Photon capture and signalling by melanopsin retinal ga

Nature 457, 281-287 DOI: 10.1038/nature07682

Citation Report

#	Article	IF	CITATIONS
1	Origin of the fast negative ERG component from isolated aspartate-treated mouse retina. Journal of Vision, 2009, 9, 9-9.	0.3	17
2	Light-transduction in melanopsin-expressing photoreceptors of Amphioxus. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9081-9086.	7.1	40
3	A new photosensory function for simple photoreceptors, the intrinsically photoresponsive neurons of the sea slug Onchidium. Frontiers in Cellular Neuroscience, 2009, 3, 18.	3.7	13
4	Melanopsin Phototransduction: Great Excitement over a Poor Catch. Current Biology, 2009, 19, R256-R257.	3.9	7
5	Notch activity in the nervous system: to switch or not switch?. Neural Development, 2009, 4, 36.	2.4	107
6	Intrinsic light response of retinal horizontal cells of teleosts. Nature, 2009, 460, 899-903.	27.8	46
7	Phototransduction Motifs and Variations. Cell, 2009, 139, 246-264.	28.9	372
8	The evolution of eyes and visually guided behaviour. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364, 2833-2847.	4.0	182
9	PROGRESS TOWARD THE MAINTENANCE AND REPAIR OF DEGENERATING RETINAL CIRCUITRY. Retina, 2010, 30, 983-1001.	1.7	19
10	Circadian Photoreception. , 2010, , 290-295.		0
10	Circadian Photoreception. , 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111.	5.4	0
10 11 12	Circadian Photoreception., 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111. Intrinsically photosensitive retinal ganglion cells. Science China Life Sciences, 2010, 53, 58-67.	5.4	0 103 13
10 11 12 13	Circadian Photoreception. , 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111. Intrinsically photosensitive retinal ganglion cells. Science China Life Sciences, 2010, 53, 58-67. A new role for photoresponsive neurons called simple photoreceptors in the sea slug Onchidium verruculatum: Potentiation of synaptic transmission and motor response. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2010, 156, 201-210.	5.44.91.8	0 103 13 4
10 11 12 13 14	Circadian Photoreception., 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111. Intrinsically photosensitive retinal ganglion cells. Science China Life Sciences, 2010, 53, 58-67. A new role for photoresponsive neurons called simple photoreceptors in the sea slug Onchidium verruculatum: Potentiation of synaptic transmission and motor response. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2010, 156, 201-210. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 2010, 50, 72-87.	 5.4 4.9 1.8 1.4 	0 103 13 4 214
10 11 12 13 14 15	Circadian Photoreception. , 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111. Intrinsically photosensitive retinal ganglion cells. Science China Life Sciences, 2010, 53, 58-67. A new role for photoresponsive neurons called simple photoreceptors in the sea slug Onchidium verruculatum: Potentiation of synaptic transmission and motor response. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2010, 156, 201-210. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 2010, 50, 72-87. Morphology and mosaics of melanopsinâ€expressing retinal ganglion cell types in mice. Journal of Comparative Neurology, 2010, 518, 2405-2422.	 5.4 4.9 1.8 1.4 1.6 	0 103 13 4 214 169
10 11 12 13 14 15	Circadian Photoreception. , 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111. Intrinsically photosensitive retinal ganglion cells. Science China Life Sciences, 2010, 53, 58-67. A new role for photoresponsive neurons called simple photoreceptors in the sea slug Onchidium verruculatum: Potentiation of synaptic transmission and motor response. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2010, 156, 201-210. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 2010, 50, 72-87. Morphology and mosaics of melanopsinâ€expressing retinal ganglion cell types in mice. Journal of Comparative Neurology, 2010, 518, 2405-2422. Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. Journal of Comparative Neurology, 2010, 518, 4813-4824.	 5.4 4.9 1.8 1.4 1.6 	0 103 13 4 214 214 169
 10 11 12 13 14 15 16 17 	Circadian Photoreception., 2010, , 290-295. Melanopsin and inner retinal photoreception. Cellular and Molecular Life Sciences, 2010, 67, 99-111. Intrinsically photosensitive retinal ganglion cells. Science China Life Sciences, 2010, 53, 58-67. A new role for photoresponsive neurons called simple photoreceptors in the sea slug Onchidium verruculatum: Potentiation of synaptic transmission and motor response. Comparative Biochemistry and Physiology Part A, Molecular & amp; Integrative Physiology, 2010, 156, 201-210. The influence of intrinsically-photosensitive retinal ganglion cells on the spectral sensitivity and response dynamics of the human pupillary light reflex. Vision Research, 2010, 50, 72-87. Morphology and mosaics of melanopsinâ€expressing retinal ganglion cell types in mice. Journal of Comparative Neurology, 2010, 518, 2405-2422. Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. Journal of Comparative Neurology, 2010, 518, 4813-4824. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nature Neuroscience, 2010, 13, 1107-1112.	 5.4 4.9 1.8 1.4 1.6 1.6 14.8 	0 103 13 4 214 214 169 75 217

