Specific synapses develop preferentially among sister e

Nature 458, 501-504 DOI: 10.1038/nature07722

Citation Report

#	Article	IF	CITATIONS
1	Cooperative synapse formation in the neocortex. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16463-16468.	3.3	47
2	Gradients in the Brain: The Control of the Development of Form and Function in the Cerebral Cortex. Cold Spring Harbor Perspectives in Biology, 2009, 1, a002519-a002519.	2.3	125
3	Cell-type identity: a key to unlocking the function of neocortical circuits. Current Opinion in Neurobiology, 2009, 19, 415-421.	2.0	59
5	Integration of neuronal clones in the radial cortical columns by EphA and ephrin-A signalling. Nature, 2009, 461, 524-528.	13.7	131
6	The secret language of siblings. Nature Neuroscience, 2009, 12, 532-534.	7.1	0
7	Motoneurons buckling under stress. Nature Neuroscience, 2009, 12, 534-534.	7.1	2
9	Evolution of the neocortex: a perspective from developmental biology. Nature Reviews Neuroscience, 2009, 10, 724-735.	4.9	1,289
10	Transcriptional Regulation and Alternative Splicing Make for Better Brains. Neuron, 2009, 62, 455-457.	3.8	14
11	Dendritic bundles, minicolumns, columns, and cortical output units. Frontiers in Neuroanatomy, 2010, 4, 11.	0.9	37
12	Does cell lineage in the developing cerebral cortex contribute to its columnar organization?. Frontiers in Neuroanatomy, 2010, 4, 26.	0.9	26
13	Optimal hierarchical modular topologies for producing limited sustained activation of neural networks. Frontiers in Neuroinformatics, 2010, 4, 8.	1.3	86
14	Sensory Experience and Cortical Rewiring. Neuroscientist, 2010, 16, 186-198.	2.6	79
15	Normal Development of Brain Circuits. Neuropsychopharmacology, 2010, 35, 147-168.	2.8	1,033
16	Number and Laminar Distribution of Neurons in a Thalamocortical Projection Column of Rat Vibrissal Cortex. Cerebral Cortex, 2010, 20, 2277-2286.	1.6	157
17	Radial Columns in Cortical Architecture: It Is the Composition That Counts. Cerebral Cortex, 2010, 20, 2261-2264.	1.6	55
18	Decorrelated Neuronal Firing in Cortical Microcircuits. Science, 2010, 327, 584-587.	6.0	562
19	Molecular mechanisms of synaptic specificity. Molecular and Cellular Neurosciences, 2010, 43, 261-267.	1.0	46
20	A history of spike-timing-dependent plasticity. Frontiers in Synaptic Neuroscience, 2011, 3, 4.	1.3	311

# 21	ARTICLE Clonal Production and Organization of Inhibitory Interneurons in the Neocortex. Science, 2011, 334, 480-486.	IF 6.0	CITATIONS
22	Dissecting functional connectivity of neuronal microcircuits: experimental and theoretical insights. Trends in Neurosciences, 2011, 34, 225-236.	4.2	159
23	Computational Models of Grid Cells. Neuron, 2011, 71, 589-603.	3.8	202
24	Observations on Clustered Synaptic Plasticity and Highly Structured Input Patterns. Neuron, 2011, 72, 887-888.	3.8	14
25	Hippocampal CA1 pyramidal cells form functionally distinct sublayers. Nature Neuroscience, 2011, 14, 1174-1181.	7.1	347
26	Alterations in Apical Dendrite Bundling in the Somatosensory Cortex of 5-HT3A Receptor Knockout Mice. Frontiers in Neuroanatomy, 2011, 5, 64.	0.9	12
27	Laws of Conservation as Related to Brain Growth, Aging, and Evolution: Symmetry of the Minicolumn. Frontiers in Neuroanatomy, 2011, 5, 66.	0.9	26
28	Development of Cortical GABAergic Innervation. Frontiers in Cellular Neuroscience, 2011, 5, 14.	1.8	14
29	Self-Organizing Circuit Assembly through Spatiotemporally Coordinated Neuronal Migration within Geometric Constraints. PLoS ONE, 2011, 6, e28156.	1.1	24
30	Effects of visual stimulation on LFPs, spikes, and LFP-spike relations in PRR. Journal of Neurophysiology, 2011, 105, 1850-1860.	0.9	30
31	Temporally matched subpopulations of selectively interconnected principal neurons in the hippocampus. Nature Neuroscience, 2011, 14, 495-504.	7.1	142
32	ApoER2 and VLDLR in the developing human telencephalon. European Journal of Paediatric Neurology, 2011, 15, 361-367.	0.7	6
33	Simultaneous two-photon activation of presynaptic cells and calcium imaging in postsynaptic dendritic spines. Neural Systems & Circuits, 2011, 1, 2.	1.8	7
34	Prenatal immune challenge compromises the normal course of neurogenesis during development of the mouse cerebral cortex. Journal of Neuroscience Research, 2011, 89, 1575-1585.	1.3	51
35	Cell cycle regulation and interneuron production. Developmental Neurobiology, 2011, 71, 2-9.	1.5	13
36	Periodic Organization of a Major Subtype of Pyramidal Neurons in Neocortical Layer V. Journal of Neuroscience, 2011, 31, 18522-18542.	1.7	33
37	Dynamic Changes in Interneuron Morphophysiological Properties Mark the Maturation of Hippocampal Network Activity. Journal of Neuroscience, 2012, 32, 6688-6698.	1.7	32
38	Minicolumn size and human cortex. Progress in Brain Research, 2012, 195, 219-235.	0.9	12

