-based thick filaments. Communications Biology, 2019, 2, 437.	2.0	27
1345	The Fusion of Lipid and DNA Nanotechnology. Genes, 2019, 10, 1001.	1.0	20
1346	Programming DNA origami patterning with non-canonical DNA-based metallization reactions. Nature Communications, 2019, 10, 5597.	5.8	74
1347	Magnesium-Dependent Electrical Actuation and Stability of DNA Origami Rods. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2295-2301.	4.0	14
1348	Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles. Advanced Materials, 2019, 31, e1805344.	11.1	81
1349	The Clearance Effect of Tetrahedral DNA Nanostructures on Senescent Human Dermal Fibroblasts. ACS Applied Materials & DNA Nanostructures on Senescent Human Dermal Fibroblasts.	4.0	37
1350	Single Particle Tracking and Super-Resolution Imaging of Membrane-Assisted Stop-and-Go Diffusion and Lattice Assembly of DNA Origami. ACS Nano, 2019, 13, 996-1002.	7.3	28
1351	Autonomously designed free-form 2D DNA origami. Science Advances, 2019, 5, eaav0655.	4.7	115
1352	Selfâ€Assembled Aptamer Nanoconstruct: A Highly Effective Molecule apturing Platform Having Therapeutic Applications. Advanced Therapeutics, 2019, 2, 1800111.	1.6	4
1353	Solidâ€Phase Synthesis and Purification of Protein–DNA Origami Nanostructures. Chemistry - A European Journal, 2019, 25, 3483-3488.	1.7	15
1354	DNAâ€Origamiâ€Templated Silica Growth by Sol–Gel Chemistry. Angewandte Chemie - International Edition, 2019, 58, 912-916.	7.2	103
1355	A review on optical imaging of DNA nanostructures and dynamic processes. Methods and Applications in Fluorescence, 2019, 7, 012002.	1.1	9
1356	Types of Metamaterials. , 2019, , 1-39.		1

#	Article	IF	CITATIONS
1357	Correlation between topology and elastic properties of imperfect truss-lattice materials. Journal of the Mechanics and Physics of Solids, 2019, 124, 577-598.	2.3	65
1358	Automated Sequence Design of 3D Polyhedral Wireframe DNA Origami with Honeycomb Edges. ACS Nano, 2019, 13, 2083-2093.	7.3	77
1359	Push-Button Method To Create Nanopores Using a Tesla-Coil Lighter. ACS Omega, 2019, 4, 226-230.	1.6	24
1360	Coarse-grained modelling of the structural properties of DNA origami. Nucleic Acids Research, 2019, 47, 1585-1597.	6.5	75
1361	Highly Localized SERS Measurements Using Single Silicon Nanowires Decorated with DNA Origami-Based SERS Probe. Nano Letters, 2019, 19, 1061-1066.	4.5	34
1362	A Hybrid Carrier System Based on Origami Nanostrucutures and Layerâ€by‣ayer Microparticles. Advanced Functional Materials, 2019, 29, 1808116.	7.8	11
1363	Triangulated Wireframe Structures Assembled Using Single-Stranded DNA Tiles. ACS Nano, 2019, 13, 1839-1848.	7.3	21
1364	Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. Nature Nanotechnology, 2019, 14, 184-190.	15.6	134
1365	Solving mazes with single-molecule DNA navigators. Nature Materials, 2019, 18, 273-279.	13.3	190
1366	Engineering Multifunctional DNA Hybrid Nanospheres through Coordinationâ€Driven Selfâ€Assembly. Angewandte Chemie, 2019, 131, 1364-1368.	1.6	26
1367	Engineering Multifunctional DNA Hybrid Nanospheres through Coordinationâ€Driven Selfâ€Assembly. Angewandte Chemie - International Edition, 2019, 58, 1350-1354.	7.2	149
1368	Solutionâ€Controlled Conformational Switching of an Anchored Wireframe DNA Nanostructure. Small, 2019, 15, e1803628.	5.2	9
1369	Nucleic Acid-Based Nanocarriers. , 2019, , 155-172.		3
1370	Biomimetische DNAâ€Nanoröhren: Gezielte Synthese und Anwendung nanoskopischer KanÃæ. Angewandte Chemie, 2019, 131, 9092-9108.	1.6	4
1371	"Printing―DNA Strand Patterns on Small Molecules with Control of Valency, Directionality, and Sequence. Angewandte Chemie, 2019, 131, 3074-3079.	1.6	3
1372	Biomimetic DNA Nanotubes: Nanoscale Channel Design and Applications. Angewandte Chemie - International Edition, 2019, 58, 8996-9011.	7.2	62
1373	"Printing―DNA Strand Patterns on Small Molecules with Control of Valency, Directionality, and Sequence. Angewandte Chemie - International Edition, 2019, 58, 3042-3047.	7.2	14
1374	Construction and structure studies of DNA-bipyridine complexes as versatile scaffolds for site-specific incorporation of metal ions into DNA. Journal of Biomolecular Structure and Dynamics, 2019, 37, 551-561.	2.0	6

#	Article	IF	CITATIONS
1375	Controllable self-assembly of parallel gold nanorod clusters by DNA origami. Chinese Chemical Letters, 2019, 30, 175-178.	4.8	22
1376	Framework Nucleic Acids for Cell Imaging and Therapy. Chemical Research in Chinese Universities, 2020, 36, 1-9.	1.3	11
1377	Building machines with DNA molecules. Nature Reviews Genetics, 2020, 21, 5-26.	7.7	198
1378	DNA Origami Catenanes Templated by Gold Nanoparticles. Small, 2020, 16, e1905987.	5.2	18
1379	Extrusion of RNA from a DNA-Origami-Based Nanofactory. ACS Nano, 2020, 14, 1550-1559.	7.3	26
1380	Boosting biomolecular interactions through DNA origami nano-tailored biosensing interfaces. Journal of Materials Chemistry B, 2020, 8, 3606-3615.	2.9	13
1381	DNA Framework-Encoded Mineralization of Calcium Phosphate. CheM, 2020, 6, 472-485.	5.8	61
1382	Characterizing the length-dependence of DNA nanotube end-to-end joining rates. Molecular Systems Design and Engineering, 2020, 5, 544-558.	1.7	2
1383	Dynamic DNA nanotechnology: toward functional nanoscale devices. Nanoscale Horizons, 2020, 5, 182-201.	4.1	158
1384	NanoMuscle: controllable contraction and extension of mechanically interlocked DNA origami. Nanoscale, 2020, 12, 2992-2998.	2.8	5
1385	On the role of flexibility in linker-mediated DNA hydrogels. Soft Matter, 2020, 16, 990-1001.	1.2	23
1386	Design of DNA Origami Diamond Photonic Crystals. ACS Applied Bio Materials, 2020, 3, 747-756.	2.3	11
1387	Polarized Single-Particle Quantum Dot Emitters through Programmable Cluster Assembly. ACS Nano, 2020, 14, 1369-1378.	7.3	34
1388	Designer Structures Assembled from Modular DNA Superbricks. ACS Applied Bio Materials, 2020, 3, 2850-2853.	2.3	3
1389	Hierarchical Assembly of Nucleic Acid/Coiled-Coil Peptide Nanostructures. Journal of the American Chemical Society, 2020, 142, 1406-1416.	6.6	64
1390	Programmable Assembly of DNA-protein Hybrid Structures. Chemical Research in Chinese Universities, 2020, 36, 211-218.	1.3	4
1391	Supracolloidal Selfâ€Assembly of Divalent Janus 3D DNA Origami via Programmable Multivalent Host/Guest Interactions. Angewandte Chemie - International Edition, 2020, 59, 5515-5520.	7.2	38
1392	Suprakolloidale Selbstorganisation von bivalenten Janusâ€3Dâ€DNAâ€Origami Ã1⁄4ber programmierbare, multivalente Wirt/Gastâ€Wechselwirkungen. Angewandte Chemie, 2020, 132, 5557-5563.	1.6	1

#	Article	IF	CITATIONS
1393	DNA Nanostructures and DNAâ€Functionalized Nanoparticles for Cancer Theranostics. Advanced Science, 2020, 7, 2001669.	5.6	47
1394	Largeâ€Scale Assembly of Peptideâ€Based Hierarchical Nanostructures and Their Antiferroelectric Properties. Small, 2020, 16, e2003986.	5.2	6
1395	Bioinspired and Biomimetic Design of Multilayered and Multiscale Structures., 2020,, 3-19.		1
1396	Programming the Curvatures in Reconfigurable DNA Domino Origami by Using Asymmetric Units. Nano Letters, 2020, 20, 8236-8241.	4.5	19
1397	Bioinspired Design for Energy Storage Devices. , 2020, , 193-211.		0
1398	Bioinspired Underwater Propulsors. , 2020, , 113-139.		6
1399	Aquatic Animals Operating at High Reynolds Numbers. , 2020, , 235-270.		1
1400	Programming multi-protein assembly by gene-brush patterns and two-dimensional compartment geometry. Nature Nanotechnology, 2020, 15, 783-791.	15.6	19
1401	Adenita: interactive 3D modelling and visualization of DNA nanostructures. Nucleic Acids Research, 2020, 48, 8269-8275.	6.5	33
1402	Barcoded DNA origami structures for multiplexed optimization and enrichment of DNA-based protein-binding cavities. Nature Chemistry, 2020, 12, 852-859.	6.6	45
1403	Bibliometric analysis on self-assembly research in nanoscale. Journal of Nanoparticle Research, 2020, 22, 1.	0.8	1
1404	DNA Origami for Silicon Patterning. ACS Applied Materials & Samp; Interfaces, 2020, 12, 36799-36809.	4.0	8
1405	DNA Ring Motif with Flexible Joints. Micromachines, 2020, 11, 987.	1.4	5
1406	Construction of Macromolecular Pinwheels Using Predesigned Metalloligands. Journal of the American Chemical Society, 2020, 142, 21691-21701.	6.6	28
1407	Complex multicomponent patterns rendered on a 3D DNA-barrel pegboard. Nature Communications, 2020, 11, 5768.	5.8	33
1408	Self-Limiting Polymerization of DNA Origami Subunits with Strain Accumulation. ACS Nano, 2020, 14, 17428-17441.	7. 3	29
1409	Programmable Cocrystallization of DNA Origami Shapes. Journal of the American Chemical Society, 2020, 142, 21336-21343.	6.6	32
1410	DNA-assembled superconducting 3D nanoscale architectures. Nature Communications, 2020, 11, 5697.	5.8	48

#	Article	IF	CITATIONS
1411	Revealing the structures of megadalton-scale DNA complexes with nucleotide resolution. Nature Communications, 2020, 11 , 6229.	5.8	43
1412	Bioinspired Supramolecular Catalysts from Designed Self-Assembly of DNA or Peptides. ACS Catalysis, 2020, 10, 14937-14958.	5 . 5	48
1413	DNA Origami-Enabled Biosensors. Sensors, 2020, 20, 6899.	2.1	38
1414	Dynamic spatial and structural organization in artificial cells regulates signal processing by protein scaffolding. Chemical Science, 2020, 11, 12829-12834.	3.7	6
1415	DNA origami nanorulers and emerging reference structures. APL Materials, 2020, 8, .	2.2	33
1416	Advanced DNA Nanopore Technologies. ACS Applied Bio Materials, 2020, 3, 5606-5619.	2.3	27
1417	Rationally Designed DNA Assemblies for Biomedical Application. , 2020, , 287-310.		0
1418	Computational modeling for bionanocomposites. , 2020, , 367-420.		1
1419	Construction of Organelleâ€Like Architecture by Dynamic DNA Assembly in Living Cells. Angewandte Chemie - International Edition, 2020, 59, 20651-20658.	7.2	57
1420	A photocaged DNA nanocapsule for delivery and manipulation in cells. Methods in Enzymology, 2020, 641, 329-342.	0.4	0
1421	Enhanced enzymatic activity exerted by a packed assembly of a single type of enzyme. Chemical Science, 2020, 11, 9088-9100.	3.7	12
1422	Synthesis of DNA Origami Scaffolds: Current and Emerging Strategies. Molecules, 2020, 25, 3386.	1.7	29
1423	Construction of Organelleâ€Like Architecture by Dynamic DNA Assembly in Living Cells. Angewandte Chemie, 2020, 132, 20832-20839.	1.6	7
1424	Synthetic Protocol for Assembling Giant Heterometallic Hydroxide Clusters from Building Blocks: Rational Design and Efficient Synthesis. Matter, 2020, 3, 1334-1349.	5.0	26
1425	Designer, Programmable 3D DNA Nanodevices to Probe Biological Systems. ACS Applied Bio Materials, 2020, 3, 7265-7277.	2.3	25
1427	Bioinspired Design of Dental Functionally Graded Multilayer Structures. , 2020, , 140-166.		0
1428	Bionic Organs. , 2020, , 167-192.		1
1429	Bioinspired Design of Nanostructures. , 2020, , 212-232.		0

