The structural basis of lipopolysaccharide recognition b

Nature 458, 1191-1195

DOI: 10.1038/nature07830

Citation Report

#	Article	IF	CITATIONS
1	NAD(P)H:Quinone Oxidoreductase 1 and NRH:Quinone Oxidoreductase 2 Activity and Expression in Bladder and Ovarian Cancer and Lower NRH:Quinone Oxidoreductase 2 Activity Associated with an NQO2 Exon 3 Single-Nucleotide Polymorphism. Clinical Cancer Research, 2007, 13, 1584-1590.	3.2	40
3	Nucleic acid recognizing Toll-like receptors as therapeutic targets: a focus on autoimmunity and cancer. Journal of Receptor, Ligand and Channel Research, 0, Volume 2, 19-28.	0.7	O
4	Cooperation between PU.1 and CAAT/Enhancer-binding Protein \hat{l}^2 Is Necessary to Induce the Expression of the MD-2 Gene. Journal of Biological Chemistry, 2009, 284, 26261-26272.	1.6	12
5	Synchrotron Radiation Facilities in Korea: Pohang Light Source and Future XFEL Project. Synchrotron Radiation News, 2009, 22, 4-12.	0.2	12
6	Novel Roles of Lysines 122, 125, and 58 in Functional Differences between Human and Murine MD-2. Journal of Immunology, 2009, 183, 5138-5145.	0.4	40
7	Endotoxin Modifications in the Bacterial Outer Membrane: Lipopolysaccharide Lipid A Remodeling in Salmonella Typhimurium. Immunology, Endocrine and Metabolic Agents in Medicinal Chemistry, 2009, 9, 224-233.	0.5	2
8	O-Antigen Delays Lipopolysaccharide Recognition and Impairs Antibacterial Host Defense in Murine Intestinal Epithelial Cells. PLoS Pathogens, 2009, 5, e1000567.	2.1	60
9	Free Thiol Group of MD-2 as the Target for Inhibition of the Lipopolysaccharide-induced Cell Activation. Journal of Biological Chemistry, 2009, 284, 19493-19500.	1.6	42
10	Toll-like Receptors of the Ascidian Ciona intestinalis. Journal of Biological Chemistry, 2009, 284, 27336-27343.	1.6	90
11	Activating immunity: lessons from the TLRs and NLRs. Trends in Biochemical Sciences, 2009, 34, 553-561.	3.7	86
11	Activating immunity: lessons from the TLRs and NLRs. Trends in Biochemical Sciences, 2009, 34, 553-561. Resistin competes with lipopolysaccharide for binding to tollâ€ike receptor 4. Journal of Cellular and Molecular Medicine, 2010, 14, 1419-1431.	3.7	224
	Resistin competes with lipopolysaccharide for binding to tollâ€ike receptor 4. Journal of Cellular and		
12	Resistin competes with lipopolysaccharide for binding to tollâ€ike receptor 4. Journal of Cellular and Molecular Medicine, 2010, 14, 1419-1431.	1.6	224
12	Resistin competes with lipopolysaccharide for binding to tollâ€ike receptor 4. Journal of Cellular and Molecular Medicine, 2010, 14, 1419-1431. Lipopolysaccharide binding of the mite allergen Der f 2. Genes To Cells, 2009, 14, 1055-1065. Purification and Characterization of the Lipid A Disaccharide Synthase (LpxB) from ⟨i⟩Escherichia	1.6 0.5	224 74
12 13 15	Resistin competes with lipopolysaccharide for binding to tollâ€ike receptor 4. Journal of Cellular and Molecular Medicine, 2010, 14, 1419-1431. Lipopolysaccharide binding of the mite allergen Der f 2. Genes To Cells, 2009, 14, 1055-1065. Purification and Characterization of the Lipid A Disaccharide Synthase (LpxB) from ⟨i⟩Escherichia coli⟨/i⟩, a Peripheral Membrane Protein. Biochemistry, 2009, 48, 11559-11571. Recent insights into the structure of Toll-like receptors and post-translational modifications of	1.6 0.5 1.2	224 74 32
12 13 15	Resistin competes with lipopolysaccharide for binding to tollâ€like receptor 4. Journal of Cellular and Molecular Medicine, 2010, 14, 1419-1431. Lipopolysaccharide binding of the mite allergen Der f 2. Genes To Cells, 2009, 14, 1055-1065. Purification and Characterization of the Lipid A Disaccharide Synthase (LpxB) from ⟨i⟩ Escherichia coli⟨li⟩, a Peripheral Membrane Protein. Biochemistry, 2009, 48, 11559-11571. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochemical Journal, 2009, 422, 1-10. The Toll-like receptor 3:dsRNA signaling complex. Biochimica Et Biophysica Acta - Gene Regulatory	1.6 0.5 1.2	224 74 32 159
12 13 15 16	Resistin competes with lipopolysaccharide for binding to tollâ€like receptor 4. Journal of Cellular and Molecular Medicine, 2010, 14, 1419-1431. Lipopolysaccharide binding of the mite allergen Der f 2. Genes To Cells, 2009, 14, 1055-1065. Purification and Characterization of the Lipid A Disaccharide Synthase (LpxB) from ⟨i⟩Escherichia coli⟨/i⟩, a Peripheral Membrane Protein. Biochemistry, 2009, 48, 11559-11571. Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochemical Journal, 2009, 422, 1-10. The Toll-like receptor 3:dsRNA signaling complex. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2009, 1789, 667-674.	1.6 0.5 1.2 1.7	224 74 32 159 80

#	Article	IF	CITATIONS
21	Sensors of the innate immune system: their mode of action. Nature Reviews Rheumatology, 2009, 5, 448-456.	3.5	105
22	Evidence of a Specific Interaction between New Synthetic Antisepsis Agents and CD14. Biochemistry, 2009, 48, 12337-12344.	1.2	54
23	Recognition of Lipopeptide Patterns by Toll-like Receptor 2-Toll-like Receptor 6 Heterodimer. Immunity, 2009, 31, 873-884.	6.6	641
24	Therapeutic Targeting of Toll-Like Receptors for Infectious and Inflammatory Diseases and Cancer. Pharmacological Reviews, 2009, 61, 177-197.	7.1	387
25	Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Current Opinion in Lipidology, 2009, 20, 379-385.	1.2	208
26	Sulforaphane Suppresses Oligomerization of TLR4 in a Thiol-Dependent Manner. Journal of Immunology, 2010, 184, 411-419.	0.4	111
27	Alcoholic liver disease and the gut-liver axis. World Journal of Gastroenterology, 2010, 16, 1321.	1.4	319
28	Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: Chemical synthesis and functional studies. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 322-337.	1.6	49
29	Erratum to "Key structures of bacterial peptidoglycan and lipopolysaccharide triggering the innate immune system of higher animals: Chemical synthesis and functional studies― Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2010, 86, 538-538.	1.6	2
30	Selection, Preparation, and Evaluation of Small-Molecule Inhibitors of Toll-Like Receptor 4. ACS Medicinal Chemistry Letters, 2010, 1, 194-198.	1.3	26
31	Synthetic and Natural TLR4 Agonists as Safe and Effective Vaccine Adjuvants. Sub-Cellular Biochemistry, 2010, 53, 303-321.	1.0	56
32	Macrophages, Inflammation, and Insulin Resistance. Annual Review of Physiology, 2010, 72, 219-246.	5. 6	2,279
33	Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflammation Research, 2010, 59, 791-808.	1.6	189
34	Deciphering the complexity of Toll-like receptor signaling. Cellular and Molecular Life Sciences, 2010, 67, 4109-4134.	2.4	133
35	Chitosan oligosaccharides suppressant LPS binding to TLR4/MD-2 receptor complex. Carbohydrate Polymers, 2010, 82, 405-411.	5.1	38
36	TollML: a database of toll-like receptor structural motifs. Journal of Molecular Modeling, 2010, 16, 1283-1289.	0.8	17
37	Regulation of Toll-like receptor signaling in the innate immunity. Science China Life Sciences, 2010, 53, 34-43.	2.3	34
38	A Clear and Present Danger: Endogenous Ligands of Toll-like Receptors. NeuroMolecular Medicine, 2010, 12, 149-163.	1.8	81

#	Article	IF	Citations
39	Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina. Placenta, 2010, 31, 811-817.	0.7	12
40	Cetacean Toll-like receptor 4 and myeloid differentiation factor 2, and possible cetacean-specific responses against Gram-negative bacteria. Comparative Immunology, Microbiology and Infectious Diseases, 2010, 33, e89-e98.	0.7	4
41	<i>Salmonella enterica</i> serovar Typhimurium lipopolysaccharide deacylation enhances its intracellular growth within macrophages. FEBS Letters, 2010, 584, 207-212.	1.3	21
42	Structure and immunomodulatory property relationship in NapA of Borrelia burgdorferi. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2010, 1804, 2191-2197.	1.1	12
43	Comprehensive structure characterization of lipid a extracted from <i>Yersinia pestis </i> for determination of its phosphorylation configuration. Journal of the American Society for Mass Spectrometry, 2010, 21, 785-799.	1,2	34
44	Application of a novel in silico high-throughput screen to identify selective inhibitors for protein–protein interactions. Bioorganic and Medicinal Chemistry Letters, 2010, 20, 5411-5413.	1.0	34
45	Neural injury following stroke: are Tollâ€like receptors the link between the immune system and the CNS?. British Journal of Pharmacology, 2010, 160, 1872-1888.	2.7	106
46	Tollâ€ike receptor 4 in CNS pathologies. Journal of Neurochemistry, 2010, 114, 13-27.	2.1	279
47	Contribution of Porphyromonas gingivalis lipopolysaccharide to periodontitis. Periodontology 2000, 2010, 54, 53-70.	6.3	143
48	Low endotoxic activity of lipopolysaccharides isolated from <i>Bradyrhizobium</i> , <i>Mesorhizobium</i> , and <i>Azospirillum</i> strains. Microbiology and Immunology, 2010, 54, 717-725.	0.7	12
49	Membrane TLR signaling mechanisms in the gastrointestinal tract during sepsis. Neurogastroenterology and Motility, 2010, 22, 232-245.	1.6	71
50	The effect of ageing on macrophage Toll-like receptor-mediated responses in the fight against pathogens. Clinical and Experimental Immunology, 2010, 161, 407-416.	1.1	63
51	Toll-like receptors and their adapter molecules. Biochemistry (Moscow), 2010, 75, 1098-1114.	0.7	14
52	The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology, 2010, 11, 373-384.	7.0	7,320
53	Crucial role for human Toll-like receptor 4 in the development of contact allergy to nickel. Nature Immunology, 2010, 11, 814-819.	7.0	525
54	Pharmaceutical sciences in 2020. Nature Reviews Drug Discovery, 2010, 9, 99-100.	21.5	16
55	Targeting Toll-like receptors: emerging therapeutics?. Nature Reviews Drug Discovery, 2010, 9, 293-307.	21.5	721
56	Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nature Reviews Immunology, 2010, 10, 131-144.	10.6	1,046

#	Article	IF	Citations
57	CXCR4 Mediated Chemotaxis Is Regulated by 5T4 Oncofetal Glycoprotein in Mouse Embryonic Cells. PLoS ONE, 2010, 5, e9982.	1.1	49
58	Role of CD14 in a Mouse Model of Acute Lung Inflammation Induced by Different Lipopolysaccharide Chemotypes. PLoS ONE, 2010, 5, e10183.	1.1	13
59	Molecular Modeling-Based Evaluation of hTLR10 and Identification of Potential Ligands in Toll-Like Receptor Signaling. PLoS ONE, 2010, 5, e12713.	1.1	84
60	Toll-Like Receptor 4 Mediates the Response of Epithelial and Stromal Cells to Lipopolysaccharide in the Endometrium. PLoS ONE, 2010, 5, e12906.	1.1	73
61	Prothymosin-α inhibits HIV-1 via Toll-like receptor 4-mediated type I interferon induction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10178-10183.	3.3	83
62	The Presence of CD14 Overcomes Evasion of Innate Immune Responses by Virulent <i>Francisella tularensis</i> in Human Dendritic Cells In Vitro and Pulmonary Cells In Vivo. Infection and Immunity, 2010, 78, 154-167.	1.0	28
63	Variability in the Lipooligosaccharide Structure and Endotoxicity amongBordetella pertussisStrains. Journal of Infectious Diseases, 2010, 202, 1897-1906.	1.9	30
64	Dimerization of Toll-like Receptor 3 (TLR3) Is Required for Ligand Binding. Journal of Biological Chemistry, 2010, 285, 36836-36841.	1.6	68
65	MAPK Signaling Is Required for LPS-induced VEGF in Pulp Stem Cells. Journal of Dental Research, 2010, 89, 264-269.	2.5	71
66	A Naturally Occurring Variant in Human TLR9, P99L, Is Associated with Loss of CpG Oligonucleotide Responsiveness. Journal of Biological Chemistry, 2010, 285, 36486-36494.	1.6	28
67	Wound Healing Versus Regeneration: Role of the Tissue Environment in Regenerative Medicine. MRS Bulletin, 2010, 35, 597-606.	1.7	82
68	Fluid Administration in Critically Ill Patients with Acute Kidney Injury. Clinical Journal of the American Society of Nephrology: CJASN, 2010, 5, 733-739.	2.2	86
69	Study of Matrix Additives for Sensitive Analysis of Lipid A by Matrix-Assisted Laser Desorption lonization Mass Spectrometry. Applied and Environmental Microbiology, 2010, 76, 3437-3443.	1.4	41
70	Lipopolysaccharide-binding protein-mediated Toll-like receptor 4 dimerization enables rapid signal transduction against lipopolysaccharide stimulation on membrane-associated CD14-expressing cells. International Immunology, 2010, 22, 271-280.	1.8	66
71	Altered Linkage of Hydroxyacyl Chains in Lipid A of Campylobacter jejuni Reduces TLR4 Activation and Antimicrobial Resistance. Journal of Biological Chemistry, 2010, 285, 15828-15836.	1.6	46
72	A Mouse Macrophage Lipidome. Journal of Biological Chemistry, 2010, 285, 39976-39985.	1.6	260
73	TLR4 and Insulin Resistance. Gastroenterology Research and Practice, 2010, 2010, 1-11.	0.7	156
74	CD14 is a coreceptor of Toll-like receptors 7 and 9. Journal of Experimental Medicine, 2010, 207, 2689-2701.	4.2	181

#	Article	IF	CITATIONS
75	Phosphoryl Moieties of Lipid A from <i>Neisseria meningitidis</i> and <i>N. gonorrhoeae</i> Lipooligosaccharides Play an Important Role in Activation of Both MyD88- and TRIF-Dependent TLR4–MD-2 Signaling Pathways. Journal of Immunology, 2010, 185, 6974-6984.	0.4	56
76	Substitution of the <i>Bordetella pertussis</i> Lipid A Phosphate Groups with Glucosamine Is Required for Robust NF-κB Activation and Release of Proinflammatory Cytokines in Cells Expressing Human but Not Murine Toll-Like Receptor 4-MD-2-CD14. Infection and Immunity, 2010, 78, 2060-2069.	1.0	45
77	Crystal structure of soluble MD-1 and its interaction with lipid IVa. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 10990-10995.	3.3	37
78	Adaptation and Constraint at Toll-Like Receptors in Primates. Molecular Biology and Evolution, 2010, 27, 2172-2186.	3.5	157
79	MD-2-mediated Ionic Interactions between Lipid A and TLR4 Are Essential for Receptor Activation. Journal of Biological Chemistry, 2010, 285, 8695-8702.	1.6	82
80	Identification of a Novel Human MD-2 Splice Variant That Negatively Regulates Lipopolysaccharide-Induced TLR4 Signaling. Journal of Immunology, 2010, 184, 6359-6366.	0.4	30
81	Structure and Functional Analysis of LptC, a Conserved Membrane Protein Involved in the Lipopolysaccharide Export Pathway in Escherichia coli*. Journal of Biological Chemistry, 2010, 285, 33529-33539.	1.6	114
82	Differential Induction of Innate Immune Responses by Synthetic Lipid A Derivatives*. Journal of Biological Chemistry, 2010, 285, 29375-29386.	1.6	48
83	MD-2 Residues Tyrosine 42, Arginine 69, Aspartic Acid 122, and Leucine 125 Provide Species Specificity for Lipid IVA. Journal of Biological Chemistry, 2010, 285, 27935-27943.	1.6	39
84	Expression of Functional D299G.T399I Polymorphic Variant of TLR4 Depends More on Coexpression of MD-2 Than Does Wild-Type TLR4. Journal of Immunology, 2010, 184, 4362-4367.	0.4	39
85	Transitions in Oral and Intestinal Microflora Composition and Innate Immune Receptor-Dependent Stimulation during Mouse Development. Infection and Immunity, 2010, 78, 639-650.	1.0	47
86	Regulation of Toll-like receptor 4-associated MD-2 in intestinal epithelial cells: a comprehensive analysis. Innate Immunity, 2010, 16, 93-103.	1.1	69
87	Toll-Like Receptors Expression and Signaling in Glia Cells in Neuro-Amyloidogenic Diseases: Towards Future Therapeutic Application. Mediators of Inflammation, 2010, 2010, 1-12.	1.4	95
88	DAMPening Inflammation by Modulating TLR Signalling. Mediators of Inflammation, 2010, 2010, 1-21.	1.4	754
89	Mechanisms of Polymyxin B Endotoxin Removal from Extracorporeal Blood Flow: Molecular Interactions. Contributions To Nephrology, 2010, 167, 45-54.	1.1	8
90	Bioinformatics in New Generation Flavivirus Vaccines. Journal of Biomedicine and Biotechnology, 2010, 2-17.	3.0	11
91	New insights for development of a safe and protective RSV vaccine. Hum Vaccin, 2010, 6, 482-492.	2.4	68
92	De novo Designed Lipopolysaccharide Binding Peptides: Structure Based Development of Antiendotoxic and Antimicrobial Drugs. Current Medicinal Chemistry, 2010, 17, 3080-3093.	1.2	77

#	Article	IF	CITATIONS
93	Xanthohumol and Related Prenylated Flavonoids Inhibit Inflammatory Cytokine Production in LPS-Activated THP-1 Monocytes: Structure-Activity Relationships and <i>In Silico </i> Iblico I	0.7	87
94	The role of monocytes in atherosclerotic coronary artery disease. Annals of Medicine, 2010, 42, 394-403.	1.5	108
95	Exploring the LPS/TLR4 signal pathway with small molecules. Biochemical Society Transactions, 2010, 38, 1390-1395.	1.6	93
96	Gut Microbiota, Lipopolysaccharides, and Innate Immunity in the Pathogenesis of Obesity and Cardiovascular Risk. Endocrine Reviews, 2010, 31, 817-844.	8.9	389
97	Identification and functions of pattern-recognition receptors. Journal of Allergy and Clinical Immunology, 2010, 125, 985-992.	1.5	172
98	Guilt by intimate association: What makes an allergen an allergen?. Journal of Allergy and Clinical Immunology, 2010, 125, 955-960.	1.5	44
99	The molecular basis of the host response to lipopolysaccharide. Nature Reviews Microbiology, 2010, 8, 8-14.	13.6	303
100	Escherichia coliMutants That Synthesize Dephosphorylated Lipid A Molecules. Biochemistry, 2010, 49, 8325-8337.	1.2	18
101	Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes. Innate Immunity, 2010, 16, 288-301.	1.1	62
102	Role of CD14 in lung inflammation and infection. Critical Care, 2010, 14, 209.	2.5	59
103	Endotoxins and Other Sepsis Triggers. Contributions To Nephrology, 2010, 167, 14-24.	1.1	208
104	A synthetic MD-2 mimetic peptide attenuates lipopolysaccharide-induced inflammatory responses in vivo and in vitro. International Immunopharmacology, 2010, 10, 1091-1100.	1.7	12
105	Inhibition of Toll-like receptors TLR4 and 7 signaling pathways by SIGIRR: A computational approach. Journal of Structural Biology, 2010, 169, 323-330.	1.3	63
106	Crystal Structure of Mouse MD-1 with Endogenous Phospholipid Bound in Its Cavity. Journal of Molecular Biology, 2010, 400, 838-846.	2.0	21
107	Altered lipid A structures and polymyxin hypersensitivity of Rhizobium etli mutants lacking the LpxE and LpxF phosphatases. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2010, 1801, 593-604.	1.2	29
108	Evidence that opioids may have toll-like receptor 4 and MD-2 effects. Brain, Behavior, and Immunity, 2010, 24, 83-95.	2.0	447
109	Mutations in the lipid A deacylase PagL which release the enzyme from its latency affect the ability of PagL to interact with lipopolysaccharide in Salmonella enterica serovar Typhimurium. Biochemical and Biophysical Research Communications, 2010, 396, 812-816.	1.0	5
110	Pattern Recognition Receptors and Inflammation. Cell, 2010, 140, 805-820.	13.5	6,978

#	Article	IF	Citations
111	Evidence that intrathecal morphine-3-glucuronide may cause pain enhancement via toll-like receptor 4/MD-2 and interleukin- $1\hat{l}^2$. Neuroscience, 2010, 165, 569-583.	1.1	146
112	Possible involvement of toll-like receptor 4/myeloid differentiation factor-2 activity of opioid inactive isomers causes spinal proinflammation and related behavioral consequences. Neuroscience, 2010, 167, 880-893.	1.1	115
113	Evidence that tricyclic small molecules may possess toll-like receptor and myeloid differentiation protein 2 activity. Neuroscience, 2010, 168, 551-563.	1.1	85
114	Detoxified Endotoxin Vaccine (J5dLPS/OMP) Protects Mice Against Lethal Respiratory Challenge with Francisella tularensis SchuS4. Vaccine, 2010, 28, 2908-2915.	1.7	11
115	Modulators of Toll-Like Receptor (TLR) Signaling. Annual Reports in Medicinal Chemistry, 2010, 45, 191-207.	0.5	4
116	Interchangeable Domains in the Kdo Transferases of <i>Escherichia coli</i> and <i>Haemophilus influenzae</i> . Biochemistry, 2010, 49, 4126-4137.	1.2	32
117	Comparative Overview of Toll-Like Receptors in Lower Animals. Zoological Science, 2010, 27, 154-161.	0.3	26
118	Modulation of toll-like receptor function has therapeutic potential in autoimmune disease. Expert Opinion on Biological Therapy, 2010, 10, 1703-1716.	1.4	23
119	Absence of TRIF Signaling in Lipopolysaccharide-Stimulated Murine Mast Cells. Journal of Immunology, 2011, 186, 5478-5488.	0.4	33
120	An unusual dimeric structure and assembly for TLR4 regulator RP105–MD-1. Nature Structural and Molecular Biology, 2011, 18, 1028-1035.	3.6	64
121	New adjuvants in evolving vaccine strategies. Expert Opinion on Biological Therapy, 2011, 11, 827-832.	1.4	15
122	Pattern-recognition Receptors in Pulp Defense. Advances in Dental Research, 2011, 23, 296-301.	3.6	65
123	Mechanisms of the inflammatory reaction implicated in alcoholic hepatitis: 2011 update. Clinics and Research in Hepatology and Gastroenterology, 2011, 35, 465-474.	0.7	24
124	Association of Inherited Variation in Toll-Like Receptor Genes with Malignant Melanoma Susceptibility and Survival. PLoS ONE, 2011, 6, e24370.	1.1	58
125	Eritoran tetrasodium (E5564) treatment for sepsis: review of preclinical and clinical studies. Expert Opinion on Drug Metabolism and Toxicology, 2011, 7, 479-494.	1.5	136
126	Intrinsic and Extrinsic Regulation of Innate Immune Receptors. Yonsei Medical Journal, 2011, 52, 379.	0.9	89
127	Development of \hat{l}^2 -Amino Alcohol Derivatives That Inhibit Toll-like Receptor 4 Mediated Inflammatory Response as Potential Antiseptics. Journal of Medicinal Chemistry, 2011, 54, 4659-4669.	2.9	30
128	Toll-like receptor-4 antagonist eritoran tetrasodium for severe sepsis. Expert Review of Anti-Infective Therapy, 2011, 9, 507-520.	2.0	28

#	Article	IF	CITATIONS
129	Innate Immunity in the Respiratory Epithelium. American Journal of Respiratory Cell and Molecular Biology, 2011, 45, 189-201.	1.4	370
130	Structural insight into brassinosteroid perception by BRI1. Nature, 2011, 474, 472-476.	13.7	350
131	Synthesis and Toll-like Receptor 4 (TLR4) Activity of Phosphatidylinositol Dimannoside Analogues. Journal of Medicinal Chemistry, 2011, 54, 7268-7279.	2.9	17
132	The Molecular Basis of Lipid A and Toll-Like Receptor 4 Interactions. , 2011, , 371-387.		9
133	Modulation of Lipopolysaccharide Signalling Through TLR4 Agonists and Antagonists., 2011,, 389-416.		0
134	CD14 and TRIF govern distinct responsiveness and responses in mouse microglial TLR4 challenges by structural variants of LPS. Brain, Behavior, and Immunity, 2011, 25, 957-970.	2.0	50
135	Structural basis of steroid hormone perception by the receptor kinase BRI1. Nature, 2011, 474, 467-471.	13.7	340
136	TLRs, NLRs and RLRs: Innate sensors and their impact on allergic diseases – A current view. Immunology Letters, 2011, 139, 14-24.	1.1	24
137	Myeloid differentiation protein 2 silencing decreases LPS-induced cytokine production and TLR4/MyD88 pathway activity in alveolar macrophages. Immunology Letters, 2011, 141, 94-101.	1.1	16
138	What the Myddosome structure tells us about the initiation of innate immunity. Trends in Immunology, 2011, 32, 104-109.	2.9	155
139	Use of 3-hydroxy fatty acid concentrations in a murine air pouch infection model as a surrogate marker for LPS activity: A feasibility study using environmental Burkholderia cenocepacia isolates. Journal of Microbiological Methods, 2011, 87, 368-374.	0.7	7
140	Crystal Structures of Mouse and Human RP105/MD-1 Complexes Reveal Unique Dimer Organization of the Toll-Like Receptor Family. Journal of Molecular Biology, 2011, 413, 815-825.	2.0	43
141	Toll-like receptors as targets for immune disorders. Trends in Pharmacological Sciences, 2011, 32, 435-442.	4.0	65
142	LPS ligand and culture additives improve production of monomeric MD-1 and 2 in Pichia pastoris by decreasing aggregation and intermolecular disulfide bonding. Protein Expression and Purification, 2011, 76, 173-183.	0.6	3
143	Targeting of Toll-like receptors: a decade of progress in combating infectious diseases. Lancet Infectious Diseases, The, 2011, 11, 702-712.	4.6	111
144	Oxidation-Specific Epitopes Are Danger-Associated Molecular Patterns Recognized by Pattern Recognition Receptors of Innate Immunity. Circulation Research, 2011, 108, 235-248.	2.0	527
145	Chemical synthesis of bacterial lipoteichoic acids: An insight on its biological significance. Organic and Biomolecular Chemistry, 2011, 9, 2040.	1.5	39
146	Structural Biology of the Toll-Like Receptor Family. Annual Review of Biochemistry, 2011, 80, 917-941.	5.0	285

#	Article	IF	CITATIONS
147	Pathogen Recognition by the Innate Immune System. International Reviews of Immunology, 2011, 30, 16-34.	1.5	1,780
148	The Subversion of the Immune System by Francisella Tularensis. Frontiers in Microbiology, 2011, 2, 9.	1.5	42
149	Fungal Surface and Innate Immune Recognition of Filamentous Fungi. Frontiers in Microbiology, 2011, 2, 248.	1.5	33
150	LRR Conservation Mapping to Predict Functional Sites within Protein Leucine-Rich Repeat Domains. PLoS ONE, 2011, 6, e21614.	1.1	46
151	Comparative Analysis of Species-Specific Ligand Recognition in Toll-Like Receptor 8 Signaling: A Hypothesis. PLoS ONE, 2011, 6, e25118.	1.1	52
152	Toll-like Receptor. Journal of Clinical and Experimental Hematopathology: JCEH, 2011, 51, 77-92.	0.3	41
153	Data on the Interaction Between Prothymosin \hat{l}_{\pm} and TLR4 May Help to the Design of New Antiviral Compounds. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e110-e111.	0.9	3
154	Durability and Safety of a Novel Salvage Therapy in R5-Tropic HIV-Infected Patients: Maraviroc, Raltegravir, Etravirine. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e113-e115.	0.9	19
155	Combination Antiretroviral Therapy Toxicities: A Comparison Between Patients and Health Care Professionals. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e120-e121.	0.9	0
156	Can Oral Fluid Testing Be Used to Replace Blood-Based HIV Rapid Testing to Scale up Access to Diagnosis and Treatment in Cameroon?. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e115-e117.	0.9	4
157	HIV-1 and 2009 H1N1 Influenza A in Adults. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e111-e113.	0.9	1
158	Strategies to treat sepsis: old and new. Clinical Investigation, 2011, 1, 195-210.	0.0	2
159	LPS-induced Cytokine Production in Human Monocytes and Macrophages. Critical Reviews in Immunology, 2011, 31, 379-446.	1.0	480
160	Similar Structures but Different Roles – An Updated Perspective on TLR Structures. Frontiers in Physiology, 2011, 2, 41.	1.3	68
162	Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium. Immunology, 2011, 133, 469-481.	2.0	12
163	Developing the next generation of monoclonal antibodies for the treatment of rheumatoid arthritis. British Journal of Pharmacology, 2011, 162, 1470-1484.	2.7	25
164	Imbalance of Clara cell-mediated homeostatic inflammation is involved in lung metastasis. Oncogene, 2011, 30, 3429-3439.	2.6	63
165	The Structural Biology of Toll-like Receptors. Structure, 2011, 19, 447-459.	1.6	559

#	ARTICLE	IF	Citations
166	Symbiont of the stink bug Plautia stali synthesizes rough-type lipopolysaccharide. Microbiological Research, 2011, 167, 48-54.	2.5	13
167	Porcine Toll-like receptors: Recognition of Salmonella enterica serovar Choleraesuis and influence of polymorphisms. Molecular Immunology, 2011, 48, 1114-1120.	1.0	27
168	From agonist to antagonist: Structure and dynamics of innate immune glycoprotein MD-2 upon recognition of variably acylated bacterial endotoxins. Molecular Immunology, 2011, 49, 124-133.	1.0	37
169	Porcine reproductive and respiratory syndrome virus and bacterial endotoxin act in synergy to amplify the inflammatory response of infected macrophages. Veterinary Microbiology, 2011, 149, 213-220.	0.8	59
170	Signatures of positive selection in Toll-like receptor (TLR) genes in mammals. BMC Evolutionary Biology, 2011, 11, 368.	3.2	139
171	Toll-like receptors. Current Biology, 2011, 21, R488-R493.	1.8	416
172	Computational design principles for bioactive dendrimer based constructs as antagonists of the TLR4-MD-2-LPS complex. Biomaterials, 2011, 32, 8702-8711.	5.7	22
173	Electrochemical endotoxin sensors based on TLR4/MD-2 complexes immobilized on gold electrodes. Biosensors and Bioelectronics, 2011, 28, 139-145.	5.3	46
174	Synthesis of a dimeric monosaccharide lipid A mimic and its synergistic effect on the immunostimulatory activity of lipopolysaccharide. Carbohydrate Research, 2011, 346, 1705-1713.	1.1	13
175	Toll-like Receptor 3 (TLR3) Signaling Requires TLR4 Interactor with Leucine-rich Repeats (TRIL). Journal of Biological Chemistry, 2011, 286, 38795-38804.	1.6	27
176	Toll-like receptor modulators: a patent review (2006 – 2010). Expert Opinion on Therapeutic Patents, 2011, 21, 927-944.	2.4	89
177	Relationships between physicochemical characteristics and biological activity of lipopolysaccharides. Biochemistry (Moscow) Supplement Series A: Membrane and Cell Biology, 2011, 5, 293-309.	0.3	1
178	Construction of an Escherichia coli mutant producing monophosphoryl lipid A. Biotechnology Letters, 2011, 33, 1013-1019.	1.1	13
179	Avian toll-like receptors. Cell and Tissue Research, 2011, 343, 121-130.	1.5	206
180	Therapeutic targeting of the innate immune system in domestic animals. Cell and Tissue Research, 2011, 343, 251-261.	1.5	11
181	Automated Lipid A Structure Assignment from Hierarchical Tandem Mass Spectrometry Data. Journal of the American Society for Mass Spectrometry, 2011, 22, 856-866.	1.2	26
182	Trauma is danger. Journal of Translational Medicine, 2011, 9, 92.	1.8	23
183	Structural modifications occurring in lipid A of <i>Bordetella bronchiseptica</i> clinical isolates as demonstrated by matrixâ€assisted laser desorption/ionization timeâ€ofâ€flight mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 1075-1081.	0.7	17

#	Article	IF	CITATIONS
184	A new rapid and microâ€scale hydrolysis, using triethylamine citrate, for lipopolysaccharide characterization by mass spectrometry. Rapid Communications in Mass Spectrometry, 2011, 25, 2043-2048.	0.7	19
185	Molecular battle between host and bacterium: recognition in innate immunity. Journal of Molecular Recognition, 2011, 24, 1077-1086.	1.1	22
186	Identification of lipopolysaccharideâ€binding peptide regions within HMGB1 and their effects on subclinical endotoxemia in a mouse model. European Journal of Immunology, 2011, 41, 2753-2762.	1.6	69
187	Mapping residue-specific contacts of polymyxin B with lipopolysaccharide by saturation transfer difference NMR: Insights into outer-membrane disruption and endotoxin neutralization. Biopolymers, 2011, 96, 273-287.	1.2	29
188	An MD2 Hotâ€Spotâ€Mimicking Peptide that Suppresses TLR4â€Mediated Inflammatory Response in vitro and in vivo. ChemBioChem, 2011, 12, 1827-1831.	1.3	13
189	Regulatory T Cells and Lung Fibrosis: A Good Cell Gone Bad. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1224-1226.	2.5	4
190	Endotoxemia before and after Surgical Repair for Congenital Heart Disease. American Journal of Respiratory and Critical Care Medicine, 2011, 184, 1223-1224.	2.5	2
191	Toll-like Receptor 4-Dependent Adjuvant Activity of Kakkon-to Extract Exists in the High Molecular Weight Polysaccharide Fraction. International Journal of Immunopathology and Pharmacology, 2011, 24, 43-54.	1.0	5
192	Brain angiogenesis inhibitor 1 (BAI1) is a pattern recognition receptor that mediates macrophage binding and engulfment of Gram-negative bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2136-2141.	3.3	126
193	Cleavage and activation of a Toll-like receptor by microbial proteases. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 4968-4973.	3.3	91
194	Development and Characterization of Synthetic Glucopyranosyl Lipid Adjuvant System as a Vaccine Adjuvant. PLoS ONE, 2011, 6, e16333.	1,1	281
195	The many faces of the YopM effector from plague causative bacterium Yersinia pestis and its implications for host immune modulation. Innate Immunity, 2011, 17, 548-557.	1.1	27
196	A Toll-Like Receptor-4-Interacting Surfactant Protein-A-Derived Peptide Suppresses Tumor Necrosis Factor-α Release from Mouse JAWS II Dendritic Cells. Journal of Pharmacology and Experimental Therapeutics, 2011, 336, 672-681.	1.3	25
197	Interferon-Î ³ -induced MD-2 Protein Expression and Lipopolysaccharide (LPS) Responsiveness in Corneal Epithelial Cells Is Mediated by Janus Tyrosine Kinase-2 Activation and Direct Binding of STAT1 Protein to the MD-2 Promoter. Journal of Biological Chemistry, 2011, 286, 23753-23762.	1.6	30
198	The Ectodomain of the Toll-like Receptor 4 Prevents Constitutive Receptor Activation. Journal of Biological Chemistry, 2011, 286, 23334-23344.	1.6	36
199	Intracellular TLR4/MD-2 in macrophages senses Gram-negative bacteria and induces a unique set of LPS-dependent genes. International Immunology, 2011, 23, 503-510.	1.8	41
200	Synthetic molecules and functionalized nanoparticles targeting the LPS-TLR4 signaling: A new generation of immunotherapeutics. Pure and Applied Chemistry, 2011, 84, 97-106.	0.9	5
201	Toll-Like Receptor 4 Activation in Cancer Progression and Therapy. Clinical and Developmental Immunology, 2011, 2011, 1-12.	3.3	123

#	Article	IF	CITATIONS
202	LPS-Induced TLR4 Signaling in Human Colorectal Cancer Cells Increases \hat{I}^21 Integrin-Mediated Cell Adhesion and Liver Metastasis. Cancer Research, 2011, 71, 1989-1998.	0.4	235
203	Genome-Wide Expression Profiling and Mutagenesis Studies Reveal that Lipopolysaccharide Responsiveness Appears To Be Absolutely Dependent on TLR4 and MD-2 Expression and Is Dependent upon Intermolecular Ionic Interactions. Journal of Immunology, 2011, 187, 3683-3693.	0.4	46
204	Dioxygenases in Burkholderia ambifaria and Yersinia pestis that hydroxylate the outer Kdo unit of lipopolysaccharide. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 510-515.	3.3	38
205	Structure and Immunological Characterization of the Capsular Polysaccharide of a Pyrogenic Liver Abscess Caused by Klebsiella pneumoniae. Journal of Biological Chemistry, 2011, 286, 21041-21051.	1.6	62
206	The Lipid A Phosphate Position Determines Differential Host Toll-Like Receptor 4 Responses to Phylogenetically Related Symbiotic and Pathogenic Bacteria. Infection and Immunity, 2011, 79, 203-210.	1.0	72
207	MyD88-Dependent SHIP1 Regulates Proinflammatory Signaling Pathways in Dendritic Cells after Monophosphoryl Lipid A Stimulation of TLR4. Journal of Immunology, 2011, 186, 3858-3865.	0.4	35
208	Correction: Salmonella Synthesizing 1-Monophosphorylated Lipopolysaccharide Exhibits Low Endotoxic Activity while Retaining Its Immunogenicity. Journal of Immunology, 2011, 187, 3449-3449.	0.4	6
209	The TOLL of inflammation in multiple myeloma. Cancer Biology and Therapy, 2011, 11, 68-70.	1.5	4
210	Alternative Explanations for Negative Findings in the Community Popular Opinion Leader Multisite Trial and Recommendations for Improvements of Health Interventions Through Social Network Analysis. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e119-e120.	0.9	13
211	Partner Reports of Patients' HIV Treatment Adherence. Journal of Acquired Immune Deficiency Syndromes (1999), 2011, 56, e117-e118.	0.9	10
212	<i>Salmonella</i> Synthesizing 1-Monophosphorylated Lipopolysaccharide Exhibits Low Endotoxic Activity while Retaining Its Immunogenicity. Journal of Immunology, 2011, 187, 412-423.	0.4	66
213	In Vitro and in Vivo Anticancer Activity of a Synthetic Glycolipid as Toll-like Receptor 4 (TLR4) Activator*. Journal of Biological Chemistry, 2011, 286, 43782-43792.	1.6	22
214	Myeloid Differentiation Factor-2 Interacts with Lyn Kinase and Is Tyrosine Phosphorylated Following Lipopolysaccharide-Induced Activation of the TLR4 Signaling Pathway. Journal of Immunology, 2011, 187, 4331-4337.	0.4	25
215	The Role of CD14 in Neutrophil Recruitment within the Liver Microcirculation during Endotoxemia. Journal of Immunology, 2011, 186, 2592-2601.	0.4	36
216	Pathway for lipid A biosynthesis in <i>Arabidopsis thaliana</i> resembling that of <i>Escherichia coli</i> Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11387-11392.	3.3	48
217	Future Perspectives on Regulating Pro-and Anti-Inflammatory Responses in Sepsis. Contributions To Microbiology, 2011, 17, 137-156.	2.1	23
218	Characterization of Sparstolonin B, a Chinese Herb-derived Compound, as a Selective Toll-like Receptor Antagonist with Potent Anti-inflammatory Properties. Journal of Biological Chemistry, 2011, 286, 26470-26479.	1.6	111
219	Altered Toll-like Receptor 2-mediated Endotoxin Tolerance Is Related to Diminished Interferon \hat{I}^2 Production. Journal of Biological Chemistry, 2011, 286, 29492-29500.	1.6	20

