Runx1 is required for the endothelial to haematopoietic

Nature 457, 887-891 DOI: 10.1038/nature07619

Citation Report

#	Article	IF	CITATIONS
1	Blood feuds. Nature Reports Stem Cells, 0, , .	0.1	0
2	Developmental trajectories in early hematopoiesis: Figure 1 Genes and Development, 2009, 23, 2366-2370.	2.7	19
3	Common features of megakaryocytes and hematopoietic stem cells: What's the connection?. Journal of Cellular Biochemistry, 2009, 107, 857-864.	1.2	66
4	RUNX genes find a niche in stem cell biology. Journal of Cellular Biochemistry, 2009, 108, 14-21.	1.2	27
5	Cell cycle and developmental control of hematopoiesis by Runx1. Journal of Cellular Physiology, 2009, 219, 520-524.	2.0	86
6	Enhanced Hematovascular Contribution of SCL 3′ Enhancer Expressing Fetal Liver Cells Uncovers Their Potential to Integrate in Extramedullary Adult Niches Â. Stem Cells, 2010, 28, 100-112.	1.4	6
7	Restoration of Runx1 Expression in the Tie2 Cell Compartment Rescues Definitive Hematopoietic Stem Cells and Extends Life of Runx1 Knockout Animals Until Birth. Stem Cells, 2009, 27, 1616-1624.	1.4	36
8	Forcing cells to change lineages. Nature, 2009, 462, 587-594.	13.7	817
9	Birth of the blood cell. Nature, 2009, 457, 801-803.	13.7	32
10	Perivascular multi-lineage progenitor cells in human organs: Regenerative units, cytokine sources or both?. Cytokine and Growth Factor Reviews, 2009, 20, 429-434.	3.2	148
11	Hedgehog and Bmp Polarize Hematopoietic Stem Cell Emergence in the Zebrafish Dorsal Aorta. Developmental Cell, 2009, 16, 909-916.	3.1	126
12	Conditional Cre/LoxP strategies for the study of hematopoietic stem cell formation. Blood Cells, Molecules, and Diseases, 2009, 43, 6-11.	0.6	14
13	Alternative Runx1 promoter usage in mouse developmental hematopoiesis. Blood Cells, Molecules, and Diseases, 2009, 43, 35-42.	0.6	52
14	RUNX factors in development: Lessons from invertebrate model systems. Blood Cells, Molecules, and Diseases, 2009, 43, 43-48.	0.6	31
15	TEL-AML1 Corrupts Hematopoietic Stem Cells to Persist in the Bone Marrow and Initiate Leukemia. Cell Stem Cell, 2009, 5, 43-53.	5.2	98
16	Lessons from the niche for generation and expansion of hematopoietic stem cells. Drug Discovery Today: Therapeutic Strategies, 2009, 6, 135-140.	0.5	13
17	Regulation of Gene Expression in Peripheral T Cells by Runx Transcription Factors. Advances in Immunology, 2009, 104, 1-23.	1.1	20
18	Decoding the Hemogenic Endothelium in Mammals. Cell Stem Cell, 2009, 4, 189-190.	5.2	24

ITATION REDO

	CITATION REPORT			
Article		IF	CITATIONS	
Hematopoietic cell development in the zebrafish embryo. Current Opinion in Hemato 243-248.	ogy, 2009, 16,	1.2	68	
Early chromatin unfolding by RUNX1: a molecular explanation for differential requiren specification versus maintenance of the hematopoietic gene expression program. Blo 299-309.	nents during od, 2009, 114,	0.6	113	
The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic spec Runx1 promoters. Blood, 2009, 113, 5121-5124.	ificity to both	0.6	61	
The differential activities of Dunyl promotors define milestones during embryonic her	matanaiasis			

21	The mouse Runx1 +23 hematopoietic stem cell enhancer confers hematopoietic specificity to both Runx1 promoters. Blood, 2009, 113, 5121-5124.	0.6	61
22	The differential activities of Runx1 promoters define milestones during embryonic hematopoiesis. Blood, 2009, 114, 5279-5289.	0.6	108
23	Identification of novel regulators of hematopoietic stem cell development through refinement of stem cell localization and expression profiling. Blood, 2009, 114, 4645-4653.	0.6	59
25	Research Highlights. Imaging in Medicine, 2010, 2, 129-130.	0.0	3
26	Placenta as a newly identified source of hematopoietic stem cells. Current Opinion in Hematology, 2010, 17, 313-318.	1.2	25
27	Multifaceted role of vascular endothelial growth factor signaling in adult tissue physiology: an emerging concept with clinical implications. Current Opinion in Hematology, 2010, 17, 1.	1.2	22
28	Development of multilineage adult hematopoiesis in the zebrafish with a runx1 truncation mutation. Blood, 2010, 115, 2806-2809.	0.6	76
29	Notch signaling distinguishes 2 waves of definitive hematopoiesis in the zebrafish embryo. Blood, 2010, 115, 2777-2783.	0.6	97
30	Hey2 acts upstream of Notch in hematopoietic stem cell specification in zebrafish embryos. Blood, 2010, 116, 2046-2056.	0.6	39
31	Live imaging of Runx1 expression in the dorsal aorta tracks the emergence of blood progenitors from endothelial cells. Blood, 2010, 116, 909-914.	0.6	159
32	Platelets regulate lymphatic vascular development through CLEC-2–SLP-76 signaling. Blood, 2010, 116, 661-670.	0.6	396
33	VE-cadherin expression allows identification of a new class of hematopoietic stem cells within human embryonic liver. Blood, 2010, 116, 4444-4455.	0.6	41
34	Vascular remodeling of the vitelline artery initiates extravascular emergence of hematopoietic clusters. Blood, 2010, 116, 3435-3444.	0.6	68
36	Blood cell generation from the hemangioblast. Journal of Molecular Medicine, 2010, 88, 167-172.	1.7	63
37	The role of Smad signaling in vascular and hematopoietic development revealed by studies using genetic mouse models. Science China Life Sciences, 2010, 53, 485-489.	2.3	7
38	Differentiation of mesodermal cells from pluripotent stem cells. International Journal of Hematology, 2010, 91, 373-383.	0.7	13

#

19

ARTICLE IF CITATIONS # Endothelial cells mediate the regeneration of hematopoietic stem cells. Stem Cell Research, 2010, 4, 39 0.3 37 17-24. Notch signalling and haematopoietic stem cell formation during embryogenesis. Journal of Cellular Physiology, 2010, 222, 11-16. Core binding factor at the crossroads: Determining the fate of the HSC. Journal of Cellular 41 2.0 62 Physiology, 2010, 222, 50-56. Gene transfer by electroporation into hemogenic endothelium in the avian embryo. Developmental 0.8 Dynamics, 2010, 239, 1748-1754. The contribution of the Tie2⁺ lineage to primitive and definitive hematopoietic cells. 43 0.8 146 Genesis, 2010, 48, 563-567. A <i>Runx1</i> Intronic Enhancer Marks Hemogenic Endothelial Cells and Hematopoietic Stem Cells Â. 1.4 Stem Cells, 2010, 28, 1869-1881. Hematopoietic differentiation from human ESCs as a model for developmental studies and future clinical translations. Invited review following the FEBS Anniversary Prize received on 5 July 2009 at 45 2.2 12 the 34th FEBS Congress in Prague. FEBS Journal, 2010, 277, 5014-5025. Ontogeny of haematopoiesis: recent advances and open questions. British Journal of Haematology, 1.2 46 19 2010, 148, 343-355. Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell 47 2.6 46 differentiation in Down's syndrome. Oncogene, 2010, 29, 6102-6114. Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis. Leukemia, 2010, 24, 3.3 1732-1741. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature, 2010, 49 885 13.7464, 108-111. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature, 2010, 464, 814 112-115. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature, 2010, 51 13.7 792 464, 116-120. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nature Biotechnology, 2010, 28, 1123-1128. 9.4 244 Hematopoietic stem cell emergence in the conceptus and the role of Runx1. International Journal of 53 0.3 69 Developmental Biology, 2010, 54, 1151-1163. Genetic control of hematopoietic development in Xenopus and zebrafish. International Journal of Developmental Biology, 2010, 54, 1139-1149. 54 50 Aortic remodelling during hemogenesis: is the chicken paradigm unique?. International Journal of 55 0.3 14 Developmental Biology, 2010, 54, 1045-1054. The Notch pathway in the developing hematopoietic system. International Journal of Developmental Biology, 2010, 54, 1175-1188.

