Population genomics of domestic and wild yeasts

Nature 458, 337-341 DOI: 10.1038/nature07743

Citation Report

#	Article	IF	CITATIONS
1	Silent but Not Static: Accelerated Base-Pair Substitution in Silenced Chromatin of Budding Yeasts. PLoS Genetics, 2008, 4, e1000247.	1.5	32
2	The effects of probe binding affinity differences on gene expression measurements and how to deal with them. Bioinformatics, 2009, 25, 2772-2779.	1.8	7
3	Genome structure of a <i>Saccharomyces cerevisiae</i> strain widely used in bioethanol production. Genome Research, 2009, 19, 2258-2270.	2.4	237
4	Population Genomic Inferences from Sparse High-Throughput Sequencing of Two Populations of Drosophila melanogaster. Genome Biology and Evolution, 2009, 1, 449-465.	1.1	60
5	Repetitive sequence variation and dynamics in the ribosomal DNA array of Saccharomyces cerevisiae as revealed by whole-genome resequencing. Genome Research, 2009, 19, 626-635.	2.4	82
6	Population Genomics of Intron Splicing in 38 Saccharomyces cerevisiae Genome Sequences. Genome Biology and Evolution, 2009, 1, 466-478.	1.1	20
7	Selection to Maintain Paralogous Amino Acid Differences Under the Pressure of Gene Conversion in the Heat-Shock Protein Genes in Yeast. Molecular Biology and Evolution, 2009, 26, 2655-2659.	3.5	9
8	The Ime2 Protein Kinase Enhances the Disassociation of the Sum1 Repressor from Middle Meiotic Promoters. Molecular and Cellular Biology, 2009, 29, 4352-4362.	1.1	32
9	Polymorphisms in Multiple Genes Contribute to the Spontaneous Mitochondrial Genome Instability of <i>Saccharomyces cerevisiae</i> S288C Strains. Genetics, 2009, 183, 365-383.	1.2	161
10	Pervasive Natural Selection in the Drosophila Genome?. PLoS Genetics, 2009, 5, e1000495.	1.5	329
11	Systematic Identification of Balanced Transposition Polymorphisms in Saccharomyces cerevisiae. PLoS Genetics, 2009, 5, e1000502.	1.5	6
12	Segregating YKU80 and TLC1 Alleles Underlying Natural Variation in Telomere Properties in Wild Yeast. PLoS Genetics, 2009, 5, e1000659.	1.5	46
13	The Origin Recognition Complex Interacts with a Subset of Metabolic Genes Tightly Linked to Origins of Replication. PLoS Genetics, 2009, 5, e1000755.	1.5	25
14	Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis. Genome Research, 2009, 19, 2271-2278.	2.4	88
15	Evolutionary Capture of Viral and Plasmid DNA by Yeast Nuclear Chromosomes. Eukaryotic Cell, 2009, 8, 1521-1531.	3.4	64
16	Comparative genomics of protoploid <i>Saccharomycetaceae</i> . Genome Research, 2009, 19, 1696-1709.	2.4	207
17	Eukaryote-to-eukaryote gene transfer events revealed by the genome sequence of the wine yeast Saccharomyces cerevisiae EC1118. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16333-16338.	3.3	438
18	Niche-driven evolution of metabolic and life-history strategies in natural and domesticated populations of Saccharomyces cerevisiae. BMC Evolutionary Biology, 2009, 9, 296.	3.2	47

ARTICLE IF CITATIONS # The Fungi. Current Biology, 2009, 19, R840-R845. 19 1.8 279 Natural history of budding yeast. Current Biology, 2009, 19, R886-R890. 1.8 Fungal regulatory evolution: <i>cis</i> and <i>trans</i> in the balance. FEBS Letters, 2009, 583, 21 1.3 43 3959-3965. A database of microsatellite genotypes for Saccharomyces cerevisiae. Antonie Van Leeuwenhoek, 2009, 96, 355-359. Comprehensive polymorphism survey elucidates population structure of Saccharomyces cerevisiae. 24 13.7 431 Nature, 2009, 458, 342-345. Explaining microbial population genomics through phage predation. Nature Reviews Microbiology, 2009, 7, 828-836. 13.6 596 Generation of a large set of genetically tractable haploid and diploid <i>Saccharomyces </i>â€Âf strains. 27 1.1 187 FEMS Yeast Research, 2009, 9, 1217-1225. Evidence for autotetraploidy associated with reproductive isolation in <i>Saccharomyces cerevisiae</i>: towards a new domesticated species. Journal of Evolutionary Biology, 2009, 22, 0.8 70 2157-2170. Phylogenetic understanding of clonal populations in an era of whole genome sequencing. Infection, 29 1.0 106 Genetics and Evolution, 2009, 9, 1010-1019. The adaptive role of transposable elements in the Drosophila genome. Gene, 2009, 448, 124-133. 1.0 The role of sex in fungal evolution. Current Opinion in Microbiology, 2009, 12, 592-598. 31 17 2.3Interaction of Genetic and Environmental Factors in Saccharomyces cerevisiae Meiosis: The Devil is in 0.4 the Details. Methods in Molecular Biology, 2009, 557, 3-20. Genome-wide Mutational Diversity in an Evolving Population of Escherichia coli. Cold Spring Harbor 33 2.0 160 Symposia on Quantitative Biology, 2009, 74, 119-129. Genetic Dissection of Complex Traits in Yeast: Insights from Studies of Gene Expression and Other Phenotypes in the BYxRM Cross. Cold Spring Harbor Symposia on Quantitative Biology, 2009, 74, 145-153. Gene Duplication and Environmental Adaptation within Yeast Populations. Genome Biology and 35 1.1 44 Evolution, 2010, 2, 591-601. Correlating Gene Expression Variation with cis-Regulatory Polymorphism in Saccharomyces cerevisiae. Genome Biology and Evolution, 2010, 2, 697-707. 37 Wine Fermentation. , 2010, , 689-694. 0 Structure, evolution and dynamics of transcriptional regulatory networks. Biochemical Society Transactions, 2010, 38, 1155-1178.

#	Article	IF	CITATIONS
39	Statistical methods for detecting natural selection from genomic data. Genes and Genetic Systems, 2010, 85, 359-376.	0.2	31
40	Molecular Relationships Between Saccharomyces cerevisiae Strains Involved in Winemaking from Mendoza, Argentina. Current Microbiology, 2010, 61, 506-514.	1.0	12
41	Genetic improvement of brewer's yeast: current state, perspectives and limits. Applied Microbiology and Biotechnology, 2010, 86, 1195-1212.	1.7	78
42	Flocculation gene variability in industrial brewer's yeast strains. Applied Microbiology and Biotechnology, 2010, 88, 1321-1331.	1.7	63
43	The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Antonie Van Leeuwenhoek, 2010, 97, 155-170.	0.7	45
44	Genetic identification of new biological species Saccharomyces arboricolus Wang et Bai. Antonie Van Leeuwenhoek, 2010, 98, 1-7.	0.7	41
45	Fungal Secretome Database: Integrated platform for annotation of fungal secretomes. BMC Genomics, 2010, 11, 105.	1.2	160
46	Whole-genome sequencing of a laboratory-evolved yeast strain. BMC Genomics, 2010, 11, 88.	1.2	88
47	Rapid Expansion and Functional Divergence of Subtelomeric Gene Families in Yeasts. Current Biology, 2010, 20, 895-903.	1.8	323
48	Determinants of Divergent Adaptation and Dobzhansky-Muller Interaction in Experimental Yeast Populations. Current Biology, 2010, 20, 1383-1388.	1.8	68
49	Toxicogenomics using yeast DNA microarrays. Journal of Bioscience and Bioengineering, 2010, 110, 511-522.	1.1	32
51	Speciation through cytonuclear incompatibility: Insights from yeast and implications for higher eukaryotes. BioEssays, 2010, 32, 401-411.	1.2	98
52	Evolution of transcriptional regulatory networks in yeast populations. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 324-335.	6.6	8
53	Comparative systems biology: from bacteria to man. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 2010, 2, 518-532.	6.6	15
54	The population genomics of plant adaptation. New Phytologist, 2010, 188, 313-332.	3.5	105
55	A polyploid population of Saccharomyces cerevisiae with separate sexes (dioecy). FEMS Yeast Research, 2010, 10, 757-768.	1.1	11
56	Saccharomyces paradoxus and Saccharomyces cerevisiae reside on oak trees in New Zealand: evidence for migration from Europe and interspecies hybrids. FEMS Yeast Research, 2010, 10, 941-947.	1.1	65
57	How <i>Saccharomyces cerevisiae</i> copes with toxic metals and metalloids. FEMS Microbiology Reviews, 2010, 34, 925-951.	3.9	254

#	Article	IF	CITATIONS
58	Quantifying microbial communities with 454 pyrosequencing: does read abundance count?. Molecular Ecology, 2010, 19, 5555-5565.	2.0	468
59	Genomic and phenotypic comparison between similar wine yeast strains ofSaccharomyces cerevisiaefrom different geographic origins. Journal of Applied Microbiology, 2010, 108, 1850-1858.	1.4	18
60	Epigenomic plasticity within populations: its evolutionary significance and potential. Heredity, 2010, 105, 113-121.	1.2	101
61	Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature, 2010, 464, 898-902.	13.7	635
62	A map of human genome variation from population-scale sequencing. Nature, 2010, 467, 1061-1073.	13.7	7,209
63	Yeast evolutionary genomics. Nature Reviews Genetics, 2010, 11, 512-524.	7.7	337
64	The population genetics of commensal Escherichia coli. Nature Reviews Microbiology, 2010, 8, 207-217.	13.6	1,104
65	A distinct population of <i>Saccharomyces cerevisiae</i> in New Zealand: evidence for local dispersal by insects and humanâ€aided global dispersal in oak barrels. Environmental Microbiology, 2010, 12, 63-73.	1.8	176
66	The Baker's Yeast Diploid Genome Is Remarkably Stable in Vegetative Growth and Meiosis. PLoS Genetics, 2010, 6, e1001109.	1.5	89
67	Antagonistic Changes in Sensitivity to Antifungal Drugs by Mutations of an Important ABC Transporter Gene in a Fungal Pathogen. PLoS ONE, 2010, 5, e11309.	1.1	17
68	Ensembl Genomes: Extending Ensembl across the taxonomic space. Nucleic Acids Research, 2010, 38, D563-D569.	6.5	138
69	Genome-Wide Evidence for Efficient Positive and Purifying Selection in Capsella grandiflora, a Plant Species with a Large Effective Population Size. Molecular Biology and Evolution, 2010, 27, 1813-1821.	3.5	153
70	The Differential Evolutionary Dynamics of Avian Cytokine and TLR Gene Classes. Journal of Immunology, 2010, 184, 6993-7000.	0.4	63
71	Experimental genomics of fitness in yeast. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1459-1467.	1.2	38
72	Detection of Heterozygous Mutations in the Genome of Mismatch Repair Defective Diploid Yeast Using a Bayesian Approach. Genetics, 2010, 186, 493-503.	1.2	23
73	ACCUSA—accurate SNP calling on draft genomes. Bioinformatics, 2010, 26, 1364-1365.	1.8	7
74	Incipient Balancing Selection through Adaptive Loss of Aquaporins in Natural Saccharomyces cerevisiae Populations. PLoS Genetics, 2010, 6, e1000893.	1.5	99
75	The Fungal Genome Initiative and Lessons Learned from Genome Sequencing. Methods in Enzymology, 2010, 470, 833-855.	0.4	58

#	Article	IF	CITATIONS
76	Evidence for widespread adaptive evolution of gene expression in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 2977-2982.	3.3	161
77	Recent evidence for pervasive adaptation targeting gene expression attributable to population size change. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, E109-10; author reply 111.	3.3	3
78	Differential IL-17 Production and Mannan Recognition Contribute to Fungal Pathogenicity and Commensalism. Journal of Immunology, 2010, 184, 4258-4268.	0.4	59
79	Polygenic and directional regulatory evolution across pathways in <i>Saccharomyces</i> . Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 5058-5063.	3.3	93
80	Shifts in the intensity of purifying selection: An analysis of genome-wide polymorphism data from two closely related yeast species. Genome Research, 2010, 20, 1558-1573.	2.4	74
81	The Spontaneous Appearance Rate of the Yeast Prion [<i>PSI</i> +] and Its Implications for the Evolvability Properties of the [<i>PSI</i> +] System. Genetics, 2010, 184, 393-400.	1.2	98
82	TURNIP: tracking unresolved nucleotide polymorphisms in large hard-to-assemble regions of repetitive DNA sequence. Bioinformatics, 2010, 26, 2908-2909.	1.8	3
83	Evidence for Pervasive Adaptive Protein Evolution in Wild Mice. PLoS Genetics, 2010, 6, e1000825.	1.5	123
84	A Systems Biology Approach to Dissection of the Effects of Small Bicyclic Peptidomimetics on a Panel of Saccharomyces cerevisiae Mutants. Journal of Biological Chemistry, 2010, 285, 23477-23485.	1.6	13
85	Whole-Genome and Chromosome Evolution Associated with Host Adaptation and Speciation of the Wheat Pathogen Mycosphaerella graminicola. PLoS Genetics, 2010, 6, e1001189.	1.5	142
86	Environmental and Genetic Determinants of Colony Morphology in Yeast. PLoS Genetics, 2010, 6, e1000823.	1.5	120
87	Widespread Compensatory Evolution Conserves DNA-Encoded Nucleosome Organization in Yeast. PLoS Computational Biology, 2010, 6, e1001039.	1.5	36
88	Bulk Segregant Analysis by High-Throughput Sequencing Reveals a Novel Xylose Utilization Gene from Saccharomyces cerevisiae. PLoS Genetics, 2010, 6, e1000942.	1.5	177
89	Molecular population genomics: a short history. Genetical Research, 2010, 92, 397-411.	0.3	25
90	Next-Generation Sequencing Techniques for Eukaryotic Microorganisms: Sequencing-Based Solutions to Biological Problems. Eukaryotic Cell, 2010, 9, 1300-1310.	3.4	120
91	Comparative Functional Genomics of Stress Responses in Yeasts. OMICS A Journal of Integrative Biology, 2010, 14, 501-515.	1.0	12
92	Hsp90 and Environmental Stress Transform the Adaptive Value of Natural Genetic Variation. Science, 2010, 330, 1820-1824.	6.0	304
93	Molecular Structure of the N-terminal Domain of the APC/C Subunit Cdc27 Reveals a Homo-dimeric Tetratricopeptide Repeat Architecture. Journal of Molecular Biology, 2010, 397, 1316-1328.	2.0	29

#	Article	IF	CITATIONS
94	Sporulation patterning and invasive growth in wild and domesticated yeast colonies. Research in Microbiology, 2010, 161, 390-398.	1.0	31
95	Yeasts isolated from New Zealand vineyards and wineries. Australian Journal of Grape and Wine Research, 2010, 16, 491-496.	1.0	26
96	Genetics of Yeast Impacting Wine Quality. Annual Review of Food Science and Technology, 2010, 1, 139-162.	5.1	75
97	Remarkably ancient balanced polymorphisms in a multi-locus gene network. Nature, 2010, 464, 54-58.	13.7	147
98	Enhancing Stress Resistance and Production Phenotypes Through Transcriptome Engineering. Methods in Enzymology, 2010, 470, 509-532.	0.4	14
99	Restriction Site Tiling Analysis: accurate discovery and quantitative genotyping of genome-wide polymorphisms using nucleotide arrays. Genome Biology, 2010, 11, R44.	13.9	27
100	Discovery of Mutations in <i>Saccharomyces cerevisiae</i> by Pooled Linkage Analysis and Whole-Genome Sequencing. Genetics, 2010, 186, 1127-1137.	1.2	74
101	Population genomic sequencing of <i>Coccidioides</i> fungi reveals recent hybridization and transposon control. Genome Research, 2010, 20, 938-946.	2.4	166
102	Genome Wide Analyses Reveal Little Evidence for Adaptive Evolution in Many Plant Species. Molecular Biology and Evolution, 2010, 27, 1822-1832.	3.5	227
103	The Awesome Power of Yeast Evolutionary Genetics: New Genome Sequences and Strain Resources for the <i>Saccharomyces sensu stricto </i> Genus. G3: Genes, Genomes, Genetics, 2011, 1, 11-25.	0.8	348
104	Predicting phenotypic variation in yeast from individual genome sequences. Nature Genetics, 2011, 43, 1270-1274.	9.4	66
105	Improvement of Wine Yeasts by Genetic Engineering. , 2011, , 169-190.		4
106	Genome-wide survey of post-meiotic segregation during yeast recombination. Genome Biology, 2011, 12, R36.	3.8	22
107	A Hierarchical Combination of Factors Shapes the Genome-wide Topography of Yeast Meiotic Recombination Initiation. Cell, 2011, 144, 719-731.	13.5	520
108	The Cell in an Era of Systems Biology. Cell, 2011, 144, 850-854.	13.5	59
109	Bread, beer and wine: Yeast domestication in the Saccharomyces sensu stricto complex. Comptes Rendus - Biologies, 2011, 334, 229-236.	0.1	267
110	New perspectives in hemiascomycetous yeast taxonomy. Comptes Rendus - Biologies, 2011, 334, 590-598.	0.1	9
111	The rise of yeast population genomics. Comptes Rendus - Biologies, 2011, 334, 612-619.	0.1	34

		CITATION R	EPORT	
#	Article		IF	CITATIONS
112	Yeasty clocks: Dating genomic changes in yeasts. Comptes Rendus - Biologies, 2011, 334	4, 620-628.	0.1	25
113	The evolution of gene expression regulatory networks in yeasts. Comptes Rendus - Biolog 655-661.	gies, 2011, 334,	0.1	5
114	Transposable elements in yeasts. Comptes Rendus - Biologies, 2011, 334, 679-686.		0.1	44
115	The genomes of fermentative Saccharomyces. Comptes Rendus - Biologies, 2011, 334, 6	87-693.	0.1	44
116	Population genetics of ectomycorrhizal fungi: from current knowledge to emerging direc Fungal Biology, 2011, 115, 569-597.	tions.	1.1	125
117	Population genomics and speciation in yeasts. Fungal Biology Reviews, 2011, 25, 136-14	2.	1.9	26
118	From sequence to function: Insights from natural variation in budding yeasts. Biochimica Biophysica Acta - General Subjects, 2011, 1810, 959-966.	Et	1.1	28
119	The Fungi: 1, 2, 3 $\hat{a} \in \big $ 5.1 million species?. American Journal of Botany, 2011, 98, 426-43	8.	0.8	1,057
120	Genomic and Proteomic Analysis of Wine Yeasts. , 2011, , 143-168.			0
121	Friend or foe: using systems biology to elucidate interactions between fungi and their ho in Microbiology, 2011, 19, 509-515.	sts. Trends	3.5	22
122	Genetic diversity study of the yeast Saccharomyces bayanus var. uvarum reveals introgre subtelomeric Saccharomyces cerevisiae genes. Research in Microbiology, 2011, 162, 204		1.0	26
123	Deciphering the Molecular Basis of Wine Yeast Fermentation Traits Using a Combined Ge Genomic Approach. G3: Genes, Genomes, Genetics, 2011, 1, 263-281.	enetic and	0.8	103
124	Proteome-wide evidence for enhanced positive Darwinian selection within intrinsically dis regions in proteins. Genome Biology, 2011, 12, R65.	sordered	13.9	68
125	The Genetic Background Effect on Domesticated Species: A Mouse Evolutionary Perspec World Journal, The, 2011, 11, 429-436.	tive. Scientific	0.8	7
126	Amplification of a Zygosaccharomyces bailii DNA Segment in Wine Yeast Genomes by Extrachromosomal Circular DNA Formation. PLoS ONE, 2011, 6, e17872.		1.1	70
127	Genetic Incompatibility Dampens Hybrid Fertility More Than Hybrid Viability: Yeast as a C ONE, 2011, 6, e18341.	ase Study. PLoS	1.1	13
128	Evidence for Divergent Evolution of Growth Temperature Preference in Sympatric Saccha Species. PLoS ONE, 2011, 6, e20739.	romyces	1.1	76
129	Phenotypic Landscape of Saccharomyces cerevisiae during Wine Fermentation: Evidence Origin-Dependent Metabolic Traits. PLoS ONE, 2011, 6, e25147.	for	1.1	93

#	Article	IF	CITATIONS
130	Deciphering the Hybridisation History Leading to the Lager Lineage Based on the Mosaic Genomes of Saccharomyces bayanus Strains NBRC1948 and CBS380T. PLoS ONE, 2011, 6, e25821.	1.1	93
131	Assessment of Inactivating Stop Codon Mutations in Forty Saccharomyces cerevisiae Strains: Implications for [PSI+] Prion- Mediated Phenotypes. PLoS ONE, 2011, 6, e28684.	1.1	13
132	Convergent lifespan reaction norms in the yeast cultures exposed to different environmental stresses. Journal of Evolutionary Biology, 2011, 24, 457-461.	0.8	1
133	Assessing the complex architecture of polygenic traits in diverged yeast populations. Molecular Ecology, 2011, 20, 1401-1413.	2.0	194
134	Genome-wide association analysis of clinical vs. nonclinical origin provides insights into Saccharomyces cerevisiae pathogenesis. Molecular Ecology, 2011, 20, 4085-4097.	2.0	46
135	Small is the new big: assessing the population structure of microorganisms. Molecular Ecology, 2011, 20, 4385-4387.	2.0	9
136	Flo11p adhesin required for meiotic differentiation in Saccharomyces cerevisiae minicolonies grown on plastic surfaces. FEMS Yeast Research, 2011, 11, 223-232.	1.1	10
137	The Ty1 LTR-retrotransposon population in Saccharomyces cerevisiae genome: dynamics and sequence variations during mobility. FEMS Yeast Research, 2011, 11, 334-344.	1.1	14
138	Species-specific PCR primers for the rapid identification of yeasts of the genus Zygosaccharomyces. FEMS Yeast Research, 2011, 11, 356-365.	1.1	24
139	Biodiversity in sulfur metabolism in hemiascomycetous yeasts. FEMS Yeast Research, 2011, 11, 366-378.	1.1	29
140	A multiplex set of species-specific primers for rapid identification of members of the genus Saccharomyces. FEMS Yeast Research, 2011, 11, 552-563.	1.1	45
141	Divergence in wine characteristics produced by wild and domesticated strains of Saccharomyces cerevisiae. FEMS Yeast Research, 2011, 11, 540-551.	1.1	56
142	Genotype and SNP calling from next-generation sequencing data. Nature Reviews Genetics, 2011, 12, 443-451.	7.7	1,238
143	Taxonomy, ecology, and genetics of the yeast Saccharomyces bayanus: A new object for science and practice. Microbiology, 2011, 80, 735-742.	0.5	27
144	Molecular mechanisms of epistasis within and between genes. Trends in Genetics, 2011, 27, 323-331.	2.9	273
145	Weighing the evidence for adaptation at the molecular level. Trends in Genetics, 2011, 27, 343-349.	2.9	62
146	Haploinsufficiency and the sex chromosomes from yeasts to humans. BMC Biology, 2011, 9, 15.	1.7	26
147	diArk 2.0 provides detailed analyses of the ever increasing eukaryotic genome sequencing data. BMC Research Notes, 2011, 4, 338.	0.6	12

