Serial time-encoded amplified imaging for real-time ob-

Nature 458, 1145-1149 DOI: 10.1038/nature07980

Citation Report

#	Article	IF	CITATIONS
14	A Guardian Map Approach to Robust Stability of Linear Systems with Constant Real Parameter Uncertainty. , 1992, , .		0
15	Digital Filter Control of Remotely Operated Flexible Robotic Structures. , 1993, , .		52
16	Variable Structure Discrete Time Position Control. , 1993, , .		10
17	Optical phase recovery in the dispersive Fourier transform. Applied Physics Letters, 2009, 95, .	1.5	52
18	Theory of amplified dispersive Fourier transformation. Physical Review A, 2009, 80, .	1.0	179
19	Singularly fast. Nature Physics, 2009, 5, 316-316.	6.5	0
20	Real-time optical imaging and tracking of micron-sized particles. Optics Communications, 2009, 282, 4672-4675.	1.0	84
21	Time amplifying techniques towards atomic time resolution. Science in China Series D: Earth Sciences, 2009, 52, 3425-3446.	0.9	10
22	Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery. Optics Letters, 2009, 34, 2099.	1.7	40
23	A review of ultra-short pulse lasers for military remote sensing and rangefinding. Proceedings of SPIE, 2009, , .	0.8	3
24	Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging. Applied Physics Letters, 2009, 95, 251101.	1.5	13
25	Real time micro/nano particle detection and tracking with nanosecond resolution. Proceedings of SPIE, 2009, , .	0.8	0
26	Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging. , 2010, , .		0
27	Real-time measurements, rare events and photon economics. European Physical Journal: Special Topics, 2010, 185, 145-157.	1.2	33
28	Noise figure of amplified dispersive Fourier transformation. Physical Review A, 2010, 82, .	1.0	8
29	Breaking Speed and Sensitivity Limits. Optik & Photonik, 2010, 5, 32-36.	0.3	5
30	Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. Lab on A Chip, 2010, 10, 1417.	3.1	420
31	Scanning fiber endoscopy with highly flexible, 1 mm catheterscopes for wideâ€field, fullâ€color imaging. Journal of Biophotonics, 2010, 3, 385-407.	1.1	257

TION RE

ARTICLE IF CITATIONS # Toward 100 Mega-Frames per Second: Design of an Ultimate Ultra-High-Speed Image Sensor. Sensors, 32 2.127 2010, 10, 16-35. Optical rogue waves and stimulated supercontinuum generation., 2010,,. Ultrafast and Doppler-free femtosecond†optical ranging based on dispersive†frequency-modulated 34 1.7 22 interferometry. Optics Express, 2010, 18, 4118. Performance of serial time-encoded amplified microscope. Optics Express, 2010, 18, 10016. 132 Multiple-channel spectrally encoded imaging. Optics Express, 2010, 18, 14745. 36 1.7 19 Complex-field measurement of ultrafast dynamic optical waveforms based on real-time spectral 1.7 interferometry. Optics Express, 2010, 18, 16526. Ultrafast and Precise Interrogation of Fiber Bragg Grating Sensor Based on Wavelength-to-Time 38 2.7 47 Mapping Incorporating Higher Order Dispersion. Journal of Lightwave Technology, 2010, 28, 254-261. New aspects of temporal dispersion in high-resolution Fourier pulse shaping: a quantitative description with virtually imaged phased array pulse shapers. Journal of the Optical Society of 9 America B: Optical Physics, 2010, 27, 1833. 40 Photonic time-stretch: From world's fastest digitizer to the world's fastest camera., 2010,,. 0 Single-shot optical sectioning using polarization-coded structured illumination. Journal of Optics 1.0 34 (United Kingdom), 2010, 12, 084010. Recent Breakthroughs in Microwave Photonics. IEEE Photonics Journal, 2011, 3, 311-315. 42 1.0 14 Spectral Efficiency Improvement in Photonic Time-Stretch Analog-to-Digital Converter via 1.3 Polarization Multiplexing. IEEE Photonics Technology Letters, 2011, 23, 947-949. Space-Time Analogies in Optics. Progress in Optics, 2011, , 1-80. 44 0.4 51 Slow art with a trillion frames per second camera., 2011, ... 46 Slow art with a trillion frames per second camera., 2011, , . 11 Real-Time Interrogation of a Linearly Chirped Fiber Bragg Grating Sensor Based on Chirped Pulse Compression With Improved Resolution and Signal-to-Noise Ratio. Journal of Lightwave Technology, 2011, 29, 1239-1247 Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of 48 1.534 transparent media. Biomedical Optics Express, 2011, 2, 3387. Investigating the influence of a weak continuous-wave-trigger on picosecond supercontinuum generation. Optics Express, 2011, 19, 13757.

#	Article	IF	CITATIONS
50	Serial time-encoded amplified microscopy (STEAM) based on a stabilized picosecond supercontinuum source. Optics Express, 2011, 19, 15810.	1.7	49
51	Lensfree super-resolution holographic microscopy using wetting films on a chip. Optics Express, 2011, 19, 17378.	1.7	52
52	Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Optics Express, 2011, 19, 23809.	1.7	53
53	Jammed-array wideband sawtooth filter. Optics Express, 2011, 19, 24563.	1.7	5
54	Dispersion requirements in coherent frequency-to-time mapping. Optics Express, 2011, 19, 24718.	1.7	56
55	Manipulating supercontinuum generation by minute continuous wave. Optics Letters, 2011, 36, 160.	1.7	72
56	Optical time-domain analog pattern correlator for high-speed real-time image recognition. Optics Letters, 2011, 36, 220.	1.7	24
57	Point-of-Care Pathology with Miniature Microscopes. Analytical Cellular Pathology, 2011, 34, 81-98.	0.7	44
58	Nomarski Serial Time-Encoded Amplified Microscope for High Throughput Imaging of Transparent Media. , 2011, , .		0
59	High-Speed Nanometer-Resolved Imaging-Based Laser Vibrometry. , 2011, , .		0
60	Enhanced supercontinuum generation by minute continuous wave seed. , 2011, , .		0
61	Computational Plenoptic Imaging. Computer Graphics Forum, 2011, 30, 2397-2426.	1.8	68
62	Breakthroughs in Photonics 2010. IEEE Photonics Journal, 2011, 3, 241-336.	1.0	1
63	Revisiting Bragg's X-ray microscope: Scatter based optical transient grating detection of pulsed ionising radiation. Ultramicroscopy, 2011, 111, 768-776.	0.8	2
64	Digital Micro-mirror Device-based broadband optical image sensor for robust imaging applications. Optics Communications, 2011, 284, 103-111.	1.0	27
65	Ultrafast optical pulse shaping: A tutorial review. Optics Communications, 2011, 284, 3669-3692.	1.0	544
66	Picosecond Camera for Time-of-Flight Imaging. , 2011, , .		10
67	Coherent frequency-to-time mapping revisited: Breaking the Fraunhofer limit to achieve ultrabroad radio-frequency waveforms. , 2011, , .		0

#	Article	IF	CITATIONS
68	High-speed nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 2011, 98, .	1.5	72
69	Fiber-Optical Parametric Amplifier With High-Speed Swept Pump. IEEE Photonics Technology Letters, 2011, 23, 1022-1024.	1.3	17
70	Ultrabroad bandwidth signal generation based on frequency-to-time mapping in the temporal Fresnel regime. , 2011, , .		0
71	Optical time-stretch confocal microscopy at 1  μm. Optics Letters, 2012, 37, 3330.	1.7	126
72	Optical Cross Correlator in a Silicon Waveguide. , 2012, , .		0
73	High-throughput optical coherence tomography at 800 nm. Optics Express, 2012, 20, 19612.	1.7	50
74	Exploiting few mode-fibers for optical time-stretch confocal microscopy in the short near-infrared window. Optics Express, 2012, 20, 24115.	1.7	25
75	All-Optical Passive Periodic Sawtooth Filter and its Application to Fast Interrogation of Fiber Bragg Grating Sensor Array. , 2012, , .		1
76	Compensation of group delay ripple in chirped fiber Bragg gratings and its application in chirped pulse laser radar. , 2012, , .		3
77	Demonstration of minute continuous-wave triggered supercontinuum generation at $1\ \hat{l}$ 4m for high-speed biophotonic applications. Proceedings of SPIE, 2012, , .	0.8	0
78	Hybrid Dispersion Laser Scanner. Scientific Reports, 2012, 2, 445.	1.6	82
79	Cost-effective approaches for high-resolution bioimaging by time-stretched confocal microscopy at 1μm. Proceedings of SPIE, 2012, , .	0.8	1
80	Computational plenoptic imaging. , 2012, , .		3
81	One-dimensional acoustic standing waves in rectangular channels for flow cytometry. Methods, 2012, 57, 259-271.	1.9	44
82	Optical time-stretch microscopy using few-mode fibers. , 2012, , .		0
83	Microfabricated multiple field of view imaging flow cytometry. Lab on A Chip, 2012, 12, 268-273.	3.1	82
84	High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11630-11635.	3.3	333
85	Dispersive Fourier transform using few-mode fibers for real-time and high-speed spectroscopy. Proceedings of SPIE, 2012, , .	0.8	1

		CITATION REPORT		
#	Article		IF	CITATIONS
86	Chirped pulse laser sources and applications. Progress in Quantum Electronics, 2012, 3	6, 475-540.	3.5	23
87	Pixel super-resolution in serial time-encoded amplified microscopy (STEAM). , 2012, , .			1
88	Modern Trends in Imaging VIII: Lensfree Computational Microscopy Tools for Cell and T at the Point-of-Care and in Low-Resource Settings. Analytical Cellular Pathology, 2012,	issue Imaging 35, 229-247.	0.7	21
89	Ultrarapid Optical Frequency-Domain Reflectometry Based Upon Dispersion-Induced Tir Principle and Applications. IEEE Journal of Selected Topics in Quantum Electronics, 201	ne Stretching: 2, 18, 148-165.	1.9	17
90	Femto-photography. ACM Transactions on Graphics, 2013, 32, 1-8.		4.9	147
91	Application of space–time duality to ultrahigh-speed optical signal processing. Advan Photonics, 2013, 5, 274.	ces in Optics and	12.1	279
92	Point-of-Care Diagnostics on a Chip. Biological and Medical Physics Series, 2013, , .		0.3	22
93	Ultrafast automated image cytometry for cancer detection. , 2013, 2013, 129-32.			1
94	High-Throughput Nonlinear Optical Microscopy. Biophysical Journal, 2013, 105, 2641-2	654.	0.2	45
95	Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence micro Nature Photonics, 2013, 7, 806-810.	oscopy.	15.6	134
96	Ultra-fast line scan microscopic imaging system. , 2013, , .			0
97	Wavelength division ultrafast microscopic imaging system. , 2013, , .			0
98	Novel all optical serialised real time correlator using FWM and frequency to time mappi	ng. , 2013, , .		1
99	Dispersive Fourier transformation for fast continuous single-shot measurements. Natur 2013, 7, 102-112.	e Photonics,	15.6	766
100	Photonic timeâ€stretch digitizer and its extension to realâ€ŧime spectroscopy and imag Photonics Reviews, 2013, 7, 207-263.	ging. Laser and	4.4	61
101	Real-time image processor for detection of rare cells and particles in flow at 37 MHz line second. , 2013, , .	e scans per		3
102	Dispersive Fourier Transformation and Application to Cancer Detection. , 2013, , .			0
103	Interferometric time-stretch microscopy for ultrafast quantitative cellular imaging at 1	Àμm. , 2013, , .		1