#	Article	IF	CITATIONS
57	Definitive human and mouse hematopoiesis originates from the embryonic endothelium: a new class of HSCs based on VE-cadherin expression. International Journal of Developmental Biology, 2010, 54, 1165-1173.	0.3	39
58	Allantois and placenta as developmental sources of hematopoietic stem cells. International Journal of Developmental Biology, 2010, 54, 1079-1087.	0.3	12
59	Hematopoietic stem cell development in the placenta. International Journal of Developmental Biology, 2010, 54, 1089-1098.	0.3	49
60	The origin and fate of yolk sac hematopoiesis: application of chimera analyses to developmental studies. International Journal of Developmental Biology, 2010, 54, 1019-1031.	0.3	40
61	Dissecting hematopoietic differentiation using the embryonic stem cell differentiation model. International Journal of Developmental Biology, 2010, 54, 991-1002.	0.3	17
62	Runx1 Directly Promotes Proliferation of Hair Follicle Stem Cells and Epithelial Tumor Formation in Mouse Skin. Molecular and Cellular Biology, 2010, 30, 2518-2536.	1.1	107
63	Three-dimensional cartography of hematopoietic clusters in the vasculature of whole mouse embryos. Development (Cambridge), 2010, 137, 3651-3661.	1.2	215
64	Epigenetic mechanisms regulating normal and malignant haematopoiesis: new therapeutic targets for clinical medicine. Expert Reviews in Molecular Medicine, 2010, 12, e6.	1.6	12
65	Endothelial progenitors in pulmonary hypertension: new pathophysiology and therapeutic implications. European Respiratory Journal, 2010, 35, 418-425.	3.1	60
66	Clonal Analysis Reveals a Common Progenitor for Endothelial, Myeloid, and Lymphoid Precursors in Umbilical Cord Blood. Circulation Research, 2010, 107, 1460-1469.	2.0	24
67	Interleukin-3 promotes hemangioblast development in mouse aorta-gonad-mesonephros region. Haematologica, 2010, 95, 875-883.	1.7	15
68	Imaging the founder of adult hematopoiesis in the mouse embryo aorta. Cell Cycle, 2010, 9, 2489-2490.	1.3	9
69	Identification and In Vivo Analysis of Murine Hematopoietic Stem Cells. Methods in Enzymology, 2010, 476, 429-447.	0.4	4
70	Placenta as a source of hematopoietic stem cells. Trends in Molecular Medicine, 2010, 16, 361-367.	3.5	43
71	Chromatin regulation by RUNX1. Blood Cells, Molecules, and Diseases, 2010, 44, 287-290.	0.6	22
72	Visualizing Blood Cell Emergence from Aortic Endothelium. Cell Stem Cell, 2010, 6, 289-290.	5.2	14
73	Adult Endothelial Progenitor Cells Retain Hematopoisis Potential. Transplantation Proceedings, 2010, 42, 3745-3749.	0.3	8
74	Nonredundant roles for Runx1 alternative promoters reflect their activity at discrete stages of developmental hematopoiesis. Blood, 2010, 115, 3042-3050.	0.6	70

#	Article	IF	CITATIONS
75	Hierarchical organization and early hematopoietic specification of the developing HSC lineage in the AGM region. Journal of Experimental Medicine, 2011, 208, 1305-1315.	4.2	223
76	ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification. Genes and Development, 2011, 25, 251-262.	2.7	99
77	Notch signaling in mammalian hematopoietic stem cells. Leukemia, 2011, 25, 1525-1532.	3.3	82
78	Embryonic origin of the adult hematopoietic system: advances and questions. Development (Cambridge), 2011, 138, 1017-1031.	1.2	327
79	Cellular Dissection of Zebrafish Hematopoiesis. Methods in Cell Biology, 2011, 101, 75-110.	0.5	72
80	CD41 is developmentally regulated and differentially expressed on mouse hematopoietic stem cells. Blood, 2011, 117, 5088-5091.	0.6	60
81	RUNX1 regulates theCD34gene in haematopoietic stem cells by mediating interactions with a distal regulatory element. EMBO Journal, 2011, 30, 4059-4070.	3.5	26
82	Transcriptional repressors, corepressors and chromatin modifying enzymes in T cell development. Cytokine, 2011, 53, 271-281.	1.4	6
83	A systems approach to analyze transcription factors in mammalian cells. Methods, 2011, 53, 151-162.	1.9	23
84	Erythroid/Myeloid Progenitors and Hematopoietic Stem Cells Originate from Distinct Populations of Endothelial Cells. Cell Stem Cell, 2011, 9, 541-552.	5.2	216
85	Hemogenic endothelium: Origins, regulation, and implications for vascular biology. Seminars in Cell and Developmental Biology, 2011, 22, 1036-1047.	2.3	46
86	The Haematopoietic Stem Cell Niche: New Insights into the Mechanisms Regulating Haematopoietic Stem Cell Behaviour. Stem Cells International, 2011, 2011, 1-10.	1.2	36
87	Leukocyte Telomere Dynamics, Human Aging, and Life Span. , 2011, , 163-176.		1
89	Characterization of a Weak Allele of Zebrafish cloche Mutant. PLoS ONE, 2011, 6, e27540.	1.1	4
90	Runx1 Loss Minimally Impacts Long-Term Hematopoietic Stem Cells. PLoS ONE, 2011, 6, e28430.	1.1	76
91	Regulatory Circuitries Coordinated by Transcription Factors and microRNAs at the Cornerstone of Hematopoietic Stem Cell Self-Renewal and Differentiation. Current Stem Cell Research and Therapy, 2011, 6, 142-161.	0.6	13
92	The Role of Circulating Endothelial Progenitor Cells in Tumor Angiogenesis. Current Stem Cell Research and Therapy, 2011, 6, 115-121.	0.6	15
93	NANOG induction of fetal liver kinase-1 (FLK1) transcription regulates endothelial cell proliferation and angiogenesis. Blood, 2011, 117, 1761-1769.	0.6	39

#	ARTICLE	IF	CITATIONS
94	SIRT1 deficiency compromises mouse embryonic stem cell hematopoietic differentiation, and embryonic and adult hematopoiesis in the mouse. Blood, 2011, 117, 440-450.	0.6	95
95	The EMT regulator Zeb2/Sip1 is essential for murine embryonic hematopoietic stem/progenitor cell differentiation and mobilization. Blood, 2011, 117, 5620-5630.	0.6	94
96	VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood, 2011, 117, 3709-3719.	0.6	115
97	Genome-wide analysis of target genes regulated by HoxB4 in hematopoietic stem and progenitor cells developing from embryonic stem cells. Blood, 2011, 117, e142-e150.	0.6	42
98	Kit-Shp2-Kit signaling acts to maintain a functional hematopoietic stem and progenitor cell pool. Blood, 2011, 117, 5350-5361.	0.6	78
99	Three-dimensional imaging of whole midgestation murine embryos shows an intravascular localization for all hematopoietic clusters. Blood, 2011, 117, 6132-6134.	0.6	39
100	GATA3 is redundant for maintenance and self-renewal of hematopoietic stem cells. Blood, 2011, 118, 1291-1293.	0.6	23
101	Hoxb4-YFP reporter mouse model: a novel tool for tracking HSC development and studying the role of Hoxb4 in hematopoiesis. Blood, 2011, 117, 3521-3528.	0.6	30
102	HoxA3 is an apical regulator of haemogenic endothelium. Nature Cell Biology, 2011, 13, 72-78.	4.6	72
103	Stem cell self-renewal: lessons from bone marrow, gut and iPS toward clinical applications. Leukemia, 2011, 25, 1095-1102.	3.3	26
104	Identification and characterization of a novel transcriptional target of RUNX1/AML1 at the onset of hematopoietic development. Blood, 2011, 118, 594-597.	0.6	10
105	Stem cells and the vasculature. Nature Medicine, 2011, 17, 1437-1443.	15.2	150
106	Resident Vascular Progenitor Cells—Diverse Origins, Phenotype, and Function. Journal of Cardiovascular Translational Research, 2011, 4, 161-176.	1.1	80
107	In vivo imaging of hematopoietic stem cell development in the zebrafish. Frontiers of Medicine, 2011, 5, 239-247.	1.5	14
108	Concise Review: Alchemy of Biology: Generating Desired Cell Types from Abundant and Accessible Cells. Stem Cells, 2011, 29, 1933-1941.	1.4	41
109	Functions of Runx in IgA class switch recombination. Journal of Cellular Biochemistry, 2011, 112, 409-414.	1.2	5
110	The Thrombopoietin/MPL pathway in hematopoiesis and leukemogenesis. Journal of Cellular Biochemistry, 2011, 112, 1491-1498.	1.2	42
111	Plasticity and Maintenance of Hematopoietic Stem Cells During Development. Recent Patents on Biotechnology, 2011, 5, 40-53.	0.4	19

	CITATION	Report	
#	Article	IF	CITATIONS
113	The ERGonomics of hematopoietic stem cell self-renewal. Genes and Development, 2011, 25, 289-293.	2.7	7
114	Return to youth with Sox17: Figure 1 Genes and Development, 2011, 25, 1557-1562.	2.7	6
115	Endothelial Fate and Angiogenic Properties of Human CD34+Progenitor Cells in Zebrafish. Arteriosclerosis, Thrombosis, and Vascular Biology, 2011, 31, 1589-1597.	1.1	30
116	Embryonic day 9 yolk sac and intra-embryonic hemogenic endothelium independently generate a B-1 and marginal zone progenitor lacking B-2 potential. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 1468-1473.	3.3	243
117	Phosphorylation of RUNX1 by Cyclin-dependent Kinase Reduces Direct Interaction with HDAC1 and HDAC3. Journal of Biological Chemistry, 2011, 286, 208-215.	1.6	49
118	Hematopoietic Stem Cell Development: Using the Zebrafish to Identify the Signaling Networks and Physical Forces Regulating Hematopoiesis. Methods in Cell Biology, 2011, 105, 117-136.	0.5	11
119	Differentiation of an embryonic stem cell to hemogenic endothelium by defined factors: essential role of bone morphogenetic protein 4. Development (Cambridge), 2011, 138, 2833-2843.	1.2	35
120	The Caenorhabditis elegans GATA Factor ELT-1 Works through the Cell Proliferation Regulator BRO-1 and the Fusogen EFF-1 to Maintain the Seam Stem-Like Fate. PLoS Genetics, 2011, 7, e1002200.	1.5	37
121	Development of the Renal Arterioles. Journal of the American Society of Nephrology: JASN, 2011, 22, 2156-2165.	3.0	127
122	A Runx1-Smad6 Rheostat Controls Runx1 Activity during Embryonic Hematopoiesis. Molecular and Cellular Biology, 2011, 31, 2817-2826.	1.1	21
123	RUNX1 reshapes the epigenetic landscape at the onset of haematopoiesis. EMBO Journal, 2012, 31, 4318-4333.	3.5	158
124	A long way to stemness. Cell Cycle, 2012, 11, 2965-2966.	1.3	4
125	TGFβ inhibition enhances the generation of hematopoietic progenitors from human ES cell-derived hemogenic endothelial cells using a stepwise strategy. Cell Research, 2012, 22, 194-207.	5.7	72
126	The vascular niche: home for normal and malignant hematopoietic stem cells. Leukemia, 2012, 26, 54-62.	3.3	119
127	Regulation of endothelial and hematopoietic development by the ETS transcription factor Etv2. Current Opinion in Hematology, 2012, 19, 199-205.	1.2	35
128	Myeloid Cells and Lymphangiogenesis. Cold Spring Harbor Perspectives in Medicine, 2012, 2, a006494-a006494.	2.9	31
129	Early ontogenic origin of the hematopoietic stem cell lineage. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4515-4520.	3.3	50
130	Hematopoietic stem cell development requires transient Wnt/β-catenin activity. Journal of Experimental Medicine, 2012, 209, 1457-1468.	4.2	105