# 148	ARTICLE The yeast IRC7 gene encodes a Î ² -lyase responsible for production of the varietal thiol 4-mercapto-4-methylpentan-2-one in wine. Food Microbiology, 2011, 28, 926-935.	IF 2.1	Citations
149	Comparative genetics of yeast Saccharomyces cerevisiae. Chromosomal translocations carrying the SUC2 marker. Russian Journal of Genetics, 2011, 47, 147-152.	0.2	5
150	The yin and yang of yeast: biodiversity research and systems biology as complementary forces driving innovation in biotechnology. Biotechnology Letters, 2011, 33, 477-487.	1.1	5
151	Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer from CÃ′te d'Ivoire. Antonie Van Leeuwenhoek, 2011, 99, 855-864.	0.7	42
152	Geographical markers for Saccharomyces cerevisiae strains with similar technological origins domesticated for rice-based ethnic fermented beverages production in North East India. Antonie Van Leeuwenhoek, 2011, 100, 569-578.	0.7	33
153	Fungal enzyme sets for plant polysaccharide degradation. Applied Microbiology and Biotechnology, 2011, 91, 1477-1492.	1.7	563
154	The poetry of mycological accomplishment and challenge. Fungal Biology Reviews, 2011, 25, 3-13.	1.9	3
155	Measuring growth rate in high-throughput growth phenotyping. Current Opinion in Biotechnology, 2011, 22, 94-102.	3.3	59
156	Ranking insertion, deletion and nonsense mutations based on their effect on genetic information. BMC Bioinformatics, 2011, 12, 299.	1.2	27
157	Mining for genotype-phenotype relations in Saccharomyces using partial least squares. BMC Bioinformatics, 2011, 12, 318.	1.2	20
158	Evidence for a high mutation rate at rapidly evolving yeast centromeres. BMC Evolutionary Biology, 2011, 11, 211.	3.2	30
159	Expression variability of co-regulated genes differentiates Saccharomyces cerevisiae strains. BMC Genomics, 2011, 12, 201.	1.2	16
160	Systematic discovery of unannotated genes in 11 yeast species using a database of orthologous genomic segments. BMC Genomics, 2011, 12, 377.	1.2	17
161	A new yeast genetic resource for analysis and breeding. Yeast, 2011, 28, 63-80.	0.8	27
162	Genetic, genomic, and molecular tools for studying the protoploid yeast, <i>L. waltii</i> . Yeast, 2011, 28, 137-151.	0.8	15
163	Genomeâ€wide approaches to the study of adaptive gene expression evolution. BioEssays, 2011, 33, 469-477.	1.2	89
164	Oxidative Stress Survival in a Clinical <i>Saccharomyces cerevisiae</i> Isolate Is Influenced by a Major Quantitative Trait Nucleotide. Genetics, 2011, 188, 709-722.	1.2	21
165	Putatively Noncoding Transcripts Show Extensive Association with Ribosomes. Genome Biology and Evolution, 2011, 3, 1245-1252.	1.1	119

#	Article	IF	CITATIONS
166	Evidences for increased expression variation of duplicate genes in budding yeast: from cis- to trans- regulation effects. Nucleic Acids Research, 2011, 39, 837-847.	6.5	26
167	Diversification at Transcription Factor Binding Sites within a Species and the Implications for Environmental Adaptation. Molecular Biology and Evolution, 2011, 28, 3331-3344.	3.5	5
168	Construction of regulatory networks using expression time-series data of a genotyped population. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 19436-19441.	3.3	80
169	Revealing the genetic structure of a trait by sequencing a population under selection. Genome Research, 2011, 21, 1131-1138.	2.4	263
170	Reciprocal Sign Epistasis between Frequently Experimentally Evolved Adaptive Mutations Causes a Rugged Fitness Landscape. PLoS Genetics, 2011, 7, e1002056.	1.5	240
171	A Geographically Diverse Collection of <i>Schizosaccharomyces pombe</i> Isolates Shows Limited Phenotypic Variation but Extensive Karyotypic Diversity. G3: Genes, Genomes, Genetics, 2011, 1, 615-626.	0.8	75
172	Biased Gene Conversion Affects Patterns of Codon Usage and Amino Acid Usage in the Saccharomyces sensu stricto Group of Yeasts. Molecular Biology and Evolution, 2011, 28, 117-129.	3.5	51
173	Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication. Genetics, 2011, 187, 965-976.	1.2	21
174	Principles of chromosomal organization: lessons from yeast. Journal of Cell Biology, 2011, 192, 723-733.	2.3	121
175	Natural Variation in CDC28 Underlies Morphological Phenotypes in an Environmental Yeast Isolate. Genetics, 2011, 188, 723-730.	1.2	9
176	Genome-wide DNA sequence polymorphisms facilitate nucleosome positioning in yeast. Bioinformatics, 2011, 27, 1758-1764.	1.8	4
177	Effective Population Size Is Positively Correlated with Levels of Adaptive Divergence among Annual Sunflowers. Molecular Biology and Evolution, 2011, 28, 1569-1580.	3.5	88
178	Cellular Effects and Epistasis among Three Determinants of Adaptation in Experimental Populations of Saccharomyces cerevisiae. Eukaryotic Cell, 2011, 10, 1348-1356.	3.4	15
179	SNP detection and genotyping from low-coverage sequencing data on multiple diploid samples. Genome Research, 2011, 21, 952-960.	2.4	142
180	Outcrossing, mitotic recombination, and life-history trade-offs shape genome evolution in <i>Saccharomyces cerevisiae</i> . Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1987-1992.	3.3	161
181	Quantifying the Variation in the Effective Population Size Within a Genome. Genetics, 2011, 189, 1389-1402.	1.2	91
182	Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 14539-14544.	3.3	568
183	Population genomics and local adaptation in wild isolates of a model microbial eukaryote. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 2831-2836.	3.3	238

#	Article	IF	CITATIONS
184	Polymorphism, Divergence, and the Role of Recombination in Saccharomyces cerevisiae Genome Evolution. Molecular Biology and Evolution, 2011, 28, 1745-1754.	3.5	36
185	Whole-Genome Sequencing of Sake Yeast Saccharomyces cerevisiae Kyokai no. 7. DNA Research, 2011, 18, 423-434.	1.5	150
186	Saccharomyces cerevisiae: Gene Annotation and Genome Variability, State of the Art Through Comparative Genomics. Methods in Molecular Biology, 2011, 759, 31-40.	0.4	7
187	Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity. PLoS Biology, 2011, 9, e1001122.	2.6	189
188	Genome-Wide Survey of Natural Selection on Functional, Structural, and Network Properties of Polymorphic Sites in Saccharomyces paradoxus. Molecular Biology and Evolution, 2011, 28, 2615-2627.	3.5	18
189	Clusters of Nucleotide Substitutions and Insertion/Deletion Mutations Are Associated with Repeat Sequences. PLoS Biology, 2011, 9, e1000622.	2.6	106
190	Accelerated and Adaptive Evolution of Yeast Sexual Adhesins. Molecular Biology and Evolution, 2011, 28, 3127-3137.	3.5	19
191	Genome-Wide Analysis of Heteroduplex DNA in Mismatch Repair–Deficient Yeast Cells Reveals Novel Properties of Meiotic Recombination Pathways. PLoS Genetics, 2011, 7, e1002305.	1.5	128
192	Genome-wide Fitness Profiles Reveal a Requirement for Autophagy During Yeast Fermentation. G3: Genes, Genomes, Genetics, 2011, 1, 353-367.	0.8	23
193	Whole-Genome Comparison Reveals Novel Genetic Elements That Characterize the Genome of Industrial Strains of Saccharomyces cerevisiae. PLoS Genetics, 2011, 7, e1001287.	1.5	271
194	Integrated Genome-Scale Prediction of Detrimental Mutations in Transcription Networks. PLoS Genetics, 2011, 7, e1002077.	1.5	8
195	A Noncomplementation Screen for Quantitative Trait Alleles in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2012, 2, 753-760.	0.8	21
196	<i>FASTER MT</i> : Isolation of Pure Populations of <i>a</i> and α Ascospores from <i>Saccharomycescerevisiae</i> . G3: Genes, Genomes, Genetics, 2012, 2, 449-452.	0.8	12
197	Advances in Quantitative Trait Analysis in Yeast. PLoS Genetics, 2012, 8, e1002912.	1.5	167
198	Inference of Population Splits and Mixtures from Genome-Wide Allele Frequency Data. PLoS Genetics, 2012, 8, e1002967.	1.5	1,997
199	Evolution of a Membrane Protein Regulon in Saccharomyces. Molecular Biology and Evolution, 2012, 29, 1747-1756.	3.5	24
200	Population Genomics in Bacteria: A Case Study of Staphylococcus aureus. Molecular Biology and Evolution, 2012, 29, 797-809.	3.5	37
201	Mitochondrial Genome Evolution in a Single Protoploid Yeast Species. G3: Genes, Genomes, Genetics, 2012, 2, 1103-1111.	0.8	48

#	Article	IF	CITATIONS
202	Accession-Specific Haplotypes of the Internal Transcribed Spacer Region in Arabidopsis thalianaA Means for Barcoding Populations. Molecular Biology and Evolution, 2012, 29, 2231-2239.	3.5	10
203	The Effect of Variation in the Effective Population Size on the Rate of Adaptive Molecular Evolution in Eukaryotes. Genome Biology and Evolution, 2012, 4, 658-667.	1.1	156
204	Determining the evolutionary history of gene families. Bioinformatics, 2012, 28, 48-55.	1.8	48
205	Local Ancestry Corrects for Population Structure in <i>Saccharomyces cerevisiae</i> Genome-Wide Association Studies. Genetics, 2012, 192, 1503-1511.	1.2	25
206	Natural Variation in the Yeast Glucose-Signaling Network Reveals a New Role for the Mig3p Transcription Factor. G3: Genes, Genomes, Genetics, 2012, 2, 1607-1612.	0.8	21
207	Natural Selection on Gene Order in the Genome Reorganization Process After Whole-Genome Duplication of Yeast. Molecular Biology and Evolution, 2012, 29, 71-79.	3.5	18
208	Direct Iterative Protein Profiling (DIPP) - an Innovative Method for Large-scale Protein Detection Applied to Budding Yeast Mitosis. Molecular and Cellular Proteomics, 2012, 11, M111.012682.	2.5	26
209	Negative feedback confers mutational robustness in yeast transcription factor regulation. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3874-3878.	3.3	46
210	A computational pipeline to discover highly phylogenetically informative genes in sequenced genomes: application to Saccharomyces cerevisiae natural strains. Nucleic Acids Research, 2012, 40, 3834-3848.	6.5	20
211	Conservation of replication timing reveals global and local regulation of replication origin activity. Genome Research, 2012, 22, 1953-1962.	2.4	96
212	Saccharomyces cerevisiae STR3 and yeast cystathionine β-lyase enzymes. Bioengineered, 2012, 3, 180-182.	1.4	8
213	Analysis of the <i>Saccharomyces cerevisiae</i> pan-genome reveals a pool of copy number variants distributed in diverse yeast strains from differing industrial environments. Genome Research, 2012, 22, 908-924.	2.4	225
214	Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 10954-10959.	3.3	171
215	Role of social wasps in <i>Saccharomyces cerevisiae</i> ecology and evolution. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13398-13403.	3.3	259
216	Ensembl Genomes: an integrative resource for genome-scale data from non-vertebrate species. Nucleic Acids Research, 2012, 40, D91-D97.	6.5	179
217	Evolutionary Analysis of Heterochromatin Protein Compatibility by Interspecies Complementation in <i>Saccharomyces</i> . Genetics, 2012, 192, 1001-1014.	1.2	7
218	Abundant Gene-by-Environment Interactions in Gene Expression Reaction Norms to Copper within Saccharomyces cerevisiae. Genome Biology and Evolution, 2012, 4, 1061-1079.	1.1	37
219	The Mutational Profile of the Yeast Genome Is Shaped by Replication. Molecular Biology and Evolution, 2012, 29, 905-913.	3.5	53

#	Article	IF	CITATIONS
220	Genetic Architecture of Highly Complex Chemical Resistance Traits across Four Yeast Strains. PLoS Genetics, 2012, 8, e1002570.	1.5	85
221	Genetic Variation in <i>Saccharomyces cerevisiae</i> : Circuit Diversification in a Signal Transduction Network. Genetics, 2012, 192, 1523-1532.	1.2	36
222	The <i>Saccharomyces cerevisiae</i> W303-K6001 cross-platform genome sequence: insights into ancestry and physiology of a laboratory mutt. Open Biology, 2012, 2, 120093.	1.5	87
223	Population Genomic Analysis of Model and Nonmodel Organisms Using Sequenced RAD Tags. Methods in Molecular Biology, 2012, 888, 235-260.	0.4	56
224	A complete sequence of <i>Saccharomyces paradoxus</i> mitochondrial genome that restores the respiration in <i>S.Âcerevisiae</i> . FEMS Yeast Research, 2012, 12, 819-830.	1.1	22
225	Surprisingly diverged populations of <i><scp>S</scp>accharomyces cerevisiae</i> in natural environments remote from human activity. Molecular Ecology, 2012, 21, 5404-5417.	2.0	257
226	On the Prospects of Whole-Genome Association Mapping in <i>Saccharomyces cerevisiae</i> . Genetics, 2012, 191, 1345-1353.	1.2	53
227	Evolutionary Role of Interspecies Hybridization and Genetic Exchanges in Yeasts. Microbiology and Molecular Biology Reviews, 2012, 76, 721-739.	2.9	183
228	Life History Shapes Trait Heredity by Accumulation of Loss-of-Function Alleles in Yeast. Molecular Biology and Evolution, 2012, 29, 1781-1789.	3.5	76
229	Geographic delineations of yeast communities and populations associated with vines and wines in New Zealand. ISME Journal, 2012, 6, 1281-1290.	4.4	122
230	Evaluation of industrial Saccharomyces cerevisiae strains for ethanol production from biomass. Biomass and Bioenergy, 2012, 45, 230-238.	2.9	63
231	The Evolutionary Imprint of Domestication on Genome Variation and Function of the Filamentous Fungus Aspergillus oryzae. Current Biology, 2012, 22, 1403-1409.	1.8	177
232	The Genomic Landscape and Evolutionary Resolution of Antagonistic Pleiotropy in Yeast. Cell Reports, 2012, 2, 1399-1410.	2.9	177
233	Sequential Use of Nitrogen Compounds by Saccharomyces cerevisiae during Wine Fermentation: a Model Based on Kinetic and Regulation Characteristics of Nitrogen Permeases. Applied and Environmental Microbiology, 2012, 78, 8102-8111.	1.4	176
234	Understanding genetic variation and function- the applications of next generation sequencing. Seminars in Cell and Developmental Biology, 2012, 23, 230-236.	2.3	17
235	Birth, death and subfunctionalization in the Arabidopsis genome. Trends in Plant Science, 2012, 17, 204-212.	4.3	35
236	Sex, prions, and plasmids in yeast. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E2683-90.	3.3	63
237	Weak Selection and Protein Evolution. Genetics, 2012, 192, 15-31.	1.2	124

	Сітат	rion Report	
# 238	ARTICLE Genome-wide gene expression of a natural hybrid between Saccharomyces cerevisiae and S. kudriavzevii under enological conditions. International Journal of Food Microbiology, 2012, 157, 340-345.	IF 2.1	CITATIONS 23
239	Nuclear organization and chromatin dynamics in yeast: Biophysical models or biologically driven interactions?. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 468-481.	0.9	12
240	Flavour-active wine yeasts. Applied Microbiology and Biotechnology, 2012, 96, 601-618.	1.7	146
241	Genome sequencing and genetic breeding of a bioethanol Saccharomyces cerevisiae strain YJS329. BMC Genomics, 2012, 13, 479.	1.2	36
242	De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microbial Cell Factories, 2012, 11, 36.	1.9	238
243	Amplification of the CUP1 gene is associated with evolution of copper tolerance in Saccharomyces cerevisiae. Microbiology (United Kingdom), 2012, 158, 2325-2335.	0.7	47
244	A Consistent Phylogenetic Backbone for the Fungi. Molecular Biology and Evolution, 2012, 29, 1319-1334.	3.5	129
245	Tapping into yeast diversity. Molecular Ecology, 2012, 21, 5387-5389.	2.0	2
246	Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature, 2012, 482, 363-368.	13.7	374
247	Extensive linkage disequilibrium and parallel adaptive divergence across threespine stickleback genomes. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367, 395-408.	1.8	190
248	Improving stability and understandability of genotype-phenotype mapping in Saccharomyces using regularized variable selection in L-PLS regression. BMC Bioinformatics, 2012, 13, 327.	1.2	10
249	Robust Metabolic Responses to Varied Carbon Sources in Natural and Laboratory Strains of Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e30053.	1.1	3
250	Reduced Polymorphism in Domains Involved in Protein-Protein Interactions. PLoS ONE, 2012, 7, e34503.	1.1	2
251	Reconstruction of the Evolutionary History of Saccharomyces cerevisiae x S. kudriavzevii Hybrids Based on Multilocus Sequence Analysis. PLoS ONE, 2012, 7, e45527.	1.1	28
252	Genealogy-Based Methods for Inference of Historical Recombination and Gene Flow and Their Application in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e46947.	1.1	6
253	Evolutionary Genomics of Transposable Elements in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e50978.	1.1	91
254	Inference of population splits and mixtures from genome-wide allele frequency data. Nature Precedings, 0, , .	0.1	119
256	Yeast communities in Sphagnum phyllosphere along the temperature-moisture ecocline in the boreal forest-swamp ecosystem and description of Candida sphagnicola sp. nov Antonie Van Leeuwenhoek, 2012, 102, 29-43.	0.7	36

		EPORT	
# 257	ARTICLE Two Flavors of Bulk Segregant Analysis in Yeast. Methods in Molecular Biology, 2012, 871, 41-54.	IF 0.4	Citations 6
258	Geographic Origin and Diversity of Wine Strains of <i>Saccharomyces </i> . American Journal of Enology and Viticulture, 2012, 63, 165-176.	0.9	20
259	Surviving in the presence of sulphur dioxide: strategies developed by wine yeasts. Applied Microbiology and Biotechnology, 2012, 95, 601-613.	1.7	133
260	Whole-genome sequencing of the efficient industrial fuel-ethanol fermentative Saccharomyces cerevisiae strain CAT-1. Molecular Genetics and Genomics, 2012, 287, 485-494.	1.0	82
261	The genome sequence of the wine yeast VIN7 reveals an allotriploid hybrid genome with Saccharomyces cerevisiae and Saccharomyces kudriavzevii origins. FEMS Yeast Research, 2012, 12, 88-96.	1.1	114
262	Genetic mapping of quantitative phenotypic traits in Saccharomyces cerevisiae. FEMS Yeast Research, 2012, 12, 215-227.	1.1	91
263	Emergent properties of gene evolution: Species as attractors in phenotypic space. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 1172-1178.	1.2	6
264	Evolutionary insight from wholeâ€genome sequencing of experimentally evolved microbes. Molecular Ecology, 2012, 21, 2058-2077.	2.0	128
265	Identification of genes related to nitrogen uptake in wine strains of Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2012, 28, 1107-1113.	1.7	43
266	Next-generation sequencing and its potential impact on food microbial genomics. Annals of Microbiology, 2013, 63, 21-37.	1.1	62
267	Selection, genomeâ€wide fitness effects and evolutionary rates in the model legume <i><scp>M</scp>edicago truncatula</i> . Molecular Ecology, 2013, 22, 3525-3538.	2.0	54
268	Polymorphism detection among wild Saccharomyces cerevisiae strains of different wine origin. Annals of Microbiology, 2013, 63, 661-668.	1.1	11
269	Rapid identification of <i>Saccharomyces eubayanus</i> and its hybrids. FEMS Yeast Research, 2013, 13, 156-161.	1.1	35
270	Mobilomics in Saccharomyces cerevisiae strains. BMC Bioinformatics, 2013, 14, 102.	1.2	9
271	Genotyping 1000 yeast strains by next-generation sequencing. BMC Genomics, 2013, 14, 90.	1.2	47
272	High quality de novo sequencing and assembly of the Saccharomyces arboricolus genome. BMC Genomics, 2013, 14, 69.	1.2	87
273	Genome architecture is a selectable trait that can be maintained by antagonistic pleiotropy. Nature Communications, 2013, 4, 2235.	5.8	77
274	Modeling the effect of changing selective pressures on polymorphism and divergence. Theoretical Population Biology, 2013, 85, 73-85.	0.5	4