#	Article	IF	CITATIONS
220	<i>Neisseria meningitidis</i> capsular polysaccharides induce inflammatory responses via TLR2 and TLR4-MD-2. Journal of Leukocyte Biology, 2010, 89, 469-480.	1.5	57
221	Lipopolysaccharide induces raft domain expansion in membrane composed of a phospholipid-cholesterol-sphingomyelin ternary system. Innate Immunity, 2011, 17, 256-268.	1.1	13
222	Hyaluronan as an Immune Regulator in Human Diseases. Physiological Reviews, 2011, 91, 221-264.	13.1	848
223	Partially Glycosylated Dendrimers Block MD-2 and Prevent TLR4-MD-2-LPS Complex Mediated Cytokine Responses. PLoS Computational Biology, 2011, 7, e1002095.	1.5	31
224	MD-2 as the Target of Nonlipid Chalcone in the Inhibition of Endotoxin LPS-Induced TLR4 Activity. Journal of Infectious Diseases, 2011, 203, 1012-1020.	1.9	52
225	Helicobacter pylori versus the Host: Remodeling of the Bacterial Outer Membrane Is Required for Survival in the Gastric Mucosa. PLoS Pathogens, 2011, 7, e1002454.	2.1	164
226	Effects of Differences in Lipid A Structure on TLR4 Pro-Inflammatory Signaling and Inflammasome Activation. Frontiers in Immunology, 2012, 3, 154.	2.2	41
227	DNA binding to proteolytically activated TLR9 is sequence-independent and enhanced by DNA curvature. EMBO Journal, 2012, 31, 919-931.	3.5	55
228	The Lipopolysaccharide Core of Brucella abortus Acts as a Shield Against Innate Immunity Recognition. PLoS Pathogens, 2012, 8, e1002675.	2.1	140
229	Chitohexaose Activates Macrophages by Alternate Pathway through TLR4 and Blocks Endotoxemia. PLoS Pathogens, 2012, 8, e1002717.	2.1	78
230	Humanized TLR4/MD-2 Mice Reveal LPS Recognition Differentially Impacts Susceptibility to Yersinia pestis and Salmonella enterica. PLoS Pathogens, 2012, 8, e1002963.	2.1	64
232	A new structural model of the acid-labile subunit: pathogenetic mechanisms of short stature-causing mutations. Journal of Molecular Endocrinology, 2012, 49, 213-220.	1.1	16
233	Safety, pharmacokinetics and pharmacodynamics of four-hour intravenous infusions of eritoran in healthy Japanese and Caucasian men. Innate Immunity, 2012, 18, 793-803.	1.1	0
234	Mast Cells as Critical Effectors of Host Immune Defense against Gram-negative Bacteria. Current Medicinal Chemistry, 2012, 19, 1432-1442.	1.2	21
235	Respiratory Syncytial Virus Fusion Protein-Induced Toll-Like Receptor 4 (TLR4) Signaling Is Inhibited by the TLR4 Antagonists Rhodobacter sphaeroides Lipopolysaccharide and Eritoran (E5564) and Requires Direct Interaction with MD-2. MBio, 2012, 3, .	1.8	96
236	Recent Approaches to Novel Antibacterials Designed After LPS Structure and Biochemistry. Current Drug Targets, 2012, 13, 1458-1471.	1.0	13
237	Ready…aim…fire into the lumen. Gut Microbes, 2012, 3, 460-462.	4.3	14
238	RNA mediated toll-like receptor stimulation in health and disease. RNA Biology, 2012, 9, 828-842.	1.5	90

#	Article	IF	CITATIONS
239	Cloning, expression and bioinformatics analysis of the duck TLR 4 gene. British Poultry Science, 2012, 53, 190-197.	0.8	21
240	Endotoxin·albumin complexes transfer endotoxin monomers to MD-2 resulting in activation of TLR4. Innate Immunity, 2012, 18, 478-491.	1.1	36
241	Phosphate Groups of Lipid A Are Essential for Salmonella enterica Serovar Typhimurium Virulence and Affect Innate and Adaptive Immunity. Infection and Immunity, 2012, 80, 3215-3224.	1.0	70
242	Crystal structure of LpxK, the 4′-kinase of lipid A biosynthesis and atypical P-loop kinase functioning at the membrane interface. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 12956-12961.	3.3	17
243	Structural basis of species-specific endotoxin sensing by innate immune receptor TLR4/MD-2. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 7421-7426.	3.3	290
244	Amino acid addition to <i>Vibrio cholerae</i> LPS establishes a link between surface remodeling in Gram-positive and Gram-negative bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 8722-8727.	3.3	133
245	Toll-like Receptor Activation of Human Cells by Synthetic Triacylated Lipid A-like Molecules. Journal of Biological Chemistry, 2012, 287, 16121-16131.	1.6	17
246	NMR Studies of Hexaacylated Endotoxin Bound to Wild-type and F126A Mutant MD-2 and MD-2·TLR4 Ectodomain Complexes. Journal of Biological Chemistry, 2012, 287, 16346-16355.	1.6	40
247	Toll-Like Receptor 4 Polymorphism Impairing Lipopolysaccharide Signaling in <i>Sus scrofa</i> , and Its Restricted Distribution Among Japanese Wild Boar Populations. DNA and Cell Biology, 2012, 31, 575-581.	0.9	7
248	Intrinsic danger: activation of Toll-like receptors in rheumatoid arthritis. Rheumatology, 2012, 51, 7-23.	0.9	151
249	Structural Insights into the Assembly of Large Oligomeric Signalosomes in the Toll-Like Receptor–Interleukin-1 Receptor Superfamily. Science Signaling, 2012, 5, re3.	1.6	63
250	Selective TRIF-Dependent Signaling by a Synthetic Toll-Like Receptor 4 Agonist. Science Signaling, 2012, 5, ra13.	1.6	69
251	Multiple potential regulatory sites of TLR4 activation induced by LPS as revealed by novel inhibitory human TLR4 mAbs. International Immunology, 2012, 24, 495-506.	1.8	18
252	Bacterial Lipopolysaccharides in Plant and Mammalian Innate Immunity. Protein and Peptide Letters, 2012, 19, 1040-1044.	0.4	17
253	Suppression of TLR Signaling by Targeting TIR domain-Containing Proteins. Current Protein and Peptide Science, 2012, 13, 776-788.	0.7	40
254	Bacterial Sensing, Cell Signaling, and Modulation of the Immune Response During Sepsis. Shock, 2012, 38, 227-242.	1.0	180
255	Splenocyte Apoptosis and Autophagy Is Mediated by Interferon Regulatory Factor 1 During Murine Endotoxemia. Shock, 2012, 37, 511-517.	1.0	28
256	Mice, men and the relatives: cross-species studies underpin innate immunity. Open Biology, 2012, 2, 120015.	1.5	74

#	Article	IF	Citations
257	Regulation of Th1/Th2 polarization by tissue inhibitor of metalloproteinase-3 via modulating dendritic cells. Blood, 2012, 119, 4636-4644.	0.6	30
258	Role of human TLR4 in respiratory syncytial virus-induced NF-κB activation, viral entry and replication. Innate Immunity, 2012, 18, 856-865.	1.1	64
259	Cathelicidin Antimicrobial Peptide Expression Is Not Induced or Required for Bacterial Clearance during Salmonella enterica Infection of Human Monocyte-Derived Macrophages. Infection and Immunity, 2012, 80, 3930-3938.	1.0	17
260	LpxI structures reveal how a lipid A precursor is synthesized. Nature Structural and Molecular Biology, 2012, 19, 1132-1138.	3.6	21
261	Metal allergens nickel and cobalt facilitate TLR4 homodimerization independently of MD2. EMBO Reports, 2012, 13, 1109-1115.	2.0	129
262	Antibody WN1 222-5 mimics Toll-like receptor 4 binding in the recognition of LPS. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20877-20882.	3.3	34
263	Signaling Organelles of the Innate Immune System. Cell, 2012, 151, 1168-1178.	13.5	105
264	The role of ATP-binding cassette transporters in bacterial pathogenicity. Protoplasma, 2012, 249, 919-942.	1.0	87
265	Evolutionary analysis of Antarctic teleost Toll-like receptor 2. Fish and Shellfish Immunology, 2012, 33, 1076-1085.	1.6	11
266	Bride and groom in systemic inflammation – The bells ring for complement and Toll in cooperation. Immunobiology, 2012, 217, 1047-1056.	0.8	35
267	Synthesis and immunostimulatory activity of diethanolamine-containing lipid A mimics. RSC Advances, 2012, 2, 1917.	1.7	4
268	Toll-Like Receptor 4 and MYD88-Dependent Signaling Mechanisms of the Innate Immune System Are Essential for the Response to Lipopolysaccharide by Epithelial and Stromal Cells of the Bovine Endometrium1. Biology of Reproduction, 2012, 86, 51.	1.2	214
269	Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. Journal of Lipid Research, 2012, 53, 2002-2013.	2.0	479
270	A TLR4-interacting peptide inhibits lipopolysaccharide-stimulated inflammatory responses, migration and invasion of colon cancer SW480 cells. OncoImmunology, 2012, 1, 1495-1506.	2.1	44
271	Inhibition of NF-κB-Dependent Cytokine and Inducible Nitric Oxide Synthesis by the Macrocyclic Ellagitannin Oenothein B in TLR-Stimulated RAW 264.7 Macrophages. Journal of Natural Products, 2012, 75, 870-875.	1.5	31
272	Opioid Activation of Toll-Like Receptor 4 Contributes to Drug Reinforcement. Journal of Neuroscience, 2012, 32, 11187-11200.	1.7	258
273	Overview and outlook of Toll-like receptor ligand–antigen conjugate vaccines. Therapeutic Delivery, 2012, 3, 749-760.	1.2	45
274	Drosophila melanogaster NPC2 proteins bind bacterial cell wall components and may function in immune signal pathways. Insect Biochemistry and Molecular Biology, 2012, 42, 545-556.	1.2	66

#	Article	IF	CITATIONS
275	Toll-like receptor 5 forms asymmetric dimers in the absence of flagellin. Journal of Structural Biology, 2012, 177, 402-409.	1.3	42
276	S-nitrosylation of surfactant protein D as a modulator of pulmonary inflammation. Biochimica Et Biophysica Acta - General Subjects, 2012, 1820, 763-769.	1.1	40
277	Short photoperiods attenuate central responses to an inflammogen. Brain, Behavior, and Immunity, 2012, 26, 617-622.	2.0	10
278	Inhibition of LPS binding to MD-2 co-receptor for suppressing TLR4-mediated expression of inflammatory cytokine by 1-dehydro-10-gingerdione from dietary ginger. Biochemical and Biophysical Research Communications, 2012, 419, 735-740.	1.0	43
279	Extracts of Larix Leptolepis effectively augments the generation of tumor antigen-specific cytotoxic T lymphocytes via activation of dendritic cells in TLR-2 and TLR-4-dependent manner. Cellular Immunology, 2012, 276, 153-161.	1.4	14
280	Inflammation and Lipid Signaling in the Etiology of Insulin Resistance. Cell Metabolism, 2012, 15, 635-645.	7.2	689
281	Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Research International, 2012, 45, 493-501.	2.9	12
282	Molecular evolution of vertebrate Toll-like receptors: Evolutionary rate difference between their leucine-rich repeats and their TIR domains. Gene, 2012, 503, 235-243.	1.0	7 5
283	Preventing acute gut wall damage in infectious diarrhoeas with glycosylated dendrimers. EMBO Molecular Medicine, 2012, 4, 866-881.	3.3	34
284	Tollâ€like receptor activation reveals developmental reorganization and unmasks responder subsets of microglia. Glia, 2012, 60, 1930-1943.	2.5	85
285	Exogenous heat shock protein HSP70 protects human blood phagocytes at the action of different chemotypes of lipopolysaccharide. Doklady Biological Sciences, 2012, 447, 392-395.	0.2	3
286	The SYK side of TLR4: signalling mechanisms in response to LPS and minimally oxidized LDL. British Journal of Pharmacology, 2012, 167, 990-999.	2.7	119
287	Sensing of microbial molecular patterns by Tollâ€like receptors. Immunological Reviews, 2012, 250, 216-229.	2.8	150
288	The Lipopolysaccharide from Capnocytophaga canimorsus Reveals an Unexpected Role of the Core-Oligosaccharide in MD-2 Binding. PLoS Pathogens, 2012, 8, e1002667.	2.1	32
289	A Decorated Virus Cannot Hide. Science, 2012, 338, 748-749.	6.0	4
290	Glycodendrimers as functional antigens and antitumor vaccines. New Journal of Chemistry, 2012, 36, 324-339.	1.4	84
291	Structure–activity correlations of variant forms of the B pentamer of <i>Escherichia coli</i> type II heat-labile enterotoxin LT-IIb with Toll-like receptor 2 binding. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 1604-1612.	2.5	9
292	On the roles of polyvalent binding in immune recognition: Perspectives in the nanoscience of immunology and the immune response to nanomedicines. Advanced Drug Delivery Reviews, 2012, 64, 1759-1781.	6.6	54

#	Article	IF	Citations
293	Total glucosides of paeony attenuated functional maturation of dendritic cells via blocking TLR4/5 signaling in vivo. International Immunopharmacology, 2012, 14, 275-282.	1.7	43
294	Dissecting negative regulation of Toll-like receptor signaling. Trends in Immunology, 2012, 33, 449-458.	2.9	378
295	Toll-like receptor 2 heterodimers, TLR2/6 and TLR2/1 induce prostaglandin E production by osteoblasts, osteoclast formation and inflammatory periodontitis. Biochemical and Biophysical Research Communications, 2012, 428, 110-115.	1.0	34
296	Lipid A 3′-O-deacylation by Salmonella outer membrane enzyme LpxR modulates the ability of lipid A to stimulate Toll-like receptor 4. Biochemical and Biophysical Research Communications, 2012, 428, 343-347.	1.0	16
297	Selection, synthesis, and anti-inflammatory evaluation of the arylidene malonate derivatives as TLR4 signaling inhibitors. Bioorganic and Medicinal Chemistry, 2012, 20, 6073-6079.	1.4	26
298	Sialyl Residues Modulate LPS-Mediated Signaling through the Toll-Like Receptor 4 Complex. PLoS ONE, 2012, 7, e32359.	1.1	49
299	Structural Analyses of Human Toll-like Receptor 4 Polymorphisms D299G and T399I. Journal of Biological Chemistry, 2012, 287, 40611-40617.	1.6	129
300	Development of Novel Vaccines. , 2012, , .		2
301	Inflammation and Atherosclerosis. , 2012, , .		6
302	Structure-Based Rational Design of a Toll-like Receptor 4 (TLR4) Decoy Receptor with High Binding Affinity for a Target Protein. PLoS ONE, 2012, 7, e30929.	1.1	25
303	SHARPIN Is Essential for Cytokine Production, NF-κB Signaling, and Induction of Th1 Differentiation by Dendritic Cells. PLoS ONE, 2012, 7, e31809.	1.1	35
304	O-Antigen Modulates Infection-Induced Pain States. PLoS ONE, 2012, 7, e41273.	1.1	43
305	Isolated Toll-like Receptor Transmembrane Domains Are Capable of Oligomerization. PLoS ONE, 2012, 7, e48875.	1.1	66
306	An Altered Immune Response, but Not Individual Cationic Antimicrobial Peptides, Is Associated with the Oral Attenuation of Ara4N-Deficient Salmonella enterica Serovar Typhimurium in Mice. PLoS ONE, 2012, 7, e49588.	1.1	14
307	Toll-Like Receptors of Deuterostome Invertebrates. Frontiers in Immunology, 2012, 3, 34.	2.2	70
308	The role of innate immune signals in immunity to Brucella abortus. Frontiers in Cellular and Infection Microbiology, 2012, 2, 130.	1.8	49
309	Modulation of normal and malignant plasma cells function by toll-like receptors. Frontiers in Bioscience - Elite, 2012, E4, 2289.	0.9	1
310	Targeting DAMP Activation of Toll-Like Receptors: Novel Pathways to Treat Rheumatoid Arthritis?., 0,,		0

#	ARTICLE	IF	CITATIONS
311	Characterization of Differential Tollâ€like Receptor Responses below the Optical Diffraction Limit. Small, 2012, 8, 3041-3049.	5.2	26
312	Morphine activates neuroinflammation in a manner parallel to endotoxin. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6325-6330.	3.3	401
313	The Asp299Gly Polymorphism Alters TLR4 Signaling by Interfering with Recruitment of MyD88 and TRIF. Journal of Immunology, 2012, 188, 4506-4515.	0.4	114
314	Enhancing and Tailoring the Immunogenicity of Vaccines with Novel Adjuvants., 2012,, 45-72.		0
315	The Structure of the TLR5-Flagellin Complex: A New Mode of Pathogen Detection, Conserved Receptor Dimerization for Signaling. Science Signaling, 2012, 5, pe11.	1.6	31
316	Structural Basis of TLR5-Flagellin Recognition and Signaling. Science, 2012, 335, 859-864.	6.0	454
317	Modulating immunity as a therapy for bacterial infections. Nature Reviews Microbiology, 2012, 10, 243-254.	13.6	439
318	<scp>HPMC</scp> supplementation reduces abdominal fat content, intestinal permeability, inflammation, and insulin resistance in dietâ€induced obese mice. Molecular Nutrition and Food Research, 2012, 56, 1464-1476.	1.5	10
319	Genome-wide expression profiling implicates a MAST3-regulated gene set in colonic mucosal inflammation of ulcerative colitis patients. Inflammatory Bowel Diseases, 2012, 18, 1072-1080.	0.9	24
320	Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nature Medicine, 2012, 18, 1279-1285.	15. 2	753
321	NAIPs: Building an innate immune barrier against bacterial pathogens. BioEssays, 2012, 34, 589-598.	1.2	39
322	A Synthetic Lipidâ€A Mimetic Modulates Human TLR4 Activity. ChemMedChem, 2012, 7, 213-217.	1.6	17
323	Accessory molecules for Toll-like receptors and their function. Nature Reviews Immunology, 2012, 12, 168-179.	10.6	374
324	Toll-like receptors (TLR2 and TLR4) recognize polysaccharides of Pseudallescheria boydii cell wall. Carbohydrate Research, 2012, 356, 260-264.	1.1	69
325	Structure of lipid A from a stem-nodulating bacterium Azorhizobium caulinodans. Carbohydrate Research, 2012, 352, 126-136.	1.1	19
326	Synthesis and immunomodulatory activities of Helicobacter pylori lipophilic terminus of lipopolysaccharide including lipid A. Carbohydrate Research, 2012, 356, 37-43.	1.1	34
327	Enterocyte Microvillus-Derived Vesicles Detoxify Bacterial Products and Regulate Epithelial-Microbial Interactions. Current Biology, 2012, 22, 627-631.	1.8	100
328	Therapeutic targeting of innate immunity with Toll-like receptor 4 (TLR4) antagonists. Biotechnology Advances, 2012, 30, 251-260.	6.0	136

#	Article	IF	CITATIONS
329	The Immunopathology of Sepsis: Pathogen Recognition, Systemic Inflammation, the Compensatory Antiâ€Inflammatory Response, and Regulatory T Cells. Journal of Veterinary Internal Medicine, 2012, 26, 457-482.	0.6	83
330	"Monovalent―ligands that trigger TLR-4 and TCR are not necessarily truly monovalent. Molecular Immunology, 2012, 51, 356-362.	1.0	3
331	Different dimerisation mode for TLR4 upon endosomal acidification?. Trends in Biochemical Sciences, 2012, 37, 92-98.	3.7	65
332	Myeloid differentiation 2 as a therapeutic target of inflammatory disorders., 2012, 133, 291-298.		54
333	<i>Trichinella spiralisâ€</i> secreted products modulate DC functionality and expand regulatory T cellsin vitro. Parasite Immunology, 2012, 34, 210-223.	0.7	59
334	Immunity and Inflammation in the Uterus. Reproduction in Domestic Animals, 2012, 47, 402-409.	0.6	82
335	Pattern recognition receptors in equine endotoxaemia and sepsis. Equine Veterinary Journal, 2012, 44, 490-498.	0.9	17
336	LPS induces phosphorylation of actinâ€regulatory proteins leading to actin reassembly and macrophage motility. Journal of Cellular Biochemistry, 2012, 113, 80-92.	1.2	44
337	Prophylactic and therapeutic implications of tollâ€like receptor ligands. Medicinal Research Reviews, 2012, 32, 294-325.	5.0	60
338	An interplay between scavenger receptor A and CD14 during activation of J774 cells by high concentrations of LPS. Immunobiology, 2013, 218, 1217-1226.	0.8	23
339	Roles of cathelicidinâ€related antimicrobial peptide in murine osteoclastogenesis. Immunology, 2013, 140, 344-351.	2.0	28
340	Adjuvants containing natural and synthetic Toll-like receptor 4 ligands. Expert Review of Vaccines, 2013, 12, 793-807.	2.0	26
341	Comparison of lipopolysaccharide structures of Bordetella pertussis clinical isolates from pre- and post-vaccine era. Carbohydrate Research, 2013, 378, 56-62.	1.1	22
342	Comprehensive survey and genomic characterization of Toll-like receptors (TLRs) in channel catfish, lctalurus punctatus: identification of novel fish TLRs. Immunogenetics, 2013, 65, 511-530.	1.2	113
343	Electrochemical sensing strategies for the detection of endotoxin: a review. RSC Advances, 2013, 3, 9606.	1.7	31
344	Accessory molecules for Toll-like receptors in Teleost fish. Identification of TLR4 interactor with leucine-rich repeats (TRIL). Molecular Immunology, 2013, 56, 745-756.	1.0	38
345	Innate Immune Responses in the CNS: Role of Toll-Like Receptors, Mechanisms, and Therapeutic Opportunities in Multiple Sclerosis. Journal of NeuroImmune Pharmacology, 2013, 8, 791-806.	2.1	16
346	Review of phosphocholine substituents on bacterial pathogen glycans: Synthesis, structures and interactions with host proteins. Molecular Immunology, 2013, 56, 563-573.	1.0	52

#	Article	IF	CITATIONS
347	Eritoran attenuates tissue damage and inflammation inÂhemorrhagic shock/trauma. Journal of Surgical Research, 2013, 184, e17-e25.	0.8	24
348	Structural Reorganization of the Toll-Like Receptor 8 Dimer Induced by Agonistic Ligands. Science, 2013, 339, 1426-1429.	6.0	288
349	Inhibition of IRAK-4 activity for rescuing endotoxin LPS-induced septic mortality in mice by lonicerae flos extract. Biochemical and Biophysical Research Communications, 2013, 442, 183-188.	1.0	19
350	<scp>BAK</scp> 1 Directly Regulates Brassinosteroid Perception and <scp>BRI</scp> 1 Activation. Journal of Integrative Plant Biology, 2013, 55, 1264-1270.	4.1	41
351	The calcium-stimulated lipid A 3-O deacylase from Rhizobium etli is not essential for plant nodulation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 1250-1259.	1.2	2
352	Structure and dynamic behavior of <scp>T</scp> ollâ€like receptor 2 subfamily triggered by malarial glycosylphosphatidylinositols of <i><scp>P</scp>lasmodiumÂfalciparum</i> . FEBS Journal, 2013, 280, 6196-6212.	2.2	29
353	Novel toll-like receptor 4 (TLR4) antagonists identified by structure- and ligand-based virtual screening. European Journal of Medicinal Chemistry, 2013, 70, 393-399.	2.6	35
354	Structural Basis for flg22-Induced Activation of the <i>Arabidopsis</i> FLS2-BAK1 Immune Complex. Science, 2013, 342, 624-628.	6.0	604
355	Regulation of Temperature-Responsive Flowering by MADS-Box Transcription Factor Repressors. Science, 2013, 342, 628-632.	6.0	307
356	Cellular distribution of lipid A and LPS R595 after inÂvitro application to isolated human monocytes by freeze-fracture replica immunogold-labelling. Innate Immunity, 2013, 19, 588-595.	1.1	1
357	Elucidation of the 3-O-Deacylase Gene, pagL, Required for the Removal of Primary β-Hydroxy Fatty Acid from the Lipid A in the Nitrogen-fixing Endosymbiont Rhizobium etli CE3*. Journal of Biological Chemistry, 2013, 288, 12004-12013.	1.6	4
358	Exogenous heat shock protein HSP70 modulates lipopolysaccharide-induced macrophage activation. Doklady Biological Sciences, 2013, 452, 320-324.	0.2	4
359	Minor Modifications to the Phosphate Groups and the C3′ Acyl Chain Length of Lipid A in Two Bordetella pertussis Strains, BP338 and 18-323, Independently Affect Toll-like Receptor 4 Protein Activation. Journal of Biological Chemistry, 2013, 288, 11751-11760.	1.6	35
360	Recognition of lipopolysaccharide pattern by TLR4 complexes. Experimental and Molecular Medicine, 2013, 45, e66-e66.	3.2	816
361	The role of the TLR-dependent signaling pathway in the mechanism of phagocyte protection by exogenous heat shock protein HSP70 from the endotoxin action. Doklady Biological Sciences, 2013, 452, 305-309.	0.2	3
362	Rifampin inhibits Tollâ€like receptor 4 signaling by targeting myeloid differentiation protein 2 and attenuates neuropathic pain. FASEB Journal, 2013, 27, 2713-2722.	0.2	63
363	$(1\hat{a}\dagger^2)$ - \hat{l}^2 -d-Glucan reduces the damages caused by reactive oxygen species induced in human platelets by lipopolysaccharides. Carbohydrate Polymers, 2013, 97, 716-724.	5.1	17
364	Contrasted evolutionary histories of two Toll-like receptors (Tlr4 and Tlr7) in wild rodents (MURINAE). BMC Evolutionary Biology, 2013, 13, 194.	3.2	58

#	Article	IF	CITATIONS
365	Nitrogen catabolite repressible GAP1 promoter, a new tool for efficient recombinant protein production in S. cerevisiae. Microbial Cell Factories, 2013, 12, 129.	1.9	7
366	The antiviral activity of poly- \hat{I}^3 -glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses. Biomaterials, 2013, 34, 9700-9708.	5.7	24
367	Conformationally Constrained Lipid A Mimetics for Exploration of Structural Basis of TLR4/MD-2 Activation by Lipopolysaccharide. ACS Chemical Biology, 2013, 8, 2423-2432.	1.6	45
368	Immunopharmacology of Lipid A Mimetics. Advances in Pharmacology, 2013, 66, 81-128.	1.2	7
369	Innate immunomodulation by lipophilic termini of lipopolysaccharide; synthesis of lipid As from Porphyromonas gingivalis and other bacteria and their immunomodulative responses. Molecular BioSystems, 2013, 9, 987.	2.9	37
370	Suppression of <scp>T</scp> ollâ€like receptor 4 activation by caffeic acid phenethyl ester is mediated by interference of <scp>LPS</scp> binding to <scp>MD2</scp> . British Journal of Pharmacology, 2013, 168, 1933-1945.	2.7	57
371	Puerarin Ameliorates Experimental Alcoholic Liver Injury by Inhibition of Endotoxin Gut Leakage, Kupffer Cell Activation, and Endotoxin Receptors Expression. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 646-654.	1.3	48
372	Enhancement of HIV-1 DNA vaccine immunogenicity by BCG-PSN, a novel adjuvant. Vaccine, 2013, 31, 472-479.	1.7	26
373	Modern Subunit Vaccines: Development, Components, and Research Opportunities. ChemMedChem, 2013, 8, 360-376.	1.6	347
374	The Crystal Structure of Human Soluble CD14 Reveals a Bent Solenoid with a Hydrophobic Amino-Terminal Pocket. Journal of Immunology, 2013, 190, 1304-1311.	0.4	82
375	Lipid a from lipopolysaccharide recognition: Structure, dynamics and cooperativity by molecular dynamics simulations. Proteins: Structure, Function and Bioinformatics, 2013, 81, 658-674.	1.5	29
376	Interactions between LPS moieties and macrophage pattern recognition receptors. Veterinary Immunology and Immunopathology, 2013, 152, 28-36.	0.5	18
377	Toll-like receptor 4 stimulation with the detoxified ligand monophosphoryl lipid A improves Alzheimer's disease-related pathology. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1941-1946.	3.3	225
378	MD-2-dependent human Toll-like receptor 4 monoclonal antibodies detect extracellular association of Toll-like receptor 4 with extrinsic soluble MD-2 on the cell surface. Biochemical and Biophysical Research Communications, 2013, 440, 31-36.	1.0	5
379	Crystal Structures of Lgr4 and Its Complex with R-Spondin1. Structure, 2013, 21, 1683-1689.	1.6	57
380	Glucuronic acid and the ethanol metabolite ethyl-glucuronide cause toll-like receptor 4 activation and enhanced pain. Brain, Behavior, and Immunity, 2013, 30, 24-32.	2.0	52
381	The Structural Basis for Endotoxin-induced Allosteric Regulation of the Toll-like Receptor 4 (TLR4) Innate Immune Receptor. Journal of Biological Chemistry, 2013, 288, 36215-36225.	1.6	51
382	Structureâ€function Aspects of Extracellular Leucineâ€rich Repeatâ€containing Cell Surface Receptors in Plants. Journal of Integrative Plant Biology, 2013, 55, 1212-1223.	4.1	36

#	Article	IF	CITATIONS
383	Immune response of the mammary gland during different stages of lactation cycle in high versus low yielding Karan Fries crossbred cows. Livestock Science, 2013, 154, 215-223.	0.6	12
385	<i>Brucella</i> evasion of adaptive immunity. Future Microbiology, 2013, 8, 147-154.	1.0	46
386	Innate affairs of allergens. Clinical and Experimental Allergy, 2013, 43, 152-163.	1.4	21
387	Improving the immunostimulatory potency of diethanolamine-containing lipid A mimics. Bioorganic and Medicinal Chemistry, 2013, 21, 2199-2209.	1.4	12
388	Lipopolysaccharide as a target for brucellosis vaccine design. Microbial Pathogenesis, 2013, 58, 29-34.	1.3	38
389	Suppression of Toll-like receptor 4 activation by endogenous oxidized phosphatidylcholine, KOdiA-PC by inhibiting LPS binding to MD2. Inflammation Research, 2013, 62, 571-580.	1.6	19
390	Host Defense at the Ocular Surface. International Reviews of Immunology, 2013, 32, 4-18.	1.5	102
391	Toll-Like Receptors in Human Papillomavirus Infection. Archivum Immunologiae Et Therapiae Experimentalis, 2013, 61, 203-215.	1.0	46
392	Exome and whole-genome sequencing of esophageal adenocarcinoma identifies recurrent driver events and mutational complexity. Nature Genetics, 2013, 45, 478-486.	9.4	671
393	Pathogen Recognition Receptors: Ligands and Signaling Pathways by Toll-Like Receptors. International Reviews of Immunology, 2013, 32, 116-133.	1.5	156
394	Molecular Basis of NF-κB Signaling. Annual Review of Biophysics, 2013, 42, 443-468.	4.5	769
395	Sulforaphane inhibits the engagement of LPS with TLR4/MD2 complex by preferential binding to Cys133 in MD2. Biochemical and Biophysical Research Communications, 2013, 434, 600-605.	1.0	56
396	Identification of Substituted Pyrimido $[5,4-\langle i\rangle b \langle i\rangle]$ indoles as Selective Toll-Like Receptor 4 Ligands. Journal of Medicinal Chemistry, 2013, 56, 4206-4223.	2.9	76
397	Determination of the physiological 2:2 TLR5:flagellin activation stoichiometry revealed by the activity of a fusion receptor. Biochemical and Biophysical Research Communications, 2013, 435, 40-45.	1.0	22
398	Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nature Reviews Microbiology, 2013, 11, 467-481.	13.6	467
399	Capsule and lipopolysaccharide. , 2013, , 533-556.		2
400	The history of Toll-like receptors â€" redefining innate immunity. Nature Reviews Immunology, 2013, 13, 453-460.	10.6	1,338
401	Toll-Like Receptor Polymorphisms, Inflammatory and Infectious Diseases, Allergies, and Cancer. Journal of Interferon and Cytokine Research, 2013, 33, 467-484.	0.5	107

#	ARTICLE	IF	CITATIONS
402	REVIEWING AND IDENTIFYING AMINO ACIDS OF HUMAN, MURINE, CANINE AND EQUINE TLR4 / MD-2 RECEPTOR COMPLEXES CONFERRING ENDOTOXIC INNATE IMMUNITY ACTIVATION BY LPS/LIPID A, OR ANTAGONISTIC EFFECTS BY ERITORAN, IN CONTRAST TO SPECIES-DEPENDENT MODULATION BY LIPID IVA. Computational and Structural Biotechnology Journal, 2013, 5, e201302012.	1.9	25
403	New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microbial Pathogenesis, 2013, 58, 17-28.	1.3	68
404	Recognition of lipid A variants by the TLR4-MD-2 receptor complex. Frontiers in Cellular and Infection Microbiology, 2013, 3, 3.	1.8	173
405	Structural characterization of bacterial lipopolysaccharides with mass spectrometry and onâ€and offâ€line separation techniques. Mass Spectrometry Reviews, 2013, 32, 90-117.	2.8	83
406	Bacterial cell wall macroamphiphiles: Pathogen-/microbe-associated molecular patterns detected by mammalian innate immune system. Biochimie, 2013, 95, 33-42.	1.3	79
407	THREE-DIMENSIONAL MAPPING OF DIFFERENTIAL AMINO ACIDS OF HUMAN, MURINE, CANINE AND EQUINE TLR4/MD-2 RECEPTOR COMPLEXES CONFERRING ENDOTOXIC ACTIVATION BY LIPID A, ANTAGONISM BY ERITORAN AND SPECIES-DEPENDENT ACTIVITIES OF LIPID IVA IN THE MAMMALIAN LPS SENSOR SYSTEM. Computational and Structural Biotechnology Journal. 2013. 7. e201305003.	1.9	20
408	Functional Insights from the Crystal Structure of the N-Terminal Domain of the Prototypical Toll Receptor. Structure, 2013, 21, 143-153.	1.6	13
409	The role of acetylation in TLR4â€mediated innate immune responses. Immunology and Cell Biology, 2013, 91, 611-614.	1.0	22
410	Morphine induced exacerbation of sepsis is mediated by tempering endotoxin tolerance through modulation of miR-146a. Scientific Reports, 2013, 3, 1977.	1.6	56
411	Mechanistic Characterization of the Tetraacyldisaccharide-1-phosphate 4′-Kinase LpxK Involved in Lipid A Biosynthesis. Biochemistry, 2013, 52, 2280-2290.	1.2	6
412	Central Resistin Overexposure Induces Insulin Resistance Through Toll-Like Receptor 4. Diabetes, 2013, 62, 102-114.	0.3	150
413	ML3 Is a NEDD8- and Ubiquitin-Modified Protein Â. Plant Physiology, 2013, 163, 135-149.	2.3	18
414	Primary tumours modulate innate immune signalling to create pre-metastatic vascular hyperpermeability foci. Nature Communications, 2013, 4, 1853.	5.8	109
415	Sisters in arms: myeloid and tubular epithelial cells shape renal innate immunity. American Journal of Physiology - Renal Physiology, 2013, 304, F1243-F1251.	1.3	28
416	CD14 Mediates Binding of High Doses of LPS but Is Dispensable for TNF- $\langle b \rangle \langle i \rangle \hat{l} \pm \langle i \rangle \langle b \rangle$ Production. Mediators of Inflammation, 2013, 2013, 1-12.	1.4	35
417	Lipids Derived from Virulent Francisella tularensis Broadly Inhibit Pulmonary Inflammation via Toll-Like Receptor 2 and Peroxisome Proliferator-Activated Receptor α. Vaccine Journal, 2013, 20, 1531-1540.	3.2	26
418	TLR4 agonists as vaccine adjuvants: a chemist's perspective. Expert Review of Vaccines, 2013, 12, 711-713.	2.0	12
419	Targeting Toll-Like Receptors: Promising Therapeutic Strategies for the Management of Sepsis-Associated Pathology and Infectious Diseases. Frontiers in Immunology, 2013, 4, 387.	2.2	232