#	ARTICLE	IF	CITATIONS
131	a006692-a006692.	2.9	339
132	SOX7 regulates the expression of VE-cadherin in the haemogenic endothelium at the onset of haematopoietic development. Development (Cambridge), 2012, 139, 1587-1598.	1.2	70
133	Hematopoietic Stem Cell Development, Niches, and Signaling Pathways. Bone Marrow Research, 2012, 2012, 1-16.	1.7	77
134	Novel Insights into the Genetic Controls of Primitive and Definitive Hematopoiesis from Zebrafish Models. Advances in Hematology, 2012, 2012, 1-13.	0.6	24
135	Molecular genetics of acute myeloid leukemia. , 0, , 204-238.		2
136	Hematopoietic stem cells: to be or Notch to be. Blood, 2012, 119, 3226-3235.	0.6	116
137	GFI1 and GFI1B control the loss of endothelial identity of hemogenic endothelium during hematopoietic commitment. Blood, 2012, 120, 314-322.	0.6	144
138	A critical role for endoglin in the emergence of blood during embryonic development. Blood, 2012, 119, 5417-5428.	0.6	36
139	Autonomous murine T-cell progenitor production in the extra-embryonic yolk sac before HSC emergence. Blood, 2012, 119, 5706-5714.	0.6	145
140	Expression of the runt homology domain of RUNX1 disrupts homeostasis of hematopoietic stem cells and induces progression to myelodysplastic syndrome. Blood, 2012, 120, 4028-4037.	0.6	14
141	Endothelial cells provide an instructive niche for the differentiation and functional polarization of M2-like macrophages. Blood, 2012, 120, 3152-3162.	0.6	152
142	Meis1 preserves hematopoietic stem cells in mice by limiting oxidative stress. Blood, 2012, 120, 4973-4981.	0.6	86
143	Regeneration of Cardiac Muscle and Hematopoietic Tissues. , 2012, , 161-182.		0
144	Mouse Embryonic Head as a Site for Hematopoietic Stem Cell Development. Cell Stem Cell, 2012, 11, 663-675.	5.2	164
145	Embryonic development of hematopoietic stem cells: implications for clinical use. Regenerative Medicine, 2012, 7, 349-368.	0.8	6
146	Mechanotransduction in embryonic vascular development. Biomechanics and Modeling in Mechanobiology, 2012, 11, 1149-1168.	1.4	45
147	Scl Represses Cardiomyogenesis in Prospective Hemogenic Endothelium and Endocardium. Cell, 2012, 150, 590-605.	13.5	142
148	Connectivity mapping identifies HDAC inhibitors for the treatment of t(4;11)-positive infant acute lymphoblastic leukemia. Leukemia, 2012, 26, 682-692.	3.3	66

#	Article	IF	CITATIONS
149	The viral theory of schizophrenia revisited: Abnormal placental gene expression and structural changes with lack of evidence for H1N1 viral presence in placentae of infected mice or brains of exposed offspring. Neuropharmacology, 2012, 62, 1290-1298.	2.0	64
150	Harnessing the Potential of Adult Cardiac Stem Cells: Lessons from Haematopoiesis, the Embryo and the Niche. Journal of Cardiovascular Translational Research, 2012, 5, 631-640.	1.1	12
151	Runx1 deletion or dominant inhibition reduces Cebpa transcription via conserved promoter and distal enhancer sites to favor monopoiesis over granulopoiesis. Blood, 2012, 119, 4408-4418.	0.6	87
152	Direct Recruitment of Polycomb Repressive Complex 1 to Chromatin by Core Binding Transcription Factors. Molecular Cell, 2012, 45, 330-343.	4.5	188
153	Focal adhesion kinase regulation of neovascularization. Microvascular Research, 2012, 83, 64-70.	1.1	24
154	Origin of blood cells and HSC production in the embryo. Trends in Immunology, 2012, 33, 215-223.	2.9	76
155	Trophoblasts Regulate the Placental Hematopoietic Niche through PDGF-B Signaling. Developmental Cell, 2012, 22, 651-659.	3.1	47
156	Thrombin Receptor Regulates Hematopoiesis and Endothelial-to-Hematopoietic Transition. Developmental Cell, 2012, 22, 1092-1100.	3.1	38
157	Runx3 Protects Gastric Epithelial Cells Against Epithelial-Mesenchymal Transition-Induced Cellular Plasticity and Tumorigenicity. Stem Cells, 2012, 30, 2088-2099.	1.4	80
158	Cell signalling pathways that mediate haematopoietic stem cell specification. International Journal of Biochemistry and Cell Biology, 2012, 44, 2175-2184.	1.2	12
159	The Diaphragms of Fenestrated Endothelia: Gatekeepers of Vascular Permeability and Blood Composition. Developmental Cell, 2012, 23, 1203-1218.	3.1	183
160	Signaling from the Sympathetic Nervous System Regulates Hematopoietic Stem Cell Emergence during Embryogenesis. Cell Stem Cell, 2012, 11, 554-566.	5.2	106
161	The Notch Pathway in Hematopoietic Stem Cells. Current Topics in Microbiology and Immunology, 2012, 360, 1-18.	0.7	31
162	Hematopoiesis. , 0, , 11-24.		1
163	RUNX1 and RUNX1-ETO: roles in hematopoiesis and leukemogenesis. Frontiers in Bioscience - Landmark, 2012, 17, 1120.	3.0	142
164	Developmental Biology of the Hematologic System. , 2012, , 1047-1055.		0
165	The Flk1-Cre-Mediated Deletion of ETV2 Defines Its Narrow Temporal Requirement During Embryonic Hematopoietic Development. Stem Cells, 2012, 30, 1521-1531.	1.4	49
166	Notch Signaling and Development of the Hematopoietic System. Advances in Experimental Medicine and Biology, 2012, 727, 71-88.	0.8	29

#	Article	IF	CITATIONS
167	Timeâ€lapse microscopy of macrophages during embryonic vascular development. Developmental Dynamics, 2012, 241, 1423-1431.	0.8	16
168	Runx1 dose-dependently regulates endochondral ossification during skeletal development and fracture healing. Journal of Bone and Mineral Research, 2012, 27, 1585-1597.	3.1	57
169	Pathways involved in Drosophila and human cancer development: the Notch, Hedgehog, Wingless, Runt, and Trithorax pathway. Annals of Hematology, 2012, 91, 645-669.	0.8	39
170	A Src family kinase–Shp2 axis controls RUNX1 activity in megakaryocyte and T-lymphocyte differentiation. Genes and Development, 2012, 26, 1587-1601.	2.7	52
171	Characterization of hemangioblast in umbilical arteries of mid-gestation mouse embryos. International Journal of Hematology, 2012, 95, 632-639.	0.7	1
172	On the origin of hematopoietic stem cells: Progress and controversy. Stem Cell Research, 2012, 8, 1-13.	0.3	43
173	The vascular origin of hematopoietic cells. Developmental Biology, 2012, 362, 1-10.	0.9	25
174	STELLA-positive subregions of the primitive streak contribute to posterior tissues of the mouse gastrula. Developmental Biology, 2012, 363, 201-218.	0.9	25
175	The transcriptional programme controlled by Runx1 during early embryonic blood development. Developmental Biology, 2012, 366, 404-419.	0.9	43
176	A role for RUNX1 in hematopoiesis and myeloid leukemia. International Journal of Hematology, 2013, 97, 726-734.	0.7	87
177	Notch1 activation in embryonic VE-cadherin populations selectively blocks hematopoietic stem cell generation and fetal liver hematopoiesis. Transgenic Research, 2013, 22, 403-410.	1.3	10
178	ETS transcription factors in hematopoietic stem cell development. Blood Cells, Molecules, and Diseases, 2013, 51, 248-255.	0.6	49
179	Runx signaling and dental stem cells. Journal of Oral Biosciences, 2013, 55, 6-9.	0.8	1
180	New insights into the role of Runx1 in epithelial stem cell biology and pathology. Journal of Cellular Biochemistry, 2013, 114, 985-993.	1.2	59
181	Transcriptional Control of Macrophage Identity, Self-Renewal, and Function. Advances in Immunology, 2013, 120, 269-300.	1.1	34
182	Erythro-myeloid progenitors: "Definitive―hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells, Molecules, and Diseases, 2013, 51, 220-225.	0.6	119
183	Generation of Hematopoietic Stem Cells from Purified Embryonic Endothelial Cells by a Simple and Efficient Strategy. Journal of Genetics and Genomics, 2013, 40, 557-563.	1.7	10
184	Notch and Wnt signaling in the emergence of hematopoietic stem cells. Blood Cells, Molecules, and Diseases, 2013, 51, 264-270.	0.6	57