	CITATIO	ON REPORT	
#	Article	IF	CITATIONS
104	Label-free high-throughput cell screening in flow. Biomedical Optics Express, 2013, 4, 1618.	1.5	86
105	Tunable elastomer-based virtually imaged phased array. Optics Express, 2013, 21, 3324.	1.7	15
106	Ultrafast optical wide field microscopy. Optics Express, 2013, 21, 8763.	1.7	14
107	A fast fluorescence imaging flow cytometer for phytoplankton analysis. Optics Express, 2013, 21, 23921.	1.7	22
108	Spectrally encoded angular light scattering. Optics Express, 2013, 21, 28960.	1.7	11
109	Anamorphic transformation and its application to time–bandwidth compression. Applied Optics, 2013, 52, 6735.	0.9	42
110	Simple approach for fast real-time line scan microscopic imaging. Applied Optics, 2013, 52, 7049.	0.9	16
111	Optically amplified detection for biomedical sensing and imaging. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2124.	0.8	26
112	3D ultrafast laser scanner. Proceedings of SPIE, 2013, , .	0.8	10
113	World's fastest real-time line scan microscopic imaging system with 1GHz frame rate. , 2013, , .		0
114	Miniaturized optical fiber endoscope without inertial scan for simultaneous imaging and laser microsurgery. , 2013, , .		0
115	Physical principles for scalable neural recording. Frontiers in Computational Neuroscience, 2013, 7, 137.	1.2	215
116	Hyper-dimensional analysis for label-free high-throughput imaging flow cytometry. , 2014, , .		9
117	Time–bandwidth engineering. Optica, 2014, 1, 23.	4.8	89
118	Compact, transmissive two-dimensional spatial disperser design with application in simultaneous endoscopic imaging and laser microsurgery. Applied Optics, 2014, 53, 376.	0.9	21
119	Miniaturized, multiplexed readout of droplet-based microfluidic assays using time-domain modulation. Lab on A Chip, 2014, 14, 4638-4646.	3.1	17
120	Highâ€efficiency allâ€fibre optical parametric oscillator based on photonic crystal fibres pumped by ytterbiumâ€doped fibre laser. Electronics Letters, 2014, 50, 624-626.	0.5	5
121	Revisit laser scanning fluorescence microscopy performance under fluorescence-lifetime-limited regime. Proceedings of SPIE, 2014, , .	0.8	0

#	Article	IF	CITATIONS
122	Performance of time-bandwidth engineering systems. , 2014, , .		0
123	Near-field and complex-field time-stretch transform. , 2014, , .		0
124	Label-free high-throughput imaging flow cytometry. , 2014, , .		5
125	Reconstruction in time-bandwidth compression systems. Applied Physics Letters, 2014, 105, 221105.	1.5	18
126	Optical time-stretch microscopy using Bessel spectral shower illumination. , 2014, , .		0
127	Breathing laser as an inertia-free swept source for high-quality ultrafast optical bioimaging. Optics Letters, 2014, 39, 6593.	1.7	58
128	Coherent Time-Stretch Transform for Near-Field Spectroscopy. IEEE Photonics Journal, 2014, 6, 1-7.	1.0	17
129	All-fiber optical parametric amplifier for life-science application. , 2014, , .		1
130	Computational imaging of light in flight. , 2014, , .		3
131	Asymmetric-detection time-stretch optical microscopy (ATOM) for high-contrast and high-speed microfluidic cellular imaging. , 2014, , .		1
132	Performance of megahertz amplified optical time-stretch optical coherence tomography (AOT-OCT). Optics Express, 2014, 22, 22498.	1.7	22
133	Serial wavelength division 1  GHz line-scan microscopic imaging. Photonics Research, 2014, 2, B31.	3.4	21
134	Speed-dependent resolution analysis of ultrafast laser-scanning fluorescence microscopy. Journal of the Optical Society of America B: Optical Physics, 2014, 31, 755.	0.9	5
135	Time-stretch microscopy based on time-wavelength sequence reconstruction from wideband incoherent source. Applied Physics Letters, 2014, 105, .	1.5	18
136	Broadband fiber-optical parametric amplification for ultrafast time-stretch imaging at 10  μm. Optics Letters, 2014, 39, 5989.	1.7	31
137	Ultrafast imaging takes on a new design. Nature, 2014, 516, 46-47.	13.7	2
138	Doped ZnO 1D Nanostructures: Synthesis, Properties, and Photodetector Application. Small, 2014, 10, 4562-4585.	5.2	166
139	High-throughput imaging of self-luminous objects through a single optical fibre. Nature Communications, 2014, 5, 5581.	5.8	29

			2
#	ARTICLE	IF	CITATIONS
140	Motion compensation for <i>in vivo</i> subcellular optical microscopy. Journal of Microscopy, 2014, 254, 9-12.	0.8	4
141	Interferometric time-stretch microscopy for ultrafast quantitative cellular and tissue imaging at 1Â <i>μ</i> m. Journal of Biomedical Optics, 2014, 19, 076001.	1.4	65
142	Multiwavelength time-stretch imaging system. Optics Letters, 2014, 39, 2202.	1.7	30
143	A hyperchromatic lens for recording time-resolved phenomena. , 2014, , .		0
144	Time-stretched spectrally encoded angular light scattering for high-throughput real-time diagnostics. Proceedings of SPIE, 2014, , .	0.8	0
145	Megahertz all-optical swept-source optical coherence tomography based on broadband amplified optical time-stretch. Optics Letters, 2014, 39, 622.	1.7	64
146	Photonic Crystal Fiber Based Wavelength-Tunable Optical Parametric Amplifier and Picosecond Pulse Generation. IEEE Photonics Journal, 2014, 6, 1-8.	1.0	9
147	Doppler-spectrally encoded imaging of translational objects. Optics Communications, 2014, 319, 159-169.	1.0	5
148	Advances in high-throughput single-cell microtechnologies. Current Opinion in Biotechnology, 2014, 25, 114-123.	3.3	86
149	Coherent Laser Source for High Frame-Rate Optical Time-Stretch Microscopy at 1.0 μm. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20, 384-389.	1.9	14
150	Relaxed dispersion requirement in the generation of chirped RF signals based on frequency-to-time mapping. Optics Communications, 2014, 331, 278-281.	1.0	6
151	Echelle crossed grating millimeter wave beam scanner. Optics Express, 2014, 22, 16393.	1.7	18
152	Sequentially timed all-optical mapping photography (STAMP). Nature Photonics, 2014, 8, 695-700.	15.6	252
153	Warped time lens in temporal imaging for optical real-time data compression. Science Bulletin, 2014, 59, 2649-2654.	1.7	6
154	Serial time-encoded amplified microscopy for ultrafast imaging based on multi-wavelength laser. Science Bulletin, 2014, 59, 2693-2701.	1.7	3
155	Computational imaging, sensing and diagnostics for global health applications. Current Opinion in Biotechnology, 2014, 25, 8-16.	3.3	38
156	Dispersive Fourier Transformation for Versatile Microwave Photonics Applications. Photonics, 2014, 1, 586-612.	0.9	24
157	Signal reduction in fluorescence imaging using radio frequency-multiplexed excitation by compressed sensing. Proceedings of SPIE, 2014, , .	0.8	1

#	Article	IF	CITATIONS
158	Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Optics Express, 2015, 23, 30512.	1.7	63
159	Computational illumination for high-speed in vitro Fourier ptychographic microscopy. Optica, 2015, 2, 904.	4.8	243
161	Encrypted Three-dimensional Dynamic Imaging using Snapshot Time-of-flight Compressed Ultrafast Photography. Scientific Reports, 2015, 5, 15504.	1.6	52
162	Design of Warped Stretch Transform. Scientific Reports, 2015, 5, 17148.	1.6	23
163	THz near-field spectral encoding imaging using a rainbow metasurface. Scientific Reports, 2015, 5, 14403.	1.6	21
164	Arbitrary two-dimensional spectrally encoded pattern generation—a new strategy for high-speed patterned illumination imaging. Optica, 2015, 2, 1037.	4.8	22
165	Flexible generation of coherent rectangular pulse from an ultrafast fiber laser based on dispersive Fourier transformation technique. Optics Express, 2015, 23, 27315.	1.7	4
166	Sequentially timed all-optical mapping photography for observation of ultrafast phenomena. , 2015, , .		1
167	Optical Data Compression in Time Stretch Imaging. PLoS ONE, 2015, 10, e0125106.	1.1	47
168	Classically entangled optical beams for high-speed kinematic sensing. Optica, 2015, 2, 864.	4.8	131
169	Compressive ultrahigh-speed continuous imaging using spectrally structured ultrafast laser pulses. Proceedings of SPIE, 2015, , .	0.8	0
170	Time-stretch high-speed microscopic imaging system based on temporally and spectrally shaped amplified spontaneous emission. Optics Letters, 2015, 40, 946.	1.7	9
171	High-throughput biological cell classification featuring real-time optical data compression. , 2015, , .		3
172	High-throughput optofluidic particle profiling with morphological and chemical specificity. Optics Letters, 2015, 40, 4803.	1.7	28
173	High-throughput intrinsic single-cell phenotyping by quantitative asymmetric-detection time-stretch optical microscopy (Q-ATOM). , 2015, , .		0
174	Threeâ€dimensional image cytometer based on widefield structured light microscopy and highâ€speed remote depth scanning. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2015, 87, 49-60.	1.1	13
175	All-optical single-shot ultrafast 2D-burst imaging using a linearly frequency chirped pulse. , 2015, , .		0
176	Advancing optical time stretch for high-throughput imaging diagnostics on the single-cell and tissue scales. , 2015, , .		0