		CITATION RE	PORT	
#	Article		IF	Citations
39	Should I Stay or Should I Go? Ephs and Ephrins in Neuronal Migration. NeuroSignals, 2012	, 20, 190-201.	0.5	24
40	<i>Drosophila</i> neuroblasts: a model for stem cell biology. Development (Cambridge), 2 4297-4310.	012, 139,	1.2	388
41	In vivo evidence for unbiased ikaros retinal lineages using an ikaros re mouse line drivin recombination. Developmental Dynamics, 2012, 241, 1973-1985.	g clonal	0.8	10
42	Dynamic FoxG1 Expression Coordinates the Integration of Multipolar Pyramidal Neuron Pr into the Cortical Plate. Neuron, 2012, 74, 1045-1058.	ecursors	3.8	126
43	Similarity of Visual Selectivity among Clonally Related Neurons in Visual Cortex. Neuron, 2 65-72.	012, 75,	3.8	104
44	Specifying Cortical Circuits: A Role for Cell Lineage. Neuron, 2012, 75, 4-5.		3.8	10
45	New dimensions of interneuronal specialization unmasked by principal cell heterogeneity. Neurosciences, 2012, 35, 175-184.	Trends in	4.2	57
46	Intrinsic morphological diversity of thickâ€ŧufted layer 5 pyramidal neurons ensures robus invariant properties of <i>in silico</i> synaptic connections. Journal of Physiology, 2012, 5	t and 90, 737-752.	1.3	44
47	Statistical connectivity provides a sufficient foundation for specific functional connectivit neocortical neural microcircuits. Proceedings of the National Academy of Sciences of the States of America, 2012, 109, E2885-94.	/ in Jnited	3.3	178
48	Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. Proceedings of the National Academy of Sciences of the United States of Am 109, 17663-17668.	erica, 2012,	3.3	60
49	Evolution of columns, modules, and domains in the neocortex of primates. Proceedings of National Academy of Sciences of the United States of America, 2012, 109, 10655-10660.	the	3.3	118
50	Advances in Computational Intelligence. Lecture Notes in Computer Science, 2012, , .		1.0	26
52	Molecular codes for neuronal individuality and cell assembly in the brain. Frontiers in Mole Neuroscience, 2012, 5, 45.	cular	1.4	80
53	Brain-Like Emergent Spatial Processing. IEEE Transactions on Autonomous Mental Develo 161-185.	oment, 2012, 4,	2.3	13
54	Evolving Spiking Neural Networks and Neurogenetic Systems for Spatio- and Spectro-Tem Modelling and Pattern Recognition. Lecture Notes in Computer Science, 2012, , 234-260.	poral Data	1.0	23
55	Sibling neurons bond to share sensations. Nature, 2012, 486, 41-42.		13.7	7
56	Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assen Nature, 2012, 486, 113-117.	ıbly.	13.7	222
57	Clonally related visual cortical neurons show similar stimulus feature selectivity. Nature, 2 118-121.	012, 486,	13.7	208