#	ARTICLE	IF	CITATIONS
1430	Flying of Insects., 2020,, 271-299.		5
1431	Bioinspired Building Envelopes. , 2020, , 343-354.		0
1433	Application of DNA nanostructures in cancer therapy. Applied Materials Today, 2020, 21, 100861.	2.3	7
1434	Bottom-Up Self-Assembly Based on DNA Nanotechnology. Nanomaterials, 2020, 10, 2047.	1.9	27
1435	Expanding detection windows for discriminating single nucleotide variants using rationally designed DNA equalizer probes. Nature Communications, 2020, 11, 5473.	5.8	10
1436	DNA Origami Nano-Sheets and Nano-Rods Alter the Orientational Order in a Lyotropic Chromonic Liquid Crystal. Nanomaterials, 2020, 10, 1695.	1.9	3
1437	Human Cortical Bone as a Structural Material. , 2020, , 20-44.		0
1438	Bamboo-Inspired Materials and Structures. , 2020, , 89-110.		5
1439	Designing Nature-Inspired Liquid-Repellent Surfaces. , 2020, , 300-319.		1
1440	Two-layer stacked multi-arm junction tiles and nanostructures assembled with small circular DNA molecules serving as scaffolds. Nanoscale, 2020, 12, 19597-19603.	2.8	6
1441	Rationally Designed DNA Nanostructures for Drug Delivery. Frontiers in Chemistry, 2020, 8, 751.	1.8	27
1442	Biomimetic and Soft Robotics. , 2020, , 320-342.		0
1443	DNA Origami Nanostructures with Scaffolds Obtained from Rolling Circle Amplification. , 2020, 2, 1322-1327.		8
1444	Dissipative Constitutional Dynamic Networks for Tunable Transient Responses and Catalytic Functions. Journal of the American Chemical Society, 2020, 142, 17480-17488.	6.6	36
1445	Structural Polymorphism of Single pDNA Condensates Elicited by Cationic Block Polyelectrolytes. Polymers, 2020, 12, 1603.	2.0	8
1446	Development of albumin macroinitiator for polymers to use in DNA origami coating. Turkish Journal of Medical Sciences, 2020, 50, 1461-1469.	0.4	0
1447	DNA Nanotechnology. Topics in Current Chemistry Collections, 2020, , .	0.2	0
1448	Self-assembly of highly ordered DNA origami lattices at solid-liquid interfaces by controlling cation binding and exchange. Nano Research, 2020, 13, 3142-3150.	5.8	26

#	Article	IF	CITATIONS
1449	Bioinspired Design of Multilayered Composites. , 2020, , 45-88.		0
1450	Local Environment Affects the Activity of Enzymes on a 3D Molecular Scaffold. ACS Nano, 2020, 14, 14646-14654.	7.3	24
1451	Engineering Organization of DNA Nano-Chambers through Dimensionally Controlled and Multi-Sequence Encoded Differentiated Bonds. Journal of the American Chemical Society, 2020, 142, 17531-17542.	6.6	44
1452	Programming and simulating chemical reaction networks on a surface. Journal of the Royal Society Interface, 2020, 17, 20190790.	1.5	21
1453	Designing Patchy Interactions to Self-Assemble Arbitrary Structures. Physical Review Letters, 2020, 125, 118003.	2.9	17
1454	Chirality Transfer from Subâ€Nanometer Biochemical Molecules to Subâ€Micrometer Plasmonic Metastructures: Physiochemical Mechanisms, Biosensing, and Bioimaging Opportunities. Advanced Materials, 2020, 32, e1907151.	11.1	81
1455	Insights into the Structure and Energy of DNA Nanoassemblies. Molecules, 2020, 25, 5466.	1.7	6
1456	Emerging applications at the interface of DNA nanotechnology and cellular membranes: Perspectives from biology, engineering, and physics. APL Bioengineering, 2020, 4, 041507.	3.3	19
1457	Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
1458	Engineering Aptamer Switches for Multifunctional Stimulusâ€Responsive Nanosystems. Advanced Materials, 2020, 32, e2003704.	11.1	68
1459	DNA-Origami-Based Fluorescence Brightness Standards for Convenient and Fast Protein Counting in Live Cells. Nano Letters, 2020, 20, 8890-8896.	4.5	8
1460	The Brownian and Flowâ€Driven Rotational Dynamics of a Multicomponent DNA Origamiâ€Based Rotor. Small, 2020, 16, e2001855.	5.2	20
1461	Construction of a system for single-stranded DNA isolation. Biotechnology Letters, 2020, 42, 1663-1671.	1.1	3
1462	Simple Self-Assembled Targeting DNA Nano Sea Urchin as a Multivalent Drug Carrier. ACS Applied Bio Materials, 2020, 3, 4514-4521.	2.3	10
1463	Small Circular DNA Molecules as Triangular Scaffolds for the Growth of 3D Single Crystals. Biomolecules, 2020, 10, 814.	1.8	2
1464	DNA Microsystems for Biodiagnosis. Micromachines, 2020, 11, 445.	1.4	3
1465	Impact of Polymer-Constrained Annealing on the Properties of DNA Origami-Templated Gold Nanowires. Langmuir, 2020, 36, 6661-6667.	1.6	9
1466	DNA-Mediated Step-Growth Polymerization of Bottlebrush Macromonomers. Journal of the American Chemical Society, 2020, 142, 10297-10301.	6.6	16

#	Article	IF	Citations
1467	Single plasmonic nanostructures for biomedical diagnosis. Journal of Materials Chemistry B, 2020, 8, 6197-6216.	2.9	10
1468	Precise pitch-scaling of carbon nanotube arrays within three-dimensional DNA nanotrenches. Science, 2020, 368, 874-877.	6.0	97
1469	Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation. Nucleic Acids Research, 2020, 48, e72-e72.	6.5	82
1470	Modular self-assembly of gamma-modified peptide nucleic acids in organic solvent mixtures. Nature Communications, 2020, 11 , 2960.	5.8	26
1471	Large Nanodiscs: A Potential Game Changer in Structural Biology of Membrane Protein Complexes and Virus Entry. Frontiers in Bioengineering and Biotechnology, 2020, 8, 539.	2.0	17
1472	Diving into the active, complex and living fairyland of precise biomacromolecular self-assemblies. Giant, 2020, 1, 100004.	2.5	2
1473	Reconfigurable Tâ€junction DNA Origami. Angewandte Chemie, 2020, 132, 16076-16080.	1.6	0
1474	Allostery of DNA nanostructures controlled by enzymatic modifications. Nucleic Acids Research, 2020, 48, 7595-7600.	6.5	5
1475	Sequence-based engineering of dynamic functions of micrometer-sized DNA droplets. Science Advances, 2020, 6, eaba3471.	4.7	85
1476	Pushing lines helps: Efficient universal centralised transformations for programmable matter. Theoretical Computer Science, 2020, 830-831, 43-59.	0.5	10
1477	Dynamic DNA Assemblies in Biomedical Applications. Advanced Science, 2020, 7, 2000557.	5.6	34
1478	Reconfigurable Tâ€junction DNA Origami. Angewandte Chemie - International Edition, 2020, 59, 15942-15946.	7.2	1
1479	Nature-derived materials for the fabrication of functional biodevices. Materials Today Bio, 2020, 7, 100065.	2.6	68
1480	Visualization of unstained homo/heterogeneous DNA nanostructures by low-voltage scanning transmission electron microscopy. Scientific Reports, 2020, 10, 4868.	1.6	1
1481	The New Age of Cell-Free Biology. Annual Review of Biomedical Engineering, 2020, 22, 51-77.	5.7	48
1482	DNA-Programmed Chemical Synthesis of Polymers and Inorganic Nanomaterials. Topics in Current Chemistry, 2020, 378, 31.	3.0	12
1483	Directional Assembly of Nanoparticles by DNA Shapes: Towards Designed Architectures and Functionality. Topics in Current Chemistry, 2020, 378, 36.	3.0	18
1484	DNA origami protection and molecular interfacing through engineered sequence-defined peptoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6339-6348.	3.3	99

#	Article	IF	CITATIONS
1485	Nanopore-Based DNA Hard Drives for Rewritable and Secure Data Storage. Nano Letters, 2020, 20, 3754-3760.	4.5	88
1486	Enzyme Assembly for Compartmentalized Metabolic Flux Control. Metabolites, 2020, 10, 125.	1.3	17
1487	DNAâ€Based Plasmonic Heterogeneous Nanostructures: Building, Optical Responses, and Bioapplications. Advanced Materials, 2020, 32, e1907880.	11.1	32
1488	Programming Diffusion and Localization of DNA Signals in 3Dâ€Printed DNAâ€Functionalized Hydrogels. Small, 2020, 16, e2001815.	5.2	20
1489	Robotic DNA Nanostructures. ACS Synthetic Biology, 2020, 9, 1923-1940.	1.9	102
1490	A Keplerian Ag90 nest of Platonic and Archimedean polyhedra in different symmetry groups. Nature Communications, 2020, 11, 3316.	5.8	60
1491	Design and Simulation of a DNA Origami Nanopore for Large Cargoes. Molecular Biotechnology, 2020, 62, 423-432.	1.3	7
1492	At the Dawn of Applied DNA Nanotechnology. Molecules, 2020, 25, 639.	1.7	4
1493	Programming the Nucleation of DNA Brick Selfâ€Assembly with a Seeding Strand. Angewandte Chemie - International Edition, 2020, 59, 8594-8600.	7.2	12
1494	Programming the Nucleation of DNA Brick Selfâ€Assembly with a Seeding Strand. Angewandte Chemie, 2020, 132, 8672-8678.	1.6	2
1495	DNA Nanostructures as Drug Carriers for Cellular Delivery. Chemical Research in Chinese Universities, 2020, 36, 177-184.	1.3	7
1496	Complex SiOC ceramics from 2D structures by 3D printing and origami. Additive Manufacturing, 2020, 33, 101144.	1.7	16
1497	Reconfigurable Liquids Stabilized by DNA Surfactants. ACS Applied Materials & Samp; Interfaces, 2020, 12, 13551-13557.	4.0	23
1498	Herausforderungen und Perspektiven von DNAâ€Nanostrukturen in der Biomedizin. Angewandte Chemie, 2020, 132, 15950-15966.	1.6	13
1499	Challenges and Perspectives of DNA Nanostructures in Biomedicine. Angewandte Chemie - International Edition, 2020, 59, 15818-15833.	7.2	176
1500	Four-Input Multi-Layer Majority Logic Circuit Based on DNA Strand Displacement Computing. IEEE Access, 2020, 8, 3076-3086.	2.6	8
1501	Dynamism of Supramolecular DNA/RNA Nanoarchitectonics: From Interlocked Structures to Molecular Machines. Bulletin of the Chemical Society of Japan, 2020, 93, 581-603.	2.0	75
1502	Hybrid Nanostructures from the Self-Assembly of Proteins and DNA. CheM, 2020, 6, 364-405.	5.8	69

#	ARTICLE	IF	CITATIONS
1503	DNA nanotechnology assisted nanopore-based analysis. Nucleic Acids Research, 2020, 48, 2791-2806.	6.5	59
1504	Self-Assembly of Organic Nanomaterials and Biomaterials: The Bottom-Up Approach for Functional Nanostructures Formation and Advanced Applications. Materials, 2020, 13, 1048.	1.3	85
1505	Scaling Up DNA Self-Assembly. ACS Applied Bio Materials, 2020, 3, 2805-2815.	2.3	18
1506	High-order structures from nucleic acids for biomedical applications. Materials Chemistry Frontiers, 2020, 4, 1074-1088.	3.2	15
1507	Ordered three-dimensional nanomaterials using DNA-prescribed and valence-controlled material voxels. Nature Materials, 2020, 19, 789-796.	13.3	172
1508	Near-Atomic Fabrication with Nucleic Acids. ACS Nano, 2020, 14, 1319-1337.	7. 3	22
1509	Large Deformation of a DNAâ€Origami Nanoarm Induced by the Cumulative Actuation of Tensionâ€Adjustable Modules. Angewandte Chemie - International Edition, 2020, 59, 6230-6234.	7.2	35
1510	DNA Beyond Genes., 2020, , .		2
1511	Large Deformation of a DNAâ€Origami Nanoarm Induced by the Cumulative Actuation of Tensionâ€Adjustable Modules. Angewandte Chemie, 2020, 132, 6289-6293.	1.6	3
1512	DNA Nanotechnology on Live Cell Membranes. Chemical Research in Chinese Universities, 2020, 36, 203-210.	1.3	5
1513	Unraveling Framework Nucleic Acid–Skin Cell Interactions with a Co ulture System. Advanced Biology, 2020, 4, 1900169.	3.0	2
1514	Glutaraldehyde Cross-Linking of Oligolysines Coating DNA Origami Greatly Reduces Susceptibility to Nuclease Degradation. Journal of the American Chemical Society, 2020, 142, 3311-3315.	6.6	109
1515	3D Freestanding DNA Nanostructure Hybrid as a Low-Density High-Strength Material. ACS Nano, 2020, 14, 6582-6588.	7.3	12
1516	DNA Nanoribbonâ€Templated Selfâ€Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angewandte Chemie - International Edition, 2020, 59, 11836-11844.	7.2	60
1517	Prescribing DNA Origami Patterns via Scaffold Decoration. Small, 2020, 16, e2000793.	5.2	11
1518	Nucleic acid-based drug delivery strategies. Journal of Controlled Release, 2020, 323, 240-252.	4.8	66
1519	RNA Origami Nanostructures for Potent and Safe Anticancer Immunotherapy. ACS Nano, 2020, 14, 4727-4740.	7.3	47
1520	MrDNA: a multi-resolution model for predicting the structure and dynamics of DNA systems. Nucleic Acids Research, 2020, 48, 5135-5146.	6.5	67