#	Article	IF	CITATIONS
420	Radioiodination of an endotoxin·MD-2 complex generates a novel sensitive, high-affinity ligand for TLR4. Innate Immunity, 2013, 19, 545-560.	1.1	13
421	Molecular Cloning and Functional Analysis of the Duck TLR4 Gene. International Journal of Molecular Sciences, 2013, 14, 18615-18628.	1.8	17
422	Sepsis: Going to the Heart of the Matter. Pathobiology, 2013, 80, 70-86.	1.9	78
423	Phosphoethanolamine Residues on the Lipid A Moiety of Neisseria gonorrhoeae Lipooligosaccharide Modulate Binding of Complement Inhibitors and Resistance to Complement Killing. Infection and Immunity, 2013, 81, 33-42.	1.0	46
424	The Immunobiology of Toll-Like Receptor 4 Agonists. Shock, 2013, 40, 451-462.	1.0	114
425	Cytokine SpÃæle binds to the <i>Drosophila</i> immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20461-20466.	3.3	36
426	Pathogenicity of Yersinia pestis Synthesis of 1-Dephosphorylated Lipid A. Infection and Immunity, 2013, 81, 1172-1185.	1.0	24
427	High level expression of the Drosophila Toll receptor ectodomain and crystallization of its complex with the morphogen SpÃtzle. Biological Chemistry, 2013, 394, 1091-1096.	1.2	2
428	Identification of a TLR2-stimulating lipoprotein in <i>Bacteroides fragilis</i> JCM 11019 (NCTC 9343). Innate Immunity, 2013, 19, 132-139.	1.1	6
429	Interleukin-15 is required for maximal lipopolysaccharide-induced abortion. Journal of Leukocyte Biology, 2013, 93, 905-912.	1.5	27
430	A study on the immunomodulation of polysaccharopeptide through the TLR4-TIRAP/MAL-MyD88 signaling pathway in PBMCs from breast cancer patients. Immunopharmacology and Immunotoxicology, 2013, 35, 497-504.	1.1	25
431	Human TLR4 polymorphism D299G/T399I alters TLR4/MD-2 conformation and response to a weak ligand monophosphoryl lipid A. International Immunology, 2013, 25, 45-52.	1.8	29
432	Campylobacter jejuni Lipooligosaccharide Sialylation, Phosphorylation, and Amide/Ester Linkage Modifications Fine-tune Human Toll-like Receptor 4 Activation. Journal of Biological Chemistry, 2013, 288, 19661-19672.	1.6	40
433	Towards Clinical Applications of Anti-endotoxin Antibodies; A Re-appraisal of the Disconnect. Toxins, 2013, 5, 2589-2620.	1.5	23
434	Structural Modifications of Bacterial Lipopolysaccharide that Facilitate Gram-Negative Bacteria Evasion of Host Innate Immunity. Frontiers in Immunology, 2013, 4, 109.	2,2	157
435	Modulating the innate immune response by combinatorial engineering of endotoxin. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1464-1469.	3.3	182
436	Protein engineering methods applied to membrane protein targets. Protein Engineering, Design and Selection, 2013, 26, 91-100.	1.0	24
437	Aureobasidium pullulansculture supernatant significantly stimulates R-848-activated phagocytosis of PMA-induced THP-1 macrophages. Immunopharmacology and Immunotoxicology, 2013, 35, 455-461.	1.1	3

#	Article	IF	CITATIONS
438	Inhibition of Toll-Like Receptor-Mediated Inflammation In Vitro and In Vivo by a Novel Benzoxaborole. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 436-446.	1.3	12
439	EptC of Campylobacter jejuni Mediates Phenotypes Involved in Host Interactions and Virulence. Infection and Immunity, 2013, 81, 430-440.	1.0	57
440	Allergens as Immunomodulatory Proteins: The Cat Dander Protein Fel d 1 Enhances TLR Activation by Lipid Ligands. Journal of Immunology, 2013, 191 , $1529-1535$.	0.4	85
441	Reduced Surface Expression of TLR4 by a V254l Point Mutation Accounts for the Low Lipopolysaccharide Responder Phenotype of BALB/c B Cells. Journal of Immunology, 2013, 190, 195-204.	0.4	25
442	The UDP-diacylglucosamine Pyrophosphohydrolase LpxH in Lipid A Biosynthesis Utilizes Mn2+ Cluster for Catalysis. Journal of Biological Chemistry, 2013, 288, 26987-27001.	1.6	16
443	Serum Amyloid A3 Binds MD-2 To Activate p38 and NF-ÎB Pathways in a MyD88-Dependent Manner. Journal of Immunology, 2013, 191, 1856-1864.	0.4	61
444	Intracellular <i>Shigella</i> remodels its LPS to dampen the innate immune recognition and evade inflammasome activation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E4345-54.	3.3	87
445	Human Lipopolysaccharide-binding Protein (LBP) and CD14 Independently Deliver Triacylated Lipoproteins to Toll-like Receptor 1 (TLR1) and TLR2 and Enhance Formation of the Ternary Signaling Complex. Journal of Biological Chemistry, 2013, 288, 9729-9741.	1.6	106
446	Toll-Like Receptor and Accessory Molecule mRNA Expression in Humans and Mice as Well as in Murine Autoimmunity, Transient Inflammation, and Progressive Fibrosis. International Journal of Molecular Sciences, 2013, 14, 13213-13230.	1.8	14
447	Construction of Monophosphoryl Lipid A Producing Escherichia coli Mutants and Comparison of Immuno-Stimulatory Activities of Their Lipopolysaccharides. Marine Drugs, 2013, 11, 363-376.	2.2	37
448	Enhancement of Inflammatory Protein Expression and Nuclear Factor Κb (NF-Κb) Activity by Trichostatin A (TSA) in OP9 Preadipocytes. PLoS ONE, 2013, 8, e59702.	1.1	16
449	Toll-Like Receptor 2 and Toll-Like Receptor 4-Dependent Activation of B Cells by a Polysaccharide from Marine Fungus Phoma herbarum YS4108. PLoS ONE, 2013, 8, e60781.	1.1	24
450	Inefficient TLR4/MD-2 Heterotetramerization by Monophosphoryl Lipid A. PLoS ONE, 2013, 8, e62622.	1.1	29
451	Capture of Lipopolysaccharide (Endotoxin) by the Blood Clot: A Comparative Study. PLoS ONE, 2013, 8, e80192.	1.1	26
452	Should a Toll-like receptor 4 (TLR-4) agonist or antagonist be designed to treat cancer? TLR-4: its expression and effects in the ten most common cancers. OncoTargets and Therapy, 2013, 6, 1573.	1.0	72
453	Influence of Lipid A Acylation Pattern on Membrane Permeability and Innate Immune Stimulation. Marine Drugs, 2013, 11, 3197-3208.	2.2	40
454	Glycodendrimers: versatile tools for nanotechnology. Brazilian Journal of Pharmaceutical Sciences, 2013, 49, 85-108.	1.2	49
455	Differentially Expressed Genes in Bordetella pertussis Strains Belonging to a Lineage Which Recently Spread Globally. PLoS ONE, 2014, 9, e84523.	1.1	68

#	Article	IF	Citations
456	Species-Specific Activation of TLR4 by Hypoacylated Endotoxins Governed by Residues 82 and 122 of MD-2. PLoS ONE, 2014, 9, e107520.	1.1	8
457	Lipopolysaccharide (LPS) Inhibits Steroid Production in Theca Cells of Bovine Follicles <i>In Vitro</i> : Distinct Effect of LPS on Theca Cell Function in Pre- and Post-selection Follicles. Journal of Reproduction and Development, 2014, 60, 280-287.	0.5	47
458	The Role of High Mobility Group Box 1 in Innate Immunity. Yonsei Medical Journal, 2014, 55, 1165.	0.9	94
459	Toll-Like Receptors and Malaria – Sensing and Susceptibility. Journal of Tropical Diseases, 2014, 02, .	0.1	15
461	Distinct Pathways of Humoral and Cellular Immunity Induced with the Mucosal Administration of a Nanoemulsion Adjuvant. Journal of Immunology, 2014, 192, 2722-2733.	0.4	52
462	Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genetics Selection Evolution, 2014, 46, 72.	1.2	35
463	Molecular and Cellular Regulation of Toll-Like Receptor-4 Activity Induced by Lipopolysaccharide Ligands. Frontiers in Immunology, 2014, 5, 473.	2.2	57
464	Heme on innate immunity and inflammation. Frontiers in Pharmacology, 2014, 5, 115.	1.6	252
465	Type I interferon signaling contributes to the bias that Toll-like receptor 4 exhibits for signaling mediated by the adaptor protein TRIF. Science Signaling, 2014, 7, ra108.	1.6	36
466	Potent Anti-Inflammatory Activity of Pyrenocine A Isolated from the Marine-Derived Fungus <i>Penicillium paxilli</i> Ma(G)K. Mediators of Inflammation, 2014, 2014, 1-11.	1.4	27
467	Bacterial Lipopolysaccharide. , 2014, , 1-13.		0
468	The Association of Toll-Like Receptor 4 Polymorphism with Hepatitis C Virus Infection in Saudi Arabian Patients. BioMed Research International, 2014, 2014, 1-9.	0.9	21
469	Toll-Like Receptors and their Contribution to Innate Immunity: Focus on TLR4 Activation by Lipopolysaccharide. Advances in Cell Biology, 2014, 4, 1-23.	1.5	14
470	Pathogen-Associated Molecular Patterns (PAMPs)., 2014,, 1-16.		10
471	NOD1 and NOD2: Signaling, Host Defense, and Inflammatory Disease. Immunity, 2014, 41, 898-908.	6.6	639
472	G Protein Signaling Modulator-3 Inhibits the Inflammasome Activity of NLRP3. Journal of Biological Chemistry, 2014, 289, 33245-33257.	1.6	29
473	Toll-like receptor agonists: a patent review (2011 $\hat{a} \in 2013$). Expert Opinion on Therapeutic Patents, 2014, 24, 453-470.	2.4	62
474	Modulation of Endotoxicity of Shigella Generalized Modules for Membrane Antigens (GMMA) by Genetic Lipid A Modifications. Journal of Biological Chemistry, 2014, 289, 24922-24935.	1.6	77

#	Article	IF	CITATIONS
475	Distinct biological activity of lipopolysaccharides with different lipid a acylation status from mutant strains of Yersinia pestis and some members of genus Psychrobacter. Biochemistry (Moscow), 2014, 79, 1333-1338.	0.7	16
476	Occurrence of an Unusual Hopanoid-containing Lipid A Among Lipopolysaccharides from Bradyrhizobium Species. Journal of Biological Chemistry, 2014, 289, 35644-35655.	1.6	29
477	Maximizing the potency of an anti-TLR4 monoclonal antibody by exploiting proximity to $Fc\hat{l}^3$ receptors. MAbs, 2014, 6, 1621-1630.	2.6	8
478	Thermophiles as Potential Source of Novel Endotoxin Antagonists: the Full Structure and Bioactivity of theLipoâ€oligosaccharide from <i>Thermomonas hydrothermalis</i> . ChemBioChem, 2014, 15, 2146-2155.	1.3	20
479	Tollâ€like receptor 3 transmembrane domain is able to perform various homotypic interactions: An NMR structural study. FEBS Letters, 2014, 588, 3802-3807.	1.3	30
480	Suppression of <scp>LPS</scp> â€induced transcription and cytokine secretion by the dietary isothiocyanate sulforaphane. Molecular Nutrition and Food Research, 2014, 58, 2286-2296.	1.5	28
481	Contrasting patterns of polymorphism and selection in bacterialâ€sensing tollâ€like receptor 4 in two house mouse subspecies. Ecology and Evolution, 2014, 4, 2931-2944.	0.8	18
482	Os <scp>CERK</scp> 1 and Os <scp>RLCK</scp> 176 play important roles in peptidoglycan and chitin signaling in rice innate immunity. Plant Journal, 2014, 80, 1072-1084.	2.8	158
483	A divergent <i><scp>P</scp>seudomonas aeruginosa</i> palmitoyltransferase essential for cystic fibrosisâ€specific lipid <scp>A</scp> . Molecular Microbiology, 2014, 91, 158-174.	1.2	42
484	The antibacterial toxin colicin <scp>N</scp> binds to the inner core of lipopolysaccharide and close to its translocator protein. Molecular Microbiology, 2014, 92, 440-452.	1.2	40
485	Diverse Toll-Like Receptors Mediate Cytokine Production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in Macrophages. Infection and Immunity, 2014, 82, 1914-1920.	1.0	95
486	Dendritic cells during Staphylococcus aureus infection: subsets and roles. Journal of Translational Medicine, 2014, 12, 358.	1.8	15
487	Structural aspects of molecular recognition in the immune system. Part II: Pattern recognition receptors (IUPAC Technical Report). Pure and Applied Chemistry, 2014, 86, 1483-1538.	0.9	6
488	Modulating LPS Signal Transduction at the LPS Receptor Complex with Synthetic Lipid A Analogues. Advances in Carbohydrate Chemistry and Biochemistry, 2014, 71, 339-389.	0.4	8
489	A Comparative Review of Toll-Like Receptor 4 Expression and Functionality in Different Animal Species. Frontiers in Immunology, 2014, 5, 316.	2.2	620
490	Structural Basis of Lipid Binding for the Membrane-embedded Tetraacyldisaccharide-1-phosphate 4′-Kinase LpxK. Journal of Biological Chemistry, 2014, 289, 24059-24068.	1.6	8
491	Effects of a bacterial lipopolysaccharide on the reproductive functions of rabbit does. Animal Reproduction Science, 2014, 147, 128-134.	0.5	28
492	Endotoxicity of Lipopolysaccharide as a Determinant of T-Cellâ° Mediated Colitis Induction in Mice. Gastroenterology, 2014, 146, 765-775.	0.6	86

#	Article	IF	CITATIONS
493	The Second-Generation mTOR Kinase Inhibitor INK128 Exhibits Anti-inflammatory Activity in Lipopolysaccharide-Activated RAW 264.7 Cells. Inflammation, 2014, 37, 756-765.	1.7	26
494	AChE and RACK1 Promote the Anti-Inflammatory Properties of Fluoxetine. Journal of Molecular Neuroscience, 2014, 53, 306-315.	1.1	33
495	Lipid peroxidation generates biologically active phospholipids including oxidatively N-modified phospholipids. Chemistry and Physics of Lipids, 2014, 181, 1-33.	1.5	67
496	Comparative studies of Toll-like receptor signalling using zebrafish. Developmental and Comparative Immunology, 2014, 46, 35-52.	1.0	75
497	Lipopolysaccharide Activates Toll-like Receptor 4 (TLR4)-mediated NF-κB Signaling Pathway and Proinflammatory Response in Human Pericytes. Journal of Biological Chemistry, 2014, 289, 2457-2468.	1.6	227
498	Selective Antibody Intervention of Toll-like Receptor 4 Activation through Fc \hat{l}^3 Receptor Tethering. Journal of Biological Chemistry, 2014, 289, 15309-15318.	1.6	33
499	Structure of the Toll-SpÃt≥le complex, a molecular hub in <i>Drosophila</i> development and innate immunity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6281-6286.	3.3	57
500	Translation control of TAK1 mRNA by hnRNP K modulates LPS-induced macrophage activation. Rna, 2014, 20, 899-911.	1.6	31
501	Structures of pattern recognition receptors reveal molecular mechanisms of autoinhibition, ligand recognition and oligomerization. Current Opinion in Immunology, 2014, 26, 14-20.	2.4	28
502	Directing the Immune System with Chemical Compounds. ACS Chemical Biology, 2014, 9, 1075-1085.	1.6	48
503	Pulmonary surfactant protein A-induced changes in the molecular conformation of bacterial deep-rough LPS lead to reduced activity on human macrophages. Innate Immunity, 2014, 20, 787-798.	1.1	15
504	Immunotoxicity of nanoparticles: a computational study suggests that CNTs and C ₆₀ fullerenes might be recognized as pathogens by Toll-like receptors. Nanoscale, 2014, 6, 3488-3495.	2.8	97
505	Ligand specificities of Toll-like receptors in fish: Indications from infection studies. Developmental and Comparative Immunology, 2014, 43, 205-222.	1.0	197
506	Analysis of <i>Pseudomonas aeruginosa</i> PAO1 Lipid A Changes During the Interaction with Model Organism, <i>Caenorhabditis elegans</i> Lipids, 2014, 49, 555-575.	0.7	8
507	Toll-like Receptor 4 (TLR4) Modulation by Synthetic and Natural Compounds: An Update. Journal of Medicinal Chemistry, 2014, 57, 3612-3622.	2.9	138
508	Tetraacylated Lipid A and Paclitaxel-Selective Activation of TLR4/MD-2 Conferred through Hydrophobic Interactions. Journal of Immunology, 2014, 192, 1887-1895.	0.4	16
509	Screen of whole blood responses to flagellin identifies TLR5 variation associated with outcome in melioidosis. Genes and Immunity, 2014, 15, 63-71.	2.2	18
510	The attenuated inflammation of MPL is due to the lack of CD14-dependent tight dimerization of the TLR4/MD2 complex at the plasma membrane. International Immunology, 2014, 26, 307-314.	1.8	45

#	ARTICLE	IF	CITATIONS
511	Convergent Synthesis of 4-O-Phosphorylatedl-glycero-d-manno-Heptosyl Lipopolysaccharide Core Oligosaccharides Based on Regioselective Cleavage of a 6,7-O-Tetraisopropyldisiloxane-1,3-diyl Protecting Group. Journal of Organic Chemistry, 2014, 79, 582-598.	1.7	16
512	Trafficking of endosomal Toll-like receptors. Trends in Cell Biology, 2014, 24, 360-369.	3.6	154
513	NMR-based Structural Analysis of the Complete Rough-type Lipopolysaccharide Isolated from Capnocytophaga canimorsus. Journal of Biological Chemistry, 2014, 289, 23963-23976.	1.6	24
514	Modulation of CD14 and TLR4â‹MDâ€2 Activities by a Synthetic Lipid A Mimetic. ChemBioChem, 2014, 15, 250-258.	1.3	44
515	Novel drugs targeting Toll-like receptors for antiviral therapy. Future Virology, 2014, 9, 811-829.	0.9	76
516	Discovery of substituted 4-aminoquinazolines as selective Toll-like receptor 4 ligands. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 4931-4938.	1.0	20
517	Deciphering the Metabolism of Undecaprenyl-Phosphate: The Bacterial Cell-Wall Unit Carrier at the Membrane Frontier. Microbial Drug Resistance, 2014, 20, 199-214.	0.9	128
518	Antimicrobial peptide LL-37 promotes bacterial phagocytosis by human macrophages. Journal of Leukocyte Biology, 2014, 95, 971-981.	1.5	122
519	Activation of adult rat CNS endothelial cells by opioid-induced toll-like receptor 4 (TLR4) signaling induces proinflammatory, biochemical, morphological, and behavioral sequelae. Neuroscience, 2014, 280, 299-317.	1.1	56
520	Trehalose- and Glucose-Derived Glycoamphiphiles: Small-Molecule and Nanoparticle Toll-Like Receptor 4 (TLR4) Modulators. Journal of Medicinal Chemistry, 2014, 57, 9105-9123.	2.9	23
521	Kdo hydroxylase is an inner core assembly enzyme in the Ko-containing lipopolysaccharide biosynthesis. Biochemical and Biophysical Research Communications, 2014, 452, 789-794.	1.0	6
522	Assembly and localization of Toll-like receptor signalling complexes. Nature Reviews Immunology, 2014, 14, 546-558.	10.6	653
523	Contribution of TLR4 and MyD88 for adjuvant monophosphoryl lipid A (MPLA) activity in a DNA prime–protein boost HIV-1 vaccine. Vaccine, 2014, 32, 5049-5056.	1.7	27
524	Insights into Secondary Metabolism from a Global Analysis of Prokaryotic Biosynthetic Gene Clusters. Cell, 2014, 158, 412-421.	13.5	801
525	Inflammatory caspases are innate immune receptors for intracellular LPS. Nature, 2014, 514, 187-192.	13.7	1,665
526	193 nm Ultraviolet Photodissociation Mass Spectrometry for the Structural Elucidation of Lipid A Compounds in Complex Mixtures. Analytical Chemistry, 2014, 86, 2138-2145.	3.2	52
527	Toll-like receptor recognition of bacteria in fish: Ligand specificity and signal pathways. Fish and Shellfish Immunology, 2014, 41, 380-388.	1.6	253
528	Development of $\hat{l}\pm GlcN(1\hat{a}\dagger^*1)\hat{l}\pm Man$ -Based Lipid A Mimetics as a Novel Class of Potent Toll-like Receptor 4 Agonists. Journal of Medicinal Chemistry, 2014, 57, 8056-8071.	2.9	25

#	Article	IF	CITATIONS
529	Synthesis of Multifunctional Fe ₃ O ₄ –CdSe/ZnS Nanoclusters Coated with Lipid A toward Dendritic Cell-Based Immunotherapy. ACS Applied Materials & Dendritic Cell-Ba	4.0	18
530	Evaluation of four α-diketones for toll-like receptor-4 (TLR-4) activation in a human transfected cell line. Food and Chemical Toxicology, 2014, 74, 117-119.	1.8	4
531	A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Applied Microbiology and Biotechnology, 2014, 98, 7781-7791.	1.7	8
532	Novel Synthetic Toll-Like Receptor 4/MD2 Ligands Attenuate Sterile Inflammation. Journal of Pharmacology and Experimental Therapeutics, 2014, 350, 330-340.	1.3	15
533	A novel multi-epitope peptide vaccine against cancer: An in silico approach. Journal of Theoretical Biology, 2014, 349, 121-134.	0.8	187
534	A Cross-Disciplinary Perspective on the Innate Immune Responses to Bacterial Lipopolysaccharide. Molecular Cell, 2014, 54, 212-223.	4.5	155
535	Purified monomeric ligand.MD-2 complexes reveal molecular and structural requirements for activation and antagonism of TLR4 by Gram-negative bacterial endotoxins. Immunologic Research, 2014, 59, 3-11.	1.3	42
536	Role of berberine in anti-bacterial as a high-affinity LPS antagonist binding to TLR4/MD-2 receptor. BMC Complementary and Alternative Medicine, 2014, 14, 89.	3.7	83
537	A nanoliposome delivery system to synergistically trigger TLR4 AND TLR7. Journal of Nanobiotechnology, 2014, 12, 17.	4.2	65
538	Rho kinase inhibition modulates microglia activation and improves survival in a model of amyotrophic lateral sclerosis. Glia, 2014, 62, 217-232.	2.5	90
539	Self-assembling lipid modified glycol-split heparin nanoparticles suppress lipopolysaccharide-induced inflammation through TLR4–NF-№B signaling. Journal of Controlled Release, 2014, 194, 332-340.	4.8	28
541	Structure and function of toll-like receptor 8. Microbes and Infection, 2014, 16, 273-282.	1.0	49
542	Structural basis for lipopolysaccharide insertion in the bacterial outer membrane. Nature, 2014, 511, 108-111.	13.7	221
543	Do lipids influence the allergic sensitization process?. Journal of Allergy and Clinical Immunology, 2014, 134, 521-529.	1.5	117
544	Both LCCL-domains of human CRISPLD2 have high affinity for lipid A. Biochimie, 2014, 97, 66-71.	1.3	18
545	Recognition of LPS by TLR4: Potential for Anti-Inflammatory Therapies. Marine Drugs, 2014, 12, 4260-4273.	2.2	54
546	Fungal glycans and the innate immune recognition. Frontiers in Cellular and Infection Microbiology, 2014, 4, 145.	1.8	84
547	Interaction of Pathogenic Vibrio Bacteria With the Blood Clot of the Pacific White Shrimp, Litopenaeus vannamei. Biological Bulletin, 2014, 226, 102-110.	0.7	4

#	Article	IF	CITATIONS
548	Pathogenesis of infection in surgical patients. Current Opinion in Critical Care, 2015, 21, 343-350.	1.6	19
549	Scope and Limitations of 3-lodo-Kdo Fluoride-Based Glycosylation Chemistry using <i>N</i> -Acetyl Glucosamine Acceptors. ChemistryOpen, 2015, 4, 722-728.	0.9	11
550	Outer membrane vesicles of <i>Tannerella forsythia</i> biogenesis, composition, and virulence. Molecular Oral Microbiology, 2015, 30, 451-473.	1.3	45
551	The C-terminal Domain Supports a Novel Function for CETPI as a New Plasma Lipopolysaccharide-Binding Protein. Scientific Reports, 2015, 5, 16091.	1.6	17
552	Energetics of Endotoxin Recognition in the Toll-Like Receptor 4 Innate Immune Response. Scientific Reports, 2015, 5, 17997.	1.6	25
553	Insights into the species-specific TLR4 signaling mechanism in response to Rhodobacter sphaeroides lipid A detection. Scientific Reports, 2015, 5, 7657.	1.6	44
554	Urolithins, gut microbiotaâ€derived metabolites of ellagitannins, inhibit LPSâ€induced inflammation in RAW 264.7 murine macrophages. Molecular Nutrition and Food Research, 2015, 59, 2168-2177.	1.5	97
555	Diphlorethohydroxycarmalol Inhibits Interleukin-6 Production by Regulating NF-κB, STAT5 and SOCS1 in Lipopolysaccharide-Stimulated RAW264.7 Cells. Marine Drugs, 2015, 13, 2141-2157.	2.2	40
556	Tubulin cofactors and Arl2 are cage-like chaperones that regulate the soluble $\hat{l}\pm\hat{l}^2$ -tubulin pool for microtubule dynamics. ELife, 2015, 4, .	2.8	55
557	Comparative Geometrical Analysis of Leucine-Rich Repeat Structures in the Nod-Like and Toll-Like Receptors in Vertebrate Innate Immunity. Biomolecules, 2015, 5, 1955-1978.	1.8	21
558	Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure. Marine Drugs, 2015, 13, 3388-3406.	2.2	4
559	Structural Relationship of the Lipid A Acyl Groups to Activation of Murine Toll-Like Receptor 4 by Lipopolysaccharides from Pathogenic Strains of Burkholderia mallei, Acinetobacter baumannii, and Pseudomonas aeruginosa. Frontiers in Immunology, 2015, 6, 595.	2.2	51
560	Toll-Like Receptor Signaling in Vertebrates: Testing the Integration of Protein, Complex, and Pathway Data in the Protein Ontology Framework. PLoS ONE, 2015, 10, e0122978.	1.1	2
561	Immuno-Stimulatory Activity of Escherichia coli Mutants Producing Kdo2-Monophosphoryl-Lipid A or Kdo2-Pentaacyl-Monophosphoryl-Lipid A. PLoS ONE, 2015, 10, e0144714.	1.1	13
562	Differential Toll-Like Receptor-Signalling of Burkholderia pseudomallei Lipopolysaccharide in Murine and Human Models. PLoS ONE, 2015, 10, e0145397.	1.1	20
563	Computational identification of potential multi-drug combinations for reduction of microglial inflammation in Alzheimer disease. Frontiers in Pharmacology, 2015, 6, 116.	1.6	25
564	Structure and Effects of Cyanobacterial Lipopolysaccharides. Marine Drugs, 2015, 13, 4217-4230.	2.2	61
565	<i>Aeromonas salmonicida</i> Infection Only Moderately Regulates Expression of Factors Contributing to Toll-Like Receptor Signaling but Massively Activates the Cellular and Humoral Branches of Innate Immunity in Rainbow Trout (<i>Oncorhynchus mykiss</i>). Journal of Immunology Research. 2015. 2015. 1-16.	0.9	42

#	Article	IF	CITATIONS
566	Lipid A as a Drug Target and Therapeutic Molecule. Biomolecules and Therapeutics, 2015, 23, 510-516.	1.1	16
567	Bordetella pertussis Lipid A Recognition by Toll-like Receptor 4 and MD-2 Is Dependent on Distinct Charged and Uncharged Interfaces. Journal of Biological Chemistry, 2015, 290, 13440-13453.	1.6	14
568	Antibody recognition of carbohydrate epitopes. Glycobiology, 2015, 25, 920-952.	1.3	116
569	International Union of Basic and Clinical Pharmacology. XCVI. Pattern Recognition Receptors in Health and Disease. Pharmacological Reviews, 2015, 67, 462-504.	7.1	41
570	Critical residues involved in Toll-like receptor 4 activation by cationic lipid nanocarriers are not located at the lipopolysaccharide-binding interface. Cellular and Molecular Life Sciences, 2015, 72, 3971-3982.	2.4	28
571	Predicting a double mutant in the twilight zone of low homology modeling for the skeletal muscle voltage-gated sodium channel subunit beta-1 (Na v $1.4\ \hat{l}^21$). Computational and Structural Biotechnology Journal, 2015, 13, 229-240.	1.9	4
572	Anti-inflammatory effects of benzenediamine derivate FC-98 on sepsis injury in mice via suppression of JNK, NF-ÎB and IRF3 signaling pathways. Molecular Immunology, 2015, 67, 183-192.	1.0	13
573	Structure–Activity Relationships of (+)-Naltrexone-Inspired Toll-like Receptor 4 (TLR4) Antagonists. Journal of Medicinal Chemistry, 2015, 58, 5038-5052.	2.9	77
574	Extracellular milieu grossly alters pathogen-specific immune response of mammary epithelial cells. BMC Veterinary Research, 2015, 11, 172.	0.7	18
575	MD-2 is required for disulfide HMGB1–dependent TLR4 signaling. Journal of Experimental Medicine, 2015, 212, 5-14.	4.2	295
576	Metagenomic heterogeneity explains dual immune effects of endotoxins. Journal of Allergy and Clinical Immunology, 2015, 135, 277-280.	1.5	45
577	Cow-to-cow variation in fibroblast response to a toll-like receptor 2/6 agonist and its relation to mastitis caused by intramammary challenge with Staphylococcus aureus. Journal of Dairy Science, 2015, 98, 1836-1850.	1.4	17
578	Structural basis of CpG and inhibitory DNA recognition by Toll-like receptor 9. Nature, 2015, 520, 702-705.	13.7	290
579	DAT isn't all that: cocaine reward and reinforcement require Toll-like receptor 4 signaling. Molecular Psychiatry, 2015, 20, 1525-1537.	4.1	178
580	Control of repeat-protein curvature by computational protein design. Nature Structural and Molecular Biology, 2015, 22, 167-174.	3.6	84
581	Structural Biology of Innate Immunity. Annual Review of Immunology, 2015, 33, 393-416.	9.5	100
582	DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Research Reviews, 2015, 24, 29-39.	5.0	213
583	Non-canonical activation of inflammatory caspases by cytosolic LPS in innate immunity. Current Opinion in Immunology, 2015, 32, 78-83.	2.4	210

#	Article	IF	CITATIONS
584	Evidence for ProTî±-TLR4/MD-2 binding: molecular dynamics and gravimetric assay studies. Expert Opinion on Biological Therapy, 2015, 15, 223-229.	1.4	12
585	Alternatively Spliced Myeloid Differentiation Protein-2 Inhibits TLR4-Mediated Lung Inflammation. Journal of Immunology, 2015, 194, 1686-1694.	0.4	14
586	Innate Immune Pattern Recognition: A Cell Biological Perspective. Annual Review of Immunology, 2015, 33, 257-290.	9.5	1,133
587	Chemical Synthesis of <i>Burkholderia</i> Lipidâ€A Modified with Glycosyl Phosphodiesterâ€Linked 4â€Aminoâ€4â€deoxyâ€Î²â€ <scp>L</scp> â€arabinose and Its Immunomodulatory Potential. Chemistry - A Europe Journal, 2015, 21, 4102-4114.	2 a:7	18
588	Targeting proteinâ "protein interfaces using macrocyclic peptides. Biopolymers, 2015, 104, 310-316.	1.2	58
589	Survival Strategies of Extracellular Bacterial Pathogens. , 2015, , 475-489.		O
590	Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica, 2015, 143, 101-112.	0.5	15
591	<pre><scp>CD14</scp>, <scp>TLR4</scp> and <scp>TRAM</scp> Show Different Trafficking Dynamics During <scp>LPS</scp> Stimulation. Traffic, 2015, 16, 677-690.</pre>	1.3	35
592	Mechanism of $Hb\hat{l}^3$ -35-induced an increase in the activation of the human immune system by endotoxins. Innate Immunity, 2015, 21, 305-313.	1.1	11
593	A lectin S-domain receptor kinase mediates lipopolysaccharide sensing in Arabidopsis thaliana. Nature Immunology, 2015, 16, 426-433.	7.0	286
594	Toll-like receptor 4 senses oxidative stress mediated by the oxidation of phospholipids in extracellular vesicles. Science Signaling, 2015, 8, ra60.	1.6	74
595	Robust Antibody–Antigen Complexes Prediction Generated by Combining Sequence Analyses, Mutagenesis, In Vitro Evolution, X-ray Crystallography and In Silico Docking. Journal of Molecular Biology, 2015, 427, 2647-2662.	2.0	9
596	Isolation of a novel LPS-induced component of the ML superfamily in Ciona intestinalis. Developmental and Comparative Immunology, 2015, 53, 70-78.	1.0	6
597	Anti-inflammatory effect of procyanidin B1 on LPS-treated THP1 cells via interaction with the TLR4–MD-2 heterodimer and p38 MAPK and NF-κB signaling. Molecular and Cellular Biochemistry, 2015, 407, 89-95.	1.4	42
598	Celastrol blocks binding of lipopolysaccharides to a Toll-like receptor4/myeloid differentiation factor2 complex in a thiol-dependent manner. Journal of Ethnopharmacology, 2015, 172, 254-260.	2.0	41
599	The role of protein–protein interactions in Toll-like receptor function. Progress in Biophysics and Molecular Biology, 2015, 119, 72-83.	1.4	24
600	The inflammatory role of platelets via their TLRs and Siglec receptors. Frontiers in Immunology, 2015, 6, 83.	2.2	159
601	Activation of Human Toll-like Receptor 4 (TLR4)·Myeloid Differentiation Factor 2 (MD-2) by Hypoacylated Lipopolysaccharide from a Clinical Isolate of Burkholderia cenocepacia. Journal of Biological Chemistry, 2015, 290, 21305-21319.	1.6	47

#	Article	lF	CITATIONS
602	Knockdown of PLCl $\hat{\mu}$ inhibits inflammatory cytokine release via STAT3 phosphorylation in human bladder cancer cells. Tumor Biology, 2015, 36, 9723-9732.	0.8	14
603	100ÂYears later: Celebrating the contributions of x-ray crystallography to allergy and clinical immunology. Journal of Allergy and Clinical Immunology, 2015, 136, 29-37.e10.	1.5	33
604	Atractylenolide-I Sensitizes Human Ovarian Cancer Cells to Paclitaxel by Blocking Activation of TLR4/MyD88-dependent Pathway. Scientific Reports, 2014, 4, 3840.	1.6	52
605	Structural characterization and evolutionary analysis of fish-specific TLR27. Fish and Shellfish Immunology, 2015, 45, 940-945.	1.6	39
606	Initiation and perpetuation of <scp>NLRP</scp> 3 inflammasome activation and assembly. Immunological Reviews, 2015, 265, 35-52.	2.8	651
607	Signalling Networks Governing Metabolic Inflammation. Handbook of Experimental Pharmacology, 2015, 233, 195-220.	0.9	8
608	Revisiting the Interaction between the Chaperone Skp and Lipopolysaccharide. Biophysical Journal, 2015, 108, 1516-1526.	0.2	12
609	Biosynthetically engineered lipopolysaccharide as vaccine adjuvant. Expert Review of Vaccines, 2015, 14, 861-876.	2.0	55
610	Insights into the binding mode of curcumin to MD-2: studies from molecular docking, molecular dynamics simulations and experimental assessments. Molecular BioSystems, 2015, 11, 1933-1938.	2.9	24
611	Lipopolysaccharides as Microbe-associated Molecular Patterns: A Structural Perspective. RSC Drug Discovery Series, 2015, , 38-63.	0.2	15
612	TLR4 at the Crossroads of Nutrients, Gut Microbiota, and Metabolic Inflammation. Endocrine Reviews, 2015, 36, 245-271.	8.9	212
613	Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microbial Cell Factories, 2015, 14, 57.	1.9	178
614	Role of lipid microdomains in TLR-mediated signalling. Biochimica Et Biophysica Acta - Biomembranes, 2015, 1848, 1860-1867.	1.4	109
615	Anti-endotoxic activity and structural basis for human MD- $2\hat{A}$ -TLR4 antagonism of tetraacylated lipid A mimetics based on \hat{l}^2 GlcN($1\hat{a}\dagger^*1$) $\hat{l}\pm$ GlcN scaffold. Innate Immunity, 2015, 21, 490-503.	1.1	15
616	B Cells and Antibodies in Jawless Vertebrates. , 2015, , 121-132.		1
617	TLR Signaling-induced CD103-expressing Cells Protect Against Intestinal Inflammation. Inflammatory Bowel Diseases, 2015, 21, 507-519.	0.9	10
618	Contributions of Unique Intracellular Domains to Switchlike Biosensing by Toll-like Receptor 4. Journal of Biological Chemistry, 2015, 290, 8764-8777.	1.6	8
619	Advances in Toll-like receptor biology: Modes of activation by diverse stimuli. Critical Reviews in Biochemistry and Molecular Biology, 2015, 50, 359-379.	2.3	71

#	Article	IF	CITATIONS
620	Bacterial Lipopolysaccharides: An Overview of Their Structure, Biosynthesis and Immunological Activity., 2015,, 57-89.		4
621	Mass Spectrometry: Updates in the Elucidation of Structure of Oligosaccharides. , 2015, , 93-119.		0
622	Dichotomous roles for externalized cardiolipin in extracellular signaling: Promotion of phagocytosis and attenuation of innate immunity. Science Signaling, 2015, 8, ra95.	1.6	62
623	Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Science Translational Medicine, 2015, 7, 304ra142.	5.8	394
624	Structural and evolutionary characteristics of fish-specific TLR19. Fish and Shellfish Immunology, 2015, 47, 271-279.	1.6	16
625	Crucial Role of Lateral Size for Graphene Oxide in Activating Macrophages and Stimulating Pro-inflammatory Responses in Cells and Animals. ACS Nano, 2015, 9, 10498-10515.	7.3	347
626	On the translocation of bacteria and their lipopolysaccharides between blood and peripheral locations in chronic, inflammatory diseases: the central roles of LPS and LPS-induced cell death. Integrative Biology (United Kingdom), 2015, 7, 1339-1377.	0.6	140
627	A fully synthetic self-adjuvanting globo H-Based vaccine elicited strong T cell-mediated antitumor immunity. Chemical Science, 2015, 6, 7112-7121.	3.7	69
628	LPS-induced clustering of CD14 triggers generation of PI(4,5)P2. Journal of Cell Science, 2015, 128, 4096-111.	1.2	22
629	The adsorption of allergoids and 3-O-desacyl-4′-monophosphoryl lipid A (MPL®) to microcrystalline tyrosine (MCT) in formulations for use in allergy immunotherapy. Journal of Inorganic Biochemistry, 2015, 152, 147-153.	1.5	24
630	Mammalian Lipopolysaccharide Receptors Incorporated into the Retroviral Envelope Augment Virus Transmission. Cell Host and Microbe, 2015, 18, 456-462.	5.1	69
631	Gedunin Binds to Myeloid Differentiation Protein 2 and Impairs Lipopolysaccharide-Induced Toll-Like Receptor 4 Signaling in Macrophages. Molecular Pharmacology, 2015, 88, 949-961.	1.0	16
632	Species and mediator specific TLR4 antagonism in primary human and murine immune cells by $\hat{l}^2GlcN(1\hat{a}\dagger^*1)\hat{l}\pm Glc$ based lipid A mimetics. Molecular Immunology, 2015, 67, 636-641.	1.0	10
633	Reinforcing Lipid A Acylation on the Cell Surface of Acinetobacter baumannii Promotes Cationic Antimicrobial Peptide Resistance and Desiccation Survival. MBio, 2015, 6, e00478-15.	1.8	131
634	Structural basis for specific recognition of single-stranded RNA by Toll-like receptor 13. Nature Structural and Molecular Biology, 2015, 22, 782-787.	3.6	58
635	Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases. Frontiers of Medicine, 2015, 9, 288-303.	1.5	26
636	Carbohydrate-based vaccine adjuvants – discovery and development. Expert Opinion on Drug Discovery, 2015, 10, 1133-1144.	2.5	16
637	Sparstolonin B inhibits lipopolysaccharide-induced inflammation in 3T3-L1 adipocytes. European Journal of Pharmacology, 2015, 769, 79-85.	1.7	29