#	Article	IF	CITATIONS
19	Differential Cone Pathway Influence on Intrinsically Photosensitive Retinal Ganglion Cell Subtypes. Journal of Neuroscience, 2010, 30, 16262-16271.	3.6	90
20	Dark Light, Rod Saturation, and the Absolute and Incremental Sensitivity of Mouse Cone Vision. Journal of Neuroscience, 2010, 30, 12495-12507.	3.6	177
21	Time-Dependent Effects of Dim Light at Night on Re-Entrainment and Masking of Hamster Activity Rhythms. Journal of Biological Rhythms, 2010, 25, 103-112.	2.6	19
22	Melanopsin Contributions to Irradiance Coding in the Thalamo-Cortical Visual System. PLoS Biology, 2010, 8, e1000558.	5.6	226
23	Intrinsically Photosensitive Retinal Ganglion Cells. Physiological Reviews, 2010, 90, 1547-1581.	28.8	343
24	The emerging roles of melanopsin in behavioral adaptation to light. Trends in Molecular Medicine, 2010, 16, 435-446.	6.7	154
25	Distinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance. Neuron, 2010, 66, 417-428.	8.1	259
26	A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice. Science, 2011, 332, 1565-1568.	12.6	418
27	Intrinsically Photosensitive Retinal Ganglion Cells. , 2011, 162, 59-90.		45
28	Intrinsically Photosensitive (Melanopsin) Retinal Ganglion Cell Function in Glaucoma. , 2011, 52, 4362.		147
29	Targeted mutation of the calbindin D _{28k} gene selectively alters nonvisual photosensitivity. European Journal of Neuroscience, 2011, 33, 2299-2307.	2.6	6
30	Delayed response of human melanopsin retinal ganglion cells on the pupillary light reflex. Ophthalmic and Physiological Optics, 2011, 31, 469-479.	2.0	42
31	Morphologies of mouse retinal ganglion cells expressing transcription factors Brn3a, Brn3b, and Brn3c: Analysis of wild type and mutant cells using genetically-directed sparse labeling. Vision Research, 2011, 51, 269-279.	1.4	91
32	Global daily dynamics of the pineal transcriptome. Cell and Tissue Research, 2011, 344, 1-11.	2.9	21
33	Melanopsin signalling in mammalian iris and retina. Nature, 2011, 479, 67-73.	27.8	234
34	A "Melanopic―Spectral Efficiency Function Predicts the Sensitivity of Melanopsin Photoreceptors to Polychromatic Lights. Journal of Biological Rhythms, 2011, 26, 314-323.	2.6	216
35	Divergent photic thresholds in the non-image-forming visual system: entrainment, masking and pupillary light reflex. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 745-750.	2.6	52
36	Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function. Journal of Neuroscience, 2011, 31, 16094-16101.	3.6	219

#	Article	IF	CITATIONS
37	Mesopic background lights enhance dark-adapted cone ERG flash responses in the intact mouse retina: a possible role for gap junctional decoupling. Journal of Neurophysiology, 2011, 105, 2309-2318.	1.8	18
38	Form and Function of the M4 Cell, an Intrinsically Photosensitive Retinal Ganglion Cell Type Contributing to Geniculocortical Vision. Journal of Neuroscience, 2012, 32, 13608-13620.	3.6	208
39	Melanopsin phototransduction. Progress in Brain Research, 2012, 199, 19-40.	1.4	75
40	Melanopsin and Mechanisms of Non-visual Ocular Photoreception. Journal of Biological Chemistry, 2012, 287, 1649-1656.	3.4	66
41	A Retinal Ganglion Cell That Can Signal Irradiance Continuously for 10 Hours. Journal of Neuroscience, 2012, 32, 11478-11485.	3.6	140
42	How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. Progress in Brain Research, 2012, 199, 1-18.	1.4	152
43	Domain of metamers exciting intrinsically photosensitive retinal ganglion cells (ipRGCs) and rods. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2012, 29, A366.	1.5	20
44	Melanopsin Is Highly Resistant to Light and Chemical Bleaching in Vivo. Journal of Biological Chemistry, 2012, 287, 20888-20897.	3.4	47
45	Depression brought to light. Nature, 2012, 491, 537-538.	27.8	8
46	Melanopsin and Rod–Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans. Journal of Neuroscience, 2012, 32, 14242-14253.	3.6	181
47	Dissecting the Determinants of Light Sensitivity in Amphioxus Microvillar Photoreceptors: Possible Evolutionary Implications for Melanopsin Signaling. Journal of Neuroscience, 2012, 32, 17977-17987.	3.6	12
48	Intrinsically photosensitive retinal ganglion cells are the primary but not exclusive circuit for light aversion. Experimental Eye Research, 2012, 105, 60-69.	2.6	64
49	Membrane receptors and transporters involved in the function and transport of vitamin A and its derivatives. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2012, 1821, 99-112.	2.4	36
50	Distinct responses of cones and melanopsin-expressing retinal ganglion cells in the human electroretinogram. Journal of Physiological Anthropology, 2012, 31, 20.	2.6	13
51	Effects of blue pulsed light on human physiological functions and subjective evaluation. Journal of Physiological Anthropology, 2012, 31, 23.	2.6	14
52	The use of light for engineered control and reprogramming of cellular functions. Current Opinion in Biotechnology, 2012, 23, 695-702.	6.6	36
53	Melanopsin-Expressing Amphioxus Photoreceptors Transduce Light via a Phospholipase C Signaling Cascade. PLoS ONE, 2012, 7, e29813.	2.5	15
54	Retina, Retinol, Retinal and the Natural History of Vitamin A as a Light Sensor. Nutrients, 2012, 4, 2069-2096.	4.1	60