#	Article	IF	CITATIONS
177	A real-time multiple target detecting scheme based on microwave metamaterials. , 2015, , .		5
178	THz near-field spectral encoding imaging using a rainbow metasurface. , 2015, , .		2
179	High-speed compressed sensing measurement using spectrally-encoded ultrafast laser pulses. , 2015, , .		3
180	Sparsity and self-adaptivity in anamorphic stretch transform. , 2015, , .		4
181	Mechanical Scan-Free Confocal Microscope by a Broadband Source and Two Balanced Wavelength-to-Space Transformations. IEEE Photonics Journal, 2015, 7, 1-8.	1.0	2
182	28 MHz swept source at 10 μm for ultrafast quantitative phase imaging. Biomedical Optics Express, 2015, 6, 3855.	1.5	24
183	A real-time multiple target detecting scheme based on microwave metamaterials. , 2015, , .		2
184	Compressive sensing based high-speed time-stretch optical microscopy for two-dimensional image acquisition. Optics Express, 2015, 23, 29639.	1.7	47
185	Optical time-stretch imaging flow cytometry of phytoplankton. , 2015, , .		1
186	Time stretch imaging with optical data compression for label-free biological cell classification. , 2015, , .		Ο
187	Ultrafast Three-Dimensional Serial Time-Encoded Imaging With High Vertical Resolution. Journal of Lightwave Technology, 2015, 33, 4622-4626.	2.7	2
188	Asymmetric-detection time-stretch optical microscopy (ATOM) for ultrafast high-contrast cellular imaging in flow. Scientific Reports, 2014, 4, 3656.	1.6	83
189	Recirculating Frequency Shifting Based Wideband Optical Frequency Comb Generation by Phase Coherence Control. IEEE Photonics Journal, 2015, 7, 1-7.	1.0	19
190	Single-photon sensitive light-in-fight imaging. Nature Communications, 2015, 6, 6021.	5.8	175
191	Scanning-free imaging through a single fiber by random spatio-spectral encoding. Optics Letters, 2015, 40, 534.	1.7	37
192	Ultrafast Surface Imaging With an Increased Spatial Resolution Based on Polarization-Division Multiplexing. Journal of Lightwave Technology, 2015, 33, 396-402.	2.7	17
193	Ultrafast Three-Dimensional Imaging System Based on Phase-Shifting Method and Hybrid Dispersion Laser Scanning. IEEE Photonics Journal, 2015, 7, 1-9.	1.0	8
194	Overcoming Kerr-induced capacity limit in optical fiber transmission. Science, 2015, 348, 1445-1448.	6.0	215

#	Article	IF	CITATIONS
195	A Switchable High-Sensitivity Photodetecting and Photovoltaic Device with Perovskite Absorber. Journal of Physical Chemistry Letters, 2015, 6, 1773-1779.	2.1	69
196	Locating and classifying fluorescent tags behind turbid layers using time-resolved inversion. Nature Communications, 2015, 6, 6796.	5.8	33
197	Waveguide-based single-shot temporal cross-correlator. Journal of Optics (United Kingdom), 2015, 17, 035501.	1.0	17
198	Flow Cytometry: Impact on Early Drug Discovery. Journal of Biomolecular Screening, 2015, 20, 689-707.	2.6	54
199	Fast time-lens-based line-scan single-pixel camera with multi-wavelength source. Biomedical Optics Express, 2015, 6, 3610.	1.5	28
200	Spectral dispersion modeling of virtually imaged phased array by using angular spectrum of plane waves. Optics Express, 2015, 23, 1.	1.7	31
201	High-speed flow microscopy using compressed sensing with ultrafast laser pulses. Optics Express, 2015, 23, 10521.	1.7	66
202	Supercontinuum generation as a signal amplifier. Optica, 2015, 2, 757.	4.8	11
203	Tailoring Wideband Signals With a Photonic Hardware Accelerator. Proceedings of the IEEE, 2015, 103, 1071-1086.	16.4	36
204	High-throughput image-based single-cell analysis by ultrafast asymmetric-detection time-stretch optical microscopy. , 2015, , .		1
205	High-speed all-optical pattern recognition of dispersive Fourier images through a photonic reservoir computing subsystem. Optics Letters, 2015, 40, 3416.	1.7	25
206	Ultrafast Imaging using Simultaneous Spatially and Temporally Resolved Wavelength-Multiplexed Photography (SSTWP). , 2015, , .		0
207	Analog optical computing. Nature Photonics, 2015, 9, 704-706.	15.6	212
208	Radiofrequency encoded angular-resolved light scattering. Applied Physics Letters, 2015, 106, 123701.	1.5	3
209	Ultrafast Three-Dimensional Surface Imaging Based on Short-Time Fourier Transform. IEEE Photonics Technology Letters, 2015, 27, 2264-2267.	1.3	19
210	Motion Picture Femtophotography with Sequentially Timed All-optical Mapping Photography. , 2015, , .		0
211	High-finesse sub-GHz-resolution spectrometer employing VIPA etalons of different dispersion. Optics Letters, 2015, 40, 4436.	1.7	25
212	Structured illumination microscopy. Advances in Optics and Photonics, 2015, 7, 241.	12.1	133

#	Article	IF	CITATIONS
213	High speed two-dimensional temporal compressive sampling microscopic camera. , 2015, , .		0
214	Two-dimensional spatiotemporal focusing of femtosecond pulses and its applications in microscopy. Review of Scientific Instruments, 2015, 86, 083701.	0.6	12
215	Multi-dimensional real-time spectrum analysis for high-resolution signal processing. , 2015, , .		0
216	Ultrafast and versatile spectroscopy by temporal Fourier transform. Scientific Reports, 2015, 4, 5351.	1.6	21
217	Real time all optical correlator for serialized time encoded signals. Optics Communications, 2015, 338, 34-39.	1.0	2
218	A 2-GHz discrete-spectrum waveband-division microscopic imaging system. Optics Communications, 2015, 338, 22-26.	1.0	69
219	Context-Aware Image Compression. PLoS ONE, 2016, 11, e0158201.	1.1	5
220	Ultrafast time-stretch imaging at 932 nm through a new highly-dispersive fiber. Biomedical Optics Express, 2016, 7, 5208.	1.5	9
221	Self-healing highly-chirped fiber laser at 10 μm. Optics Express, 2016, 24, 27577.	1.7	10
223	Observation of the formation of anisotropic silver microstructures by evanescent wave and electron microscopy. Nanotechnology, 2016, 27, 075708.	1.3	6
224	Space- and intensity-constrained reconstruction for compressed ultrafast photography. Optica, 2016, 3, 694.	4.8	57
225	High-throughput time-stretch imaging cellular assay based on a high-speed spinning platform. , 2016, , .		0
226	Analysis of bandwidth limitation in time-stretch compressive sampling imaging system. Proceedings of SPIE, 2016, , .	0.8	1
227	Optical time-stretch imaging: Principles and applications. Applied Physics Reviews, 2016, 3, 011102.	5.5	93
228	3D space-to-microwave frequency mapping antenna. , 2016, , .		1
229	Advances in Fibre Microendoscopy for Neuronal Imaging. Optical Data Processing and Storage, 2016, 2,	3.3	10
230	Advances in ultrafast optics and imaging applications. Proceedings of SPIE, 2016, , .	0.8	3
231	A fiber-compatible spectrally encoded imaging system using a 45Ű tilted fiber grating. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	Citations
232	Optofluidic time-stretch imaging – an emerging tool for high-throughput imaging flow cytometry. Lab on A Chip, 2016, 16, 1743-1756.	3.1	83
233	Highly efficient spectrally encoded imaging using a 45° tilted fiber grating. Optics Letters, 2016, 41, 2398.	1.7	42
234	Optical real-time Fourier transformation with kilohertz resolutions. Optica, 2016, 3, 1.	4.8	82
235	High-precision group-delay dispersion measurements of optical fibers via fingerprint-spectral wavelength-to-time mapping. Photonics Research, 2016, 4, 13.	3.4	12
236	Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 2016, 5, 497-509.	2.9	49
237	A single-frame full spatiotemporal field distribution measurement method. Optik, 2016, 127, 11636-11643.	1.4	0
238	Fluorescence Microscopy with Structured Excitation Illumination. , 2016, , 563-580.		0
239	Gain-guided soliton fiber laser with high-quality rectangle spectrum for ultrafast time-stretch microscopy. Optics Express, 2016, 24, 10786.	1.7	15
240	Optical digital coherent detection technology enabled flexible and ultra-fast quantitative phase imaging. Optics Express, 2016, 24, 17159.	1.7	6
241	High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomedical Optics Express, 2016, 7, 2703.	1.5	34
242	High-Acquisition-Rate Single-Shot Pump-Probe Measurements Using Time-Stretching Method. Scientific Reports, 2016, 6, 37614.	1.6	18
243	Coded access optical sensor (CAOS) imager and applications. Proceedings of SPIE, 2016, , .	0.8	1
244	Tracking objects outside the line of sight using 2D intensity images. Scientific Reports, 2016, 6, 32491.	1.6	107
245	Huge soliton explosions in an ultrafast fiber laser. , 2016, , .		0
246	Photonics-assisted compressive sampling systems. , 2016, , .		0
247	Deep Learning in Label-free Cell Classification. Scientific Reports, 2016, 6, 21471.	1.6	368
248	Dispersive Fourier transformation femtosecond stimulated Raman scattering. Applied Physics B: Lasers and Optics, 2016, 122, 1.	1.1	10
249	Review: imaging technologies for flow cytometry. Lab on A Chip, 2016, 16, 4639-4647.	3.1	202

		CITATION R	EPORT	
#	Article		IF	Citations
250	Optical brush: Imaging through permuted probes. Scientific Reports, 2016, 6, 20217.		1.6	6
251	Ultrafast Imaging using Spectral Resonance Modulation. Scientific Reports, 2016, 6, 25	240.	1.6	12
252	Real-time characterization of spectral coherence of ultrafast laser based on optical time 2016, , .	stretch.,		0
253	A computational approach to real-time image processing for serial time-encoded amplifi , 2016, , .	ed microscopy.		2
254	Time-of-flight compressed-sensing ultrafast photography for encrypted three-dimension imaging. , 2016, , .	al dynamic		0
255	Single-pixel imaging using compressed sensing and wavelength-dependent scattering. C 2016, 41, 886.	ptics Letters,	1.7	55
256	Ultrafast imaging with anti-aliasing based on optical time-division multiplexing. Optics L 41, 882.	etters, 2016,	1.7	9
257	Pixel super-resolution of time-stretch imaging by an equivalent-time sampling concept. ,	2016, , .		0
258	Scan-less, line-field confocal microscopy by combination of wavelength/space conversio optical comb. , 2016, , .	n with dual		2
259	High-throughput time-stretch microscopy with morphological and chemical specificity. For SPIE, 2016, , .	Proceedings	0.8	1
260	Improving image quality in compressed ultrafast photography with a space- and intensit reconstruction algorithm. , 2016, , .	y-constrained		1
261	Successive soliton explosions in an ultrafast fiber laser. Optics Letters, 2016, 41, 1181.		1.7	133
262	Ultrafast quantitative time-stretch imaging flow cytometry of phytoplankton. Proceedin 2016, , .	gs of SPIE,	0.8	0
263	Single-pixel optical camera for video rate ultrasonic imaging. Optica, 2016, 3, 26.		4.8	66
264	Optical Time Stretch for High-Speed and High-Throughput Imaging—From Single-Cell t Scales. IEEE Journal of Selected Topics in Quantum Electronics, 2016, 22, 89-103.	o Tissue-Wide	1.9	14
265	Imaging Flow Cytometry. Methods in Molecular Biology, 2016, , .		0.4	29
266	Ultrafast Spectroscopy Based on Temporal Focusing and Its Applications. IEEE Journal of Topics in Quantum Electronics, 2016, 22, 295-306.	Selected	1.9	25
267	Single-shot real-time video recording of a photonic Mach cone induced by a scattered lig Science Advances, 2017, 3, e1601814.	ght pulse.	4.7	101