#	Article	IF	CITATIONS
638	Red cabbage anthocyanins as inhibitors of lipopolysaccharide-induced oxidative stress in blood platelets. International Journal of Biological Macromolecules, 2015, 80, 702-709.	3.6	21
639	Studies of the TLR4-associated protein MD-2 using yeast-display and mutational analyses. Molecular Immunology, 2015, 68, 203-212.	1.0	19
640	Leucineâ€rich repeat 2 of human Tollâ€like receptor 4 contains the binding site for inhibitory monoclonal antibodies. FEBS Letters, 2015, 589, 3893-3898.	1.3	9
641	Microbial Sensing by Toll-Like Receptors and Intracellular Nucleic Acid Sensors. Cold Spring Harbor Perspectives in Biology, 2015, 7, a016246.	2.3	288
642	Characterization of TRIF selectivity in the AGP class of lipid A mimetics: Role of secondary lipid chains. Bioorganic and Medicinal Chemistry Letters, 2015, 25, 547-553.	1.0	6
643	Dynamics on human <scp>T</scp> ollâ€like receptor 4 complexation to <scp>MD</scp> â€2: The coreceptor stabilizing function. Proteins: Structure, Function and Bioinformatics, 2015, 83, 373-382.	1.5	7
644	Select steroid hormone glucuronide metabolites can cause toll-like receptor 4 activation and enhanced pain. Brain, Behavior, and Immunity, 2015, 44, 128-136.	2.0	13
645	Synthesis of Chlamydia Lipopolysaccharide Haptens through the use of αâ€Specific 3â€Iodoâ€Kdo Fluoride Glycosyl Donors. Chemistry - A European Journal, 2015, 21, 305-313.	1.7	31
646	Postulates for validating TLR4 agonists. European Journal of Immunology, 2015, 45, 356-370.	1.6	38
647	Host Response to Leptospira Infection. Current Topics in Microbiology and Immunology, 2015, 387, 223-250.	0.7	36
648	Co-operation of TLR4 and raft proteins in LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2015, 72, 557-581.	2.4	544
649	Kdo ₂ â€lipid A: structural diversity and impact on immunopharmacology. Biological Reviews, 2015, 90, 408-427.	4.7	73
650	Chemistry of Lipidâ€A: At the Heart of Innate Immunity. Chemistry - A European Journal, 2015, 21, 500-519.	1.7	193
651	<i>Helicobacter pylori</i> -driven modulation of NK cell expansion, intracellular cytokine expression and cytotoxic activity. Innate Immunity, 2015, 21, 127-139.	1.1	38
652	The molecular mechanism of species-specific recognition of lipopolysaccharides by the MD-2/TLR4 receptor complex. Molecular Immunology, 2015, 63, 134-142.	1.0	61
653	Leptospira and Leptospirosis. Current Topics in Microbiology and Immunology, 2015, , .	0.7	115
654	Emerging Principles Governing Signal Transduction by Pattern-Recognition Receptors: Table 1 Cold Spring Harbor Perspectives in Biology, 2015, 7, a016253.	2.3	41
655	Toll-like receptor co-receptors as master regulators of the immune response. Molecular Immunology, 2015, 63, 143-152.	1.0	83

#	Article	IF	Citations
656	WildCARDs: Inflammatory caspases directly detect LPS. Cell Research, 2015, 25, 149-150.	5.7	12
657	Molecular simplification of lipid A structure: TLR4-modulating cationic and anionic amphiphiles. Molecular Immunology, 2015, 63, 153-161.	1.0	31
658	Comparison of the innate immune responses of porcine monocyte-derived dendritic cells and splenic dendritic cells stimulated with LPS. Innate Immunity, 2015, 21, 242-254.	1.1	10
659	Homeostatic Inflammation as Environmental-Adaptation Strategy. , 2016, , 25-52.		O
660	Determination of the binding mode for anti-inflammatory natural product xanthohumol with myeloid differentiation protein 2. Drug Design, Development and Therapy, 2016, 10, 455.	2.0	18
661	THP-1 cells as a model for human monocytes. Annals of Translational Medicine, 2016, 4, 438-438.	0.7	221
662	Bioinformatics analysis of the structural and evolutionary characteristics for toll-like receptor 15. PeerJ, 2016, 4, e2079.	0.9	13
663	GEN-27, a Newly Synthetic Isoflavonoid, Inhibits the Proliferation of Colon Cancer Cells in Inflammation Microenvironment by Suppressing NF-κB Pathway. Mediators of Inflammation, 2016, 2016, 1-17.	1.4	12
664	The Role of Toll-Like Receptor 4 in Infectious and Noninfectious Inflammation. Mediators of Inflammation, 2016, 2016, 1-9.	1.4	295
665	Virtual Screening Approaches towards the Discovery of Toll-Like Receptor Modulators. International Journal of Molecular Sciences, 2016, 17, 1508.	1.8	32
666	Mycobacterium leprae Activates Toll-Like Receptor-4 Signaling and Expression on Macrophages Depending on Previous Bacillus Calmette-Guerin Vaccination. Frontiers in Cellular and Infection Microbiology, 2016, 6, 72.	1.8	23
667	Mucosal Interactions between Genetics, Diet, and Microbiome in Inflammatory Bowel Disease. Frontiers in Immunology, 2016, 7, 290.	2.2	93
668	T4 Phage Tail Adhesin Gp12 Counteracts LPS-Induced Inflammation In Vivo. Frontiers in Microbiology, 2016, 7, 1112.	1.5	83
669	Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp Frontiers in Microbiology, 2016, 7, 1706.	1.5	214
670	Activation of innate immune genes in caprine blood leukocytes after systemic endotoxin challenge. BMC Veterinary Research, 2016, 12, 241.	0.7	25
671	Nucleic Acid Recognition Mechanisms by Toll-Like Receptors. Kagaku To Seibutsu, 2016, 54, 318-323.	0.0	0
672	Expression and Polymorphism of Toll-Like Receptor 4 and Effect on NF-ÎB Mediated Inflammation in Colon Cancer Patients. PLoS ONE, 2016, 11, e0146333.	1.1	48
673	CD36 Differently Regulates Macrophage Responses to Smooth and Rough Lipopolysaccharide. PLoS ONE, 2016, 11, e0153558.	1.1	17

#	Article	IF	Citations
674	Immune Sensing of Lipopolysaccharide in Plants and Animals: Same but Different. PLoS Pathogens, 2016, 12, e1005596.	2.1	69
675	The Genetic Analysis of an Acinetobacter johnsonii Clinical Strain Evidenced the Presence of Horizontal Genetic Transfer. PLoS ONE, 2016, 11, e0161528.	1.1	35
676	The Evolution of the Toll-Like Receptor System. , 2016, , 311-330.		5
677	Mechanisms Underlying the Anti-Inflammatory Effects of Clinacanthus nutans Lindau Extracts: Inhibition of Cytokine Production and Toll-Like Receptor-4 Activation. Frontiers in Pharmacology, 2016, 7, 7.	1.6	58
678	Comparison of Fusobacterium nucleatum and Porphyromonas gingivalis Lipopolysaccharides Clinically Isolated from Root Canal Infection in the Induction of Pro-Inflammatory Cytokines Secretion. Brazilian Dental Journal, 2016, 27, 202-207.	0.5	20
679	sTLR4/MD-2 complex inhibits colorectal cancer in vitro and in vivo by targeting LPS. Oncotarget, 2016, 7, 52032-52044.	0.8	10
680	A Semisynthetic Approach to New Immunoadjuvant Candidates: Siteâ€Selective Chemical Manipulation of ⟨i⟩Escherichia coli⟨/i⟩ Monophosphoryl Lipidâ€A. Chemistry - A European Journal, 2016, 22, 11053-11063.	1.7	12
681	Modification of the 1-Phosphate Group during Biosynthesis of Capnocytophaga canimorsus Lipid A. Infection and Immunity, 2016, 84, 550-561.	1.0	18
682	Antiâ€inflammatory effects and molecular mechanisms of 8â€prenyl quercetin. Molecular Nutrition and Food Research, 2016, 60, 1020-1032.	1.5	28
683	A structural insight into the negative effects of opioids in analgesia by modulating the TLR4 signaling: An in silico approach. Scientific Reports, 2016, 6, 39271.	1.6	26
684	Evidence for a LOS and a capsular polysaccharide in Capnocytophaga canimorsus. Scientific Reports, 2016, 6, 38914.	1.6	19
685	Leptospira surface adhesin (Lsa21) induces Toll like receptor 2 and 4 mediated inflammatory responses in macrophages. Scientific Reports, 2016, 6, 39530.	1.6	23
686	Modulating endotoxin activity by combinatorial bioengineering of meningococcal lipopolysaccharide. Scientific Reports, 2016, 6, 36575.	1.6	27
687	Monophosphoryl Lipid-A: A Promising Tool for Alzheimer's Disease Toll. Journal of Alzheimer's Disease, 2016, 52, 1189-1202.	1.2	11
688	Trichostatin A inhibits inflammation in phorbol myristate acetate-induced macrophages by regulating the acetylation of histone and/or non-histone proteins. Molecular Medicine Reports, 2016, 13, 845-852.	1.1	11
689	Ectodomain Architecture Affects Sequence and Functional Evolution of Vertebrate Toll-like Receptors. Scientific Reports, 2016, 6, 26705.	1.6	37
690	Transplantation of Pro-Oligodendroblasts, Preconditioned by LPS-Stimulated Microglia, Promotes Recovery after Acute Contusive Spinal Cord Injury. Cell Transplantation, 2016, 25, 2111-2128.	1.2	5
692	Lessons Learned from Mouse Mammary Tumor Virus in Animal Models. ILAR Journal, 2016, 57, 12-23.	1.8	53

#	Article	IF	CITATIONS
693	Lipopolysaccharide induces ICAM-1 expression via a c-Src/NADPH oxidase/ROS-dependent NF-κB pathway in human pulmonary alveolar epithelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L639-L657.	1.3	63
694	Structure and function: Lipid A modifications in commensals and pathogens. International Journal of Medical Microbiology, 2016, 306, 290-301.	1.5	260
695	Lipopolysaccharide of Klebsiella pneumoniae attenuates immunity of Caenorhabditis elegans and evades by altering its supramolecular structure. RSC Advances, 2016, 6, 30070-30080.	1.7	9
696	Nanomedicine. Advances in Delivery Science and Technology, 2016, , .	0.4	6
697	Innate Immune Receptors. Methods in Molecular Biology, 2016, 1417, 1-43.	0.4	23
698	Discovery and Structure–Activity Relationships of the Neoseptins: A New Class of Toll-like Receptor-4 (TLR4) Agonists. Journal of Medicinal Chemistry, 2016, 59, 4812-4830.	2.9	30
699	Reconstructing the TIR Side of the Myddosome: a Paradigm for TIR-TIR Interactions. Structure, 2016, 24, 437-447.	1.6	63
700	Endotoxin and Engineered Nanomaterials. Frontiers in Nanobiomedical Research, 2016, , 143-186.	0.1	5
701	The effective components of Huanglian Jiedu Decoction against sepsis evaluated by a lipid A-based affinity biosensor. Journal of Ethnopharmacology, 2016, 186, 369-376.	2.0	15
702	Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiology Reviews, 2016, 40, 480-493.	3.9	433
703	Mechanisms for the activation of Toll-like receptor 2/4 by saturated fatty acids and inhibition by docosahexaenoic acid. European Journal of Pharmacology, 2016, 785, 24-35.	1.7	165
704	Progress in Kdo-glycoside chemistry. Tetrahedron Letters, 2016, 57, 2133-2142.	0.7	31
705	Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. Cell, 2016, 165, 1106-1119.	13.5	534
706	Inflammatory bowel disease: exploring gut pathophysiology for novel therapeutic targets. Translational Research, 2016, 176, 38-68.	2.2	140
707	Atractylenolide I modulates ovarian cancer cell-mediated immunosuppression by blocking MD-2/TLR4 complex-mediated MyD88/NF-κB signaling in vitro. Journal of Translational Medicine, 2016, 14, 104.	1.8	31
708	Identification and characteristic analysis of TLR28: A novel member of the TLR1 family in teleost. Developmental and Comparative Immunology, 2016, 62, 102-107.	1.0	70
709	Structural Analysis Reveals that Toll-like Receptor 7 Is a Dual Receptor for Guanosine and Single-Stranded RNA. Immunity, 2016, 45, 737-748.	6.6	321
710	A penicillin-binding protein inhibits selection of colistin-resistant, lipooligosaccharide-deficient <i>Acinetobacter baumannii</i> . Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E6228-E6237.	3.3	114

#	Article	IF	CITATIONS
711	A phosphoethanolamine transferase specific for the 4′-phosphate residue of ⟨i⟩Cronobacter sakazakii⟨ i⟩ lipid A. Journal of Applied Microbiology, 2016, 121, 1444-1456.	1.4	14
712	Characterization of complex, heterogeneous lipid A samples using HPLC–MS/MS technique I. Overall analysis with respect to acylation, phosphorylation and isobaric distribution. Journal of Mass Spectrometry, 2016, 51, 1043-1063.	0.7	20
713	Acclimation capacity of the three-spined stickleback (Gasterosteus aculeatus, L.) to a sudden biological stress following a polymetallic exposure. Ecotoxicology, 2016, 25, 1478-1499.	1.1	17
714	Meningococcal Outer Membrane Vesicle Composition-Dependent Activation of the Innate Immune Response. Infection and Immunity, 2016, 84, 3024-3033.	1.0	45
715	Inflammation and Metastasis., 2016,,.		4
716	Strategies for designing synthetic immune agonists. Immunology, 2016, 148, 315-325.	2.0	25
717	Blood-Borne Lipopolysaccharide Is Rapidly Eliminated by Liver Sinusoidal Endothelial Cells via High-Density Lipoprotein. Journal of Immunology, 2016, 197, 2390-2399.	0.4	91
718	Plant pattern-recognition receptors controlling innate immunity. Science China Life Sciences, 2016, 59, 878-888.	2.3	46
719	Pathogenic, immunologic, and clinical aspects of sepsis – update 2016. Expert Review of Anti-Infective Therapy, 2016, 14, 917-927.	2.0	10
720	A structureâ€function approach to optimizing TLR4 ligands for human vaccines. Clinical and Translational Immunology, 2016, 5, e108.	1.7	44
721	Chemical Hybridization of Vizantin and Lipid A to Generate a Novel LPS Antagonist. Chemical and Pharmaceutical Bulletin, 2016, 64, 246-257.	0.6	7
722	TLR4: The Winding Road to the Discovery of the LPS Receptor. Journal of Immunology, 2016, 197, 2561-2562.	0.4	21
724	Contribution of CD14 and TLR4 to changes of the PI(4,5)P2 level in LPS-stimulated cells. Journal of Leukocyte Biology, 2016, 100, 1363-1373.	1.5	22
725	Toll-like receptors for pathogen detection in water: challenges and benefits. International Journal of Environmental Analytical Chemistry, 0, , 1-9.	1.8	4
726	Bridging the importance of Toll like receptors in human viral infections. Asian Pacific Journal of Tropical Disease, 2016, 6, 573-580.	0.5	2
727	Genetic Variants in Toll-Like Receptor 4 Gene and Their Association Analysis with Estimated Glomerular Filtration Rate in Mexican American Families. CardioRenal Medicine, 2016, 6, 301-306.	0.7	3
728	Heterogeneous Porphyromonas gingivalis LPS modulates immuno-inflammatory response, antioxidant defense and cytoskeletal dynamics in human gingival fibroblasts. Scientific Reports, 2016, 6, 29829.	1.6	28
729	Cysteine redox state plays a key role in the inter-domain movements of HMGB1: a molecular dynamics simulation study. RSC Advances, 2016, 6, 100804-100819.	1.7	6

#	ARTICLE	IF	CITATIONS
730	Exploring the Binding Proteins of Glycolipids with Bifunctional Chemical Probes. Angewandte Chemie - International Edition, 2016, 55, 14330-14334.	7.2	20
731	Discovery of new MD2 inhibitor from chalcone derivatives with anti-inflammatory effects in LPS-induced acute lung injury. Scientific Reports, 2016, 6, 25130.	1.6	45
732	Exploring the Binding Proteins of Glycolipids with Bifunctional Chemical Probes. Angewandte Chemie, 2016, 128, 14542-14546.	1.6	2
733	Issue of Self and Non-self., 2016, , 83-105.		0
734	Polymorphic Regulation of Outer Membrane Lipid A Composition. MBio, 2016, 7, .	1.8	4
735	Identification of a novel transcript of human MD2 gene. Gene, 2016, 590, 123-127.	1.0	1
737	Eritoran Suppresses Colon Cancer by Altering a Functional Balance in Toll-like Receptors That Bind Lipopolysaccharide. Cancer Research, 2016, 76, 4684-4695.	0.4	49
738	Resolvin D2 decreases TLR4 expression to mediate resolution in human monocytes. FASEB Journal, 2016, 30, 3181-3193.	0.2	25
739	Analysis of TLR4 (Asp299Gly and Thr399Ile) gene polymorphisms and mRNA level in patients with dengue infection: A case-control study. Infection, Genetics and Evolution, 2016, 43, 412-417.	1.0	8
740	The Nanoscience of Polyvalent Binding by Proteins in the Immune Response. Advances in Delivery Science and Technology, 2016, , 53-76.	0.4	1
741	Glycolipidâ€based <scp>TLR</scp> 4 Modulators and Fluorescent Probes: Rational Design, Synthesis, and Biological Properties. Chemical Biology and Drug Design, 2016, 88, 217-229.	1.5	13
742	The Galectin-9/Tim-3 pathway is involved in the regulation of NK cell function at the maternal–fetal interface in early pregnancy. Cellular and Molecular Immunology, 2016, 13, 73-81.	4.8	113
743	<i>In silico</i> analysis of human Tollâ€like receptor 7 ligand binding domain. Biotechnology and Applied Biochemistry, 2016, 63, 441-450.	1.4	7
744	MD-2 binds cholesterol. Biochemical and Biophysical Research Communications, 2016, 470, 877-880.	1.0	17
745	Impact of Obesity and Metabolic Syndrome on Immunity. Advances in Nutrition, 2016, 7, 66-75.	2.9	483
746	miR-155 targets Caspase-3 mRNA in activated macrophages. RNA Biology, 2016, 13, 43-58.	1.5	40
747	Shotgun Analysis of Rough-Type Lipopolysaccharides Using Ultraviolet Photodissociation Mass Spectrometry. Analytical Chemistry, 2016, 88, 1044-1051.	3.2	93
748	The orchestra of lipid-transfer proteins at the crossroads between metabolism and signaling. Progress in Lipid Research, 2016, 61, 30-39.	5.3	85

#	ARTICLE	IF	CITATIONS
749	Saturated Fatty Acids Engage an IRE1α-Dependent Pathway to Activate the NLRP3 Inflammasome in Myeloid Cells. Cell Reports, 2016, 14, 2611-2623.	2.9	154
750	Gut microbiotaâ€derived lipopolysaccharide uptake and trafficking to adipose tissue: implications for inflammation and obesity. Obesity Reviews, 2016, 17, 297-312.	3.1	216
752	Monophosphoryl lipid A-induced pro-inflammatory cytokine expression does not require CD14 in primary human dendritic cells. Inflammation Research, 2016, 65, 449-458.	1.6	6
753	The impact of lemon pectin characteristics on TLR activation and T84 intestinal epithelial cell barrier function. Journal of Functional Foods, 2016, 22, 398-407.	1.6	79
754	Toll-like receptors mediating vascular malfunction: Lessons from receptor subtypes., 2016, 158, 91-100.		52
755	Structural aspects of nucleic acid-sensing Toll-like receptors. Biophysical Reviews, 2016, 8, 33-43.	1.5	35
756	Molecular Basis of the Functional Differences between Soluble Human Versus Murine MD-2: Role of Val135 in Transfer of Lipopolysaccharide from CD14 to MD-2. Journal of Immunology, 2016, 196, 2309-2318.	0.4	10
757	Lipopolysaccharide-binding protein is bound and internalized by host cells and colocalizes with LPS in the cytoplasm: Implications for a role of LBP in intracellular LPS-signaling. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 660-672.	1.9	47
758	The Structural Basis for Lipid and Endotoxin Binding in RP105-MD-1, and Consequences for Regulation of Host Lipopolysaccharide Sensitivity. Structure, 2016, 24, 200-211.	1.6	11
7 59	TLR4/MD-2 activation by a synthetic agonist with no similarity to LPS. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E884-93.	3.3	115
760	Association of O-Antigen Serotype with the Magnitude of Initial Systemic Cytokine Responses and Persistence in the Urinary Tract. Journal of Bacteriology, 2016, 198, 964-972.	1.0	9
761	Binding of Lipopolysaccharide and Cholesterol-Modified Gelatin on Supported Lipid Bilayers: Effect of Bilayer Area Confinement and Bilayer Edge Tension. Langmuir, 2016, 32, 1250-1258.	1.6	7
762	Enhancing actions of peptides derived from the \hat{I}^3 -chain of fetal human hemoglobin on the immunostimulant activities of monophosphoryl lipid A. Innate Immunity, 2016, 22, 168-180.	1.1	0
763	A comparative study of biomolecule and polymer surface modifications by a surface microdischarge. European Physical Journal D, 2016, 70, 1.	0.6	12
764	Signaling in Host-Associated Microbial Communities. Cell, 2016, 164, 1288-1300.	13.5	130
765	Is toll like receptor 4 a common pathway hypothesis for development of lung cancer and idiopathic pulmonary fibrosis?. The Egyptian Journal of Chest Diseases and Tuberculosis, 2016, 65, 289-294.	0.1	6
766	Role of G-CSF in monophosphoryl lipid A-mediated augmentation of neutrophil functions after burn injury. Journal of Leukocyte Biology, 2016, 99, 629-640.	1.5	33
767	The Characteristics and Function of Bacterial Lipopolysaccharides and Their Endotoxic Potential in Humans. International Reviews of Immunology, 2016, 35, 189-218.	1.5	71

#	Article	IF	CITATIONS
768	Therapeutic Developments Targeting Tollâ€like Receptorâ€4â€Mediated Neuroinflammation. ChemMedChem, 2016, 11, 154-165.	1.6	64
769	The critical role of toll-like receptors — From microbial recognition to autoimmunity: A comprehensive review. Autoimmunity Reviews, 2016, 15, 1-8.	2.5	226
770	An <i>in silico</i> pathway. Journal of Biomolecular Structure and Dynamics, 2016, 34, 1345-1362.	2.0	3
771	The danger model: questioning an unconvincing theory. Immunology and Cell Biology, 2016, 94, 164-168.	1.0	8
772	Eritoran inhibits S100A8-mediated TLR4/MD-2 activation and tumor growth by changing the immune microenvironment. Oncogene, 2016, 35, 1445-1456.	2.6	56
773	Influence of red algal polysaccharides on biological activities and supramolecular structure of bacterial lipopolysaccharide. Journal of Applied Phycology, 2016, 28, 619-627.	1.5	16
774	Evidence for the effects of yogurt on gut health and obesity. Critical Reviews in Food Science and Nutrition, 2017, 57, 1569-1583.	5.4	95
775	BRD7 plays an anti-inflammatory role during early acute inflammation by inhibiting activation of the NF-D°B signaling pathway. Cellular and Molecular Immunology, 2017, 14, 830-841.	4.8	40
776	Oxidized cholesteryl esters and inflammation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 393-397.	1.2	56
777	TLR4 antagonist FP7 inhibits LPS-induced cytokine production and glycolytic reprogramming in dendritic cells, and protects mice from lethal influenza infection. Scientific Reports, 2017, 7, 40791.	1.6	105
778	Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. International Reviews of Immunology, 2017, 36, 57-73.	1.5	174
779	Preparation of the Extracellular Domain of Recombinant Human Toll-like Receptor 6. Protein Journal, 2017, 36, 28-35.	0.7	0
780	Modeling Diversity in Structures of Bacterial Outer Membrane Lipids. Journal of Chemical Theory and Computation, 2017, 13, 811-824.	2.3	30
781	The Structural Basis of Ligand Perception and Signal Activation by Receptor Kinases. Annual Review of Plant Biology, 2017, 68, 109-137.	8.6	247
782	<scp>T</scp> he LpxL acyltransferase is required for normal growth and pentaâ€acylation of lipid A in <scp><i>B</i></scp> <i>urkholderia cenocepacia</i>	1.2	8
783	Lipid A structural modifications in extreme conditions and identification of unique modifying enzymes to define the Toll-like receptor 4 structure-activity relationship. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2017, 1862, 1439-1450.	1.2	43
784	Selectivity of Human TLR9 for Double CpG Motifs and Implications for the Recognition of Genomic DNA. Journal of Immunology, 2017, 198, 2093-2104.	0.4	39
785	Refinement of OprH-LPS Interactions by Molecular Simulations. Biophysical Journal, 2017, 112, 346-355.	0.2	50

#	Article	IF	CITATIONS
786	Influence of carrageenan on cytokine production and cellular activity of mouse peritoneal macrophages and its effect on experimental endotoxemia. Journal of Biomedical Materials Research - Part A, 2017, 105, 1549-1557.	2.1	14
787	Evolution of toll-like receptors in the context of terrestrial ungulates and cetaceans diversification. BMC Evolutionary Biology, 2017, 17, 54.	3.2	30
788	Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6. Immunology and Cell Biology, 2017, 95, 491-495.	1.0	89
789	TLR4/MD2 specific peptides stalled inÂvivo LPS-induced immune exacerbation. Biomaterials, 2017, 126, 49-60.	5.7	39
790	Association of Lyn kinase with membrane rafts determines its negative influence on LPS-induced signaling. Molecular Biology of the Cell, 2017, 28, 1147-1159.	0.9	18
791	A <i>Klebsiella pneumoniae</i> antibiotic resistance mechanism that subdues host defences and promotes virulence. EMBO Molecular Medicine, 2017, 9, 430-447.	3.3	136
792	High-affinity caspase-4 binding to LPS presented as high molecular mass aggregates or in outer membrane vesicles. Innate Immunity, 2017, 23, 336-344.	1.1	34
793	Glucose phosphorylated on carbon 6 suppresses lipopolysaccharide binding to lipopolysaccharide-binding protein and inhibits its bioactivities. International Immunopharmacology, 2017, 45, 43-52.	1.7	1
794	The anti-sepsis activity of the components of Huanglian Jiedu Decoction with high lipid A-binding affinity. International Immunopharmacology, 2017, 46, 87-96.	1.7	27
795	Palmatine inhibits TRIF-dependent NF-κB pathway against inflammation induced by LPS in goat endometrial epithelial cells. International Immunopharmacology, 2017, 45, 194-200.	1.7	67
796	Structural and biological characteristics of different forms of V. filiformis lipid A: use of MS to highlight structural discrepancies. Journal of Lipid Research, 2017, 58, 543-552.	2.0	7
797	Two White Spot Syndrome Virus MicroRNAs Target the <i>Dorsal</i> Gene To Promote Virus Infection in Marsupenaeus japonicus Shrimp. Journal of Virology, 2017, 91, .	1.5	35
798	Soluble CD83 Inhibits T Cell Activation by Binding to the TLR4/MD-2 Complex on CD14+ Monocytes. Journal of Immunology, 2017, 198, 2286-2301.	0.4	53
799	Current Status of Toll-Like Receptor 4 Ligand Vaccine Adjuvants. , 2017, , 105-127.		7
800	Phenolic 1,3â€diketones attenuate lipopolysaccharideâ€induced inflammatory response by an alternative magnesiumâ€mediated mechanism. British Journal of Pharmacology, 2017, 174, 1090-1103.	2.7	28
801	Coordinating antigen cytosolic delivery and danger signaling to program potent cross-priming by micelle-based nanovaccine. Cell Discovery, 2017, 3, 17007.	3.1	43
802	Effects of intrauterine infusion of Escherichia coli lipopolysaccharide on uterine health, resolution of purulent vaginal discharge, and reproductive performance of lactating dairy cows. Journal of Dairy Science, 2017, 100, 4772-4783.	1.4	7
803	TREM2-Ligand Interactions in Health and Disease. Journal of Molecular Biology, 2017, 429, 1607-1629.	2.0	173

#	Article	IF	CITATIONS
804	Toll-Like Receptor-4 Signaling Drives Persistent Fibroblast Activation and Prevents Fibrosis Resolution in Scleroderma. Advances in Wound Care, 2017, 6, 356-369.	2.6	55
805	Combined Delivery of a Lipopolysaccharideâ€Binding Peptide and the Heme Oxygenaseâ€1 Gene Using Deoxycholic Acidâ€Conjugated Polyethylenimine for the Treatment of Acute Lung Injury. Macromolecular Bioscience, 2017, 17, 1600490.	2.1	16
806	Gut–liver axis and sterile signals in the development of alcoholic liver disease. Alcohol and Alcoholism, 2017, 52, 414-424.	0.9	56
807	Multi-receptor detection of individual bacterial products by the innate immune system. Nature Reviews Immunology, 2017, 17, 376-390.	10.6	163
808	Amphiphilic Guanidinocalixarenes Inhibit Lipopolysaccharide (LPS)- and Lectin-Stimulated Toll-like Receptor 4 (TLR4) Signaling. Journal of Medicinal Chemistry, 2017, 60, 4882-4892.	2.9	28
809	Gramâ€Negative Extremophile Lipopolysaccharides: Promising Source of Inspiration for a New Generation of Endotoxin Antagonists. European Journal of Organic Chemistry, 2017, 2017, 4055-4073.	1.2	26
810	Effects of intrauterine infusion of Escherichia coli lipopolysaccharide on uterine mRNA gene expression and peripheral polymorphonuclear leukocytes in Jersey cows diagnosed with purulent vaginal discharge. Journal of Dairy Science, 2017, 100, 4784-4796.	1.4	6
811	Targeting myeloid differentiation protein 2 by the new chalcone L2H21 protects <scp>LPS</scp> â€induced acute lung injury. Journal of Cellular and Molecular Medicine, 2017, 21, 746-757.	1.6	17
812	Lipid raft-dependent endocytosis negatively regulates responsiveness of J774 macrophage-like cells to LPS by down regulating the cell surface expression of LPS receptors. Cellular Immunology, 2017, 312, 42-50.	1.4	7
813	Isoacteoside, a dihydroxyphenylethyl glycoside, exhibits antiâ€nflammatory effects through blocking tollâ€ike receptor 4 dimerization. British Journal of Pharmacology, 2017, 174, 2880-2896.	2.7	53
814	Innate Immune Receptors as Competitive Determinants of Cell Fate. Molecular Cell, 2017, 66, 750-760.	4.5	47
815	Structure-Activity Relationship in TLR4 Mutations: Atomistic Molecular Dynamics Simulations and Residue Interaction Network Analysis. Scientific Reports, 2017, 7, 43807.	1.6	54
816	Gold(I)-catalyzed synthesis of \hat{I}^2 -Kdo glycosides using Kdo ortho-hexynylbenzoate as donor. Carbohydrate Research, 2017, 448, 161-165.	1.1	19
817	Human antimicrobial peptides in ocular surface defense. Progress in Retinal and Eye Research, 2017, 61, 1-22.	7.3	65
818	Structural insights into ligand recognition and regulation of nucleic acid-sensing Toll-like receptors. Current Opinion in Structural Biology, 2017, 47, 52-59.	2.6	32
819	Innate immune response to lipooligosaccharide: pivotal regulator of the pathobiology of invasive Neisseria meningitidis infections. Pathogens and Disease, 2017, 75, .	0.8	13
820	Short single-stranded DNA degradation products augment the activation of Toll-like receptor 9. Nature Communications, 2017, 8, 15363.	5.8	34
821	Integration of Canonical and Noncanonical Pathways in TLR4 Signaling: Complex Regulation of the Wound Repair Program. Advances in Wound Care, 2017, 6, 320-329.	2.6	27

#	Article	IF	CITATIONS
822	Lipopolysaccharide Detection across the Kingdoms of Life. Trends in Immunology, 2017, 38, 696-704.	2.9	57
823	C4bâ€binding protein negatively regulates <scp>TLR</scp> 4/ <scp>MD</scp> â€2 response but not <scp>TLR</scp> 3 response. FEBS Letters, 2017, 591, 1732-1741.	1.3	5
824	Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. International Reviews of Immunology, 2017, 36, 125-144.	1.5	22
825	Generation of precursor, immature, and mature murine B1â€cell lines from câ€myc/bclâ€xLâ€overexpressing preâ€Bl cells. European Journal of Immunology, 2017, 47, 911-920.	1.6	6
826	Ebolaviruses Associated with Differential Pathogenicity Induce Distinct Host Responses in Human Macrophages. Journal of Virology, 2017, 91, .	1.5	58
827	Therapeutic implication of †Iturin A†for targeting MD-2/TLR4 complex to overcome angiogenesis and invasion. Cellular Signalling, 2017, 35, 24-36.	1.7	30
828	TLR4 signals in B lymphocytes are transduced via the B cell antigen receptor and SYK. Journal of Experimental Medicine, 2017, 214, 1269-1280.	4.2	95
829	Ameloblastin Upregulates Inflammatory Response Through Induction of IL- $1\hat{l}^2$ in Human Macrophages. Journal of Cellular Biochemistry, 2017, 118, 3308-3317.	1.2	3
830	Biological Activity of Masked Endotoxin. Scientific Reports, 2017, 7, 44750.	1.6	65
831	Treatment of Sepsis Pathogenesis with High Mobility Group Box Protein 1-Regulating Anti-inflammatory Agents. Journal of Medicinal Chemistry, 2017, 60, 170-179.	2.9	35
832	The Lipidâ€A fromRhodopseudomonas palustrisStrain BisA53 LPS Possesses a Unique Structure and Low Immunostimulant Properties. Chemistry - A European Journal, 2017, 23, 3637-3647.	1.7	26
833	Synthesis and immunological evaluation of a low molecular weight saccharide with TLR-4 agonist activity. Bioorganic and Medicinal Chemistry, 2017, 25, 697-705.	1.4	0
834	Context-Dependent Role of Oxidized Lipids and Lipoproteins in Inflammation. Trends in Endocrinology and Metabolism, 2017, 28, 143-152.	3.1	96
835	Saturated palmitic acid induces myocardial inflammatory injuries through direct binding to TLR4 accessory protein MD2. Nature Communications, 2017, 8, 13997.	5.8	166
836	Toll-like receptor 2 promiscuity is responsible for the immunostimulatory activity of nucleic acid nanocarriers. Journal of Controlled Release, 2017, 247, 182-193.	4.8	13
837	Reconstruction of LPS Transfer Cascade Reveals Structural Determinants within LBP, CD14, and TLR4-MD2 for Efficient LPS Recognition and Transfer. Immunity, 2017, 46, 38-50.	6.6	274
838	Quantitative single-molecule imaging of TLR4 reveals ligand-specific receptor dimerization. Science Signaling, 2017, 10, .	1.6	71
839	Integrin α4β1 and TLR4 Cooperate to Induce Fibrotic Gene Expression in Response to Fibronectin's EDA Domain. Journal of Investigative Dermatology, 2017, 137, 2505-2512.	0.3	30

#	Article	IF	CITATIONS
840	Functional Classification of the Gut Microbiota: The Key to Cracking the Microbiota Composition Code. BioEssays, 2017, 39, 1700032.	1.2	31
841	The role of major virulence factors of AIEC involved in inflammatory bowl diseaseâ€"a mini-review. Applied Microbiology and Biotechnology, 2017, 101, 7781-7787.	1.7	26
842	Biosynthesis and structure–activity relationships of the lipid a family of glycolipids. Current Opinion in Chemical Biology, 2017, 40, 127-137.	2.8	22
843	Interaction of Leptospira with the Innate Immune System. Current Topics in Microbiology and Immunology, 2017, 415, 163-187.	0.7	23
844	Development of Clickable Monophosphoryl Lipid A Derivatives toward Semisynthetic Conjugates with Tumor-Associated Carbohydrate Antigens. Journal of Medicinal Chemistry, 2017, 60, 9757-9768.	2.9	12
845	The maternal microbiome during pregnancy and allergic disease in the offspring. Seminars in Immunopathology, 2017, 39, 669-675.	2.8	80
846	Structure–Activity Relationship Studies of Pyrimido[5,4- <i>b</i> li>]indoles as Selective Toll-Like Receptor 4 Ligands. Journal of Medicinal Chemistry, 2017, 60, 9142-9161.	2.9	21
847	TLR4-Mediated Inflammation Promotes KSHV-Induced Cellular Transformation and Tumorigenesis by Activating the STAT3 Pathway. Cancer Research, 2017, 77, 7094-7108.	0.4	33
848	Store-operated Ca2+ Entry Facilitates the Lipopolysaccharide-induced Cyclooxygenase-2 Expression in Gastric Cancer Cells. Scientific Reports, 2017, 7, 12813.	1.6	20
849	Discovery of new MD2-targeted anti-inflammatory compounds for the treatment of sepsis and acute lung injury. European Journal of Medicinal Chemistry, 2017, 139, 726-740.	2.6	21
850	Core fucose is critical for CD14-dependent Toll-like receptor 4 signaling. Glycobiology, 2017, 27, 1006-1015.	1.3	32
851	Hydroalcoholic extract of Stevia rebaudiana bert. leaves and stevioside ameliorates lipopolysaccharide induced acute liver injury in rats. Biomedicine and Pharmacotherapy, 2017, 95, 1040-1050.	2.5	53
852	Gut-homing î"42PD1+VÎ"2 T cells promote innate mucosal damage via TLR4 during acute HIV type 1 infection. Nature Microbiology, 2017, 2, 1389-1402.	5.9	13
853	Structural basis of MsbA-mediated lipopolysaccharide transport. Nature, 2017, 549, 233-237.	13.7	214
854	An inhibitory epitope of human Tollâ€like receptor 4 resides on leucineâ€rich repeat 13 and is recognized by a monoclonal antibody. FEBS Letters, 2017, 591, 2406-2416.	1.3	4
855	A polar SxxS motif drives assembly of the transmembrane domains of Toll-like receptor 4. Biochimica Et Biophysica Acta - Biomembranes, 2017, 1859, 2086-2095.	1.4	12
856	Funiculosin variants and phosphorylated derivatives promote innate immune responses via the Toll-like receptor 4/myeloid differentiation factor-2 complex. Journal of Biological Chemistry, 2017, 292, 15378-15394.	1.6	4
857	Spatial structure of TLR4 transmembrane domain in bicelles provides the insight into the receptor activation mechanism. Scientific Reports, 2017, 7, 6864.	1.6	23