ARTICLE IF CITATIONS # Melanopsin, the photopigment of intrinsically photosensitive retinal ganglion cells. Environmental 5.5 16 55 Sciences Europe, 2012, 1, 228-237. Evolution and diversity of opsins. Environmental Sciences Europe, 2012, 1, 104-111. 5.5 Profound defects in pupillary responses to light in TRPMâ€channel null mice: a role for TRPM channels 57 2.6 52 in nonâ€imageâ€forming photoreception. European Journal of Neuroscience, 2012, 35, 34-43. Melanopsin-Based Brightness Discrimination in Mice and Humans. Current Biology, 2012, 22, 1134-1141. 199 Diverse types of ganglion cell photoreceptors in the mammalian retina. Progress in Retinal and Eye Research, 2012, 31, 287-302. 59 15.5 87 Functional evaluation of iodoacetic acid induced photoreceptor degeneration in the cat. Science China Life Sciences, 2013, 56, 524-530. Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors. FASEB Journal, 61 0.5 54 2013, 27, 4204-4212. The manipulation of neural and cellular activities by ectopic expression of melanopsin. Neuroscience 1.9 Research, 2013, 75, 3-5. Genetic Advances in Ophthalmology: The Role of Melanopsin-Expressing, Intrinsically Photosensitive 63 Retinal Ganglion Cells in the Circadian Organization of the Visual System. Seminars in 1.6 12 Ophthalmology, 2013, 28, 406-421. Biomedically relevant circuitâ€design strategies in mammalian synthetic biology. Molecular Systems 64 7.2 49 Biology, 2013, 9, 691. Mammalian Inner Retinal Photoreception. Current Biology, 2013, 23, R125-R133. 65 3.9 91 Small-molecule antagonists of melanopsin-mediated phototransduction. Nature Chemical Biology, 2013, 9, 630-635. Exquisite Light Sensitivity of Drosophila melanogaster Cryptochrome. PLoS Genetics, 2013, 9, e1003615. 67 3.5 64 Impact of Colored Light on Cardiorespiratory Coordination. Evidence-based Complementary and Alternative Medicine, 2013, 2013, 1-7. 1.2 Intrinsically photosensitive retinal ganglion cells. Current Opinion in Neurology, 2013, 26, 45-51. 69 39 3.6 Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7470-7475. Blurring the Boundaries of Vision: Novel Functions of Intrinsically Photosensitive Retinal Ganglion 71 2.37 Cells. Journal of Experimental Neuroscience, 2013, 7, JEN.S11267. Intrinsic Photosensitive Retinal Ganglion Cells in the Diurnal Rodent, Arvicanthis ansorgei. PLoS ONE, 2013, 8, e73343.

#	Article	IF	CITATIONS
73	Melanopsin Ganglion Cells Are the Most Resistant Retinal Ganglion Cell Type to Axonal Injury in the Rat Retina. PLoS ONE, 2014, 9, e93274.	2.5	80
74	Loss of Gq/11 Genes Does Not Abolish Melanopsin Phototransduction. PLoS ONE, 2014, 9, e98356.	2.5	20
75	The Verriest Lecture: Visual properties of metameric blacks beyond cone vision. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2014, 31, A38.	1.5	6
76	Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. Journal of Physiology, 2014, 592, 1619-1636.	2.9	138
77	Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1714-1719.	7.1	59
78	Evolution of Visual and Non-visual Pigments. , 2014, , .		33
80	The Lightâ€Induced <i><scp>FOS</scp></i> Response in Melanopsin Expressing <scp>HEK</scp> â€293 Cells is Correlated with Melanopsin Quantity and Dependent on Light Duration and Irradiance. Photochemistry and Photobiology, 2014, 90, 1069-1076.	2.5	4
81	Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells in Retinal Disease. Optometry and Vision Science, 2014, 91, 894-903.	1.2	87
82	Applied scotobiology in luminaire design. Lighting Research and Technology, 2014, 46, 50-66.	2.7	15
83	T-box Transcription Regulator <i>Tbr2</i> Is Essential for the Formation and Maintenance of Opn4/Melanopsin-Expressing Intrinsically Photosensitive Retinal Ganglion Cells. Journal of Neuroscience, 2014, 34, 13083-13095.	3.6	56
84	Opponent melanopsin and S-cone signals in the human pupillary light response. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15568-15572.	7.1	161
85	The RNA binding protein RBPMS is a selective marker of ganglion cells in the mammalian retina. Journal of Comparative Neurology, 2014, 522, 1411-1443.	1.6	385
86	Colors cast long shadows on brain activity. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5769-5770.	7.1	0
87	The Retina and Circadian Rhythms. , 2014, , .		6
88	Identification of Critical Phosphorylation Sites on the Carboxy Tail of Melanopsin. Biochemistry, 2014, 53, 2644-2649.	2.5	35
89	Measuring and using light in the melanopsin age. Trends in Neurosciences, 2014, 37, 1-9.	8.6	879
90	Melanopsin-Mediated Post-Illumination Pupil Response in Early Age-Related Macular Degeneration. , 2015, 56, 6906.		38
91	Using Flickering Light to Enhance Nonimage-Forming Visual Stimulation in Humans. , 2015, 56, 4680.		18