#	Article	IF	Citations
185	Hemogenic endothelium: A vessel for blood production. International Journal of Biochemistry and Cell Biology, 2013, 45, 692-695.	1.2	23
186	Erythropoiesis: Development and Differentiation. Cold Spring Harbor Perspectives in Medicine, 2013, 3, a011601-a011601.	2.9	258
187	A short history of hemogenic endothelium. Blood Cells, Molecules, and Diseases, 2013, 51, 206-212.	0.6	62
188	Retinoic Acid Signaling Is Essential for Embryonic Hematopoietic Stem Cell Development. Cell, 2013, 155, 215-227.	13.5	170
189	<i>Gata2</i> is required for HSC generation and survival. Journal of Experimental Medicine, 2013, 210, 2843-2850.	4.2	202
190	Hematopoietic specification from human pluripotent stem cells: current advances and challenges toward de novo generation of hematopoietic stem cells. Blood, 2013, 122, 4035-4046.	0.6	117
191	Reprogrammed Cells for Disease Modeling and Regenerative Medicine. Annual Review of Medicine, 2013, 64, 277-290.	5.0	124
192	Signaling axis involving Hedgehog, Notch, and Scl promotes the embryonic endothelial-to-hematopoietic transition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E141-E150.	3.3	58
193	Biomechanical force in blood development: Extrinsic physical cues drive pro-hematopoietic signaling. Differentiation, 2013, 86, 92-103.	1.0	45
194	Region-specific Etv2 ablation revealed the critical origin of hemogenic capacity from Hox6-positive caudal-lateral primitive mesoderm. Experimental Hematology, 2013, 41, 567-581.e9.	0.2	17
195	Control of Hematopoietic Stem Cell Emergence by Antagonistic Functions of Ribosomal Protein Paralogs. Developmental Cell, 2013, 24, 411-425.	3.1	81
196	Common Developmental Pathway for Primitive Erythrocytes and Multipotent Hematopoietic Progenitors in Early Mouse Development. Stem Cell Reports, 2013, 1, 590-603.	2.3	10
197	Endothelio-Mesenchymal Interaction Controls runx1 Expression and Modulates the notch Pathway to Initiate Aortic Hematopoiesis. Developmental Cell, 2013, 24, 600-611.	3.1	91
198	Hemogenic Endothelial Cell Specification Requires c-Kit, Notch Signaling, and p27-Mediated Cell-Cycle Control. Developmental Cell, 2013, 27, 504-515.	3.1	86
199	Dorso-ventral contributions in the formation of the embryonic aorta and the control of aortic hematopoiesis. Blood Cells, Molecules, and Diseases, 2013, 51, 232-238.	0.6	17
200	Dorsal aorta formation: Separate origins, lateralâ€ŧoâ€medial migration, and remodeling. Development Growth and Differentiation, 2013, 55, 113-129.	0.6	51
202	Stem cells living with a Notch. Development (Cambridge), 2013, 140, 689-704.	1.2	252
203	Hematopoiesis. Biomathematical and Biomechanical Modeling of the Circulatory and Ventilatory Systems, 2013, , 19-52.	0.1	0

#	Article	IF	Citations
204	Signalling pathways that control vertebrate haematopoietic stem cell specification. Nature Reviews Immunology, 2013, 13, 336-348.	10.6	126
205	The expression of Sox17 identifies and regulates haemogenic endothelium. Nature Cell Biology, 2013, 15, 502-510.	4.6	143
206	Defining the path to hematopoietic stem cells. Nature Biotechnology, 2013, 31, 416-418.	9.4	47
207	Mathematical model of a gene regulatory network reconciles effects of genetic perturbations on hematopoietic stem cell emergence. Developmental Biology, 2013, 379, 258-269.	0.9	21
208	Transcriptional Regulation of Haematopoietic Stem Cells. Advances in Experimental Medicine and Biology, 2013, 786, 187-212.	0.8	47
209	Early dynamic fate changes in haemogenic endothelium characterized at the single-cell level. Nature Communications, 2013, 4, 2924.	5.8	158
210	Transcriptional hierarchies regulating early blood cell development. Blood Cells, Molecules, and Diseases, 2013, 51, 239-247.	0.6	18
211	The biochemistry of hematopoietic stem cell development. Biochimica Et Biophysica Acta - General Subjects, 2013, 1830, 2395-2403.	1.1	42
212	Long and Short Non-Coding RNAs as Regulators of Hematopoietic Differentiation. International Journal of Molecular Sciences, 2013, 14, 14744-14770.	1.8	58
213	RUNX1: A MicroRNA Hub in Normal and Malignant Hematopoiesis. International Journal of Molecular Sciences, 2013, 14, 1566-1588.	1.8	39
214	CTCF depletion alters chromatin structure and transcription of myeloid-specific factors. Journal of Molecular Cell Biology, 2013, 5, 308-322.	1.5	7
215	Deciphering the hierarchy of angiohematopoietic progenitors from human pluripotent stem cells. Cell Cycle, 2013, 12, 720-727.	1.3	28
216	Endothelial Cell Origin, Differentiation, Heterogeneity and Function. , 2013, , 3-26.		3
217	Distinct temporal requirements for Runx1 in hematopoietic progenitors and stem cells. Development (Cambridge), 2013, 140, 3765-3776.	1.2	78
218	A continuum of transcriptional identities visualized by combinatorial fluorescent <i>in situ</i> hybridization. Development (Cambridge), 2013, 140, 216-225.	1.2	22
219	Ddx46 Is Required for Multi-Lineage Differentiation of Hematopoietic Stem Cells in Zebrafish. Stem Cells and Development, 2013, 22, 2532-2542.	1.1	26
220	Regulation of Endothelial Cell Differentiation and Specification. Circulation Research, 2013, 112, 1272-1287.	2.0	239
222	Identification of a novel fusion gene involving <i>RUNX1</i> and the antisense strand of <i>SV2B</i> in a <i>BCRâ€ABL1</i> â€positive acute leukemia. Genes Chromosomes and Cancer, 2013, 52, 1114-1122.	1.5	9

ARTICLE IF CITATIONS # <i>Gata2</i> cis-element is required for hematopoietic stem cell generation in the mammalian embryo. 223 4.2 127 Journal of Experimental Medicine, 2013, 210, 2833-2842. Hemogenic endothelium specification and hematopoietic stem cell maintenance employ distinct Scl 224 1.2 isoforms. Development (Cambridge), 2013, 140, 3977-3985. 225 Hemogenic endothelium in a dish. Blood, 2013, 121, 417-418. 0.6 1 Mouse extraembryonic arterial vessels harbor precursors capable of maturing into definitive HSCs. 84 Blood, 2013, 122, 2338-2345. Role of SOX17 in hematopoietic development from human embryonic stem cells. Blood, 2013, 121, 227 0.6 87 447-458. RUNX1a enhances hematopoietic lineage commitment from human embryonic stem cells and inducible pluripotent stem cells. Blood, 2013, 121, 2882-2890. 229 Fev regulates hematopoietic stem cell development via ERK signaling. Blood, 2013, 122, 367-375. 0.6 48 Glucose metabolism impacts the spatiotemporal onset and magnitude of HSC induction in vivo. Blood, 230 0.6 96 2013, 121, 2483-2493. Hif-2α is not essential for cell-autonomous hematopoietic stem cell maintenance. Blood, 2013, 122, 231 0.6 75 1741-1745. DNA methylation of Runx1 regulatory regions correlates with transition from primitive to definitive hematopoietic potential in vitro and in vivo. Blood, 2013, 122, 2978-2986. CEH-20/Pbx and UNC-62/Meis function upstream of <i>rnt-1</i>/Runx to regulate asymmetric divisions 233 17 0.6 of the <i>C. elegans </i> stem-like seam cells. Biology Open, 2013, 2, 718-727. Dlk1 is a negative regulator of emerging hematopoietic stem and progenitor cells. Haematologica, 234 2013, 98, 163-171. Runx Transcription Factors Repress Human and Murine c-Myc Expression in a DNA-Binding and 235 1.1 9 C-Terminally Dependent Manner. PLoS ONE, 2013, 8, e69083. Contributions of the Histone Arginine Methyltransferase PRMT6 to the Epigenetic Function of RUNX1. 0.4 Critical Reviews in Eukaryotic Gene Expression, 2013, 23, 265-274. 238 Hematopoietic stem cells and their niches., 0, , 44-63. 1 Runx1 is required for progression of CD41+ embryonic precursors into HSCs but not prior to this. 1.2 36 Development (Cambridge), 2014, 141, 3319-3323. Fusing VE-Cadherin to α-Catenin Impairs Fetal Liver Hematopoiesis and Lymph but Not Blood Vessel 240 1.1 19 Formation. Molecular and Cellular Biology, 2014, 34, 1634-1648. A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of 241 1.2 hematopoietic specification. Development (Cambridge), 2014, 141, 2391-2401.