#	Article	IF	CITATIONS
858	Ni(II) interaction with a peptide model of the human TLR4 ectodomain. Journal of Trace Elements in Medicine and Biology, 2017, 44, 151-160.	1.5	19
859	Total tanshinones exhibits anti-inflammatory effects through blocking TLR4 dimerization via the MyD88 pathway. Cell Death and Disease, 2017, 8, e3004-e3004.	2.7	59
860	The role of 5â€lipoxygenase in <i>Aggregatibacter actinomycetemcomitans</i> â€induced alveolar bone loss. Journal of Clinical Periodontology, 2017, 44, 793-802.	2.3	5
861	Investigation of cationicity and structure of pseudin-2 analogues for enhanced bacterial selectivity and anti-inflammatory activity. Scientific Reports, 2017, 7, 1455.	1.6	15
862	Structural changes of tailless bacteriophage $\hat{l} X174$ during penetration of bacterial cell walls. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 13708-13713.	3.3	40
863	Balancing mcr-1 expression and bacterial survival is a delicate equilibrium between essential cellular defence mechanisms. Nature Communications, 2017, 8, 2054.	5.8	157
864	Toll-like receptor 4 polymorphism as pretreatment predictor of response to HCV genotype 3a interferon-based treatment. Future Virology, 2017, 12, 739-746.	0.9	7
865	Baicalein ameliorates TNBS-induced colitis by suppressing TLR4/MyD88 signaling cascade and NLRP3 inflammasome activation in mice. Scientific Reports, 2017, 7, 16374.	1.6	78
866	Mapping tenascin-C interaction with toll-like receptor 4 reveals a new subset of endogenous inflammatory triggers. Nature Communications, 2017, 8, 1595.	5.8	95
867	Human resistin protects against endotoxic shock by blocking LPS–TLR4 interaction. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10399-E10408.	3.3	51
868	Synthesis and Immunological Comparison of Differently Linked Lipoarabinomannan Oligosaccharide–Monophosphoryl Lipid A Conjugates as Antituberculosis Vaccines. Journal of Organic Chemistry, 2017, 82, 12085-12096.	1.7	34
869	Danger of frustrated sensors: Role of Toll-like receptors and NOD-like receptors in aseptic and septic inflammations around total hip replacements. Journal of Orthopaedic Translation, 2017, 10, 68-85.	1.9	21
870	Unusual Lipidâ€A from a Coldâ€Adapted Bacterium: Detailed Structural Characterization. ChemBioChem, 2017, 18, 1845-1854.	1.3	21
871	Pathogen-mimicking vaccine delivery system designed with a bioactive polymer (inulin acetate) for robust humoral and cellular immune responses. Journal of Controlled Release, 2017, 261, 263-274.	4.8	40
872	Two distinct metacommunities characterize the gut microbiota in Crohn's disease patients. GigaScience, 2017, 6, 1-11.	3.3	75
873	Secreted tryptophanyl-tRNA synthetase as a primary defence system against infection. Nature Microbiology, 2017, 2, 16191.	5.9	76
874	Microbeâ€inducible trafficking pathways that control Tollâ€ike receptor signaling. Traffic, 2017, 18, 6-17.	1.3	27
875	Early innate immune responses to bacterial LPS. Current Opinion in Immunology, 2017, 44, 14-19.	2.4	253

#	Article	IF	CITATIONS
876	Dual inhibition of complement and Toll-like receptors as a novel approach to treat inflammatory diseasesâ€"C3 or C5 emerge together with CD14 as promising targets. Journal of Leukocyte Biology, 2017, 101, 193-204.	1.5	49
877	Structures and recognition modes of tollâ€like receptors. Proteins: Structure, Function and Bioinformatics, 2017, 85, 3-9.	1.5	57
878	Inflammasome-Derived Exosomes Activate NF-κB Signaling in Macrophages. Journal of Proteome Research, 2017, 16, 170-178.	1.8	72
879	An electrochemical lipopolysaccharide sensor based on an immobilized Toll-Like Receptor-4. Biosensors and Bioelectronics, 2017, 87, 794-801.	5.3	24
880	Smallâ€Molecule Carbohydrateâ€Based Immunostimulants. Chemistry - A European Journal, 2017, 23, 1728-1742.	1.7	20
881	Molecular basis of mycobacterial survival in macrophages. Cellular and Molecular Life Sciences, 2017, 74, 1625-1648.	2.4	110
882	Pattern Recognition Receptors., 2017,, 175-216.		2
883	Interfering with the high-affinity interaction between wheat amylase trypsin inhibitor CM3 and toll-like receptor 4: in silico and biosensor-based studies. Scientific Reports, 2017, 7, 13169.	1.6	31
884	Conservation and Divergence of Ligand Recognition and Signal Transduction Mechanisms in Toll-Like Receptors. Chemical and Pharmaceutical Bulletin, 2017, 65, 697-705.	0.6	11
886	Anti-bacterial Monoclonal Antibodies. Advances in Experimental Medicine and Biology, 2017, 1053, 119-153.	0.8	22
887	Hippocampal infusion of lipopolysaccharide induces immune responses and results in seizures in rats. NeuroReport, 2017, 28, 200-207.	0.6	2
888	Toll-Like Receptor 4 in Paraventricular Nucleus Mediates Visceral Hypersensitivity Induced by Maternal Separation. Frontiers in Pharmacology, 2017, 8, 309.	1.6	28
889	Inhibition of Toll-Like Receptor Signaling as a Promising Therapy for Inflammatory Diseases: A Journey from Molecular to Nano Therapeutics. Frontiers in Physiology, 2017, 8, 508.	1.3	266
890	The Role of Carbohydrates in the Lipopolysaccharide (LPS)/Toll-Like Receptor 4 (TLR4) Signalling. International Journal of Molecular Sciences, 2017, 18, 2318.	1.8	126
891	TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines, 2017, 5, 34.	2.1	356
892	Cancer Immunotherapy—An Emerging Field That Bridges Oncology andÂlmmunology Research. , 2017, , 357-394.		1
893	Integrated Innate Immunityâ€"Combining Activation and Effector Functions. , 2017, , 121-169.		0
894	Glycans in Infectious Diseases. A Molecular Recognition Perspective. Current Medicinal Chemistry, 2017, 24, 4057-4080.	1.2	13

#	Article	IF	Citations
895	Alkaline Phosphatase, an Unconventional Immune Protein. Frontiers in Immunology, 2017, 8, 897.	2.2	109
896	Structure–Activity Relationship of Plesiomonas shigelloides Lipid A to the Production of TNF-α, IL-1β, and IL-6 by Human and Murine Macrophages. Frontiers in Immunology, 2017, 8, 1741.	2.2	4
897	LAR-RPTP Clustering Is Modulated by Competitive Binding between Synaptic Adhesion Partners and Heparan Sulfate. Frontiers in Molecular Neuroscience, 2017, 10, 327.	1.4	25
898	Toll-Like Receptor 4 Signalling and Its Impact on Platelet Function, Thrombosis, and Haemostasis. Mediators of Inflammation, 2017, 2017, 1-13.	1.4	69
899	Short-Term Regulation of Fc <i>\hat{I}^3</i> R-Mediated Phagocytosis by TLRs in Macrophages: Participation of 5-Lipoxygenase Products. Mediators of Inflammation, 2017, 2017, 1-10.	1.4	10
900	All-Trans Retinoic Acid Modulates TLR4/NF- $\langle i \rangle$ ² $\langle i \rangle$ B Signaling Pathway Targeting TNF- $\langle i \rangle$ ¹ $\pm \langle i \rangle$ and Nitric Oxide Synthase 2 Expression in Colonic Mucosa during Ulcerative Colitis and Colitis Associated Cancer. Mediators of Inflammation, 2017, 2017, 1-16.	1.4	64
901	Herbal Compound "Jiedu Huayu―Reduces Liver Injury in Rats via Regulation of IL-2, TLR4, and PCNA Expression Levels. Evidence-based Complementary and Alternative Medicine, 2017, 2017, 1-9.	0.5	6
902	Role of the Transcription Factor Interferon Regulatory Factor-1 in Regulating Autophagy in Lipopolysaccharide-Stimulated Macrophages., 2017,, 211-230.		1
903	The symbiotic bacterial surface factor polysaccharide A on Bacteroides fragilis inhibits IL- $1\hat{1}^2$ -induced inflammation in human fetal enterocytes via toll receptors 2 and 4. PLoS ONE, 2017, 12, e0172738.	1.1	55
904	Encryption of agonistic motifs for TLR4 into artificial antigens augmented the maturation of antigen-presenting cells. PLoS ONE, 2017, 12, e0188934.	1.1	8
905	Characterization of the peripheral blood transcriptome and adaptive evolution of the MHC I and TLR gene families in the wolf (Canis lupus). BMC Genomics, 2017, 18, 584.	1.2	21
906	Lipid bilayer stress in obesity-linked inflammatory and metabolic disorders. Biochemical Pharmacology, 2018, 153, 168-183.	2.0	36
907	Modulation of innate and adaptive immune responses by arabinoxylans. Journal of Food Biochemistry, 2018, 42, e12473.	1.2	13
908	Top Down Tandem Mass Spectrometric Analysis of a Chemically Modified Rough-Type Lipopolysaccharide Vaccine Candidate. Journal of the American Society for Mass Spectrometry, 2018, 29, 1221-1229.	1.2	16
909	Dissecting the Innate Immune Recognition of Opioid Inactive Isomer (+)-Naltrexone Derived Toll-like Receptor 4 (TLR4) Antagonists. Journal of Chemical Information and Modeling, 2018, 58, 816-825.	2.5	37
910	Screening of bacteria-binding peptides and one-pot ZnO surface modification for bacterial cell entrapment. RSC Advances, 2018, 8, 8795-8799.	1.7	14
911	Structure–Activity Relationship in Monosaccharide-Based Toll-Like Receptor 4 (TLR4) Antagonists. Journal of Medicinal Chemistry, 2018, 61, 2895-2909.	2.9	51
912	Evidence that TLR4 Is Not a Receptor for Saturated Fatty Acids but Mediates Lipid-Induced Inflammation by Reprogramming Macrophage Metabolism. Cell Metabolism, 2018, 27, 1096-1110.e5.	7.2	309

#	Article	IF	CITATIONS
913	The Role of Self-Assembling Lipid Molecules in Vaccination. Advances in Biomembranes and Lipid Self-Assembly, 2018, 27, 1-37.	0.3	1
914	Toll-like receptor 4 modulation influences human neural stem cell proliferation and differentiation. Cell Death and Disease, 2018, 9, 280.	2.7	39
915	Recent advances on Toll-like receptor 4Âmodulation: new therapeutic perspectives. Future Medicinal Chemistry, 2018, 10, 461-476.	1.1	44
916	Toll-like Receptor Agonist Conjugation: A Chemical Perspective. Bioconjugate Chemistry, 2018, 29, 587-603.	1.8	67
917	Periodic Arrangement of Lipopolysaccharides Nanostructures Accelerates and Enhances the Maturation Processes of Dendritic Cells. ACS Applied Nano Materials, 2018, 1, 839-850.	2.4	8
918	Urolithins Attenuate LPS-Induced Neuroinflammation in BV2Microglia via MAPK, Akt, and NF-κB Signaling Pathways. Journal of Agricultural and Food Chemistry, 2018, 66, 571-580.	2.4	96
919	Crystal structure of the mammalian lipopolysaccharide detoxifier. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E896-E905.	3. 3	24
920	Lymphoid tissue-resident Alcaligenes LPS induces IgA production without excessive inflammatory responses via weak TLR4 agonist activity. Mucosal Immunology, 2018, 11, 693-702.	2.7	65
921	Role of microbiota-derived lipopolysaccharide in adipose tissue inflammation, adipocyte size and pyroptosis during obesity. Nutrition Research Reviews, 2018, 31, 153-163.	2.1	144
922	Coâ€administration of Antimicrobial Peptides Enhances Tollâ€like Receptorâ€4 Antagonist Activity of a Synthetic Glycolipid. ChemMedChem, 2018, 13, 280-287.	1.6	6
923	Targeting pattern-recognition receptors to discover new small molecule immune modulators. European Journal of Medicinal Chemistry, 2018, 144, 82-92.	2.6	57
924	Vaccine development targeting lipopolysaccharide structure modification. Microbes and Infection, 2018, 20, 455-460.	1.0	9
925	Recent progress in the discovery of myeloid differentiation 2 (MD2) modulators for inflammatory diseases. Drug Discovery Today, 2018, 23, 1187-1202.	3.2	35
926	An MD2-derived peptide promotes LPS aggregation, facilitates its internalization in THP-1 cells, and inhibits LPS-induced pro-inflammatory responses. Cellular and Molecular Life Sciences, 2018, 75, 2431-2446.	2.4	14
927	Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydrate Polymers, 2018, 195, 243-256.	5.1	36
928	Genomic structure and molecular characterization of Toll-like receptors 1 and 2 from golden pompano Trachinotus ovatus (Linnaeus, 1758) and their expression response to three types of pathogen-associated molecular patterns. Developmental and Comparative Immunology, 2018, 86, 34-40.	1.0	24
929	The substrate-binding cap of the UDP-diacylglucosamine pyrophosphatase LpxH is highly flexible, enabling facile substrate binding and product release. Journal of Biological Chemistry, 2018, 293, 7969-7981.	1.6	14
930	Comparative efficacy of vanilloids in inhibiting toll-like receptor-4 (TLR-4)/myeloid differentiation factor (MD-2) homodimerisation. Food and Function, 2018, 9, 3344-3350.	2.1	8

#	Article	IF	CITATIONS
931	Atomistic Scale Effects of Lipopolysaccharide Modifications on Bacterial Outer Membrane Defenses. Biophysical Journal, 2018, 114, 1389-1399.	0.2	39
932	Synthetic glycan-based TLR4 agonists targeting caspase-4/11 for the development of adjuvants and immunotherapeutics. Chemical Science, 2018, 9, 3957-3963.	3.7	17
933	The Biosynthesis of Lipooligosaccharide from <i>Bacteroides thetaiotaomicron</i> . MBio, 2018, 9, .	1.8	54
934	Progress in the synthesis and biological evaluation of lipid A and its derivatives. Medicinal Research Reviews, 2018, 38, 556-601.	5.0	33
935	Gram-negative bacterial membrane vesicle release in response to the host-environment: different threats, same trick?. Critical Reviews in Microbiology, 2018, 44, 258-273.	2.7	50
936	Engineered <i>Salmonella enterica</i> serovar Typhimurium overcomes limitations of anti-bacterial immunity in bacteria-mediated tumor therapy. Oncolmmunology, 2018, 7, e1382791.	2.1	46
937	Endogenous ligands of TLR4 promote unresolving tissue fibrosis: Implications for systemic sclerosis and its targeted therapy. Immunology Letters, 2018, 195, 9-17.	1.1	53
938	Toll-like receptors and their role in persistent pain. , 2018, 184, 145-158.		157
939	Recent progress of fully synthetic carbohydrate-based vaccine using TLR agonist as build-in adjuvant. Chinese Chemical Letters, 2018, 29, 19-26.	4.8	34
940	Current (Food) Allergenic Risk Assessment: Is It Fit for Novel Foods? Status Quo and Identification of Gaps. Molecular Nutrition and Food Research, 2018, 62, 1700278.	1.5	42
941	Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochemical Pharmacology, 2018, 147, 104-118.	2.0	17
942	Keratin 6a reorganization for ubiquitin–proteasomal processing is a direct antimicrobial response. Journal of Cell Biology, 2018, 217, 731-744.	2.3	29
943	Shikonin inhibits myeloid differentiation protein 2 to prevent LPSâ€induced acute lung injury. British Journal of Pharmacology, 2018, 175, 840-854.	2.7	59
944	Structural vaccinology considerations for in silico designing of a multi-epitope vaccine. Infection, Genetics and Evolution, 2018, 58, 96-109.	1.0	88
945	Discovery of caffeic acid phenethyl ester derivatives as novel myeloid differentiation protein 2 inhibitors for treatment of acute lung injury. European Journal of Medicinal Chemistry, 2018, 143, 361-375.	2.6	32
946	Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies. Molecular and Cellular Proteomics, 2018, 17, 233-254.	2.5	39
947	Eucalyptus robusta leaves methanolic extract suppresses inflammatory mediators by specifically targeting TLR4/TLR9, MPO, COX2, iNOS and inflammatory cytokines in experimentally-induced endometritis in rats. Journal of Ethnopharmacology, 2018, 213, 149-158.	2.0	20
948	Effects of local lipopolysaccharide administration on the expression of Toll-like receptor 4 and pro-inflammatory cytokines in uterus and oviduct of rabbit does. Theriogenology, 2018, 107, 162-174.	0.9	19

#	Article	IF	CITATIONS
949	Characterization of complex, heterogeneous lipid A samples using HPLCâ€MS/MS technique III. Positiveâ€ion mode tandem mass spectrometry to reveal phosphorylation and acylation patterns of lipid A. Journal of Mass Spectrometry, 2018, 53, 146-161.	0.7	10
950	Loss of BMIâ€1 dampens migration and EMT of colorectal cancer in inflammatory microenvironment through TLR4/MDâ€2/MyD88â€mediated NFâ€Î°B signaling. Journal of Cellular Biochemistry, 2018, 119, 1922-193	в д :2	27
951	Potential Mechanisms Underlying the Increased Excitability of the Bladder Afferent Pathways in Interstitial Cystitis/Bladder Pain Syndrome. Urogenital Tract Infection, 2018, 13, 26.	0.1	1
952	Toll-like receptor 4 in acute viral infection: Too much of a good thing. PLoS Pathogens, 2018, 14, e1007390.	2.1	137
953	Gene Regulatory Network Modeling of Macrophage Differentiation Corroborates the Continuum Hypothesis of Polarization States. Frontiers in Physiology, 2018, 9, 1659.	1.3	102
954	Isofraxidin targets the TLR4/MD-2 axis to prevent osteoarthritis development. Food and Function, 2018, 9, 5641-5652.	2.1	23
955	Diverse pro-inflammatory endotoxin recognition systems of mammalian innate immunity. F1000Research, 2018, 7, 516.	0.8	20
956	Whatever happened to the Shwartzman phenomenon?. Innate Immunity, 2018, 24, 466-479.	1.1	17
957	Fever and hypothermia in systemic inflammation. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2018, 157, 565-597.	1.0	85
958	Personalized mathematical model of endotoxin-induced inflammatory responses in young men and associated changes in heart rate variability. Mathematical Modelling of Natural Phenomena, 2018, 13, 42.	0.9	11
959	Epimedium sagittatum inhibits TLR4/MD-2 mediated NF-κB signaling pathway with anti-inflammatory activity. BMC Complementary and Alternative Medicine, 2018, 18, 303.	3.7	16
960	A TLR4-derived non-cytotoxic, self-assembling peptide functions as a vaccine adjuvant in mice. Journal of Biological Chemistry, 2018, 293, 19874-19885.	1.6	18
961	Current Progress in the Structural and Biochemical Characterization of Proteins Involved in the Assembly of Lipopolysaccharide. International Journal of Microbiology, 2018, 2018, 1-32.	0.9	14
962	Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Scientific Reports, 2018, 8, 17878.	1.6	33
963	sTLR4/sMDâ€'2 complex alleviates LPSâ€'induced acute lung injury by inhibiting proâ€'inflammatory cytokines and chemokine CXCL1 expression. Experimental and Therapeutic Medicine, 2018, 16, 4632-4638.	0.8	7
964	Structurally Simple, Readily Available Peptidomimetic 1-Benzyl-5-methyl-4-(<i>n</i> -octylamino)pyrimidin-2(1 <i>H</i>)-one Exhibited Efficient Cardioprotection in a Myocardial Ischemia (MI) Mouse Model. Journal of Medicinal Chemistry, 2018, 61, 11309-11326.	2.9	7
965	Intestinal microbiome adjusts the innate immune setpoint during colonization through negative regulation of MyD88. Nature Communications, 2018, 9, 4099.	5.8	73
966	Novel Campylobacter concisus lipooligosaccharide is a determinant of inflammatory potential and virulence. Journal of Lipid Research, 2018, 59, 1893-1905.	2.0	4

#	Article	IF	CITATIONS
967	TLR Activation and Allergic Disease: Early Life Microbiome and Treatment. Current Allergy and Asthma Reports, 2018, 18, 61.	2.4	15
968	Disaccharideâ€Based Anionic Amphiphiles as Potent Inhibitors of Lipopolysaccharideâ€Induced Inflammation. ChemMedChem, 2018, 13, 2317-2331.	1.6	15
969	Accelerated Aging and Clearance of Host Anti-inflammatory Enzymes by Discrete Pathogens Fuels Sepsis. Cell Host and Microbe, 2018, 24, 500-513.e5.	5.1	38
970	Shaperone-Dependent Optimization of Expression in E. coli and Purification of Soluble Recombinant Lipid A Phosphatase LpxE from Francisella tularensis. Molecular Genetics, Microbiology and Virology, 2018, 33, 34-43.	0.0	0
971	Computationally Designed Bispecific MD2/CD14 Binding Peptides Show TLR4 Agonist Activity. Journal of Immunology, 2018, 201, 3383-3391.	0.4	13
972	Plasmonic bacteria on a nanoporous mirror via hydrodynamic trapping for rapid identification of waterborne pathogens. Light: Science and Applications, 2018, 7, 68.	7.7	25
973	GPR108, an NF- \hat{l}° B activator suppressed by TIRAP, negatively regulates TLR-triggered immune responses. PLoS ONE, 2018, 13, e0205303.	1.1	17
974	Structural flexibility in the Helicobacter pylori peptidyl-prolyl cis, trans-isomerase HP0175 is achieved through an extension of the chaperone helices. Journal of Structural Biology, 2018, 204, 261-269.	1.3	4
975	Targeting the TLR4–MD2 axis in systemic sclerosis. Nature Reviews Rheumatology, 2018, 14, 564-566.	3.5	6
976	Structure-Function Relationships of the Neisserial EptA Enzyme Responsible for Phosphoethanolamine Decoration of Lipid A: Rationale for Drug Targeting. Frontiers in Microbiology, 2018, 9, 1922.	1.5	16
977	In vivo Proinflammatory Cytokine Production by CD-1 Mice in Response to Equipotential Doses of Rhodobacter capsulatus PG and Salmonella enterica Lipopolysaccharides. Biochemistry (Moscow), 2018, 83, 846-854.	0.7	1
978	Glucosylceramide modifies the LPS-induced inflammatory response in macrophages and the orientation of the LPS/TLR4 complex in silico. Scientific Reports, 2018, 8, 13600.	1.6	33
979	Modeling of Granule Secretion upon Platelet Activation through the TLR4-Receptor. Biophysics (Russian Federation), 2018, 63, 357-364.	0.2	0
980	Bradyrhizobium Lipid A: Immunological Properties and Molecular Basis of Its Binding to the Myeloid Differentiation Protein-2/Toll-Like Receptor 4 Complex. Frontiers in Immunology, 2018, 9, 1888.	2,2	9
981	Immunoinformatics-aided design of a potential multi-epitope peptide vaccine against Leishmania infantum. International Journal of Biological Macromolecules, 2018, 120, 1127-1139.	3.6	63
982	Signatures of diversifying selection and convergence acting on passerine Tollâ€like receptor 4 in an evolutionary context. Molecular Ecology, 2018, 27, 2871-2883.	2.0	11
983	Discovery of novel small molecule TLR4 inhibitors as potent anti-inflammatory agents. European Journal of Medicinal Chemistry, 2018, 154, 253-266.	2.6	35
984	A Thermodynamic Funnel Drives Bacterial Lipopolysaccharide Transfer in the TLR4 Pathway. Structure, 2018, 26, 1151-1161.e4.	1.6	32

#	Article	IF	CITATIONS
985	Cross-specificity of protective human antibodies against Klebsiella pneumoniae LPS O-antigen. Nature Immunology, 2018, 19, 617-624.	7.0	108
986	Lipopolysaccharide (LPS)-binding protein stimulates CD14-dependent Toll-like receptor 4 internalization and LPS-induced TBK1–IKKϵ–IRF3 axis activation. Journal of Biological Chemistry, 2018, 293, 10186-10201.	1.6	117
987	Activation of Toll-like receptors nucleates assembly of the MyDDosome signaling hub. ELife, 2018, 7, .	2.8	83
988	Mass Spectrometry-based Structural Analysis and Systems Immunoproteomics Strategies for Deciphering the Host Response to Endotoxin. Journal of Molecular Biology, 2018, 430, 2641-2660.	2.0	21
989	Adjuvants. Current Topics in Microbiology and Immunology, 2018, 428, 103-127.	0.7	3
990	Immunogenicity Testing of Lipidoids InÂVitro and In Silico: Modulating Lipidoid-Mediated TLR4 Activation by Nanoparticle Design. Molecular Therapy - Nucleic Acids, 2018, 11, 159-169.	2.3	27
991	Functional expression of TLR5 of different vertebrate species and diversification in intestinal pathogen recognition. Scientific Reports, 2018, 8, 11287.	1.6	16
992	Rickettsia Lipid A Biosynthesis Utilizes the Late Acyltransferase LpxJ for Secondary Fatty Acid Addition. Journal of Bacteriology, 2018, 200, .	1.0	17
993	Efficacy and Safety of Xuebijing Injection Combined With Ulinastatin as Adjunctive Therapy on Sepsis: A Systematic Review and Meta-Analysis. Frontiers in Pharmacology, 2018, 9, 743.	1.6	22
994	Lipid A Remodeling Is a Pathoadaptive Mechanism That Impacts Lipopolysaccharide Recognition and Intracellular Survival of Burkholderia pseudomallei. Infection and Immunity, 2018, 86, .	1.0	16
995	Linkage of Infection to Adverse Systemic Complications: Periodontal Disease, Toll-Like Receptors, and Other Pattern Recognition Systems. Vaccines, 2018, 6, 21.	2.1	43
996	Dendritic Cell-Targeted Nanovaccine Delivery System Prepared with an Immune-Active Polymer. ACS Applied Materials & Dendritic Cell-Targeted Nanovaccine Delivery System Prepared with an Immune-Active Polymer. ACS	4.0	46
997	Aminosugar-based immunomodulator lipid A: synthetic approaches. Beilstein Journal of Organic Chemistry, 2018, 14, 25-53.	1.3	19
998	Hypoacylated LPS from Foodborne Pathogen Campylobacter jejuni Induces Moderate TLR4-Mediated Inflammatory Response in Murine Macrophages. Frontiers in Cellular and Infection Microbiology, 2018, 8, 58.	1.8	25
999	Computational Insight Into the Structural Organization of Full-Length Toll-Like Receptor 4 Dimer in a Model Phospholipid Bilayer. Frontiers in Immunology, 2018, 9, 489.	2.2	20
1000	Staphylococcus aureus Phenol-Soluble Modulins α1–α3 Act as Novel Toll-Like Receptor (TLR) 4 Antagonists to Inhibit HMGB1/TLR4/NF-κB Signaling Pathway. Frontiers in Immunology, 2018, 9, 862.	2.2	37
1001	Fnr and ArcA Regulate Lipid A Hydroxylation in Salmonella Enteritidis by Controlling lpxO Expression in Response to Oxygen Availability. Frontiers in Microbiology, 2018, 9, 1220.	1.5	21
1002	Membrane vesicles from <i>Pseudomonas aeruginosa</i> activate the noncanonical inflammasome through caspaseâ€5 in human monocytes. Immunology and Cell Biology, 2018, 96, 1120-1130.	1.0	65

#	ARTICLE	IF	CITATIONS
1003	MD-2 is a new predictive biomarker in dilated cardiomyopathy and exerts direct effects in isolated cardiomyocytes. International Journal of Cardiology, 2018, 270, 278-286.	0.8	7
1004	Recent Advances in Toll Like Receptor-Targeting Glycoconjugate Vaccines. Molecules, 2018, 23, 1583.	1.7	34
1005	The Effect of Cyanobacterial LPS Antagonist (CyP) on Cytokines and Micro-RNA Expression Induced by Porphyromonas gingivalis LPS. Toxins, 2018, 10, 290.	1.5	11
1006	Convenience versus Biological Significance: Are PMA-Differentiated THP-1 Cells a Reliable Substitute for Blood-Derived Macrophages When Studying in Vitro Polarization?. Frontiers in Pharmacology, 2018, 9, 71.	1.6	180
1007	25â€Hydroxycholesterol protects against acute lung injury via targeting <scp>MD</scp> â€2. Journal of Cellular and Molecular Medicine, 2018, 22, 5494-5503.	1.6	20
1008	Metabolites as regulators of insulin sensitivity and metabolism. Nature Reviews Molecular Cell Biology, 2018, 19, 654-672.	16.1	369
1009	Immune signalling by supramolecular assemblies. Immunology, 2018, 155, 435-445.	2.0	5
1010	New application of anti-TLR monoclonal antibodies: detection, inhibition and protection. Inflammation and Regeneration, 2018, 38, 11.	1.5	7
1011	Sepsis-Induced Acute Kidney Injury. , 2018, , 128-146.		0
1012	Biochemical and Structural Insights into an Fe(II)/ \hat{l} ±-Ketoglutarate/O2-Dependent Dioxygenase, Kdo 3-Hydroxylase (KdoO). Journal of Molecular Biology, 2018, 430, 4036-4048.	2.0	1
1013	Lipid A structural characterization from the LPS of the Siberian psychro-tolerant Psychrobacter arcticus 273-4 grown at low temperature. Extremophiles, 2018, 22, 955-963.	0.9	2
1014	Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Molecular Biology and Evolution, 2018, 35, 2170-2184.	3.5	107
1015	Enteric bacteria boost defences against oxidative stress in Entamoeba histolytica. Scientific Reports, 2018, 8, 9042.	1.6	49
1016	Identification of luteolin 7-O- \hat{l}^2 -D-glucuronide from Cirsium japonicum and its anti-inflammatory mechanism. Journal of Functional Foods, 2018, 46, 521-528.	1.6	31
1017	Dihydronortanshinone, a natural product, alleviates LPS-induced inflammatory response through NF-I ^o B, mitochondrial ROS, and MAPK pathways. Toxicology and Applied Pharmacology, 2018, 355, 1-8.	1.3	34
1018	Extension and refinement of the recognition motif for Toll-like receptor 5 activation by flagellin. Journal of Leukocyte Biology, 2018, 104, 767-776.	1.5	15
1019	A G-protein-coupled chemoattractant receptor recognizes lipopolysaccharide for bacterial phagocytosis. PLoS Biology, 2018, 16, e2005754.	2.6	33
1020	Ferulic Acid Rescues LPS-Induced Neurotoxicity via Modulation of the TLR4 Receptor in the Mouse Hippocampus. Molecular Neurobiology, 2019, 56, 2774-2790.	1.9	114

#	Article	IF	CITATIONS
1021	Structural insights into pharmacophore-assisted ⟨i⟩in silico⟨/i⟩ identification of protein–protein interaction inhibitors for inhibition of human toll-like receptor 4 – myeloid differentiation factor-2 (hTLR4â°'MD-2) complex. Journal of Biomolecular Structure and Dynamics, 2019, 37, 1968-1991.	2.0	12
1022	Targeting tollâ€like receptor 4 signalling pathways: can therapeutics pay the toll for hypertension?. British Journal of Pharmacology, 2019, 176, 1864-1879.	2.7	49
1023	Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. BioMed Research International, 2019, 2019, 1-18.	0.9	42
1024	Weak Agonistic LPS Restores Intestinal Immune Homeostasis. Molecular Therapy, 2019, 27, 1974-1991.	3.7	70
1025	Porcine Milk Exosome MiRNAs Attenuate LPS-Induced Apoptosis through Inhibiting TLR4/NF- ¹ B and p53 Pathways in Intestinal Epithelial Cells. Journal of Agricultural and Food Chemistry, 2019, 67, 9477-9491.	2.4	128
1026	Renal tubular cell spliced X-box binding protein 1 (Xbp1s) has a unique role in sepsis-induced acute kidney injury and inflammation. Kidney International, 2019, 96, 1359-1373.	2.6	56
1027	Ciprofloxacin and levofloxacin attenuate microglia inflammatory response via TLR4/NF-kB pathway. Journal of Neuroinflammation, 2019, 16, 148.	3.1	275
1028	Methamphetamine Activates Toll-Like Receptor 4 to Induce Central Immune Signaling within the Ventral Tegmental Area and Contributes to Extracellular Dopamine Increase in the Nucleus Accumbens Shell. ACS Chemical Neuroscience, 2019, 10, 3622-3634.	1.7	60
1029	TLR4-directed Molecular Strategies Targeting Skin Photodamage and Carcinogenesis. Current Medicinal Chemistry, 2019, 25, 5487-5502.	1.2	25
1030	Stereochemistry and innate immune recognition: (+)â€norbinaltorphimine targets myeloid differentiation protein 2 and inhibits tollâ€like receptor 4 signaling. FASEB Journal, 2019, 33, 9577-9587.	0.2	16
1031	Alternative splicing regulates stochastic NLRP3 activity. Nature Communications, 2019, 10, 3238.	5.8	44
1032	Disinfection of water and wastewater by biosynthesized magnetite and zerovalent iron nanoparticles via NAP-NAR enzymes of Proteus mirabilis 10B. Environmental Science and Pollution Research, 2019, 26, 23661-23678.	2.7	25
1033	TLRs in pulmonary diseases. Life Sciences, 2019, 233, 116671.	2.0	63
1034	The Mammalian Response: A Mosaic of Structures. , 2019, , 709-785.		0
1035	LPS Structure, Function, and Heterogeneity., 2019,, 53-93.		10
1036	Multiscale modeling of innate immune receptors: Endotoxin recognition and regulation by host defense peptides. Pharmacological Research, 2019, 147, 104372.	3.1	15
1037	Tollâ€like receptor 4: A promising therapeutic target for pneumonia caused by Gramâ€negative bacteria. Journal of Cellular and Molecular Medicine, 2019, 23, 5868-5875.	1.6	16
1038	Endotoxin in Microbiological Context. , 2019, , 95-155.		0

#	Article	IF	CITATIONS
1039	Inhibition of myeloid differentiation factor 2 by baicalein protects against acute lung injury. Phytomedicine, 2019, 63, 152997.	2.3	33
1040	Unveiling the Interplay between the TLR4/MD2 Complex and HSP70 in the Human Cardiovascular System: A Computational Approach. International Journal of Molecular Sciences, 2019, 20, 3121.	1.8	19
1041	The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiology Ecology, 2019, 95, .	1.3	7
1042	Key residues in TLR4-MD2 tetramer formation identified by free energy simulations. PLoS Computational Biology, 2019, 15, e1007228.	1.5	11
1043	The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Hostâ€"Pathogen Arms Race in Birds. Diversity, 2019, 11, 131.	0.7	25
1044	Substrate structure-activity relationship reveals a limited lipopolysaccharide chemotype range for intestinal alkaline phosphatase. Journal of Biological Chemistry, 2019, 294, 19405-19423.	1.6	12
1045	Immunobiology and application of toll-like receptor 4 agonists to augment host resistance to infection. Pharmacological Research, 2019, 150, 104502.	3.1	34
1046	Cranberry extracts promote growth of Bacteroidaceae and decrease abundance of Enterobacteriaceae in a human gut simulator model. PLoS ONE, 2019, 14, e0224836.	1.1	25
1047	Volatile anesthetics isoflurane and sevoflurane directly target and attenuate Tollâ€like receptor 4 system. FASEB Journal, 2019, 33, 14528-14541.	0.2	29
1048	Growth factorâ€free, angiogenic hydrogel based on hydrophobically modified Alaska pollock gelatin. Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2291-2299.	1.3	7
1049	Design and Development of a Novel Peptide for Treating Intestinal Inflammation. Frontiers in Immunology, 2019, 10, 1841.	2.2	32
1050	MD-2 Homologue Recognizes the White Spot Syndrome Virus Lipid Component and Induces Antiviral Molecule Expression in Shrimp. Journal of Immunology, 2019, 203, 1131-1141.	0.4	20
1051	Meningococcal pneumonia: a review. Pneumonia (Nathan Qld), 2019, 11, 3.	2.5	30
1052	Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflammation Research, 2019, 68, 1011-1024.	1.6	32
1053	Inflammatory Response to Different Toxins in Experimental Sepsis Models. International Journal of Molecular Sciences, 2019, 20, 4341.	1.8	138
1054	Toll-Like Receptors and Relevant Emerging Therapeutics with Reference to Delivery Methods. Pharmaceutics, 2019, 11, 441.	2.0	20
1055	Microglia-Triggered Plasticity of Intrinsic Excitability Modulates Psychomotor Behaviors in Acute Cerebellar Inflammation. Cell Reports, 2019, 28, 2923-2938.e8.	2.9	78
1056	Polysaccharide Chain Length of Lipopolysaccharides From Salmonella Minnesota Is a Determinant of Aggregate Stability, Plasma Residence Time and Proinflammatory Propensity in vivo. Frontiers in Microbiology, 2019, 10, 1774.	1.5	20