#	Article	IF	CITATIONS
58	Basket cell dichotomy in microcircuit function. Journal of Physiology, 2012, 590, 683-694.	1.3	118
59	Patterning of preâ€ŧhalamic somatosensory pathways. European Journal of Neuroscience, 2012, 35, 1533-1539.	1.2	15
60	In vivo timeâ€lapse imaging of cell proliferation and differentiation in the optic tectum of <i>Xenopus laevis</i> tadpoles. Journal of Comparative Neurology, 2012, 520, 401-433.	0.9	41
61	The utility of multichannel local field potentials for brain–machine interfaces. Journal of Neural Engineering, 2013, 10, 046005.	1.8	65
62	Genetic Basis of Neuronal Individuality in the Mammalian Brain. Journal of Neurogenetics, 2013, 27, 97-105.	0.6	39
63	Lineage-specific laminar organization of cortical GABAergic interneurons. Nature Neuroscience, 2013, 16, 1199-1210.	7.1	113
64	Synaptic connectivity between rat striatal spiny projection neurons in vivo: Unexpected multiple somatic innervation in the context of overall sparse proximal connectivity. Basal Ganglia, 2013, 3, 93-108.	0.3	14
65	Cortical Evolution: Judge the Brain by Its Cover. Neuron, 2013, 80, 633-647.	3.8	444
66	Temporal fate specification and neural progenitor competence during development. Nature Reviews Neuroscience, 2013, 14, 823-838.	4.9	332
67	Ephrin-B1 Controls the Columnar Distribution of Cortical Pyramidal Neurons by Restricting Their Tangential Migration. Neuron, 2013, 79, 1123-1135.	3.8	57
68	Neocortical neurogenesis is not really "neoâ€! A new evolutionary model derived from a comparative study of chick pallial development. Development Growth and Differentiation, 2013, 55, 173-187.	0.6	28
69	Neocortical arealization: Evolution, mechanisms, and open questions. Developmental Neurobiology, 2013, 73, 411-447.	1.5	51
70	Cortical Development. , 2013, , .		3
71	Layer-Specific Experience-Dependent Rewiring of Thalamocortical Circuits. Journal of Neuroscience, 2013, 33, 4181-4191.	1.7	43
72	Lineage-dependent circuit assembly in the neocortex. Development (Cambridge), 2013, 140, 2645-2655.	1.2	54
73	Tangential Migration. , 2013, , 363-376.		0
74	Genetic Approaches to Neural Circuits in the Mouse. Annual Review of Neuroscience, 2013, 36, 183-215.	5.0	184
75	Microcircuits for Hierarchical Elaboration of Object Coding Across Primate Temporal Areas. Science, 2013, 341, 191-195.	6.0	47

#	Article	IF	Citations
76	Clonal Identity Determines Astrocyte Cortical Heterogeneity. Cerebral Cortex, 2013, 23, 1463-1472.	1.6	134
77	Cortical Columns. , 2013, , 109-129.		12
78	Thalamic Network Oscillations Synchronize Ontogenetic Columns in the Newborn Rat Barrel Cortex. Cerebral Cortex, 2013, 23, 1299-1316.	1.6	157
79	Computing the size and number of neuronal clusters in local circuits. Frontiers in Neuroanatomy, 2013, 7, 1.	0.9	72
80	Neural progenitors, patterning and ecology in neocortical origins. Frontiers in Neuroanatomy, 2013, 7, 38.	0.9	33
81	Target dependence of orientation and direction selectivity of corticocortical projection neurons in the mouse V1. Frontiers in Neural Circuits, 2013, 7, 143.	1.4	36
82	Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits, 2013, 7, 151.	1.4	55
83	The Timing of Upper-Layer Neurogenesis Is Conferred by Sequential Derepression and Negative Feedback from Deep-Layer Neurons. Journal of Neuroscience, 2014, 34, 13259-13276.	1.7	87
84	Neuronal subtype specification in establishing mammalian neocortical circuits. Neuroscience Research, 2014, 86, 37-49.	1.0	23
85	A subset of thalamocortical projections to the retrosplenial cortex possesses two vesicular glutamate transporter isoforms, VGluT1 and VGluT2, in axon terminals and somata. Journal of Comparative Neurology, 2014, 522, 2089-2106.	0.9	12
86	Do Visual Circuits Mature Without Visual Stimuli?. Journal of Neuroscience, 2014, 34, 15833-15835.	1.7	1
87	Developmental Epigenetic Modification Regulates Stochastic Expression of Clustered Protocadherin Genes, Generating Single Neuron Diversity. Neuron, 2014, 82, 94-108.	3.8	120
88	Lineage origins of GABAergic versus glutamatergic neurons in the neocortex. Current Opinion in Neurobiology, 2014, 26, 132-141.	2.0	65
89	Chromatin regulators of neural development. Neuroscience, 2014, 264, 4-16.	1.1	27
90	Structured Synaptic Connectivity between Hippocampal Regions. Neuron, 2014, 81, 629-640.	3.8	160
91	Operational hub cells: a morpho-physiologically diverse class of GABAergic neurons united by a common function. Current Opinion in Neurobiology, 2014, 26, 51-56.	2.0	46
92	Functional organization of synaptic connections in the neocortex. Science, 2014, 346, 555-555.	6.0	1
93	Clonal Relationships Impact Neuronal Tuning within a Phylogenetically Ancient Vertebrate Brain Structure. Current Biology, 2014, 24, 1929-1933.	1.8	10