#	Article	IF	CITATIONS
242	Lymphoid Progenitor Emergence in the Murine Embryo and Yolk Sac Precedes Stem Cell Detection. Stem Cells and Development, 2014, 23, 1168-1177.	1.1	56
243	Manipulation of Hematopoietic Stem Cells for Regenerative Medicine. Anatomical Record, 2014, 297, 111-120.	0.8	6
244	Cell interactions and cell signaling during hematopoietic development. Experimental Cell Research, 2014, 329, 200-206.	1.2	18
245	A conditional knockout mouse model reveals endothelial cells as the principal and possibly exclusive source of plasma factor VIII. Blood, 2014, 123, 3706-3713.	0.6	145
246	Interferon Gamma Signaling Positively Regulates Hematopoietic Stem Cell Emergence. Developmental Cell, 2014, 31, 640-653.	3.1	158
247	Embryonic Stem Cell Differentiation $\hat{a} \in$ A Model System to Study Embryonic Haematopoiesis. , 2014, , .		0
248	RUNX1 is essential for mesenchymal stem cell proliferation and myofibroblast differentiation. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16389-16394.	3.3	135
250	Direct Reprogramming of Murine Fibroblasts to Hematopoietic Progenitor Cells. Cell Reports, 2014, 9, 1871-1884.	2.9	148
251	RUNX1 positively regulates a cell adhesion and migration program in murine hemogenic endothelium prior to blood emergence. Blood, 2014, 124, e11-e20.	0.6	61
252	Transcriptional and Epigenetic Regulation in the Development of Myeloid Cells: Normal and Diseased Myelopoiesis. Epigenetics and Human Health, 2014, , 223-245.	0.2	0
253	Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nature Communications, 2014, 5, 4054.	5.8	35
254	Sox17-Mediated Maintenance of Fetal Intra-Aortic Hematopoietic Cell Clusters. Molecular and Cellular Biology, 2014, 34, 1976-1990.	1.1	28
255	Protein tyrosine phosphatase PTPN9 regulates erythroid cell development through STAT3 dephosphorylation in zebrafish. Journal of Cell Science, 2014, 127, 2761-70.	1.2	15
256	Oceans of opportunity: Exploring vertebrate hematopoiesis in zebrafish. Experimental Hematology, 2014, 42, 684-696.	0.2	39
257	Identification of the Niche and Phenotype of the First Human Hematopoietic Stem Cells. Stem Cell Reports, 2014, 2, 449-456.	2.3	79
258	The essential roles of core binding factors CfRunt and CfCBFβ in hemocyte production of scallop Chlamys farreri. Developmental and Comparative Immunology, 2014, 44, 291-302.	1.0	12
259	Endothelial progenitors. Blood Cells, Molecules, and Diseases, 2014, 52, 186-194.	0.6	33
260	Cohesin and CTCF differentially regulate spatiotemporal runx1 expression during zebrafish development. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2014, 1839, 50-61.	0.9	47

#	Article	IF	CITATIONS
261	Cellular Complexity of the Bone Marrow Hematopoietic Stem Cell Niche. Calcified Tissue International, 2014, 94, 112-124.	1.5	42
262	Contractile Forces Sustain and Polarize Hematopoiesis from Stem and Progenitor Cells. Cell Stem Cell, 2014, 14, 81-93.	5.2	114
263	Identification of Cdca7 as a novel Notch transcriptional target involved in hematopoietic stem cell emergence. Journal of Experimental Medicine, 2014, 211, 2411-2423.	4.2	46
264	Inflammatory signaling regulates embryonic hematopoietic stem and progenitor cell production. Genes and Development, 2014, 28, 2597-2612.	2.7	214
265	Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nature Communications, 2014, 5, 3431.	5.8	40
266	Pro-apoptotic BIM is an essential initiator of physiological endothelial cell death independent of regulation by FOXO3. Cell Death and Differentiation, 2014, 21, 1687-1695.	5.0	19
267	How the avian model has pioneered the field of hematopoietic development. Experimental Hematology, 2014, 42, 661-668.	0.2	12
268	From transplantation to transgenics: Mouse models of developmental hematopoiesis. Experimental Hematology, 2014, 42, 707-716.	0.2	12
269	Runx1 and Cbfβ regulate the development of Flt3+ dendritic cell progenitors and restrict myeloproliferative disorder. Blood, 2014, 123, 2968-2977.	0.6	42
270	Developmental hematopoiesis: Ontogeny, genetic programming and conservation. Experimental Hematology, 2014, 42, 669-683.	0.2	110
271	Impaired hematopoietic differentiation of RUNX1-mutated induced pluripotent stem cells derived from FPD/AML patients. Leukemia, 2014, 28, 2344-2354.	3.3	72
272	Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Developmental Biology, 2014, 389, 208-218.	0.9	51
273	Estrogen Defines the Dorsal-Ventral Limit of VEGF Regulation to Specify the Location of the Hemogenic Endothelial Niche. Developmental Cell, 2014, 29, 437-453.	3.1	36
274	HIF1α is a regulator of hematopoietic progenitor and stem cell development in hypoxic sites of the mouse embryo. Stem Cell Research, 2014, 12, 24-35.	0.3	63
275	Deconvoluting the ontogeny of hematopoietic stem cells. Cellular and Molecular Life Sciences, 2014, 71, 957-978.	2.4	21
276	Ncor2 is required for hematopoietic stem cell emergence by inhibiting Fos signaling in zebrafish. Blood, 2014, 124, 1578-1585.	0.6	40
277	Endothelial Smad4 restrains the transition to hematopoietic progenitors via suppression of ERK activation. Blood, 2014, 123, 2161-2171.	0.6	21
278	CBFÎ ² and RUNX1 are required at 2 different steps during the development of hematopoietic stem cells in zebrafish. Blood, 2014, 124, 70-78.	0.6	50

	CITATION R	CITATION REPORT	
#	ARTICLE	IF	CITATIONS
279	The Runx-Pu.1 pathway preserves normal and AML/ETO9a leuremic stem cells. Blood, 2014, 124, 2391-2399.	0.6	32
280	Hmga2 is a direct target gene of RUNX1 and regulates expansion of myeloid progenitors in mice. Blood, 2014, 124, 2203-2212.	0.6	41
281	Tracing the Origin of the HSC Hierarchy Reveals an SCF-Dependent, IL-3-Independent CD43â^ Embryonic Precursor. Stem Cell Reports, 2014, 3, 489-501.	2.3	122
282	Level of RUNX1 activity is critical for leukemic predisposition but not for thrombocytopenia. Blood, 2015, 125, 930-940.	0.6	87
283	Progressive maturation toward hematopoietic stem cells in the mouse embryo aorta. Blood, 2015, 125, 465-469.	0.6	64
284	Hematopoietic stem cells develop in the absence of endothelial cadherin 5 expression. Blood, 2015, 126, 2811-2820.	0.6	20
285	Lost in translation: pluripotent stem cellâ€derived hematopoiesis. EMBO Molecular Medicine, 2015, 7, 1388-1402.	3.3	76
286	Vascular niche promotes hematopoietic multipotent progenitor formation from pluripotent stem cells. Journal of Clinical Investigation, 2015, 125, 1243-1254.	3.9	96
287	CATA2 â^'/â^' human ESCs undergo attenuated endothelial to hematopoietic transition and thereafter granulocyte commitment. Cell Regeneration, 2015, 4, 4:4.	1.1	28
288	Cannabinoid Receptor-2 Regulates Embryonic Hematopoietic Stem Cell Development via Prostaglandin E2 and P-Selectin Activity. Stem Cells, 2015, 33, 2596-2612.	1.4	31
289	Ontogeny of Tissue-Resident Macrophages. Frontiers in Immunology, 2015, 6, 486.	2.2	254
290	Loss of neurofibromin Ras-GAP activity enhances the formation of cardiac blood islands in murine embryos. ELife, 2015, 4, e07780.	2.8	15
291	Developmental-stage-dependent transcriptional response to leukaemic oncogene expression. Nature Communications, 2015, 6, 7203.	5.8	24
292	Cardiac lymphatics are heterogeneous in origin and respond to injury. Nature, 2015, 522, 62-67.	13.7	387
293	Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. Journal of Biological Chemistry, 2015, 290, 13053-13063.	1.6	24
294	Genomic Strategies for Terminal Cell Fate Specification. , 2015, , 201-263.		0
295	Development and trafficking function of haematopoietic stem cells and myeloid cells during fetal ontogeny. Cardiovascular Research, 2015, 107, 352-363.	1.8	11
296	The RUNX complex: reaching beyond haematopoiesis into immunity. Immunology, 2015, 146, 523-536.	2.0	73