#	Article	IF	CITATIONS
275	A simple and effective set of PCR-based molecular markers for the monitoring of the Saccharomyces cerevisiae cell population during bioethanol fermentation. Journal of Biotechnology, 2013, 168, 701-709.	1.9	21
276	Incidence of symbiotic dsRNA â€ [~] killer' viruses in wild and domesticated yeast. FEMS Yeast Research, 2013, 13, 856-859.	1.1	36
277	Predicting phenotypic variation from genotypes, phenotypes and a combination of the two. Current Opinion in Biotechnology, 2013, 24, 803-809.	3.3	21
278	Hsp90 Regulates Nongenetic Variation in Response to Environmental Stress. Molecular Cell, 2013, 50, 82-92.	4.5	37
279	Rare Variants in Hypermutable Genes Underlie Common Morphology and Growth Traits in Wild Saccharomyces paradoxus. Genetics, 2013, 195, 513-525.	1.2	16
280	Pervasive Antisense Transcription Is Evolutionarily Conserved in Budding Yeast. Molecular Biology and Evolution, 2013, 30, 409-421.	3.5	22
281	Effect of storage conditions on the stability and fermentability of enzymatic lignocellulosic hydrolysate. Bioresource Technology, 2013, 147, 212-220.	4.8	19
282	RNA recognition by the DNA end-binding Ku heterodimer. Rna, 2013, 19, 841-851.	1.6	26
283	A parasitic selfish gene that affects host promiscuity. Proceedings of the Royal Society B: Biological Sciences, 2013, 280, 20131875.	1.2	9
284	Yeast Proteome Variations Reveal Different Adaptive Responses to Grape Must Fermentation. Molecular Biology and Evolution, 2013, 30, 1368-1383.	3.5	36
285	Phenotypic selection of a wild Saccharomyces cerevisiae strain for simultaneous saccharification and co-fermentation of AFEXâ,,¢ pretreated corn stover. Biotechnology for Biofuels, 2013, 6, 108.	6.2	47
286	Re-evaluation of glycerol utilization in Saccharomyces cerevisiae: characterization of an isolate that grows on glycerol without supporting supplements. Biotechnology for Biofuels, 2013, 6, 157.	6.2	76
287	At the cutting-edge of grape and wine biotechnology. Trends in Genetics, 2013, 29, 263-271.	2.9	40
288	An integrative variant analysis pipeline for accurate genotype/haplotype inference in population NGS data. Genome Research, 2013, 23, 833-842.	2.4	93
289	Genotype to phenotype: lessons from model organisms for human genetics. Nature Reviews Genetics, 2013, 14, 168-178.	7.7	197
290	Short read sequencing in studies of natural variation and adaptation. Current Opinion in Plant Biology, 2013, 16, 85-91.	3.5	20
291	Analyses of the Effects of All Ubiquitin Point Mutants on Yeast Growth Rate. Journal of Molecular Biology, 2013, 425, 1363-1377.	2.0	212
292	Yeast genes involved in sulfur and nitrogen metabolism affect the production of volatile thiols from Sauvignon Blanc musts. Applied Microbiology and Biotechnology, 2013, 97, 223-235.	1.7	38

#	Article	IF	CITATIONS
293	Differential requirements for mRNA folding partially explain why highly expressed proteins evolve slowly. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E678-86.	3.3	110
294	Ty1 Gag Enhances the Stability and Nuclear Export of Ty1 <scp>mRNA</scp> . Traffic, 2013, 14, 57-69.	1.3	28
295	Comparative gene expression between two yeast species. BMC Genomics, 2013, 14, 33.	1.2	21
296	Mixing of vineyard and oakâ€ŧree ecotypes of <i><scp>S</scp>accharomyces cerevisiae</i> in <scp>N</scp> orth <scp>A</scp> merican vineyards. Molecular Ecology, 2013, 22, 2917-2930.	2.0	107
297	Saccharomyces diversity and evolution: a budding model genus. Trends in Genetics, 2013, 29, 309-317.	2.9	165
298	Heritable Remodeling of Yeast Multicellularity by an Environmentally Responsive Prion. Cell, 2013, 153, 153-165.	13.5	166
299	The <i>Saccharomyces cerevisiae</i> enolaseâ€related regions encode proteins that are active enolases. Yeast, 2013, 30, 55-69.	0.8	11
300	Comparative metabolic footprinting of a large number of commercial wine yeast strains in Chardonnay fermentations. FEMS Yeast Research, 2013, 13, 394-410.	1.1	33
301	Genetic and Phenotypic Characteristics of Baker's Yeast: Relevance to Baking. Annual Review of Food Science and Technology, 2013, 4, 191-214.	5.1	57
302	Comparative genomics: a revolutionary tool for wine yeast strain development. Current Opinion in Biotechnology, 2013, 24, 192-199.	3.3	35
303	Molecular Cloning and Evolutionary Analysis of the HOG-Signaling Pathway Genes from Saccharomyces cerevisiae Rice Wine Isolates. Biochemical Genetics, 2013, 51, 296-305.	0.8	4
304	The Natural History of Yeast Prions. Advances in Applied Microbiology, 2013, 84, 85-137.	1.3	11
305	Enhancement of volatile thiol release of Saccharomyces cerevisiae strains using molecular breeding. Applied Microbiology and Biotechnology, 2013, 97, 5893-5905.	1.7	42
306	Whole-genome, deep pyrosequencing analysis of a duck influenza A virus evolution in swine cells. Infection, Genetics and Evolution, 2013, 18, 31-41.	1.0	19
307	Differential adaptation to multi-stressed conditions of wine fermentation revealed by variations in yeast regulatory networks. BMC Genomics, 2013, 14, 681.	1.2	46
308	High-Resolution Mapping of Complex Traits with a Four-Parent Advanced Intercross Yeast Population. Genetics, 2013, 195, 1141-1155.	1.2	164
309	High Occurrence of Functional New Chimeric Genes in Survey of Rice Chromosome 3 Short Arm Genome Sequences. Genome Biology and Evolution, 2013, 5, 1038-1048.	1.1	11
310	Ecological and biogeographical features of Saccharomyces paradoxus Batschinskaya yeast and related species: I. The early studies. Microbiology, 2013, 82, 397-403.	0.5	5

#	Article	IF	CITATIONS
311	Molecular genetic diversity of the Saccharomyces yeasts in Taiwan: Saccharomyces arboricola, Saccharomyces cerevisiae and Saccharomyces kudriavzevii. Antonie Van Leeuwenhoek, 2013, 103, 217-228.	0.7	38
312	Identification of an EMS-induced causal mutation in a gene required for boron-mediated root development by low-coverage genome re-sequencing inArabidopsis. Plant Signaling and Behavior, 2013, 8, e22534.	1.2	32
313	Divergence of Iron Metabolism in Wild Malaysian Yeast. G3: Genes, Genomes, Genetics, 2013, 3, 2187-2194.	0.8	11
314	Reference-Free Population Genomics from Next-Generation Transcriptome Data and the Vertebrate–Invertebrate Gap. PLoS Genetics, 2013, 9, e1003457.	1.5	157
315	Ancient Evolutionary Trade-Offs between Yeast Ploidy States. PLoS Genetics, 2013, 9, e1003388.	1.5	85
316	Dynamic Large-Scale Chromosomal Rearrangements Fuel Rapid Adaptation in Yeast Populations. PLoS Genetics, 2013, 9, e1003232.	1.5	106
317	Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes. PLoS Genetics, 2013, 9, e1003836.	1.5	49
318	A Natural Polymorphism in rDNA Replication Origins Links Origin Activation with Calorie Restriction and Lifespan. PLoS Genetics, 2013, 9, e1003329.	1.5	97
319	Recurrent Rearrangement during Adaptive Evolution in an Interspecific Yeast Hybrid Suggests a Model for Rapid Introgression. PLoS Genetics, 2013, 9, e1003366.	1.5	102
320	Genetic and Genomic Architecture of the Evolution of Resistance to Antifungal Drug Combinations. PLoS Genetics, 2013, 9, e1003390.	1.5	90
321	The Molecular Mechanism of a Cis-Regulatory Adaptation in Yeast. PLoS Genetics, 2013, 9, e1003813.	1.5	35
322	Meiotic Recombination Initiation in and around Retrotransposable Elements in Saccharomyces cerevisiae. PLoS Genetics, 2013, 9, e1003732.	1.5	32
323	Characterization and Prediction of Haploinsufficiency Using Systems-Level Gene Properties in Yeast. G3: Genes, Genomes, Genetics, 2013, 3, 1965-1977.	0.8	13
324	Harnessing mutagenic homologous recombination for targeted mutagenesis in vivo by TaGTEAM. Nucleic Acids Research, 2013, 41, e99-e99.	6.5	47
325	Sequence verification of synthetic DNA by assembly of sequencing reads. Nucleic Acids Research, 2013, 41, e25-e25.	6.5	13
326	Linking Post-Translational Modifications and Variation of Phenotypic Traits. Molecular and Cellular Proteomics, 2013, 12, 720-735.	2.5	25
327	Complete DNA Sequence of Kuraishia capsulata Illustrates Novel Genomic Features among Budding Yeasts (Saccharomycotina). Genome Biology and Evolution, 2013, 5, 2524-2539.	1.1	39
328	Estimating inbreeding coefficients from NGS data: Impact on genotype calling and allele frequency estimation. Genome Research, 2013, 23, 1852-1861.	2.4	89

#	Article	IF	CITATIONS
329	Integrative phenomics reveals insight into the structure of phenotypic diversity in budding yeast. Genome Research, 2013, 23, 1496-1504.	2.4	138
330	CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Research, 2013, 41, D714-D719.	6.5	51
331	ZRT1 Harbors an Excess of Nonsynonymous Polymorphism and Shows Evidence of Balancing Selection in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2013, 3, 665-673.	0.8	7
332	Evolutionary Rate Covariation in Meiotic Proteins Results from Fluctuating Evolutionary Pressure in Yeasts and Mammals. Genetics, 2013, 193, 529-538.	1.2	34
333	Genetic and Nongenetic Determinants of Cell Growth Variation Assessed by High-Throughput Microscopy. Molecular Biology and Evolution, 2013, 30, 2568-2578.	3.5	65
334	Xenomic networks variability and adaptation traits in wood decaying fungi. Microbial Biotechnology, 2013, 6, 248-263.	2.0	122
335	Genomic Sequence Diversity and Population Structure of <i>Saccharomyces cerevisiae</i> Assessed by RAD-seq. G3: Genes, Genomes, Genetics, 2013, 3, 2163-2171.	0.8	132
336	Primers for fourteen protein-coding genes and the deep phylogeny of the true yeasts. FEMS Yeast Research, 2013, 13, 574-584.	1.1	2
337	Invertase SUC2 Is the Key Hydrolase for Inulin Degradation in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2013, 79, 403-406.	1.4	33
338	Fitness landscape for nucleosome positioning. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 10988-10993.	3.3	6
339	Saccharomyces cerevisiae. Prion, 2013, 7, 215-220.	0.9	10
340	Population Genomics and Transcriptional Consequences of Regulatory Motif Variation in Globally Diverse Saccharomyces cerevisiae Strains. Molecular Biology and Evolution, 2013, 30, 1605-1613.	3.5	11
342	Genome-wide analysis of intraspecific transposon diversity in yeast. BMC Genomics, 2013, 14, 399.	1.2	46
344	Biogeographical characterization of Saccharomyces cerevisiae wine yeast by molecular methods. Frontiers in Microbiology, 2013, 4, 166.	1.5	45
345	Suppressive Effect of Wild Saccharomyces cerevisiae and Saccharomyces paradoxus Strains on Ige Production by Mouse Spleen Cells. Food Science and Technology Research, 2013, 19, 1019-1027.	0.3	5
346	Computational Models for Prediction of Yeast Strain Potential for Winemaking from Phenotypic Profiles. PLoS ONE, 2013, 8, e66523.	1.1	21
347	Genetic Basis of Variations in Nitrogen Source Utilization in Four Wine Commercial Yeast Strains. PLoS ONE, 2013, 8, e67166.	1.1	88
348	Can Yeast (S. cerevisiae) Metabolic Volatiles Provide Polymorphic Signaling?. PLoS ONE, 2013, 8, e70219.	1.1	30

#	Article	IF	CITATIONS
349	Trx2p-dependent Regulation of Saccharomyces cerevisiae Oxidative Stress Response by the Skn7p Transcription Factor under Respiring Conditions. PLoS ONE, 2013, 8, e85404.	1.1	3
350	Food environments select microorganisms based on selfish energetic behavior. Frontiers in Microbiology, 2013, 4, 348.	1.5	10
351	Mapping Genetic Variants Underlying Differences in the Central Nitrogen Metabolism in Fermenter Yeasts. PLoS ONE, 2014, 9, e86533.	1.1	96
352	The Genetic Basis of Variation in Clean Lineages of Saccharomyces cerevisiae in Response to Stresses Encountered during Bioethanol Fermentations. PLoS ONE, 2014, 9, e103233.	1.1	19
353	Population Genomics of the Fission Yeast Schizosaccharomyces pombe. PLoS ONE, 2014, 9, e104241.	1.1	44
354	Population Structure and Comparative Genome Hybridization of European Flor Yeast Reveal a Unique Group of Saccharomyces cerevisiae Strains with Few Gene Duplications in Their Genome. PLoS ONE, 2014, 9, e108089.	1.1	59
355	Comparative Genomics of Saccharomyces cerevisiae Natural Isolates for Bioenergy Production. Genome Biology and Evolution, 2014, 6, 2557-2566.	1.1	40
356	Clobal phenotypic and genomic comparison of two Saccharomyces cerevisiae wine strains reveals a novel role of the sulfur assimilation pathway in adaptation at low temperature fermentations. BMC Genomics, 2014, 15, 1059.	1.2	39
357	Unveiling nonessential gene deletions that confer significant morphological phenotypes beyond natural yeast strains. BMC Genomics, 2014, 15, 932.	1.2	21
358	Deciphering regulatory variation of THI genes in alcoholic fermentation indicate an impact of Thi3p on PDC1 expression. BMC Genomics, 2014, 15, 1085.	1.2	18
359	Prioritizing causal disease genes using unbiased genomic features. Genome Biology, 2014, 15, 534.	3.8	40
360	The Fitness Advantage of Commercial Wine Yeasts in Relation to the Nitrogen Concentration, Temperature, and Ethanol Content under Microvinification Conditions. Applied and Environmental Microbiology, 2014, 80, 704-713.	1.4	30
361	The Underlying Structure of Adaptation under Strong Selection in 12 Experimental Yeast Populations. Eukaryotic Cell, 2014, 13, 1200-1206.	3.4	16
362	Kinetochore assembly and heterochromatin formation occur autonomously inSchizosaccharomyces pombe. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1903-1908.	3.3	16
363	Causal Variation in Yeast Sporulation Tends to Reside in a Pathway Bottleneck. PLoS Genetics, 2014, 10, e1004634.	1.5	16
364	Evolution and Genetic Architecture of Chromatin Accessibility and Function in Yeast. PLoS Genetics, 2014, 10, e1004427.	1.5	21
365	Different Levels of Catabolite Repression Optimize Growth in Stable and Variable Environments. PLoS Biology, 2014, 12, e1001764.	2.6	185
366	Biophysical Fitness Landscapes for Transcription Factor Binding Sites. PLoS Computational Biology, 2014, 10, e1003683.	1.5	32

#	Article	IF	CITATIONS
367	Genetic Interactions Involving Five or More Genes Contribute to a Complex Trait in Yeast. PLoS Genetics, 2014, 10, e1004324.	1.5	82
368	Ploidy-Regulated Variation in Biofilm-Related Phenotypes in Natural Isolates of <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1773-1786.	0.8	39
369	Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors. Frontiers in Plant Science, 2014, 5, 450.	1.7	48
370	An Evaluation of High-Throughput Approaches to QTL Mapping in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 196, 853-865.	1.2	86
371	Estimation of Epistatic Variance Components and Heritability in Founder Populations and Crosses. Genetics, 2014, 198, 1405-1416.	1.2	27
372	Divergence in a master variator generates distinct phenotypes and transcriptional responses. Genes and Development, 2014, 28, 409-421.	2.7	19
373	Insights into molecular evolution from yeast genomics. Yeast, 2014, 31, 233-241.	0.8	6
374	Heritable variation of mRNA decay rates in yeast. Genome Research, 2014, 24, 2000-2010.	2.4	9
375	Exploring the northern limit of the distribution of <i>Saccharomyces cerevisiae</i> and <i>Saccharomyces paradoxus</i> in North America. FEMS Yeast Research, 2014, 14, 281-288.	1.1	71
376	Ultraspecific and Highly Sensitive Nucleic Acid Detection by Integrating a DNA Catalytic Network with a Labelâ€Free Microcavity. Small, 2014, 10, 2067-2076.	5.2	55
377	Genome-wide mapping of cellular traits using yeast. Yeast, 2014, 31, 197-205.	0.8	17
378	Evolution of moonlighting proteins: insight from yeasts. Biochemical Society Transactions, 2014, 42, 1715-1719.	1.6	13
379	The ecology and evolution of non-domesticated <i>Saccharomyces</i> species. Yeast, 2014, 31, n/a-n/a.	0.8	117
380	Systems cell biology. Journal of Cell Biology, 2014, 206, 695-706.	2.3	39
381	Mitochondrial-Nuclear Epistasis Contributes to Phenotypic Variation and Coadaptation in Natural Isolates of <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 198, 1251-1265.	1.2	68
382	Genomic and Phenotypic Characterization of a Wild Medaka Population: Towards the Establishment of an Isogenic Population Genetic Resource in Fish. G3: Genes, Genomes, Genetics, 2014, 4, 433-445.	0.8	54
383	Genomic Evolution of Saccharomyces cerevisiae under Chinese Rice Wine Fermentation. Genome Biology and Evolution, 2014, 6, 2516-2526.	1.1	28
384	Ribosomal DNA Sequence Heterogeneity Reflects Intraspecies Phylogenies and Predicts Genome Structure in Two Contrasting Yeast Species. Systematic Biology, 2014, 63, 543-554.	2.7	38

~		<u> </u>	
		REP	NDT
\sim	IIAI	IVE FV	

#	Article	IF	CITATIONS
385	Population Genomic Analysis Reveals Highly Conserved Mitochondrial Genomes in the Yeast Species Lachancea thermotolerans. Genome Biology and Evolution, 2014, 6, 2586-2594.	1.1	52
386	A High-Definition View of Functional Genetic Variation from Natural Yeast Genomes. Molecular Biology and Evolution, 2014, 31, 872-888.	3.5	328
387	Fungicide Effects on Fungal Community Composition in the Wheat Phyllosphere. PLoS ONE, 2014, 9, e111786.	1.1	159
388	Heterosis Is Prevalent Among Domesticated but not Wild Strains of <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2014, 4, 315-323.	0.8	47
389	Hybridization facilitates evolutionary rescue. Evolutionary Applications, 2014, 7, 1209-1217.	1.5	71
390	Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. Journal of Bioscience and Bioengineering, 2014, 118, 50-55.	1.1	81
391	Chromosomal Rearrangements as a Major Mechanism in the Onset of Reproductive Isolation in Saccharomyces cerevisiae. Current Biology, 2014, 24, 1153-1159.	1.8	100
392	Biodiversity study of wine yeasts belonging to the "terroir―of Montepulciano d'Abruzzo "Colline Teramane―revealed Saccharomyces cerevisiae strains exhibiting atypical and unique 5.8S-ITS restriction patterns. Food Microbiology, 2014, 39, 7-12.	2.1	41
393	Translation elongation can control translation initiation on eukaryotic mRNAs. EMBO Journal, 2014, 33, 21-34.	3.5	174
394	Local climatic adaptation in a widespread microorganism. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132472.	1.2	69
395	Sociobiology of the budding yeast. Journal of Biosciences, 2014, 39, 225-236.	0.5	15
396	The fraction of cells that resume growth after acetic acid addition is a strain-dependent parameter of acetic acid tolerance in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2014, 14, 642-653.	1.1	43
397	Fungal evolutionary genomics provides insight into the mechanisms of adaptive divergence in eukaryotes. Molecular Ecology, 2014, 23, 753-773.	2.0	203
398	A global multilocus analysis of the model fungus Neurospora reveals a single recent origin of a novel genetic system. Molecular Phylogenetics and Evolution, 2014, 78, 136-147.	1.2	20
399	Population structure and reticulate evolution of <i><scp>S</scp>accharomyces eubayanus</i> and its lagerâ€brewing hybrids. Molecular Ecology, 2014, 23, 2031-2045.	2.0	128
400	Two interbreeding populations of <i>Saccharomyces cerevisiae</i> strains coexist in cachaça fermentations from Brazil. FEMS Yeast Research, 2014, 14, 289-301.	1.1	14
401	A set of genetically diverged <i>Saccharomyces cerevisiae</i> strains with markerless deletions of multiple auxotrophic genes. Yeast, 2014, 31, 91-101.	0.8	15
402	A Small System—High-Resolution Study of Metabolic Adaptation in the Central Metabolic Pathway to Temperate Climates in Drosophila melanogaster. Molecular Biology and Evolution, 2014, 31, 2032-2041.	3.5	36

#	Article	IF	CITATIONS
403	Assessing Genetic Diversity among Brettanomyces Yeasts by DNA Fingerprinting and Whole-Genome Sequencing. Applied and Environmental Microbiology, 2014, 80, 4398-4413.	1.4	66
404	Harnessing Genetic Diversity in Saccharomyces cerevisiae for Fermentation of Xylose in Hydrolysates of Alkaline Hydrogen Peroxide-Pretreated Biomass. Applied and Environmental Microbiology, 2014, 80, 540-554.	1.4	44
405	Comparative genomic analysis of Saccharomyces cerevisiae yeasts isolated from fermentations of traditional beverages unveils different adaptive strategies. International Journal of Food Microbiology, 2014, 171, 129-135.	2.1	16
406	Deficiencies in mitochondrial DNA compromise the survival of yeast cells at critically high temperatures. Microbiological Research, 2014, 169, 185-195.	2.5	10
408	Rapid identification of Zygosaccharomyces with genus-specific primers. International Journal of Food Microbiology, 2014, 173, 9-13.	2.1	21
409	Ecological Genomics. Advances in Experimental Medicine and Biology, 2014, , .	0.8	30
410	PHENOTYPIC AND GENOTYPIC CONVERGENCES ARE INFLUENCED BY HISTORICAL CONTINGENCY AND ENVIRONMENT IN YEAST. Evolution; International Journal of Organic Evolution, 2014, 68, 772-790.	1.1	46
411	Integrated biorefinery model based on production of furans using open-ended high yield processes. Green Chemistry, 2014, 16, 2480-2489.	4.6	63
412	Taming Wild Yeast: Potential of Conventional and Nonconventional Yeasts in Industrial Fermentations. Annual Review of Microbiology, 2014, 68, 61-80.	2.9	216
413	Phenotypic characterisation of <i>Saccharomyces</i> spp. for tolerance to 1-butanol. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1627-1636.	1.4	5
414	Effect of Domestication on the Spread of the [PIN+] Prion in <i>Saccharomyces cerevisiae</i> . Genetics, 2014, 197, 1007-1024.	1.2	11
415	1 Fungi from PCR to Genomics: The Spreading Revolution in Evolutionary Biology. , 2014, , 1-18.		1
416	Improving industrial yeast strains: exploiting natural and artificial diversity. FEMS Microbiology Reviews, 2014, 38, 947-995.	3.9	403
417	Cross-Kingdom Chemical Communication Drives a Heritable, Mutually Beneficial Prion-Based Transformation of Metabolism. Cell, 2014, 158, 1083-1093.	13.5	158
418	An Evolutionarily Conserved Prion-like Element Converts Wild Fungi from Metabolic Specialists to Generalists. Cell, 2014, 158, 1072-1082.	13.5	106
419	The genetics of a putative social trait in natural populations of yeast. Molecular Ecology, 2014, 23, 5061-5071.	2.0	23
420	Standing Genetic Variation Drives Repeatable Experimental Evolution in Outcrossing Populations of Saccharomyces cerevisiae. Molecular Biology and Evolution, 2014, 31, 3228-3239.	3.5	157
421	Extensive heterosis in growth of yeast hybrids is explained by a combination of genetic models. Heredity, 2014, 113, 316-326.	1.2	54