#	Article	IF	CITATIONS
1521	Increasing Complexity in Wireframe DNA Nanostructures. Molecules, 2020, 25, 1823.	1.7	23
1522	Programming Surface-Enhanced Raman Scattering of DNA Origami-templated Metamolecules. Nano Letters, 2020, 20, 3155-3159.	4.5	30
1523	Metal ions confinement defines the architecture of G-quartet, G-quadruplex fibrils and their assembly into nematic tactoids. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9832-9839.	3.3	32
1524	DNA Nanoribbonâ€Templated Selfâ€Assembly of Ultrasmall Fluorescent Copper Nanoclusters with Enhanced Luminescence. Angewandte Chemie, 2020, 132, 11934-11942.	1.6	5
1525	Electric Near-field Modulations of Charged Deoxyribonucleic Acid Nucleobases. Plasmonics, 2020, 15, 1411-1420.	1.8	1
1526	A DNA-based nanocarrier for efficient cancer therapy. Journal of Pharmaceutical Analysis, 2021, 11, 330-339.	2.4	20
1527	Reversible membrane deformations by straight DNA origami filaments. Soft Matter, 2021, 17, 276-287.	1.2	38
1528	Biological and synthetic template-directed syntheses of mineralized hybrid and inorganic materials. Progress in Materials Science, 2021, 116, 100712.	16.0	35
1529	DNA nanotechnology: A recent advancement in the monitoring of microcystin-LR. Journal of Hazardous Materials, 2021, 403, 123418.	6.5	27
1530	Photocontrolled DNA Origami Assembly by Using Two Photoswitches. Chemistry - A European Journal, 2021, 27, 778-784.	1.7	8
1531	Advances in intelligent DNA nanomachines for targeted cancer therapy. Drug Discovery Today, 2021, 26, 1018-1029.	3.2	8
1532	The applications of functionalized DNA nanostructures in bioimaging and cancer therapy. Biomaterials, 2021, 268, 120560.	5.7	31
1533	Structural requirement of G-quadruplex/aptamer-combined DNA macromolecule serving as efficient drug carrier for cancer-targeted drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 159, 221-227.	2.0	6
1534	A Biomimetic DNAâ€Based Membrane Gate for Protein ontrolled Transport of Cytotoxic Drugs. Angewandte Chemie - International Edition, 2021, 60, 1903-1908.	7.2	30
1535	Designer DNA nanostructures for therapeutics. CheM, 2021, 7, 1156-1179.	5.8	91
1536	A Biomimetic DNAâ€Based Membrane Gate for Proteinâ€Controlled Transport of Cytotoxic Drugs. Angewandte Chemie, 2021, 133, 1931-1936.	1.6	6
1537	DNA origami-based protein networks: from basic construction to emerging applications. Chemical Society Reviews, 2021, 50, 1846-1873.	18.7	51
1538	Physical supercritical fluid deposition of polymer films: controlling the crystallinity with pressure. Materials Chemistry Frontiers, 2021, 5, 1428-1437.	3.2	5

#	Article	IF	CITATIONS
1539	Design, assembly, and characterization of membrane-spanning DNA nanopores. Nature Protocols, 2021, 16, 86-130.	5.5	40
1540	Reversible Design of Dynamic Assemblies at Small Scales. Advanced Intelligent Systems, 2021, 3, 2000193.	3.3	10
1541	Chemotherapeutic drug–DNA hybrid nanostructures for anti-tumor therapy. Materials Horizons, 2021, 8, 78-101.	6.4	31
1542	Funktionelle Nukleinsäreâ€Nanomaterialien: Entwicklung, Eigenschaften und Anwendungen. Angewandte Chemie, 2021, 133, 6966-6995.	1.6	4
1543	Functional Nucleic Acid Nanomaterials: Development, Properties, and Applications. Angewandte Chemie - International Edition, 2021, 60, 6890-6918.	7.2	122
1544	Recent progress of frame nucleic acids studies towards atomic fabrications. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 026201.	0.2	1
1545	DNA nanostructures as templates for biomineralization. Nature Reviews Chemistry, 2021, 5, 93-108.	13.8	46
1546	Construction of an optically controllable CRISPR-Cas9 system using a DNA origami nanostructure. Chemical Communications, 2021, 57, 5594-5596.	2.2	10
1547	Elasticity of connected semiflexible quadrilaterals. Soft Matter, 2021, 17, 102-112.	1.2	4
1548	Semiflexible polymer scaffolds: an overview of conjugation strategies. Polymer Chemistry, 2021, 12, 1362-1392.	1.9	13
1549	A large, square-shaped, DNA origami nanopore with sealing function on a giant vesicle membrane. Chemical Communications, 2021, 57, 2990-2993.	2.2	21
1550	Rapid Computational Analysis of DNA Origami Assemblies at Near-Atomic Resolution. ACS Nano, 2021, 15, 1002-1015.	7.3	39
1551	DNA nanolantern as biocompatible drug carrier for simple preparation of a porphyrin/G-quadruplex nanocomposite photosensitizer with high photodynamic efficacy. Materials Chemistry Frontiers, 2021, 5, 3139-3148.	3.2	10
1552	The effects of overhang placement and multivalency on cell labeling by DNA origami. Nanoscale, 2021, 13, 6819-6828.	2.8	17
1553	Mechanochemical properties of DNA origami nanosprings revealed by force jumps in optical tweezers. Nanoscale, 2021, 13, 8425-8430.	2.8	6
1554	Chemical ligation of an entire DNA origami nanostructure. Nanoscale, 2021, 13, 17556-17565.	2.8	17
1555	Fe ^{II} ₄ L ₄ Tetrahedron-Assisted Three-Way Junction Probe for Multiple miRNA Detection. ACS Omega, 2021, 6, 3330-3335.	1.6	6
1556	DNA nanostructure-based nucleic acid probes: construction and biological applications. Chemical Science, 2021, 12, 7602-7622.	3.7	74

#	Article	IF	CITATIONS
1557	The role of solvent additive in polymer crystallinity during physical supercritical fluid deposition. New Journal of Chemistry, 2021, 45, 11786-11796.	1.4	3
1558	DNA nanotechnology-empowered nanoscopic imaging of biomolecules. Chemical Society Reviews, 2021, 50, 5650-5667.	18.7	73
1559	Recent progress at the interface between nanomaterial chirality and liquid crystals. Liquid Crystals Reviews, 2021, 9, 1-34.	1.1	17
1560	DNA origami. Nature Reviews Methods Primers, 2021, 1, .	11.8	382
1561	Binding of DNA origami to lipids: maximizing yield and switching via strand displacement. Nucleic Acids Research, 2021, 49, 10835-10850.	6.5	17
1562	Morphological Manipulation of DNA Gel Microbeads with Biomolecular Stimuli. Nanomaterials, 2021, 11, 293.	1.9	6
1563	DNA origami mediated precise fabrication of nanostructures in multi scales. Wuli Xuebao/Acta Physica Sinica, 2021, 70, 068201.	0.2	0
1564	A DNA origami-based aptamer nanoarray for potent and reversible anticoagulation in hemodialysis. Nature Communications, 2021, 12, 358.	5.8	69
1565	Evaluation of the role of the DNA surface for enhancing the activity of scaffolded enzymes. Chemical Communications, 2021, 57, 3925-3928.	2.2	12
1566	Superhelical DNA liquid crystals from dendrimer-induced DNA compaction. Soft Matter, 2021, 17, 7287-7293.	1,2	1
1567	A tetrahedral DNA nanorobot with conformational change in response to molecular trigger. Nanoscale, 2021, 13, 15552-15559.	2.8	15
1568	Fabrication and temperature-dependent electrical characterization of a C-shape nanowire patterned by a DNA origami. Scientific Reports, 2021, 11, 1922.	1.6	8
1569	A Survey of Molecular Communication in Cell Biology: Establishing a New Hierarchy for Interdisciplinary Applications. IEEE Communications Surveys and Tutorials, 2021, 23, 1494-1545.	24.8	42
1570	Micro-homology intermediates: RecA's transient sampling revealed at the single molecule level. Nucleic Acids Research, 2021, 49, 1426-1435.	6.5	5
1571	Multivalency Pattern Recognition to Sort Colloidal Assemblies. Small, 2021, 17, e2005668.	5.2	5
1572	DNA origami: an outstanding platform for functions in nanophotonics and cancer therapy. Analyst, The, 2021, 146, 1807-1819.	1.7	9
1573	Co-self-assembly of multiple DNA origami nanostructures in a single pot. Chemical Communications, 2021, 57, 4795-4798.	2.2	1
1574	Chiral Systems Made from DNA. Advanced Science, 2021, 8, 2003113.	5.6	42

#	Article	IF	CITATIONS
1575	Modular Imaging Scaffold for Single-Particle Electron Microscopy. ACS Nano, 2021, 15, 4186-4196.	7.3	7
1576	Rationally Programming Nanomaterials with DNA for Biomedical Applications. Advanced Science, 2021, 8, 2003775.	5.6	51
1577	Exploiting SERS sensitivity to monitor DNA aggregation properties. International Journal of Biological Macromolecules, 2021, 170, 88-93.	3.6	3
1578	DNA Origami-Enabled Plasmonic Sensing. Journal of Physical Chemistry C, 2021, 125, 5969-5981.	1.5	44
1579	DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell, 2021, 184, 1110-1121.e16.	13.5	43
1581	Unraveling the interaction between doxorubicin and DNA origami nanostructures for customizable chemotherapeutic drug release. Nucleic Acids Research, 2021, 49, 3048-3062.	6.5	95
1583	Cancer Vaccines: Adjuvant Potency, Importance of Age, Lifestyle, and Treatments. Frontiers in Immunology, 2020, 11, 615240.	2.2	59
1584	Hybrid Wireframe DNA Nanostructures with Scaffolded and Scaffoldâ€Free Modules. Angewandte Chemie - International Edition, 2021, 60, 9345-9350.	7.2	9
1585	DNA Nanodevices as Mechanical Probes of Protein Structure and Function. Applied Sciences (Switzerland), 2021, 11, 2802.	1.3	5
1586	In Vivo Production of RNA Aptamers and Nanoparticles: Problems and Prospects. Molecules, 2021, 26, 1422.	1.7	3
1587	Engineering couplings for exciton transport using synthetic DNA scaffolds. CheM, 2021, 7, 752-773.	5.8	50
1589	Bioactive potential of natural biomaterials: identification, retention and assessment of biological properties. Signal Transduction and Targeted Therapy, 2021, 6, 122.	7.1	100
1590	Robust nucleation control via crisscross polymerization of highly coordinated DNA slats. Nature Communications, 2021, 12, 1741.	5.8	30
1591	Cryo-Electron Microscopy and Mass Analysis of Oligolysine-Coated DNA Nanostructures. ACS Nano, 2021, 15, 9391-9403.	7. 3	18
1592	3D DNA Nanostructures: The Nanoscale Architect. Applied Sciences (Switzerland), 2021, 11, 2624.	1.3	6
1593	Constructing Large 2D Lattices Out of DNA-Tiles. Molecules, 2021, 26, 1502.	1.7	15
1594	Controlling assembly-induced single layer RGO to achieve highly sensitive electrochemical detection of Pb(II) via synergistic enhancement. Microchemical Journal, 2021, 162, 105883.	2.3	16
1595	Sequential Pullâ€Down Purification of DNA Origami Superstructures. Small, 2021, 17, e2007218.	5.2	9