#	Article	IF	CITATIONS
94	Using mammalian GFP reconstitution across synaptic partners (mGRASP) to map synaptic connectivity in the mouse brain. Nature Protocols, 2014, 9, 2425-2437.	5.5	30
95	Interneuron firing precedes sequential activation of neuronal ensembles in hippocampal slices. European Journal of Neuroscience, 2014, 39, 2027-2036.	1.2	14
96	Development of Layer 1 Neurons in the Mouse Neocortex. Cerebral Cortex, 2014, 24, 2604-2618.	1.6	49
97	Clonal origins of neocortical interneurons. Current Opinion in Neurobiology, 2014, 26, 125-131.	2.0	9
98	Multiplex Cell and Lineage Tracking with Combinatorial Labels. Neuron, 2014, 81, 505-520.	3.8	142
99	Assembling Cell Ensembles. Cell, 2014, 157, 1502-1504.	13.5	1
100	Distinct Lineage-Dependent Structural and Functional Organization of the Hippocampus. Cell, 2014, 157, 1552-1564.	13.5	62
101	Nitric oxide signaling in the development and evolution of language and cognitive circuits. Neuroscience Research, 2014, 86, 77-87.	1.0	5
102	Molecules and mechanisms that regulate multipolar migration in the intermediate zone. Frontiers in Cellular Neuroscience, 2014, 8, 386.	1.8	85
103	Astrocyte development: A Guide for the Perplexed. Glia, 2015, 63, 1320-1329.	2.5	230
104	Control of cortical neuronal migration by glutamate and GABA. Frontiers in Cellular Neuroscience, 2015, 9, 4.	1.8	119
105	Switching modes in corticogenesis: mechanisms of neuronal subtype transitions and integration in the cerebral cortex. Frontiers in Neuroscience, 2015, 9, 274.	1.4	51
106	Inside-Out Radial Migration Facilitates Lineage-Dependent Neocortical Microcircuit Assembly. Neuron, 2015, 86, 1159-1166.	3.8	61
107	Subnetwork-Specific Homeostatic Plasticity in Mouse Visual Cortex InÂVivo. Neuron, 2015, 86, 1290-1303.	3.8	96
108	Fgf signaling controls the telencephalic distribution of Fgf-expressing progenitors generated in the rostral patterning center. Neural Development, 2015, 10, 8.	1.1	35
109	An optogenetics- and imaging-assisted simultaneous multiple patch-clamp recording system for decoding complex neural circuits. Nature Protocols, 2015, 10, 397-412.	5.5	51
110	Cortical and Clonal Contribution of Tbr2 Expressing Progenitors in the Developing Mouse Brain. Cerebral Cortex, 2015, 25, 3290-3302.	1.6	144
111	Autism spectrum disorders: linking neuropathological findings to treatment with transcranial magnetic stimulation. Acta Paediatrica, International Journal of Paediatrics, 2015, 104, 346-355.	0.7	34

# 112	ARTICLE Emergence of neuronal diversity from patterning of telencephalic progenitors. Wiley Interdisciplinary Reviews: Developmental Biology, 2015, 4, 197-214.	IF 5.9	CITATIONS
113	The Types of Functional and Structural Subdivisions of Cortical Areas. , 2015, , 35-62.		0
114	Developmental time windows for axon growth influence neuronal network topology. Biological Cybernetics, 2015, 109, 275-286.	0.6	20
115	Motor Cortex Maturation Is Associated with Reductions in Recurrent Connectivity among Functional Subpopulations and Increases in Intrinsic Excitability. Journal of Neuroscience, 2015, 35, 4719-4728.	1.7	27
116	Role of the Clustered Protocadherins in Promoting Neuronal Diversity and Function. , 2015, , 141-151.		1
117	Analysis of primary cilia in the developing mouse brain. Methods in Cell Biology, 2015, 127, 93-129.	0.5	13
118	Development and function of human cerebral cortex neural networks from pluripotent stem cells <i>in vitro</i> . Development (Cambridge), 2015, 142, 3178-3187.	1.2	103
119	Neuronal Migration Dynamics in the Developing Ferret Cortex. Journal of Neuroscience, 2015, 35, 14307-14315.	1.7	77
120	The neuronal identity bias behind neocortical GABAergic plasticity. Trends in Neurosciences, 2015, 38, 524-534.	4.2	20
121	Clonally Related Forebrain Interneurons Disperse Broadly across Both Functional Areas and Structural Boundaries. Neuron, 2015, 87, 989-998.	3.8	99
122	Wide Dispersion and Diversity of Clonally Related Inhibitory Interneurons. Neuron, 2015, 87, 999-1007.	3.8	84
123	In-vivo RCB marking and multicolour single-cell tracking in the adult brain. Scientific Reports, 2014, 4, 7520.	1.6	40
124	The Wiring of Developing Sensory Circuits—From Patterned Spontaneous Activity to Synaptic Plasticity Mechanisms. Frontiers in Neural Circuits, 2016, 10, 71.	1.4	92
125	Multilaminar networks of cortical neurons integrate common inputs from sensory thalamus. Nature Neuroscience, 2016, 19, 1034-1040.	7.1	62
126	Column-like Ca2+ clusters in the mouse neonatal neocortex revealed by three-dimensional two-photon Ca2+ imaging in vivo. NeuroImage, 2016, 138, 64-75.	2.1	28
127	Is cortical connectivity optimized for storing information?. Nature Neuroscience, 2016, 19, 749-755.	7.1	114
128	Cell Class-Lineage Analysis Reveals Sexually Dimorphic Lineage Compositions in the Drosophila Brain. Current Biology, 2016, 26, 2583-2593.	1.8	67
129	Synaptic mechanisms of pattern completion in the hippocampal CA3 network. Science, 2016, 353, 1117-1123.	6.0	203