#	Article	IF	CITATIONS
422	So, you want to use next-generation sequencing in marine systems? Insight from the Pan-Pacific Advanced Studies Institute. Bulletin of Marine Science, 2014, 90, 79-122.	0.4	53
423	Niche construction initiates the evolution of mutualistic interactions. Ecology Letters, 2014, 17, 1257-1264.	3.0	109
424	Phenotypic evaluation of natural and industrial Saccharomyces yeasts for different traits desirable in industrial bioethanol production. Applied Microbiology and Biotechnology, 2014, 98, 9483-9498.	1.7	59
425	Large-Scale Selection and Breeding To Generate Industrial Yeasts with Superior Aroma Production. Applied and Environmental Microbiology, 2014, 80, 6965-6975.	1.4	115
426	A genetic approach of wine yeast fermentation capacity in nitrogen-starvation reveals the key role of nitrogen signaling. BMC Genomics, 2014, 15, 495.	1.2	99
427	Examining the condition-specific antisense transcription in S. cerevisiae and S. paradoxus. BMC Genomics, 2014, 15, 521.	1.2	9
428	Phenotypic and metabolic traits of commercial Saccharomyces cerevisiae yeasts. AMB Express, 2014, 4, 39.	1.4	26
429	The impact of genomic variability on gene expression in environmental <scp><i>S</i></scp> <i>accharomyces cerevisiae</i> strains. Environmental Microbiology, 2014, 16, 1378-1397.	1.8	59
430	Interactions between chromosomal and nonchromosomal elements reveal missing heritability. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7719-7722.	3.3	37
431	Phenotypic characterisation of Saccharomyces spp. yeast for tolerance to stresses encountered during fermentation of lignocellulosic residues to produce bioethanol. Microbial Cell Factories, 2014, 13, 47.	1.9	68
432	Wild Saccharomyces cerevisiae strains display biofilm-like morphology in contact with polyphenols from grapes and wine. International Journal of Food Microbiology, 2014, 189, 146-152.	2.1	17
434	Lager Yeast Comes of Age. Eukaryotic Cell, 2014, 13, 1256-1265.	3.4	50
435	Chromosomal variation segregates within incipient species and correlates with reproductive isolation. Molecular Ecology, 2014, 23, 4362-4372.	2.0	67
436	Rime : Repeat identification. Discrete Applied Mathematics, 2014, 163, 275-286.	0.5	2
437	Evidence for a Far East Asian origin of lager beer yeast. Current Biology, 2014, 24, R380-R381.	1.8	161
438	A Gondwanan imprint on global diversity and domestication of wine and cider yeast Saccharomyces uvarum. Nature Communications, 2014, 5, 4044.	5.8	214
439	Computational models reveal genotype–phenotype associations in <i>Saccharomyces cerevisiae</i> . Yeast, 2014, 31, 265-277.	0.8	20
440	<i>Yarrowia lipolytica</i> : Safety assessment of an oleaginous yeast with a great industrial potential. Critical Reviews in Microbiology, 2014, 40, 187-206.	2.7	369

#	Article	IF	CITATIONS
441	Potential impact of antimicrobial resistance in wildlife, environment and human health. Frontiers in Microbiology, 2014, 5, 23.	1.5	161
442	The effect of hybrid transgression on environmental tolerance in experimental yeast crosses. Journal of Evolutionary Biology, 2014, 27, 2507-2519.	0.8	41
443	Metabolic variation in natural populations of wild yeast. Ecology and Evolution, 2015, 5, 722-732.	0.8	16
444	The Context of Chemical Communication Driving a Mutualism. Journal of Chemical Ecology, 2015, 41, 929-936.	0.9	14
445	<scp>Hsp12p</scp> and <scp><i>PAU</i></scp> genes are involved in ecological interactions between natural yeast strains. Environmental Microbiology, 2015, 17, 3069-3081.	1.8	21
446	The genomics of wild yeast populations sheds light on the domestication of man's best (micro) friend. Molecular Ecology, 2015, 24, 5309-5311.	2.0	15
447	The aggregate site frequency spectrum for comparative population genomic inference. Molecular Ecology, 2015, 24, 6223-6240.	2.0	49
448	Defining molecular basis for longevity traits in natural yeast isolates. Npj Aging and Mechanisms of Disease, 2015, 1, .	4.5	18
449	The Ty1 LTR-Retrotransposon of Budding Yeast, <i>Saccharomyces cerevisiae</i> . Microbiology Spectrum, 2015, 3, 1-35.	1.2	271
450	The complex pattern of epigenomic variation between natural yeast strains at single-nucleosome resolution. Epigenetics and Chromatin, 2015, 8, 26.	1.8	9
451	Genomic and transcriptomic analyses of the Chinese Maotai-flavored liquor yeast MT1 revealed its unique multi-carbon co-utilization. BMC Genomics, 2015, 16, 1064.	1.2	25
452	A unique ecological niche fosters hybridization of oakâ€ŧree and vineyard isolates of <i>Saccharomyces cerevisiae</i> . Molecular Ecology, 2015, 24, 5886-5898.	2.0	10
453	De novo assembly of Dekkera bruxellensis: a multi technology approach using short and long-read sequencing and optical mapping. GigaScience, 2015, 4, 56.	3.3	26
455	Allelic variants of hexose transporter Hxt3p and hexokinases Hxk1p/Hxk2p in strains of <i>Saccharomyces cerevisiae</i> and interspecies hybrids. Yeast, 2015, 32, 657-669.	0.8	12
456	A population genomics insight into the Mediterranean origins of wine yeast domestication. Molecular Ecology, 2015, 24, 5412-5427.	2.0	186
457	A population study of killer viruses reveals different evolutionary histories of two closely related <i><scp>S</scp>accharomyces sensu stricto</i> yeasts. Molecular Ecology, 2015, 24, 4312-4322.	2.0	26
458	Ongoing domestication of wine yeast: past, present and future. Australian Journal of Grape and Wine Research, 2015, 21, 642-650.	1.0	15
459	Genomic sequencing reveals historical, demographic and selective factors associated with the diversification of the fireâ€associated fungus <i>Neurospora discreta</i> . Molecular Ecology, 2015, 24, 5657-5675.	2.0	32

#	Article	IF	CITATIONS
461	The fascinating and secret wild life of the budding yeast S. cerevisiae. ELife, 2015, 4, .	2.8	147
462	Yeast Phenomics: An Experimental Approach for Modeling Gene Interaction Networks that Buffer Disease. Genes, 2015, 6, 24-45.	1.0	15
463	Saccharomyces boulardii CNCM I-745 supports regeneration of the intestinal microbiota after diarrheic dysbiosis – a review. Clinical and Experimental Gastroenterology, 2015, 8, 237.	1.0	89
464	AGAPE (Automated Genome Analysis PipelinE) for Pan-Genome Analysis of Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0120671.	1.1	73
465	Temporal Expression Profiling Identifies Pathways Mediating Effect of Causal Variant on Phenotype. PLoS Genetics, 2015, 11, e1005195.	1.5	17
466	The Ty1 Retrotransposon Restriction Factor p22 Targets Gag. PLoS Genetics, 2015, 11, e1005571.	1.5	30
467	Dissecting the Genetic Basis of a Complex cis-Regulatory Adaptation. PLoS Genetics, 2015, 11, e1005751.	1.5	30
468	Insights into Penicillium roqueforti Morphological and Genetic Diversity. PLoS ONE, 2015, 10, e0129849.	1.1	46
469	Population of indigenous yeast strains from Prieto Picudo grapes in different growing areas of Denomination of Origin «Tierra de León». Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca: Horticulture, 2015, 72, .	0.2	1
470	Self-establishing communities enable cooperative metabolite exchange in a eukaryote. ELife, 2015, 4, .	2.8	81
471	The conserved histone deacetylase Rpd3 and its DNA binding subunit Ume6 control dynamic transcript architecture during mitotic growth and meiotic development. Nucleic Acids Research, 2015, 43, 115-128.	6.5	29
472	TALENs-Assisted Multiplex Editing for Accelerated Genome Evolution To Improve Yeast Phenotypes. ACS Synthetic Biology, 2015, 4, 1101-1111.	1.9	21
473	Saccharomyces cerevisiae: a nomadic yeast with no niche?. FEMS Yeast Research, 2015, 15, .	1.1	127
474	Thermal resistance of Saccharomyces yeast ascospores in beers. International Journal of Food Microbiology, 2015, 206, 75-80.	2.1	21
475	Differential Regulation of Antagonistic Pleiotropy in Synthetic and Natural Populations Suggests Its Role in Adaptation. G3: Genes, Genomes, Genetics, 2015, 5, 699-709.	0.8	20
476	The Recent De Novo Origin of Protein C-Termini. Genome Biology and Evolution, 2015, 7, 1686-1701.	1.1	14
477	Population structure of mitochondrial genomes in Saccharomyces cerevisiae. BMC Genomics, 2015, 16, 451.	1.2	85
478	A Dynamic Mobile DNA Family in the Yeast Mitochondrial Genome. G3: Genes, Genomes, Genetics, 2015, 5, 1273-1282.	0.8	24

	CITATION		
#	ARTICLE	IF	Citations
479	Regulatory Rewiring in a Cross Causes Extensive Genetic Heterogeneity. Genetics, 2015, 201, 769-777.	1.2	21
480	Estimating the fitness effects of new mutations in the wild yeast Saccharomyces paradoxus. Genome Biology and Evolution, 2015, 7, 1887-95.	1.1	12
481	Reconstructing (Super)Trees from Data Sets with Missing Distances: Not All Is Lost. Molecular Biology and Evolution, 2015, 32, 1628-1642.	3.5	10
482	Bulk Segregant Analysis Reveals the Genetic Basis of a Natural Trait Variation in Fission Yeast. Genome Biology and Evolution, 2015, 7, 3496-3510.	1.1	33
483	Genomics and the making of yeast biodiversity. Current Opinion in Genetics and Development, 2015, 35, 100-109.	1.5	105
484	A <i>trans</i> -Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control. Journal of Virology, 2015, 89, 3922-3938.	1.5	72
485	The genomic and phenotypic diversity of Schizosaccharomyces pombe. Nature Genetics, 2015, 47, 235-241.	9.4	174
486	Parsing ecological signal from noise in next generation amplicon sequencing. New Phytologist, 2015, 205, 1389-1393.	3.5	272
487	Lagging-strand replication shapes the mutational landscape of the genome. Nature, 2015, 518, 502-506.	13.7	213
488	Genomic Insights into the <i>Saccharomyces sensu stricto</i> Complex. Genetics, 2015, 199, 281-291.	1.2	115
489	Transcriptional response of Saccharomyces cerevisiae to low temperature during wine fermentation. Antonie Van Leeuwenhoek, 2015, 107, 1029-1048.	0.7	17
490	<scp>Y</scp> ap7 is a transcriptional repressor of nitric oxide oxidase in yeasts, which arose from neofunctionalization after whole genome duplication. Molecular Microbiology, 2015, 96, 951-972.	1.2	43
491	Genetic Evidence for Reproductive Isolation Among Sympatric Epichloë Endophytes as Inferred from Newly Developed Microsatellite Markers. Microbial Ecology, 2015, 70, 51-60.	1.4	15
492	Genetic isolation between two recently diverged populations of a symbiotic fungus. Molecular Ecology, 2015, 24, 2747-2758.	2.0	100
493	Tiled ChrI RHS collection: a pilot highâ€ŧhroughput screening tool for identification of allelic variants. Yeast, 2015, 32, 335-343.	0.8	1
494	Modeling Microbial Growth Curves with GCAT. Bioenergy Research, 2015, 8, 1022-1030.	2.2	28
495	An evolutionary approach uncovers a diverse response of tRNA 2-thiolation to elevated temperatures in yeast. Rna, 2015, 21, 202-212.	1.6	67
496	Evolutionary Advantage Conferred by an Eukaryote-to-Eukaryote Gene Transfer Event in Wine Yeasts. Molecular Biology and Evolution, 2015, 32, 1695-1707.	3.5	165

#	Article	IF	CITATIONS
497	Selection on noise constrains variation in a eukaryotic promoter. Nature, 2015, 521, 344-347.	13.7	146
498	Population Genomics Reveals Chromosome-Scale Heterogeneous Evolution in a Protoploid Yeast. Molecular Biology and Evolution, 2015, 32, 184-192.	3.5	61
499	Experimental evolution of the model eukaryote Saccharomyces cerevisiae yields insight into the molecular mechanisms underlying adaptation. Current Opinion in Microbiology, 2015, 28, 1-9.	2.3	35
500	Diversity and adaptive evolution of <i>Saccharomyces</i> wine yeast: a review. FEMS Yeast Research, 2015, 15, fov067.	1.1	184
501	Basic principles of yeast genomics, a personal recollection: Graphical Abstract Figure FEMS Yeast Research, 2015, 15, fov047.	1.1	9
502	Natural Variation in Preparation for Nutrient Depletion Reveals a Cost–Benefit Tradeoff. PLoS Biology, 2015, 13, e1002041.	2.6	128
503	Clade- and species-specific features of genome evolution in the Saccharomycetaceae. FEMS Yeast Research, 2015, 15, fov035.	1.1	58
504	Intrastrain genomic and phenotypic variability of the commercial <i>Saccharomyces cerevisiae</i> strain Zymaflore VL1 reveals microevolutionary adaptation to vineyard environments. FEMS Yeast Research, 2015, 15, fov063.	1.1	32
505	Diversity of Saccharomyces cerevisiae strains isolated from Borassus akeassii palm wines from Burkina Faso in comparison to other African beverages. International Journal of Food Microbiology, 2015, 211, 128-133.	2.1	22
506	Quantifying separation and similarity in a <i>Saccharomyces cerevisiae</i> metapopulation. ISME Journal, 2015, 9, 361-370.	4.4	83
507	Genetic Mapping of MAPK-Mediated Complex Traits Across S. cerevisiae. PLoS Genetics, 2015, 11, e1004913.	1.5	46
508	Genomic variation across landscapes: insights and applications. New Phytologist, 2015, 207, 953-967.	3.5	113
509	The <i>IRC7</i> gene encodes cysteine desulphydrase activity and confers on yeast the ability to grow on cysteine as a nitrogen source. Yeast, 2015, 32, 519-532.	0.8	18
510	Temperature and host preferences drive the diversification of Saccharomyces and other yeasts: a survey and the discovery of eight new yeast species. FEMS Yeast Research, 2015, 15, .	1.1	78
511	Loss of lager specific genes and subtelomeric regions define two different Saccharomyces cerevisiae lineages for Saccharomyces pastorianus Group I and II strains. FEMS Yeast Research, 2015, 15, .	1.1	41
512	A Boolean gene regulatory model of heterosis and speciation. BMC Evolutionary Biology, 2015, 15, 24.	3.2	22
513	Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance. Biotechnology for Biofuels, 2015, 8, 32.	6.2	81
514	Molecular and functional diversity of Saccharomyces cerevisiae strains of traditional fermented foods of the North-Western Himalayas. Annals of Microbiology, 2015, 65, 2265-2275.	1.1	3

#	Article	IF	CITATIONS
515	Identification of furfural resistant strains of Saccharomyces cerevisiae and Saccharomyces paradoxus from a collection of environmental and industrial isolates. Biotechnology for Biofuels, 2015, 8, 33.	6.2	42
516	The 100-genomes strains, an <i>S. cerevisiae</i> resource that illuminates its natural phenotypic and genotypic variation and emergence as an opportunistic pathogen. Genome Research, 2015, 25, 762-774.	2.4	386
517	Reducing alcohol levels in wines through rational and evolutionary engineering of Saccharomyces cerevisiae. International Journal of Food Microbiology, 2015, 213, 49-58.	2.1	41
518	A Systems Approach to Elucidate Heterosis of Protein Abundances in Yeast. Molecular and Cellular Proteomics, 2015, 14, 2056-2071.	2.5	42
519	Ecological and Genetic Barriers Differentiate Natural Populations of <i>Saccharomyces cerevisiae</i> . Molecular Biology and Evolution, 2015, 32, 2317-2327.	3.5	37
520	Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity. Molecular Cell, 2015, 59, 615-627.	4.5	103
521	Polymorphism Analysis Reveals Reduced Negative Selection and Elevated Rate of Insertions and Deletions in Intrinsically Disordered Protein Regions. Genome Biology and Evolution, 2015, 7, 1815-1826.	1.1	27
522	2μ plasmid in <i>Saccharomyces</i> species and in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2015, 15, fov090.	1.1	19
523	The Spontaneous Mutation Rate in the Fission Yeast <i>Schizosaccharomyces pombe</i> . Genetics, 2015, 201, 737-744.	1.2	127
524	Gains and Losses of Transcription Factor Binding Sites inSaccharomyces cerevisiaeandSaccharomyces paradoxus. Genome Biology and Evolution, 2015, 7, 2245-2257.	1.1	5
525	Evolution of intraspecific transcriptomic landscapes in yeasts. Nucleic Acids Research, 2015, 43, 4558-4568.	6.5	20
526	The Genome Sequence of <i>Saccharomyces eubayanus</i> and the Domestication of Lager-Brewing Yeasts. Molecular Biology and Evolution, 2015, 32, 2818-2831.	3.5	217
527	A Potential Case of Reinforcement in a Facultatively Sexual Unicellular Eukaryote. American Naturalist, 2015, 186, 312-319.	1.0	8
528	Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains. Applied and Environmental Microbiology, 2015, 81, 6253-6267.	1.4	79
529	Yeast biomass, an optimised product with myriad applications in the food industry. Trends in Food Science and Technology, 2015, 46, 167-175.	7.8	48
530	Nonparadoxical evolutionary stability of the recombination initiation landscape in yeast. Science, 2015, 350, 932-937.	6.0	109
531	Yeast Biogeography and the Effects of Species Recognition Approaches: The Case Study of Widespread Basidiomycetous Species from Birch Forests in Russia. Current Microbiology, 2015, 70, 587-601.	1.0	39
532	The microbial dynamics of wine fermentation. , 2015, , 435-476.		9

ARTICLE IF CITATIONS Designing wine yeast for the future., 2015, , 197-226. 533 5 Evolutionary Perspectives on Human Fungal Pathogens. Cold Spring Harbor Perspectives in Medicine, 534 2015, 5, a019588. Concerted Evolution of Life Stage Performances Signals Recent Selection on Yeast Nitrogen Use. 535 3.5 86 Molecular Biology and Evolution, 2015, 32, 153-161. Investigating flavour characteristics of British ale yeasts: techniques, resources and opportunities 536 0.8 for innovation. Yeast, 2015, 32, 281-287. Commentaries: Name Changes in Medically Important Fungi and Their Implications for Clinical 537 1.8 65 Practice. Journal of Clinical Microbiology, 2015, 53, 1056-1062. Higher-order genetic interactions and their contribution to complex traits. Trends in Genetics, 2015, 134 31, 34-40. 539 Spotsizer: High-throughput quantitative analysis of microbial growth. BioTechniques, 2016, 61, 191-201. 0.8 10 Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery. PLoS ONE, 2016, 11, 540 1.1 46 e0160259. 541 Production of Dicarboxylic Acid Platform Chemicals Using Yeasts., 2016, , 237-269. 14 Meiotic Interactors of a Mitotic Gene <i>TAO3 </i> Revealed by Functional Analysis of its Rare Variant. 542 0.8 G3: Genes, Genomes, Genetics, 2016, 6, 2255-2263. Differential regulation of cryptic genetic variation shapes the genetic interactome underlying 543 1.1 9 complex traits. Genome Biology and Evolution, 2016, 8, evw258. Genetics of Microorganisms – Yeasts. , 2016, , . 544 Lncident: A Tool for Rapid Identification of Long Noncoding RNAs Utilizing Sequence Intrinsic 545 0.8 43 Composition and Open Reading Frame Information. International Journal of Genomics, 2016, 2016, 1-11. Inter-Kingdom Modification of Metabolic Behavior: [GAR+] Prion Induction in Saccharomyces 546 1.1 cerevisiae Mediated by Wine Ecosystem Bacteria. Frontiers in Ecology and Evolution, 2016, 4, . Genes with a Combination of Over-Dominant and Epistatic Effects Underlie Heterosis in Growth of 547 1.1 18 Saccharomyces cerevisiae at High Temperature. Frontiers in Genetics, 2016, 7, 72. Opportunistic Strains of Saccharomyces cerevisiae: A Potential Risk Sold in Food Products. Frontiers 548 64 in Microbiology, 2015, 6, 1522. The Genetics of Non-conventional Wine Yeasts: Current Knowledge and Future Challenges. Frontiers 549 1.582 in Microbiology, 2015, 6, 1563. Changes in the Relative Abundance of Two Saccharomyces Species from Oak Forests to Wine 1.5 19 Fermentations. Frontiers in Microbiology, 2016, 7, 215.