#	Article	IF	CITATIONS
268	All optical space-to-time mapping using modal dispersion of multimode fiber. Optics Communications, 2017, 389, 79-84.	1.0	2
269	Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light: Science and Applications, 2017, 6, e16196-e16196.	7.7	125
270	Highâ€ŧhroughput, labelâ€free, single ell, microalgal lipid screening by machineâ€learningâ€equipped optofluidic timeâ€stretch quantitative phase microscopy. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 494-502.	1.1	60
271	Artificial Intelligence in Label-free Microscopy. , 2017, , .		9
272	Adaptive foveated single-pixel imaging with dynamic supersampling. Science Advances, 2017, 3, e1601782.	4.7	184
273	Al-augmented time stretch microscopy. Proceedings of SPIE, 2017, , .	0.8	0
274	Image-Based Phenotypic Screening with Human Primary T Cells Using One-Dimensional Imaging Cytometry with Self-Tuning Statistical-Gating Algorithms. SLAS Discovery, 2017, 22, 985-994.	1.4	2
275	Large population cell characterization using quantitative phase cytometer. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 450-459.	1.1	18
276	Fourier ptychographic microscopy using wavelength multiplexing. Journal of Biomedical Optics, 2017, 22, 066006.	1.4	23
277	Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab on A Chip, 2017, 17, 2426-2434.	3.1	65
278	High-Throughput Photonic Time-Stretch Optical Coherence Tomography with Data Compression. IEEE Photonics Journal, 2017, 9, 1-15.	1.0	22
279	Microwave waveform generation with reconfigurable envelope and high fidelity based on spectrum compensated frequency-to-time mapping. Optical Fiber Technology, 2017, 36, 291-296.	1.4	7
280	Observation of laser pulse propagation in optical fibers with a SPAD camera. Scientific Reports, 2017, 7, 43302.	1.6	14
281	Spectral-temporal dynamics of multipulse mode-locking. Applied Physics Letters, 2017, 110, .	1.5	45
282	Time stretch and its applications. Nature Photonics, 2017, 11, 341-351.	15.6	333
283	All-passive pixel super-resolution of time-stretch imaging. Scientific Reports, 2017, 7, 44608.	1.6	11
284	High-Speed Compressive Microscopy of Flowing Cells Using Sinusoidal Illumination Patterns. IEEE Photonics Journal, 2017, 9, 1-11.	1.0	12
285	Ex Vivo Engineering of the Tumor Microenvironment. Cancer Drug Discovery and Development, 2017, , .	0.2	4

#	Article	IF	CITATIONS
286	Advancing Techniques and Insights in Circulating Tumor Cell (CTC) Research. Cancer Drug Discovery and Development, 2017, , 71-94.	0.2	2
287	Emerging theories and technologies on computational imaging. Frontiers of Information Technology and Electronic Engineering, 2017, 18, 1207-1221.	1.5	7
288	Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Scientific Reports, 2017, 7, 12454.	1.6	78
289	Ultrafast all-optical imaging technique using low-temperature grown GaAs/Al Ga1â^As multiple-quantum-well semiconductor. Physics Letters, Section A: General, Atomic and Solid State Physics, 2017, 381, 3594-3598.	0.9	7
290	Matrix Analysis of Warped Stretch Imaging. Scientific Reports, 2017, 7, 11150.	1.6	3
291	Single-shot 25-frame burst imaging of ultrafast phase transition of Ge ₂ Sb ₂ Te ₅ with a sub-picosecond resolution. Applied Physics Express, 2017, 10, 092502.	1.1	47
292	Microfluidic Imaging Flow Cytometry by Asymmetric-detection Time-stretch Optical Microscopy (ATOM). Journal of Visualized Experiments, 2017, , .	0.2	3
293	Integrated light-sheet imaging and flow-based enquiry (iLIFE) system for 3D <i>in-vivo</i> imaging of multicellular organism. Applied Physics Letters, 2017, 111, .	1.5	19
294	Data Compression for Time-Stretch Imaging Based on Differential Detection and Run-Length Encoding. Journal of Lightwave Technology, 2017, 35, 5098-5104.	2.7	8
295	GHz Optical Time-Stretch Microscopy by Compressive Sensing. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	12
296	Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nature Communications, 2017, 8, 61.	5.8	48
297	Design and characterization of a plasmonic Doppler grating for azimuthal angle-resolved surface plasmon resonances. Nanoscale, 2017, 9, 10811-10819.	2.8	15
298	Principles and applications of high-speed single-pixel imaging technology. Frontiers of Information Technology and Electronic Engineering, 2017, 18, 1261-1267.	1.5	9
299	High-throughput, label-free, multivariate cell analysis with optofluidic time-stretch microscopy. , 2017, , .		2
300	The real-time measurement system by broadband supereontinuum using a time-stretched technology. , 2017, , .		0
301	Optical receiver sensitivity enhancement by single- and dual-band fiber optical parametric amplifier. Optics Express, 2017, 25, 27785.	1.7	1
302	Time-stretch microscopy on a DVD for high-throughput imaging cell-based assay. Biomedical Optics Express, 2017, 8, 640.	1.5	9
303	Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Optics Express, 2017, 25, 8721.	1.7	34

#	Article	IF	CITATIONS
304	Unveiling multi-scale laser dynamics through time-stretch and time-lens spectroscopies. Optics Express, 2017, 25, 29098.	1.7	49
305	High-speed wavelength-swept source at 20 μm and its application in imaging through a scattering medium. Optics Letters, 2017, 42, 1540.	1.7	25
306	Optical wavelength-swept source at 2.0 $\hat{A}\mu m$ and its application for ultrafast microscopy. , 2017, , .		0
307	Single-shot burst imaging of ultrafast phenomena with sub-picosecond resolution and sub-nanosecond time window. , 2017, , .		0
308	A REVIEW OF PHOTONIC GENERATION OF ARBITRARY MICROWAVE WAVEFORMS. Progress in Electromagnetics Research B, 2017, 75, 1-12.	0.7	11
309	Sequentially Timed All-optical Mapping Photography. Journal of the Visualization Society of Japan, 2017, 37, 26-31.	0.0	0
310	Real-time tracking of single shockwaves via amplified time-stretch imaging. Applied Physics Letters, 2018, 112, .	1.5	13
311	Optofluidic time-stretch microscopy: recent advances. Optical Review, 2018, 25, 464-472.	1.2	8
312	Improved Resolution Optical Time Stretch Imaging Based on High Efficiency In-Fiber Diffraction. Scientific Reports, 2018, 8, 600.	1.6	21
313	Real-time visualization of soliton molecules with evolving behavior in an ultrafast fiber laser. Journal of Optics (United Kingdom), 2018, 20, 034010.	1.0	30
314	Temporal Encryption at 1 Tb/s. Journal of Lightwave Technology, 2018, 36, 2344-2350.	2.7	17
315	Identification of Coherent and Incoherent Spectral Sidebands in an Ultrafast Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	1.9	7
316	A highâ€ŧhroughput allâ€optical laserâ€scanning imaging flow cytometer with biomolecular specificity and subcellular resolution. Journal of Biophotonics, 2018, 11, e201700178.	1.1	14
317	Design of high-efficiency diffractive optical elements towards ultrafast mid-infrared time-stretched imaging and spectroscopy. Journal of Modern Optics, 2018, 65, 255-261.	0.6	9
318	Ultrafast Green-Light Swept-Source Imaging Through Advanced Fiber-Optic Technologies. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-5.	1.9	0
319	Micro Fourier Transform Profilometry (μFTP): 3D shape measurement at 10,000 frames per second. Optics and Lasers in Engineering, 2018, 102, 70-91.	2.0	186
320	Wavelength-swept source at 2.0 ŵm through second harmonic generation. , 2018, , .		0
321	Real-Time Spectrogram Analysis of Continuous Optical Wavefields. , 2018, , .		4

#	Article	IF	CITATIONS
322	Fluorescence imaging of <i>Escherichia coli</i> on a rotating optical disk. Japanese Journal of Applied Physics, 2018, 57, 088003.	0.8	2
323	Single-shot ultrafast optical imaging. Optica, 2018, 5, 1113.	4.8	136
324	Anti-Aliasing and Data Compressing Technique for Time-Stretch Imaging System. , 2018, , .		0
325	Line excitation array detection fluorescence microscopy at 0.8 million frames per second. Nature Communications, 2018, 9, 4499.	5.8	21
326	FPGA-based high-speed real-time line-scan imager via Fourier spectrum acquisition. , 2018, , .		1
329	Notice of Removal: Research on DOA Estimation of Frequency Hopping Signal. , 2018, , .		1
330	Low-Noise, Robust, All-Polarization-Maintaining Mode-Locked Er-Doped Fiber Ring Laser. IEEE Photonics Technology Letters, 2018, 30, 1139-1142.	1.3	7
331	High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nature Protocols, 2018, 13, 1603-1631.	5.5	112
332	Line-scan spectrum-encoded imaging by dual-comb interferometry. Optics Letters, 2018, 43, 1606.	1.7	30
333	Time-bandwidth compression of microwave signals. Optics Express, 2018, 26, 990.	1.7	0
334	102-nm, 445-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Optics Express, 2018, 26, 4370.	1.7	46
335	Exploiting k-space/frequency duality toward real-time terahertz imaging. Optica, 2018, 5, 109.	4.8	42
336	Optimizing codes for compressed ultrafast photography by the genetic algorithm. Optica, 2018, 5, 147.	4.8	30
337	Scan-less confocal phase imaging based on dual-comb microscopy. Optica, 2018, 5, 634.	4.8	70
338	Flexible pulse-stretching for a swept source at 20  μm using free-space angular-chirp-enhanced delay. Optics Letters, 2018, 43, 102.	1.7	5
339	Ultra-broadband spatiotemporal sweeping device for high-speed optical imaging. Optics Letters, 2018, 43, 3546.	1.7	1
340	Ultrafast rogue wave patterns in fiber lasers. Optica, 2018, 5, 774.	4.8	72
341	Real-Time Observation of the Buildup of Soliton Molecules. Physical Review Letters, 2018, 121, 023905.	2.9	424