#	Article	IF	Citations
130	Identification of an elaborate complex mediating postsynaptic inhibition. Science, 2016, 353, 1123-1129.	6.0	277
131	From Cloning Neural Development Genes to Functional Studies in Mice, 30 Years of Advancements. Current Topics in Developmental Biology, 2016, 116, 501-515.	1.0	7
132	Lineage Relationships Do Not Drive MGE/PoA-Derived Interneuron Clustering in the Brain. Neuron, 2016, 92, 52-58.	3.8	19
133	Transformation of the Radial Glia Scaffold Demarcates Two Stages of Human Cerebral Cortex Development. Neuron, 2016, 91, 1219-1227.	3.8	264
134	Supernova: A Versatile Vector System for Single-Cell Labeling and Gene Function Studies in vivo. Scientific Reports, 2016, 6, 35747.	1.6	50
135	Electrical coupling regulates layer 1 interneuron microcircuit formation in the neocortex. Nature Communications, 2016, 7, 12229.	5.8	24
136	UbC-StarTrack, a clonal method to target the entire progeny of individual progenitors. Scientific Reports, 2016, 6, 33896.	1.6	36
137	Establishment of high reciprocal connectivity between clonal cortical neurons is regulated by the Dnmt3b DNA methyltransferase and clustered protocadherins. BMC Biology, 2016, 14, 103.	1.7	35
138	Cell migration in the developing rodent olfactory system. Cellular and Molecular Life Sciences, 2016, 73, 2467-2490.	2.4	24
139	Vascular Influence on Ventral Telencephalic Progenitors and Neocortical Interneuron Production. Developmental Cell, 2016, 36, 624-638.	3.1	72
140	The LGN protein promotes planar proliferative divisions in the neocortex but apicobasal asymmetric terminal divisions in the retina. Development (Cambridge), 2016, 143, 575-81.	1.2	14
141	Brain structure and dynamics across scales: in search of rules. Current Opinion in Neurobiology, 2016, 37, 92-98.	2.0	66
142	Ten Years of Grid Cells. Annual Review of Neuroscience, 2016, 39, 19-40.	5.0	180
143	Neuronal migration disorders: Focus on the cytoskeleton and epilepsy. Neurobiology of Disease, 2016, 92, 18-45.	2.1	82
144	Dendritic Target Region-Specific Formation of Synapses Between Excitatory Layer 4 Neurons and Layer 6 Pyramidal Cells. Cerebral Cortex, 2016, 26, 1569-1579.	1.6	25
145	Micro-connectomics: probing the organization of neuronal networks at the cellular scale. Nature Reviews Neuroscience, 2017, 18, 131-146.	4.9	103
146	Ontogenetic establishment of order-specific nuclear organization in the mammalian thalamus. Nature Neuroscience, 2017, 20, 516-528.	7.1	43
147	Molecular Profiling Reveals Insight into Avian Brain Organization and Functional Columnar Commonalities with Mammals. Diversity and Commonality in Animals, 2017, , 273-289.	0.7	3

ARTICLE IF CITATIONS # Temporal Cohorts of Lineage-Related Neurons Perform Analogous Functions in Distinct 148 1.8 27 Sensorimotor Circuits. Current Biology, 2017, 27, 1521-1528.e4. Neuroanatomy and Neuropathology of Autism Spectrum Disorder in Humans. Advances in Anatomy, 149 1.0 Embryology and Cell Biology, 2017, 224, 27-48. Regulation of clustered protocadherin genes in individual neurons. Seminars in Cell and 150 2.341 Developmental Biology, 2017, 69, 122-130. Translational Anatomy and Cell Biology of Autism Spectrum Disorder. Advances in Anatomy, 1.0 Embryology and Cell Biology, 2017, , . Spatial representation in the hippocampal formation: a history. Nature Neuroscience, 2017, 20, 152 7.1 362 1448-1464. Efficient genetic manipulation in the developing brain of tree shrew using in utero electroporation and virus infection. Journal of Genetics and Genomics, 2017, 44, 507-509. 1.7 154 Hippocampal GABAergic Inhibitory Interneurons. Physiological Reviews, 2017, 97, 1619-1747. 601 13.1 Overproduction of Neurons Is Correlated with Enhanced Cortical Ensembles and Increased 2.9 26 Perceptual Discrimination. Cell Reports, 2017, 21, 381-392. 156 Radial glia in the ventral telencephalon. FEBS Letters, 2017, 591, 3942-3959. 1.3 48 Regional Cellular Environment Shapes Phenotypic Variations of Hippocampal and Neocortical 1.7 Chandelier Cells. Journal of Neuroscience, 2017, 37, 9901-9916. Precise inhibitory microcircuit assembly of developmentally related neocortical interneurons in 158 5.826 clusters. Nature Communications, 2017, 8, 16091. Î-Protocadherins: Organizers of neural circuit assembly. Seminars in Cell and Developmental Biology, 2.3 2017, 69, 83-90. Neuronal territory formation by the atypical cadherins and clustered protocadherins. Seminars in 160 2.3 29 Cell and Developmental Biology, 2017, 69, 111-121. Cortical interneuron specification: the juncture of genes, time and geometry. Current Opinion in Neurobiology, 2017, 42, 17-24. Spatial Embryonic Origin Delineates GABAergic Hub Neurons Driving Network Dynamics in the 162 1.6 26 Developing Entorhinal Cortex. Cerebral Cortex, 2017, 27, 4649-4661. Lineage-Dependent Electrical Synapse Formation in the Mammalian Neocortex., 2017, , 321-348. 164 Cornu Ammonis Regionsâ€"Antecedents of Cortical Layers?. Frontiers in Neuroanatomy, 2017, 11, 83. 165 0.9 11 Neuronal Polarity in the Embryonic Mammalian Cerebral Cortex. Frontiers in Cellular Neuroscience, 1.8 2017, 11, 163.