#	Article	IF	Citations
1597	A conductivity and cloud point investigation of interaction of cationic and non-ionic surfactants with sodium carboxymethyl cellulose: effect of polyols and urea. Chemical Papers, 2021, 75, 3457-3468.	1.0	9
1598	Hybrid Wireframe DNA Nanostructures with Scaffolded and Scaffoldâ€Free Modules. Angewandte Chemie, 2021, 133, 9431-9436.	1.6	3
1599	Mechanical and Electrical Properties of DNA Hydrogel-Based Composites Containing Self-Assembled Three-Dimensional Nanocircuits. Applied Sciences (Switzerland), 2021, 11, 2245.	1.3	3
1600	Resilient three-dimensional ordered architectures assembled from nanoparticles by DNA. Science Advances, 2021, 7, .	4.7	45
1601	Reversible Supraâ€Folding of Userâ€Programmed Functional DNA Nanostructures on Fuzzy Cationic Substrates. Angewandte Chemie - International Edition, 2021, 60, 15214-15219.	7.2	3
1602	Environment-Resistant DNA Origami Crystals Bridged by Rigid DNA Rods with Adjustable Unit Cells. Nano Letters, 2021, 21, 3581-3587.	4.5	13
1603	Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nature Communications, 2021, 12, 2025.	5.8	47
1604	Toward Smart Information Processing with Synthetic DNA Molecules. Macromolecular Rapid Communications, 2021, 42, 2100084.	2.0	2
1605	Integrated computer-aided engineering and design for DNA assemblies. Nature Materials, 2021, 20, 1264-1271.	13.3	58
1606	Bioimaging Based on Nucleic Acid Nanostructures. Chemical Research in Chinese Universities, 2021, 37, 823-828.	1.3	3
1607	Three-dimensional nanolithography guided by DNA modular epitaxy. Nature Materials, 2021, 20, 683-690.	13.3	29
1608	The Art of Designing DNA Nanostructures with CAD Software. Molecules, 2021, 26, 2287.	1.7	19
1609	Novel nucleic acid origami structures and conventional molecular beacon–based platforms: a comparison in biosensing applications. Analytical and Bioanalytical Chemistry, 2021, 413, 6063-6077.	1.9	7
1610	Reversible Supraâ€Folding of Userâ€Programmed Functional DNA Nanostructures on Fuzzy Cationic Substrates. Angewandte Chemie, 2021, 133, 15342-15347.	1.6	0
1611	Multivalent Aptamerâ€Functionalized Singleâ€Strand RNA Origami as Effective, Targetâ€Specific Anticoagulants with Corresponding Reversal Agents. Advanced Healthcare Materials, 2021, 10, e2001826.	3.9	17
1613	Microchemomechanical devices using DNA hybridization. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	14
1614	Accessing and Assessing the Cell-Surface Glycocalyx Using DNA Origami. Nano Letters, 2021, 21, 4765-4773.	4.5	14
1615	Catalytic DNA Origami-based Chiral Plasmonic Biosensor. Chemical Research in Chinese Universities, 2021, 37, 914-918.	1.3	3

#	Article	IF	CITATIONS
1616	DNA Nanotechnology for Multimodal Synergistic Theranostics. Journal of Analysis and Testing, 2021, 5, 112-129.	2.5	20
1617	Dimerization and oligomerization of DNA-assembled building blocks for controlled multi-motion in high-order architectures. Nature Communications, 2021, 12, 3207.	5.8	22
1618	Strategies for Constructing and Operating DNA Origami Linear Actuators. Small, 2021, 17, e2007704.	5.2	11
1619	Programmable Aggregation of Artificial Cells with DNA Signals. ACS Synthetic Biology, 2021, 10, 1268-1276.	1.9	7
1620	Hybrid Nanoassemblies from Viruses and DNA Nanostructures. Nanomaterials, 2021, 11, 1413.	1.9	3
1621	Conformational Control of DNA Origami by DNA Oligomers, Intercalators and UV Light. Methods and Protocols, 2021, 4, 38.	0.9	2
1622	RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds. Nature Chemistry, 2021, 13, 549-558.	6.6	61
1623	DNA origami single crystals with Wulff shapes. Nature Communications, 2021, 12, 3011.	5.8	38
1624	Clustering of Death Receptor for Apoptosis Using Nanoscale Patterns of Peptides. ACS Nano, 2021, 15, 9614-9626.	7.3	49
1625	Functionalizing <scp>DNA</scp> nanostructures for therapeutic applications. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1729.	3.3	14
1626	The Synergic Role of Actomyosin Architecture and Biased Detachment in Muscle Energetics: Insights in Cross Bridge Mechanism beyond the Lever-Arm Swing. International Journal of Molecular Sciences, 2021, 22, 7037.	1.8	3
1627	Reconstitution of Ultrawide DNA Origami Pores in Liposomes for Transmembrane Transport of Macromolecules. ACS Nano, 2021, 15, 12768-12779.	7.3	44
1628	The second law: information theory and self-assembly. Biophysical Journal, 2021, 120, 4252-4263.	0.2	0
1629	Bottom-Up Fabrication of DNA-Templated Electronic Nanomaterials and Their Characterization. Nanomaterials, 2021, 11, 1655.	1.9	14
1630	<scp>DNAâ€Based</scp> Architectures for <i>in situ</i> i> Target Biomolecule Analysis in Confined Nanoâ€space ^{â€} . Chinese Journal of Chemistry, 2021, 39, 2027-2034.	2.6	7
1631	Dynamic Shape Transformation of a DNA Scaffold Applied for an Enzyme Nanocarrier. Frontiers in Chemistry, 2021, 9, 697857.	1.8	5
1632	Eradication of large established tumors by drug-loaded bacterial particles via a neutrophil-mediated mechanism. Journal of Controlled Release, 2021, 334, 52-63.	4.8	1
1633	Programmable icosahedral shell system for virus trapping. Nature Materials, 2021, 20, 1281-1289.	13.3	116

#	Article	IF	CITATIONS
1634	Snapshots of Ce ₇₀ Toroid Assembly from Solids and Solution. Journal of the American Chemical Society, 2021, 143, 9612-9621.	6.6	23
1635	Complex Metal Nanostructures with Programmable Shapes from Simple DNA Building Blocks. Advanced Materials, 2021, 33, e2100381.	11.1	23
1636	DNAâ€organic molecular amphiphiles: Synthesis, selfâ€ossembly, and hierarchical aggregates. Aggregate, 2021, 2, e95.	5.2	17
1637	Designed and biologically active protein lattices. Nature Communications, 2021, 12, 3702.	5.8	25
1638	DNA Nanotechnologyâ€Based Biosensors and Therapeutics. Advanced Healthcare Materials, 2021, 10, e2002205.	3.9	51
1639	Membrane-Suspended Nanopores in Microchip Arrays for Stochastic Transport Recording and Sensing. Frontiers in Nanotechnology, 2021, 3, .	2.4	2
1640	DNA Origami Penetration in Cell Spheroid Tissue Models is Enhanced by Wireframe Design. Advanced Materials, 2021, 33, e2008457.	11.1	39
1641	From Folding to Assembly: Functional Supramolecular Architectures of Peptides Comprised of Nonâ€Canonical Amino Acids. Macromolecular Bioscience, 2021, 21, e2100090.	2.1	19
1642	FisB relies on homo-oligomerization and lipid binding to catalyze membrane fission in bacteria. PLoS Biology, 2021, 19, e3001314.	2.6	9
1643	Bioinspired Selfâ€Assembling Materials for Modulating Enzyme Functions. Advanced Functional Materials, 2021, 31, 2104819.	7.8	21
1644	A Primer on the oxDNA Model of DNA: When to Use it, How to Simulate it and How to Interpret the Results. Frontiers in Molecular Biosciences, 2021, 8, 693710.	1.6	29
1645	Determinants of Ligand-Functionalized DNA Nanostructure–Cell Interactions. Journal of the American Chemical Society, 2021, 143, 10131-10142.	6.6	34
1646	Probing the Conformational States of a pH-Sensitive DNA Origami Zipper via Label-Free Electrochemical Methods. Langmuir, 2021, 37, 7801-7809.	1.6	9
1647	Self-Assembling Nucleic Acid Nanostructures Functionalized with Aptamers. Chemical Reviews, 2021, 121, 13797-13868.	23.0	84
1648	A Close Look at Molecular Self-Assembly with the Transmission Electron Microscope. Chemical Reviews, 2021, 121, 14232-14280.	23.0	33
1649	Insights into Fano-type resonance fluorescence from quantum-dot–metal-nanoparticle molecules with a squeezed vacuum. Physical Review A, 2021, 104, .	1.0	15
1650	Nucleic Acid Tests for Clinical Translation. Chemical Reviews, 2021, 121, 10469-10558.	23.0	109
1652	Importance of Substrate–Particle Repulsion for Protein-Templated Assembly of Metal Nanoparticles. Langmuir, 2021, 37, 9111-9119.	1.6	2

#	Article	IF	CITATIONS
1653	DNA Origami Meets Bottom-Up Nanopatterning. ACS Nano, 2021, 15, 10769-10774.	7.3	24
1654	A synthetic tubular molecular transport system. Nature Communications, 2021, 12, 4393.	5.8	23
1656	Stabilization and structural changes of 2D DNA origami by enzymatic ligation. Nucleic Acids Research, 2021, 49, 7884-7900.	6.5	20
1657	Programming Self-Assembled Materials With DNA-Coated Colloids. Frontiers in Physics, 2021, 9, .	1.0	8
1658	DNA-based plasmonic nanostructures and their optical and biomedical applications. Nanotechnology, 2021, 32, 402002.	1.3	3
1660	Nanocages for virus inhibition. Nature Materials, 2021, 20, 1176-1177.	13.3	5
1661	Folate-Functionalized DNA Origami for Targeted Delivery of Doxorubicin to Triple-Negative Breast Cancer. Frontiers in Chemistry, 2021, 9, 721105.	1.8	18
1662	Skin cancer therapeutics: nano-drug delivery vectorsâ€"present and beyond. Future Journal of Pharmaceutical Sciences, 2021, 7, .	1.1	6
1663	A nanoscale DNA force spectrometer capable of applying tension and compression on biomolecules. Nucleic Acids Research, 2021, 49, 8987-8999.	6.5	24
1664	Nanostructured Antimicrobial Peptides: Crucial Steps of Overcoming the Bottleneck for Clinics. Frontiers in Microbiology, 2021, 12, 710199.	1.5	25
1665	Tetra-gel enables superior accuracy in combined super-resolution imaging and expansion microscopy. Scientific Reports, 2021, 11, 16944.	1.6	16
1666	DNA Origami Nanoantennas for Fluorescence Enhancement. Accounts of Chemical Research, 2021, 54, 3338-3348.	7.6	24
1667	Programming ultrasensitive threshold response through chemomechanical instability. Nature Communications, 2021, 12, 5177.	5.8	7
1668	DNA Balance for Native Characterization of Chemically Modified DNA. Journal of the American Chemical Society, 2021, 143, 13655-13663.	6.6	8
1669	Double―to Single‧trand Transition Induces Forces and Motion in DNA Origami Nanostructures. Advanced Materials, 2021, 33, e2101986.	11.1	22
1670	A DNA-Based Molecular System That Can Autonomously Add and Extract Components. ACS Applied Materials & Samp; Interfaces, 2021, 13, 41004-41011.	4.0	1
1671	Magnesium-Free Immobilization of DNA Origami Nanostructures at Mica Surfaces for Atomic Force Microscopy. Molecules, 2021, 26, 4798.	1.7	7
1673	Rapid prototyping of arbitrary 2D and 3D wireframe DNA origami. Nucleic Acids Research, 2021, 49, 10265-10274.	6.5	51

#	Article	IF	CITATIONS
1674	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie, 2022, 134, .	1.6	7
1675	Designer Nanomaterials through Programmable Assembly. Angewandte Chemie - International Edition, 2022, 61, .	7.2	37
1676	DNAs catalyzing DNA nanoconstruction. CheM, 2021, 7, 2556-2568.	5.8	13
1677	Obtaining Precise Molecular Information via DNA Nanotechnology. Membranes, 2021, 11, 683.	1.4	1
1678	Single antibody detection in a DNA origami nanoantenna. IScience, 2021, 24, 103072.	1.9	27
1680	Reconfigurable Twoâ€Dimensional DNA Lattices: Static and Dynamic Angle Control. Angewandte Chemie, 2021, 133, 25985-25990.	1.6	5
1681	Principles of Small-Molecule Transport through Synthetic Nanopores. ACS Nano, 2021, 15, 16194-16206.	7.3	14
1682	Reconfigurable Twoâ€Dimensional DNA Lattices: Static and Dynamic Angle Control. Angewandte Chemie - International Edition, 2021, 60, 25781-25786.	7.2	19
1683	Schottky junction devices by using bio-molecule DNA template-based one dimensional CdS-nanostructures. Biosensors and Bioelectronics, 2021, 190, 113402.	5. 3	6
1684	Structural DNA nanotechnology towards therapeutic applications. Journal of the Korean Physical Society, 2021, 78, 343-350.	0.3	5
1685	The hierarchical assembly of a multi-level DNA ring-based nanostructure in a precise order and its application for screening tumor cells. Biomaterials Science, 2021, 9, 2262-2270.	2.6	1
1687	Chemo-Mechanical Modulation of Cell Motions Using DNA Nanosprings. Bioconjugate Chemistry, 2021, 32, 311-317.	1.8	20
1688	DNA Nanotechnology to Disclose Molecular Events at the Nanoscale and Mesoscale Levels. Fundamental Biomedical Technologies, 2021, , 65-122.	0.2	0
1689	Nucleic acid–based aggregates and their biomedical applications. Aggregate, 2021, 2, 133-144.	5 . 2	16
1690	DNA Nanodevices with Selective Immune Cell Interaction and Function. ACS Nano, 2021, 15, 4394-4404.	7.3	19
1691	DNA nanotechnology provides an avenue for the construction of programmable dynamic molecular systems. Biophysics and Physicobiology, 2021, 18, 116-126.	0.5	2
1692	DNA structures embedded with functionalized nanomaterials for biophysical applications. Journal of the Korean Physical Society, 2021, 78, 449-460.	0.3	3
1694	DNA modification and visualization on an origami-based enzyme nano-factory. Nanoscale, 2021, 13, 2465-2471.	2.8	6