#	Article	IF	CITATIONS
342	High-Speed Imaging Meets Single-Cell Analysis. CheM, 2018, 4, 2278-2300.	5.8	37
343	An Ultrafast Wideband Discretely Swept Fiber Laser. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-5.	1.9	3
344	Incoherent triggering of picosecond pulse pumped supercontinuum. Journal of Modern Optics, 2018, 65, 2142-2152.	0.6	3
345	Ultrafast time-stretch microscopy based on dual-comb asynchronous optical sampling. Optics Letters, 2018, 43, 2118.	1.7	30
346	Imaging using hyperuniform sampling with a single-pixel camera. Optics Letters, 2018, 43, 4049.	1.7	16
347	Spectral Encoding using k-space/frequency Duality. , 2018, , .		0
348	Photography optics in the time dimension. Nature Photonics, 2018, 12, 560-566.	15.6	8
349	Parametric spectrotemporal analyzer based on four-wave mixing Bragg scattering. Optics Letters, 2018, 43, 1922.	1.7	7
350	Single-shot real-time femtosecond imaging of temporal focusing. Light: Science and Applications, 2018, 7, 42.	7.7	100
351	Ultrafast optical imaging at 20  μm through second-harmonic-generation-based time-stretch at 10â€% Optics Letters, 2018, 43, 3822.	‰â€‰Î¹⁄4n 1.7	^{n.} 11
352	Ghost cytometry. Science, 2018, 360, 1246-1251.	6.0	165
353	A trillion frames per second: the techniques and applications of light-in-flight photography. Reports on Progress in Physics, 2018, 81, 105901.	8.1	35
354	Ultrafast cell edge detection by lineâ€scan timeâ€stretch microscopy. Journal of Biophotonics, 2019, 12, e201800044.	1.1	0
355	Efficient Spectrum Reshaping with Photonic Gauge Potentials in Resonantly Modulated Fiber-Loop Circuits. Physical Review Applied, 2019, 12, .	1.5	5
356	Deep Cytometry: Deep learning with Real-time Inference in Cell Sorting and Flow Cytometry. Scientific Reports, 2019, 9, 11088.	1.6	57
357	New on the block: The workshop reports. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 595-597.	1.1	2
358	High-throughput microfluidic particle velocimetry using optical time-stretch microscopy. Applied Physics Letters, 2019, 115, .	1.5	4
359	Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nature Photonics, 2019, 13, 809-816.	15.6	134

#	Article	IF	CITATIONS
360	Single-shot observation of stretched-pulse buildup dynamics in an ultrafast fiber laser. Infrared Physics and Technology, 2019, 102, 102984.	1.3	13
361	Ultrafast dynamics observation during femtosecond laser-material interaction. International Journal of Extreme Manufacturing, 2019, 1, 032004.	6.3	63
362	Microresonator soliton dual-comb imaging. Optica, 2019, 6, 1110.	4.8	42
363	Large-Temporal-Numerical-Aperture Parametric Spectro-Temporal Analyzer Based on Silicon Waveguide. IEEE Photonics Journal, 2019, 11, 1-10.	1.0	5
364	Revealing the Transition Dynamics from <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mi>Q</mml:mi> Switching to Mode Locking in a Soliton Laser. Physical Review Letters, 2019, 123, 093901.</mml:math 	2.9	173
365	Photonic Time-Stretch Technology with Prismatic Pulse Dispersion towards Fast Real-Time Measurements. Photonics, 2019, 6, 99.	0.9	2
366	Recent Advances in Computational Photography. Chinese Journal of Electronics, 2019, 28, 1-5.	0.7	4
367	Ultrahigh-Speed Color Imaging with Single-Pixel Detectors at Low Light Level. Physical Review Applied, 2019, 12, .	1.5	31
368	Flowing cells stability test and evaluation for fast flow cytometry. Journal of Optics (India), 2019, 48, 54-59.	0.8	0
369	Bulk-Explosion-Induced Metal Spattering During Laser Processing. Physical Review X, 2019, 9, .	2.8	34
370	Direct instantaneous 2-D imaging for photoacoustic waves by ultrashort single pulse interferometry. Optics and Lasers in Engineering, 2019, 121, 340-345.	2.0	6
371	Biophotonics and beyond. APL Photonics, 2019, 4, 050401.	3.0	5
372	Micro deep learning profilometry for high-speed 3D surface imaging. Optics and Lasers in Engineering, 2019, 121, 416-427.	2.0	71
373	Physics-Based Feature Engineering. Springer Series in Optical Sciences, 2019, , 255-275.	0.5	1
374	Optical Imaging Approaches to Monitor Static and Dynamic Cellâ€on hip Platforms: A Tutorial Review. Small, 2019, 15, e1900737.	5.2	31
375	Compressed Ultrafast Spectral-Temporal Photography. Physical Review Letters, 2019, 122, 193904.	2.9	54
376	Quantitative Phase Imaging Flow Cytometry for Ultra‣argeâ€6cale Singleâ€Cell Biophysical Phenotyping. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 510-520.	1.1	60
377	Observation of evolution dynamics from bound states to single-pulse states in a passively mode-locked fiber laser. Modern Physics Letters B, 2019, 33, 1950103.	1.0	1

# 378	ARTICLE Single-Pixel Imaging and Its Application in Three-Dimensional Reconstruction: A Brief Review. Sensors, 2019, 19, 732.	IF 2.1	CITATIONS
379	Multiâ€ATOM: Ultrahighâ€throughput singleâ€cell quantitative phase imaging with subcellular resolution. Journal of Biophotonics, 2019, 12, e201800479.	1.1	34
380	Anti-rheumatoid Arthritis Mechanisms of Angelicae Pubescentis Radix. , 2019, , .		0
381	PPD: Permutation Phase Defense Against Adversarial Examples in Deep Learning. , 2019, , .		1
382	Mobility-based Performance Comparison of MBQA-OLSRv2 and MBMA-OLSRv2 Routing Protocols. , 2019, , .		2
383	Data Representation Models of Concept Systems. , 2019, , .		0
384	On the Precise Phase Recovery for Physical-Layer Authentication in Dynamic Channels. , 2019, , .		3
385	PPG Signal Identification Method Based on CSASVM. , 2019, , .		1
386	Implementing Damper and Spring Virtually On A Quasi-Direct Drive Leg Robot. , 2019, , .		0
388	Mobile Robot Self-LocalizationUsing Visual Odometry Based on Ceiling Vision. , 2019, , .		4
389	Research on Selection Method of Fatigue Monitoring Points for Welding Structure of Rail Vehicles Based on Structural Stress Method. , 2019, , .		0
390	Multi Robot Path Planning Parameter Analysis Based on Particle Swarm Optimization (PSO) in an Intricate Unknown Environments. , 2019, , .		4
391	MMA 2019 Author Index. , 2019, , .		0
392	Structure Optimization Design for Electromagnet on EPLA Electro-Pneumatic Change Valve. , 2019, , .		0
393	Scattering of EM waves from a Rotating Dispersive Very Good Conducting Cylinder. , 2019, , .		1
394	Study and analysis of infrared illumination settings towards detection of hidden veins. , 2019, , .		0
395	Covert Communication with Unknown Code at the Warden. , 2019, , .		0
396	Distributed Gradient Algorithm for Economic Dispatch of Multi-area Power Systems. , 2019, , .		2

#	Article	IF	CITATIONS
397	Semisupervised Classification for Industrial Process Faults Using Modified Fisher Discriminant Analysis Assisted by Stacked Autoencoder. , 2019, , .		1
398	Raman Spaser. , 2019, , .		Ο
399	Low Power Design through Frequency-Optimized Runtime Micro-Architectural Adaptation. , 2019, , .		0
400	X-Band Phased Array Antenna Frontends for Next Generation SAR Instruments. , 2019, , .		4
401	Building Devs Models with the Cadmium Tool. , 2019, , .		20
402	Fast and Efficient Approach for Computing the Nonlinearity in the Ring-Resonator-Based HTS Reaction-Type Filters. IEEE Transactions on Applied Superconductivity, 2019, 29, 1-8.	1.1	Ο
403	Analysis and design of wideband active power splitter with interleaf transmission line topology. IET Circuits, Devices and Systems, 2019, 13, 1262-1266.	0.9	1
404	Adaptive Coding for Information Freshness in a Two-User Broadcast Erasure Channel. , 2019, , .		13
405	Impact Analysis of Vibration Isolation Parameter to Axial Displacement of Propulsion Motor. , 2019, , .		1
406	Quality Indicators for Social Business Intelligence. , 2019, , .		5
407	Metapath Enhanced Graph Attention Encoder for HINs Representation Learning. , 2019, , .		6
408	A Novel Fast Satellite Selection Algorithm for Multi-GNSS Positioning. , 2019, , .		1
409	A Linux Kernel Scheduler Extension for Multi-core Systems. , 2019, , .		1
410	Interpretative Analysis and Testing Statistics to test questions testing the Mobile Government questionnaire against the model of readiness and successful adoption. , 2019, , .		3
411	Distributed tracking of multiple under-actuated Lagrangian systems with uncertain parameters and actuator faults. , 2019, , .		3
412	Evaluation of the Impact of LED and Compact Fluorescent Lamps on the PLC Transmission with X-10 Technology. , 2019, , .		2
413	A Rule Induction Approach to Forecasting Critical Alarms in a Telecommunication Network. , 2019, , .		1
414	The Lateral Control of Autonomous Vehicles: A Review. , 2019, , .		13

#	Article	IF	CITATIONS
415	A fast interrogation system of FBG sensors based on low loss jammed-array wideband sawtooth filter. Optical Fiber Technology, 2019, 48, 128-133.	1.4	10
416	Ultrafast Imaging With Optical Encoding and Compressive Sensing. Journal of Lightwave Technology, 2019, 37, 761-768.	2.7	6
417	Scan-Less, Kilo-Pixel, Line-Field Confocal Phase Imaging with Spectrally Encoded Dual-Comb Microscopy. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-8.	1.9	1
418	Caenorhabditis elegans-on-a-chip: microfluidic platforms for high-resolution imaging and phenotyping. , 2020, , 363-390.		4
419	Temporal and spatial resolutions of optical time stretch imaging with dispersive grating pair. Physics Letters, Section A: General, Atomic and Solid State Physics, 2020, 384, 126083.	0.9	2
420	Ultrafast low-energy all-optical switching. Nature Photonics, 2020, 14, 4-6.	15.6	13
421	Ultrafast time-of-flight 3D LiDAR. Nature Photonics, 2020, 14, 2-4.	15.6	12
422	Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nature Photonics, 2020, 14, 14-18.	15.6	144
423	Machine learning issues and opportunities in ultrafast particle classification for label-free microflow cytometry. Scientific Reports, 2020, 10, 20724.	1.6	5
424	Time-Stretched Femtosecond Lidar Using Microwave Photonic Signal Processing. Journal of Lightwave Technology, 2020, 38, 6265-6271.	2.7	5
425	A simulation study of time-of-flight mass spectrometry with an angular chirp enhanced delay cavity. International Journal of Mass Spectrometry, 2020, 456, 116387.	0.7	0
426	A high-throughput label-free time-stretch acoustofluidic imaging cytometer for single-cell mechanotyping. Microfluidics and Nanofluidics, 2020, 24, 1.	1.0	3
427	Compressive Ultrafast Optical Time-Stretch Imaging. , 2020, , .		1
428	Formation and Evolution of Soliton in Two-Mode Fiber Laser. IEEE Photonics Journal, 2020, 12, 1-8.	1.0	3
429	Deep-learning-assisted biophysical imaging cytometry at massive throughput delineates cell population heterogeneity. Lab on A Chip, 2020, 20, 3696-3708.	3.1	41
430	Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection. Applied Physics Letters, 2020, 116, .	1.5	9
431	Optical image amplification in dual-comb microscopy. Scientific Reports, 2020, 10, 8338.	1.6	6
432	Acoustic computational metamaterials for dispersion Fourier transform in time domain. Journal of Applied Physics, 2020, 127, 123101.	1.1	6