#	Article	IF	CITATIONS
167	Neuronal Activity-Dependent Control of Postnatal Neurogenesis and Gliogenesis. Annual Review of Neuroscience, 2018, 41, 139-161.	5.0	29
168	Evolution of New miRNAs and Cerebro-Cortical Development. Annual Review of Neuroscience, 2018, 41, 119-137.	5.0	27
169	CA1 pyramidal cell diversity enabling parallel information processing in the hippocampus. Nature Neuroscience, 2018, 21, 484-493.	7.1	221
170	The schizophrenia- and autism-associated gene, transcription factor 4 regulates the columnar distribution of layer 2/3 prefrontal pyramidal neurons in an activity-dependent manner. Molecular Psychiatry, 2018, 23, 304-315.	4.1	43
171	Single-cell analysis of diversity in human stem cell-derived neurons. Cell and Tissue Research, 2018, 371, 171-179.	1.5	9
172	Neural lineage tracing in the mammalian brain. Current Opinion in Neurobiology, 2018, 50, 7-16.	2.0	33
173	Generation of diverse cortical inhibitory interneurons. Wiley Interdisciplinary Reviews: Developmental Biology, 2018, 7, e306.	5.9	30
174	The Cadherin Superfamily in Neural Circuit Assembly. Cold Spring Harbor Perspectives in Biology, 2018, 10, a029306.	2.3	19
175	Progressive divisions of multipotent neural progenitors generate late-born chandelier cells in the neocortex. Nature Communications, 2018, 9, 4595.	5.8	13
176	In vivo pulse labeling of isochronic cohorts of cells in the central nervous system using FlashTag. Nature Protocols, 2018, 13, 2297-2311.	5.5	50
177	Illumination of neural development by inÂvivo clonal analysis. Cell Regeneration, 2018, 7, 33-39.	1.1	4
178	The development of local circuits in the neocortex: recent lessons from the mouse visual cortex. Current Opinion in Neurobiology, 2018, 53, 103-109.	2.0	11
179	Linking neuronal lineage and wiring specificity. Neural Development, 2018, 13, 5.	1.1	37
180	The interplay between electrical and chemical synaptogenesis. Journal of Neurophysiology, 2018, 120, 1914-1922.	0.9	25
181	PARD3 dysfunction in conjunction with dynamic HIPPO signaling drives cortical enlargement with massive heterotopia. Genes and Development, 2018, 32, 763-780.	2.7	55
182	Mechanisms of Cortical Differentiation. International Review of Cell and Molecular Biology, 2018, 336, 223-320.	1.6	24
183	Precise Long-Range Microcircuit-to-Microcircuit Communication Connects the Frontal and Sensory Cortices in the Mammalian Brain. Neuron, 2019, 104, 385-401.e3.	3.8	19
184	Memo1-Mediated Tiling of Radial Glial Cells Facilitates Cerebral Cortical Development. Neuron, 2019, 103, 836-852.e5.	3.8	46