#	Article	IF	CITATIONS
551	Isolation, Identification and Characterization of Yeasts from Fermented Goat Milk of the Yaghnob Valley in Tajikistan. Frontiers in Microbiology, 2016, 7, 1690.	1.5	38
552	Selection Transforms the Landscape of Genetic Variation Interacting with Hsp90. PLoS Biology, 2016, 14, e2000465.	2.6	94
553	Multi-locus Genotypes Underlying Temperature Sensitivity in a Mutationally Induced Trait. PLoS Genetics, 2016, 12, e1005929.	1.5	23
554	Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus. PLoS Genetics, 2016, 12, e1006155.	1.5	94
555	Coordinated Evolution of Transcriptional and Post-Transcriptional Regulation for Mitochondrial Functions in Yeast Strains. PLoS ONE, 2016, 11, e0153523.	1.1	9
556	Variation in Indole-3-Acetic Acid Production by Wild Saccharomyces cerevisiae and S. paradoxus Strains from Diverse Ecological Sources and Its Effect on Growth. PLoS ONE, 2016, 11, e0160524.	1.1	21
557	Variation in Host and Pathogen in the Neonectria/Malus Interaction; toward an Understanding of the Genetic Basis of Resistance to European Canker. Frontiers in Plant Science, 2016, 7, 1365.	1.7	38
558	Large-Scale Survey of Intraspecific Fitness and Cell Morphology Variation in a Protoploid Yeast Species. G3: Genes, Genomes, Genetics, 2016, 6, 1063-1071.	0.8	6
559	Population genomics of yeasts: towards a comprehensive view across a broad evolutionary scale. Yeast, 2016, 33, 73-81.	0.8	57
560	Species coexistence in simple microbial communities: unravelling the phenotypic landscape of coâ€occurring <scp><i>M</i></scp> <i>etschnikowia</i> species in floral nectar. Environmental Microbiology, 2016, 18, 1850-1862.	1.8	25
561	Ndt80 activates the meiotic ORC1 transcript isoform and SMA2 via a bi-directional middle sporulation element in Saccharomyces cerevisiae. RNA Biology, 2016, 13, 772-782.	1.5	9
562	<i>Saccharomyces eubayanus</i> and <i>Saccharomyces arboricola</i> reside in North Island native New Zealand forests. Environmental Microbiology, 2016, 18, 1137-1147.	1.8	64
563	Whole Genome Comparison Reveals High Levels of Inbreeding and Strain Redundancy Across the Spectrum of Commercial Wine Strains of <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2016, 6, 957-971.	0.8	166
564	Whole Genome Analysis of 132 Clinical <i>Saccharomyces cerevisiae</i> Strains Reveals Extensive Ploidy Variation. G3: Genes, Genomes, Genetics, 2016, 6, 2421-2434.	0.8	129
565	Development of stable haploid strains and molecular genetic tools for <i>Naumovozyma castellii</i> (<i>Saccharomyces castellii</i>). Yeast, 2016, 33, 633-646.	0.8	7
566	<i>Saccharomyces uvarum</i> is Responsible for the Traditional Fermentation of Apple <i>CHICHA</i> in Patagonia. FEMS Yeast Research, 2017, 17, fow109.	1.1	25
567	Genome Sequence and Analysis of a Stress-Tolerant, Wild-Derived Strain of Saccharomyces cerevisiae Used in Biofuels Research. G3: Genes, Genomes, Genetics, 2016, 6, 1757-1766.	0.8	61
568	Saccharomyces in Traditional and Industrial Fermentations from Patagonia. , 2016, , 251-276.		3

#	Article	IF	CITATIONS
569	Direct stamp of technology or origin on the genotypic and phenotypic variation of indigenous Saccharomyces cerevisiae population in a natural model of boiled grape juice fermentation into traditional Msalais wine in China. FEMS Yeast Research, 2016, 17, fow108.	1.1	5
570	Molecular phylogeny of pectinase genes PGU in the yeast genus Saccharomyces. Microbiology, 2016, 85, 717-726.	0.5	4
571	Genomics and biochemistry of Saccharomyces cerevisiae wine yeast strains. Biochemistry (Moscow), 2016, 81, 1650-1668.	0.7	38
572	Summer temperature can predict the distribution of wild yeast populations. Ecology and Evolution, 2016, 6, 1236-1250.	0.8	59
573	New integrative computational approaches unveil the Saccharomyces cerevisiae pheno-metabolomic fermentative profile and allow strain selection for winemaking. Food Chemistry, 2016, 211, 509-520.	4.2	22
574	Social wasps are a <i>Saccharomyces</i> mating nest. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 2247-2251.	3.3	102
575	Microbiology: Mixing Wine, Chocolate, and Coffee. Current Biology, 2016, 26, R275-R277.	1.8	5
576	Noise and Epigenetic Inheritance of Single-Cell Division Times Influence Population Fitness. Current Biology, 2016, 26, 1138-1147.	1.8	80
577	Exploiting budding yeast natural variation for industrial processes. Current Genetics, 2016, 62, 745-751.	0.8	60
578	CRISPR-directed mitotic recombination enables genetic mapping without crosses. Science, 2016, 352, 1113-1116.	6.0	90
579	Truncation of Gal4p explains the inactivation of theGAL/MELregulon in bothSaccharomyces bayanusand someSaccharomyces cerevisiaewine strains. FEMS Yeast Research, 2016, 16, fow070.	1.1	6
580	Domestication and Divergence of Saccharomyces cerevisiae Beer Yeasts. Cell, 2016, 166, 1397-1410.e16.	13.5	580
581	Ethnic Fermented Foods and Beverages of Vietnam. , 2016, , 383-409.		8
582	Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts. Current Biology, 2016, 26, 2750-2761.	1.8	207
583	Genetic basis of priority effects: insights from nectar yeast. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161455.	1.2	44
584	A global genetic interaction network maps a wiring diagram of cellular function. Science, 2016, 353, .	6.0	979
585	The Hidden Complexity of Mendelian Traits across Natural Yeast Populations. Cell Reports, 2016, 16, 1106-1114.	2.9	31
586	A set of haploid strains available for genetic studies of <i>Saccharomyces cerevisiae</i> flor yeasts. FEMS Yeast Research, 2016, 16, fow066.	1.1	21

#	Article	IF	CITATIONS
587	Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nature Microbiology, 2016, 1, 15003.	5.9	161
588	<i>Saccharomyces cerevisiae</i> metabolism in ecological context. FEMS Yeast Research, 2016, 16, fow080.	1.1	37
589	Physiology ofSaccharomyces cerevisiaestrains isolated from Brazilian biomes: new insights into biodiversity and industrial applications. FEMS Yeast Research, 2016, 16, fow076.	1.1	22
590	Leveraging Genetic-Background Effects in Saccharomyces cerevisiae To Improve Lignocellulosic Hydrolysate Tolerance. Applied and Environmental Microbiology, 2016, 82, 5838-5849.	1.4	30
591	Species richness influences wine ecosystem function through a dominant species. Fungal Ecology, 2016, 22, 61-72.	0.7	36
592	The correlation space of Gaussian latent tree models and model selection without fitting. Biometrika, 2016, 103, 531-545.	1.3	9
593	Population genomic analysis uncovers environmental stress-driven selection and adaptation of Lentinula edodes population in China. Scientific Reports, 2016, 6, 36789.	1.6	23
594	Computational pan-genomics: status, promises and challenges. Briefings in Bioinformatics, 2018, 19, bbw089.	3.2	207
595	Sensory input attenuation allows predictive sexual response in yeast. Nature Communications, 2016, 7, 12590.	5.8	32
596	European derived <i>Saccharomyces cerevisiae</i> colonisation of New Zealand vineyards aided by humans. FEMS Yeast Research, 2016, 16, fow091.	1.1	29
598	Powerful decomposition of complex traits in a diploid model. Nature Communications, 2016, 7, 13311.	5.8	34
599	Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Scientific Reports, 2016, 6, 21849.	1.6	100
600	Diverse genetic architectures lead to the same cryptic phenotype in a yeast cross. Nature Communications, 2016, 7, 11669.	5.8	35
601	Prevalence and Dynamics of Ribosomal DNA Micro-heterogeneity Are Linked to Population History in Two Contrasting Yeast Species. Scientific Reports, 2016, 6, 28555.	1.6	4
602	DNA Instability Maintains the Repeat Length of the Yeast RNA Polymerase II C-terminal Domain. Journal of Biological Chemistry, 2016, 291, 11540-11550.	1.6	11
603	Efficient Sporulation of Saccharomyces cerevisiae in a 96 Multiwell Format. Journal of Visualized Experiments, 2016, , .	0.2	1
604	Social wasp intestines host the local phenotypic variability of <i>Saccharomyces cerevisiae</i> strains. Yeast, 2016, 33, 277-287.	0.8	22
605	Genome-Wide Estimates of Mutation Rates and Spectrum in <i>Schizosaccharomyces pombe</i> Indicate CpG Sites are Highly Mutagenic Despite the Absence of DNA Methylation. G3: Genes, Genomes, Genetics, 2016, 6, 149-160.	0.8	55

#	Article	IF	CITATIONS
606	Horizontally acquired oligopeptide transporters favour adaptation of <i>Saccharomyces cerevisiae</i> wine yeast to oenological environment. Environmental Microbiology, 2016, 18, 1148-1161.	1.8	55
607	Different evolutionary patterns of SNPs between domains and unassigned regions in human protein-coding sequences. Molecular Genetics and Genomics, 2016, 291, 1127-1136.	1.0	2
608	Engineering a natural Saccharomyces cerevisiae strain for ethanol production from inulin by consolidated bioprocessing. Biotechnology for Biofuels, 2016, 9, 96.	6.2	35
609	Sporulation in soil as an overwinter survival strategy in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2016, 16, fov102.	1.1	34
610	Evidence of Natural Hybridization in Brazilian Wild Lineages of <i>Saccharomyces cerevisiae</i> . Genome Biology and Evolution, 2016, 8, 317-329.	1.1	79
611	Diversity of flux distribution in central carbon metabolism of S. cerevisiae strains from diverse environments. Microbial Cell Factories, 2016, 15, 58.	1.9	26
612	Species-wide survey reveals the various flavors of intraspecific reproductive isolation in yeast. FEMS Yeast Research, 2016, 16, fow048.	1.1	10
613	Selection of yeast strains for bioethanol production from UK seaweeds. Journal of Applied Phycology, 2016, 28, 1427-1441.	1.5	73
614	The Power of Natural Variation for Model Organism Biology. Trends in Genetics, 2016, 32, 147-154.	2.9	70
615	Microsatellite analysis of Saccharomyces uvarumdiversity. FEMS Yeast Research, 2016, 16, fow002.	1.1	26
616	Replenishment and mobilization of intracellular nitrogen pools decouples wine yeast nitrogen uptake from growth. Applied Microbiology and Biotechnology, 2016, 100, 3255-3265.	1.7	24
617	Evaluating Phylostratigraphic Evidence for Widespread De Novo Gene Birth in Genome Evolution. Molecular Biology and Evolution, 2016, 33, 1245-1256.	3.5	83
618	Cell-based screens and phenomics with fission yeast. Critical Reviews in Biochemistry and Molecular Biology, 2016, 51, 86-95.	2.3	16
619	Sucrose and <i>Saccharomyces cerevisiae</i> : a relationship most sweet. FEMS Yeast Research, 2016, 16, fov107.	1.1	99
620	Efficient engineering of marker-free synthetic allotetraploids of Saccharomyces. Fungal Genetics and Biology, 2016, 89, 10-17.	0.9	50
621	Cellar-Associated Saccharomyces cerevisiae Population Structure Revealed High-Level Diversity and Perennial Persistence at Sauternes Wine Estates. Applied and Environmental Microbiology, 2016, 82, 2909-2918.	1.4	66
622	Budding off: bringing functional genomics toCandida albicans. Briefings in Functional Genomics, 2016, 15, 85-94.	1.3	9
623	<i>RIM15</i> antagonistic pleiotropy is responsible for differences in fermentation and stress response kinetics in budding yeast. FEMS Yeast Research, 2016, 16, fow021.	1.1	67

#	Article	IF	CITATIONS
624	Independent Origins of Yeast Associated with Coffee and Cacao Fermentation. Current Biology, 2016, 26, 965-971.	1.8	69
625	Genome scan for nonadditive heterotic trait loci reveals mainly underdominant effects in <i>Saccharomyces cerevisiae</i> . Genome, 2016, 59, 231-242.	0.9	10
626	Social wasps promote social behavior in Saccharomyces spp Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 1971-1973.	3.3	3
627	Genetic Improvement and Genetically Modified Microorganisms. , 2016, , 71-96.		3
628	Whole-Genome Sequencing and Intraspecific Analysis of the Yeast SpeciesLachancea quebecensis. Genome Biology and Evolution, 2016, 8, 733-741.	1.1	12
629	Presence of low concentrations of acetic acid improves yeast tolerance to hydroxymethylfurfural (HMF) and furfural. Biomass and Bioenergy, 2016, 85, 53-60.	2.9	23
630	Sporadic, Global Linkage Disequilibrium Between Unlinked Segregating Sites. Genetics, 2016, 202, 427-437.	1.2	18
631	Nonsense-Mediated Decay Restricts LncRNA Levels in Yeast Unless Blocked by Double-Stranded RNA Structure. Molecular Cell, 2016, 61, 379-392.	4.5	101
632	Characterisation of the broad substrate specificity 2-keto acid decarboxylase Aro10p of Saccharomyces kudriavzevii and its implication in aroma development. Microbial Cell Factories, 2016, 15, 51.	1.9	21
633	Hsp90 Maintains Proteostasis of the Galactose Utilization Pathway To Prevent Cell Lethality. Molecular and Cellular Biology, 2016, 36, 1412-1424.	1.1	10
634	Improvement of aromatic thiol release through the selection of yeasts with increased β-lyase activity. International Journal of Food Microbiology, 2016, 225, 1-8.	2.1	49
635	Responses of Saccharomyces cerevisiae Strains from Different Origins to Elevated Iron Concentrations. Applied and Environmental Microbiology, 2016, 82, 1906-1916.	1.4	33
636	Population Structure Shapes Copy Number Variation in Malaria Parasites. Molecular Biology and Evolution, 2016, 33, 603-620.	3.5	45
638	Negative epistasis: a route to intraspecific reproductive isolation in yeast?. Current Genetics, 2016, 62, 25-29.	0.8	13
639	Population perspectives on functional genomic variation in yeast. Briefings in Functional Genomics, 2016, 15, 138-146.	1.3	4
640	Measuring microbial fitness in a field reciprocal transplant experiment. Molecular Ecology Resources, 2017, 17, 370-380.	2.2	17
641	The protein expression landscape of mitosis and meiosis in diploid budding yeast. Journal of Proteomics, 2017, 156, 5-19.	1.2	7
642	The genetic architecture of low-temperature adaptation in the wine yeast Saccharomyces cerevisiae. BMC Genomics, 2017, 18, 159.	1.2	58

#	Article	IF	CITATIONS
643	Optogenetic switches for light-controlled gene expression in yeast. Applied Microbiology and Biotechnology, 2017, 101, 2629-2640.	1.7	35
644	Metabolic engineering of a haploid strain derived from a triploid industrial yeast for producing cellulosic ethanol. Metabolic Engineering, 2017, 40, 176-185.	3.6	27
645	Experimental tests of host–virus coevolution in natural killer yeast strains. Journal of Evolutionary Biology, 2017, 30, 773-781.	0.8	11
646	Mitochondrial introgression suggests extensive ancestral hybridization events among Saccharomyces species. Molecular Phylogenetics and Evolution, 2017, 108, 49-60.	1.2	40
647	Genomic signatures of adaptation to wine biological ageing conditions in biofilmâ€forming flor yeasts. Molecular Ecology, 2017, 26, 2150-2166.	2.0	68
648	Population Genomics of Paramecium Species. Molecular Biology and Evolution, 2017, 34, 1194-1216.	3.5	35
649	Hybridization and adaptive evolution of diverse Saccharomyces species for cellulosic biofuel production. Biotechnology for Biofuels, 2017, 10, 78.	6.2	78
650	Contrasting evolutionary genome dynamics between domesticated and wild yeasts. Nature Genetics, 2017, 49, 913-924.	9.4	340
651	Deciphering the Genic Basis of Yeast Fitness Variation by Simultaneous Forward and Reverse Genetics. Molecular Biology and Evolution, 2017, 34, 2486-2502.	3.5	42
652	Genome Mutational and Transcriptional Hotspots Are Traps for Duplicated Genes and Sources of Adaptations. Genome Biology and Evolution, 2017, 9, 1229-1240.	1.1	17
653	Genetic suppression: Extending our knowledge from lab experiments to natural populations. BioEssays, 2017, 39, 1700023.	1.2	7
654	The genetic architecture in Saccharomyces cerevisiae that contributes to variation in drug response to the antifungals benomyl and ketoconazole. FEMS Yeast Research, 2017, 17, .	1.1	8
655	Population genomics and the evolution of virulence in the fungal pathogen <i>Cryptococcus neoformans</i> . Genome Research, 2017, 27, 1207-1219.	2.4	134
656	Ecology, Diversity and Applications of Saccharomyces Yeasts in Food and Beverages. , 2017, , 283-321.		3
657	Incorporating comparative genomics into the design–test–learn cycle of microbial strain engineering. FEMS Yeast Research, 2017, 17, .	1.1	9
658	Integrating transcriptomics and metabolomics for the analysis of the aroma profiles of Saccharomyces cerevisiae strains from diverse origins. BMC Genomics, 2017, 18, 455.	1.2	33
659	New yeasts—new brews: modern approaches to brewing yeast design and development. FEMS Yeast Research, 2017, 17, .	1.1	118
660	Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture,) Tj ETQq1 1	0,784314	l rgBT /Overl

#	Article	IF	CITATIONS
661	Tolerance to winemaking stress conditions of Patagonian strains of <i>Saccharomyces eubayanus</i> and <i>Saccharomyces uvarum</i> . Journal of Applied Microbiology, 2017, 123, 450-463.	1.4	32
662	Genetic Analysis of Complex Traits in <i>Saccharomyces cerevisiae</i> . Cold Spring Harbor Protocols, 2017, 2017, pdb.top077602.	0.2	3
663	Fungi as a Source of Food. Microbiology Spectrum, 2017, 5, .	1.2	31
664	Organic farming increases richness of fungal taxa in the wheat phyllosphere. Molecular Ecology, 2017, 26, 3424-3436.	2.0	57
665	Molecular Population Genetics. Genetics, 2017, 205, 1003-1035.	1.2	100
666	PopNet: A Markov Clustering Approach to Study Population Genetic Structure. Molecular Biology and Evolution, 2017, 34, 1799-1811.	3.5	5
667	The frenemies within: viruses, retrotransposons and plasmids that naturally infect <i>Saccharomyces</i> yeasts. Yeast, 2017, 34, 279-292.	0.8	32
668	Metabolomics strategy for the mapping of volatile exometabolome from <i>Saccharomyces</i> spp. widely used in the food industry based on comprehensive two-dimensional gas chromatography. Journal of Separation Science, 2017, 40, 2228-2237.	1.3	22
669	Kazachstania gamospora and Wickerhamomyces subpelliculosus : Two alternative baker's yeasts in the modern bakery. International Journal of Food Microbiology, 2017, 250, 45-58.	2.1	37
670	Mismatch Repair Incompatibilities in Diverse Yeast Populations. Genetics, 2017, 205, 1459-1471.	1.2	22
671	Brewing up a storm: The genomes of lager yeasts and how they evolved. Biotechnology Advances, 2017, 35, 512-519.	6.0	61
672	Genome Editing of Plants. Critical Reviews in Plant Sciences, 2017, 36, 1-23.	2.7	107
673	Extensive Copy Number Variation in Fermentation-Related Genes Among <i>Saccharomyces cerevisiae</i> Wine Strains. G3: Genes, Genomes, Genetics, 2017, 7, 1475-1485.	0.8	77
674	Mechanisms of iron sensing and regulation in the yeast Saccharomyces cerevisiae. World Journal of Microbiology and Biotechnology, 2017, 33, 75.	1.7	77
675	Population genomics reveals structure at the individual, hostâ€ŧree scale and persistence of genotypic variants of the undomesticated yeast <i>Saccharomyces paradoxus</i> in a natural woodland. Molecular Ecology, 2017, 26, 995-1007.	2.0	21
676	Considerations when choosing a genetic model organism for metabolomics studies. Current Opinion in Chemical Biology, 2017, 36, 7-14.	2.8	21
677	Heterosis in hybrids within and between yeast species. Journal of Evolutionary Biology, 2017, 30, 538-548.	0.8	53
678	The quick and the dead: microbial demography at the yeast thermal limit. Molecular Ecology, 2017, 26, 1631-1640.	2.0	5

#	Article	IF	CITATIONS
679	Genetic Interaction Network as an Important Determinant of Gene Order in Genome Evolution. Molecular Biology and Evolution, 2017, 34, 3254-3266.	3.5	22
680	Yeasts in Natural Ecosystems: Ecology. , 2017, , .		12
681	Testing the neutral hypothesis of phenotypic evolution. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12219-12224.	3.3	38
682	Biogeography and Ecology of the Genus Saccharomyces. , 2017, , 131-153.		10
683	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. Microbiology Spectrum, 2017, 5, .	1.2	33
684	Systematic Discovery of Archaeal Transcription Factor Functions in Regulatory Networks through Quantitative Phenotyping Analysis. MSystems, 2017, 2, .	1.7	34
685	Genetic basis of mycotoxin susceptibility differences between budding yeast isolates. Scientific Reports, 2017, 7, 9173.	1.6	27
686	Exploring Frequented Regions in Pan-Genomic Graphs. , 2017, , .		3
687	Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics, 2017, 206, 717-750.	1.2	105
688	Population genomics of picophytoplankton unveils novel chromosome hypervariability. Science Advances, 2017, 3, e1700239.	4.7	73
689	Known mutator alleles do not markedly increase mutation rate in clinical <i>Saccharomyces cerevisiae</i> strains. Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20162672.	1.2	8
690	Commercial strainâ€derived clinical <i>Saccharomyces cerevisiae</i> can evolve new phenotypes without higher pathogenicity. Molecular Nutrition and Food Research, 2017, 61, 1601099.	1.5	8
691	Multiâ€gene phylogenetic analysis reveals that shochuâ€fermenting <i>Saccharomyces cerevisiae</i> strains form a distinct subâ€clade of the Japanese sake cluster. Yeast, 2017, 34, 407-415.	0.8	15
692	Evolutionary biology through the lens of budding yeast comparative genomics. Nature Reviews Genetics, 2017, 18, 581-598.	7.7	81
693	A system to identify inhibitors of mTOR signaling using high-resolution growth analysis in Saccharomyces cerevisiae. GeroScience, 2017, 39, 419-428.	2.1	22
694	Yeast–bacteria competition induced new metabolic traits through large-scale genomic rearrangements in Lachancea kluyveri. FEMS Yeast Research, 2017, 17, .	1.1	15
695	Budding Yeast Strains and Genotype–Phenotype Mapping. Cold Spring Harbor Protocols, 2017, 2017, pdb.top077735.	0.2	6
696	Causal Genetic Variation Underlying Metabolome Differences. Genetics, 2017, 206, 2199-2206.	1.2	5