#	Article	IF	CITATIONS
92	Test-Retest Reliability of Hemifield, Central-Field, and Full-Field Chromatic Pupillometry for Assessing the Function of Melanopsin-Containing Retinal Ganglion Cells. Investigative Ophthalmology and Visual Science, 2015, 56, 1267-1273.	3.3	21
93	Melanopsin Tristability for Sustained and Broadband Phototransduction. Neuron, 2015, 85, 1043-1055.	8.1	105
94	Spatial receptive fields in the retina and dorsal lateral geniculate nucleus of mice lacking rods and cones. Journal of Neurophysiology, 2015, 114, 1321-1330.	1.8	30
95	Light aversion and corneal mechanical sensitivity are altered by intrinscally photosensitive retinal ganglion cells in a mouse model ofÂcorneal surface damage. Experimental Eye Research, 2015, 137, 57-62.	2.6	30
96	Post-illumination pupil response after blue light: Reliability of optimized melanopsin-based phototransduction assessment. Experimental Eye Research, 2015, 139, 73-80.	2.6	24
97	Dissociation of Pupillary Post-Illumination Responses from Visual Function in Confirmed OPA1 c.983Aââ,¬â€°>ââ,¬â€°G and c.2708_2711delTTAG Autosomal Dominant Optic Atrophy. Frontiers in Neurology, 2015, 6, 5.	2.4	15
98	Retinal Attachment Instability Is Diversified among Mammalian Melanopsins. Journal of Biological Chemistry, 2015, 290, 27176-27187.	3.4	21
99	The injury resistant ability of melanopsin-expressing intrinsically photosensitive retinal ganglion cells. Neuroscience, 2015, 284, 845-853.	2.3	95
100	Characterizing and modeling the intrinsic light response of rat ganglion-cell photoreceptors. Journal of Neurophysiology, 2015, 114, 2955-2966.	1.8	17
101	Temporal characteristics of melanopsin inputs to the human pupil light reflex. Vision Research, 2015, 107, 58-66.	1.4	55
102	The rat retina has five types of ganglion-cell photoreceptors. Experimental Eye Research, 2015, 130, 17-28.	2.6	54
103	Melanopsin-mediated post-illumination pupil response in the peripheral retina. Journal of Vision, 2016, 16, 5.	0.3	39
104	The Effects of Short-Term Light Adaptation on the Human Post-Illumination Pupil Response. , 2016, 57, 5672.		27
105	MRI of Retinal Free Radical Production With Laminar Resolution In Vivo. , 2016, 57, 577.		31
106	Peripheral Sensory Neurons Expressing Melanopsin Respond to Light. Frontiers in Neural Circuits, 2016, 10, 60.	2.8	50
107	Individual Differences in the Post-Illumination Pupil Response to Blue Light: Assessment without Mydriatics. Biology, 2016, 5, 34.	2.8	9
108	The Extrinsic Noise Effect on Lateral Inhibition Differentiation Waves. ACM Transactions on Modeling and Computer Simulation, 2016, 26, 1-18.	0.8	3
109	The contribution of inner and outer retinal photoreceptors to infraâ€slow oscillations in the rat olivary pretectal nucleus. European Journal of Neuroscience, 2016, 43, 823-833.	2.6	12