~		<u> </u>	
(``		REDC	D T
\sim	$\Pi \cap \Pi$	ILLI U	

#	Article	IF	CITATIONS
185	TBR2 coordinates neurogenesis expansion and precise microcircuit organization via Protocadherin 19 in the mammalian cortex. Nature Communications, 2019, 10, 3946.	5.8	48
186	The basic repeating modules of the cerebral cortical circuit. Proceedings of the Japan Academy Series B: Physical and Biological Sciences, 2019, 95, 303-311.	1.6	10
187	Single-Cell Reconstruction of Emerging Population Activity in an Entire Developing Circuit. Cell, 2019, 179, 355-372.e23.	13.5	72
188	Development and Arealization of the Cerebral Cortex. Neuron, 2019, 103, 980-1004.	3.8	241
189	Developmental cell death regulates lineage-related interneuron-oligodendroglia functional clusters and oligodendrocyte homeostasis. Nature Communications, 2019, 10, 4249.	5.8	42
190	Multicolor lineage tracing using in vivo time-lapse imaging reveals coordinated death of clonally related cells in the developing vertebrate brain. Developmental Biology, 2019, 453, 130-140.	0.9	16
191	Rewiring the Drosophila Brain With Genetic Manipulations in Neural Lineages. Frontiers in Molecular Neuroscience, 2019, 12, 82.	1.4	2
192	Lineage-specific determination of ring neuron circuitry in the central complex of <i>Drosophila</i> . Biology Open, 2019, 8, .	0.6	9
193	Mutations in thyroid hormone receptor α1 cause premature neurogenesis and progenitor cell depletion in human cortical development. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 22754-22763.	3.3	27
194	Embryonic progenitor pools generate diversity in fine-scale excitatory cortical subnetworks. Nature Communications, 2019, 10, 5224.	5.8	26
195	Morphological and Physiological Characteristics of Ebf2-EGFP-Expressing Cajal-Retzius Cells in Developing Mouse Neocortex. Cerebral Cortex, 2019, 29, 3864-3878.	1.6	6
196	The modular organization of the cerebral cortex: Evolutionary significance and possible links to neurodevelopmental conditions. Journal of Comparative Neurology, 2019, 527, 1720-1730.	0.9	20
197	Epigenetic cues modulating the generation of cellâ€ŧype diversity in the cerebral cortex. Journal of Neurochemistry, 2019, 149, 12-26.	2.1	19
198	Training and Spontaneous Reinforcement of Neuronal Assemblies by Spike Timing Plasticity. Cerebral Cortex, 2019, 29, 937-951.	1.6	30
199	Neuronal diversity and reciprocal connectivity between the vertebrate hippocampus and septum. Wiley Interdisciplinary Reviews: Developmental Biology, 2020, 9, e370.	5.9	16
200	Origins and Proliferative States of Human Oligodendrocyte Precursor Cells. Cell, 2020, 182, 594-608.e11.	13.5	110
201	Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron, 2020, 107, 1029-1047.	3.8	66
202	Radial Migration Dynamics Is Modulated in a Laminar and Area-Specific Manner During Primate Corticogenesis. Frontiers in Cell and Developmental Biology, 2020, 8, 588814.	1.8	14

#	Article	IF	CITATIONS
203	Variations of telencephalic development that paved the way for neocortical evolution. Progress in Neurobiology, 2020, 194, 101865.	2.8	35
204	The impact of different modes of neuronal migration on brain evolution. , 2020, , 555-576.		4
205	Unveiling the Synaptic Function and Structure Using Paired Recordings From Synaptically Coupled Neurons. Frontiers in Synaptic Neuroscience, 2020, 12, 5.	1.3	9
206	Coordination of different modes of neuronal migration and functional organization of the cerebral cortex. , 2020, , 531-553.		0
207	Viral approaches to study the mammalian brain: Lineage tracing, circuit dissection and therapeutic applications. Journal of Neuroscience Methods, 2020, 335, 108629.	1.3	6
208	Synaptic Plasticity Forms and Functions. Annual Review of Neuroscience, 2020, 43, 95-117.	5.0	316
209	The role of cell lineage in the development of neuronal circuitry and function. Developmental Biology, 2021, 475, 165-180.	0.9	8
210	Excess Neuronal Branching Allows for Local Innervation of Specific Dendritic Compartments in Mature Cortex. Cerebral Cortex, 2021, 31, 1008-1031.	1.6	2
211	Diversity in striatal synaptic circuits arises from distinct embryonic progenitor pools in the ventral telencephalon. Cell Reports, 2021, 35, 109041.	2.9	4
212	Multi-scale network imaging in a mouse model of amyloidosis. Cell Calcium, 2021, 95, 102365.	1.1	9
213	A developmental framework linking neurogenesis and circuit formation in the Drosophila CNS. ELife, 2021, 10, .	2.8	35
214	DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries. Scientific Reports, 2021, 11, 13045.	1.6	15
215	Neural specification, targeting, and circuit formation during visual system assembly. Proceedings of the United States of America, 2021, 118, .	3.3	19
216	The Emergence of Network Activity Patterns in the Somatosensory Cortex – An Early Window to Autism Spectrum Disorders. Neuroscience, 2021, 466, 298-309.	1.1	10
217	Modeling the role of gap junctions between excitatory neurons in the developing visual cortex. PLoS Computational Biology, 2021, 17, e1007915.	1.5	2
218	ZBTB20 is crucial for the specification of a subset of callosal projection neurons and astrocytes in the mammalian neocortex. Development (Cambridge), 2021, 148, .	1.2	8
219	Gjd2b-mediated gap junctions promote glutamatergic synapse formation and dendritic elaboration in Purkinje neurons. ELife, 2021, 10, .	2.8	2
220	Centrosome regulation and function in mammalian cortical neurogenesis. Current Opinion in Neurobiology, 2021, 69, 256-266.	2.0	7