#	Article	IF	CITATIONS
1695	Recent Advances of DNA Nanostructureâ€Based Cell Membrane Engineering. Advanced Healthcare Materials, 2021, 10, e2001718.	3.9	28
1697	AFM Imaging of Hybridization Chain Reaction Mediated Signal Transmission between Two DNA Origami Structures. Angewandte Chemie, 2017, 129, 13821-13824.	1.6	3
1698	Design and Fabrication of DNA Origami Mechanisms and Machines. , 2012, , 487-500.		3
1699	Computer-Aided Design of DNA Origami Structures. Methods in Molecular Biology, 2015, 1244, 23-44.	0.4	4
1700	Design of Wireframe DNA Nanostructuresâ€"DNA Gridiron. Methods in Molecular Biology, 2017, 1500, 27-40.	0.4	3
1701	Introduction to Protein Nanotechnology. Methods in Molecular Biology, 2020, 2073, 1-13.	0.4	1
1702	Application of Nanoparticles in Manufacturing. , 2016, , 1219-1278.		3
1703	Mechanochemical Sensing. RNA Technologies, 2015, , 241-258.	0.2	2
1704	RCA-Assisted Self-assembled DNA Origami Nano-constructs as Vehicles for Cellular Delivery of Diagnostic Probes and Therapeutic Drugs., 2016,, 151-159.		2
1705	A Minimal Requirement for Self-assembly of Lines in Polylogarithmic Time. Lecture Notes in Computer Science, 2017, , 139-154.	1.0	4
1706	Unknotted Strand Routings of Triangulated Meshes. Lecture Notes in Computer Science, 2017, , 46-63.	1.0	1
1708	Localized Hybridization Circuits. Lecture Notes in Computer Science, 2011, , 64-83.	1.0	49
1709	Programming Self-Assembling Systems via Physically Encoded Information. Understanding Complex Systems, 2012, , 157-188.	0.3	3
1711	Self-Assembly of DNA Bases via Hydrogen Bonding Studied by Scanning Tunneling Microscopy. Nucleic Acids and Molecular Biology, 2014, , 3-21.	0.2	6
1712	DNA Origami. Nucleic Acids and Molecular Biology, 2014, , 93-133.	0.2	9
1714	DNA Nanotechnology for Building Sensors, Nanopores and Ion-Channels. Advances in Experimental Medicine and Biology, 2019, 1174, 331-370.	0.8	6
1715	Topology of Folded Molecular Chains: From Single Biomolecules to Engineered Origami. Trends in Chemistry, 2020, 2, 609-622.	4.4	19
1717	Biotemplated Lithography of Inorganic Nanostructures (BLIN) for Versatile Patterning of Functional Materials. ACS Applied Nano Materials, 2021, 4, 529-538.	2.4	18

#	Article	IF	CITATIONS
1718	Biotechnological mass production of DNA origami. Nature, 2017, 552, 84-87.	13.7	374
1719	Gigadalton-scale shape-programmable DNA assemblies. Nature, 2017, 552, 78-83.	13.7	350
1720	Hotspot-mediated non-dissipative and ultrafast plasmon passage. , 0, .		1
1721	Design of hidden thermodynamic driving for non-equilibrium systems via mismatch elimination during DNA strand displacement. Nature Communications, 2020, 11, 2562.	5.8	66
1722	Renewable DNA seesaw logic circuits enabled by photoregulation of toehold-mediated strand displacement. RSC Advances, 2017, 7, 28130-28144.	1.7	37
1723	Synthetic bionanotechnology: synthetic biology finds a toehold in nanotechnology. Emerging Topics in Life Sciences, 2019, 3, 507-516.	1.1	11
1724	The potential of DNA origami to build multifunctional materials. Multifunctional Materials, 2020, 3, 032001.	2.4	48
1725	Global and local mechanical properties control endonuclease reactivity of a DNA origami nanostructure. Nucleic Acids Research, 2020, 48, 4672-4680.	6.5	35
1737	Gint 4.T-Modified DNA Tetrahedrons Loaded with Doxorubicin Inhibits Glioma Cell Proliferation by Targeting PDGFR \hat{I}^2 . Nanoscale Research Letters, 2020, 15, 150.	3.1	22
1738	Nanostructures and Nanomaterials via DNA-Based Self-Assembly. , 2011, , 13-48.		2
1739	A New Euler's Formula for DNA Polyhedra. PLoS ONE, 2011, 6, e26308.	1.1	16
1740	Binary DNA Nanostructures for Data Encryption. PLoS ONE, 2012, 7, e44212.	1.1	38
1741	DNA Tetrominoes: The Construction of DNA Nanostructures Using Self-Organised Heterogeneous Deoxyribonucleic Acids Shapes. PLoS ONE, 2015, 10, e0134520.	1.1	3
1742	Using Protein Dimers to Maximize the Protein Hybridization Efficiency with Multisite DNA Origami Scaffolds. PLoS ONE, 2015, 10, e0137125.	1.1	9
1743	Extending the Capabilities of Molecular Force Sensors via DNA Nanotechnology. Critical Reviews in Biomedical Engineering, 2020, 48, 1-16.	0.5	4
1744	Design and construction of a DNA origami drug delivery system based on MPT64 antibody aptamer for tuberculosis treatment. Electronic Physician, 2016, 8, 1857-1864.	0.2	14
1745	Recent Developments of New DNA Origami Nanostructures for Drug Delivery. Current Pharmaceutical Design, 2015, 21, 3181-3190.	0.9	12
1746	Recent Advances in Self-Assembled Fluorescent DNA Structures and Probes. Current Topics in Medicinal Chemistry, 2015, 15, 1162-1178.	1.0	4

#	Article	IF	CITATIONS
1747	Cellular Uptake of Tile-Assembled DNA Nanotubes. Nanomaterials, 2015, 5, 47-60.	1.9	53
1748	Regulating and Programming Biological Systems With Modular Molecular Parts. Progress in Biochemistry and Biophysics, 2012, 39, 119-125.	0.3	1
1749	DNA Origami-based Construction of Meso-scale Multi-dimensional Architects and Expression of the Functionality in the Designed DNA Nanospace. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2011, 69, 1352-1362.	0.0	1
1750	Molecular modeling and structural studies of 12-mer immobile four-way DNA junction in solution. Bioinformation, 2014, 10, 394-400.	0.2	2
1751	Distributed Transformations of Hamiltonian Shapes Based on Line Moves. Lecture Notes in Computer Science, 2021, , 1-16.	1.0	0
1752	Modulating the chemo-mechanical response of structured DNA assemblies through binding molecules. Nucleic Acids Research, 2021, 49, 12591-12599.	6. 5	9
1753	Empowering single-molecule analysis with self-assembled DNA nanostructures. Matter, 2021, 4, 3121-3145.	5.0	10
1754	The biological applications of DNA nanomaterials: current challenges and future directions. Signal Transduction and Targeted Therapy, 2021, 6, 351.	7.1	110
1755	DNA Origami Voltage Sensors for Transmembrane Potentials with Single-Molecule Sensitivity. Nano Letters, 2021, 21, 8634-8641.	4.5	22
1756	Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers. Nano Letters, 2021, 21, 10547-10554.	4. 5	15
1758	Extending the Geometrical Design of DNA Nanostructures. Proceedings in Information and Communications Technology, 2010, , 157-164.	0.2	0
1759	Title is missing!. Journal of the Robotics Society of Japan, 2010, 28, 1155-1157.	0.0	0
1760	Molecular Manufacturing. International Journal of Nanotechnology and Molecular Computation, 2010, 2, 1-15.	0.3	0
1761	A Molecular Algorithm for Path Self-Assembly in 3 Dimensions. , 0, , .		0
1762	Nanoscopy Using Localization and Temporal Separation of Fluorescence From Single Molecules. NATO Science for Peace and Security Series B: Physics and Biophysics, 2011, , 87-106.	0.2	0
1763	Simple Approaches for Constructing Metallic Nanoarrays on a Solid Surface. , 2011, , 161-187.		0
1765	DNA-Directed Assembly of Multicomponent Single-Walled Carbon Nanotube Devices. The Electrical Engineering Handbook, 2012, , 1017-1036.	0.2	0
1766	"Liquid―Nanoconstructions Based on Spatially Ordered Double-Stranded DNA Molecules. Liquid Crystals Book Series, 2012, , 91-122.	0.0	O

#	Article	IF	CITATIONS
1767	DNA: Molecular Recognition and Information Storage. Springer Theses, 2013, , 11-28.	0.0	0
1768	Nucleic Acid-Based Encapsulations for Cancer Diagnostics and Drug Delivery. , 2013, , 163-187.		0
1769	DNA-Nanotube-Enabled NMR Structure Determination of Membrane Proteins., 2013,, 335-352.		0
1770	Designer Nucleic Acid-Based Devices in Nanomedicine. , 2013, , 1-10.		0
1771	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
1773	DNA as Nanostructuring Element for Design of Functional Devices. Advances in Atom and Single Molecule Machines, 2014, , 85-121.	0.0	1
1774	DNA-DNA origami. , 2014, , 1-16.		0
1775	Towards Defined DNA and RNA Delivery Vehicles Using Nucleic Acid Nanotechnology. , 2014, , 325-345.		0
1776	Synthetic Biochemical Devices for Programmable Dynamic Behavior. , 2014, , 273-295.		0
1777	Myosin V is a biological Brownian machine. Biophysics (Nagoya-shi, Japan), 2014, 10, 69-75.	0.4	0
1778	Arrangement of Gold Nanoparticles onto a Slit-Type DNA Nanostructure in Various Patterns. Springer Theses, 2015, , 67-73.	0.0	0
1779	DNA Origami as Programmable Nanofabrication Tools. , 2015, , 1-22.		0
1780	Analogical China Map Self-assembled from Single-Stranded DNA Tiles. Communications in Computer and Information Science, 2015, , 422-431.	0.4	0
1781	BUILDING A PARALLEL DECISION-MAKING SYSTEM BASED ON RULE-BASED CLASSIFIERS IN MOLECULAR ROBOTICS. International Journal on Smart Sensing and Intelligent Systems, 2015, 8, 944-965.	0.4	2
1782	Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly. PLoS ONE, 2015, 10, e0137982.	1.1	1
1783	Viruses as Model Nanoreactors to Study Enzyme Kinetics. , 2015, , 125-142.		0
1784	DNA Origami as Programmable Nanofabrication Tools. , 2016, , 827-847.		0
1785	Complex DNA Brick Assembly. Methods in Molecular Biology, 2017, 1500, 41-49.	0.4	0

#	Article	IF	CITATIONS
1786	Confined Growth of Metal Nanoparticles Within 3D DNA Origami Molds. Methods in Molecular Biology, 2017, 1500, 237-244.	0.4	0
1787	DNA self-assembly-based fabrication of metallic nanostructures and related nanophotonics. Wuli Xuebao/Acta Physica Sinica, 2017, 66, 147101.	0.2	2
1789	Nanotechnology and the Unique Role of DNA. , 2017, , 1-26.		0
1792	On the Complexity of Self-assembly Tasks. Lecture Notes in Computer Science, 2019, , 1-4.	1.0	0
1793	Design of Self-Assembling Molecules and Boundary Value Problem for Flows on a Space of & amp;lt;i>n>-Simplices. Applied Mathematics, 2019, 10, 907-946.	0.1	2
1794	A Simple Mechanical Model for Synthetic Catch Bonds. SSRN Electronic Journal, 0, , .	0.4	0
1795	Self-assembly of Two-dimensional DNA Origami Lattices on Lipid Bilayer Membranes. Seibutsu Butsuri, 2019, 59, 103-105.	0.0	0
1797	Pushing Lines Helps: Efficient Universal Centralised Transformations for Programmable Matter. Lecture Notes in Computer Science, 2019, , 41-59.	1.0	1
1804	Connecting DNA Origami Structures into a Designed and Functionalized Network. Journal of Materials Science Research, 2020, 8, 14.	0.1	0
1807	DNA as a Nanoscale Building Material. , 2020, , 25-61.		0
1810	FRET-Mediated Observation of Protein-Triggered Conformational Changes in DNA Nanostructures. Methods in Molecular Biology, 2021, 2208, 69-80.	0.4	1
1812	DNA: More Than Just a Genetic Material. Resonance, 2021, 26, 1241-1249.	0.2	1
1813	Engineering DNA Nanostructures to Manipulate Immune Receptor Signaling and Immune Cell Fates. Advanced Healthcare Materials, 2022, 11, e2101844.	3.9	12
1814	On Efficient Connectivity-Preserving Transformations in a Grid. Lecture Notes in Computer Science, 2020, , 76-91.	1.0	3
1815	SiRNA-templated 3D framework nucleic acids for chemotactic recognition, and programmable and visualized precise delivery for synergistic cancer therapy. Chemical Science, 2021, 12, 15353-15361.	3.7	15
1816	Advanced Nanomaterials in the Clinical Scenario: Virtues and Consequences. Nanotechnology in the Life Sciences, 2020, , 427-449.	0.4	O
1818	DNA self-organization controls valence in programmable colloid design. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	13
1819	Colloidal Self-Assembly Approaches to Smart Nanostructured Materials. Chemical Reviews, 2022, 122, 4976-5067.	23.0	173