#	Article	IF	CITATIONS
110	Melanopsin-Encoded Response Properties of Intrinsically Photosensitive Retinal Ganglion Cells. Neuron, 2016, 90, 1016-1027.	8.1	45
111	Melanopsin and the Nonâ€visual Photochemistry in the Inner Retina of Vertebrates. Photochemistry and Photobiology, 2016, 92, 29-44.	2.5	31
112	Prolonged Inner Retinal Photoreception Depends on the Visual Retinoid Cycle. Journal of Neuroscience, 2016, 36, 4209-4217.	3.6	25
113	Architecture of retinal projections to the central circadian pacemaker. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 6047-6052.	7.1	124
114	The absence of attenuating effect of red light exposure on pre-existing melanopsin-driven post-illumination pupil response. Vision Research, 2016, 124, 59-65.	1.4	6
115	Revâ€Erbα modulates retinal visual processing and behavioral responses to light. FASEB Journal, 2016, 30, 3690-3701.	0.5	26
116	Melanopsin supports irradianceâ€driven changes in maintained activity in the superior colliculus of the mouse. European Journal of Neuroscience, 2016, 44, 2314-2323.	2.6	7
117	Ocular Photoreception for Circadian Rhythm Entrainment in Mammals. Annual Review of Vision Science, 2016, 2, 153-169.	4.4	22
118	Using light to tell the time of day: sensory coding in the mammalian circadian visual network. Journal of Experimental Biology, 2016, 219, 1779-1792.	1.7	48
119	Optical coherence tomography parameters in patients with photosensitive juvenile myoclonic epilepsy. Seizure: the Journal of the British Epilepsy Association, 2016, 35, 36-40.	2.0	16
120	Human Visual Cortex Responses to Rapid Cone and Melanopsin-Directed Flicker. Journal of Neuroscience, 2016, 36, 1471-1482.	3.6	35
121	Optogenetic toolkit for precise control of calcium signaling. Cell Calcium, 2017, 64, 36-46.	2.4	56
122	Circadian Photoentrainment Mechanism in Mammals. , 2017, , 365-393.		0
123	C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 2741-2746.	7.1	28
124	Processing of single-photon responses in the mammalian On and Off retinal pathways at the sensitivity limit of vision. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160073.	4.0	21
125	Synergistic Signaling by Light and Acetylcholine in Mouse Iris Sphincter Muscle. Current Biology, 2017, 27, 1791-1800.e5.	3.9	29
126	Profile of King-Wai Yau. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 6151-6153.	7.1	0
127	The human visual cortex response to melanopsin-directed stimulation is accompanied by a distinct perceptual experience. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 12291-12296	7.1	87

		CITATION REPORT		
#	Article		IF	CITATIONS
128	Uniformity from Diversity: Vast-Range Light Sensing in a Single Neuron Type. Cell, 201	7, 171, 738-740.	28.9	0
129	A Population Representation of Absolute Light Intensity in the Mammalian Retina. Cell 865-876.e16.	, 2017, 171,	28.9	75
130	Mapping physiological inputs from multiple photoreceptor systems to dopaminergic a the mouse retina. Scientific Reports, 2017, 7, 7920.	macrine cells in	3.3	30
131	Phosphenes, retinal discrete dark noise, negative afterimages and retinogeniculate pro explanatory framework based on endogenous ocular luminescence. Progress in Retina Research, 2017, 60, 101-119.	jections: A new I and Eye	15.5	24
132	Quantum Biometrics with Retinal Photon Counting. Physical Review Applied, 2017, 8,		3.8	10
133	Effect of quantity and intensity of pulsed light onÂhuman non-visual physiological resp of Physiological Anthropology, 2017, 36, 22.	onses. Journal	2.6	8
134	Biophysical Variation within the M1 Type of Ganglion Cell Photoreceptor. Cell Reports, 1048-1062.	2017, 21,	6.4	46
135	Regulation of Reentrainment Function Is Dependent on a Certain Minimal Number of I ipRGCs in rd Mice. Journal of Ophthalmology, 2017, 2017, 1-8.	ntact Functional	1.3	6
136	Pupillary Light Reflexes in Severe Photoreceptor Blindness Isolate the Melanopic Comp Intrinsically Photosensitive Retinal Ganglion Cells. , 2017, 58, 3215.	onent of		13
137	Circadian Photoreceptionâ ⁻ †. , 2017, , .			0
138	Patients With Normal Tension Glaucoma Have Relative Sparing of the Relative Afferent Defect Compared to Those With Open Angle Glaucoma and Elevated Intraocular Press 5237.	: Pupillary ure. , 2017, 58,		11
139	Orexin-A Suppresses Signal Transmission to Dopaminergic Amacrine Cells From Outer Retinal Photoreceptors. , 2017, 58, 4712.	and Inner		14
140	Opn5L1 is a retinal receptor that behaves as a reverse and self-regenerating photorece Communications, 2018, 9, 1255.	ptor. Nature	12.8	29
141	Morphological Identification of Melanopsin-Expressing Retinal Ganglion Cell Subtypes Methods in Molecular Biology, 2018, 1753, 275-287.	in Mice.	0.9	13
142	Melanopsin photoreception contributes to human visual detection, temporal and colo Scientific Reports, 2018, 8, 3842.	ur processing.	3.3	82
144	Pulses of Melanopsin-Directed Contrast Produce Highly Reproducible Pupil Responses Insensitive to a Change in Background Radiance. , 2018, 59, 5615.	That Are		7
145	Cyclic-Nucleotide- and HCN-Channel-Mediated Phototransduction in Intrinsically Photo Retinal Ganglion Cells. Cell, 2018, 175, 652-664.e12.	osensitive	28.9	47
146	The ip <scp>RGC</scp> â€driven pupil response with light exposure and refractive error Ophthalmic and Physiological Optics, 2018, 38, 503-515.	n children.	2.0	21