#	Article	IF	CITATIONS
221	Spontaneous activity in developing thalamic and cortical sensory networks. Neuron, 2021, 109, 2519-2534.	3.8	75
222	Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Frontiers in Neural Circuits, 2021, 15, 728832.	1.4	3
223	Cenetic and activity dependent-mechanisms wiring the cortex: Two sides of the same coin. Seminars in Cell and Developmental Biology, 2021, 118, 24-34.	2.3	5
224	OUP accepted manuscript. Cerebral Cortex, 2021, 32, 76-92.	1.6	1
225	Targeted photostimulation uncovers circuit motifs supporting short-term memory. Nature Neuroscience, 2021, 24, 259-265.	7.1	64
226	Neocortical Neurogenesis and Circuit Assembly. , 2013, , 153-180.		1
227	The Minicolumnopathy of Autism Spectrum Disorders. , 2013, , 327-333.		4
228	Cortical columns. , 2020, , 103-126.		10
229	Different lineage contexts direct common pro-neural factors to specify distinct retinal cell subtypes. Journal of Cell Biology, 2020, 219, .	2.3	16
234	Neocortical Rebound Depolarization Enhances Visual Perception. PLoS Biology, 2015, 13, e1002231.	2.6	41
235	Genetic transformation of structural and functional circuitry rewires the Drosophila brain. ELife, 2014, 3, .	2.8	16
236	Age-dependent dormant resident progenitors are stimulated by injury to regenerate Purkinje neurons. ELife, 2018, 7, .	2.8	9
237	How prolonged expression of Hunchback, a temporal transcription factor, re-wires locomotor circuits. ELife, 2019, 8, .	2.8	22
238	Lineage does not regulate the sensory synaptic input of projection neurons in the mouse olfactory bulb. ELife, 2019, 8, .	2.8	7
239	Cell type composition and circuit organization of clonally related excitatory neurons in the juvenile mouse neocortex. ELife, 2020, 9, .	2.8	37
240	Brain structural complexity and consciousness. Philosophy and the Mind Sciences, 0, 2, .	1.3	0
241	Title is missing!. The Brain & Neural Networks, 2012, 19, 3-15.	0.1	1
242	Neuronal Genomic and Epigenetic Diversity. , 2013, , 281-298.		0

#	Article	IF	CITATIONS
243	Regulation of Cortical Circuit Formation. , 2013. , 127-151.		0
			-
245	A Matter of Size. , 2017, , 85-129.		Ο
246	Symmetry and Noether Theorem for Brain Microcircuits. Springer Series in Cognitive and Neural Systems, 2017, , 129-153.	0.1	1
255	Circuit development in somatosensory cortex. , 2020, , 143-166.		0
259	Advanced Technologies for Local Neural Circuits in the Cerebral Cortex. Frontiers in Neuroanatomy, 2021, 15, 757499.	0.9	3
261	From Progenitors to Progeny: Shaping Striatal Circuit Development and Function. Journal of Neuroscience, 2021, 41, 9483-9502.	1.7	18
262	Microglia-triggered hypoexcitability plasticity of pyramidal neurons in the rat medial prefrontal cortex. Current Research in Neurobiology, 2022, 3, 100028.	1.1	6
264	Integration of Spatial and Temporal Patterning in the Invertebrate and Vertebrate Nervous System. Frontiers in Neuroscience, 2022, 16, 854422.	1.4	10
267	Step by step: cells with multiple functions in cortical circuit assembly. Nature Reviews Neuroscience, 2022, 23, 395-410.	4.9	14
273	A developmental switch between electrical and neuropeptide communication in the ventromedial hypothalamus. Current Biology, 2022, 32, 3137-3145.e3.	1.8	5
274	Sequential addition of neuronal stem cell temporal cohorts generates a feed-forward circuit in the Drosophila larval nerve cord. ELife, 0, 11, .	2.8	4
275	Constructive connectomics: How neuronal axons get from here to there using gene-expression maps derived from their family trees. PLoS Computational Biology, 2022, 18, e1010382.	1.5	5
277	Formation and computational implications of assemblies in neural circuits. Journal of Physiology, 2023, 601, 3071-3090.	1.3	9
281	Patterned cPCDH expression regulates the fine organization of the neocortex. Nature, 2022, 612, 503-511.	13.7	18
282	Clonally related, Notch-differentiated spinal neurons integrate into distinct circuits. ELife, 0, 11, .	2.8	8
283	Nanomaterial-based microelectrode arrays for in vitro bidirectional brain–computer interfaces: a review. Microsystems and Nanoengineering, 2023, 9, .	3.4	9
284	Astrocyte heterogeneity and interactions with local neural circuits. Essays in Biochemistry, 2023, 67, 93-106.	2.1	11
285	Developmental neuronal origin regulates neocortical map formation. Cell Reports, 2023, 42, 112170.	2.9	5