#	ARTICLE	IF	CITATIONS
433	ADC. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67, 2730-2738.	3.5	3
434	Observing mode-dependent wavelength-to-time mapping in few-mode fibers using a single-photon detector array. APL Photonics, 2020, 5, .	3.0	12
435	Multiparameter representation and classification of blood cells based on phase map analysis. Optik, 2020, 219, 165175.	1.4	1
436	Al on a chip. Lab on A Chip, 2020, 20, 3074-3090.	3.1	80
437	Virtual optofluidic time-stretch quantitative phase imaging. APL Photonics, 2020, 5, 046103.	3.0	15
438	Real-time gap-free dynamic waveform spectral analysis with nanosecond resolutions through analog signal processing. Nature Communications, 2020, 11, 3309.	5.8	42
439	Single-Shot Receive-Only Ultrafast Electro-Optical Deflection Imaging. Physical Review Applied, 2020, 13, .	1.5	16
440	Reinforced Spatiotemporal Attentive Graph Neural Networks for Traffic Forecasting. IEEE Internet of Things Journal, 2020, 7, 6414-6428.	5.5	43
441	A New Varying-Gain-Exponent-Based Differentiator/Observer: An Efficient Balance Between Linear and Sliding-Mode Algorithms. IEEE Transactions on Automatic Control, 2020, 65, 5407-5414.	3.6	33
442	Fuel Minimization of the Electric Engine Cooling System With Active Grille Shutter by Iterative Quadratic Programming. IEEE Transactions on Vehicular Technology, 2020, 69, 2621-2635.	3.9	9
443	Experimental Evaluation and Characterization of Radioactive Source Effects on Robot Visual Localization and Mapping. IEEE Robotics and Automation Letters, 2020, 5, 3259-3266.	3.3	12
444	Distributed Global Economical Load Sharing for a Cluster of DC Microgrids. IEEE Transactions on Power Systems, 2020, 35, 3410-3420.	4.6	30
445	Magnet System for the Quantum Electromechanical Metrology Suite. IEEE Transactions on Instrumentation and Measurement, 2020, 69, 5736-5744.	2.4	7
446	An Improved LCL-L Compensation Topology for Capacitive Power Transfer in Electric Vehicle Charging. IEEE Access, 2020, 8, 27757-27768.	2.6	31
447	Time-encoded single-pixel 3D imaging. APL Photonics, 2020, 5, 020801.	3.0	11
448	Electro-Optical Neural Networks Based on Time-Stretch Method. IEEE Journal of Selected Topics in Quantum Electronics, 2020, 26, 1-10.	1.9	12
449	Magnetic Levitation Characteristics of HTS Bulk Above Electromagnets. IEEE Transactions on Applied Superconductivity, 2020, 30, 1-5.	1.1	7
450	A Characterization of the Performance of Gas Sensor Based on Heater in Different Gas Flow Rate Environments. IEEE Transactions on Industrial Informatics, 2020, 16, 6281-6290.	7.2	12

#	Article	IF	CITATIONS
451	Spectro-temporal encoded multiphoton microscopy and fluorescence lifetime imaging at kilohertz frame-rates. Nature Communications, 2020, 11, 2062.	5.8	41
452	Characterizing Curriculum Prerequisite Networks by a Student Flow Approach. IEEE Transactions on Learning Technologies, 2020, 13, 491-501.	2.2	10
453	Low-coherence interferometer with 10ÂMHz repetition rate and compensation of nonlinear chromatic dispersion. Optical Review, 2020, 27, 246-251.	1.2	5
454	Computational optical imaging goes viral. APL Photonics, 2020, 5, 030401.	3.0	0
455	Motion Segmentation of RGB-D Sequences: Combining Semantic and Motion Information Using Statistical Inference. IEEE Transactions on Image Processing, 2020, 29, 5557-5570.	6.0	15
456	Line Drawings for Face Portraits From Photos Using Global and Local Structure Based GANs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43, 3462-3475.	9.7	16
457	A Novel Attribute-Based Symmetric Multiple Instance Learning for Histopathological Image Analysis. IEEE Transactions on Medical Imaging, 2020, 39, 3125-3136.	5.4	13
458	Nanosecond illumination source for speckle-free liquid crystalmicroscopy. Liquid Crystals, 2021, 48, 491-510.	0.9	1
459	Photonic Technologies for Liquid Biopsies: Recent Advances and Open Research Challenges. Laser and Photonics Reviews, 2021, 15, .	4.4	10
460	Experimental revealing of asynchronous transient-soliton buildup dynamics. Optics and Laser Technology, 2021, 133, 106512.	2.2	6
461	Realâ€Time Stainâ€Free Classification of Cancer Cells and Blood Cells Using Interferometric Phase Microscopy and Machine Learning. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 511-523.	1.1	47
462	Compressive Coded Rotating Mirror Camera for High-Speed Imaging. Photonics, 2021, 8, 34.	0.9	9
463	Full-field fluorescence lifetime dual-comb microscopy using spectral mapping and frequency multiplexing of dual-comb optical beats. Science Advances, 2021, 7, .	4.7	14
464	Chromo-modal dispersion for optical communication and time-stretch spectroscopy. Optics Letters, 2021, 46, 500.	1.7	3
465	Optoelectronic convolutional neural networks based on time-stretch method. Science China Information Sciences, 2021, 64, 1.	2.7	4
466	Superluminal Motion-Assisted Four-Dimensional Light-in-Flight Imaging. Physical Review X, 2021, 11, .	2.8	4
467	Design and optimization of line-field optical coherence tomography at visible wavebands. Biomedical Optics Express, 2021, 12, 1351.	1.5	3
468	Computationally image-corrected dual-comb microscopy with a free-running single-cavity dual-comb fiber laser. Optics Express, 2021, 29, 5018.	1.7	7

		TIATION REPOR	l	
#	Article	IF	I	Citations
469	Optical Machine Learning Using Time-Lens Deep Neural NetWorks. Photonics, 2021, 8, 78.	0.9	, (6
470	A novel algorithm to improve image reconstruction quality for 2D streak camera. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors an Associated Equipment, 2021, 991, 165023.	id 0.7		3
471	Improved collection efficiency for spectrally encoded imaging using 4f configuration. Optics and Laser Technology, 2021, 135, 106611.	2.2	:	3
472	Morphological Indicator for Directed Evolution of Euglena gracilis with a High Heavy Metal Removal Efficiency. Environmental Science & amp; Technology, 2021, 55, 7880-7889.	4.6		7
473	Ultrafast and temperature-insensitive strain interrogation using a PM-PCF based Sagnac loop interferometer and wavelength-to-time mapping. Optics Express, 2021, 29, 13778.	1.7	9	9
474	Ultrafast light field tomography for snapshot transient and non-line-of-sight imaging. Nature Communications, 2021, 12, 2179.	5.8		29
475	Electromagnetic microwave generation by acoustic vibrations gives rise to nanoradiophotonics. Scientific Reports, 2021, 11, 7682.	1.6		4
476	Optimized multi-exposure optical path with a single laser pulse for the measurement of ultra-high speed. AIP Advances, 2021, 11, 045101.	0.6		2
477	Low-cost compressive sensing imaging based on spectrum-encoded time-stretch structure. Optics Express, 2021, 29, 14931.	1.7		7
479	Multicascade-linked synthetic-wavelength digital holography using a line-by-line spectral-shaped optical frequency comb. Optics Express, 2021, 29, 15772.	1.7		2
480	Stray light characterization with ultrafast time-of-flight imaging. Scientific Reports, 2021, 11, 10081	1.6	:	15
481	Rapid optical tomographic vibrometry using a swept multi-gigahertz comb. Optics Express, 2021, 29 16749.	9, 1.7		3
482	Spatial light interference microscopy: principle and applications to biomedicine. Advances in Optics and Photonics, 2021, 13, 353.	12.	1 '	43
483	Intensity-corrected 4D light-in-flight imaging. Optics Express, 2021, 29, 22504.	1.7		3
484	Rotation Active Sensors Based on Ultrafast Fibre Lasers. Sensors, 2021, 21, 3530.	2.1	-	10
485	Time resolved characterization of stray light. , 2021, , .			1
486	High-speed serial deep learning through temporal optical neurons. Optics Express, 2021, 29, 19392	. 1.7	,	7
487	In-situ diagnostic of femtosecond laser probe pulses for high resolution ultrafast imaging. Light: Science and Applications, 2021, 10, 126.	7.7		10

ARTICLE IF CITATIONS # Real-Time Strain Interrogation Based on an STS Structure and Wavelength-to-Time Mapping. IEEE 488 1.3 4 Photonics Technology Letters, 2021, 33, 615-618. 489 High-speed laser-scanning biological microscopy using FACED. Nature Protocols, 2021, 16, 4227-4264. 5.5 9 Nanometer Precision Time-Stretch Femtosecond Laser Metrology Using Phase Delay Retrieval. Journal 490 2.7 10 of Lightwave Technology, 2021, 39, 5156-5162. Noise Measurement and Reduction in Mode-Locked Lasers: Fundamentals for Low-Noise Optical Frequency Combs. Applied Sciences (Switzerland), 2021, 11, 7650. Simulation of time-stretched photon Doppler velocimetry., 2021,,. 492 0 Pure Temporal Dispersion for Aberration Free Ultrafast Time-Stretch Applications. Journal of Lightwave Technology, 2021, 39, 5589-5597. 2.7 In-process measurement of a keyhole using a low-coherence interferometer with a high repetition 494 1.7 5 rate. Optics Express, 2021, 29, 32169. Intelligent Platelet Morphometry. Trends in Biotechnology, 2021, 39, 978-989. 16 High-speed compressed-sensing fluorescence lifetime imaging microscopy of live cells. Proceedings of 496 3.3 28 the National Academy of Sciences of the United States of America, 2021, 118, . Spatially-chirped modulation microscopy at 2 $\hat{1}/4m$., 2021, , . Ultrafast Microfluidic Cellular Imaging by Optical Time-Stretch. Methods in Molecular Biology, 2016, 498 0.4 5 1389, 23-45. Lensfree Computational Microscopy Tools for On-Chip Imaging of Biochips. Biological and Medical 499 0.3 Physics Series, 2013, , 71-96. On-Chip Holographic Microscopy and its Application for Automated Semen Analysis., 2013, 153-171. 500 3 Ultrafast measurements of optical spectral coherence by single-shot time-stretch interferometry. 1.6 Scientific Reports, 2016, 6, 27937. Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier 503 8.1 35 transformation. Reports on Progress in Physics, 2020, 83, 116401. Microwave Photonic Radars. Journal of Lightwave Technology, 2020, 38, 5450-5484. 504 505 Revealing the behavior of soliton buildup in a mode-locked laser. Advanced Photonics, 2019, 1, 1. 6.2 128 Single-shot compressed ultrafast photography: a review. Advanced Photonics, 2020, 2, 1. 6.2