#	Article	IF	CITATIONS
147	Binocular Summation in Postillumination Pupil Response Driven by Melanopsin-Containing Retinal Ganglion Cells. , 2018, 59, 4968.		5
148	Melanopsin-mediated pupil function is impaired in Parkinson's disease. Scientific Reports, 2018, 8, 7796.	3.3	58
149	External light activates hair follicle stem cells through eyes via an ipRGC–SCN–sympathetic neural pathway. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E6880-E6889.	7.1	60
150	Sustained effects of prior red light on pupil diameter and vigilance during subsequent darkness. Proceedings of the Royal Society B: Biological Sciences, 2018, 285, 20180989.	2.6	10
151	Impact of light-adaptive mechanisms on mammalian retinal visual encoding at high light levels. Journal of Neurophysiology, 2018, 119, 1437-1449.	1.8	13
152	Non-visual Biological Mechanism. , 2019, , 137-168.		3
153	Melanopsin and the Intrinsically Photosensitive Retinal Ganglion Cells: Biophysics to Behavior. Neuron, 2019, 104, 205-226.	8.1	162
154	The melanopsin-directed white noise electroretinogram (wnERG). Vision Research, 2019, 164, 83-93.	1.4	11
155	Observerâ€perceived light aversion behaviour in photophobic subjects with traumatic brain injury. Australasian journal of optometry, The, 2019, 102, 621-626.	1.3	6
156	Light Pollution Is a Driver of Insect Declines. SSRN Electronic Journal, 2019, , .	0.4	2
157	Melanopsin driven enhancement of cone-mediated visual processing. Vision Research, 2019, 160, 72-81.	1.4	26
158	μ-Opioid Receptor Activation Directly Modulates Intrinsically Photosensitive Retinal Ganglion Cells. Neuroscience, 2019, 408, 400-417.	2.3	13
159	Chromatic Pupillometry Methods for Assessing Photoreceptor Health in Retinal and Optic Nerve Diseases. Frontiers in Neurology, 2019, 10, 76.	2.4	41
160	Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell, 2019, 177, 243-255.e15.	28.9	206
161	Photopic light-mediated down-regulation of local α1A-adrenergic signaling protects blood-retina barrier in experimental autoimmune uveoretinitis. Scientific Reports, 2019, 9, 2353.	3.3	27
162	Visible Blue Light Therapy: Molecular Mechanisms and Therapeutic Opportunities. Current Medicinal Chemistry, 2019, 25, 5564-5577.	2.4	50
163	M1 Intrinsically Photosensitive Retinal Ganglion Cells Integrate Rod and Melanopsin Inputs to Signal in Low Light. Cell Reports, 2019, 29, 3349-3355.e2.	6.4	35
164	Melanopsin for precise optogenetic activation of astrocyteâ€neuron networks. Glia, 2019, 67, 915-934.	4.9	86

#	Article	IF	CITATIONS
165	Distribution and diversity of intrinsically photosensitive retinal ganglion cells in tree shrew. Journal of Comparative Neurology, 2019, 527, 328-344.	1.6	17
166	Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Progress in Retinal and Eye Research, 2020, 74, 100776.	15.5	25
167	Light input pathways to the circadian clock of insects with an emphasis on the fruit fly Drosophila melanogaster. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2020, 206, 259-272.	1.6	70
168	Bidirectional communication between neural and immune systems. International Immunology, 2020, 32, 693-701.	4.0	18
169	Light pollution is a driver of insect declines. Biological Conservation, 2020, 241, 108259.	4.1	231
170	A neural correlate of visual discomfort from flicker. Journal of Vision, 2020, 20, 11.	0.3	12
171	Optimized Signal Flow through Photoreceptors Supports the High-Acuity Vision of Primates. Neuron, 2020, 108, 335-348.e7.	8.1	10
172	Liminal Light and Primate Evolution. Annual Review of Anthropology, 2020, 49, 257-276.	1.5	6
173	Non-visual Opsins and Novel Photo-Detectors in the Vertebrate Inner Retina Mediate Light Responses Within the Blue Spectrum Region. Cellular and Molecular Neurobiology, 2022, 42, 59-83.	3.3	22
174	Targeting Opsin4/Melanopsin with a Novel Small Molecule Suppresses PKC/RAF/MEK/ERK Signaling and Inhibits Lung Adenocarcinoma Progression. Molecular Cancer Research, 2020, 18, 1028-1038.	3.4	5
175	Can We See with Melanopsin?. Annual Review of Vision Science, 2020, 6, 453-468.	4.4	37
176	Melanopsin: From a small molecule to brain functions. Neuroscience and Biobehavioral Reviews, 2020, 113, 190-203.	6.1	25
177	nGnG Amacrine Cells and Brn3b-negative M1 ipRGCs are Specifically Labeled in the ChAT-ChR2-EYFP Mouse. , 2020, 61, 14.		5
178	Rhodopsin and melanopsin coexist in mammalian sperm cells and activate different signaling pathways for thermotaxis. Scientific Reports, 2020, 10, 112.	3.3	18
179	Endogenous Opioid Signaling in the Mouse Retina Modulates Pupillary Light Reflex. International Journal of Molecular Sciences, 2021, 22, 554.	4.1	9
180	Absolute luminance detection. , 2021, , 48-66.		0
181	Melanopic Limits of Metamer Spectral Optimisation in Multi-Channel Smart Lighting Systems. Energies, 2021, 14, 527.	3.1	10
182	Unified Classification of Mouse Retinal Ganglion Cells Using Function, Morphology, and Gene Expression. SSRN Electronic Journal, 0, , .	0.4	1