#	Article	IF	CITATIONS
697	High-Quality <i>de Novo</i> Genome Assembly of the <i>Dekkera bruxellensis</i> Yeast Using Nanopore MinION Sequencing. G3: Genes, Genomes, Genetics, 2017, 7, 3243-3250.	0.8	44
698	New Lager Brewery Strains Obtained by Crossing Techniques Using <i>Cachaça</i> (Brazilian Spirit) Yeasts. Applied and Environmental Microbiology, 2017, 83, .	1.4	14
699	Yeast Reciprocal Hemizygosity to Confirm the Causality of a Quantitative Trait Loci-Associated Gene. Cold Spring Harbor Protocols, 2017, 2017, pdb.prot089078.	0.2	7
700	High-resolution mapping of <i>cis</i> -regulatory variation in budding yeast. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E10736-E10744.	3.3	50
701	SaccharomycesIDentifier, SID: strain-level analysis of Saccharomyces cerevisiae populations by using microsatellite meta-patterns. Scientific Reports, 2017, 7, 15343.	1.6	5
702	Functional Genomics in Wine Yeast: DNA Arrays and Next Generation Sequencing. , 2017, , 573-604.		1
703	Yeasts. , 2017, , 65-101.		6
704	How a Genetically Stable Extremophile Evolves: Modes of Genome Diversification in the Archaeon Sulfolobus acidocaldarius. Journal of Bacteriology, 2017, 199, .	1.0	16
705	RNAseq-based transcriptome comparison of Saccharomyces cerevisiae strains isolated from diverse fermentative environments. International Journal of Food Microbiology, 2017, 257, 262-270.	2.1	11
706	Epistasis: Searching for Interacting Genetic Variants Using Crosses. Genetics, 2017, 206, 531-535.	1.2	29
707	McClintock: An Integrated Pipeline for Detecting Transposable Element Insertions in Whole-Genome Shotgun Sequencing Data. G3: Genes, Genomes, Genetics, 2017, 7, 2763-2778.	0.8	81
708	Synthetic genome engineering forging new frontiers for wine yeast. Critical Reviews in Biotechnology, 2017, 37, 112-136.	5.1	45
709	Natural gene expression variation studies in yeast. Yeast, 2017, 34, 3-17.	0.8	34
710	Detecting differential growth of microbial populations with Gaussian process regression. Genome Research, 2017, 27, 320-333.	2.4	55
711	Specific populations of the yeast <i>Geotrichum candidum</i> revealed by molecular typing. Yeast, 2017, 34, 165-178.	0.8	31
712	Diminishing Returns on Intragenic Repeat Number Expansion in the Production of Signaling Peptides. Molecular Biology and Evolution, 2017, 34, 3176-3185.	3.5	6
713	Phenotypic Diagnosis of Lineage and Differentiation During Sake Yeast Breeding. G3: Genes, Genomes, Genetics, 2017, 7, 2807-2820.	0.8	25
714	Yeast Genome Sequencing: Basic Biology, Human Biology, and Biotechnology. , 2017, , 201-226.		0

#	Article	IF	CITATIONS
715	The Landscape of Extreme Genomic Variation in the Highly Adaptable Atlantic Killifish. Genome Biology and Evolution, 2017, 9, 659-676.	1.1	43
716	Habitat Predicts Levels of Genetic Admixture in <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2017, 7, 2919-2929.	0.8	19
717	Phenotypic Characterization of Yeasts Aiming at Bioethanol Production. , 0, , .		1
718	Sources of Fungal Genetic Variation and Associating It with Phenotypic Diversity. , 0, , 635-655.		3
719	Fungi as a Source of Food. , 0, , 1063-1085.		9
720	Role of Mitochondrial Retrograde Pathway in Regulating Ethanol-Inducible Filamentous Growth in Yeast. Frontiers in Physiology, 2017, 8, 148.	1.3	17
721	Microbiology of Alcoholic Fermentation. , 2017, , 263-279.		3
722	Variation and Distribution of L-A Helper Totiviruses in Saccharomyces sensu stricto Yeasts Producing Different Killer Toxins. Toxins, 2017, 9, 313.	1.5	27
723	Genetic Polymorphism in Wine Yeasts: Mechanisms and Methods for Its Detection. Frontiers in Microbiology, 2017, 8, 806.	1.5	49
724	The Geographic Distribution of Saccharomyces cerevisiae Isolates within three Italian Neighboring Winemaking Regions Reveals Strong Differences in Yeast Abundance, Genetic Diversity and Industrial Strain Dissemination. Frontiers in Microbiology, 2017, 8, 1595.	1.5	36
725	Yeast Population Genomics Goes Wild: The Case of Saccharomyces paradoxus. Population Genomics, 2017, , 207-230.	0.2	13
726	Describing Genomic and Epigenomic Traits Underpinning Emerging Fungal Pathogens. Advances in Genetics, 2017, 100, 73-140.	0.8	17
727	The evolution of Lachancea thermotolerans is driven by geographical determination, anthropisation and flux between different ecosystems. PLoS ONE, 2017, 12, e0184652.	1.1	56
728	Polymorphisms in the yeast galactose sensor underlie a natural continuum of nutrient-decision phenotypes. PLoS Genetics, 2017, 13, e1006766.	1.5	20
729	Identification of Nitrogen Consumption Genetic Variants in Yeast Through QTL Mapping and Bulk Segregant RNA-Seq Analyses. G3: Genes, Genomes, Genetics, 2017, 7, 1693-1705.	0.8	87
730	Epistasis: Searching for Interacting Genetic Variants Using Crosses. G3: Genes, Genomes, Genetics, 2017, 7, 1619-1622.	0.8	14
731	Saccharomyces cerevisiae variety diastaticus friend or foe?—spoilage potential and brewing ability of different Saccharomyces cerevisiae variety diastaticus yeast isolates by genetic, phenotypic and physiological characterization. FEMS Yeast Research, 2018, 18, .	1.1	36
732	Natural Variation in SER1 and ENA6 Underlie Condition-Specific Growth Defects in Saccharomyces cerevisiae. G3: Genes, Genomes, Genetics, 2018, 8, 239-251.	0.8	14

#	Article	IF	CITATIONS
733	Whole-Genome Analysis Illustrates Global Clonal Population Structure of the Ubiquitous Dermatophyte Pathogen <i>Trichophyton rubrum</i> . Genetics, 2018, 208, 1657-1669.	1.2	48
734	Application of different markers and data-analysis tools to the examination of biodiversity can lead to different results: a case study with Starmerella bacillaris (synonym Candida zemplinina) strains. FEMS Yeast Research, 2018, 18, .	1.1	6
735	Screening and Evaluation of Yeast Antagonists for Biological Control of <i>Botrytis cinerea</i> on Strawberry Fruits. Mycobiology, 2018, 46, 33-46.	0.6	90
736	Metabolic and genomic characterisation of stress-tolerant industrial Saccharomyces cerevisiae strains from TALENs-assisted multiplex editing. FEMS Yeast Research, 2018, 18, .	1.1	9
737	Differentiation of Saccharomyces cerevisiae populations from vineyards of the Azores Archipelago: Geography vs Ecology. Food Microbiology, 2018, 74, 151-162.	2.1	20
738	Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature, 2018, 556, 339-344.	13.7	952
739	Genomic epidemiology of the UK outbreak of the emerging human fungal pathogen <i>Candida auris</i> . Emerging Microbes and Infections, 2018, 7, 1-12.	3.0	169
740	Diversity analysis of Saccharomyces cerevisiae isolated from natural sources by multilocus sequence typing (MLST). Food Science and Biotechnology, 2018, 27, 1119-1127.	1.2	4
741	Mapping Causal Variants with Single-Nucleotide Resolution Reveals Biochemical Drivers of Phenotypic Change. Cell, 2018, 172, 478-490.e15.	13.5	62
742	Genomic diversity of a nectar yeast clusters into metabolically, but not geographically, distinct lineages. Molecular Ecology, 2018, 27, 2067-2076.	2.0	21
743	The systematic analysis of ultraconserved genomic regions in the budding yeast. Bioinformatics, 2018, 34, 361-366.	1.8	1
745	Microsatellite Analysis of Saccharomyces cerevisiae in Cooked Bread. Food Analytical Methods, 2018, 11, 1757-1762.	1.3	0
746	Assigning function to natural allelic variation via dynamic modeling of gene network induction. Molecular Systems Biology, 2018, 14, e7803.	3.2	1
747	Patterns of Genomic Variation in the Opportunistic Pathogen Candida glabrata Suggest the Existence of Mating and a Secondary Association with Humans. Current Biology, 2018, 28, 15-27.e7.	1.8	114
748	Gene–gene and gene–environment interactions in complex traits in yeast. Yeast, 2018, 35, 403-416.	0.8	15
749	Clobal study of holistic morphological effectors in the budding yeast Saccharomyces cerevisiae. BMC Genomics, 2018, 19, 149.	1.2	20
750	Factors driving metabolic diversity in the budding yeast subphylum. BMC Biology, 2018, 16, 26.	1.7	36
751	Retrotransposon targeting to RNA polymerase III-transcribed genes. Mobile DNA, 2018, 9, 14.	1.3	16

#	Article	IF	CITATIONS
752	From vineyard to winery: a source map of microbial diversity driving wine fermentation. Environmental Microbiology, 2018, 20, 75-84.	1.8	102
753	Recombination Alters the Dynamics of Adaptation on Standing Variation in Laboratory Yeast Populations. Molecular Biology and Evolution, 2018, 35, 180-201.	3.5	45
754	The natural diversity and ecology of fission yeast. Yeast, 2018, 35, 253-260.	0.8	28
755	Mating of natural Saccharomyces cerevisiae strains for improved glucose fermentation and lignocellulosic inhibitor tolerance. Folia Microbiologica, 2018, 63, 155-168.	1.1	14
756	Abundant recent activity of retrovirusâ€like retrotransposons within and among flycatcher species implies a rich source of structural variation in songbird genomes. Molecular Ecology, 2018, 27, 99-111.	2.0	59
757	Many interspecific chromosomal introgressions are highly prevalent in Holarctic <i>Saccharomyces uvarum</i> strains found in humanâ€related fermentations. Yeast, 2018, 35, 141-156.	0.8	30
758	The hybrid genomes of <i>Saccharomyces pastorianus</i> : A current perspective. Yeast, 2018, 35, 39-50.	0.8	41
759	Lipids modulate acetic acid and thiol final concentrations in wine during fermentation by Saccharomyces cerevisiae × Saccharomyces kudriavzevii hybrids. AMB Express, 2018, 8, 130.	1.4	26
760	Saccharomyces cerevisiae genotype phenotype mapping through leptokurtic PLS loading weights. International Journal of Data Mining and Bioinformatics, 2018, 21, 18.	0.1	0
761	Transcriptional profile of a bioethanol production contaminant Candida tropicalis. AMB Express, 2018, 8, 166.	1.4	6
762	Spore-autonomous fluorescent protein expression identifies meiotic chromosome mis-segregation as the principal cause of hybrid sterility in yeast. PLoS Biology, 2018, 16, e2005066.	2.6	41
763	The optimal mating distance resulting from heterosis and genetic incompatibility. Science Advances, 2018, 4, eaau5518.	4.7	30
764	A resource of variant effect predictions of single nucleotide variants in model organisms. Molecular Systems Biology, 2018, 14, e8430.	3.2	84
765	Incompatibilities in Mismatch Repair Genes <i>MLH1-PMS1</i> Contribute to a Wide Range of Mutation Rates in Human Isolates of Baker's Yeast. Genetics, 2018, 210, 1253-1266.	1.2	17
766	Genome-Wide Screen for <i>Saccharomyces cerevisiae</i> Genes Contributing to Opportunistic Pathogenicity in an Invertebrate Model Host. G3: Genes, Genomes, Genetics, 2018, 8, 63-78.	0.8	11
767	Genetic dissection of interspecific differences in yeast thermotolerance. Nature Genetics, 2018, 50, 1501-1504.	9.4	43
768	Role of <i>Cis</i> , <i>Trans</i> , and Inbreeding Effects on Meiotic Recombination in <i>Saccharomyces cerevisiae</i> . Genetics, 2018, 210, 1213-1226.	1.2	4
769	The Genome of the Human Pathogen <i>Candida albicans</i> Is Shaped by Mutation and Cryptic Sexual Recombination. MBio, 2018, 9, .	1.8	63

#	Article	IF	CITATIONS
770	Evolution of drug resistance in an antifungal-naive chronic <i>Candida lusitaniae</i> infection. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12040-12045.	3.3	52
771	Mating in wild yeast: delayed interest in sex after spore germination. Molecular Biology of the Cell, 2018, 29, 3119-3127.	0.9	19
772	Saccharomyces paradoxus K66 Killer System Evidences Expanded Assortment of Helper and Satellite Viruses. Viruses, 2018, 10, 564.	1.5	19
773	Translational geroscience: From invertebrate models to companion animal and human interventions. Translational Medicine of Aging, 2018, 2, 15-29.	0.6	20
774	The Benefits of Saccharomyces boulardii. , 2018, , .		0
775	Tracing the <i>De Novo</i> Origin of Protein-Coding Genes in Yeast. MBio, 2018, 9, .	1.8	19
776	Control of yeast retrotransposons mediated through nucleoporin evolution. PLoS Genetics, 2018, 14, e1007325.	1.5	12
777	First genomeâ€wide analysis of the endangered, endemic lichen <i>Cetradonia linearis</i> reveals isolation by distance and strong population structure. American Journal of Botany, 2018, 105, 1556-1567.	0.8	27
778	sppIDer: A Species Identification Tool to Investigate Hybrid Genomes with High-Throughput Sequencing. Molecular Biology and Evolution, 2018, 35, 2835-2849.	3.5	74
779	Heterozygous diploid and interspecies SCRaMbLEing. Nature Communications, 2018, 9, 1934.	5.8	82
780	Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks. Nature Communications, 2018, 9, 1995.	5.8	28
781	An incoherent feedforward loop facilitates adaptive tuning of gene expression. ELife, 2018, 7, .	2.8	21
782	Biofilm formation and toxin production provide a fitness advantage in mixed colonies of environmental yeast isolates. Ecology and Evolution, 2018, 8, 5541-5550.	0.8	22
783	Linkage mapping of yeast cross protection connects gene expression variation to a higher-order organismal trait. PLoS Genetics, 2018, 14, e1007335.	1.5	11
784	Natural Variation in the Multidrug Efflux Pump <i>SGE1</i> Underlies Ionic Liquid Tolerance in Yeast. Genetics, 2018, 210, 219-234.	1.2	30
785	Horizontal transfer and proliferation of Tsu4 in Saccharomyces paradoxus. Mobile DNA, 2018, 9, 18.	1.3	18
786	Bakery yeasts, a new model for studies in ecology and evolution. Yeast, 2018, 35, 591-603.	0.8	69
787	Ploidy Variation in Kluyveromyces marxianus Separates Dairy and Non-dairy Isolates. Frontiers in Genetics, 2018, 9, 94.	1.1	71

#	Article	IF	CITATIONS
788	Copy Number Variation in Fungi and Its Implications for Wine Yeast Genetic Diversity and Adaptation. Frontiers in Microbiology, 2018, 9, 288.	1.5	63
789	Improvement of the Uranium Sequestration Ability of a Chlamydomonas sp. (ChISP Strain) Isolated From Extreme Uranium Mine Tailings Through Selection for Potential Bioremediation Application. Frontiers in Microbiology, 2018, 9, 523.	1.5	13
790	Characterizing meiotic chromosomes' structure and pairing using a designer sequence optimized for Hi . Molecular Systems Biology, 2018, 14, e8293.	3.2	63
791	The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nature Communications, 2018, 9, 2690.	5.8	176
792	Genome wide analysis of meiotic recombination in yeast: For a few SNPs more. IUBMB Life, 2018, 70, 743-752.	1.5	11
793	Natural variation of chronological aging in the Saccharomyces cerevisiae species reveals diet-dependent mechanisms of life span control. Npj Aging and Mechanisms of Disease, 2018, 4, 3.	4.5	23
794	PHENOS: a high-throughput and flexible tool for microorganism growth phenotyping on solid media. BMC Microbiology, 2018, 18, 9.	1.3	17
795	Adaptation of S. cerevisiae to Fermented Food Environments Reveals Remarkable Genome Plasticity and the Footprints of Domestication. Molecular Biology and Evolution, 2018, 35, 1712-1727.	3.5	214
796	Multiple Rounds of Artificial Selection Promote Microbe Secondary Domestication—The Case of Cachaça Yeasts. Genome Biology and Evolution, 2018, 10, 1939-1955.	1.1	50
797	Whole Genome Sequencing, <i>de Novo</i> Assembly and Phenotypic Profiling for the New Budding Yeast Species <i>Saccharomyces jurei</i> . G3: Genes, Genomes, Genetics, 2018, 8, 2967-2977.	0.8	46
798	Wine yeast phenomics: A standardized fermentation method for assessing quantitative traits of Saccharomyces cerevisiae strains in enological conditions. PLoS ONE, 2018, 13, e0190094.	1.1	43
799	Genome-wide association across Saccharomyces cerevisiae strains reveals substantial variation in underlying gene requirements for toxin tolerance. PLoS Genetics, 2018, 14, e1007217.	1.5	48
800	MAL73, a novel regulator of maltose fermentation, is functionally impaired by single nucleotide polymorphism in sake brewing yeast. PLoS ONE, 2018, 13, e0198744.	1.1	9
801	Do yeasts and Drosophila interact just by chance?. Fungal Ecology, 2019, 38, 37-43.	0.7	23
802	Indirect monitoring of TORC1 signalling pathway reveals molecular diversity among different yeast strains. Yeast, 2019, 36, 65-74.	0.8	71
803	Mitochondrialâ€encoded endonucleases drive recombination of proteinâ€coding genes in yeast. Environmental Microbiology, 2019, 21, 4233-4240.	1.8	24
804	Genetic variants of TORC1 signaling pathway affect nitrogen consumption in Saccharomyces cerevisiae during alcoholic fermentation. PLoS ONE, 2019, 14, e0220515.	1.1	55
805	Distinct Transcriptional Changes in Response to Patulin Underlie Toxin Biosorption Differences in Saccharomyces cerevisiae. Toxins, 2019, 11, 400.	1.5	8

#	Article	IF	CITATIONS
806	Variation in Filamentous Growth and Response to Quorum-Sensing Compounds in Environmental Isolates of <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2019, 9, 1533-1544.	0.8	18
807	KAE1 Allelic Variants Affect TORC1 Activation and Fermentation Kinetics in Saccharomyces cerevisiae. Frontiers in Microbiology, 2019, 10, 1686.	1.5	49
808	The many types of heterogeneity in replicative senescence. Yeast, 2019, 36, 637-648.	0.8	16
809	QTL analysis of natural <i>Saccharomyces cerevisiae</i> isolates reveals unique alleles involved in lignocellulosic inhibitor tolerance. FEMS Yeast Research, 2019, 19, .	1.1	10
810	Are <i>Drosophila</i> preferences for yeasts stable or contextual?. Ecology and Evolution, 2019, 9, 8075-8086.	0.8	13
811	Quantifying the efficiency and biases of forest <scp><i>Saccharomyces</i></scp> sampling strategies. Yeast, 2019, 36, 657-668.	0.8	9
812	Patterns of population structure and complex haplotype sharing among field isolates of the green algaChlamydomonas reinhardtii. Molecular Ecology, 2019, 28, 3977-3993.	2.0	23
813	Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Frontiers in Genetics, 2019, 10, 683.	1.1	33
814	Saccharomyces cerevisiae Induces Immune Enhancing and Shapes Gut Microbiota in Social Wasps. Frontiers in Microbiology, 2019, 10, 2320.	1.5	22
815	Yeast Strain Optimization for Enological Applications. , 0, , .		2
816	Genetic interaction networks mediate individual statin drug response in Saccharomyces cerevisiae. Npj Systems Biology and Applications, 2019, 5, 35.	1.4	11
817	Dissecting the Effects of Selection and Mutation on Genetic Diversity in Three Wood White (Leptidea) Butterfly Species. Genome Biology and Evolution, 2019, 11, 2875-2886.	1.1	18
818	A Handsâ€On Guide to Brewing and Analyzing Beer in the Laboratory. Current Protocols in Microbiology, 2019, 54, e91.	6.5	20
819	History, lineage and phenotypic differentiation of sake yeast. Bioscience, Biotechnology and Biochemistry, 2019, 83, 1442-1448.	0.6	24
820	Novel Approach in the Construction of Bioethanol-Producing <i>Saccharomyces cerevisiae</i> Hybrids. Food Technology and Biotechnology, 2019, 57, 5-16.	0.9	8
821	Accurate Tracking of the Mutational Landscape of Diploid Hybrid Genomes. Molecular Biology and Evolution, 2019, 36, 2861-2877.	3.5	41
822	Adaptation by Loss of Heterozygosity in <i>Saccharomyces cerevisiae</i> Clones Under Divergent Selection. Genetics, 2019, 213, 665-683.	1.2	38
823	Multicellular group formation in <i>Saccharomyces cerevisiae</i> . Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191098.	1.2	16

#	Article	IF	CITATIONS
824	Baker's Yeast Clinical Isolates Provide a Model for How Pathogenic Yeasts Adapt to Stress. Trends in Genetics, 2019, 35, 804-817.	2.9	13
825	Dominance of wine <i>Saccharomyces cerevisiae</i> strains over <i>S. kudriavzevii</i> in industrial fermentation competitions is related to an acceleration of nutrient uptake and utilization. Environmental Microbiology, 2019, 21, 1627-1644.	1.8	50
826	Linking genetic, metabolic, and phenotypic diversity among <i>Saccharomyces cerevisiae</i> strains using multi-omics associations. GigaScience, 2019, 8, .	3.3	25
827	Exploiting heterozygosity in industrial yeasts to create new and improved baker's yeasts. Yeast, 2019, 36, 571-587.	0.8	3
828	Aneuploidy in yeast: Segregation error or adaptation mechanism?. Yeast, 2019, 36, 525-539.	0.8	78
829	Adaptive Evolution Patterns in the Pacific Oyster Crassostrea gigas. Marine Biotechnology, 2019, 21, 614-622.	1.1	8
830	Isolation and Characterization of Live Yeast Cells from Ancient Vessels as a Tool in Bio-Archaeology. MBio, 2019, 10, .	1.8	27
831	Current insights into fungal species diversity and perspective on naming the environmental DNA sequences of fungi. Mycology, 2019, 10, 127-140.	2.0	186
832	Domestication of Industrial Microbes. Current Biology, 2019, 29, R381-R393.	1.8	113
833	Molecular Origins of Complex Heritability in Natural Genotype-to-Phenotype Relationships. Cell Systems, 2019, 8, 363-379.e3.	2.9	26
834	Exploring the tolerance of marine yeast to inhibitory compounds for improving bioethanol production. Sustainable Energy and Fuels, 2019, 3, 1545-1553.	2.5	25
835	Pervasive function and evidence for selection across standing genetic variation in S. cerevisiae. Nature Communications, 2019, 10, 1222.	5.8	10
836	A polyploid admixed origin of beer yeasts derived from European and Asian wine populations. PLoS Biology, 2019, 17, e3000147.	2.6	58
837	Genetic diversity and population structure of Saccharomyces cerevisiae strains isolated from traditional alcoholic beverages of Côte d'Ivoire. International Journal of Food Microbiology, 2019, 297, 1-10.	2.1	8
838	Mechanisms of Yeast Adaptation to Wine Fermentations. Progress in Molecular and Subcellular Biology, 2019, 58, 37-59.	0.9	15
839	Loss of heterozygosity by SCRaMbLEing. Science China Life Sciences, 2019, 62, 381-393.	2.3	25
840	Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae. Frontiers in Genetics, 2019, 10, 82.	1.1	71
841	A new chromosomal rearrangement improves the adaptation of wine yeasts to sulfite. Environmental Microbiology, 2019, 21, 1771-1781.	1.8	51