#	Article	IF	CITATIONS
297	Hematopoietic progenitors are required for proper development of coronary vasculature. Journal of Molecular and Cellular Cardiology, 2015, 86, 199-207.	0.9	15
298	Whole-transcriptome analysis of endothelial to hematopoietic stem cell transition reveals a requirement for Gpr56 in HSC generation. Journal of Experimental Medicine, 2015, 212, 93-106.	4.2	105
299	The RUNX1 +24 Enhancer and P1 Promoter Identify a Unique Subpopulation of Hematopoietic Progenitor Cells Derived from Human Pluripotent Stem Cells. Stem Cells, 2015, 33, 1130-1141.	1.4	19
300	Decoding the regulatory network of early blood development from single-cell gene expression measurements. Nature Biotechnology, 2015, 33, 269-276.	9.4	352
301	Scl binds to primed enhancers in mesoderm to regulate hematopoietic and cardiac fate divergence. EMBO Journal, 2015, 34, 759-777.	3.5	64
302	Geminin deletion increases the number of fetal hematopoietic stem cells by affecting the expression of key transcription factors. Development (Cambridge), 2015, 142, 70-81.	1.2	28
303	Transcription factorâ€mediated reprogramming toward hematopoietic stem cells. EMBO Journal, 2015, 34, 694-709.	3.5	32
304	The RUNX1–PU.1 axis in the control of hematopoiesis. International Journal of Hematology, 2015, 101, 319-329.	0.7	78
305	Single-cell resolution of morphological changes in hemogenic endothelium. Development (Cambridge), 2015, 142, 2719-2724.	1.2	30
306	Repression of arterial genes in hemogenic endothelium is sufficient for haematopoietic fate acquisition. Nature Communications, 2015, 6, 7739.	5.8	112
307	Runx1 Deficiency Decreases Ribosome Biogenesis and Confers Stress Resistance to Hematopoietic Stem and Progenitor Cells. Cell Stem Cell, 2015, 17, 165-177.	5.2	195
308	Deubiquitinase MYSM1 Is Essential for Normal Fetal Liver Hematopoiesis and for the Maintenance of Hematopoietic Stem Cells in Adult Bone Marrow. Stem Cells and Development, 2015, 24, 1865-1877.	1.1	20
309	Mouse models for core binding factor leukemia. Leukemia, 2015, 29, 1970-1980.	3.3	21
310	Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature, 2015, 523, 468-471.	13.7	97
311	Stem Cells. Clinics in Perinatology, 2015, 42, 597-612.	0.8	4
312	Cbfb deficiency results in differentiation blocks and stem/progenitor cell expansion in hematopoiesis. Leukemia, 2015, 29, 753-757.	3.3	17
313	MicroRNA-9 Regulates the Differentiation and Function of Myeloid-Derived Suppressor Cells via Targeting Runx1. Journal of Immunology, 2015, 195, 1301-1311.	0.4	76
314	Flow-induced protein kinase A–CREB pathway acts via BMP signaling to promote HSC emergence. Journal of Experimental Medicine, 2015, 212, 633-648.	4.2	47

#	Article	IF	CITATIONS
315	Hematopoiesis: from start to immune reconstitution potential. Stem Cell Research and Therapy, 2015, 6, 52.	2.4	6
316	Notch1 acts via Foxc2 to promote definitive hematopoiesis via effects on hemogenic endothelium. Blood, 2015, 125, 1418-1426.	0.6	40
317	Development of Hematopoietic Stem and Progenitor Cells From Human Pluripotent Stem Cells. Journal of Cellular Biochemistry, 2015, 116, 1179-1189.	1.2	24
318	Gata2b is a restricted early regulator of hemogenic endothelium in the zebrafish embryo. Development (Cambridge), 2015, 142, 1050-1061.	1.2	117
319	Emergence of hematopoietic stem and progenitor cells involves a Chd1-dependent increase in total nascent transcription. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, E1734-43.	3.3	40
320	Progress and challenges in generating functional hematopoietic stem/progenitor cells from human pluripotent stem cells. Cytotherapy, 2015, 17, 344-358.	0.3	12
321	The first wave of B lymphopoiesis develops independently of stem cells in the murine embryo. Annals of the New York Academy of Sciences, 2015, 1362, 16-22.	1.8	20
322	Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. Journal of Experimental Medicine, 2015, 212, 649-663.	4.2	73
323	Modeling Human Bone Marrow Failure Syndromes Using Pluripotent Stem Cells and Genome Engineering. Molecular Therapy, 2015, 23, 1832-1842.	3.7	11
324	LSD1/KDM1A promotes hematopoietic commitment of hemangioblasts through downregulation of Etv2. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13922-13927.	3.3	37
325	Temporal-Spatial Resolution Fate Mapping Reveals Distinct Origins for Embryonic and Adult Microglia in Zebrafish. Developmental Cell, 2015, 34, 632-641.	3.1	137
326	Most Tissue-Resident Macrophages Except Microglia Are Derived from Fetal Hematopoietic Stem Cells. Immunity, 2015, 43, 382-393.	6.6	397
327	Increased complexity in carcinomas: Analyzing and modeling the interaction of human cancer cells with their microenvironment. Seminars in Cancer Biology, 2015, 35, 107-124.	4.3	60
328	GPI-80 Defines Self-Renewal Ability in Hematopoietic Stem Cells during Human Development. Cell Stem Cell, 2015, 16, 80-87.	5.2	66
329	Role of formyl peptide receptor 2 in homing of endothelial progenitor cells and therapeutic angiogenesis. Advances in Biological Regulation, 2015, 57, 162-172.	1.4	12
330	Ontogeny of the Hematopoietic System. , 2016, , 1-14.		6
331	Cellular Reprogramming Using Defined Factors and MicroRNAs. Stem Cells International, 2016, 2016, 1-12.	1.2	27
332	Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells International, 2016, 2016, 1-14.	1.2	33

#	Article	IF	CITATIONS
333	Isolation of an ES-Derived Cardiovascular Multipotent Cell Population Based on VE-Cadherin Promoter Activity. Stem Cells International, 2016, 2016, 1-14.	1.2	3
334	A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes. PLoS Genetics, 2016, 12, e1006033.	1.5	39
335	New insights into the regulation by RUNX1 and GFI1(s) proteins of the endothelial to hematopoietic transition generating primordial hematopoietic cells. Cell Cycle, 2016, 15, 2108-2114.	1.3	18
336	CXCR4 Signaling Negatively Modulates the Bipotential State of Hemogenic Endothelial Cells Derived from Embryonic Stem Cells by Attenuating the Endothelial Potential. Stem Cells, 2016, 34, 2814-2824.	1.4	7
337	Anatomy and development of the cardiac lymphatic vasculature: Its role in injury and disease. Clinical Anatomy, 2016, 29, 305-315.	1.5	28
338	Converting cell fates: generating hematopoietic stem cells <i>de novo</i> via transcription factor reprogramming. Annals of the New York Academy of Sciences, 2016, 1370, 24-35.	1.8	14
339	Endothelialâ€ŧoâ€hematopoietic transition: Notchâ€ing vessels into blood. Annals of the New York Academy of Sciences, 2016, 1370, 97-108.	1.8	14
340	EphrinB2 regulates the emergence of a hemogenic endothelium from the aorta. Scientific Reports, 2016, 6, 27195.	1.6	20
341	Cooperative binding of AP-1 and TEAD4 modulates the balance between vascular smooth muscle and hemogenic cell fate. Development (Cambridge), 2016, 143, 4324-4340.	1.2	43
342	Megakaryocytic Transcription Factors in Disease and Leukemia. , 2016, , 61-91.		1
343	Generating Blood from iPS Cells. , 2016, , 399-420.		1
344	Activation of the TGF \hat{I}^2 pathway impairs endothelial to haematopoietic transition. Scientific Reports, 2016, 6, 21518.	1.6	33
345	Identification of novel regulators of developmental hematopoiesis using Endoglin regulatory elements as molecular probes. Blood, 2016, 128, 1928-1939.	0.6	6
346	Inductive interactions mediated by interplay of asymmetric signalling underlie development of adult haematopoietic stem cells. Nature Communications, 2016, 7, 10784.	5.8	70
347	The many faces of hematopoietic stem cell heterogeneity. Development (Cambridge), 2016, 143, 4571-4581.	1.2	72
348	Identification of novel genes and networks governing hematopoietic stem cell development. EMBO Reports, 2016, 17, 1814-1828.	2.0	11
349	Bclâ€ 2 proteins in development, health, and disease of the hematopoietic system. FEBS Journal, 2016, 283, 2779-2810.	2.2	37
350	Subregional localization and characterization of Ly6aGFP-expressing hematopoietic cells in the mouse embryonic head. Developmental Biology, 2016, 416, 34-41.	0.9	23