ARTICLE IF CITATIONS # Orexin-A Intensifies Mouse Pupillary Light Response by Modulating Intrinsically Photosensitive Retinal 183 3.6 10 Ganglion Cells. Journal of Neuroscience, 2021, 41, 2566-2580. Cell-Subtype-Specific Remodeling of Intrinsically Photosensitive Retinal Ganglion Cells in 184 0.6 Streptozótocin-Induced Diabetic Mice. Diabetes, 2021, 70, 1157-1169. Circadian Responses to Light-Flash Exposure: Conceptualization and New Data Guiding Future 185 2.4 9 Directions. Frontiers in Neurology, 2021, 12, 627550. Meta-analysis of light and circadian timekeeping in rodents. Neuroscience and Biobehavioral Reviews, 186 6.1 2021, 123, 215-229. Photophobia in migraine: A symptom cluster?. Cephalalgia, 2021, 41, 1240-1248. 187 3.9 18 PupilEXT: Flexible Open-Source Platform for High-Resolution Pupillometry in Vision Research. 188 2.8 Frontiers in Neuroscience, 2021, 15, 676220 Photobiological Neuromodulation of Resting-State EEG and Steady-State Visual-Evoked Potentials by 190 40 Hz Violet Light Optical Stimulation in Healthy Individuals. Journal of Personalized Medicine, 2021, 2.5 6 11, 557. Fundamentals of circadian entrainment by light. Lighting Research and Technology, 2021, 53, 377-393. 2.7 9 Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe 192 15.5 28 childhood retinal disease. Progress in Retinal and Eye Research, 2022, 87, 101000. Functional Brain Imaging During Extra-Ocular Light Stimulation in Anophthalmic and Sighted Participants: No Evidence for Extra-Ocular Photosensitive Receptors. Frontiers in Neuroscience, 2021, 2.8 15, 744543. Light adaptation characteristics of melanopsin. Vision Research, 2021, 188, 126-138. 194 1.4 8 The Evolution and Function of Melanopsin in Craniates., 2014, , 23-63. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cellular and 196 5.4 87 Molecular Life Sciences, 2021, 78, 889-907. Eye Evolution in Animals., 2020, , 96-121. 198 OBSOLETE: Eye Evolution in Animals., 2020, , . 1 Ganglion-Cell Photoreceptors and Non-Image-Forming Vision., 2011, , 526-544. 199 A cullin 4B-RING E3 ligase complex fine-tunes pancreatic l' cell paracrine interactions. Journal of 200 8.2 28 Clinical Investigation, 2017, 127, 2631-2646. Rhodopsin and melanopsin contributions to human brightness estimation. Journal of the Optical 1.5 Society of America A: Optics and Image Science, and Vision, 2020, 37, A145.

#	Article	IF	CITATIONS
202	Selective Stimulation of Penumbral Cones Reveals Perception in the Shadow of Retinal Blood Vessels. PLoS ONE, 2015, 10, e0124328.	2.5	47
203	Direct effects of the light environment on daily neuroendocrine control. Journal of Endocrinology, 2019, 243, R1-R18.	2.6	21
204	Utilidad de la pupilometrÃa dinámica en el control de alcoholemia de los conductores. Revista De Psicologia De La Salud, 2013, 25, 137.	0.5	12
205	Distinct ipRGC subpopulations mediate light's acute and circadian effects on body temperature and sleep. ELife, 2019, 8, .	6.0	71
206	Bongard and Smirnov on the tetrachromacy of extra-foveal vision. Vision Research, 2022, 195, 107952.	1.4	3
207	Intrinsically Photosensitive Retinal Ganglion Cells. Sheng Wu Wu Li Hsueh Bao, 2011, 27, 387-394.	0.1	1
208	Circadian Photoreception: From Phototransduction to Behaviour. , 2014, , 27-48.		0
209	The Functional Properties of the G Protein-Coupled Receptor Melanopsin in Intrinsically Photosensitive Retinal Ganglion Cells. , 2014, , 173-195.		0
211	Phototransduction Cone/Rod. , 2015, , 1-2.		0
212	Tissue Development. Modeling and Simulation in Science, Engineering and Technology, 2017, , 231-255.	0.6	0
215	Phototransduction Cone/Rod. , 2018, , 1376-1377.		0
215 218	Phototransduction Cone/Rod. , 2018, , 1376-1377. Non-Image Forming Vision in Vertebrates. , 2020, , 252-260.		0
215 218 220	Phototransduction Cone/Rod., 2018, 1376-1377. Non-Image Forming Vision in Vertebrates., 2020, 252-260. Phototransduction in Retinal Ganglion Cells. Yale Journal of Biology and Medicine, 2018, 91, 49-52.	0.2	0 0 11
215 218 220 221	Phototransduction Cone/Rod., 2018, 1376-1377. Non-Image Forming Vision in Vertebrates., 2020, 252-260. Phototransduction in Retinal Ganglion Cells. Yale Journal of Biology and Medicine, 2018, 91, 49-52. Melanopsin phototransduction: beyond canonical cascades. Journal of Experimental Biology, 2021, 224, .	0.2	0 0 11 21
215 218 220 221 223	Phototransduction Cone/Rod., 2018, 1376-1377. Non-Image Forming Vision in Vertebrates., 2020, 252-260. Phototransduction in Retinal Ganglion Cells. Yale Journal of Biology and Medicine, 2018, 91, 49-52. Melanopsin phototransduction: beyond canonical cascades. Journal of Experimental Biology, 2021, 224, . Investigation of the aging clock's intermittent-light responses uncovers selective deficits to green millisecond flashes. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112389.	0.2 1.7 3.8	0 0 11 21 0
 215 218 220 221 223 224 	Phototransduction Cone/Rod., 2018,, 1376-1377. Non-Image Forming Vision in Vertebrates., 2020,, 252-260. Phototransduction in Retinal Ganglion Cells. Yale Journal of Biology and Medicine, 2018, 91, 49-52. Melanopsin phototransduction: beyond canonical cascades. Journal of Experimental Biology, 2021, 224, . Investigation of the aging clock's intermittent-light responses uncovers selective deficits to green millisecond flashes. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112389. The role of melanopsin photoreception on visual attention linked pupil responses. European Journal of Neuroscience, 2022, 55, 1986-2002.	0.2 1.7 3.8 2.6	0 0 11 21 0
 215 218 220 221 223 224 225 	Phototransduction Cone/Rod., 2018, 1376-1377. Non-Image Forming Vision in Vertebrates., 2020, 252-260. Phototransduction in Retinal Ganglion Cells. Yale Journal of Biology and Medicine, 2018, 91, 49-52. Melanopsin phototransduction: beyond canonical cascades. Journal of Experimental Biology, 2021, 224, . Investigation of the aging clock's intermittent-light responses uncovers selective deficits to green millisecond flashes. Journal of Photochemistry and Photobiology B: Biology, 2022, 228, 112389. The role of melanopsin photoreception on visual attention linked pupil responses. European Journal of Neuroscience, 2022, 55, 1986-2002. Molecular determinants of response kinetics of mouse M1 intrinsically-photosensitive retinal ganglion cells. Scientific Reports, 2021, 11, 23424.	0.2 1.7 3.8 2.6 3.3	0 0 11 21 0 9