ARTICLE IF CITATIONS # Vitis species, vintage, and alcoholic fermentation do not drive population structure in Starmerella 842 0.8 6 bacillaris (synonym Candida zemplinina) species. Yeast, 2019, 36, 411-420. iSeq 2.0: A Modular and Interchangeable Toolkit for Interaction Screening in Yeast. Cell Systems, 2019, 843 8, 338-344.e8. Comparative Genomics Between Saccharomyces kudriavzevii and S. cerevisiae Applied to Identify 844 1.1 27 Mechanisms Involved in Adaptation. Frontiers in Genetics, 2019, 10, 187. A collection of barcoded natural isolates of <i>Saccharomyces paradoxus</i> to study microbial 845 1.2 evolutionary ecology. MicrobiologyOpen, 2019, 8, e773. Complex modifier landscape underlying genetic background effects. Proceedings of the National 846 3.3 41 Academy of Sciences of the United States of America, 2019, 116, 5045-5054. Correlating Genotype and Phenotype in the Asexual Yeast Candida orthopsilosis Implicates ZCF29 in 847 0.8 Sensitivity to Caffeine. G3: Genes, Genomes, Genetics, 2019, 9, 3035-3043. Variation at an adhesin locus suggests sociality in natural populations of the yeast <i>Saccharomyces 848 1.2 13 cerevisiae</i>. Proceedings of the Royal Society B: Biological Sciences, 2019, 286, 20191948. DNA variants affecting the expression of numerous genes in trans have diverse mechanisms of action 849 1.5 34 and evolutionary histories. PLoS Genetics, 2019, 15, e1008375. 850 Chromatin-Mediated Regulation of Genome Plasticity in Human Fungal Pathogens. Genes, 2019, 10, 855. 1.0 24 Mapping Ethanol Tolerance in Budding Yeast Reveals High Genetic Variation in a Wild Isolate. 1.1 Frontiers in Genetics, 2019, 10, 998. Fermentation innovation through complex hybridization of wild and domesticated yeasts. Nature 852 3.4 76 Ecology and Evolution, 2019, 3, 1576-1586. Takashi Nakase's last tweet: what is the current direction of microbial taxonomy research?. FEMS 1.1 Yeast Research, 2019, 19, . Novel antimicrobial peptides produced by Candida intermedia LAMAP1790 active against the 854 0.7 15 wine-spoilage yeast Brettanomyces bruxellensis. Antonie Van Leeuwenhoek, 2019, 112, 297-304. Genomeâ€based estimates of fungal rDNA copy number variation across phylogenetic scales and ecological lifestyles. Molecular Ecology, 2019, 28, 721-730. 163 Fermentative behaviour and competition capacity of cryotolerant Saccharomyces species in different 856 32 2.1 nitrogen conditions. International Journal of Food Micróbiology, 2019, 291, 111-120. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nature Reviews Microbiology, 2019, 17, 95-109. 580 859 André Goffeau's imprinting on second generation yeast "genomologists― Yeast, 2019, 36, 167-175. 0.8 1 Whole-Genome Duplication and Yeast's Fruitful Way of Life. Trends in Genetics, 2019, 35, 42-54.

#	Article	IF	CITATIONS
861	Highâ€ŧhroughput identification and diagnostics of pathogens and pests: Overview and practical recommendations. Molecular Ecology Resources, 2019, 19, 47-76.	2.2	91
862	Evolution of the Yeast Recombination Landscape. Molecular Biology and Evolution, 2019, 36, 412-422.	3.5	24
863	Targeted metagenomics approach to capture the biodiversity of <i>Saccharomyces</i> genus in wild environmental Microbiology Reports, 2019, 11, 206-214.	1.0	25
864	Population genomics reveals evolution and variation of <scp><i>Saccharomyces cerevisiae</i></scp> in the human and insects gut. Environmental Microbiology, 2019, 21, 50-71.	1.8	30
865	The therapeutic and nutraceutical potential of agmatine, and its enhanced production using Aspergillus oryzae. Amino Acids, 2020, 52, 181-197.	1.2	34
866	Recombining Your Way Out of Trouble: The Genetic Architecture of Hybrid Fitness under Environmental Stress. Molecular Biology and Evolution, 2020, 37, 167-182.	3.5	26
867	A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom <i>Phaeodactylum tricornutum</i> . ISME Journal, 2020, 14, 347-363.	4.4	50
868	Genetic Variation in Genes Involved in Ethanol Production Among Saccharomyces cerevisiae Strains. Sugar Tech, 2020, 22, 250-258.	0.9	3
869	Small scale fungal community differentiation in a vineyard system. Food Microbiology, 2020, 87, 103358.	2.1	33
870	Footprint of Nonconventional Yeasts and Their Contribution in Alcoholic Fermentations. , 2020, , 435-465.		5
871	The life and times of yeasts in traditional food fermentations. Critical Reviews in Food Science and Nutrition, 2020, 60, 3103-3132.	5.4	46
872	Disentangling the genetic bases of Saccharomyces cerevisiae nitrogen consumption and adaptation to low nitrogen environments in wine fermentation. Biological Research, 2020, 53, 2.	1.5	63
873	SWAV: a web-based visualization browser for sliding window analysis. Scientific Reports, 2020, 10, 149.	1.6	10
874	Variation of the adaptive substitution rate between species and within genomes. Evolutionary Ecology, 2020, 34, 315-338.	0.5	30
875	Comparison of Phylogenetic Tree Topologies for Nitrogen Associated Genes Partially Reconstruct the Evolutionary History of Saccharomyces cerevisiae. Microorganisms, 2020, 8, 32.	1.6	26
876	Widespread Prion-Based Control of Growth and Differentiation Strategies in Saccharomyces cerevisiae. Molecular Cell, 2020, 77, 266-278.e6.	4.5	38
877	Mitochondrial-nuclear coadaptation revealed through mtDNA replacements in Saccharomyces cerevisiae. BMC Evolutionary Biology, 2020, 20, 128.	3.2	15
878	A Putative Bet-Hedging Strategy Buffers Budding Yeast against Environmental Instability. Current Biology, 2020, 30, 4563-4578.e4.	1.8	46

ARTICLE IF CITATIONS Lifestyle, Lineage, and Geographical Origin Influence Temperature-Dependent Phenotypic Variation 879 4 1.6 across Yeast Strains during Wine Fermentation. Microorganisms, 2020, 8, 1367. Genomic Adaptation of Saccharomyces Species to Industrial Environments. Frontiers in Genetics, 2020, 1.1 11, 916. Decoupling gene functions from knockout effects by evolutionary analyses. National Science Review, 881 2 4.6 2020, 7, 1169-1180. Domestication of the Emblematic White Cheese-Making Fungus Penicillium camemberti and Its 882 1.8 Diversification into Two Varieties. Current Biology, 2020, 30, 4441-4453.e4. Quantifying the effect of human practices on S. cerevisiae vineyard metapopulation diversity. 883 1.6 3 Scientific Reports, 2020, 10, 16214. Consequences of Cryopreservation in Diverse Natural Isolates of Saccharomyces cerevisiae. Genome Biology and Evolution, 2020, 12, 1302-1312. 884 1.1 Population Size, Sex and Purifying Selection: Comparative Genomics of Two Sister Taxa of the Wild 885 1.1 7 Yeast Saccharomyces paradoxus. Genome Biology and Evolution, 2020, 12, 1636-1645. Population Analysis and Evolution of Saccharomyces cerevisiae Mitogenomes. Microorganisms, 2020, 886 1.6 8, 1001. Variations in ribosomal DNA copy numbers in a genome of Trichophyton interdigitale. Mycoses, 2020, 887 2 1.8 63, 1133-1140. Applications of Wild Isolates of Saccharomyces Yeast for Industrial Fermentation: The Gut of Social 1.5 Insects as Niche for Yeast Hybrids' Production. Frontiers in Microbiology, 2020, 11, 578425. History and Domestication of Saccharomyces cerevisiae in Bread Baking. Frontiers in Genetics, 2020, 11, 889 1.1 46 584718. Genome Organization of a New Double-Stranded RNA LA Helper Virus From Wine Torulaspora delbrueckii Killer Yeast as Compared With Its Saccharomyces Counterparts. Frontiers in Microbiology, 2020, 11, 593846. 890 1.5 Wild Yeast for the Future: Exploring the Use of Wild Strains for Wine and Beer Fermentation. 891 1.1 23 Frontiers in Genetics, 2020, 11, 589350. A yeast living ancestor reveals the origin of genomic introgressions. Nature, 2020, 587, 420-425. 892 13.7 Defining and Disrupting Species Boundaries in<i>Saccharomyces</i>. Annual Review of Microbiology, 893 2.9 20 2020, 74, 477-495. Convolutional neural networks improve fungal classification. Scientific Reports, 2020, 10, 12628. 894 Yeast Communities of Vineyards in Dagestan: Ecological, Taxonomic, and Genetic Characteristics. 895 0.1 3 Biology Bulletin, 2020, 47, 344-351. Comparing Genomic Signatures of Selection Between the Abbassa Strain and Eight Wild Populations 896 1.1

of Nile Tilapia (Oreochromis niloticus) in Egypt. Frontiers in Genetics, 2020, 11, 567969.

CITATION REPORT

#

#	Article	IF	CITATIONS
897	Extent and context dependence of pleiotropy revealed by high-throughput single-cell phenotyping. PLoS Biology, 2020, 18, e3000836.	2.6	27
898	Novel Non-Cerevisiae Saccharomyces Yeast Species Used in Beer and Alcoholic Beverage Fermentations. Fermentation, 2020, 6, 116.	1.4	12
899	Heat Shock Improves Random Spore Analysis in Diverse Strains of Saccharomyces cerevisiae. Frontiers in Genetics, 2020, 11, 597482.	1.1	4
900	Next Generation Winemakers: Genetic Engineering in Saccharomyces cerevisiae for Trendy Challenges. Bioengineering, 2020, 7, 128.	1.6	8
901	Dominance of S. cerevisiae Commercial Starter Strains during Greco di Tufo and Aglianico Wine Fermentations and Evaluation of Oenological Performances of Some Indigenous/Residential Strains. Foods, 2020, 9, 1549.	1.9	8
902	An Out-of-Patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages. PLoS Genetics, 2020, 16, e1008777.	1.5	34
903	Discordant evolution of mitochondrial and nuclear yeast genomes at population level. BMC Biology, 2020, 18, 49.	1.7	42
904	The impact of CUP1 gene copy-number and XVI-VIII/XV-XVI translocations on copper and sulfite tolerance in vineyard Saccharomyces cerevisiae strain populations. FEMS Yeast Research, 2020, 20, .	1.1	13
905	Differential Gene Expression and Allele Frequency Changes Favour Adaptation of a Heterogeneous Yeast Population to Nitrogen-Limited Fermentations. Frontiers in Microbiology, 2020, 11, 1204.	1.5	3
906	Patterns of Genetic Diversity and the Invasion of Commercial Starters in Saccharomyces cerevisiae Vineyard Populations of Santorini Island. Foods, 2020, 9, 561.	1.9	8
907	Integrative Omics Analysis Reveals a Limited Transcriptional Shock After Yeast Interspecies Hybridization. Frontiers in Genetics, 2020, 11, 404.	1.1	22
908	Centromere scission drives chromosome shuffling and reproductive isolation. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7917-7928.	3.3	47
909	An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Research, 2020, 20, .	1.1	35
910	A re-evaluation of diastatic Saccharomyces cerevisiae strains and their role in brewing. Applied Microbiology and Biotechnology, 2020, 104, 3745-3756.	1.7	27
911	Saccharomyces arboricola and Its Hybrids' Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile. Fermentation, 2020, 6, 14.	1.4	7
912	Population structure and adaptation of a bacterial pathogen in California grapevines. Environmental Microbiology, 2020, 22, 2625-2638.	1.8	26
913	Cloning of the SPO11 gene that complements a meiotic recombination defect in sake yeast. Journal of Bioscience and Bioengineering, 2020, 130, 367-373.	1.1	4
914	Revisiting the Taxonomic Synonyms and Populations of Saccharomyces cerevisiae—Phylogeny, Phenotypes, Ecology and Domestication. Microorganisms, 2020, 8, 903.	1.6	34

#	Article	IF	CITATIONS
915	Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Research, 2020, 20, .	1.1	29
916	Evolution of Ty1 copy number control in yeast by horizontal transfer and recombination. PLoS Genetics, 2020, 16, e1008632.	1.5	30
917	Comparative immunophenotyping of Saccharomyces cerevisiae and Candida spp. strains from Crohn's disease patients and their interactions with the gut microbiome. Journal of Translational Autoimmunity, 2020, 3, 100036.	2.0	24
918	QTL mapping of modelled metabolic fluxes reveals gene variants impacting yeast central carbon metabolism. Scientific Reports, 2020, 10, 2162.	1.6	7
919	De novo emergence of adaptive membrane proteins from thymine-rich genomic sequences. Nature Communications, 2020, 11, 781.	5.8	84
920	The Yeast Atlas of Appalachia: Species and Phenotypic Diversity of Herbicide Resistance in Wild Yeast. Diversity, 2020, 12, 139.	0.7	5
921	Intragenic repeat expansion in the cell wall protein gene <i>HPF1</i> controls yeast chronological aging. Genome Research, 2020, 30, 697-710.	2.4	23
922	The Pangenome. , 2020, , .		32
923	Transcriptional Activity and Protein Levels of Horizontally Acquired Genes in Yeast Reveal Hallmarks of Adaptation to Fermentative Environments. Frontiers in Genetics, 2020, 11, 293.	1.1	16
924	Unlocking the intraspecific aquaculture potential from the wild biodiversity to facilitate aquaculture development. Reviews in Aquaculture, 2020, 12, 2212-2227.	4.6	11
925	Pan-genomics of fungi and its applications. , 2020, , 251-260.		1
926	Exploiting strain diversity and rational engineering strategies to enhance recombinant cellulase secretion by Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2020, 104, 5163-5184.	1.7	15
927	Diverse transposable element landscapes in pathogenic and nonpathogenic yeast models: the value of a comparative perspective. Mobile DNA, 2020, 11, 16.	1.3	17
928	Using genome resequencing to investigate racial structure, genetic diversity, sexual reproduction and hybridisation in the pine pathogen Dothistroma septosporum. Fungal Ecology, 2020, 45, 100921.	0.7	7
929	Divergence of Peroxisome Membrane Gene Sequence and Expression Between Yeast Species. G3: Genes, Genomes, Genetics, 2020, 10, 2079-2085.	0.8	3
930	Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PLoS Genetics, 2020, 16, e1008680.	1.5	31
931	Adaptation to Industrial Stressors Through Genomic and Transcriptional Plasticity in a Bioethanol Producing Fission Yeast Isolate. G3: Genes, Genomes, Genetics, 2020, 10, 1375-1391.	0.8	1
932	The budding yeast life cycle: More complex than anticipated?. Yeast, 2021, 38, 5-11.	0.8	18

	Сіта	TION REPORT	
#	Article	IF	CITATIONS
933	Diversity and dynamics of fungi during spontaneous fermentations and association with unique aroma profiles in wine. International Journal of Food Microbiology, 2021, 338, 108983.	2.1	46
934	Evidence for Two Main Domestication Trajectories in Saccharomyces cerevisiae Linked to Distinct Bread-Making Processes. Current Biology, 2021, 31, 722-732.e5.	1.8	43
935	Microbiomics to Define Wine Terroir. , 2021, , 438-451.		8
936	Phylogenetic diversity of two geographically overlapping lichens: isolation by distance, environment, or fragmentation?. Journal of Biogeography, 2021, 48, 676-689.	1.4	11
937	Fungal Polysaccharides. , 2021, , 96-130.		0
940	Valorization of apple and grape wastes with malic acid-degrading yeasts. Folia Microbiologica, 2021, 66, 341-354.	1.1	5
942	Genomic Evidence of an Ancient East Asian Divergence Event in Wild <i>Saccharomyces cerevisiae</i> . Genome Biology and Evolution, 2021, 13, .	1.1	21
944	Adaptive Gene Content and Allele Distribution Variations in the Wild and Domesticated Populations of Saccharomyces cerevisiae. Frontiers in Microbiology, 2021, 12, 631250.	1.5	14
945	Transposable Element Mobilization in Interspecific Yeast Hybrids. Genome Biology and Evolution, 2021, 13, .	1.1	26
946	Enrichment of <i>Brettanomyces</i> and Other Non- <i>Saccharomyces</i> Fermentative Yeasts from Vineyard Samples in Oregon. American Journal of Enology and Viticulture, 0, , ajev.2021.20071.	0.9	0
947	Improving multiple stress-tolerance of a flocculating industrial Saccharomyces cerevisiae strain by random mutagenesis and hybridization. Process Biochemistry, 2021, 102, 275-285.	1.8	16
949	Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLoS Pathogens, 2021, 17, e1009138.	2.1	36
951	Forest <i>Saccharomyces paradoxus</i> are robust to seasonal biotic and abiotic changes. Ecology and Evolution, 2021, 11, 6604-6619.	0.8	4
952	Moving beyond disease to function: Physiological roles for polyglutamine-rich sequences in cell decisions. Current Opinion in Cell Biology, 2021, 69, 120-126.	2.6	7
953	Metabolic differences between a wild and a wine strain of <scp><i>Saccharomyces cerevisiae</i></scp> during fermentation unveiled by multiâ€omic analysis. Environmental Microbiology 2021, 23, 3059-3076.	⁷ , 1.8	7
954	Prioritizing Wild Yeast Strains for Macroalgal Bioethanol Production. Bioenergy Research, 0, , $1.$	2.2	0
955	Global distribution of <scp><i>IRC7</i></scp> alleles in <scp><i>Saccharomyces cerevisiae</i></scp> populations: a genomic and phenotypic survey within the wine clade. Environmental Microbiology, 2021, 23, 3182-3195.	1.8	8
956	Scent of a killer: How could killer yeast boost its dispersal?. Ecology and Evolution, 2021, 11, 5809-5814	ł. 0.8	4

#	Article	IF	CITATIONS
959	Lipid Composition Analysis Reveals Mechanisms of Ethanol Tolerance in the Model Yeast <i>Saccharomyces cerevisiae</i> . Applied and Environmental Microbiology, 2021, 87, e0044021.	1.4	16
960	Natural variants suppress mutations in hundreds of essential genes. Molecular Systems Biology, 2021, 17, e10138.	3.2	13
961	Natural Polymorphism of Pectinase PGU Genes in the Saccharomyces Yeasts. Microbiology, 2021, 90, 349-360.	0.5	2
962	Presence of Saccharomyces cerevisiae subsp. diastaticus in industry and nature and spoilage capacity of its vegetative cells and ascospores. International Journal of Food Microbiology, 2021, 347, 109173.	2.1	6
964	Evaluation of repair activity by quantification of ribonucleotides in the genome. Genes To Cells, 2021, 26, 555-569.	0.5	5
965	The evolving species concepts used for yeasts: from phenotypes and genomes to speciation networks. Fungal Diversity, 2021, 109, 27-55.	4.7	37
966	Testing the adaptive value of sporulation in budding yeast using experimental evolution. Evolution; International Journal of Organic Evolution, 2021, 75, 1889-1897.	1.1	4
970	Large-scale sequencing and comparative analysis of oenological Saccharomyces cerevisiae strains supported by nanopore refinement of key genomes. Food Microbiology, 2021, 97, 103753.	2.1	10
971	Biosorption of Copper in Swine Manure Using Aspergillus and Yeast: Characterization and Its Microbial Diversity Study. Frontiers in Microbiology, 2021, 12, 687533.	1.5	2
972	Can root-associated fungi mediate the impact of abiotic conditions on the growth of a High Arctic herb?. Soil Biology and Biochemistry, 2021, 159, 108284.	4.2	0
973	Variation in the modality of a yeast signaling pathway is mediated by a single regulator. ELife, 2021, 10, .	2.8	7
975	Potential Valorization of Organic Waste Streams to Valuable Organic Acids through Microbial Conversion: A South African Case Study. Catalysts, 2021, 11, 964.	1.6	11
976	Natural variation in the consequences of gene overexpression and its implications for evolutionary trajectories. ELife, 2021, 10, .	2.8	21
977	Identification of new ethanolâ€ŧolerant yeast strains with fermentation potential from central Patagonia. Yeast, 2022, 39, 128-140.	0.8	12
979	Restoring fertility in yeast hybrids: Breeding and quantitative genetics of beneficial traits. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	21
980	Hybridization Outcomes Have Strong Genomic and Environmental Contingencies. American Naturalist, 2021, 198, E53-E67.	1.0	7
981	Joint effects of genes underlying a temperature specialization tradeoff in yeast. PLoS Genetics, 2021, 17, e1009793.	1.5	10
982	A modified fluctuation assay reveals a natural mutator phenotype that drives mutation spectrum variation within Saccharomyces cerevisiae. ELife, 2021, 10, .	2.8	28