#	Article	IF	CITATIONS
351	Concealed expansion of immature precursors underpins acute burst of adult HSC activity in foetal liver. Development (Cambridge), 2016, 143, 1284-1289.	1.2	102
352	DNA methylation in hematopoietic development and disease. Experimental Hematology, 2016, 44, 783-790.	0.2	18
353	Systematic Cellular Disease Models Reveal Synergistic Interaction of Trisomy 21 and GATA1 Mutations in Hematopoietic Abnormalities. Cell Reports, 2016, 15, 1228-1241.	2.9	78
354	Cellular dissection of zebrafish hematopoiesis. Methods in Cell Biology, 2016, 133, 11-53.	0.5	60
355	Specification and function of hemogenic endothelium during embryogenesis. Cellular and Molecular Life Sciences, 2016, 73, 1547-1567.	2.4	92
356	Linkage between the mechanisms of thrombocytopenia and thrombopoiesis. Blood, 2016, 127, 1234-1241.	0.6	60
357	Origin of the hematopoietic system in the human embryo. FEBS Letters, 2016, 590, 3987-4001.	1.3	33
358	Zebrafish Cdh5 negatively regulates mobilization of aorta-gonad-mesonephros-derived hematopoietic stem cells. Journal of Genetics and Genomics, 2016, 43, 613-616.	1.7	0
359	A gene trap transposon eliminates haematopoietic expression of zebrafish Gfi1aa, but does not interfere with haematopoiesis. Developmental Biology, 2016, 417, 25-39.	0.9	14
360	tfec controls the hematopoietic stem cell vascular niche during zebrafish embryogenesis. Blood, 2016, 128, 1336-1345.	0.6	53
361	Taking the Leap. Current Topics in Developmental Biology, 2016, 118, 113-162.	1.0	26
362	Epigenetic regulation of hematopoietic stem cell development. Methods in Cell Biology, 2016, 135, 431-448.	0.5	5
363	Transient RUNX1 Expression during Early Mesendodermal Differentiation ofÂhESCs Promotes Epithelial to Mesenchymal Transition through TGFB2 Signaling. Stem Cell Reports, 2016, 7, 884-896.	2.3	21
364	The Hemogenic Competence of Endothelial Progenitors Is Restricted by Runx1 Silencing during Embryonic Development. Cell Reports, 2016, 15, 2185-2199.	2.9	40
365	Mll-AF4 Confers Enhanced Self-Renewal and Lymphoid Potential during a Restricted Window in Development. Cell Reports, 2016, 16, 1039-1054.	2.9	34
366	Developing HSCs become Notch independent by the end of maturation in the AGM region. Blood, 2016, 128, 1567-1577.	0.6	46
367	Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation. FEBS Letters, 2016, 590, 4105-4115.	1.3	13
368	Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos. Methods in Molecular Biology, 2016, 1451, 191-206.	0.4	4

#	Article	IF	CITATIONS
369	SCL/TAL1 in Hematopoiesis and Cellular Reprogramming. Current Topics in Developmental Biology, 2016, 118, 163-204.	1.0	42
370	Hematopoietic (stem) cell development — how divergent are the roads taken?. FEBS Letters, 2016, 590, 3975-3986.	1.3	25
371	Transforming Growth Factor Î ² Drives Hemogenic Endothelium Programming and the Transition to Hematopoietic Stem Cells. Developmental Cell, 2016, 38, 358-370.	3.1	75
372	Emerging concepts for the <i>in vitro</i> derivation of murine haematopoietic stem and progenitor cells. FEBS Letters, 2016, 590, 4116-4125.	1.3	8
373	The embryonic origins and genetic programming of emerging haematopoietic stem cells. FEBS Letters, 2016, 590, 4002-4015.	1.3	17
374	Reprogramming mouse fibroblasts into engraftable myeloerythroid and lymphoid progenitors. Nature Communications, 2016, 7, 13396.	5.8	22
375	LYVE1 Marks the Divergence of Yolk Sac Definitive Hemogenic Endothelium from the Primitive Erythroid Lineage. Cell Reports, 2016, 17, 2286-2298.	2.9	57
376	Evi1 regulates Notch activation to induce zebrafish hematopoietic stem cell emergence. EMBO Journal, 2016, 35, 2315-2331.	3.5	39
377	Generating human hematopoietic stem cells <i>in vitro</i> –exploring endothelial to hematopoietic transition as a portal for stemness acquisition. FEBS Letters, 2016, 590, 4126-4143.	1.3	44
378	Interferon-Î \pm signaling promotes embryonic HSC maturation. Blood, 2016, 128, 204-216.	0.6	36
379	Understanding the regulation of vertebrate hematopoiesis and blood disorders – big lessons from a small fish. FEBS Letters, 2016, 590, 4016-4033.	1.3	32
380	Zebrafish. Methods in Molecular Biology, 2016, , .	0.4	9
381	Insights into blood cell formation from hemogenic endothelium in lesserâ€known anatomic sites. Developmental Dynamics, 2016, 245, 1011-1028.	0.8	49
382	Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nature Communications, 2016, 7, 12422.	5.8	181
383	Interplay between SOX7 and RUNX1 regulates hemogenic endothelial fate in the yolk sac. Development (Cambridge), 2016, 143, 4341-4351.	1.2	30
384	Endothelial Plasmalemma Vesicle–Associated Protein Regulates the Homeostasis of Splenic Immature B Cells and B-1 B Cells. Journal of Immunology, 2016, 197, 3970-3981.	0.4	15
385	Generation and Analysis of GATA2 w/eGFP Human ESCs Reveal ITGB3/CD61 as a Reliable Marker for Defining Hemogenic Endothelial Cells during Hematopoiesis. Stem Cell Reports, 2016, 7, 854-868.	2.3	22
386	Definitive Hematopoiesis in the Yolk Sac Emerges from Wnt-Responsive Hemogenic Endothelium Independently of Circulation and Arterial Identity. Stem Cells, 2016, 34, 431-444.	1.4	141

#	Article	IF	CITATIONS
387	Cyclic AMP Signaling through Epac Axis Modulates Human Hemogenic Endothelium and Enhances Hematopoietic Cell Generation. Stem Cell Reports, 2016, 6, 692-703.	2.3	20
388	Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell, 2016, 18, 707-720.	5.2	79
389	BMP and Hedgehog Regulate Distinct AGM Hematopoietic Stem Cells ExÂVivo. Stem Cell Reports, 2016, 6, 383-395.	2.3	37
390	Extravascular endothelial and hematopoietic islands form through multiple pathways in midgestation mouse embryos. Developmental Biology, 2016, 415, 111-121.	0.9	10
391	Molecular Analysis of Neutrophil Differentiation from Human Induced Pluripotent Stem Cells Delineates the Kinetics of Key Regulators of Hematopoiesis. Stem Cells, 2016, 34, 1513-1526.	1.4	34
392	Genetic manipulation of brain endothelial cells in vivo. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2016, 1862, 381-394.	1.8	15
393	Angiocrine functions of organ-specific endothelial cells. Nature, 2016, 529, 316-325.	13.7	717
394	The development and maintenance of resident macrophages. Nature Immunology, 2016, 17, 2-8.	7.0	474
395	Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity, 2016, 44, 439-449.	6.6	1,296
396	Concise review: programming human pluripotent stem cells into blood. British Journal of Haematology, 2016, 173, 671-679.	1.2	14
397	Regulation of Blood Stem Cell Development. Current Topics in Developmental Biology, 2016, 118, 1-20.	1.0	14
398	The characterization of hematopoietic tissue in adult Chinese mitten crab Eriocheir sinensis. Developmental and Comparative Immunology, 2016, 60, 12-22.	1.0	25
399	Dynamic Gene Regulatory Networks Drive Hematopoietic Specification and Differentiation. Developmental Cell, 2016, 36, 572-587.	3.1	213
400	Preeclampsia and Inflammatory Preterm Labor Alter the Human Placental Hematopoietic Niche. Reproductive Sciences, 2016, 23, 1179-1192.	1.1	10
401	Tracking HSC Origin: From Bench to Placenta. Developmental Cell, 2016, 36, 479-480.	3.1	1
402	An <i>in vitro</i> model of hemogenic endothelium commitment and hematopoietic production. Development (Cambridge), 2016, 143, 1302-12.	1.2	15
403	CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia, 2016, 30, 1033-1043.	3.3	39
404	GFI1 proteins orchestrate the emergence of haematopoietic stem cells through recruitment of LSD1. Nature Cell Biology, 2016, 18, 21-32.	4.6	172

#	Article	IF	CITATIONS
405	Complex regulation of HSC emergence by the Notch signaling pathway. Developmental Biology, 2016, 409, 129-138.	0.9	64
406	Making a Hematopoietic Stem Cell. Trends in Cell Biology, 2016, 26, 202-214.	3.6	51
407	Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. Journal of Cellular Physiology, 2016, 231, 1065-1076.	2.0	10
408	Human Induced Pluripotent Stem Cell-Derived Macrophages Share Ontogeny with MYB-Independent Tissue-Resident Macrophages. Stem Cell Reports, 2017, 8, 334-345.	2.3	145
409	R-spondin-1 is required for specification of hematopoietic stem cells through Wnt16 and Vegfa signaling pathways. Development (Cambridge), 2017, 144, 590-600.	1.2	17
410	Synthetic Protein Mimics for Functional Protein Delivery. Biomacromolecules, 2017, 18, 819-825.	2.6	30
411	The molecular basis of endothelial cell plasticity. Nature Communications, 2017, 8, 14361.	5.8	333
412	Runx transcription factors in the development and function of the definitive hematopoietic system. Blood, 2017, 129, 2061-2069.	0.6	127
413	TAK1 regulates resident macrophages by protecting lysosomal integrity. Cell Death and Disease, 2017, 8, e2598-e2598.	2.7	13
414	Lymph Node Stroma Dynamics and Approaches for Their Visualization. Trends in Immunology, 2017, 38, 236-247.	2.9	19
415	Distinct Roles for Matrix Metalloproteinases 2 and 9 in Embryonic Hematopoietic Stem Cell Emergence, Migration, and Niche Colonization. Stem Cell Reports, 2017, 8, 1226-1241.	2.3	50
416	Mouse RUNX1C regulates premegakaryocytic/erythroid output and maintains survival of megakaryocyte progenitors. Blood, 2017, 130, 271-284.	0.6	19
417	RUNX transcription factors at the interface of stem cells and cancer. Biochemical Journal, 2017, 474, 1755-1768.	1.7	38
418	Pericytes are heterogeneous in their origin within the same tissue. Developmental Biology, 2017, 427, 6-11.	0.9	114
419	Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential exÂvivo. Experimental Hematology, 2017, 51, 25-35.e6.	0.2	16
420	Runx1 Orchestrates Sphingolipid Metabolism and Glucocorticoid Resistance in Lymphomagenesis. Journal of Cellular Biochemistry, 2017, 118, 1432-1441.	1.2	7
421	Education for stem cells. Nature, 2017, 545, 415-417.	13.7	3
422	Restricted intra-embryonic origin of <i>bona fide</i> hematopoietic stem cells in the chicken. Development (Cambridge), 2017, 144, 2352-2363.	1.2	18