#	Article	IF	CITATIONS
1057	Cryo-EM structures of lipopolysaccharide transporter LptB2FGC in lipopolysaccharide or AMP-PNP-bound states reveal its transport mechanism. Nature Communications, 2019, 10, 4175.	5.8	51
1058	Anti-inflammatory activities of Sigesbeckia glabrescens Makino: combined in vitro and in silico investigations. Chinese Medicine, 2019, 14, 35.	1.6	23
1059	Lovastatin inhibits Toll-like receptor 4 signaling in microglia by targeting its co-receptor myeloid differentiation protein 2 and attenuates neuropathic pain. Brain, Behavior, and Immunity, 2019, 82, 432-444.	2.0	37
1060	Computational approach to suggest a new multi-target-directed ligand as a potential medication for Alzheimer's disease. Journal of Biomolecular Structure and Dynamics, 2019, 37, 4825-4839.	2.0	15
1061	Detecting lipopolysaccharide in the cytosol of mammalian cells: Lessons from MD-2/TLR4. Journal of Leukocyte Biology, 2019, 106, 127-132.	1.5	16
1062	Novel carboxylate-based glycolipids: TLR4 antagonism, MD-2 binding and self-assembly properties. Scientific Reports, 2019, 9, 919.	1.6	24
1063	Endolysosomal compartments as platforms for orchestrating innate immune and metabolic sensors. Journal of Leukocyte Biology, 2019, 106, 853-862.	1.5	9
1064	Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria. Sub-Cellular Biochemistry, 2019, 92, 9-37.	1.0	27
1065	An extensive review of studies on mycobacterium cell wall polysaccharide-related oligosaccharides – part III: synthetic studies and biological applications of arabinofuranosyl oligosaccharides and their analogs, derivatives and conjugates. Journal of Carbohydrate Chemistry, 2019, 38, 414-469.	0.4	12
1066	Rapid Purification of Endotoxin-Free RTX Toxins. Toxins, 2019, 11, 336.	1.5	16
1067	Hyaluronic acid behavior in oral administration and perspectives for nanotechnology-based formulations: A review. Carbohydrate Polymers, 2019, 222, 115001.	5.1	34
1068	Enlightening the role of high mobility group box 1 (HMGB1) in inflammation: Updates on receptor signalling. European Journal of Pharmacology, 2019, 858, 172487.	1.7	134
1069	Linear and Rationally Designed Stapled Peptides Abrogate TLR4 Pathway and Relieve Inflammatory Symptoms in Rheumatoid Arthritis Rat Model. Journal of Medicinal Chemistry, 2019, 62, 6495-6511.	2.9	27
1070	The Lipid A 1-Phosphatase, LpxE, Functionally Connects Multiple Layers of Bacterial Envelope Biogenesis. MBio, 2019, 10, .	1.8	11
1071	Structural Insights into the Lipid A Transport Pathway in MsbA. Structure, 2019, 27, 1114-1123.e3.	1.6	41
1072	Synthesis of the New Cyanine-Labeled Bacterial Lipooligosaccharides for Intracellular Imaging and in Vitro Microscopy Studies. Bioconjugate Chemistry, 2019, 30, 1649-1657.	1.8	13
1073	MD2 blockade prevents oxLDL-induced renal epithelial cell injury and protects against high-fat-diet-induced kidney dysfunction. Journal of Nutritional Biochemistry, 2019, 70, 47-55.	1.9	15
1074	Nanoscale distribution of TLR4 on primary human macrophages stimulated with LPS and ATI. Nanoscale, 2019, 11, 9769-9779.	2.8	16

#	Article	IF	CITATIONS
1075	Tracing the evolution of novel features of human Tollâ€like receptor 4. Protein Science, 2019, 28, 1350-1358.	3.1	8
1076	Peptide receptors and immune-related proteins expressed in the digestive system of a urochordate, Ciona intestinalis. Cell and Tissue Research, 2019, 377, 293-308.	1.5	17
1077	The Inhibitory Role of M2000 (\hat{l}^2 -D-Mannuronic Acid) on Expression of Toll-like Receptor 2 and 4 in HT29 Cell Line. Recent Patents on Inflammation and Allergy Drug Discovery, 2019, 13, 57-65.	3.9	1
1078	Discovery of 3-(Indol-5-yl)-indazole Derivatives as Novel Myeloid Differentiation Protein 2/Toll-like Receptor 4 Antagonists for Treatment of Acute Lung Injury. Journal of Medicinal Chemistry, 2019, 62, 5453-5469.	2.9	37
1079	Comprehensive review on the interaction between natural compounds and brain receptors: Benefits and toxicity. European Journal of Medicinal Chemistry, 2019, 174, 87-115.	2.6	35
1080	NMR structure of a fullâ€length singleâ€pass membrane protein NRADD. Proteins: Structure, Function and Bioinformatics, 2019, 87, 786-790.	1.5	4
1081	Vaccine adjuvants: Understanding the structure and mechanism of adjuvanticity. Vaccine, 2019, 37, 3167-3178.	1.7	259
1082	Aryl quinolinyl hydrazone derivatives as anti-inflammatory agents that inhibit TLR4 activation in the macrophages. European Journal of Pharmaceutical Sciences, 2019, 134, 102-115.	1.9	22
1083	Chlamydia trachomatis Lipopolysaccharide Evades the Canonical and Noncanonical Inflammatory Pathways To Subvert Innate Immunity. MBio, 2019, 10, .	1.8	25
1084	Below the surface: The inner lives of TLR4 and TLR9. Journal of Leukocyte Biology, 2019, 106, 147-160.	1.5	97
1085	Toll-like receptors in the pathogenesis of neuroinflammation. Journal of Neuroimmunology, 2019, 332, 16-30.	1,1	223
1086	A small secreted protein triggers a TLR2/4-dependent inflammatory response during invasive Candida albicans infection. Nature Communications, 2019, 10, 1015.	5.8	45
1087	Repositioning of the antipsychotic drug TFP for sepsis treatment. Journal of Molecular Medicine, 2019, 97, 647-658.	1.7	19
1088	Modulation of the NOD-like receptors NOD1 and NOD2: A chemist's perspective. Bioorganic and Medicinal Chemistry Letters, 2019, 29, 1153-1161.	1.0	13
1089	Diet-Derived Fatty Acids, Brain Inflammation, and Mental Health. Frontiers in Neuroscience, 2019, 13, 265.	1.4	74
1090	E3 ubiquitin ligase tripartite motif 7 positively regulates the TLR4-mediated immune response via its E3 ligase domain in macrophages. Molecular Immunology, 2019, 109, 126-133.	1.0	36
1091	Endocytosis of poly(ethylene sodium phosphate) by macrophages and the effect of polymer length on cellular uptake. Journal of Industrial and Engineering Chemistry, 2019, 75, 115-122.	2.9	9
1092	Maternal resistin predisposes offspring to hypothalamic inflammation and body weight gain. PLoS ONE, 2019, 14, e0213267.	1.1	10

#	ARTICLE	IF	CITATIONS
1093	Elevated pre-activation basal level of nuclear NF- $\hat{\mathbb{P}}$ B in native macrophages accelerates LPS-induced translocation of cytosolic NF- $\hat{\mathbb{P}}$ B into the cell nucleus. Scientific Reports, 2019, 9, 4563.	1.6	65
1094	Colistin heteroresistance in <i>Enterobacter cloacae</i> is regulated by PhoPQâ€dependent 4â€aminoâ€4â€deoxyâ€∢scp>lâ€arabinose addition to lipid A. Molecular Microbiology, 2019, 111, 1604-16	5 16 .	52
1095	Innate immunity to intracellular LPS. Nature Immunology, 2019, 20, 527-533.	7.0	342
1096	Structural variants of Salmonella Typhimurium lipopolysaccharide induce less dimerization of TLR4/MD-2 and reduced pro-inflammatory cytokine production in human monocytes. Molecular Immunology, 2019, 111, 43-52.	1.0	12
1097	Mesenteric Lymphatic Alterations Observed During DSS Induced Intestinal Inflammation Are Driven in a TLR4-PAMP/DAMP Discriminative Manner. Frontiers in Immunology, 2019, 10, 557.	2.2	20
1098	Comparative impact of thermal and high isostatic pressure inactivation of gram-negative microorganisms on the endotoxic potential of reconstituted powder milk. LWT - Food Science and Technology, 2019, 106, 78-82.	2.5	13
1099	Caspase-4 disaggregates lipopolysaccharide micelles via LPS-CARD interaction. Scientific Reports, 2019, 9, 826.	1.6	24
1100	Lipophilic Allergens, Different Modes of Allergen-Lipid Interaction and Their Impact on Asthma and Allergy. Frontiers in Immunology, 2019, 10, 122.	2.2	38
1101	Alveolar-Capillary Membrane-Related Pulmonary Cells as a Target in Endotoxin-Induced Acute Lung Injury. International Journal of Molecular Sciences, 2019, 20, 831.	1.8	99
1102	Insights into the evolution of extracellular leucine-rich repeats in metazoans with special reference to Toll-like receptor 4. Journal of Biosciences, 2019, 44, 1.	0.5	6
1103	Dihydrotanshinone exhibits an anti-inflammatory effect in vitro and in vivo through blocking TLR4 dimerization. Pharmacological Research, 2019, 142, 102-114.	3.1	63
1104	Leucine-rich repeats and calponin homology containing 4 (Lrch4) regulates the innate immune response. Journal of Biological Chemistry, 2019, 294, 1997-2008.	1.6	16
1105	Dysbiosis of Gramâ€'negative gut microbiota and the associated serum lipopolysaccharide exacerbates inflammation in type�2 diabetic patients with chronic kidney disease. Experimental and Therapeutic Medicine, 2019, 18, 3461-3469.	0.8	113
1106	Trypanosoma cruzilnfection: Mechanisms of Evasion of Immune Response. , 2019, , .		1
1107	Dysbiosis of Gut Microbiota Contributes to the Development of Diabetes Mellitus. Infectious Microbes & Diseases, 2019, 1, 43-48.	0.5	10
1108	Streamlining the preparation of "endotoxin-free―ClearColi cell extract with autoinduction media for cell-free protein synthesis of the therapeutic protein crisantaspase. Synthetic and Systems Biotechnology, 2019, 4, 220-224.	1.8	13
1109	Memory-Like Inflammatory Responses of Microglia to Rising Doses of LPS: Key Role of PI3K \hat{I}^3 . Frontiers in Immunology, 2019, 10, 2492.	2.2	47
1110	Combinatorial Action of Triterpenoid, Flavonoid, and Alkaloid on Inflammation. Natural Product Communications, 2019, 14, 1934578X1986887.	0.2	1

#	Article	IF	CITATIONS
1111	Lipopolysaccharide-acylating capacity of the gut microbiota and its potential impact on the immunopathogenesis of HIV infection. Aids, 2019, 33, 753-755.	1.0	1
1112	Modulation of the monocyte/macrophage system in heart failure by targeting heme oxygenase-1. Vascular Pharmacology, 2019, 112, 79-90.	1.0	24
1113	Integrated Endotoxin Adsorption and Antibacterial Properties of Cationic Polyurethane Foams for Wound Healing. ACS Applied Materials & Samp; Interfaces, 2019, 11, 2860-2869.	4.0	67
1114	The loss of tolerance to CHI3L1 – A putative role in inflammatory bowel disease?. Clinical Immunology, 2019, 199, 12-17.	1.4	13
1115	Enhanced Signal Amplification in a Toll-like Receptor-4 Biosensor Utilizing Ferrocene-Terminated Mixed Monolayers. ACS Sensors, 2019, 4, 143-151.	4.0	21
1116	The Inhibition of Lipid A Biosynthesisâ€"The Antidote Against Superbugs?. Advanced Therapeutics, 2019, 2, 1800117.	1.6	6
1117	Globo-series glycosphingolipids enhance Toll-like receptor 4-mediated inflammation and play a pathophysiological role in diabetic nephropathy. Glycobiology, 2019, 29, 260-268.	1.3	24
1118	Core fucose is essential glycosylation for CD14-dependent Toll-like receptor 4 and Toll-like receptor 2 signalling in macrophages. Journal of Biochemistry, 2019, 165, 227-237.	0.9	22
1119	Recent clinical trends in Tollâ€like receptor targeting therapeutics. Medicinal Research Reviews, 2019, 39, 1053-1090.	5.0	198
1120	Lipopolysaccharide structures of Gram-negative populations in the gut microbiota and effects on host interactions. FEMS Microbiology Reviews, 2019, 43, 257-272.	3.9	102
1121	Physiologic and pathologic effects of dietary free fatty acids on cells of the joint. Annals of the New York Academy of Sciences, 2019, 1440, 36-53.	1.8	23
1122	Unique roles of tryptophanyl-tRNA synthetase in immune control and its therapeutic implications. Experimental and Molecular Medicine, 2019, 51, 1-10.	3.2	263
1123	Ontogeny of alkaline phosphatase activity in infant intestines and breast milk. BMC Pediatrics, 2019, 19, 2.	0.7	17
1124	Dry leaf extracts of Tinospora cordifolia (Willd.) Miers attenuate oxidative stress and inflammatory condition in human monocytic (THP-1) cells. Phytomedicine, 2019, 61, 152831.	2.3	31
1125	Inflammasomes, Autophagy, and Cell Death: The Trinity of Innate Host Defense against Intracellular Bacteria. Mediators of Inflammation, 2019, 2019, 1-10.	1.4	99
1126	Human Toll-Like Receptor 4 (hTLR4): Structural and functional dynamics in cancer. International Journal of Biological Macromolecules, 2019, 122, 425-451.	3.6	33
1127	Suppression of TLR4 by miR-448 is involved in Diabetic development via regulating Macrophage polarization. Journal of Pharmacy and Pharmacology, 2019, 71, 806-815.	1.2	17
1128	Development of 2-amino-4-phenylthiazole analogues to disrupt myeloid differentiation factor 88 and prevent inflammatory responses in acute lung injury. European Journal of Medicinal Chemistry, 2019, 161, 22-38.	2.6	39

#	Article	IF	CITATIONS
1129	Mechanistic insights into high mobility group box-1 (HMGb1)-induced Toll-like receptor 4 (TLR4) dimer formation. Journal of Biomolecular Structure and Dynamics, 2019, 37, 3721-3730.	2.0	17
1130	Lipopolysaccharides (Endotoxins). , 2019, , .		4
1131	Prediction of presepsin concentrations through commensurate decline in kidney function in the elderly. Clinica Chimica Acta, 2020, 500, 1-9.	0.5	11
1132	The metabolic regulator Lamtor5 suppresses inflammatory signaling via regulating mTOR-mediated TLR4 degradation. Cellular and Molecular Immunology, 2020, 17, 1063-1076.	4.8	21
1133	L6H9 attenuates LPSâ€induced acute lung injury in rats through targeting MD2. Drug Development Research, 2020, 81, 85-92.	1.4	9
1134	Structure and function of lipid A–modifying enzymes. Annals of the New York Academy of Sciences, 2020, 1459, 19-37.	1.8	27
1135	Dimethylformamide-Modulated Kdo Glycosylation for Stereoselective Synthesis of α-Kdo Glycosides. Organic Letters, 2020, 22, 981-985.	2.4	14
1136	Redox phospholipidomics of enzymatically generated oxygenated phospholipids as specific signals of programmed cell death. Free Radical Biology and Medicine, 2020, 147, 231-241.	1.3	44
1137	Cytosolic Gram-negative bacteria prevent apoptosis by inhibition of effector caspases through lipopolysaccharide. Nature Microbiology, 2020, 5, 354-367.	5.9	33
1138	Multiple sclerosis, the microbiome, TLR2, and the hygiene hypothesis. Autoimmunity Reviews, 2020, 19, 102430.	2.5	38
1139	High Confidence Identification of Cross-Linked Peptides by an Enrichment-Based Dual Cleavable Cross-Linking Technology and Data Analysis tool Cleave-XL. Journal of the American Society for Mass Spectrometry, 2020, 31, 173-182.	1.2	9
1140	Melatonin-sulforaphane hybrid ITH12674 attenuates glial response in vivo by blocking LPS binding to MD2 and receptor oligomerization. Pharmacological Research, 2020, 152, 104597.	3.1	13
1141	The oxidation state of cysteine thiols on the ectodomain of TLR2 and TLR4 influences intracellular signaling. Immunobiology, 2020, 225, 151895.	0.8	2
1142	Evolutionary History of the Toll-Like Receptor Gene Family across Vertebrates. Genome Biology and Evolution, 2020, 12, 3615-3634.	1.1	74
1143	Exploring electrostatic patterns of human, murine, equine and canine TLR4/MD-2 receptors. Innate Immunity, 2020, 26, 364-380.	1.1	2
1144	A Whole-Cell Screen Identifies Small Bioactives That Synergize with Polymyxin and Exhibit Antimicrobial Activities against Multidrug-Resistant Bacteria. Antimicrobial Agents and Chemotherapy, 2020, 64, .	1.4	17
1145	Myeloid Differentiation Protein 2 Mediates Angiotensin II-Induced Liver Inflammation and Fibrosis in Mice. Molecules, 2020, 25, 25.	1.7	14
1146	The Role of Pseudomonas aeruginosa Lipopolysaccharide in Bacterial Pathogenesis and Physiology. Pathogens, 2020, 9, 6.	1.2	105

#	Article	IF	CITATIONS
1147	Astilbin prevents osteoarthritis development through the TLR4/MDâ€⊋ pathway. Journal of Cellular and Molecular Medicine, 2020, 24, 13104-13114.	1.6	20
1148	Predominant phosphorylation patterns in Neisseria meningitidis lipid A determined by top-down MS/MS. Journal of Lipid Research, 2020, 61, 1437-1449.	2.0	4
1149	Redox DAPK1 destabilizes Pellino1 to govern inflammation-coupling tubular damage during septic AKI. Theranostics, 2020, 10, 11479-11496.	4.6	16
1150	Cardiolipin in Immune Signaling and Cell Death. Trends in Cell Biology, 2020, 30, 892-903.	3.6	7 5
1151	A Distinct Microbiome Signature in Posttreatment Lyme Disease Patients. MBio, 2020, 11, .	1.8	19
1152	Methods to Investigate Innate Immune Receptors and Their Carbohydrate-Based Ligands. ACS Symposium Series, 2020, , 127-147.	O . 5	0
1153	Impact of the intestinal environment on the immune responses to vaccination. Vaccine, 2020, 38, 6959-6965.	1.7	12
1154	Anemoside B4 prevents acute ulcerative colitis through inhibiting of TLR4/NF-κB/MAPK signaling pathway. International Immunopharmacology, 2020, 87, 106794.	1.7	41
1155	Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Molecular Ecology, 2020, 29, 3056-3070.	2.0	10
1156	How does an RNA selfie work? EVâ€associated RNA in innate immunity as self or danger. Journal of Extracellular Vesicles, 2020, 9, 1793515.	5.5	10
1157	Dissociation of TRIF bias and adjuvanticity. Vaccine, 2020, 38, 4298-4308.	1.7	7
1158	Advances in Understanding the Initial Steps of Pruritoceptive Itch: How the Itch Hits the Switch. International Journal of Molecular Sciences, 2020, 21, 4883.	1.8	24
1159	Identification and structural characterization of lipid A from Escherichia coli , Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to highâ€resolution tandem mass spectrometry. Rapid Communications in Mass Spectrometry, 2020, 34, e8897.	0.7	10
1160	<p>Toll-Like Receptor 4 and Inflammatory Micro-Environment of Pancreatic Islets in Type-2 Diabetes Mellitus: A Therapeutic Perspective</p> . Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 2020, Volume 13, 4261-4272.	1.1	10
1161	From Inert Storage to Biological Activityâ€"In Search of Identity for Oxidized Cholesteryl Esters. Frontiers in Endocrinology, 2020, 11, 602252.	1.5	21
1162	Alteration of chemokine production in bovine endometrial epithelial and stromal cells under heat stress conditions. Physiological Reports, 2020, 8, e14640.	0.7	7
1163	Lipopolysaccharide Recognition in the Crossroads of TLR4 and Caspase-4/11 Mediated Inflammatory Pathways. Frontiers in Immunology, 2020, 11, 585146.	2.2	94
1164	Synthesis, Molecular Modeling and Biological Evaluation of Metabolically Stable Analogues of the Endogenous Fatty Acid Amide Palmitoylethanolamide. International Journal of Molecular Sciences, 2020, 21, 9074.	1.8	1

#	Article	IF	CITATIONS
1165	Biochemical transformation of bacterial lipopolysaccharides by acyloxyacyl hydrolase reduces host injury and promotes recovery. Journal of Biological Chemistry, 2020, 295, 17842-17851.	1.6	19
1166	Acylpolyamine Mygalin as a TLR4 Antagonist Based on Molecular Docking and In Vitro Analyses. Biomolecules, 2020, 10, 1624.	1.8	7
1167	Novel Odoribacter splanchnicus Strain and Its Outer Membrane Vesicles Exert Immunoregulatory Effects in vitro. Frontiers in Microbiology, 2020, 11, 575455.	1.5	110
1168	Structure of the essential inner membrane lipopolysaccharide–PbgA complex. Nature, 2020, 584, 479-483.	13.7	58
1169	Blockade of the TLR4–MD2 complex lowers blood pressure and improves vascular function in a murine model of type 1 diabetes. Scientific Reports, 2020, 10, 12032.	1.6	10
1170	Mitoxantrone, pixantrone and mitoxantrone (2-hydroxyethyl)piperazine are toll-like receptor 4 antagonists, inhibit NF-κB activation, and decrease TNF-alpha secretion in primary microglia. European Journal of Pharmaceutical Sciences, 2020, 154, 105493.	1.9	6
1171	Talin1 controls dendritic cell activation by regulating TLR complex assembly and signaling. Journal of Experimental Medicine, 2020, 217, .	4.2	12
1172	Shortening the Lipid A Acyl Chains of Bordetella pertussis Enables Depletion of Lipopolysaccharide Endotoxic Activity. Vaccines, 2020, 8, 594.	2.1	13
1173	NF-κB/miR-18a-3p and miR-4286/BZRAP1 axis may mediate carcinogenesis in Helicobacter pylori―Associated gastric cancer. Biomedicine and Pharmacotherapy, 2020, 132, 110869.	2.5	24
1174	CCR2 Mediates Chronic LPS-Induced Pulmonary Inflammation and Hypoalveolarization in a Murine Model of Bronchopulmonary Dysplasia. Frontiers in Immunology, 2020, 11, 579628.	2.2	20
1175	Vaccination Strategies Against Highly Variable Pathogens. Current Topics in Microbiology and Immunology, 2020, , .	0.7	1
1176	Antiviral efficacy of orally delivered neoagarohexaose, a nonconventional TLR4 agonist, against norovirus infection in mice. Biomaterials, 2020, 263, 120391.	5.7	13
1177	Pharmacoinformatics approaches to identify potential hits against tetraacyldisaccharide 4′-kinase (LpxK) ofPseudomonas aeruginosa. RSC Advances, 2020, 10, 32856-32874.	1.7	3
1178	Adjuvant Activity of Synthetic Lipid A of Alcaligenes, a Gut-Associated Lymphoid Tissue-Resident Commensal Bacterium, to Augment Antigen-Specific IgG and Th17 Responses in Systemic Vaccine. Vaccines, 2020, 8, 395.	2.1	18
1179	Potential Roles of Myeloid Differentiation Factor 2 on Neuroinflammation and Its Possible Interventions. Molecular Neurobiology, 2020, 57, 4825-4844.	1.9	7
1180	Various Facets of Pathogenic Lipids in Infectious Diseases: Exploring Virulent Lipid-Host Interactome and Their Druggability. Journal of Membrane Biology, 2020, 253, 399-423.	1.0	17
1181	Myeloid Differentiation Primary Response Protein 88 (MyD88): The Central Hub of TLR/IL-1R Signaling. Journal of Medicinal Chemistry, 2020, 63, 13316-13329.	2.9	52
1182	Memory-Like Responses of Brain Microglia Are Controlled by Developmental State and Pathogen Dose. Frontiers in Immunology, 2020, 11, 546415.	2.2	22

#	ARTICLE	IF	CITATIONS
1183	Anemoside B4 Protects against Acute Lung Injury by Attenuating Inflammation through Blocking NLRP3 Inflammasome Activation and TLR4 Dimerization. Journal of Immunology Research, 2020, 2020, 1-13.	0.9	14
1184	Understanding GroEL and DnaK Stress Response Proteins as Antigens for Bacterial Diseases. Vaccines, 2020, 8, 773.	2.1	40
1185	Recent advances in self-adjuvanting glycoconjugate vaccines. Drug Discovery Today: Technologies, 2020, 37, 61-71.	4.0	9
1186	Outer membrane vesicle vaccines. Seminars in Immunology, 2020, 50, 101433.	2.7	102
1187	Monoclonal Antibody to CD14, TLR4, or CD11b: Impact of Epitope and Isotype Specificity on ROS Generation by Human Granulocytes and Monocytes. Oxidative Medicine and Cellular Longevity, 2020, 2020, 1-20.	1.9	8
1188	Generation and Characterization of a Novel Anti-Rat TLR4/MD2 Antibody with Potent Neutralizing Activity In Vivo. Monoclonal Antibodies in Immunodiagnosis and Immunotherapy, 2020, 39, 217-221.	0.8	0
1189	Nonclonal Emergence of Colistin Resistance Associated with Mutations in the BasRS Two-Component System in Escherichia coli Bloodstream Isolates. MSphere, 2020, 5, .	1.3	19
1190	The Relationship Between Gut Microbiota and Inflammatory Diseases: The Role of Macrophages. Frontiers in Microbiology, 2020, 11, 1065.	1.5	146
1191	Switch Off "Parallel Circuit― Insight of New Strategy of Simultaneously Suppressing Canonical and Noncanonical Inflammation Activation in Endotoxemic Mice. Advanced Biology, 2020, 4, 2000037.	3.0	5
1192	Dietary Silk Peptide Inhibits LPS-Induced Inflammatory Responses by Modulating Toll-Like Receptor 4 (TLR4) Signaling. Biomolecules, 2020, 10, 771.	1.8	6
1193	Integrative metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney disease. Theranostics, 2020, 10, 5398-5411.	4.6	77
1194	Homeostatic and pathogenic roles of <scp>GM</scp> 3 ganglioside molecular species in <scp>TLR</scp> 4 signaling in obesity. EMBO Journal, 2020, 39, e101732.	3.5	25
1195	SARS-CoV-2 and COVID-19: Is interleukin-6 (IL-6) the †culprit lesion' of ARDS onset? What is there besides Tocilizumab? SGP130Fc. Cytokine: X, 2020, 2, 100029.	0.5	163
1196	Unique responses of Helicobacter pylori to exogenous hydrophobic compounds. Chemistry and Physics of Lipids, 2020, 229, 104908.	1.5	9
1197	Naja kaouthia venom protein, Nk-CRISP, upregulates inflammatory gene expression in human macrophages. International Journal of Biological Macromolecules, 2020, 160, 602-611.	3.6	12
1198	Antileishmanial drugs activate inflammatory signaling pathways via toll-like receptors (docking) Tj ETQq1 1 0.784. 2020, 85, 106640.	314 rgBT / 1.7	Overlock 10 4
1199	Lipid–Protein and Protein–Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. International Journal of Molecular Sciences, 2020, 21, 3708.	1.8	72
1200	Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nature Immunology, 2020, 21, 880-891.	7.0	182

#	Article	IF	CITATIONS
1201	Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nature Communications, 2020, 11, 3276.	5.8	178
1202	Asiatic acid ameliorates obesity-related osteoarthritis by inhibiting myeloid differentiation protein-2. Food and Function, 2020, 11, 5513-5524.	2.1	6
1203	Integration of metagenomicsâ€metabolomics reveals specific signatures and functions of airway microbiota in miteâ€sensitized childhood asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2846-2857.	2.7	28
1204	The role of O-polysaccharide chain and complement resistance of Escherichia coli in mammary virulence. Veterinary Research, 2020, 51, 77.	1.1	16
1205	Criticality of plasma membrane lipids reflects activation state of macrophage cells. Journal of the Royal Society Interface, 2020, 17, 20190803.	1.5	15
1206	Insight Into TLR4-Mediated Immunomodulation in Normal Pregnancy and Related Disorders. Frontiers in Immunology, 2020, 11, 807.	2.2	64
1207	Lys694Arg polymorphism leads to blunted responses to LPS by interfering TLR4 with recruitment of MyD88. Innate Immunity, 2021, 27, 483-492.	1.1	5
1208	The Metabolic Basis of Immune Dysfunction Following Sepsis and Trauma. Frontiers in Immunology, 2020, 11, 1043.	2.2	63
1209	Toll-like Receptors and the Control of Immunity. Cell, 2020, 180, 1044-1066.	13.5	1,099
1210	HSP70 Multi-Functionality in Cancer. Cells, 2020, 9, 587.	1.8	139
1210 1211	HSP70 Multi-Functionality in Cancer. Cells, 2020, 9, 587. Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature Communications, 2020, 11, 1187.	1.8 5.8	139
	Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature		
1211	Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature Communications, 2020, 11, 1187. THP-1 cells increase TNF-α production upon LPSâ€⁻+â€⁻soluble human IgG co-stimulation supporting evidence	5.8	43
1211 1212	Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature Communications, 2020, 11, 1187. THP-1 cells increase TNF-α production upon LPSâ€⁻+†soluble human IgG co-stimulation supporting evidence for TLR4 and Fcγ receptors crosstalk. Cellular Immunology, 2020, 355, 104146. Roles of the clip domains of two protease zymogens in the coagulation cascade in horseshoe crabs.	5.8	43
1211 1212 1213	Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature Communications, 2020, 11, 1187. THP-1 cells increase TNF-α production upon LPS†+†soluble human IgG co-stimulation supporting evidence for TLR4 and Fcγ receptors crosstalk. Cellular Immunology, 2020, 355, 104146. Roles of the clip domains of two protease zymogens in the coagulation cascade in horseshoe crabs. Journal of Biological Chemistry, 2020, 295, 8857-8866. Identification of a Heme Activation Site on the MD-2/TLR4 Complex. Frontiers in Immunology, 2020, 11,	5.8 1.4 1.6	43 6 8
1211 1212 1213	Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature Communications, 2020, 11, 1187. THP-1 cells increase TNF-α production upon LPSâ€+†soluble human IgG co-stimulation supporting evidence for TLR4 and Fcγ receptors crosstalk. Cellular Immunology, 2020, 355, 104146. Roles of the clip domains of two protease zymogens in the coagulation cascade in horseshoe crabs. Journal of Biological Chemistry, 2020, 295, 8857-8866. Identification of a Heme Activation Site on the MD-2/TLR4 Complex. Frontiers in Immunology, 2020, 11, 1370. OMV Vaccines and the Role of TLR Agonists in Immune Response. International Journal of Molecular	5.8 1.4 1.6	43 6 8 26
1211 1212 1213 1214 1215	Escherichia coli adhesion portion FimH functions as an adjuvant for cancer immunotherapy. Nature Communications, 2020, 11, 1187. THP-1 cells increase TNF-1± production upon LPSâ€+†soluble human IgG co-stimulation supporting evidence for TLR4 and Fc1³ receptors crosstalk. Cellular Immunology, 2020, 355, 104146. Roles of the clip domains of two protease zymogens in the coagulation cascade in horseshoe crabs. Journal of Biological Chemistry, 2020, 295, 8857-8866. Identification of a Heme Activation Site on the MD-2/TLR4 Complex. Frontiers in Immunology, 2020, 11, 1370. OMV Vaccines and the Role of TLR Agonists in Immune Response. International Journal of Molecular Sciences, 2020, 21, 4416.	5.8 1.4 1.6	43 6 8 26 80

#	Article	IF	CITATIONS
1219	Evidence of Pathogen-Induced Immunogenetic Selection across the Large Geographic Range of a Wild Seabird. Molecular Biology and Evolution, 2020, 37, 1708-1726.	3.5	19
1220	Ginsenoside Rb1 exerts anti-inflammatory effects in vitro and in vivo by modulating toll-like receptor 4 dimerization and NF-kB/MAPKs signaling pathways. Phytomedicine, 2020, 69, 153197.	2.3	64
1221	Up-regulation of miR-326 regulates pro-inflammatory cytokines targeting TLR-4 in buffalo granulosa cells. Molecular Immunology, 2020, 119, 154-158.	1.0	7
1222	The Role of Toll-like Receptors in Atherothrombotic Cardiovascular Disease. ACS Pharmacology and Translational Science, 2020, 3, 457-471.	2.5	27
1223	Tyrosine phosphorylation of the lectin receptorâ€like kinase LORE regulates plant immunity. EMBO Journal, 2020, 39, e102856.	3. 5	66
1224	Biochemical interactions between LPS and LPS-binding molecules. Critical Reviews in Biotechnology, 2020, 40, 292-305.	5.1	32
1225	Recent Advances in Lipopolysaccharide Recognition Systems. International Journal of Molecular Sciences, 2020, 21, 379.	1.8	178
1226	NLRP6 self-assembles into a linear molecular platform following LPS binding and ATP stimulation. Scientific Reports, 2020, 10, 198.	1.6	23
1227	Exploring Methamphetamine Nonenantioselectively Targeting Toll-like Receptor 4/Myeloid Differentiation Protein 2 by in Silico Simulations and Wet-Lab Techniques. Journal of Chemical Information and Modeling, 2020, 60, 1607-1613.	2.5	10
1228	Does Dysregulation of Redox State Underpin the Decline of Innate Immunity with Aging?. Antioxidants and Redox Signaling, 2020, 32, 1014-1030.	2.5	0
1229	Role of TLR4 Receptor Complex in the Regulation of the Innate Immune Response by Fibronectin. Cells, 2020, 9, 216.	1.8	20
1230	Inhibitory effect of porphyran on lipopolysaccharide-induced activation of human immune cells. Carbohydrate Polymers, 2020, 232, 115811.	5.1	17
1231	Toll-like receptors: exploring their potential connection with post-operative infectious complications and cancer recurrence. Clinical and Experimental Metastasis, 2020, 37, 225-239.	1.7	8
1232	TLR4-Targeting Therapeutics: Structural Basis and Computer-Aided Drug Discovery Approaches. Molecules, 2020, 25, 627.	1.7	58
1233	TLR-4 Signaling vs. Immune Checkpoints, miRNAs Molecules, Cancer Stem Cells, and Wingless-Signaling Interplay in Glioblastoma Multiforme‒Future Perspectives. International Journal of Molecular Sciences, 2020, 21, 3114.	1.8	27
1234	The flavonoid-enriched extract from the root of Smilax china L. inhibits inflammatory responses via the TLR-4-mediated signaling pathway. Journal of Ethnopharmacology, 2020, 256, 112785.	2.0	25
1235	Lucyoside B, a triterpenoid saponin from Luffa cylindrica, inhibits the production of inflammatory mediators via both nuclear factor-l°B and activator protein-1 pathways in activated macrophages. Journal of Functional Foods, 2020, 69, 103941.	1.6	7
1236	Outer Membrane Lipid Secretion and the Innate Immune Response to Gram-Negative Bacteria. Infection and Immunity, 2020, 88, .	1.0	56

#	Article	IF	CITATIONS
1237	NACE–ESIâ€MS/MS method for separation and characterization of phosphorylation and acylation isomers of lipid A. Electrophoresis, 2020, 41, 1178-1188.	1.3	7
1238	Methamphetamine alters the TLR4 signaling pathway, NF-κB activation, and pro-inflammatory cytokine production in LPS-challenged NR-9460 microglia-like cells. Molecular Immunology, 2020, 121, 159-166.	1.0	28
1239	High-resolution views of lipopolysaccharide translocation driven by ABC transporters MsbA and LptB2FGC. Current Opinion in Structural Biology, 2020, 63, 26-33.	2.6	10
1240	Octominin Inhibits LPS-Induced Chemokine and Pro-inflammatory Cytokine Secretion from RAW 264.7 Macrophages via Blocking TLRs/NF-κB Signal Transduction. Biomolecules, 2020, 10, 511.	1.8	23
1241	Pharmacogenetics of trough serum antiâ€₹NF levels in paediatric inflammatory bowel disease. British Journal of Clinical Pharmacology, 2021, 87, 447-457.	1.1	12
1242	Outer membrane vesicles: moving within the intricate labyrinth of assays that can predict risks of reactogenicity in humans. Human Vaccines and Immunotherapeutics, 2021, 17, 601-613.	1.4	19
1243	Is Toll-like receptor 4 involved in the severity of COVID-19 pathology in patients with cardiometabolic comorbidities?. Cytokine and Growth Factor Reviews, 2021, 58, 102-110.	3.2	73
1244	TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cellular and Molecular Life Sciences, 2021, 78, 1233-1261.	2.4	535
1245	An update on endotoxin neutralization strategies in Gram-negative bacterial infections. Expert Review of Anti-Infective Therapy, 2021, 19, 495-517.	2.0	10
1246	Molecular characterization and expression analysis of Tf_TLR4 and Tf_TRIL in yellow catfish Tachysurus fulvidraco responding to Edwardsiella ictaluri challenge. International Journal of Biological Macromolecules, 2021, 167, 746-755.	3.6	8
1247	AIBP, Angiogenesis, Hematopoiesis, and Atherogenesis. Current Atherosclerosis Reports, 2021, 23, 1.	2.0	8
1248	Evidence that angiotensin II does not directly stimulate the MD2-TLR4 innate inflammatory pathway. Peptides, 2021, 136, 170436.	1.2	3
1249	Synthesis and characterization of MnII and CoII complexes with poly (vinyl alcohol-nicotinic acid) for photocatalytic degradation of Indigo carmine dye. Inorganic Chemistry Communication, 2021, 124, 108360.	1.8	12
1250	Asiaticoside ameliorates acinar cell necrosis in acute pancreatitis via toll-like receptor 4 pathway. Molecular Immunology, 2021, 130, 122-132.	1.0	12
1251	SARS-CoV-2 spike protein binds to bacterial lipopolysaccharide and boosts proinflammatory activity. Journal of Molecular Cell Biology, 2021, 12, 916-932.	1.5	121
1252	The Role of Toll-Like Receptor 4 in Infectious and Non Infectious Inflammation. Agents and Actions Supplements, 2021, , .	0.2	2
1253	Retinoblastoma cell-derived Twist protein promotes regulatory T cell development. Cancer Immunology, Immunotherapy, 2021, 70, 1037-1048.	2.0	1
1254	The role of medicinal products in the treatment of inflammatory bowel diseases (<scp>IBD</scp>) through inhibition of <scp>TLR4</scp> / <scp>NFâ€kappaB</scp> pathway. Phytotherapy Research, 2021, 35, 835-845.	2.8	47