		CITATION REPORT		
#	Article		IF	Citations
983	Delimiting species in Basidiomycota: a review. Fungal Diversity, 2021, 109, 181-237.		4.7	18
984	Application of MALDI-TOF analysis to reveal diversity and dynamics of winemaking yea wild-fermented, organically produced, New Zealand Pinot Noir wine. Food Microbiolog 103824.		2.1	10
986	Separate and combined Hanseniaspora uvarum and Metschnikowia pulcherrima metab attractive to Drosophila suzukii in the laboratory and field. Scientific Reports, 2021, 11	polic volatiles are I, 1201.	1.6	14
988	On the Mapping of Epistatic Genetic Interactions in Natural Isolates: Combining Classi Genomics. Methods in Molecular Biology, 2016, 1361, 345-360.	cal Genetics and	0.4	1
989	Gene Expression in Yeasts During Wine Fermentation. , 2019, , 165-209.			4
990	Finding Modulators of Stochasticity Levels by Quantitative Genetics. Methods in Mole 2011, 734, 223-240.	cular Biology,	0.4	2
991	Eukaryotic Pangenomes. , 2020, , 253-291.			5
993	Subnuclear Architecture of Telomeres and Subtelomeres in Yeast. , 2014, , 13-37.			3
994	Subtelomeric Regions Promote Evolutionary Innovation of Gene Families in Yeast. , 20	14, , 39-70.		5
995	Mechanism of High Alcoholic Fermentation Ability of Sake Yeast. , 2015, , 59-75.			2
996	Revisiting Mortimer's Genome Renewal Hypothesis: Heterozygosity, Homothallism for Adaptation in Yeast. Advances in Experimental Medicine and Biology, 2014, 781, 3		0.8	33
997	Ecological Genomics of Adaptation and Speciation in Fungi. Advances in Experimental Biology, 2014, 781, 49-72.	Medicine and	0.8	8
998	Saccharomyces jurei sp. nov., isolation and genetic identification of a novel yeast spec Quercus robur. International Journal of Systematic and Evolutionary Microbiology, 201 2046-2052.		0.8	69
999	Pan-genome analyses of model fungal species. Microbial Genomics, 2019, 5, .		1.0	59
1000	Genome structure reveals the diversity of mating mechanisms in Saccharomyces cerev Saccharomyces kudriavzevii hybrids, and the genomic instability that promotes pheno Microbial Genomics, 2020, 6, .		1.0	22
1001	A sulphite-inducible form of the sulphite efflux gene SSU1 in a Saccharomyces cerevisi Microbiology (United Kingdom), 2010, 156, 1686-1696.	ae wine yeast.	0.7	74
1022	Historical Evolution of Laboratory Strains of <i>Saccharomyces cerevisiae</i> . Cold Sp Protocols, 2016, 2016, pdb.top077750.	ring Harbor	0.2	7
1023	Systematic Phenotyping of Plant Development in Arabidopsis thaliana. , 2016, , 121-1	51.		6

#	Article	IF	CITATIONS
1024	A Tradeoff Drives the Evolution of Reduced Metal Resistance in Natural Populations of Yeast. PLoS Genetics, 2011, 7, e1002034.	1.5	27
1025	Trait Variation in Yeast Is Defined by Population History. PLoS Genetics, 2011, 7, e1002111.	1.5	311
1026	Transcriptional Derepression Uncovers Cryptic Higher-Order Genetic Interactions. PLoS Genetics, 2015, 11, e1005606.	1.5	34
1027	Adaptive Protein Evolution in Animals and the Effective Population Size Hypothesis. PLoS Genetics, 2016, 12, e1005774.	1.5	176
1028	Extensive Recombination of a Yeast Diploid Hybrid through Meiotic Reversion. PLoS Genetics, 2016, 12, e1005781.	1.5	60
1029	What Is Speciation?. PLoS Genetics, 2016, 12, e1005860.	1.5	115
1030	Gene-Environment Interactions in Stress Response Contribute Additively to a Genotype-Environment Interaction. PLoS Genetics, 2016, 12, e1006158.	1.5	19
1031	Power provides protection: Genetic robustness in yeast depends on the capacity to generate energy. PLoS Genetics, 2017, 13, e1006768.	1.5	2
1032	Insertion of Horizontally Transferred Genes within Conserved Syntenic Regions of Yeast Genomes. PLoS ONE, 2009, 4, e6515.	1.1	57
1033	Impact of Chromatin Structures on DNA Processing for Genomic Analyses. PLoS ONE, 2009, 4, e6700.	1.1	115
1034	Temperature-Dependent Modulation of Chromosome Segregation in msh4 Mutants of Budding Yeast. PLoS ONE, 2009, 4, e7284.	1.1	17
1035	Yeast Sex: Surprisingly High Rates of Outcrossing between Asci. PLoS ONE, 2010, 5, e10461.	1.1	36
1036	Genetic Diversity and Population Structure of Saccharomyces cerevisiae Strains Isolated from Different Grape Varieties and Winemaking Regions. PLoS ONE, 2012, 7, e32507.	1.1	81
1037	Genome-Wide Characterization of Genetic Variation in the Unicellular, Green Alga Chlamydomonas reinhardtii. PLoS ONE, 2012, 7, e41307.	1.1	21
1038	The Genetic Basis of Natural Variation in Oenological Traits in Saccharomyces cerevisiae. PLoS ONE, 2012, 7, e49640.	1.1	107
1039	A Genome-Wide Association Study Identifies Genomic Regions for Virulence in the Non-Model Organism Heterobasidion annosum s.s. PLoS ONE, 2013, 8, e53525.	1.1	86
1040	Sporulation Genes Associated with Sporulation Efficiency in Natural Isolates of Yeast. PLoS ONE, 2013, 8, e69765.	1.1	20
1041	The Mitochondrial Genome Impacts Respiration but Not Fermentation in Interspecific Saccharomyces Hybrids. PLoS ONE, 2013, 8, e75121.	1.1	40

	CITAT	TION REPORT	
#	Article	IF	CITATIONS
1042	Intra-Genomic Variation in the Ribosomal Repeats of Nematodes. PLoS ONE, 2013, 8, e78230.	1.1	84
1043	Engineering and Two-Stage Evolution of a Lignocellulosic Hydrolysate-Tolerant Saccharomyces cerevisiae Strain for Anaerobic Fermentation of Xylose from AFEX Pretreated Corn Stover. PLoS ONE, 2014, 9, e107499.	1.1	91
1044	ATG18 and FAB1 Are Involved in Dehydration Stress Tolerance in Saccharomyces cerevisiae. PLoS ONE, 2015, 10, e0119606.	1.1	12
1045	Protocols and Programs for High-Throughput Growth and Aging Phenotyping in Yeast. PLoS ONE, 2015, 10, e0119807.	1.1	57
1046	How Did Host Domestication Modify Life History Traits of Its Pathogens?. PLoS ONE, 2015, 10, e012290	9. 1.1	6
1047	Hybridization within Saccharomyces Genus Results in Homoeostasis and Phenotypic Novelty in Winemaking Conditions. PLoS ONE, 2015, 10, e0123834.	1.1	31
1048	Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations. PLoS ONE, 2015, 10, e0133889.	1.1	20
1049	Genome Sequencing and Comparative Analysis of Saccharomyces cerevisiae Strains of the Peterhof Genetic Collection. PLoS ONE, 2016, 11, e0154722.	1.1	27
1050	The Modular Adaptive Ribosome. PLoS ONE, 2016, 11, e0166021.	1.1	12
1051	Genetic variation in Dip5, an amino acid permease, and Pdr5, a multiple drug transporter, regulates glyphosate resistance in S. cerevisiae. PLoS ONE, 2017, 12, e0187522.	1.1	16
1052	Adaptability of the Saccharomyces cerevisiae yeasts to wine fermentation conditions relies on their strong ability to consume nitrogen. PLoS ONE, 2018, 13, e0192383.	1.1	78
1053	XRN1 Is a Species-Specific Virus Restriction Factor in Yeasts. PLoS Pathogens, 2016, 12, e1005890.	2.1	39
1054	Diversity of GPI-anchored fungal adhesins. Biological Chemistry, 2020, 401, 1389-1405.	1.2	17
1055	Similar environments but diverse fates: Responses of budding yeast to nutrient deprivation. Microbial Cell, 2016, 3, 302-328.	1.4	29
1056	Sulfur dioxide resistance in Saccharomyces cerevisiae: beyond SSU1. Microbial Cell, 2019, 6, 527-530.	1.4	31
1057	Generation of stable, non-aggregating Saccharomyces cerevisiae wild isolates Acta Biochimica Polonica, 2013, 60, .	0.3	3
1058	Characterization of Sub-Regional Variation in Saccharomyces Populations and Grape Phenolic Composition in Pinot Noir Vineyards of a Canadian Wine Region. Frontiers in Genetics, 2020, 11, 908.	1.1	3
1059	Reduction of Sulfur Compounds through Genetic Improvement of Native Saccharomyces cerevisiae Useful for Organic and Sulfite-Free Wine. Foods, 2020, 9, 658.	1.9	9

	Cı	tation Report	
#	Article	IF	Citations
1060	Genomics and metagenomics technologies to recover ribosomal DNA and single-copy genes from old fruit-body and ectomycorrhiza specimens. MycoKeys, 0, 13, 1-20.	0.8	21
1061	Application of Wild Yeast (<i>Saccharomyces cerevisiae</i>) Isolates from Palm Wine and Honey in Baking of Cassava/Wheat Composite Bread. Food and Nutrition Sciences (Print), 2020, 11, 895-911.	0.2	3
1063	Cytoplasmic genetic variation and extensive cytonuclear interactions influence natural variation in the metabolome. ELife, 2013, 2, e00776.	2.8	76
1064	Dosage compensation can buffer copy-number variation in wild yeast. ELife, 2015, 4, .	2.8	116
1065	The dynamic three-dimensional organization of the diploid yeast genome. ELife, 2017, 6, .	2.8	57
1066	Phenotype inference in an Escherichia coli strain panel. ELife, 2017, 6, .	2.8	38
1067	Kin discrimination in social yeast is mediated by cell surface receptors of the Flo11 adhesin family. ELife, 2020, 9, .	2.8	30
1068	Microbial Genetics in Mycology. , 2021, , .		Ο
1069	Patterns of Genomic Instability in Interspecific Yeast Hybrids With Diverse Ancestries. Frontiers in Fungal Biology, 2021, 2, .	0.9	6
1071	"Omics―Technologies and Their Input for the Comprehension of Metabolic Systems Particularly Pertaining to Yeast Organisms. Progress in Botany Fortschritte Der Botanik, 2010, , 105-122.	0.1	Ο
1072	L'évolution et le développement du langage humain chez Homo Symbolicus et Pan Symbolic Labyrinthe, 2012, , 39-79.	us. 0.0	0
1073	Genomics of Subtelomeres: Technical Problems, Solutions and the Future. , 2014, , 259-271.		1
1074	Estrategias de obtención de hÃbridos de levaduras para vinificaciones a bajas temperaturas. , 2014, ,	, .	1
1076	Exploiting Genetic Variation to Discover Genes Involved in Important Disease Phenotypes. Methods ir Molecular Biology, 2015, 1201, 91-107.	0.4	Ο
1078	The Ty1 LTR-Retrotransposon of Budding Yeast,Saccharomyces cerevisiae. , 0, , 925-964.		1
1121	Genetic Variation in a Cellular Adhesin Suggests Self-Discrimination Driven by Ecological Competition in Yeast. SSRN Electronic Journal, 0, , .	0.4	Ο
1132	New Insights Into Wine Yeast Diversities. , 2019, , 117-163.		0
1133	Widespread Prion-Based Control of Growth and Differentiation Strategies in <i>Saccharomyces Cerevisiae</i> . SSRN Electronic Journal, 0, , .	0.4	1

#	Article	IF	Citations
1151	Sugar-Rich Foods Carry Osmotolerant Yeasts with Intracellular <i>Helicobacter Pylori</i> and <i>Staphylococcus</i> spp. Middle East Journal of Digestive Diseases, 2020, 12, 182-193.	0.2	6
1152	Whole-genome sequencing from the New Zealand <i>Saccharomyces cerevisiae</i> population reveals the genomic impacts of novel microbial range expansion. G3: Genes, Genomes, Genetics, 2021, 11, 1-12.	0.8	3
1154	Substrate, temperature, and geographical patterns among nearly 2000 natural yeast isolates. Yeast, 2022, 39, 55-68.	0.8	10
1155	Massive QTL analysis identifies pleiotropic genetic determinants for stress resistance, aroma formation, and ethanol, glycerol and isobutanol production in Saccharomyces cerevisiae. Biotechnology for Biofuels, 2021, 14, 211.	6.2	7
1163	A natural variant of the essential host gene MMS21 restricts the parasitic 2-micron plasmid in Saccharomyces cerevisiae. ELife, 2020, 9, .	2.8	4
1164	Evolution of natural lifespan variation and molecular strategies of extended lifespan in yeast. ELife, 2021, 10, .	2.8	23
1165	Genomic characterization of a wild diploid isolate of <i>Saccharomyces cerevisiae</i> reveals an extensive and dynamic landscape of structural variation. Genetics, 2022, 220, .	1.2	9
1166	FLO11, a Developmental Gene Conferring Impressive Adaptive Plasticity to the Yeast Saccharomyces cerevisiae. Pathogens, 2021, 10, 1509.	1.2	8
1167	Gene by Environment Interactions reveal new regulatory aspects of signaling network plasticity. PLoS Genetics, 2022, 18, e1009988.	1.5	7
1168	Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China. Yeast, 2021, , .	0.8	8
1169	The Ecology and Evolution of the Baker's Yeast Saccharomyces cerevisiae. Genes, 2022, 13, 230.	1.0	16
1170	Molecular Genetic Analysis with Microsatellite-like Loci Reveals Specific Dairy-Associated and Environmental Populations of the Yeast Geotrichum candidum. Microorganisms, 2022, 10, 103.	1.6	3
1171	Exogenous Indole-3-Acetic Acid Induced Ethanol Tolerance in Phylogenetically Diverse Saccharomycetales Yeasts. Microbes and Environments, 2022, 37, n/a.	0.7	2
1173	Evolutionary engineering to improve Wickerhamomyces subpelliculosus and Kazachstania gamospora for baking. World Journal of Microbiology and Biotechnology, 2022, 38, 48.	1.7	3
1174	Species interactions constrain adaptation and preserve ecological stability in an experimental microbial community. ISME Journal, 2022, 16, 1442-1452.	4.4	23
1175	Introduction: Alcohol, rituals, and politics in the ancient world. Journal of Anthropological Archaeology, 2022, 65, 101397.	0.7	1
1177	Yeasts from temperate forests. Yeast, 2022, 39, 4-24.	0.8	18
1178	Visualizing the next frontiers in wine yeast research. FEMS Yeast Research, 2022, 22, .	1.1	1

#	Article	IF	CITATIONS
1179	Domestication reprogrammed the budding yeast life cycle. Nature Ecology and Evolution, 2022, 6, 448-460.	3.4	32
1180	The genome organization of <i>Neurospora crassa</i> at high resolution uncovers principles of fungal chromosome topology. G3: Genes, Genomes, Genetics, 2022, , .	0.8	11
1181	Extensive sampling of <i>Saccharomyces cerevisiae</i> in Taiwan reveals ecology and evolution of predomesticated lineages. Genome Research, 2022, , .	2.4	13
1182	Creeping yeast: a simple, cheap and robust protocol for the identification of mating type in <i>Saccharomyces cerevisiae</i> . FEMS Yeast Research, 2022, 22, .	1.1	2
1184	Variation in pH gradients and <i>FLO11</i> expression in mat biofilms from environmental isolates of the yeast <i>Saccharomyces cerevisiae</i> . MicrobiologyOpen, 2022, 11, e1277.	1.2	2
1187	The Rise of Wine among Ancient Civilizations across the Mediterranean Basin. Heritage, 2022, 5, 788-812.	0.9	13
1188	Spoilage yeasts in beer and beer products. Current Opinion in Food Science, 2022, 44, 100815.	4.1	13
1189	Molecular Analysis of Yeasts Isolated from Daimyo Oak (Quercus dentata Thunb.) Trees in Yunan, China. , 2021, , .		0
1190	<i>Saccharomyces</i> yeast hybrids on the rise. Yeast, 2022, 39, 40-54.	0.8	17
1191	Genomic Signatures of a Major Adaptive Event in the Pathogenic Fungus <i>Melampsora larici-populina</i> . Genome Biology and Evolution, 2022, 14, .	1.1	9
1192	Mitophagy in Yeast: Decades of Research. Cells, 2021, 10, 3541.	1.8	4
1301	Rapid Intraspecies Evolution of Fitness Effects of Yeast Genes. Genome Biology and Evolution, 2022, 14,	1.1	2
1302	Functional divergence in the proteins encoded by <i>ARO80</i> from <i>S. uvarum</i> , <i>S. kudriavzevii</i> and <i>S. cerevisiae</i> explain differences in the aroma production during wine fermentation. Microbial Biotechnology, 2022, 15, 2281-2291.	2.0	6
1305	Latent Benefits and Toxicity Risks Transmission Chain of High Dietary Copper along the Livestock–Environment–Plant–Human Health Axis and Microbial Homeostasis: A Review. Journal of Agricultural and Food Chemistry, 2022, 70, 6943-6962.	2.4	15
1306	Construction of a synthetic Saccharomyces cerevisiae pan-genome neo-chromosome. Nature Communications, 2022, 13, .	5.8	22
1307	The teenage years of yeast population genomics trace history, admixing and getting wilder. Current Opinion in Genetics and Development, 2022, 75, 101942.	1.5	0
1308	Late Pleistoceneâ€dated divergence between South Hemisphere populations of the nonâ€conventional yeast <i>L</i> . <i>cidri</i> . Environmental Microbiology, 2022, 24, 5615-5629.	1.8	2
1309	Genetic Background Matters: Population-Based Studies in Model Organisms for Translational Research. International Journal of Molecular Sciences, 2022, 23, 7570.	1.8	4

		CITATION REPORT		
#	Article		IF	CITATIONS
1310	Ecology and functional potential of phyllosphere yeasts. Trends in Plant Science, 2022,	, 27, 1109-1123.	4.3	19
1311	Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative ph ELife, 0, 11, .	osphorylation.	2.8	9
1312	Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild <i>Saccharomyces cerevisiae</i> . G3: Genes, Genomes, Genetics, 2022, 12, .	strains of	0.8	1
1313	Current Ethanol Production Requirements for the Yeast Saccharomyces cerevisiae. Inte Journal of Microbiology, 2022, 2022, 1-14.	ernational	0.9	13
1316	Enforcement of Postzygotic Species Boundaries in the Fungal Kingdom. Microbiology a Biology Reviews, 2022, 86, .	and Molecular	2.9	2
1317	Genomic Adaptations of Saccharomyces Genus to Wine Niche. Microorganisms, 2022,	10, 1811.	1.6	6
1318	Complex genetics cause and constrain fungal persistence in different parts of the mam Genetics, 2022, 222, .	ımalian body.	1.2	1
1319	Gene mapping methodology powered by induced genome rearrangements. Scientific \mathbb{R}	eports, 2022, 12, .	1.6	1
1320	Phylogenomics of a Saccharomyces cerevisiae cocoa strain reveals adaptation to a We fermented food population. IScience, 2022, 25, 105309.	st African	1.9	1
1321	Microorganisms and Genetic Improvement for First and Second Generation Bioethanol Biofuel and Biorefinery Technologies, 2022, , 29-60.	Production.	0.1	0
1324	Adaptation in outbred sexual yeast is repeatable, polygenic and favors rare haplotypes. Biology and Evolution, 0, , .	Molecular	3.5	2
1325	The Dynamics of Adaptation to Stress from Standing Genetic Variation and de novo Mu Molecular Biology and Evolution, 2022, 39, .	utations.	3.5	4
1326	Convergence in domesticated fungi used for cheese and dry-cured meat maturation: be genomic mechanisms, and degeneration. Current Opinion in Microbiology, 2022, 70, 1		2.3	14
1327	A widespread inversion polymorphism conserved among Saccharomyces species is cau homogenization of a sporulation gene family. PLoS Genetics, 2022, 18, e1010525.	sed by recurrent	1.5	3
1328	Versatility of Saccharomyces cerevisiae 41CM in the Brewery Sector: Use as a Starter fa"Lager―Craft Beer Production. Processes, 2022, 10, 2495.	or "Ale―and	1.3	1
1330	Telomeres are shorter in wild <i>Saccharomyces cerevisiae</i> isolates than in domest Genetics, 2023, 223, .	icated ones.	1.2	4
1332	Mapping mitonuclear epistasis using a novel recombinant yeast population. PLoS Gene e1010401.	rtics, 2023, 19,	1.5	7
1333	Alternating selection for dispersal and multicellularity favors regulated life cycles. Curre 2023, 33, 1809-1817.e3.	ent Biology,	1.8	2

#	Article	IF	CITATIONS
1335	Evaluación de la presencia de los genes FLO1, FLO5, FLO9 y FLO11 en cepas de Saccharomyces cerevisiae. Hechos Microbiologicos, 2014, 4, 1-11.	0.1	0
1336	Mixed yeast communities contribute to regionally distinct wine attributes. FEMS Yeast Research, 2023, 23, .	1.1	4
1337	Embracing Complexity: Yeast Evolution Experiments Featuring Standing Genetic Variation. Journal of Molecular Evolution, 2023, 91, 281-292.	0.8	3
1338	Macroevolutionary diversity of traits and genomes in the model yeast genus Saccharomyces. Nature Communications, 2023, 14, .	5.8	8
1339	Biology and physiology of <i>Hanseniaspora vineae</i> : metabolic diversity and increase flavour complexity for food fermentation. FEMS Yeast Research, 2023, 23, .	1.1	5
1340	Renewing Lost Genetic Variability with a Classical Yeast Genetics Approach. Journal of Fungi (Basel,) Tj ETQq1 1 C).784314 r 1.5	gBT /Overloc
1342	Pilot Scale Evaluation of Wild Saccharomyces cerevisiae Strains in Aglianico. Fermentation, 2023, 9, 245.	1.4	1
1344	Contributions of mutation and selection to regulatory variation: lessons from the <i>Saccharomyces cerevisiae TDH3</i> gene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2023, 378, .	1.8	2
1345	Saccharomyces cerevisiae wine strains show a wide range of competitive abilities and differential nutrient uptake behavior in co-culture with S. kudriavzevii. Food Microbiology, 2023, , 104276.	2.1	1
1346	Differential Hsp90-dependent gene expression is strain-specific and common among yeast strains. IScience, 2023, 26, 106635.	1.9	0
1347	Divergence of alternative sugar preferences through modulation of the expression and activity of the Gal3 sensor in yeast. Molecular Ecology, 2023, 32, 3557-3574.	2.0	0
1358	The Northgrippian. Springer Polar Sciences, 2023, , 71-88.	0.0	0