#	Article	IF	CITATIONS
1820	DNA Nanodevices: From Mechanical Motions to Biomedical Applications. Current Topics in Medicinal Chemistry, 2022, 22, 640-651.	1.0	2
1821	DNA-Based Nanopharmaceuticals. Environmental Chemistry for A Sustainable World, 2021, , 159-179.	0.3	0
1822	Designer Nucleic Acid-Based Devices in Nanomedicine. , 2013, , 1-10.		0
1823	Biomedical Applications for Nucleic Acid Nanodevices. , 2013, , 329-348.		0
1824	Nucleic Acid-Based Encapsulations for Cancer Diagnostics and Drug Delivery., 2013, , 163-187.		0
1826	DNA origami-based microtubule analogue. Nanotechnology, 2020, 31, 50LT01.	1.3	1
1831	On efficient connectivity-preserving transformations in a grid. Theoretical Computer Science, 2022, 898, 132-148.	0.5	1
1832	Electrochemically driven assembly of framework nucleic acids. Journal of Electroanalytical Chemistry, 2022, 905, 115901.	1.9	1
1833	Design Features to Accelerate the Higher-Order Assembly of DNA Origami on Membranes. Journal of Physical Chemistry B, 2021, 125, 13181-13191.	1.2	3
1834	Hierarchical Assembly of Super-DNA Origami Based on a Flexible and Covalent-Bound Branched DNA Structure. Journal of the American Chemical Society, 2021, 143, 19893-19900.	6.6	17
1835	Evaluation on performance of MM/PBSA in nucleic acid-protein systems. Chinese Physics B, 2022, 31, 048701.	0.7	2
1836	Heterostructures Made of Upconversion Nanoparticles and Metal–Organic Frameworks for Biomedical Applications. Advanced Science, 2022, 9, e2103911.	5.6	49
1837	Accelerating AFM Characterization via Deepâ€Learningâ€Based Image Superâ€Resolution. Small, 2022, 18, e2103779.	5.2	12
1838	Application of Programmable Tetrahedral Framework Nucleic Acid-Based Nanomaterials in Neurological Disorders: Progress and Prospects. Frontiers in Bioengineering and Biotechnology, 2021, 9, 782237.	2.0	6
1839	Topogami: Topologically Linked DNA Origami. ACS Nanoscience Au, 2022, 2, 57-63.	2.0	3
1840	Functionalizing Framework Nucleicâ€Acidâ€Based Nanostructures for Biomedical Application. Advanced Materials, 2022, 34, e2107820.	11.1	148
1841	Affinity-Based Magnetic Particles for the Purification of Single-Stranded DNA Scaffolds for Biomanufacturing DNA-Origami Nanostructures. ACS Applied Nano Materials, 2021, 4, 14169-14177.	2.4	3
1842	Regulation of Biological Functions at the Cell Interface by DNA Nanostructures. Advanced NanoBiomed Research, 2022, 2, 2100126.	1.7	2

#	Article	IF	Citations
1843	Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angewandte Chemie, 2022, 134, .	1.6	7
1844	The Application of DNA Nanostructures in Vaccine Technology. , 2021, , 191-219.		O
1845	Carrier-free nanomedicines for cancer treatment. Progress in Materials Science, 2022, 125, 100919.	16.0	47
1846	DNA Origami Calibrators for Counting Fluorophores on Single Particles by Flow Cytometry. Small Methods, 2022, 6, e2101364.	4.6	1
1847	Cascaded Enzyme Reactions over a Three-Dimensional, Wireframe DNA Origami Scaffold. Jacs Au, 2022, 2, 357-366.	3.6	26
1848	Tumor-targeting [2]catenane-based grid-patterned periodic DNA monolayer array for <i>iin vivo < /i> theranostic application. Journal of Materials Chemistry B, 2022, 10, 1969-1979.</i>	2.9	4
1849	DNA nanostructures for stimuli-responsive drug delivery. Smart Materials in Medicine, 2022, 3, 66-84.	3.7	18
1850	Nanoscale self-assembly: concepts, applications and challenges. Nanotechnology, 2022, 33, 132001.	1.3	32
1853	Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angewandte Chemie, 0, , e202113477.	1.6	5
1854	Application of Nucleic Acid Frameworks in the Construction of Nanostructures and Cascade Biocatalysts: Recent Progress and Perspective. Frontiers in Bioengineering and Biotechnology, 2021, 9, 792489.	2.0	10
1855	Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Materials Advances, 2022, 3, 186-215.	2.6	56
1856	Insights into nucleic acid-based self-assembling nanocarriers for targeted drug delivery and controlled drug release. Journal of Controlled Release, 2022, 341, 869-891.	4.8	20
1857	Structural DNA nanotechnology: Immobile Holliday junctions to artificial robots. Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	2
1858	Detection of Short DNA Sequences with DNA Nanopores**. ChemPhysChem, 2022, 23, .	1.0	2
1859	Finite Assembly of Threeâ€Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angewandte Chemie, 2022, 134, .	1.6	1
1860	Low-entropy lattices engineered through bridged DNA origami frames. Chemical Science, 2021, 13, 283-289.	3.7	3
1861	Ionic Current Fluctuation and Orientation of Tetrahedral DNA Nanostructures in a Solidâ€State Nanopore. Small, 2022, 18, e2107237.	5.2	2
1862	Engineering bacterial surface interactions using DNA as a programmable material. Chemical Communications, 2022, 58, 3086-3100.	2.2	12

#	Article	IF	CITATIONS
1863	Finite Assembly of Threeâ€Dimensional DNA Hierarchical Nanoarchitectures through Orthogonal and Directional Bonding. Angewandte Chemie - International Edition, 2022, 61, e202116416.	7.2	13
1864	Single DNA Origami Detection by Nanoimpact Electrochemistry. ChemElectroChem, 2022, 9, .	1.7	6
1865	Dissipative Organization of DNA Oligomers for Transient Catalytic Function. Angewandte Chemie - International Edition, 2022, 61, .	7.2	25
1866	Nanoparticle-on-mirror cavity: a historical view across nanophotonics and nanochemistry. Journal of the Korean Physical Society, 2022, 81, 502-509.	0.3	6
1868	Recent Progress of Magnetically Actuated DNA Micro/Nanorobots. Cyborg and Bionic Systems, 2022, 2022, .	3.7	17
1869	Chemically modified DNA nanostructures for drug delivery. Innovation(China), 2022, 3, 100217.	5.2	8
1870	2D DNA lattices assembled from DX-coupled tiles. Journal of Colloid and Interface Science, 2022, 616, 499-508.	5.0	5
1871	Experimental Approaches to Solid-State Nanopores. Nanostructure Science and Technology, 2022, , 297-341.	0.1	1
1872	Template-directed conjugation of heterogeneous oligonucleotides to a homobifunctional molecule for programmable supramolecular assembly. Nanoscale, 2022, 14, 4463-4468.	2.8	0
1873	DNA origami frame filled with two types of single-stranded tiles. Nanoscale, 2022, 14, 5340-5346.	2.8	4
1874	Applications of tetrahedral DNA nanostructures in wound repair and tissue regeneration. Burns and Trauma, 2022, 10, tkac006.	2.3	8
1875	High-fidelity transfer of area-selective atomic layer deposition grown HfO2 through DNA origami-assisted nanolithography. Nano Research, 2022, 15, 5687-5694.	5.8	1
1876	Therapeutic Applications of Programmable DNA Nanostructures. Micromachines, 2022, 13, 315.	1.4	5
1877	Predicting the Free-Form Shape of Structured DNA Assemblies from Their Lattice-Based Design Blueprint. ACS Nano, 2022, 16, 4289-4297.	7.3	7
1878	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie - International Edition, 2022, 61, .	7.2	22
1879	Genetically Encoded Double-Stranded DNA-Based Nanostructure Folded by a Covalently Bivalent CRISPR/dCas System. Journal of the American Chemical Society, 2022, 144, 6575-6582.	6.6	11
1880	A DNAâ€Based Plasmonic Nanodevice for Cascade Signal Amplification. Angewandte Chemie, 2022, 134, .	1.6	5
1881	Programmable molecular transport achieved by engineering protein motors to move on DNA nanotubes. Science, 2022, 375, 1159-1164.	6.0	33

#	ARTICLE	IF	CITATIONS
1882	Rapid Exchange of Stably Bound Protein and DNA Cargo on a DNA Origami Receptor. ACS Nano, 2022, 16, 6455-6467.	7. 3	7
1883	DNA-Based Biosensors for the Biochemical Analysis: A Review. Biosensors, 2022, 12, 183.	2.3	32
1884	Rapid DNA origami nanostructure detection and classification using the YOLOv5 deep convolutional neural network. Scientific Reports, 2022, 12, 3871.	1.6	16
1885	Self-Assembled Nucleic Acid Nanostructures for Biomedical Applications Current Topics in Medicinal Chemistry, 2022, 22, .	1.0	2
1886	Bionanoparticles in cancer imaging, diagnosis, and treatment. View, 2022, 3, .	2.7	40
1887	DNA Assembly of Modular Components into a Rotary Nanodevice. ACS Nano, 2022, 16, 5284-5291.	7. 3	18
1889	Self-Assembly of Gel-Like Particles and Vesicles in Solutions of Polymers with Amphiphilic Repeat Unit. Polymer Science - Series A, 2022, 64, 220-231.	0.4	1
1891	Formation of non-base-pairing DNA microgels using directed phase transition of amphiphilic monomers. Nucleic Acids Research, 2022, , .	6.5	2
1892	Environmentâ€Dependent Stability and Mechanical Properties of DNA Origami Sixâ€Helix Bundles with Different Crossover Spacings. Small, 2022, 18, e2107393.	5.2	29
1893	Precise regulating T cell activation signaling with spatial controllable positioning of receptors on DNA origami. Chinese Journal of Analytical Chemistry, 2022, 50, 100091.	0.9	3
1894	High-Force Application by a Nanoscale DNA Force Spectrometer. ACS Nano, 2022, 16, 5682-5695.	7.3	20
1895	A nanoscale reciprocating rotary mechanism with coordinated mobility control. Nature Communications, 2021, 12, 7138.	5.8	14
1896	DNA Nanodevice-Based Drug Delivery Systems. Biomolecules, 2021, 11, 1855.	1.8	9
1897	Investigation of properties of surface modes at the boundary of the DNA origami lattice. Waves in Random and Complex Media, 0 , 1 - 9 .	1.6	O
1899	Mutations in artificial self-replicating tiles: A step toward Darwinian evolution. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	9
1900	Engineering DNA logic systems with non-canonical DNA-nanostructures: basic principles, recent developments and bio-applications. Science China Chemistry, 2022, 65, 284-297.	4.2	11
1901	Computational investigation of the impact of core sequence on immobile DNA four-way junction structure and dynamics. Nucleic Acids Research, 2022, 50, 717-730.	6.5	8
1903	Nanoscale structures and materials from the self-assembly of polypeptides and DNA. Current Topics in Medicinal Chemistry, 2021, 21, .	1.0	3