#	Article	IF	CITATIONS
1255	Identification and Characterization of Zebrafish Tlr4 Coreceptor Md-2. Journal of Immunology, 2021, 206, 1046-1057.	0.4	19
1256	Maternal stevioside supplementation ameliorates intestinal mucosal damage and modulates gut microbiota in chicken offspring challenged with lipopolysaccharide. Food and Function, 2021, 12, 6014-6028.	2.1	15
1257	A GalNAc/Gal-specific lectin modulates immune responses <i>via</i> toll-like receptor 4 independently of carbohydrate-binding ability. Chemical Communications, 2021, 57, 6209-6212.	2.2	1
1258	<i>In silico</i> design of multi-epitope-based peptide vaccine against SARS-CoV-2 using its spike protein. Journal of Biomolecular Structure and Dynamics, 2022, 40, 5189-5202.	2.0	14
1259	The tug of war between Al ³⁺ and Na ⁺ for order–disorder transitions in lipid-A membranes. Physical Chemistry Chemical Physics, 2021, 23, 15127-15137.	1.3	1
1260	Ruminal Lipopolysaccharides Analysis: Uncharted Waters with Promising Signs. Animals, 2021, 11, 195.	1.0	8
1261	Glycoconjugates for Adjuvants and Self-Adjuvanting Vaccines. , 2021, , 166-184.		0
1262	Can SARS-CoV-2 Virus Use Multiple Receptors to Enter Host Cells?. International Journal of Molecular Sciences, 2021, 22, 992.	1.8	106
1263	Vaccine as immunotherapy for leishmaniasis. , 2021, , 29-46.		0
1264	Isoimperatorin exerts anti-inflammatory activity by targeting the LPS-TLR4/MD-2-NF-κB pathway. European Journal of Inflammation, 2021, 19, 205873922110005.	0.2	7
1266	Outer membrane vesicles as versatile tools for therapeutic approaches. MicroLife, 2021, 2, .	1.0	9
1267	Studies of xenobiotic-induced gut microbiota dysbiosis: from correlation to mechanisms. Gut Microbes, 2021, 13, 1921912.	4.3	19
1268	Variation, Modification and Engineering of Lipid A in Endotoxin of Gram-Negative Bacteria. International Journal of Molecular Sciences, 2021, 22, 2281.	1.8	15
1269	Imperatorin Interferes with LPS Binding to the TLR4 Co-Receptor and Activates the Nrf2 Antioxidative Pathway in RAW264.7 Murine Macrophage Cells. Antioxidants, 2021, 10, 362.	2.2	18
1270	C-Terminal Amination of a Cationic Anti-Inflammatory Peptide Improves Bioavailability and Inhibitory Activity Against LPS-Induced Inflammation. Frontiers in Immunology, 2020, 11, 618312.	2.2	7
1271	Structural and functional understanding of the tollâ€like receptors. Protein Science, 2021, 30, 761-772.	3.1	49
1272	Development of epithelial cholinergic chemosensory cells of the urethra and trachea of mice. Cell and Tissue Research, 2021, 385, 21-35.	1.5	9
1273	Innate immune receptor clustering and its role in immune regulation. Journal of Cell Science, 2021, 134, .	1.2	15

#	Article	IF	CITATIONS
1274	Alterations of Gut Microbiota by Overnutrition Impact Gluconeogenic Gene Expression and Insulin Signaling. International Journal of Molecular Sciences, 2021, 22, 2121.	1.8	16
1275	Toll-like receptor 4 (TLR4) antagonists as potential therapeutics for intestinal inflammation. Indian Journal of Gastroenterology, 2021, 40, 5-21.	0.7	38
1276	Inhibiting TLR4 signaling by linarin for preventing inflammatory response in osteoarthritis. Aging, 2021, 13, 5369-5382.	1.4	17
1277	TLR Agonists as Mediators of Trained Immunity: Mechanistic Insight and Immunotherapeutic Potential to Combat Infection. Frontiers in Immunology, 2020, 11, 622614.	2.2	65
1278	Anti-Infective and Anti-Inflammatory Mode of Action of Peptide 19-2.5. International Journal of Molecular Sciences, 2021, 22, 1465.	1.8	8
1279	Tollâ€ike receptor 4 is activated by platinum and contributes to cisplatinâ€induced ototoxicity. EMBO Reports, 2021, 22, e51280.	2.0	22
1280	Full synthesis and bioactivity evaluation of Tn-RC-529 derivative conjugates as self-adjuvanting cancer vaccines. Chinese Chemical Letters, 2021, 32, 3011-3014.	4.8	7
1281	Lipopolysaccharide Preparation Derived From Porphyromonas gingivalis Induces a Weaker Immuno-Inflammatory Response in BV-2 Microglial Cells Than Escherichia coli by Differentially Activating TLR2/4-Mediated NF-ÎB/STAT3 Signaling Pathways. Frontiers in Cellular and Infection Microbiology, 2021, 11, 606986.	1.8	19
1282	Biomaterial-based osteoimmunomodulatory strategies via the TLR4-NF-κB signaling pathway: A review. Applied Materials Today, 2021, 22, 100969.	2.3	8
1283	Polysaccharide Isolated From Tetrastigma hemsleyanum Activates TLR4 in Macrophage Cell Lines and Enhances Immune Responses in OVA-Immunized and LLC-Bearing Mouse Models. Frontiers in Pharmacology, 2021, 12, 609059.	1.6	6
1284	The Contact Allergen NiSO4 Triggers a Distinct Molecular Response in Primary Human Dendritic Cells Compared to Bacterial LPS. Frontiers in Immunology, 2021, 12, 644700.	2,2	9
1285	Soluble MD-2 and Heme in Sickle Cell Disease Plasma Promote Pro-Inflammatory Signaling in Endothelial Cells. Frontiers in Immunology, 2021, 12, 632709.	2.2	8
1286	A Multifunctional Peptide From Bacillus Fermented Soybean for Effective Inhibition of SARS-CoV-2 S1 Receptor Binding Domain and Modulation of Toll Like Receptor 4: A Molecular Docking Study. Frontiers in Molecular Biosciences, 2021, 8, 636647.	1.6	26
1287	Dual targeting of Toll-like receptor 4 and angiotensin-converting enzyme 2: aÂproposed approach to SARS-CoV-2 treatment. Future Microbiology, 2021, 16, 205-209.	1.0	23
1288	The lipopolysaccharide outer core transferase genes pcgD and hptE contribute differently to the virulence of Pasteurella multocida in ducks. Veterinary Research, 2021, 52, 37.	1.1	6
1289	Tailored Modulation of Cellular Pro-inflammatory Responses With Disaccharide Lipid A Mimetics. Frontiers in Immunology, 2021, 12, 631797.	2.2	8
1290	Comparative Analysis of Cytokine Expression in Oral Keratinocytes and THP-1 Macrophages in Response to the Most Prevalent Serotypes of Aggregatibacter actinomycetemcomitans. Microorganisms, 2021, 9, 622.	1.6	4
1291	Novel QSAR Models for Molecular Initiating Event Modeling in Two Intersecting Adverse Outcome Pathways Based Pulmonary Fibrosis Prediction for Biocidal Mixtures. Toxics, 2021, 9, 59.	1.6	7

#	Article	IF	CITATIONS
1292	Self-assembling micellar system based on Pluronic and pyrazole-dithiocarbazate-conjugate stimulates production of nitric oxide from macrophages. Colloids and Interface Science Communications, 2021, 41, 100378.	2.0	5
1293	Broadly Antiviral Activities of TAP1 through Activating the TBK1-IRF3-Mediated Type I Interferon Production. International Journal of Molecular Sciences, 2021, 22, 4668.	1.8	10
1294	Targeting Toll-Like Receptors in Sepsis: From Bench to Clinical Trials. Antioxidants and Redox Signaling, 2021, 35, 1324-1339.	2.5	23
1295	Microbial Phagocytic Receptors and Their Potential Involvement in Cytokine Induction in Macrophages. Frontiers in Immunology, 2021, 12, 662063.	2.2	24
1296	Synthetic glycolipid-based TLR4 antagonists negatively regulate TRIF-dependent TLR4 signalling in human macrophages. Innate Immunity, 2021, 27, 275-284.	1.1	3
1297	Toll-like receptor 4: An attractive therapeutic target for acute kidney injury. Life Sciences, 2021, 271, 119155.	2.0	26
1298	The Mechanism of Facultative Intracellular Parasitism of Brucella. International Journal of Molecular Sciences, 2021, 22, 3673.	1.8	40
1299	Lipopolysaccharide stimulates bovine endometrium explants through tollâ€'like receptor 4 signaling and PGE2 synthesis. Prostaglandins Leukotrienes and Essential Fatty Acids, 2021, 168, 102272.	1.0	2
1300	Protective Effects of Silymarin Against D-Gal/LPS-Induced Organ Damage and Inflammation in Mice. Drug Design, Development and Therapy, 2021, Volume 15, 1903-1914.	2.0	18
1301	Toll9 from <i>Bombyx mori</i> functions as a pattern recognition receptor that shares features with Toll-like receptor 4 from mammals. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
1302	Exploring Onchocerca volvulus Cysteine Protease Inhibitor for Multi-epitope Subunit Vaccine Against Onchocerciasis: An Immunoinformatics Approach. International Journal of Peptide Research and Therapeutics, 2021, 27, 1953-1966.	0.9	1
1303	Toll-Like Receptors: General Molecular and Structural Biology. Journal of Immunology Research, 2021, 2021, 1-21.	0.9	91
1304	Rotundic acid reduces <scp>LPS</scp> â€induced acute lung injury in vitro and in vivo through regulating <scp>TLR4</scp> dimer. Phytotherapy Research, 2021, 35, 4485-4498.	2.8	11
1305	Lipid A Structural Divergence in <i>Rickettsia</i> Pathogens. MSphere, 2021, 6, .	1.3	11
1306	New Insights on End-Stage Renal Disease and Healthy Individual Gut Bacterial Translocation: Different Carbon Composition of Lipopolysaccharides and Different Impact on Monocyte Inflammatory Response. Frontiers in Immunology, 2021, 12, 658404.	2.2	5
1307	Resistin in pregnancy: Analysis of determinants in pairs of umbilical cord blood and maternal serum. Cytokine: X, 2021, 3, 100052.	0.5	3
1308	Ergosta-7, 9 (11), 22-trien-3 \hat{I}^2 -ol Interferes with LPS Docking to LBP, CD14, and TLR4/MD-2 Co-Receptors to Attenuate the NF- \hat{I}^0 B Inflammatory Pathway In Vitro and Drosophila. International Journal of Molecular Sciences, 2021, 22, 6511.	1.8	8
1309	Role of Lipid Transfer Proteins (LTPs) in the Viral Life Cycle. Frontiers in Microbiology, 2021, 12, 673509.	1.5	9

#	Article	IF	CITATIONS
1310	Recent advances on smart glycoconjugate vaccines in infections and cancer. FEBS Journal, 2022, 289, 4251-4303.	2.2	39
1311	Cathelicidin and PMB neutralize endotoxins by multifactorial mechanisms including LPS interaction and targeting of host cell membranes. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	25
1312	An MD2-perturbing peptide has therapeutic effects in rodent and rhesus monkey models of stroke. Science Translational Medicine, 2021, 13, .	5.8	16
1313	î²-(1→4)-Mannobiose Acts as an Immunostimulatory Molecule in Murine Dendritic Cells by Binding the TLR4/MD-2 Complex. Cells, 2021, 10, 1774.	1.8	7
1314	Highly Sensitive Detection and Differentiation of Endotoxins Derived from Bacterial Pathogens by Surface-Enhanced Raman Scattering. Biosensors, 2021, 11, 234.	2.3	7
1315	An immunoinformatics approach to design a multi-epitope vaccine against Mycobacterium tuberculosis exploiting secreted exosome proteins. Scientific Reports, 2021, 11, 13836.	1.6	22
1316	The Xanthomonas RaxH-RaxR Two-Component Regulatory System Is Orthologous to the Zinc-Responsive Pseudomonas ColS-ColR System. Microorganisms, 2021, 9, 1458.	1.6	3
1317	Targeting TLR4 Signaling to Blunt Viral-Mediated Acute Lung Injury. Frontiers in Immunology, 2021, 12, 705080.	2.2	30
1318	Sulfatides are endogenous ligands for the TLR4 \hat{a} e"MD-2 complex. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
1319	A Journey from Structure to Function of Bacterial Lipopolysaccharides. Chemical Reviews, 2022, 122, 15767-15821.	23.0	82
1320	Matrix lumican endocytosed by immune cells controls receptor ligand trafficking to promote TLR4 and restrict TLR9 in sepsis. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	24
1321	Molecular cloning, characterization and RNA interference assay of two toll-like receptors in giant freshwater prawn, Macrobrachium rosenbergii. Aquaculture Reports, 2021, 20, 100643.	0.7	3
1322	Antigen-Presenting Cells in the Airways: Moderating Asymptomatic Bacterial Carriage. Pathogens, 2021, 10, 945.	1.2	3
1323	Nontuberculous Mycobacteria, Macrophages, and Host Innate Immune Response. Infection and Immunity, 2021, 89, e0081220.	1.0	25
1324	Respiratory Viral and Bacterial Factors That Influence Early Childhood Asthma. Frontiers in Allergy, 2021, 2, 692841.	1.2	12
1325	Tracking the pipeline: immunoinformatics and the COVID-19 vaccine design. Briefings in Bioinformatics, 2021, 22, .	3.2	12
1326	Homeostatic and pathogenic roles of the GM3 ganglioside. FEBS Journal, 2022, 289, 5152-5165.	2.2	10
1327	Mobile Colistin Resistance Enzyme MCRâ€3 Facilitates Bacterial Evasion of Host Phagocytosis. Advanced Science, 2021, 8, e2101336.	5.6	11

#	Article	IF	CITATIONS
1328	Deliver the promise: RNAs as a new class of molecular entities for therapy and vaccination. , 2022, 230, 107967.		40
1329	Modulation of Toll-like receptor 1 intracellular domain structure and activity by Zn2+ ions. Communications Biology, 2021, 4, 1003.	2.0	7
1330	Presence of 2-hydroxymyristate on endotoxins is associated with death in neonates with Enterobacter cloacae complex septic shock. IScience, 2021, 24, 102916.	1.9	9
1331	New Approaches to Profile the Microbiome for Treatment of Neurodegenerative Disease. Journal of Alzheimer's Disease, 2021, 82, 1373-1401.	1.2	8
1332	Pattern recognition receptors in health and diseases. Signal Transduction and Targeted Therapy, 2021, 6, 291.	7.1	510
1333	Crosstalk of TLR4, vascular NADPH oxidase, and COVID-19 in diabetes: What are the potential implications?. Vascular Pharmacology, 2021, 139, 106879.	1.0	7
1334	Synthetic Glycolipids as Molecular Vaccine Adjuvants: Mechanism of Action in Human Cells and In Vivo Activity. Journal of Medicinal Chemistry, 2021, 64, 12261-12272.	2.9	13
1335	Immune Effect Regulated by the Chain Length: Interaction between Immune Cell Surface Receptors and Synthetic Glycopolymers. ACS Applied Materials & Synthetic Glycopolymers. ACS Applied Materials & Synthetic Glycopolymers.	4.0	6
1336	Homeoviscous Adaptation of the Acinetobacter baumannii Outer Membrane: Alteration of Lipooligosaccharide Structure during Cold Stress. MBio, 2021, 12, e0129521.	1.8	14
1337	Lipopolysaccharide lipid A: A promising molecule for new immunity-based therapies and antibiotics., 2022, 230, 107970.		20
1338	Mechanism of Anti-Inflammatory Activity of TLR4-Interacting SPA4 Peptide. ImmunoHorizons, 2021, 5, 659-674.	0.8	6
1339	Structure-activity relationship study of dihydroartemisinin C-10 hemiacetal derivatives as Toll-like receptor 4 antagonists. Bioorganic Chemistry, 2021, 114, 105107.	2.0	1
1340	MD2 contributes to the pathogenesis of perioperative neurocognitive disorder via the regulation of $\hat{l}\pm 5$ GABAA receptors in aged mice. Journal of Neuroinflammation, 2021, 18, 204.	3.1	15
1341	Molecular Basis of Artemisinin Derivatives Inhibition of Myeloid Differentiation Protein 2 by Combined in Silico and Experimental Study. Molecules, 2021, 26, 5698.	1.7	2
1342	Mice Plasmacytoid Dendritic Cells Were Activated by Lipopolysaccharides Through Toll-Like Receptor 4/Myeloid Differentiation Factor 2. Frontiers in Immunology, 2021, 12, 727161.	2.2	4
1343	Protein overexpression of tollâ€'like receptor 4 and myeloid differentiation factor 88 in oral squamous cell carcinoma and clinical significance. Oncology Letters, 2021, 22, 786.	0.8	2
1344	Recent advances in lipopolysaccharide-based glycoconjugate vaccines. Expert Review of Vaccines, 2021, 20, 1515-1538.	2.0	14
1345	PI3KÎ ³ Mediates Microglial Proliferation and Cell Viability via ROS. Cells, 2021, 10, 2534.	1.8	7

#	Article	IF	CITATIONS
1346	Fullâ€Atom Model of the Agonist LPSâ€Bound Tollâ€like Receptor 4 Dimer in a Membrane Environment. Chemistry - A European Journal, 2021, 27, 15406-15425.	1.7	12
1348	Low endotoxin E.Âcoli strain-derived plasmids reduce rAAV vector-mediated immune responses both inÂvitro and inÂvivo. Molecular Therapy - Methods and Clinical Development, 2021, 22, 293-303.	1.8	11
1349	Chalcone derivatives ameliorate lipopolysaccharide-induced acute lung injury and inflammation by targeting MD2. Acta Pharmacologica Sinica, 2022, 43, 76-85.	2.8	10
1350	Cardamonin inhibits LPS-induced inflammatory responses and prevents acute lung injury by targeting myeloid differentiation factor 2. Phytomedicine, 2021, 93, 153785.	2.3	11
1351	Designing a therapeutic and prophylactic candidate vaccine against human papillomavirus through vaccinomics approaches. Infection, Genetics and Evolution, 2021, 95, 105084.	1.0	9
1352	TLR4 biased small molecule modulators. , 2021, 228, 107918.		29
1353	Effects of Carvedilol on the Expression of TLR4 and its Downstream Signaling Pathway in the Liver Tissues of Rats with Cholestatic Liver Fibrosis. Current Molecular Medicine, 2021, 20, 708-716.	0.6	2
1354	Nalmefene non-enantioselectively targets myeloid differentiation protein 2 and inhibits toll-like receptor 4 signaling: wet-lab techniques and in silico in	1.3	1
1355	The Selection and Optimization of Phage Hosts., 2021,, 689-698.		1
1356	Natural and synthetic carbohydrate-based vaccine adjuvants and their mechanisms of action. Nature Reviews Chemistry, 2021, 5, 197-216.	13.8	120
1357	Role of Toll-Like Receptor 4 in Alcohol-Induced Neuroinflammation and Behavioral Dysfunctions. , 2013, , 279-306.		2
1358	Evolution of Immunity and Pathogens. Results and Problems in Cell Differentiation, 2015, 57, 1-20.	0.2	14
1359	Pathogen-Associated Molecular Patterns (PAMPs). , 2016, , 1055-1069.		4
1360	Lipid A Phosphoethanolamine Transferase: Regulation, Structure and Immune Response. Journal of Molecular Biology, 2020, 432, 5184-5196.	2.0	34
1361	Identification and characterisation of the immune response properties of Lampetra japonica BLNK. Scientific Reports, 2016, 6, 25308.	1.6	16
1362	TLR4-mediated pyroptosis in human hepatoma-derived HuH-7 cells induced by a branched-chain polyunsaturated fatty acid, geranylgeranoic acid. Bioscience Reports, 2020, 40, .	1.1	13
1363	A mouse model of human TLR4 D299G/T399I SNPs reveals mechanisms of altered LPS and pathogen responses. Journal of Experimental Medicine, 2021, 218, .	4.2	19
1364	Toll-Like Receptors, Associated Biochemical Signaling Networks, and S100 Ligands. Shock, 2021, 56, 167-177.	1.0	6

#	Article	IF	CITATIONS
1366	Targeting the innate immune receptor TLR8 using small-molecule agents. Acta Crystallographica Section D: Structural Biology, 2020, 76, 621-629.	1.1	12
1367	Carbon monoxide–based therapy ameliorates acute pancreatitis via TLR4 inhibition. Journal of Clinical Investigation, 2014, 124, 437-447.	3.9	67
1368	Structural diversity of Burkholderia pseudomallei lipopolysaccharides affects innate immune signaling. PLoS Neglected Tropical Diseases, 2017, 11, e0005571.	1.3	37
1369	Potent Anti-Inflammatory Activity of Novel Microtubule-Modulating Brominated Noscapine Analogs. PLoS ONE, 2010, 5, e9165.	1.1	34
1370	Innate Immune Responses to Bacterial Ligands in the Peripheral Human Lung – Role of Alveolar Epithelial TLR Expression and Signalling. PLoS ONE, 2011, 6, e21827.	1.1	75
1371	Tetra- and Penta-Acylated Lipid A Structures of Porphyromonas gingivalis LPS Differentially Activate TLR4-Mediated NF-1ºB Signal Transduction Cascade and Immuno-Inflammatory Response in Human Gingival Fibroblasts. PLoS ONE, 2013, 8, e58496.	1.1	137
1372	Toll-Like Receptor 4–Mediated Nuclear Factor Kappa B Activation Is Essential for Sensing Exogenous Oxidants to Propagate and Maintain Oxidative/Nitrosative Cellular Stress. PLoS ONE, 2013, 8, e73840.	1.1	40
1373	The Role of TLR4 896 A>G and 1196 C>T in Susceptibility to Infections: A Review and Meta-Analysis of Genetic Association Studies. PLoS ONE, 2013, 8, e81047.	1.1	46
1374	Characterization of the Structure and Immunostimulatory Activity of a Vaccine Adjuvant, De-O-Acylated Lipooligosaccharide. PLoS ONE, 2014, 9, e85838.	1.1	20
1375	Episodic Positive Selection in the Evolution of Avian Toll-Like Receptor Innate Immunity Genes. PLoS ONE, 2014, 9, e89632.	1.1	86
1376	Identification of Key Residues That Confer Rhodobacter sphaeroides LPS Activity at Horse TLR4/MD-2. PLoS ONE, 2014, 9, e98776.	1.1	17
1377	Regulation of the Innate Immune Response by Fibronectin: Synergism between the III-1 and EDA Domains. PLoS ONE, 2014, 9, e102974.	1.1	78
1378	The TLR4 D299G and T399I SNPs Are Constitutively Active to Up-Regulate Expression of Trif-Dependent Genes. PLoS ONE, 2014, 9, e111460.	1.1	19
1379	Enterovirus-71 Virus-Like Particles Induce the Activation and Maturation of Human Monocyte-Derived Dendritic Cells through TLR4 Signaling. PLoS ONE, 2014, 9, e111496.	1.1	20
1380	MD-2 Determinants of Nickel and Cobalt-Mediated Activation of Human TLR4. PLoS ONE, 2015, 10, e0120583.	1.1	32
1381	Phosphoethanolamine Modification of Neisseria gonorrhoeae Lipid A Reduces Autophagy Flux in Macrophages. PLoS ONE, 2015, 10, e0144347.	1.1	22
1382	Molecular Determinants of GS-9620-Dependent TLR7 Activation. PLoS ONE, 2016, 11, e0146835.	1.1	17
1383	A Novel Class of Small Molecule Agonists with Preference for Human over Mouse TLR4 Activation. PLoS ONE, 2016, 11, e0164632.	1.1	16

#	Article	IF	CITATIONS
1384	Diet Matters: Endotoxin in the Diet Impacts the Level of Allergic Sensitization in Germ-Free Mice. PLoS ONE, 2017, 12, e0167786.	1.1	30
1385	Palmitic acid is a toll-like receptor 4 ligand that induces human dendritic cell secretion of IL- $1\hat{l}^2$. PLoS ONE, 2017, 12, e0176793.	1.1	87
1386	Human platelet interaction with E. coli O111 promotes tissue-factor-dependent procoagulant activity, involving Toll like receptor 4. PLoS ONE, 2017, 12, e0185431.	1.1	20
1387	MiR-6835 promoted LPS-induced inflammation of HUVECs associated with the interaction between TLR-4 and AdipoR1 in lipid rafts. PLoS ONE, 2017, 12, e0188604.	1.1	9
1388	A Next-Generation Vaccine Candidate Using Alternative Epitopes to Protect against Wuhan and All Significant Mutant Variants of SARS-CoV-2: An Immunoinformatics Approach., 2021, 12, 2173.		20
1389	TLR4 Signaling Selectively and Directly Promotes CGRP Release from Vagal Afferents in the Mouse. ENeuro, 2021, 8, ENEURO.0254-20.2020.	0.9	22
1390	Going, Toll-like receptors in skin inflammation and inflammatory diseases. EXCLI Journal, 2021, 20, 52-79.	0.5	10
1391	Straight and branched (ω-1)-hydroxylated very long chain fatty acids are components of Bradyrhizobium lipid A Acta Biochimica Polonica, 2011, 58, .	0.3	8
1392	The Next Generation of Pattern Recognition Receptor Agonists: Improving Response Rates in Cancer Immunotherapy. Current Medicinal Chemistry, 2020, 27, 5654-5674.	1.2	13
1393	Neutrophils as Sentinel Cells of the Immune System: A Role of the MPO-halide-system in Innate and Adaptive Immunity. Current Medicinal Chemistry, 2020, 27, 2840-2851.	1.2	18
1394	Molecular Interactions in Interleukin and Toll-like Receptor Signaling Pathways. Current Pharmaceutical Design, 2014, 20, 1244-1258.	0.9	8
1395	Targeting the Toll of Drug Abuse: The Translational Potential of Toll-Like Receptor 4. CNS and Neurological Disorders - Drug Targets, 2015, 14, 692-699.	0.8	7 5
1396	In vivo Analysis of Neutrophil Infiltration during LPS-induced Peritonitis. Bio-protocol, 2016, 6, .	0.2	6
1398	Protective effect of bacterial lipase on lipopolysaccharide-induced toxicity in rat cardiomyocytes; H9C2 cell line. Journal of Cardiovascular and Thoracic Research, 2020, 12, 35-42.	0.3	4
1399	Structural modifications of <i>Helicobacter pylori</i> lipopolysaccharide: An idea for how to live in peace. World Journal of Gastroenterology, 2014, 20, 9882.	1.4	47
1400	Role of interferon regulatory factor-1 in lipopolysaccharide-induced mitochondrial damage and oxidative stress responses in macrophages. International Journal of Molecular Medicine, 2017, 40, 1261-1269.	1.8	35
1401	Human monoclonal anti‑TLR4 antibody negatively regulates lipopolysaccharide‑induced inflammatory responses in mouse macrophages. Molecular Medicine Reports, 2020, 22, 4125-4134.	1.1	7
1402	The Physiological Effect of Mental Processes on Major Body Systems. Psychiatric Annals, 2010, 40, 367-380.	0.1	4

#	Article	IF	CITATIONS
1403	Synthesis and Functional Study of Bacterial Glycoconjugates Triggering the Innate Immune System of Higher Animals. Trends in Glycoscience and Glycotechnology, 2010, 22, 107-118.	0.0	4
1404	Ramulus Cinnamomi extract attenuates neuroinflammatory responses via downregulating TLR4/MyD88 signaling pathway in BV2 cells. Neural Regeneration Research, 2017, 12, 1860.	1.6	17
1405	In silico study of ligand binding site of toll-like receptor 5. Advanced Biomedical Research, 2014, 3, 41.	0.2	9
1406	Lipopolysaccharide (LPS) and Protein-LPS complexes: Detection and Characterization by Gel Electrophoresis, Mass Spectrometry and Bioassays. Biology and Medicine (Aligarh), 2016, 08, .	0.3	3
1407	Helical Parameters and Correlations of Tandem Leucine Rich Repeats in Proteins. Journal of Proteomics and Bioinformatics, 2014, 07, .	0.4	13
1408	Synthesis of Bacterial Glycoconjugates and Their Bio-functional Studies in Innate Immunity. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2012, 70, 113-130.	0.0	11
1409	Gambogic Acid Disrupts Toll-like Receptor4 Activation by Blocking Lipopolysaccharides Binding to Myeloid Differentiation Factor 2. Toxicological Research, 2015, 31, 11-16.	1.1	16
1410	Anti-Inflammatory Effect of 3-Bromo-4,5-Dihydroxybenzaldehyde, a Component of <i>Polysiphonia morrowii </i> , <i>In Vivo </i> and <i>In Vitro </i> Toxicological Research, 2017, 33, 325-332.	1.1	20
1411	Polymorphic Variation of Inflammation-related Genes and Risk of Non-Hodgkin Lymphoma for Uygur and Han Chinese in Xinjiang. Asian Pacific Journal of Cancer Prevention, 2014, 15, 9177-9183.	0.5	16
1412	Evolution of multifunctionality through a pleiotropic substitution in the innate immune protein S100A9. ELife, 2020, 9, .	2.8	16
1413	Host-induced spermidine production in motile Pseudomonas aeruginosa triggers phagocytic uptake. ELife, 2020, 9, .	2.8	6
1414	Selective constraint acting on TLR2 and TLR4 genes of Japanese <i>Rana</i> frogs. PeerJ, 2018, 6, e4842.	0.9	7
1415	Issue of Self and Non-self., 2021,, 87-110.		0
1416	Lipopolysaccharide associated with \hat{l}^2 -2,6 fructan mediates TLR4-dependent immunomodulatory activity in vitro. Carbohydrate Polymers, 2022, 277, 118606.	5.1	14
1417	Metabolic endotoxemia: possible causes and consequences. Obesity and Metabolism, 2021, 18, 320-326.	0.4	2
1418	Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins, 2021, 13, 713.	1.5	6
1420	Interaction of Opioids with TLR4â€"Mechanisms and Ramifications. Cancers, 2021, 13, 5274.	1.7	21
1421	Amitriptyline blocks innate immune responses mediated by tollâ€like receptor 4 and ILâ€l receptor: Preclinical and clinical evidence in osteoarthritis and gout. British Journal of Pharmacology, 2022, 179, 270-286.	2.7	20

#	Article	IF	CITATIONS
1422	Pattern recognition receptors and their roles in the host response to Helicobacter pylori infection. Future Microbiology, 2021, 16, 1229-1238.	1.0	1
1423	Lipid A-Mediated Bacterial–Host Chemical Ecology: Synthetic Research of Bacterial Lipid As and Their Development as Adjuvants. Molecules, 2021, 26, 6294.	1.7	8
1424	Impact of lipopolysaccharides on cultivation and recombinant protein expression in human embryonal kidney (HEKâ€293) cells. Engineering in Life Sciences, 2021, 21, 778-785.	2.0	4
1426	Choline or CDP-choline restores hypotension and improves myocardial and respiratory functions in dogs with experimentally – Induced endotoxic shock. Research in Veterinary Science, 2021, 141, 116-128.	0.9	2
1427	Role of CD14 in Lung Inflammation and Infection. Yearbook of Intensive Care and Emergency Medicine, 2010, , 129-140.	0.1	0
1428	Role of CD14 in Lung Inflammation and Infection. , 2010, , 129-140.		4
1430	Pattern-Recognition Receptors Sensing Viral Infection in Myocarditis and Inflammatory Heart Disease. , 0, , .		0
1431	Toll-Like Receptors and Their Regulatory Mechanisms. , 2012, , 39-49.		0
1432	Host Pattern Recognition Receptors (Toll-Like Receptors, RIG-I-Like Receptors, NOD-Like Receptors) and Atherosclerosis., 2012, , 353-383.		0
1433	TLR4, Toll-Like Receptor 4. , 2012, , 1866-1875.		0
1435	The rapeutic Strategies to Treat Alcohol-Related Disorders Targeting Central Immune Signaling. , 2013, , 535-559.		0
1436	Basic Vaccine Immunology. , 2013, , 23-58.		0
1437	Toll-Like Receptor Function and Evolution in Primates. , 2013, , 91-116.		0
1438	Factors Controlling Microglial Activation. , 2013, , .		1
1439	Toll-Like Receptors: Evolution and Structure. , 2014, , 1-7.		0
1440	Exposure to Environmental Endotoxin and Health Effects. Korean Journal of Environmental Health Sciences, 2014, 40, 265-278.	0.1	2
1441	Basic Vaccine Immunology. , 2016, , 25-61.		0
1442	Bacterial Lipopolysaccharide. , 2016, , 185-196.		0

#	Article	IF	CITATIONS
1443	Allergens. , 2016, , 281-289.		0
1444	Immunology of Bacterial Biodefense Agents: Francisella tularensis , Burkholderia mallei , and Yersinia pestis. , 2016, , 66-74.		1
1445	Glycans in Medicinal Chemistry. , 2016, , .		0
1447	Toll-Like Receptor 11: Role in Post-Transplantation Renal Infections. Single Cell Biology, 2017, 06, .	0.2	O
1448	Elucidating endotoxin-biomolecule interactions with FRET: extending the frontiers of their supramolecular complexation. Journal of Biological Methods, 2017, 4, e71.	1.0	3
1449	Toll-Like Receptors: Evolution and Structure. , 2018, , 1192-1198.		O
1450	Shaperone-dependent optimization of expression in E.coli and purification of soluble recombinant lipid a phosphatase LpxE from Francisella tularensis. Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, 2018, 36, 29.	0.1	0
1455	The significance of Toll-like receptors in selected nephropathies. Diagnostyka Laboratoryjna I WiadomoÅci PTDL, 2019, 55, 107-112.	0.0	O
1461	The Selection and Optimization of Phage Hosts. , 2020, , 1-10.		0
1464	Toll-like receptors and toll-like receptor-targeted immunotherapy against glioma. Journal of Hematology and Oncology, 2021, 14, 176.	6.9	47
1465	Chlorogenic Acid Inhibits LPS-Induced Mammary Epithelial Cell Inflammation in Mice by Targeting CD14 and MD-2. International Journal of Pharmacology, 2020, 16, 542-553.	0.1	0
1466	Effects of carvedilol on expression of TLR4 and its downstream signaling pathway in liver tissue of rats with cholestatic liver fibrosisjaundice. Revista Espanola De Enfermedades Digestivas, 2020, , .	0.1	1
1468	A novel ML protein functions as a pattern recognition protein in antibacterial responses in Eriocheir sinensis. Developmental and Comparative Immunology, 2022, 127, 104310.	1.0	4
1471	TLR4 Ligands: Single Molecules and Aggregates. Agents and Actions Supplements, 2021, , 39-56.	0.2	0
1473	Identification of microorganisms using gas chromato-massspectrometry. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2020, 97, 356-362.	0.3	2
1474	Structural Basis for LAR-RPTP-Mediated Synaptogenesis. Molecules and Cells, 2018, 41, 622-630.	1.0	11
1475	Lipopolysaccharide of Yersinia pestis, the Cause of Plague: Structure, Genetics, Biological Properties. Acta Naturae, 2012, 4, 46-58.	1.7	27
1476	The structure of the TLR5-flagellin complex: a new mode of pathogen detection, conserved receptor dimerization for signaling. Science Signaling, 2012, 5, pe11.	1.6	5

#	Article	IF	CITATIONS
1477	Topographical changes in extracellular matrix: Activation of TLR4 signaling and solid tumor progression. Trends in Cancer Research, 2013, 9, 1-13.	1.6	23
1479	Evaluation of Toll-Like Receptor 11 Agonist Adjuvant Activity in Immunization of BALB/c Mice with Total Lysate Antigens of RH Strain. Iranian Journal of Parasitology, 2020, 15, 349-356.	0.6	0
1480	Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chemistry, 2022, 374, 131586.	4.2	30
1481	Heterologous Expression and Assembly of Human TLR Signaling Components in Saccharomyces cerevisiae. Biomolecules, 2021, 11, 1737.	1.8	4
1482	The Interplay between Salmonella and Intestinal Innate Immune Cells in Chickens. Pathogens, 2021, 10, 1512.	1.2	16
1483	Immunoinformatics-Based Designing of a Multi-Epitope Chimeric Vaccine From Multi-Domain Outer Surface Antigens of Leptospira. Frontiers in Immunology, 2021, 12, 735373.	2.2	11
1484	Advanced Bioinformatics Tools in the Pharmacokinetic Profiles of Natural and Synthetic Compounds with Anti-Diabetic Activity. Biomolecules, 2021, 11, 1692.	1.8	11
1485	$\hat{l}^2(2\hat{a}\dagger'\hat{b})$ -Type fructans attenuate proinflammatory responses in a structure dependent fashion via Toll-like receptors. Carbohydrate Polymers, 2022, 277, 118893.	5.1	18
1486	Surfactant Protein A Enhances the Degradation of LPS-Induced TLR4 in Primary Alveolar Macrophages Involving Rab7, β-arrestin2, and mTORC1. Infection and Immunity, 2022, 90, IAI0025021.	1.0	4
1487	Cell-Free Supernatant of Odoribacter splanchnicus Isolated From Human Feces Exhibits Anti-colorectal Cancer Activity. Frontiers in Microbiology, 2021, 12, 736343.	1.5	12
1488	Reduction of the canonical function of a glycolytic enzyme enolase triggers immune responses that further affect metabolism and growth in Arabidopsis. Plant Cell, 2022, 34, 1745-1767.	3.1	15
1489	Paradox of complex diversity: Challenges in the diagnosis and management of bacterial keratitis. Progress in Retinal and Eye Research, 2022, 88, 101028.	7.3	16
1490	The Programmed Cell Death of Macrophages, Endothelial Cells, and Tubular Epithelial Cells in Sepsis-AKI. Frontiers in Medicine, 2021, 8, 796724.	1.2	23
1491	Porphyromonas gingivalis Mfa1 fimbria putatively binds to TLR2 and induces both IL-6 and IL-8 production in human bronchial epithelial cells. Biochemical and Biophysical Research Communications, 2022, 589, 35-40.	1.0	7
1492	Perillyl alcohol attenuates rheumatoid arthritis via regulating TLR4/NF-κB and Keap1/Nrf2 signaling pathways: A comprehensive study onin-vitro and in-vivo experimental models. Phytomedicine, 2022, 97, 153926.	2.3	26
1493	Evaluation of Toll-Like Receptor 11 Agonist Adjuvant Activity in Immunization of BALB/c Mice with Total Lysate Antigens of Toxoplasma gondii RH Strain. Iranian Journal of Parasitology, 2020, 15, 349-356.	0.6	2
1494	The effect of Cudrania tricuspidata fruit vinegar on LPS-induced inflammation in 3T3-L1 adipocytes. Korean Journal of Food Preservation, 2020, 27, 809-816.	0.2	3
1495	Therapeutic Interventions Targeting Innate Immune Receptors: A Balancing Act. Chemical Reviews, 2022, 122, 3414-3458.	23.0	10