#	Article	IF	CITATIONS
507	Recent progress on optical rogue waves in fiber lasers: status, challenges, and perspectives. Advanced Photonics, 2020, 2, 1.	6.2	71
508	High spatial and temporal resolution synthetic aperture phase microscopy. Advanced Photonics, 2020, 2, .	6.2	35
509	High-speed cell recognition algorithm for ultrafast flow cytometer imaging system. Journal of Biomedical Optics, 2018, 23, 1.	1.4	32
510	Optical fiber-based dispersion for spectral discrimination in fluorescence lifetime imaging systems. Journal of Biomedical Optics, 2019, 25, 1.	1.4	2
511	Imaging the propagation of light through scenes at picosecond resolution. Communications of the ACM, 2016, 59, 79-86.	3.3	13
512	Analysis of detection bandwidth limitations in time-stretch-based single-pixel imaging systems. Applied Optics, 2017, 56, 1327.	2.1	2
513	Toward real-time terahertz imaging. Advances in Optics and Photonics, 2018, 10, 843.	12.1	301
514	Pixel super-resolution in optical time-stretch microscopy using acousto-optic deflector. , 2015, , .		5
515	Ultrafast polarization bio-imaging based on coherent detection and time-stretch techniques. Biomedical Optics Express, 2018, 9, 6556.	1.5	8
516	Dispersive Fourier transformation in the 800 nm spectral range. , 2012, , .		3
517	High-speed flow imaging utilizing spectral-encoding of ultrafast pulses and compressed sensing. , 2014, , .		13
518	Wavelength Multiplexed Fourier Ptychograhic Microscopy. , 2016, , .		2
519	Diffraction Limited Optical Time-Stretch Microscopy Using an In-Fibre Diffraction Grating. , 2016, , .		7
520	Single-shot Multispectral Imaging and Ultrafast 2D-imaging by Sequentially Timed All-optical Mapping Photography utilizing Spectral Filtering (SF-STAMP) system. , 2016, , .		1
521	Time-wavelength optical sampling spectroscopy based on dynamic laser cavity tuning. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 1186.	0.9	6
522	Single-shot ultrafast imaging via spatiotemporal division of femtosecond laser pulses. Journal of the Optical Society of America B: Optical Physics, 2018, 35, 2822.	0.9	18
523	Tera-sample-per-second single-shot device analyzer. Optics Express, 2019, 27, 23321.	1.7	17
524	Intelligent frequency-shifted optofluidic time-stretch quantitative phase imaging. Optics Express, 2020, 28, 519.	1.7	21

#	Article	IF	CITATIONS
525	Improved depth resolution and depth-of-field in temporal integral imaging systems through non-uniform and curved time-lens array. Optics Express, 2020, 28, 6261.	1.7	10
526	Inherent resolution limit on nonlocal wavelength-to-time mapping with entangled photon pairs. Optics Express, 2020, 28, 7488.	1.7	12
527	Single-shot compressed ultrafast photography based on U-net network. Optics Express, 2020, 28, 39299.	1.7	14
528	Temporally interleaved optical time-stretch imaging. Optics Letters, 2020, 45, 2387.	1.7	7
529	High-speed single-pixel imaging by frequency-time-division multiplexing. Optics Letters, 2020, 45, 2339.	1.7	16
530	Integrated group delay units for real-time reconfigurable spectrum sensing of mm-wave signals. Optics Letters, 2020, 45, 4778.	1.7	14
531	Dynamic trapping of a polarization rotation vector soliton in a fiber laser. Optics Letters, 2017, 42, 330.	1.7	73
532	Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry. Optics Letters, 2019, 44, 467.	1.7	6
533	Single-shot compressed optical-streaking ultra-high-speed photography. Optics Letters, 2019, 44, 1387.	1.7	48
534	Dual-comb spectrally encoded confocal microscopy by electro-optic modulators. Optics Letters, 2019, 44, 2919.	1.7	12
535	Reverberant cavity photoacoustic imaging. Optica, 2019, 6, 821.	4.8	12
536	Time-space conversion for time-resolved spectroscopy. OSA Continuum, 2019, 2, 1726.	1.8	2
537	Accurate classification of microalgae by intelligent frequency-division-multiplexed fluorescence imaging flow cytometry. OSA Continuum, 2020, 3, 430.	1.8	11
538	Real-time observation of vortex mode switching in a narrow-linewidth mode-locked fiber laser. Photonics Research, 2020, 8, 1203.	3.4	22
539	Computational 4D imaging of light-in-flight with relativistic effects. Photonics Research, 2020, 8, 1072.	3.4	11
540	Optofluidics in bio-imaging applications. Photonics Research, 2019, 7, 532.	3.4	20
541	Single-shot Ultrafast 2D-burst Imaging by STAMP utilizing Spectral Filtering (SF-STAMP). , 2016, , .		4
542	High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy. PLoS ONE, 2016, 11, e0166214.	1.1	23

		TATION REPO	RI	
#	Article	IF	-	CITATIONS
543	Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics, 2020, 9, 2731-2761.	2	.9	36
544	Recent progress of dynamic mode manipulation via acousto-optic interactions in few-mode fiber lasers: mechanism, device and applications. Nanophotonics, 2021, 10, 983-1010.	2	.9	16
546	Point-of-care pathology with miniature microscopes. Analytical Cellular Pathology, 2011, 34, 81-98.	0	.7	26
547	Intelligent classification of platelet aggregates by agonist type. ELife, 2020, 9, .	2	.8	49
548	Time Stretch Computing for Ultrafast Single-shot Data Acquisition and Inference. , 2021, , .			0
549	A compressive sensing single pixel imaging system using in-fiber grating. , 2021, , .			1
550	Experimental observation of Conventional and Bound Optical Soliton Buildup via TS-DFT technique. , 2021, , .			0
551	World's fastest camera. Nature, 0, , .	1	3.7	0
552	Single-Shot Complex-Field Characterization of Ultrafast Optical Waveforms with MHz Measurement Update Rates. , 2010, , .			0
553	Performance of serial time-encoded amplified microscopy. , 2010, , .			1
554	Doubling the Spectral Efficiency of Photonic Time-Stretch Analog-to-Digital Converter by Polarization Multiplexing. , 2010, , .			0
555	Fast Swept-Source Generation Based on Fiber Optical Parametric Amplifier. , 2011, , .			0
556	From Analog to Digital Conversion to Blood Screening; Evolution of Photonic Time Stretch. , 2011, , .			0
557	A minute-continuous-wave-stabilized picosecond supercontinuum source for ultrafast serial time-encoded amplified microscopy (STEAM). , 2011, , .			0
558	Cellular imaging by time-stretch confocal microscopy in the $1\hat{l}$ 4m window. , 2012, , .			0
559	Ultrahigh Throughput Single Cell Imaging. , 2013, , .			0
560	Ultrafast high-contrast microfluidic cellular imaging by asymmetric-detection time-stretch optical microscopy (ATOM). , 2013, , .			0
561	Megahertz-scan-rate quantitative tissue imaging by interferometric time-stretch microscopy. , 2013,	, •		0

#	Article	IF	CITATIONS
562	Ultrafast flow imaging by 1 μm time-stretch microscopy. , 2013, , .		0
563	Optical Correlation Using Four Wave Mixing in a Highly Nonlinear Fibre for Real-Time Serialized Ultrafast Systems. International Journal of Electronics and Telecommunications, 2013, 59, 207-212.	0.5	0
564	Single-Cell Microfluidic Cytometry for Next-Generation High-Throughput Biology and Drug Discovery. , 2014, , 75-96.		1
565	Serial time-encoded amplified microscopy (STEAM) by fully incoherent noise. , 2014, , .		Ο
566	Ultrafast label-free multi-parametric cellular analysis by interferometric time-stretch microscopy. , 2014, , .		0
567	Quantitative phase asymmetric-detection time-stretch optical microscopy (Q-ATOM) for ultrafast cellular imaging. , 2014, , .		0
568	Parametric spectro-temporal analyzer (PASTA) for ultrafast spectroscopy and its microscopic application. , 2014, , .		0
569	Removal of Dispersion Penalty of Time-Stretch Photonic Analog-to-digital Conversion System by Use of Chirped Intensity Modulator. , 2014, , .		0
570	Ultrafast Spectroscopy and Its Applications Enabled by Time-Domain Fourier Optics. The Review of Laser Engineering, 2015, 43, 193.	0.0	0
571	Compressive 39.6-gigapixel/s continuous imaging using spectrally-structured ultrafast laser pulses. , 2015, , .		0
572	Ultrafast 2-D microscopic imaging technology. , 2015, , .		0
573	Picosecond resolving detection method and experiment for ultrafast X-ray by modulation of an optical probe. Wuli Xuebao/Acta Physica Sinica, 2015, 64, 200701.	0.2	2
574	Two-Dimensional Spatiotemporal Focusing Microscopy. The Review of Laser Engineering, 2015, 43, 203.	0.0	0
575	Versatile Laser and Optical Amplifier for Ultrafast Imaging Applications. , 2015, , .		0
576	Continuous high-rate photonically-enabled compressed sensing (CHiRP-CS) for high speed flow microscopy. , 2015, , .		0
577	Breathing laser as a versatile inertia-free swept source. , 2015, , .		0
578	Imaging through permuted optical probes. , 2015, , .		0
579	Dispersion Engineering Employing Curved Space Mapping and Chromo-Modal Excitation. , 2015, , .		1

	CITATION R	CITATION REPORT	
#	Article	IF	CITATIONS
580	Ultrafast swept source at 1.0 l̂¼m for high-speed phase sensitive imaging. , 2015, , .		0
581	STAMP (Sequentially Timed All-optical Mapping Photography) for Observation of Ultrafast Non-Repetitive Phenomena. The Review of Laser Engineering, 2015, 43, 199.	0.0	0
582	Scan-less, Line-field, Confocal Microscopy Based on Dimensional-Conversion Optical Frequency Comb. , 2016, , .		0
583	Fast-Frame Single-Shot Acquisition of Ultrafast Waveforms. , 2016, , .		0
584	Compact Airy-beam optical swept-source at 1.0 \hat{l} 4m. , 2016, , .		0
585	High-throughput single-cell image analysis of living Euglena gracilis for efficient biofuel production. , 2016, , .		0
586	A study on spectral dynamics of Raman-assisted mode-locking fiber cavities with time-stretch technique. , 2016, , .		0
587	Optical time-stretch microscopy at visible wavelengths. , 2016, , .		1
588	Single-Shot 25-Frame Ultrafast Photography Utilizing Spectral Imaging with a Frequency-Chirped Pulse. The Review of Laser Engineering, 2017, 45, 333.	0.0	0
590	Time Stretch Quantitative Phase Imaging. , 2017, , 43-63.		0
591	1GS/s time-stretch imaging at 532 nm through fiber optics. , 2017, , .		0
593	Time Stretch. , 2017, , 7-11.		0
594	Three-Dimensional Ultrafast Laser Scanner. , 2017, , 21-29.		0
596	Optical Data Compression in Time Stretch Imaging. , 2017, , 89-99.		0
597	Time-stretch imaging and beyond. , 2018, , .		0
598	Dual-comb spectrally encoded confocal microscopy. , 2018, , .		1
599	Temporal differential manipulation of optical frequency chirp. , 2018, , .		0
600	High-resolution time-stretch microscopy based on asynchronous optical sampling. , 2018, , .		0