#	Article	IF	CITATIONS
1904	Condensed Supramolecular Helices: The Twisted Sisters of DNA. Angewandte Chemie - International Edition, 2022, 61, .	7.2	13
1905	Fuelâ€Powered DNA Nanomachines for Biosensing and Cancer Therapy. ChemPlusChem, 2022, 87, e202200098.	1.3	4
1906	A DNA molecular printer capable of programmable positioning and patterning in two dimensions. Science Robotics, 2022, 7, eabn5459.	9.9	9
1907	Twisting DNA by salt. Nucleic Acids Research, 2022, 50, 5726-5738.	6.5	34
1908	Salt-induced conformational switching of a flat rectangular DNA origami structure. Nanoscale, 2022, 14, 7898-7905.	2.8	4
1909	Charge Transport in a Multiterminal DNA Tetrahedron: Interplay among Contact Position, Disorder, and Base-Pair Mismatch. Physical Review Applied, 2022, 17, .	1.5	8
1913	Highly shape- and size-tunable membrane nanopores made with DNA. Nature Nanotechnology, 2022, 17, 708-713.	15.6	38
1918	A reversibly gated protein-transporting membrane channel made of DNA. Nature Communications, 2022, 13, 2271.	5.8	30
1921	The interactions between DNA nanostructures and cells: A critical overview from a cell biology perspective. Acta Biomaterialia, 2022, 146, 10-22.	4.1	10
1922	Recent Advances in Self-Assembled DNA Nanostructures for Bioimaging. ACS Applied Bio Materials, 2022, 5, 4652-4667.	2.3	12
1923	Biomaterials Technology for AgroFood Resilience. Advanced Functional Materials, 2022, 32, .	7.8	12
1924	Enhanced Functional Properties of Three DNA Origami Nanostructures as Doxorubicin Carriers to Breast Cancer Cells. ACS Applied Bio Materials, 2022, 5, 2262-2272.	2.3	8
1925	Lipid bilayer-assisted dynamic self-assembly of hexagonal DNA origami blocks into monolayer crystalline structures with designed geometries. IScience, 2022, 25, 104292.	1.9	6
1926	Direct visualization of floppy two-dimensional DNA origami using cryogenic electron microscopy. IScience, 2022, 25, 104373.	1.9	5
1927	DNA Kirigami Driven by Polymeraseâ€Triggered Strand Displacement. Small, 2022, 18, e2201478.	5.2	8
1928	Suppressing high-dimensional crystallographic defects for ultra-scaled DNA arrays. Nature Communications, 2022, 13, 2707.	5.8	2
1929	Probing the Mechanical Properties of DNA Nanostructures with Metadynamics. ACS Nano, 2022, 16, 8784-8797.	7.3	9
1930	Binding feasibility and vibrational characteristics of single-strand spacer-added DNA and protein complexes. Journal Physics D: Applied Physics, 0, , .	1.3	0

#	Article	IF	CITATIONS
1932	Controlling Nuclease Degradation of Wireframe DNA Origami with Minor Groove Binders. ACS Nano, 2022, 16, 8954-8966.	7.3	22
1933	Interfacing DNA nanotechnology and biomimetic photonic complexes: advances and prospects in energy and biomedicine. Journal of Nanobiotechnology, 2022, 20, .	4.2	9
1934	Optical characterization of DNA origami-shaped silver nanoparticles created through biotemplated lithography. Nanoscale, $0,$	2.8	9
1936	Planar 2D wireframe DNA origami. Science Advances, 2022, 8, .	4.7	10
1938	The Free-Energy Landscape of a Mechanically Bistable DNA Origami. Applied Sciences (Switzerland), 2022, 12, 5875.	1.3	0
1939	Oscillatory movement of a dynein-microtubule complex crosslinked with DNA origami. ELife, 0, 11 , .	2.8	4
1940	Graph Computation Using Algorithmic Self-Assembly of DNA Molecules. ACS Synthetic Biology, 2022, 11, 2456-2463.	1.9	2
1941	Dissipative DNA nanotechnology. Nature Chemistry, 2022, 14, 600-613.	6.6	72
1942	Surface Assembly of DNA Origami on a Lipid Bilayer Observed Using High-Speed Atomic Force Microscopy. Molecules, 2022, 27, 4224.	1.7	4
1943	Maximizing the Accessibility in DNA Origami Nanoantenna Plasmonic Hotspots. Advanced Materials Interfaces, 2022, 9, .	1.9	7
1944	Self-assembly of DNA-organic hybrid amphiphiles by frame-guided assembly strategies. Giant, 2022, 11, 100113.	2.5	3
1945	Strategies for Controlling the Spatial Orientation of Single Molecules Tethered on DNA Origami Templates Physisorbed on Glass Substrates: Intercalation and Stretching. International Journal of Molecular Sciences, 2022, 23, 7690.	1.8	11
1946	Biointerface Engineering with Nucleic Acid Materials for Biosensing Applications. Advanced Functional Materials, 2022, 32, .	7.8	15
1947	Phageâ€free production of artificial ssDNA with <i>Escherichia coli</i> . Biotechnology and Bioengineering, 2022, 119, 2878-2889.	1.7	7
1948	Selfâ€Assembled Artificial DNA Nanocompartments and Their Bioapplications. Small, 2023, 19, .	5.2	8
1949	Propulsion of Magnetic Beads Asymmetrically Covered with DNA Origami Appendages. Advanced Materials Technologies, 2022, 7, .	3.0	4
1950	A DNA origami rotary ratchet motor. Nature, 2022, 607, 492-498.	13.7	99
1952	Controllable protein network based on DNAâ€origami and biomedical applications. , 2022, 1, .		1

#	ARTICLE	IF	CITATIONS
1953	The stability and number of nucleating interactions determine DNA hybridization rates in the absence of secondary structure. Nucleic Acids Research, 2022, 50, 7829-7841.	6.5	10
1954	Softâ€Matterâ€Based Hybrid and Active Metamaterials. Advanced Optical Materials, 2022, 10, .	3.6	12
1955	A modular spring-loaded actuator for mechanical activation of membrane proteins. Nature Communications, 2022, 13 , .	5.8	16
1956	pHâ€Induced Symmetry Conversion of DNA Origami Lattices. Angewandte Chemie - International Edition, 2022, 61, .	7.2	9
1957	pHâ€Induced Symmetry Conversion of DNA Origami Lattices. Angewandte Chemie, 0, , .	1.6	0
1958	Constructing a cost-efficient, high-throughput and high-quality single-molecule localization microscope for super-resolution imaging. Nature Protocols, 2022, 17, 2570-2619.	5. 5	14
1959	Photoswitching fingerprint analysis bypasses the 10-nm resolution barrier. Nature Methods, 2022, 19, 986-994.	9.0	41
1960	Advances in DNA Supramolecular Hydrogels for Tissue Engineering. Macromolecular Bioscience, 2022, 22, .	2.1	8
1961	Hierarchical self-assembly of an excitation-wavelength-dependent emissive fluorophore and cucurbiturils for secondary encryption. Matter, 2022, 5, 3883-3900.	5.0	26
1962	Optically Responsive Protein Coating of DNA Origami for Triggered Antigen Targeting. ACS Applied Materials & Samp; Interfaces, 2022, 14, 38515-38524.	4.0	17
1964	Probing Heterogeneous Folding Pathways of DNA Origami Self-Assembly at the Molecular Level with Atomic Force Microscopy. Nano Letters, 2022, 22, 7173-7179.	4.5	8
1965	Nanoscale 3D spatial addressing and valence control of quantum dots using wireframe DNA origami. Nature Communications, 2022, 13, .	5.8	16
1966	TEM based applications in solid state nanopores: From fabrication to liquid in-situ bio-imaging. Micron, 2022, 162, 103347.	1.1	2
1967	DNA-assisted nanoparticle assembly. , 2023, , 128-148.		1
1968	Engineering a DNA origami mediated multicolour quantum dot platform for sub-diffraction spectral separation imaging. RSC Advances, 2022, 12, 23778-23785.	1.7	1
1969	Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications. Journal of Materials Chemistry B, 2022, 10, 7460-7472.	2.9	1
1970	Programming interactions in magnetic handshake materials. Soft Matter, 2022, 18, 6404-6410.	1.2	1
1971	Sustained unidirectional rotation of a self-organized DNA rotor on a nanopore. Nature Physics, 2022, 18, 1105-1111.	6.5	28

#	Article	IF	CITATIONS
1972	Design of Orthogonal DNA Sticky-End Cohesion Based on Configuration-Specific Molecular Recognition. Journal of the American Chemical Society, 2022, 144, 18479-18484.	6.6	2
1974	Block Copolymer Micellization of DNA Origami Promotes Solubility in Organic Solvents. Langmuir, 2022, 38, 11650-11657.	1.6	1
1975	Mechanistic Aspects for the Modulation of Enzyme Reactions on the DNA Scaffold. Molecules, 2022, 27, 6309.	1.7	3
1976	Applications of Functional DNA Materials in Immunomodulatory Therapy. ACS Applied Materials & Samp; Interfaces, 2022, 14, 45079-45095.	4.0	9
1977	Genotype-phenotype mapping with polyominos made from DNA origami tiles. Biophysical Journal, 2022, ,	0.2	1
1978	In situ small-angle X-ray scattering reveals strong condensation of DNA origami during silicification. Nature Communications, 2022, 13, .	5.8	13
1979	The Hydrophobicity of AIE Dye Facilitates DNA Condensation for Carrierâ€Free Gene Therapy. Advanced Functional Materials, 2022, 32, .	7.8	5
1980	Harnessing DNA Nanotechnology and Chemistry for Applications in Photonics and Electronics. Bioconjugate Chemistry, 2023, 34, 97-104.	1.8	8
1981	Predicting accurate ab initio DNA electron densities with equivariant neural networks. Biophysical Journal, 2022, 121, 3883-3895.	0.2	7
1982	Algorithmic Design of 3D Wireframe RNA Polyhedra. ACS Nano, 2022, 16, 16608-16616.	7.3	6
1983	Hierarchical assembly of DNA origami nanostructures. MRS Communications, 2022, 12, 543-551.	0.8	4
1984	Design, Mechanical Properties, and Dynamics of Synthetic DNA Filaments. Bioconjugate Chemistry, 2023, 34, 37-50.	1.8	1
1985	DNA Self-Assembly of Single Molecules with Deterministic Position and Orientation. ACS Nano, 2022, 16, 16924-16931.	7.3	18
1987	Molecular Plasmonics with Metamaterials. Chemical Reviews, 2022, 122, 15031-15081.	23.0	23
1988	DNA aerogels and DNA-wrapped CNT aerogels for neuromorphic applications. Materials Today Bio, 2022, 16, 100440.	2.6	2
1989	The Frame-Guided Assembly of Nucleic Acids. , 2022, , 1-32.		0
1990	Engineering DNA-based synthetic condensates with programmable material properties, compositions, and functionalities. Science Advances, 2022, 8, .	4.7	22
1991	DNA-Based Molecular Machines. Jacs Au, 2022, 2, 2381-2399.	3.6	15

#	Article	IF	CITATIONS
1992	Spatially Reprogramed Receptor Organization to Switch Cell Behavior Using a DNA Origami-Templated Aptamer Nanoarray. Nano Letters, 2022, 22, 8445-8454.	4.5	15
1993	Onset of Chirality in Plasmonic Meta-Molecules and Dielectric Coupling. ACS Nano, 2022, 16, 16143-16149.	7.3	6
1994	Advances in regenerative medicine applications of tetrahedral framework nucleic acid-based nanomaterials: an expert consensus recommendation. International Journal of Oral Science, 2022, 14, .	3.6	21
1995	A label-free light-scattering method to resolve assembly and disassembly of DNA nanostructures. Biophysical Journal, 2022, 121, 4800-4809.	0.2	10
1996	Peptide-DNA origami as a cryoprotectant for cell preservation. Science Advances, 2022, 8, .	4.7	8
1997	RNA Nanostructures: From Structure to Function. Bioconjugate Chemistry, 2023, 34, 30-36.	1.8	1
1998	Biomolecule-Based Optical Metamaterials: Design and Applications. Biosensors, 2022, 12, 962.	2.3	2
1999	Multiscale Biofabrication: Integrating Additive Manufacturing with DNAâ€Programmable Selfâ€Assembly. Advanced Biology, 2023, 7, .	1.4	5
2000	Current understanding of biological interactions and processing of DNA origami nanostructures: Role of machine learning and implications in drug delivery. Biotechnology Advances, 2022, 61, 108052.	6.0	9
2001	Studies on the Synergistic Effect of Tandem Semi-Stable Complementary Domains on Sequence-Defined DNA Block Copolymers. Journal of the American Chemical Society, 2022, 144, 21267-21277.	6.6	1
2003	Multivalent Pattern Recognition through Control of Nano-Spacing in Low-Valency Super-Selective Materials. Journal of the American Chemical Society, 2022, 144, 21576-21586.	6.6	13
2004	Structureâ€Dependent Electrical Conductance of DNA Origami Nanowires. ChemBioChem, 0, , .	1.3	1
2005	DNA as grabbers and steerers of quantum emitters. Nanophotonics, 2022, .	2.9	1
2007	A bistable and reconfigurable molecular system with encodable bonds. Science Advances, 2022, 8, .	4.7	5
2008	Self-assembled DNA nanostructures. , 2021, , .		0
2009	Distributed transformations of Hamiltonian shapes based on line moves. Theoretical Computer Science, 2023, 942, 142-168.	0.5	0
2010	Trapping of protein cargo molecules inside DNA origami nanocages. Nanoscale, 2022, 14, 18041-18050.	2.8	4
2011	A universal way to enrich the nanoparticle lattices with polychrome DNA origami "homologsâ€∙ Science Advances, 2022, 8, .	4.7	3