#	Article	IF	CITATIONS
230	Beyond irradiance: Visual signals influencing mammalian circadian function. Progress in Brain Research, 2022, , .	1.4	0
231	Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision. IScience, 2022, 25, 104529.	4.1	13
232	Slow vision: Measuring melanopsin-mediated light effects in animal models. Progress in Brain Research, 2022, , .	1.4	1
233	Endogenous opioid signaling in the retina modulates sleep/wake activity in mice. Neurobiology of Sleep and Circadian Rhythms, 2022, 13, 100078.	2.8	7
234	Optogenetic approaches to therapy for inherited retinal degenerations. Journal of Physiology, 2022, 600, 4623-4632.	2.9	15
235	The Newborn's Reaction to Light as the Determinant of the Brain's Activation at Human Birth. Frontiers in Integrative Neuroscience, 0, 16, .	2.1	8
236	Patch-Clamp Electrophysiological Analysis of Murine Melanopsin Neurons. Neuromethods, 2022, , 121-150.	0.3	1
237	New prospectives on light adaptation of visual system research with the emerging knowledge on non-image-forming effect. Frontiers in Built Environment, 0, 8, .	2.3	3
239	Burning the candle at both ends: Intraretinal signaling of intrinsically photosensitive retinal ganglion cells. Frontiers in Cellular Neuroscience, 0, 16, .	3.7	1
240	Encoding of environmental illumination by primate melanopsin neurons. Science, 2023, 379, 376-381.	12.6	11
241	A melanopsin ganglion cell subtype forms a dorsal retinal mosaic projecting to the supraoptic nucleus. Nature Communications, 2023, 14, .	12.8	5
243	The multistable melanopsins of mammals. Frontiers in Ophthalmology, 0, 3, .	0.5	3
244	Intrinsic Phase Difference between Cone and Melanopsin Signals in the Pupillary Pathway. , 2023, , .		0
246	Three Blind Moles: Molecular Evolutionary Insights on the Tempo and Mode of Convergent Eye Degeneration in Notoryctes typhlops (Southern Marsupial Mole) and Two Chrysochlorids (Golden) Tj ETQq1 1 0.	78 ቋ. 314 rg	gBTL/Overloc
247	Impact of repeated short light exposures on sustained pupil responses in an <scp>fMRI</scp> environment. Journal of Sleep Research, 0, , .	3.2	2
248	Melanopsin's Newly Identified Functions Related to Behavioral Light Adaptation. International Journal of Advanced Research in Science, Communication and Technology, 0, , 521-539.	0.0	Ο
249	Coexistence within one cell of microvillous and ciliary phototransductions across M1- through M6-IpRGCs. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120,	7.1	0
250	Blue Light of the Digital Era: A Comparative Study of Devices. Photonics, 2024, 11, 93.	2.0	0

#	Article	IF	CITATIONS
251	Efficacy and specificity of melanopsin reporters for retinal ganglion cells. Journal of Comparative Neurology, 2024, 532, .	1.6	0