#	Article	IF	CITATIONS
601	A programmable time-stretch microscopy based on dispersion-tuned swept laser. , 2018, , .		0
602	Ultrafast spectral analysis based on swept-pump four-wave mixing Bragg scattering. , 2018, , .		2
603	Optofluidic time-stretch microscopy for precision medicine. , 2018, , .		0
604	Exploiting k-space/frequency duality in Fourier optics toward real-time compression less terahertz imaging. , 2018, , .		1
605	Fast-frame single-shot pump-probe spectroscopy with chirped-fiber Bragg gratings. Optics Letters, 2019, 44, 163.	1.7	10
606	Temporal structured illumination time-stretch microscopy. , 2019, , .		0
608	Dual-comb imaging using soliton microcombs. , 2019, , .		0
609	Ultrafast discrete swept source based on dual chirped combs for microscopic imaging. Optics Express, 2019, 27, 2621.	1.7	1
610	Multi-timescale pump-probe spectroscopy using time-encoding and time-stretching methods. , 2019, , .		0
611	Measuring Ultrafast Turbulent Flow Characteristics using Time-Stretch Imaging. , 2019, , .		0
612	Rigorous single pulse imaging for ultrafast interferometric observation. Optics Express, 2019, 27, 19758.	1.7	7
613	Temporally structured illumination for ultrafast time-stretch microscopy. Optics Letters, 2019, 44, 4634.	1.7	2
614	A comparison of image recognition algorithms for cell phenotyping in optofluidic time-stretch microscopy. , 2019, , .		0
615	FPGA-based real-time signal triggered storage system for ultrafast imaging flow cytometry. , 2019, , .		1
616	High-speed 3D measurements at 20,000Hz with deep convolutional neural networks. , 2019, , .		1
617	Fast intelligent cell phenotyping for high-throughput optofluidic time-stretch microscopy based on the XGBoost algorithm. Journal of Biomedical Optics, 2020, 25, 1.	1.4	5
618	Single-exposure 3D label-free microscopy based on color-multiplexed intensity diffraction tomography. , 2021, , .		0
619	High-speed all-optical processing for spectrum. Optics Express, 2021, 29, 305.	1.7	6

ARTICLE IF CITATIONS # Large pure temporal dispersion for ultrafast spectroscopy., 2020,,. 621 0 Continuously streaming compressed high-speed photography using time delay integration. Optica, 4.8 2021, 8, 1620. Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing 624 1.7 10 mirror. Optics Express, 2020, 28, 31914. Analysis of signal detection configurations in optical time-stretch imaging. Optics Express, 2020, 28, 29272. Ultrafast photonic time-stretch imaging using an optically transparent medium. Applied Physics 627 1.1 0 Express, 2020, 13, 102001. Effects of two weak continuous-wave triggers on picosecond pulse pumped supercontinuum generation. Applied Optics, 2020, 59, 8560. Highly efficient single-pixel imaging system based on the STEAM structure. Optics Express, 2021, 29, 629 1.7 6 43203. Overall Non-Mechanical Spectrally Steered LiDAR Using Chirped Amplitude-Modulated Phase-Shift 2.7 Method. Journal of Lightwave Technology, 2022, 40, 1902-1913. Understanding stenosis-induced platelet aggregation on a chip by high-speed optical imaging. Sensors 631 4.0 4 and Actuators B: Chemical, 2022, 356, 131318. Real-time dynamics of optical controlling for bound states of mode-locked fiber laser with 2.2 short-range interaction. Optics and Laser Technology, 2022, 149, 107859. Ultrafast agile optical beam steering based on arrayed diffractive elements. , 2021, , . 633 0 A Compressive Sensing Single Pixel Imaging System Using Cascaded Mach-Zehnder Interference 634 Light sheet based volume flow cytometry (VFC) for rapid volume reconstruction and parameter 635 1.6 6 estimation on the go. Scientific Reports, 2022, 12, 78. Ultrafast Mueller matrix polarimetry with 10 nanosecond temporal resolution based on optical 1.7 time-stretch. Optics Letters, 2022, 47, 1403. Terabit sampling system with photonic time-stretch analog-to-digital converter., 2022,,. 637 1 All-fiber high-speed image detection enabled by deep learning. Nature Communications, 2022, 13, 1433. 5.8 30 Filter-based photonic reservoir computing as a key-enabling platform for all-optical, high-speed 639 1 processing of time-stretched images and telecomm data. , 2022, , . Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photonics, 2022, 640 7, .

#	Article	IF	CITATIONS
641	Two-frequency phase-shifting method vs. Gray-coded-based method in dynamic fringe projection profilometry: A comparative review. Optics and Lasers in Engineering, 2022, 153, 106995.	2.0	51
642	An aminopeptidase N-activatable chemiluminescence probe for image-guided surgery and metastasis tracking of tumor. Biosensors and Bioelectronics, 2022, 208, 114212.	5.3	15
643	Single-shot chirped pulse digital holography for observing the propagation of ultrafast optical pulses in liquid. Japanese Journal of Applied Physics, 2022, 61, 062007.	0.8	1
644	Fast and high-resolution spectroscopy based on asynchronous optical sampling. Optics Express, 2022, 30, 15201.	1.7	1
645	Acousto-optically driven lensless single-shot ultrafast optical imaging. Light: Science and Applications, 2022, 11, 66.	7.7	15
647	Recent advances on time-stretch dispersive Fourier transform and its applications. Advances in Physics: X, 2022, 7, .	1.5	12
648	Dissipative rogue waves generated by multi-soliton explosions in an ultrafast fiber laser. Optics Express, 2022, 30, 22143.	1.7	12
650	Diverse Pulsating Solitons in Spatiotemporal Mode-locked Fiber Laser. , 2022, , .		1
651	Single-shot compressed ultrafast photography using a novel reconstruction algorithm based on plug-and-play frame. Journal of Optics (India), 2023, 52, 332-338.	0.8	2
652	Chiral Quantum Optics and Optical Nonreciprocity Based on Susceptibilityâ€Momentum Locking. Advanced Quantum Technologies, 2022, 5, .	1.8	7
653	A Unified Framework for Photonic Timeâ \in Stretch Systems. Laser and Photonics Reviews, 2022, 16, .	4.4	8
654	Classification and recognition method of white blood cells subclasses in batches based on phase characteristics with non-orthogonal phase imaging. Journal of Modern Optics, 0, , 1-13.	0.6	0
655	Fast Spectrum Measurements Using Optical Computing. IEEE Journal of Selected Topics in Quantum Electronics, 2023, 29, 1-6.	1.9	0
656	2,000,000  fps 2D and 3D imaging of periodic or reproducible scenes with single-pixel detectors. Photonics Research, 2022, 10, 2157.	3.4	20
657	Biosensors and machine learning for enhanced detection, stratification, and classification of cells: a review. Biomedical Microdevices, 2022, 24, .	1.4	18
658	Artificial Intelligence on Urology Lab. The Korean Journal of Urological Oncology, 2022, 20, 163-176.	0.1	0
659	Time-stretch-based multidimensional line-scan microscopy. Optics and Lasers in Engineering, 2023, 160, 107197.	2.0	6
660	Microchip imaging cytometer: making healthcare available, accessible, and affordable. Opto-Electronic Advances, 2022, 5, 210130-210130.	6.4	2

#	Article	IF	Citations
661	Extreme waveform compression with a nonlinear temporal focusing mirror. Nature Photonics, 2022, 16, 822-827.	15.6	8
662	Hybrid-plane spectrum slicing for sequentially timed all-optical mapping photography. Optics Letters, 2022, 47, 4822.	1.7	4
663	Dual-pixel tracking of the fast-moving target based on window complementary modulation. Optics Express, 0, , .	1.7	0
666	Photonic Microfluidic Technologies for Phytoplankton Research. Biosensors, 2022, 12, 1024.	2.3	0
667	Studying the efficacy of antiplatelet drugs on atherosclerosis by optofluidic imaging on a chip. Lab on A Chip, 0, , .	3.1	3
668	Demands and technical developments of clinical flow cytometry with emphasis in quantitative, spectral, and imaging capabilities. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2022, 5, 045002.	1.7	2
669	Quasi-continuous time-stretched photon Doppler velocimetry. Frontiers in Physics, 0, 10, .	1.0	0
670	The comparison between the local and nonlocal entangled wavelength to time mapping. , 2022, , .		0
671	Parametric spectro-temporal analyzer based on asynchronous optical sampling. , 2022, , .		0
672	Multiparameter Investigation of Diamond Plates with Optical Time-Stretch Quantitative Phase Imaging. Crystal Growth and Design, 2023, 23, 388-394.	1.4	0
673	Dispersion Engineering for Advanced Temporal Imaging Modalities. Journal of Lightwave Technology, 2023, 41, 4271-4282.	2.7	0
674	A Compact and Highly Efficient Compressive Sensing Imaging System Using In-Fiber Grating. IEEE Photonics Technology Letters, 2023, 35, 195-198.	1.3	3
675	Typing of acute leukemia by intelligent optical time-stretch imaging flow cytometry on a chip. Lab on A Chip, 2023, 23, 1703-1712.	3.1	4
676	TDI-based continuous window compressed spatio-temporal imaging capable of flexible voxels post-interpretation. Optics Express, 2023, 31, 7303.	1.7	1
677	An Ultra-Fast Temporal Talbot Array Illuminator. Journal of Lightwave Technology, 2023, 41, 4725-4733.	2.7	0
678	Massively parallel electro-optic sampling of space-encoded optical pulses for ultrafast multi-dimensional imaging. Light: Science and Applications, 2023, 12, .	7.7	7
679	Pulse-to-pulse ultrafast dynamics of highly photoexcited Ge ₂ Sb ₂ Te ₅ thin films. Japanese Journal of Applied Physics, 2023, 62, 022001.	0.8	2
680	All-Optical Fourier-Domain-Compressed Time-Stretch Imaging with Low-Pass Filtering. ACS Photonics, 2023, 10, 2399-2406.	3.2	2

#	Article	IF	Citations
681	Advanced diagnostic detectors for rogue phenomena, single-shot applications. , 2023, , .		0
682	Single-Shot Multi-Frame Imaging of Femtosecond Laser-Induced Plasma Propagation. Materials, 2023, 16, 3264.	1.3	2
696	Ultrafast Compressive Sensing Imaging Using In-Fiber Grating. , 2023, , .		0
705	Advancing phase recovery in time-stretch computational cell imaging. , 2023, , .		0
710	Fast Image-free high precision target tracking using single pixel detection. , 2023, , .		0
714	Demonstration of the real-time feedback control with the MicroLiDAR. , 2023, , .		Ο
718	Continuous High-Rate Photonically Enabled Compressed Sensing (CHiRP-CS). , 2024, , 405-420.		0