#	Article	IF	CITATIONS
2013	Solid Phase Synthesis of DNA Nanostructures in Heavy Liquid. Small, 2023, 19, .	5.2	2
2014	Multistep Transformations of DNA Origami Domino Array via Mechanical Forces. Small Structures, 2023, 4, .	6.9	3
2015	Regulating DNA-Hybridization Using a Chemically Fueled Reaction Cycle. Journal of the American Chemical Society, 2022, 144, 21939-21947.	6.6	12
2016	Cellular Ingestible DNA Nanostructures for Biomedical Applications. Advanced NanoBiomed Research, 2023, 3, .	1.7	6
2017	Multi-micron crisscross structures grown from DNA-origami slats. Nature Nanotechnology, 2023, 18, 281-289.	15.6	37
2018	Transformable Plasmonic Helix with Swinging Gold Nanoparticles. Angewandte Chemie, 0, , .	1.6	O
2019	Multiplexed Detection of Molecular Interactions with DNA Origami Engineered Cells in 3D Collagen Matrices. ACS Applied Materials & Samp; Interfaces, 2022, 14, 55307-55319.	4.0	1
2020	DNA Droplets: Intelligent, Dynamic Fluid. Advanced Biology, 2023, 7, .	1.4	11
2021	Engineered hydrogels for mechanobiology. Nature Reviews Methods Primers, 2022, 2, .	11.8	37
2023	Automated design of 3D DNA origami with non-rasterized 2D curvature. Science Advances, 2022, 8, .	4.7	7
2025	Nucleic acid-based scaffold systems and application in enzyme cascade catalysis. Applied Microbiology and Biotechnology, 2023 , 107 , $9-23$.	1.7	3
2026	An Analysis of the Capturing and Passing Ability of a DNA Origami Nanocarrier with the Aid of Molecular Dynamics Simulation. Molecular Biotechnology, 0, , .	1.3	1
2027	Mechanical DNA Origami to Investigate Biological Systems. Advanced Biology, 2023, 7, .	1.4	3
2028	Transformable Plasmonic Helix with Swinging Gold Nanoparticles. Angewandte Chemie - International Edition, 2023, 62, .	7.2	6
2029	Functionalizing DNA origami to investigate and interact with biological systems. Nature Reviews Materials, 2023, 8, 123-138.	23.3	39
2030	Elasticity of Semiflexible ZigZag Nanosprings with a Point Magnetic Moment. Polymers, 2023, 15, 44.	2.0	O
2031	Framework nucleic acids directed assembly of Au nanostructures for biomedical applications. , 2023, 1, \cdot		18
2032	DNA Nanomaterialsâ€Based Platforms for Cancer Immunotherapy. Small Methods, 2023, 7, .	4.6	11

#	Article	IF	CITATIONS
2033	Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie - International Edition, 2023, 62, .	7.2	15
2034	Multidimensional Honeycomb-like DNA Nanostructures Made of C-Motifs. ACS Biomaterials Science and Engineering, 2023, 9, 608-616.	2.6	2
2035	DNA origami traps for large viruses. Cell Reports Physical Science, 2023, 4, 101237.	2.8	5
2036	Dynamic Reconfigurable DNA Nanostructures, Networks and Materials. Angewandte Chemie, 2023, 135, .	1.6	0
2037	Nanorobots: An innovative approach for DNA-based cancer treatment. Journal of Drug Delivery Science and Technology, 2023, 80, 104173.	1.4	3
2038	Ultrasensitive and multiplexed miRNA detection system with DNA-PAINT. Biosensors and Bioelectronics, 2023, 224, 115053.	5. 3	10
2040	Nucleotides and nucleic acids; oligo- and polynucleotides. , 2011, , 139-216.		0
2041	Framework nucleic acids: a promising vehicle for small molecular cargos. Current Drug Metabolism, 2023, 24, .	0.7	1
2042	Towards atom manufacturing with framework nucleic acids. Nanotechnology, 2023, 34, 172002.	1.3	1
2043	Covalent nanoarchitectonics: Polymer synthesis with designer structures and sequences. Journal of Polymer Science, 2023, 61, 861-869.	2.0	3
2044	Deciphering plausible role of DNA nanostructures in drug delivery., 2023,, 215-251.		0
2045	Virus Mimetic Framework DNA as a Non-LNP Gene Carrier for Modulated Cell Endocytosis and Apoptosis. ACS Nano, 2023, 17, 2460-2471.	7.3	4
2046	3D RNA-scaffolded wireframe origami. Nature Communications, 2023, 14, .	5.8	13
2048	Mesojunction-Based Design Paradigm of Structural DNA Nanotechnology. Journal of the American Chemical Society, 2023, 145, 2455-2460.	6.6	5
2049	Gene-encoding DNA origami for mammalian cell expression. Nature Communications, 2023, 14, .	5.8	29
2050	Self-assembly of DNA origami for nanofabrication, biosensing, drug delivery, and computational storage. IScience, 2023, 26, 106638.	1.9	9
2051	Nucleic acid nanostructures for <i>in vivo</i> applications: The influence of morphology on biological fate. Applied Physics Reviews, 2023, 10, .	5. 5	6
2052	Recent Progress of Paclitaxel Delivery Systems: Covalent and Noncovalent Approaches. Advanced Therapeutics, 2023, 6, .	1.6	1

#	ARTICLE	IF	CITATIONS
2053	DNA Origami Curvature Sensors for Nanoparticle and Vesicle Size Determination with Single-Molecule FRET Readout. ACS Nano, 2023, 17, 3088-3097.	7.3	8
2054	DNA Origami Fiducial for Accurate 3D Atomic Force Microscopy Imaging. Nano Letters, 2023, 23, 1236-1243.	4.5	4
2055	DNA-nanostructure-templated assembly of planar and curved lipid-bilayer membranes. Frontiers in Chemistry, 0, 10 , .	1.8	1
2056	A single strand: A simplified approach to DNA origami. Frontiers in Chemistry, 0, 11, .	1.8	3
2057	Structural Elucidation of a Polypeptoid Chain in a Crystalline Lattice Reveals Key Morphology-Directing Role of the N-Terminus. ACS Nano, 2023, 17, 4958-4970.	7.3	4
2059	Active Nuclear Import of Mammalian Cell-Expressible DNA Origami. Journal of the American Chemical Society, 2023, 145, 4946-4950.	6.6	14
2061	Multiscale tensegrity model for the tensile properties of DNA nanotubes. Applied Mathematics and Mechanics (English Edition), 2023, 44, 397-410.	1.9	0
2063	Mechanical Design of DNA Origami in the Classroom. Applied Sciences (Switzerland), 2023, 13, 3208.	1.3	0
2064	Prediction and Control in DNA Nanotechnology. ACS Applied Bio Materials, 2024, 7, 626-645.	2.3	5
2065	Recent Advances of DNA Origami Technology and Its Application in Nanomaterial Preparation. Small Structures, 2023, 4, .	6.9	4
2067	Signal Amplification in Electrochemical DNA Biosensors Using Target-Capturing DNA Origami Tiles. ACS Sensors, 2023, 8, 1471-1480.	4.0	5
2068	Custom folding of double-stranded DNA directed by triplex formation. CheM, 2023, 9, 1505-1517.	5.8	2
2069	Computer-Aided Design of A-Trail Routed Wireframe DNA Nanostructures with Square Lattice Edges. ACS Nano, 2023, 17, 6565-6574.	7.3	3
2070	Digital nanoreactors to control absolute stoichiometry and spatiotemporal behavior of DNA receptors within lipid bilayers. Nature Communications, 2023, 14, .	5.8	2
2071	Applying dynamic light scattering to investigate the self-assembly process of DNA nanostructures. Chinese Chemical Letters, 2024, 35, 108384.	4.8	1
2072	Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chemical Reviews, 2023, 123, 3976-4050.	23.0	42
2073	Luminescent DNA-origami nano-rods dispersed in a lyotropic chromonic liquid crystal. Liquid Crystals, 2023, 50, 1243-1251.	0.9	0
2074	Non-Viral Carriers for Nucleic Acids Delivery: Fundamentals and Current Applications. Life, 2023, 13, 903.	1.1	6

#	Article	IF	CITATIONS
2075	Lab-on-a-DNA origami: nanoengineered single-molecule platforms. Chemical Communications, 2023, 59, 4726-4741.	2.2	6
2077	DNA-Based Nanomaterials as Drug Delivery Platforms for Increasing the Effect of Drugs in Tumors. Cancers, 2023, 15, 2151.	1.7	4
2078	Pointâ€andâ€shoot Strategy based on Enzymeâ€assisted DNA "Paperâ€Cutting―to Construct Arbitrary Plan DNA Nanostructures. Small, 2023, 19, .	ar 5 . 2	1
2079	Multiâ€Stimuliâ€Responsive and Mechanoâ€Actuated Biomimetic Membrane Nanopores Selfâ€Assembled from DNA. Advanced Materials, 2023, 35, .	11.1	4
2080	Evaluation of Nonmodified Wireframe DNA Origami for Acute Toxicity and Biodistribution in Mice. ACS Applied Bio Materials, 2023, 6, 1960-1969.	2.3	8
2081	Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery. Polymers, 2023, 15, 1850.	2.0	O
2082	Enzymatic Assembly of DNA Nanostructures and Fragments with Sequence Overlaps. Journal of the American Chemical Society, 0, , .	6.6	1
2083	Tuning Geometric Conformations ofÂCurved DNA Structures byÂControlling Positions ofÂNicks. Communications in Computer and Information Science, 2023, , 647-654.	0.4	О
2084	Reconfigurable Nanobook Structure Driven byÂPolymerase-Triggered DNA Strand Displacement. Communications in Computer and Information Science, 2023, , 674-683.	0.4	0
2085	Steric Communication between Dynamic Components on DNA Nanodevices. ACS Nano, 0, , .	7.3	1
2086	Genetically Encoded DNA Origami for Gene Therapy In Vivo. Journal of the American Chemical Society, 2023, 145, 9343-9353.	6.6	16
2087	Evaluating the effect of two-dimensional molecular layout on DNA origami-based transporters. Nanoscale Advances, 2023, 5, 2590-2601.	2.2	1
2088	Inducing Lipid Domains in Membranes by Selfâ€Assembly of DNA Origami. Advanced Materials Interfaces, 2023, 10, .	1.9	3
2089	Raman enhancement in bowtie-shaped aperture-particle hybrid nanostructures fabricated with DNA-assisted lithography. Nanoscale, 2023, 15, 8589-8596.	2.8	1
2090	Fabricating higher-order functional DNA origami structures to reveal biological processes at multiple scales. NPG Asia Materials, 2023, 15, .	3.8	5
2091	Construction and application of bionanomaterials. , 2023, , 567-594.		1
2099	Electrical Actuation of DNA-Based Nanomechanical Systems. Methods in Molecular Biology, 2023, , 257-274.	0.4	0
2100	Cellular Uptake of DNA Origami. Methods in Molecular Biology, 2023, , 209-229.	0.4	1

#	Article	IF	CITATIONS
2101	Two-Dimensional DNA Origami Lattices Assembled on Lipid Bilayer Membranes. Methods in Molecular Biology, 2023, , 83-90.	0.4	0
2102	Enzyme Cascade Reactions on DNA Origami Scaffold. Methods in Molecular Biology, 2023, , 275-299.	0.4	0
2103	Design, Assembly, and Function of DNA Origami Mechanisms. Methods in Molecular Biology, 2023, , 21-49.	0.4	1
2107	Observation of Enantiomeric Switching of Individual Plasmonic Metamolecules. Nano Letters, 2023, 23, 5180-5186.	4.5	1
2112	Molecularly or atomically precise nanostructures for bio-applications: how far have we come?. Materials Horizons, 0, , .	6.4	0
2115	Leveraging DNA Origami to Study Phagocytosis. Methods in Molecular Biology, 2023, , 303-312.	0.4	O
2116	Nucleic Acid in Nanotechnology. , 2023, , 167-211.		1
2120	DNA Origami: Recent Progress and Applications. Methods in Molecular Biology, 2023, , 3-19.	0.4	0
2121	Protein Coating of DNA Origami. Methods in Molecular Biology, 2023, , 195-207.	0.4	1
2122	Using Single-Molecule FRET to Evaluate DNA Nanodevices at Work. Methods in Molecular Biology, 2023, , 157-172.	0.4	0
2124	Reversible Regulation of Long-Distance Charge Transport in DNA Nanowires by Dynamically Controlling Steric Conformation. Nano Letters, 2023, 23, 4201-4208.	4.5	1
2128	DNA Nanotechnology Out of Equilibrium. Natural Computing Series, 2023, , 17-29.	2.2	0
2137	The Frame-Guided Assembly of Nucleic Acids. , 2023, , 1733-1764.		0
2176	Assembly and optically triggered disassembly of lipid–DNA origami fibers. Chemical Communications, 2023, 59, 14701-14704.	2.2	0
2187	DNA Nanotechnology-Based Nucleic Acid Delivery Systems for Bioimaging and Disease Treatment. Analyst, The, O, , .	1.7	0
2190	Lipid vesicle-based molecular robots. Lab on A Chip, 2024, 24, 996-1029.	3.1	0
2192	What can molecular assembly learn from catalysed assembly in living organisms?. Chemical Society Reviews, 2024, 53, 1892-1914.	18.7	0
2195	Self-assembly of DNA parallel double-crossover motifs. Nanoscale, 2024, 16, 1685-1691.	2.8	O

ARTICLE IF CITATIONS

2208 DNA nanotechnology for diagnostic applications. , 2024, , 77-99.