#	Article	lF	CITATIONS
1496	Induction of TLR4/TLR2 Interaction and Heterodimer Formation by Low Endotoxic Atypical LPS. Frontiers in Immunology, 2021, 12, 748303.	2.2	19
1498	A gold revision of the Golgi Dynamics (GOLD) domain structure and associated cell functionalities. FEBS Letters, 2022, 596, 973-990.	1.3	6
1499	Focus on the Mechanisms and Functions of Pyroptosis, Inflammasomes, and Inflammatory Caspases in Infectious Diseases. Oxidative Medicine and Cellular Longevity, 2022, 2022, 1-21.	1.9	13
1500	The Effect of C-Phycocyanin on Microglia Activation Is Mediated by Toll-like Receptor 4. International Journal of Molecular Sciences, 2022, 23, 1440.	1.8	5
1501	Network Pharmacology- and Molecular Docking-Based Identification of Potential Phytocompounds from Argyreia capitiformis in the Treatment of Inflammation. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-22.	0.5	10
1502	Cytotoxic T-Cell-Based Vaccine against SARS-CoV-2: A Hybrid Immunoinformatic Approach. Vaccines, 2022, 10, 218.	2.1	4
1503	Dimethyl fumarate attenuates LPS induced septic acute kidney injury by suppression of NFκB p65 phosphorylation and macrophage activation. International Immunopharmacology, 2022, 102, 108395.	1.7	6
1504	SKAP2 suppresses inflammation-mediated tumorigenesis by regulating SHP-1 and SHP-2. Oncogene, 2022, 41, 1087-1099.	2.6	8
1505	Molecular insights into the interaction between human nicotinamide phosphoribosyltransferase and Toll-like receptor 4. Journal of Biological Chemistry, 2022, 298, 101669.	1.6	10
1506	Lipopolysaccharides at Solid and Liquid Interfaces: Models for Biophysical Studies of the Gram-negative Bacterial Outer Membrane. Advances in Colloid and Interface Science, 2022, 301, 102603.	7.0	23
1507	A vaccine built from potential immunogenic pieces derived from the SARS-CoV-2 spike glycoprotein: A computational approximation. Journal of Immunological Methods, 2022, 502, 113216.	0.6	1
1508	The Role of Lipopolysaccharide-Induced Cell Signalling in Chronic Inflammation. Chronic Stress, 2022, 6, 247054702210763.	1.7	68
1509	Small extracellular vesicles from hypoxic mesenchymal stem cells alleviate intervertebral disc degeneration by delivering miR-17-5p. Acta Biomaterialia, 2022, 140, 641-658.	4.1	18
1510	Effects of theaflavin-gallate in-silico binding with different proteins of SARS-CoV-2 and host inflammation and vasoregulations referring an experimental rat-lung injury. Phytomedicine Plus, 2022, 2, 100237.	0.9	3
1511	Insights into the evolution of extracellular leucine-rich repeats in metazoans with special reference to Toll-like receptor 4. Journal of Biosciences, 2019, 44, .	0.5	1
1512	Fungal Immunology: Mechanisms of Host Innate Immune Recognition and Evasion by Pathogenic Fungi. , 0, , .		0
1513	Activation of Toll-Like Receptor 4 by Ebolavirus Shed Glycoprotein Is Direct and Requires the Internal Fusion Loop But Not Glycosylation. SSRN Electronic Journal, 0, , .	0.4	0
1514	Bacterial Toxin and Effector Regulation of Intestinal Immune Signaling. Frontiers in Cell and Developmental Biology, 2022, 10, 837691.	1.8	1

#	Article	IF	CITATIONS
1515	The Intriguing Role of TLR Accessory Molecules in Cardiovascular Health and Disease. Frontiers in Cardiovascular Medicine, 2022, 9, 820962.	1.1	17
1516	Pentamidine Alleviates Inflammation and Lipopolysaccharide-Induced Sepsis by Inhibiting TLR4 Activation via Targeting MD2. Frontiers in Pharmacology, 2022, 13, 835081.	1.6	2
1517	Periodontitis and cardiometabolic disorders: The role of lipopolysaccharide and endotoxemia. Periodontology 2000, 2022, 89, 19-40.	6.3	48
1518	Lipopolysaccharide and ARDS caused by new coronavirus infection: hypotheses and facts. Medical Immunology (Russia), 2022, 24, 7-18.	0.1	1
1519	In silico Designing of an Epitope-Based Vaccine Against Common E. coli Pathotypes. Frontiers in Medicine, 2022, 9, 829467.	1.2	10
1521	Anti-Inflammatory Effects of Ginsenoside Rb3 in LPS-Induced Macrophages Through Direct Inhibition of TLR4 Signaling Pathway. Frontiers in Pharmacology, 2022, 13, 714554.	1.6	4
1522	Microbiota inÂneuroinflammationÂandÂsynaptic dysfunction: a focus on Alzheimer's disease. Molecular Neurodegeneration, 2022, 17, 19.	4.4	89
1523	Molecular mechanism underlying the TLR4 antagonistic and antiseptic activities of papiliocin, an insect innate immune response molecule. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2115669119.	3.3	12
1525	HSP60-Derived Peptide as an LPS/TLR4 Modulator: An in silico Approach. Frontiers in Cardiovascular Medicine, 2022, 9, 731376.	1.1	5
1526	Toll-like receptor 4 (TLR4) inhibitors: Current research and prospective. European Journal of Medicinal Chemistry, 2022, 235, 114291.	2.6	61
1527	Evolution of toll-like receptor gene family in amphibians. International Journal of Biological Macromolecules, 2022, 208, 463-474.	3.6	11
1528	Serum amyloid A1 exacerbates hepatic steatosis via TLR4-mediated NF-κB signaling pathway. Molecular Metabolism, 2022, 59, 101462.	3.0	19
1529	Engineering catalytic dephosphorylation reaction for endotoxin inactivation. Nano Today, 2022, 44, 101456.	6.2	14
1530	Co-treatment with natural HMGB1 inhibitor Glycyrrhizin exerts neuroprotection and reverses Parkinson's disease like pathology in Zebrafish. Journal of Ethnopharmacology, 2022, 292, 115234.	2.0	10
1531	Adjuvants: Engineering Protective Immune Responses in Human and Veterinary Vaccines. Methods in Molecular Biology, 2022, 2412, 179-231.	0.4	7
1532	Toll-Like Receptors (TLRs), NOD-Like Receptors (NLRs), and RIG-I-Like Receptors (RLRs) in Innate Immunity. TLRs, NLRs, and RLRs Ligands as Immunotherapeutic Agents for Hematopoietic Diseases. International Journal of Molecular Sciences, 2021, 22, 13397.	1.8	77
1533	Sparstolonin B suppresses free fatty acid palmitateâ€induced chondrocyte inflammation and mitigates postâ€traumatic arthritis in obese mice. Journal of Cellular and Molecular Medicine, 2022, 26, 725-735.	1.6	4
1534	Adaptation and Cryptic Pseudogenization in Penguin Toll-Like Receptors. Molecular Biology and Evolution, 2022, 39, .	3.5	10

#	Article	IF	CITATIONS
1535	An MD-2-related lipid-recognition protein is required for insect reproduction and integument development. Open Biology, 2021, 11, 210170.	1.5	1
1537	GMMA as a †plug and play' technology to tackle infectious disease to improve global health: context and perspectives for the future. Expert Review of Vaccines, 2022, 21, 163-172.	2.0	16
1538	Toll-Like Receptor 4 in Pain: Bridging Molecules-to-Cells-to-Systems. Handbook of Experimental Pharmacology, 2022, , 1.	0.9	1
1539	Distinct Functional Metagenomic Markers Predict the Responsiveness to Anti-PD-1 Therapy in Chinese Non-Small Cell Lung Cancer Patients. Frontiers in Oncology, 2022, 12, 837525.	1.3	6
1540	Pro-inflammatory cytokine release from chicken peripheral blood mononuclear cells stimulated with lipopolysaccharide. Veterinary World, 0, , 885-889.	0.7	1
1541	Cyclic Attractors Are Critical for Macrophage Differentiation, Heterogeneity, and Plasticity. Frontiers in Molecular Biosciences, 2022, 9, 807228.	1.6	6
1542	Recurrent respiratory syncytial virus infection in a CD14 deficient patient. Journal of Infectious Diseases, 2022, , .	1.9	5
1543	Lipid A mimetics based on unnatural disaccharide scaffold as potent TLR4 agonists for prospective immunotherapeutics and adjuvants. Chemistry - A European Journal, 2022, , .	1.7	4
1570	TLR4 may be a novel indole-3-acetic acid receptor that is implicated in the regulation of CYP1A1 and TNFα expression depending on the culture stage of Caco-2 cells. Bioscience, Biotechnology and Biochemistry, 2021, 85, 2011-2021.	0.6	1
1571	Design of a Novel Recombinant Multi-Epitope Vaccine against Triple-Negative Breast Cancer. Iranian Biomedical Journal, 2022, 26, 160-74.	0.4	4
1572	Free Lipid a Molecules and Lipopolysaccharide Coexist in Vibrio Parahaemolyticus. SSRN Electronic Journal, 0, , .	0.4	0
1573	Raman Microspectroscopy Identifies Biochemical Activation Fingerprints in THP-1- and PBMC-Derived Macrophages. Biomedicines, 2022, 10, 989.	1.4	6
1574	The Bursaphelenchus xylophilus effector BxML1 targets the cyclophilin protein (CyP) to promote parasitism and virulence in pine. BMC Plant Biology, 2022, 22, 216.	1.6	6
1575	Ligustilide Inhibits Tumor Angiogenesis by Downregulating VEGFA Secretion from Cancer-Associated Fibroblasts in Prostate Cancer via TLR4. Cancers, 2022, 14, 2406.	1.7	11
1576	Myeloid differentiation factorâ€⊋ activates monocytes in patients with dilated cardiomyopathy. Immunology, 2022, 167, 40-53.	2.0	4
1577	FAS2FURIOUS: Moderate-Throughput Secreted Expression of Difficult Recombinant Proteins in Drosophila S2 Cells. Frontiers in Bioengineering and Biotechnology, 2022, 10, .	2.0	0
1578	Engineered bacterial membrane vesicles are promising carriers for vaccine design and tumor immunotherapy. Advanced Drug Delivery Reviews, 2022, 186, 114321.	6.6	36
1579	Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Frontiers in Immunology, 2022, 13, .	2.2	27

#	Article	IF	CITATIONS
1580	Differentiation and classification of bacterial endotoxins based on surface enhanced Raman scattering and advanced machine learning. Nanoscale, 2022, 14, 8806-8817.	2.8	13
1581	Insilico structure based drug design approach to find potential hits in ventilator-associated pneumonia caused by Pseudomonas aeruginosa. Computers in Biology and Medicine, 2022, 146, 105597.	3.9	0
1582	Pathophysiological Significance of GM3 Ganglioside Molecular Species With a Particular Attention to the Metabolic Syndrome Focusing on Toll-Like Receptor 4 Binding. Frontiers in Molecular Biosciences, 2022, 9, .	1.6	2
1583	Development of a Simple and Effective Lipid-A Antagonist Based on Computational Prediction. ACS Infectious Diseases, 2022, 8, 1171-1178.	1.8	1
1585	Probiotics for obesity and metabolic syndrome prevention and treatment., 2022,, 463-484.		0
1586	Cyprinidâ€specific duplicated membrane TLR5 senses dsRNA as functional homodimeric receptors. EMBO Reports, 2022, 23, .	2.0	11
1587	Airway Prevotella promote TLR2-dependent neutrophil activation and rapid clearance of Streptococcus pneumoniae from the lung. Nature Communications, 2022, 13, .	5.8	19
1589	A nonâ€polar fraction of <i>Saponaria officinalis</i> L. acted as a TLR4/MD2 complex antagonist and inhibited TLR4/MyD88 signaling in vitro and in vivo. FASEB Journal, 2022, 36, .	0.2	6
1590	Trendbericht Biochemie 2022: Strukturbiologie an der Schnittstelle zwischen Mensch und Mikrobe. Nachrichten Aus Der Chemie, 2022, 70, 68-70.	0.0	0
1591	Oleuropein as a Potent Compound against Neurological Complications Linked with COVID-19: A Computational Biology Approach. Entropy, 2022, 24, 881.	1.1	3
1592	Effect of Reactive EGCs on Intestinal Motility and Enteric Neurons During Endotoxemia. Journal of Molecular Neuroscience, 2022, 72, 1831-1845.	1.1	1
1593	6â€Shogaol (enexasogoal) treatment improves experimental knee osteoarthritis exerting a pleiotropic effect over immune innate signalling responses in chondrocytes. British Journal of Pharmacology, 2022, 179, 5089-5108.	2.7	8
1594	Domain fusion TLR2-4 enhances the autophagy-dependent clearance of Staphylococcus aureus in the genetic engineering goat. ELife, 0, 11 , .	2.8	4
1595	Alt a 1 Promotes Allergic Asthma In Vivo Through TLR4-Alveolar Macrophages. Frontiers in Immunology, 0, 13 , .	2.2	0
1596	ACT001 Inhibits TLR4 Signaling by Targeting Co-Receptor MD2 and Attenuates Neuropathic Pain. Frontiers in Immunology, 0, 13, .	2.2	4
1597	Cross-Talk Between Gut Microbiota and Adipose Tissues in Obesity and Related Metabolic Diseases. Frontiers in Endocrinology, $0,13,.$	1.5	20
1598	Multifaceted Computational Modeling in Glycoscience. Chemical Reviews, 2022, 122, 15914-15970.	23.0	30
1599	Inflammation-associated premetastatic niche formation. Inflammation and Regeneration, 2022, 42, .	1.5	13

#	Article	IF	CITATIONS
1600	Position-Specific Secondary Acylation Determines Detection of Lipid A by Murine TLR4 and Caspase-11. Infection and Immunity, 2022, 90, .	1.0	6
1601	Mining of Marburg Virus Proteome for Designing an Epitope-Based Vaccine. Frontiers in Immunology, 0, 13, .	2.2	7
1602	RP105 protects against ischemic and septic acute kidney injury via suppressing TLR4/NF-κB signaling pathways. International Immunopharmacology, 2022, 109, 108904.	1.7	9
1603	Carbon monoxide mechanism of protection against renal ischemia and reperfusion injury. Biochemical Pharmacology, 2022, 202, 115156.	2.0	8
1604	Half is enough: Oxidized lysophospholipids as novel bioactive molecules. Free Radical Biology and Medicine, 2022, 188, 351-362.	1.3	4
1605	Inflammatory gene expression during acute highâ€altitude exposure. Journal of Physiology, 2022, 600, 4169-4186.	1.3	14
1606	Multiepitopeâ€based vaccine design by exploring antigenic potential among leptospiral lipoproteins using comprehensive immunoinformatics and structureâ€based approaches. Biotechnology and Applied Biochemistry, 2023, 70, 670-687.	1.4	2
1607	Regulated Expression of lpxC Allows for Reduction of Endotoxicity in Bordetella pertussis. International Journal of Molecular Sciences, 2022, 23, 8027.	1.8	4
1608	Dithymoquinone Analogues as Potential Candidate(s) for Neurological Manifestation Associated with COVID-19: A Therapeutic Strategy for Neuro-COVID. Life, 2022, 12, 1076.	1.1	2
1609	Microgliosis: a doubleâ€edged sword in the control of food intake. FEBS Journal, 2024, 291, 615-631.	2.2	1
1610	Host and Species-Specificities of Pattern Recognition Receptors Upon Infection With Leptospira interrogans. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	11
1611	Cannabidivarin alleviates neuroinflammation by targeting TLR4 co-receptor MD2 and improves morphine-mediated analgesia. Frontiers in Immunology, $0,13,.$	2.2	2
1612	Immunoinformatics-Aided Analysis of RSV Fusion and Attachment Glycoproteins to Design a Potent Multi-Epitope Vaccine. Vaccines, 2022, 10, 1381.	2.1	5
1613	Colon Cancer and Obesity: A Narrative Review. Cureus, 2022, , .	0.2	3
1614	HbS promotes TLR4-mediated monocyte activation and proinflammatory cytokine production in sickle cell disease. Blood, 2022, 140, 1972-1982.	0.6	10
1615	Structural and functional implications of leucine-rich repeats in toll-like receptor 1 subfamily. Journal of Biosciences, 2022, 47, .	0.5	0
1616	Repurposing drugs to inhibit innate immune responses associated with TLR4, IL1, and NLRP3 signaling in joint cells. Biomedicine and Pharmacotherapy, 2022, 155, 113671.	2.5	2
1617	Multiple anti-inflammatory mechanisms of Zedoary Turmeric Oil Injection against lipopolysaccharides-induced acute lung injury in rats elucidated by network pharmacology combined with transcriptomics. Phytomedicine, 2022, 106, 154418.	2.3	4

#	Article	IF	CITATIONS
1618	Prospective lipid-A altered live attenuated Salmonella Gallinarum confers protectivity, DIVA capability, safety and low endotoxicity against fowl typhoid. Veterinary Microbiology, 2022, 274, 109572.	0.8	6
1619	Toll Like Receptors., 2022,,.		0
1620	Alterations of the Intestinal Mucus Layer Correlate with Dysbiosis and Immune Dysregulation in Human Type 1 Diabetes SSRN Electronic Journal, $0, \dots$	0.4	0
1621	Molecular Changes in Relation to Alcohol Consumption and Hepatocellular Carcinoma. International Journal of Molecular Sciences, 2022, 23, 9679.	1.8	9
1622	The NLRP3 inflammasome fires up heme-induced inflammation in hemolytic conditions. Translational Research, 2023, 252, 34-44.	2.2	6
1623	Immunoinformatic analysis of the whole proteome for vaccine design: An application to Clostridium perfringens. Frontiers in Immunology, 0, 13 , .	2.2	1
1624	Identification of Inflammatory Proteomics Networks of Toll-like Receptor 4 through Immunoprecipitation-Based Chemical Cross-Linking Proteomics. Proteomes, 2022, 10, 31.	1.7	1
1625	The interaction of MD-2 with small molecules in huanglian jiedu decoction play a critical role in the treatment of sepsis. Frontiers in Pharmacology, $0,13,.$	1.6	0
1626	Effects of Genistein on Common Kidney Diseases. Nutrients, 2022, 14, 3768.	1.7	10
1628	Sphingosine-1-phosphate receptor 1 activation in the central nervous system drives cisplatin-induced cognitive impairment. Journal of Clinical Investigation, 2022, 132 , .	3.9	10
1629	Pattern recognition receptor CD14 gene polymorphisms in alcohol use disorder patients and its Influence on liver disease susceptibility. Frontiers in Immunology, 0, 13, .	2.2	7
1630	Small Molecules as Toll-like Receptor 4 Modulators Drug and In-House Computational Repurposing. Biomedicines, 2022, 10, 2326.	1.4	2
1631	Glucogallin Attenuates the LPS-Induced Signaling in Macrophages and Protects Mice against Sepsis. International Journal of Molecular Sciences, 2022, 23, 11254.	1.8	6
1632	Activation of TLR4 by viral glycoproteins: A double-edged sword?. Frontiers in Microbiology, 0, 13, .	1.5	12
1633	Interleukin $1\hat{l}^2$ and lipopolysaccharides induction dictate chondrocyte morphological properties and reduce cellular roughness and adhesion energy comparatively. Biointerphases, 2022, 17, .	0.6	1
1634	Bupivacaine inhibits the TLR4―and TLR2â€Myd88/NFâ€ÎºB pathways in human leukocytes. Fundamental and Clinical Pharmacology, 2023, 37, 347-358.	1.0	1
1635	Evolution avoids a pathological stabilizing interaction in the immune protein S100A9. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119 , .	3.3	7
1636	Crystal structure of <i>Campylobacter jejuni</i> lipoprotein Cj1090c. Proteins: Structure, Function and Bioinformatics, 2023, 91, 293-299.	1.5	4

#	Article	IF	Citations
1637	Niloticin binds to MD-2 to promote anti-inflammatory pathway activation in macrophage cells. International Journal of Immunopathology and Pharmacology, 2022, 36, 039463202211330.	1.0	1
1638	Physiological mechanisms of TLR4 in glucolipid metabolism regulation: Potential use in metabolic syndrome prevention. Nutrition, Metabolism and Cardiovascular Diseases, 2023, 33, 38-46.	1.1	2
1639	An updated systematic review of the association between the TLR4 polymorphism rs4986790 and cancers risk. Medicine (United States), 2022, 101, e31247.	0.4	2
1640	Human Endogenous Retroviruses and Toll-Like Receptors. Viral Immunology, 2023, 36, 73-82.	0.6	2
1641	Attenuation of Palmitic Acid-Induced Intestinal Epithelial Barrier Dysfunction by 6-Shogaol in Caco-2 Cells: The Role of MiR-216a-5p/TLR4/NF-κB Axis. Metabolites, 2022, 12, 1028.	1.3	8
1642	Detailed Molecular Interactions between Respiratory Syncytial Virus Fusion Protein and the TLR4/MD-2 Complex In Silico. Viruses, 2022, 14, 2382.	1.5	0
1643	TLR4-Pathway-Associated Biomarkers in Subarachnoid Hemorrhage (SAH): Potential Targets for Future Anti-Inflammatory Therapies. International Journal of Molecular Sciences, 2022, 23, 12618.	1.8	7
1644	Activation of Toll-like receptor 4 by Ebola virus-shed glycoprotein is direct and requires the internal fusion loop but not glycosylation. Cell Reports, 2022, 41, 111562.	2.9	1
1645	Inflammatory Response in Sepsis and Hemorrhagic Stroke. Brain Hemorrhages, 2022, , .	0.4	1
1646	Clinical Significance of Lipid Transport Function of ABC Transporters in the Innate Immune System. Membranes, 2022, 12, 1083.	1.4	3
1647	Sickle cell inflammation: isÂHbS the answer?. Blood, 2022, 140, 1921-1923.	0.6	0
1648	Flow cytometric reporter assays provide robust functional analysis of signaling complexes. Journal of Biological Chemistry, 2022, 298, 102666.	1.6	1
1649	Selective targeting of MD2 attenuates intestinal inflammation and prevents neonatal necrotizing enterocolitis by suppressing TLR4 signaling. Frontiers in Immunology, 0, 13, .	2.2	4
1650	Lipopolysaccharide Structure and the Phenomenon of Low Endotoxin Recovery. European Journal of Pharmaceutics and Biopharmaceutics, 2022, 180, 289-307.	2.0	14
1651	Rational design of a novel multi-epitope peptide-based vaccine against Onchocerca volvulus using transmembrane proteins. Frontiers in Tropical Diseases, 0, 3, .	0.5	0
1652	Somatic mutation distribution across tumour cohorts provides a signal for positive selection in cancer. Nature Communications, 2022, 13 , .	5.8	3
1653	$3\hat{E}^1,4\hat{E}^1$ -Dihydroxyflavone mitigates inflammatory responses by inhibiting LPS and TLR4/MD2 interaction. Phytomedicine, 2023, 109, 154553.	2.3	5
1654	New Lactobacillus plantarum membrane proteins (LpMPs) towards oral anti-inflammatory agents against dextran sulfate sodium-induced colitis. International Immunopharmacology, 2022, 113, 109416.	1.7	0

#	Article	IF	CITATIONS
1655	Effect of population size and selection on Tollâ€like receptor diversity in populations of Galápagos mockingbirds. Journal of Evolutionary Biology, 2023, 36, 109-120.	0.8	1
1656	Dysbiosis of the respiratory tract mucosa—how microbial imbalances lead to asthma. Annals of Translational Medicine, 2022, .	0.7	0
1657	Milonine attenuates the lipopolysaccharide-induced acute lung injury in mice by modulating the Akt/NF-κB signaling pathways. Anais Da Academia Brasileira De Ciencias, 2022, 94, .	0.3	0
1658	Pharmacological data science perspective on fatal incidents of morphine treatment., 2023, 241, 108312.		3
1659	Free lipid A and full-length lipopolysaccharide coexist in Vibrio parahaemolyticus ATCC33846. Microbial Pathogenesis, 2023, 174, 105889.	1.3	1
1660	Piperlongumine mitigates LPS-induced inflammation and lung injury via targeting MD2/TLR4. Biochemical and Biophysical Research Communications, 2023, 642, 118-127.	1.0	3
1661	The relationship between 896A/G (rs4986790) polymorphism of TLR4 and infectious diseases: A meta-analysis. Frontiers in Genetics, 0, 13 , .	1.1	6
1662	Evolutionary Impacts of Pattern Recognition Receptor Genes on Carnivora Complex Habitat Stress Adaptation. Animals, 2022, 12, 3331.	1.0	2
1663	Structural insight and analysis of TLR4 interactions with IAXO-102, TAK-242 and SN-38: an in silico approach. In Silico Pharmacology, 2023, 11, .	1.8	1
1664	Human MD2 deficiencyâ€"an inborn error of immunity with pleiotropic features. Journal of Allergy and Clinical Immunology, 2023, 151, 791-796.e7.	1.5	3
1665	The repertoire of protein-sulfatide interactions reveal distinct modes of sulfatide recognition. Frontiers in Molecular Biosciences, 0, 9, .	1.6	2
1666	Biallelic TLR4 deficiency in humans. Journal of Allergy and Clinical Immunology, 2023, 151, 783-790.e5.	1.5	3
1667	Understanding the immunological interactions of engineered nanomaterials: Role of the bioâ€corona. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2022, 14, .	3.3	5
1668	Oxybaphus himalaicus Mitigates Lipopolysaccharide-Induced Acute Kidney Injury by Inhibiting TLR4/MD2 Complex Formation. Antioxidants, 2022, 11, 2307.	2.2	0
1669	Gut dysbiosis induces the development of mastitis through a reduction in host anti-inflammatory enzyme activity by endotoxemia. Microbiome, 2022, 10, .	4.9	22
1670	Obesity, Cancer and the Immune System: Cross Talks and Complex Interplay. , 2023, , 1-25.		1
1671	Polymyxin Resistance and Heteroresistance Are Common in Clinical Isolates of <i>Achromobacter</i> Species and Correlate with Modifications of the Lipid A Moiety of Lipopolysaccharide. Microbiology Spectrum, 2023, 11, .	1,2	5
1672	Multi-Omics Integration to Reveal the Mechanism of Sericin Inhibiting LPS-Induced Inflammation. International Journal of Molecular Sciences, 2023, 24, 259.	1.8	3

#	Article	IF	CITATIONS
1673	TLR4 Blockade Using Docosahexaenoic Acid Restores Vulnerability of Drug-Tolerant Tumor Cells and Prevents Breast Cancer Metastasis and Postsurgical Relapse. ACS Bio & Med Chem Au, 0, , .	1.7	1
1674	Influence of toll-like receptor-4 antagonist on bacterial load of asthma in Swiss albino mice: targeting TLR4/MD2 complex pathway. Environmental Science and Pollution Research, 0, , .	2.7	0
1675	Role of oral microbiome in oral oncogenesis, tumor progression, and metastasis. Molecular Oral Microbiology, 2023, 38, 9-22.	1.3	7
1678	Effects of methadone on the toll-like receptor 4 expression in human non-small cell lung carcinoma A549 cell line using In-silico and In vitro techniques. Advanced Biomedical Research, 2022, 11, 122.	0.2	2
1679	Self-Adjuvanting Protein Vaccine Conjugated with a Novel Synthetic TLR4 Agonist on Virus-Like Liposome Induces Potent Immunity against SARS-CoV-2. Journal of Medicinal Chemistry, 2023, 66, 1467-1483.	2.9	3
1680	The role of pyroptosis in endothelial dysfunction induced by diseases. Frontiers in Immunology, 0, 13, .	2.2	0
1681	Understanding the development of Th2 cell-driven allergic airway disease in early life. Frontiers in Allergy, $0, 3, .$	1.2	5
1682	Chemical Synthesis and Immunomodulatory Functions of Bacterial Lipid As. Methods in Molecular Biology, 2023, , 33-53.	0.4	1
1683	Innovative Vaccine Strategy: Self-Adjuvanting Conjugate Vaccines. Methods in Molecular Biology, 2023, , 55-72.	0.4	1
1684	The pathogenic effect of SNPs on structure and function of human TLR4 using a computational approach. Journal of Biomolecular Structure and Dynamics, 2023, 41, 12387-12400.	2.0	1
1685	LipidA-IDER to Explore the Global Lipid A Repertoire of Drug-Resistant Gram-Negative Bacteria. Analytical Chemistry, 0, , .	3.2	0
1686	Toll-Like Receptor 4-Dependent Platelet-Related Thrombosis in SARS-CoV-2 Infection. Circulation Research, 2023, 132, 290-305.	2.0	11
1687	Toll-like Receptors and Thrombopoiesis. International Journal of Molecular Sciences, 2023, 24, 1010.	1.8	5
1688	Toll-like Receptor 4 in Acute Kidney Injury. International Journal of Molecular Sciences, 2023, 24, 1415.	1.8	2
1689	The lung, the niche, and the microbe: Exploring the lung microbiome in cancer and immunity. Frontiers in Immunology, $0,13,1$	2.2	4
1690	The Oligosaccharide Region of LPS Governs Predation of E. coli by the Bacterivorous Protist, Acanthamoeba castellanii. Microbiology Spectrum, 2023, 11 , .	1.2	3
1691	Mechanisms of Toll-like receptor tolerance induced by microbial ligands. Zhurnal Mikrobiologii Epidemiologii I Immunobiologii, 2023, 99, 708-721.	0.3	0
1692	Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydrate Polymers, 2023, 305, 120533.	5.1	5

#	Article	IF	CITATIONS
1693	Argon mitigates post-stroke neuroinflammation by regulating M1/M2 polarization and inhibiting NF- <b\rac{b}\rac{l}^2< b="">B/NLRP3 inflammasome signaling. Journal of Molecular Cell Biology, 2023, 14, .</b\rac{b}\rac{l}^2<>	1.5	4
1694	Therapeutic Targeting of TLR4 for Inflammation, Infection, and Cancer: A Perspective for Disaccharide Lipid A Mimetics. Pharmaceuticals, 2023, 16, 23.	1.7	13
1695	TLR4 and MD2 variation among horses with differential TNF $\hat{1}\pm$ baseline concentrations and response to intravenous lipopolysaccharide infusion. Scientific Reports, 2023, 13, .	1.6	0
1696	One-Dimensional Rod-like Tobacco Mosaic Virus Promotes Macrophage Polarization for a Tumor-Suppressive Microenvironment. Nano Letters, 2023, 23, 2056-2064.	4.5	4
1697	The role of pyroptosis in endothelial dysfunction induced by diseases. Frontiers in Immunology, 0, 13, .	2.2	7
1698	Interaction of Tryptophan- and Arginine-Rich Antimicrobial Peptide with E. coli Outer Membrane—A Molecular Simulation Approach. International Journal of Molecular Sciences, 2023, 24, 2005.	1.8	6
1699	Immunohistochemical Localization of MD2, a Co-Receptor of TLR4, in the Adult Mouse Brain. ACS Chemical Neuroscience, 2023, 14, 400-417.	1.7	0
1700	Metabolic engineering of <i>Escherichia coli</i> to efficiently produce monophosphoryl lipid A. Biotechnology and Applied Biochemistry, 2023, 70, 1332-1345.	1.4	2
1701	Endotoxemia and Gastrointestinal Cancers: Insight into the Mechanisms Underlying a Dangerous Relationship. Microorganisms, 2023, 11, 267.	1.6	4
1703	Identification and Molecular Mechanism of Novel Immunomodulatory Peptides from Gelatin Hydrolysates: Molecular Docking, Dynamic Simulation, and Cell Experiments. Journal of Agricultural and Food Chemistry, 2023, 71, 2924-2934.	2.4	11
1704	Lipoteichoic Acid Inhibits Lipopolysaccharide-Induced TLR4 Signaling by Forming an Inactive TLR4/MD-2 Complex Dimer. Journal of Immunology, 2023, 210, 1386-1395.	0.4	0
1705	Masking of typical TLR4 and TLR5 ligands modulates inflammation and resolution by Helicobacter pylori. Trends in Microbiology, 2023, 31, 903-915.	3.5	9
1706	Alterations of the intestinal mucus layer correlate with dysbiosis and immune dysregulation in human Type 1 Diabetes. EBioMedicine, 2023, 91, 104567.	2.7	6
1707	ApoM binds endotoxin contributing to neutralization and clearance by High Density Lipoprotein. Biochemistry and Biophysics Reports, 2023, 34, 101445.	0.7	1
1708	Divergent evolution drives high diversity of toll-like receptors (TLRs) in passerine birds: Buntings and finches. Developmental and Comparative Immunology, 2023, 144, 104704.	1.0	0
1709	Effective anti-inflammatory phenolic compounds from dandelion: identification and mechanistic insights using UHPLC-ESI-MS/MS, fluorescence quenching and anisotropy, molecular docking and dynamics simulation. Food Science and Human Wellness, 2023, 12, 2184-2194.	2.2	5
1710	Surface decoration with leucine tetrapeptide: An antibacterial strategy against Gram-negative bacteria. Journal of Colloid and Interface Science, 2023, 641, 126-134.	5.0	3
1711	Orientia and Rickettsia: different flowers from the same garden. Current Opinion in Microbiology, 2023, 74, 102318.	2.3	7

#	Article	IF	CITATIONS
1713	The antimicrobial peptide LK2(6)A(L) exhibits anti-inflammatory activity by binding to the myeloid differentiation 2 domain and protects against LPS-induced acute lung injury in mice. Bioorganic Chemistry, 2023, 132, 106376.	2.0	1
1714	New Glucosamine-Based TLR4 Agonists: Design, Synthesis, Mechanism of Action, and In Vivo Activity as Vaccine Adjuvants. Journal of Medicinal Chemistry, 2023, 66, 3010-3029.	2.9	8
1715	Transfer of knowledge from model organisms to evolutionarily distant non-model organisms: The coral Pocillopora damicornis membrane signaling receptome. PLoS ONE, 2023, 18, e0270965.	1.1	4
1716	An optimized live bacterial delivery vehicle safely and efficaciously delivers bacterially transcribed therapeutic nucleic acids. Engineering in Life Sciences, 2023, 23, .	2.0	2
1717	Gut microbiome lipid metabolism and its impact on host physiology. Cell Host and Microbe, 2023, 31, 173-186.	5.1	39
1718	Immunoinformatics Study: Multi-Epitope Based Vaccine Design from SARS-CoV-2 Spike Glycoprotein. Vaccines, 2023, 11, 399.	2.1	1
1719	An engineered miRNA PS-OMe miR130 inhibits acute lung injury by targeting eCIRP in sepsis. Molecular Medicine, 2023, 29, .	1.9	3
1720	Integration of immunoinformatics and cheminformatics to design and evaluate a multitope vaccine against Klebsiella pneumoniae and Pseudomonas aeruginosa coinfection. Frontiers in Molecular Biosciences, 0, 10, .	1.6	1
1721	Antigen receptor structure and signaling. Advances in Immunology, 2023, , 1-28.	1.1	0
1722	Immunoinformatics-aided design of a new multi-epitope vaccine adjuvanted with domain 4 of pneumolysin against Streptococcus pneumoniae strains. BMC Bioinformatics, 2023, 24, .	1.2	9
1723	Synthesis, antitumor evaluation and computational study of thiazolidinone derivatives of dehydroabietic acid-based B ring-fused-thiazole. Molecular Diversity, 0, , .	2.1	1
1724	Qi Field Effect of Acupuncture Time-Acupoints-Space in the Treatment of Long Coronavirus Disease and Coronavirus Disease 2019 Vaccine Adverse Reactions. , 0, , .		0
1725	Simultaneous control of infection and inflammation with keratin-derived antibacterial peptides targeting TLRs and co-receptors. Science Translational Medicine, 2023, 15, .	5.8	10
1726	Foodborne Carbon Dot Exposure Induces Insulin Resistance through Gut Microbiota Dysbiosis and Damaged Intestinal Mucus Layer. ACS Nano, 2023, 17, 6081-6094.	7.3	10
1727	Airway transcriptome networks identify susceptibility to frequent asthma exacerbations in children. Journal of Allergy and Clinical Immunology, 2023, 152, 73-83.	1.5	1
1729	Novel multivalent S100A8 inhibitory peptides attenuate tumor progression and metastasis by inhibiting the TLR4-dependent pathway. Cancer Gene Therapy, 2023, 30, 973-984.	2.2	2
1730	The architecture of transmembrane and cytoplasmic juxtamembrane regions of Toll-like receptors. Nature Communications, 2023, 14, .	5.8	5
1732	Study on Interactions of the SARS-CoV-2 Spike Proteins with the Human Toll-like Receptor 4 using Molecular Dynamic Simulations., 2023, 4, 34-46.		0

#	Article	IF	CITATIONS
1733	Soluble TREM-like Transcript-1 Acts as a Damage-Associated Molecular Pattern through the TLR4/MD2 Pathway Contributing to Immune Dysregulation during Sepsis. Journal of Immunology, 2023, 210, 1351-1362.	0.4	2
1734	Underpinning Endogeneous Damp EDA-Fibronectin in the Activation of Molecular Targets of Rheumatoid Arthritis and Identification of its Effective Inhibitors by Computational Methods. Applied Biochemistry and Biotechnology, 0, , .	1.4	0
1735	Multifunctional Antibacterial Nanonets Attenuate Inflammatory Responses through Selective Trapping of Endotoxins and Proâ€Inflammatory Cytokines. Advanced Healthcare Materials, 2023, 12, .	3.9	3
1736	Pretreatment with a novel Toll-like receptor 4 agonist attenuates renal ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2023, 324, F472-F482.	1.3	2
1737	The <scp>antiâ€TLR4</scp> monoclonal antibody Sa15â€21 enhances inflammatory cytokine production in <scp>LPS</scp> â€stimulated macrophages. FEBS Letters, 0, , .	1.3	0
1738	Insights into the Binding Mode of Lipid A to the Anti-lipopolysaccharide Factor ALFPm3 from <i>Penaeus monodon</i> : An In Silico Study through MD Simulations. Journal of Chemical Information and Modeling, 0, , .	2.5	0
1739	Requirement of scavenger receptors for activation of the IRF-3/IFN- \hat{l}^2 /STAT-1 pathway in TLR4-mediated production of NO by LPS-activated macrophages. Nitric Oxide - Biology and Chemistry, 2023, 134-135, 61-71.	1,2	1
1740	TLR4 phosphorylation at tyrosine 672 activates the ERK/câ€FOS signaling module for LPSâ€induced cytokine responses in macrophages. European Journal of Immunology, 2023, 53, .	1.6	1
1741	Structural analysis of the Toll-like receptor 15 TIR domain. IUCrJ, 2023, 10, 352-362.	1.0	0
1742	Dissecting the species-specific recognition of Neoseptin 3 by TLR4/MD2 via molecular dynamics simulations. Physical Chemistry Chemical Physics, 0, , .	1.3	0
1754	Chemical Synthesis and Immunological Functions of Bacterial Lipid A for Vaccine Adjuvant Development and Bacterial-Host Chemical Ecology Research. , 2023, , 77-100.		0
1760	Toll-Like Receptors in Pain and Itch. , 2023, , 197-222.		0
1764	Ameliorating effects of berberine on sepsis-associated lung inflammation induced by lipopolysaccharide: molecular mechanisms and preclinical evidence. Pharmacological Reports, 2023, 75, 805-816.	1.5	3
1794	Modeling of Transmembrane Domain and Full-Length TLRs in Membrane Models. Methods in Molecular Biology, 2023, , 3-38.	0.4	0
1807	Role of toll-like receptor in the pathogenesis of oral cancer. Cell Biochemistry and Biophysics, 2024, 82, 91-105.	0.9	0
1808	Small molecule modulators of immune pattern recognition receptors. RSC Chemical Biology, 0, , .	2.0	0
1828	Unraveling the complex roles of macrophages in obese adipose tissue: an overview. Frontiers of Medicine, 0 , , .	1.5	1
1836	Survival strategies of extracellular bacterial pathogens. , 2024, , 443-455.		0

Article IF Citations