#	Article	IF	CITATIONS
423	Sam68 Allows Selective Targeting of Human Cancer Stem Cells. Cell Chemical Biology, 2017, 24, 833-844.e9.	2.5	38
424	Hematopoietic Developmental Potential of Human Pluripotent Stem Cell Lines Is Accompanied by the Morphology of Embryoid Bodies and the Expression of Endodermal and Hematopoietic Markers. Cellular Reprogramming, 2017, 19, 270-284.	0.5	0
425	Adult haematopoietic stem cell niches. Nature Reviews Immunology, 2017, 17, 573-590.	10.6	528
426	Single-Cell Analysis Identifies Distinct Stages of Human Endothelial-to-Hematopoietic Transition. Cell Reports, 2017, 19, 10-19.	2.9	51
427	Aberrant AML1 gene expression in the diagnosis of childhood leukemias not characterized by AML1-involved cytogenetic abnormalities. Tumor Biology, 2017, 39, 101042831769430.	0.8	3
428	Runx Family Genes in Tissue Stem Cell Dynamics. Advances in Experimental Medicine and Biology, 2017, 962, 117-138.	0.8	6
429	Roles of RUNX in Hypoxia-Induced Responses and Angiogenesis. Advances in Experimental Medicine and Biology, 2017, 962, 449-469.	0.8	26
430	The Role of Runx1 in Embryonic Blood Cell Formation. Advances in Experimental Medicine and Biology, 2017, 962, 47-64.	0.8	47
431	Roles of RUNX in B Cell Immortalisation. Advances in Experimental Medicine and Biology, 2017, 962, 283-298.	0.8	4
432	The Emerging Roles of RUNX Transcription Factors in Epithelial-Mesenchymal Transition. Advances in Experimental Medicine and Biology, 2017, 962, 471-489.	0.8	8
433	Runx1 Structure and Function in Blood Cell Development. Advances in Experimental Medicine and Biology, 2017, 962, 65-81.	0.8	23
434	The enigmatic role of <scp>RUNX</scp> 1 in femaleâ€related cancers – current knowledge & future perspectives. FEBS Journal, 2017, 284, 2345-2362.	2.2	22
435	5-hydroxytryptamine synthesized in the aorta-gonad-mesonephros regulates hematopoietic stem and progenitor cell survival. Journal of Experimental Medicine, 2017, 214, 529-545.	4.2	27
436	Hypertranscription in Development, Stem Cells, and Regeneration. Developmental Cell, 2017, 40, 9-21.	3.1	87
437	Endothelial Cells as Precursors for Osteoblasts in the Metastatic Prostate Cancer Bone. Neoplasia, 2017, 19, 928-931.	2.3	28
438	Lymphatic Endothelial Cell Plasticity in Development and Disease. Physiology, 2017, 32, 444-452.	1.6	28
439	Endothelial to haematopoietic transition contributes to pulmonary arterial hypertension. Cardiovascular Research, 2017, 113, 1560-1573.	1.8	20
440	Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. Journal of Experimental Medicine, 2017, 214, 2817-2827.	4.2	31

#	ARTICLE	IF	Citations
441	Cell cycle dynamics and complement expression distinguishes mature haematopoietic subsets arising from hemogenic endothelium. Cell Cycle, 2017, 16, 1835-1847.	1.3	16
442	Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nature Cell Biology, 2017, 19, 1153-1163.	4.6	61
443	<i>RUNX1c</i> Regulates Hematopoietic Differentiation of Human Pluripotent Stem Cells Possibly in Cooperation with Proinflammatory Signaling. Stem Cells, 2017, 35, 2253-2266.	1.4	17
444	Quiescence of adult oligodendrocyte precursor cells requiresÂthyroid hormone and hypoxia to activate Runx1. Scientific Reports, 2017, 7, 1019.	1.6	13
445	Embryonic hematopoiesis under microscopic observation. Developmental Biology, 2017, 428, 318-327.	0.9	18
446	Let-7 microRNA-dependent control of leukotriene signaling regulates the transition of hematopoietic niche in mice. Nature Communications, 2017, 8, 128.	5.8	14
447	Application of Aorta-gonad-mesonephros Explant Culture System in Developmental Hematopoiesis. Journal of Visualized Experiments, 2017, , .	0.2	1
448	Human haematopoietic stem cell development: from the embryo to the dish. Development (Cambridge), 2017, 144, 2323-2337.	1.2	195
449	Identification of Stem Cells in the Epithelium of the Stomach Corpus and Antrum of Mice. Gastroenterology, 2017, 152, 218-231.e14.	0.6	121
450	HIF1α-induced PDGFRβ signaling promotes developmental HSC production via IL-6 activation. Experimental Hematology, 2017, 46, 83-95.e6.	0.2	27
451	Precocious Phenotypic Transcriptionâ€Factor Expression During Early Development. Journal of Cellular Biochemistry, 2017, 118, 953-958.	1.2	3
452	PRDM1/BLIMP1 is widely distributed to the nascent fetal–placental interface in the mouse gastrula. Developmental Dynamics, 2017, 246, 50-71.	0.8	15
453	Clonal fate mapping quantifies the number ofÂhaematopoietic stem cells that arise duringÂdevelopment. Nature Cell Biology, 2017, 19, 17-27.	4.6	90
454	Concise Review: Paracrine Functions of Vascular Niche Cells in Regulating Hematopoietic Stem Cell Fate. Stem Cells Translational Medicine, 2017, 6, 482-489.	1.6	23
455	Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. Journal of Molecular Cell Biology, 2017, 9, 262-273.	1.5	13
456	Wnt inhibition promotes vascular specification of embryonic cardiac progenitors. Development (Cambridge), 2018, 145, .	1.2	10
457	Developmental Biology of Stem Cells. , 2017, , 1094-1104.e2.		1
458	Differential Location and Distribution of Hepatic Immune Cells. Cells, 2017, 6, 48.	1.8	77

#	Article	IF	CITATIONS
459	Hematopoietic stem cell development. Methods in Cell Biology, 2017, 138, 165-192.	0.5	22
460	An ancient neurotrophin receptor code; a single Runx/Cbfβ complex determines somatosensory neuron fate specification in zebrafish. PLoS Genetics, 2017, 13, e1006884.	1.5	12
461	A molecular roadmap of the AGM region reveals BMPER as a novel regulator of HSC maturation. Journal of Experimental Medicine, 2017, 214, 3731-3751.	4.2	50
462	Embryonic Toxic Lesions and Stem Cell Therapy. , 2017, , 225-240.		0
463	Disruption of the aortic wall by coelomic lining-derived mesenchymal cells accompanies the onset of aortic hematopoiesis. International Journal of Developmental Biology, 2017, 61, 329-335.	0.3	6
464	Maintenance of hematopoietic stem and progenitor cells in fetal intra-aortic hematopoietic clusters by the Sox17-Notch1-Hes1 axis. Experimental Cell Research, 2018, 365, 145-155.	1.2	8
465	HDAC1 and HDAC2 Modulate TGF-β Signaling during Endothelial-to-Hematopoietic Transition. Stem Cell Reports, 2018, 10, 1369-1383.	2.3	28
466	Center-iodized graphene as an advanced anode material to significantly boost the performance of lithium-ion batteries. Nanoscale, 2018, 10, 9115-9122.	2.8	23
467	A human bone marrow mesodermal-derived cell population with hemogenic potential. Leukemia, 2018, 32, 1575-1586.	3.3	5
468	Inactivating mutations in Drosha mediate vascular abnormalities similar to hereditary hemorrhagic telangiectasia. Science Signaling, 2018, 11, .	1.6	23
469	Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood, 2018, 131, 963-973.	0.6	35
470	Canonical Notch signaling is dispensable for adult steady-state and stress myelo-erythropoiesis. Blood, 2018, 131, 1712-1719.	0.6	14
471	Stem cells and heterotopic ossification: Lessons from animal models. Bone, 2018, 109, 178-186.	1.4	60
472	Runx1 is sufficient for blood cell formation from non-hemogenic endothelial cells <i>in vivo</i> only during early embryogenesis. Development (Cambridge), 2018, 145, .	1.2	29
473	Maturation of hematopoietic stem cells from prehematopoietic stem cells is accompanied by up-regulation of PD-L1. Journal of Experimental Medicine, 2018, 215, 645-659.	4.2	19
474	The TGFβ pathway is a key player for the endothelial-to-hematopoietic transition in the embryonic aorta. Developmental Biology, 2018, 434, 292-303.	0.9	11
475	Blood Development: Hematopoietic Stem Cell Dependence and Independence. Cell Stem Cell, 2018, 22, 639-651.	5.2	271
476	Notch and Aryl Hydrocarbon Receptor Signaling Impact Definitive Hematopoiesis from Human Pluripotent Stem Cells. Stem Cells, 2018, 36, 1004-1019.	1.4	36

		_	
	LON	DEDC	NDT.
CITA		NEPU	ואר

#	Article	IF	CITATIONS
477	Cell-extrinsic hematopoietic impact of Ezh2 inactivation in fetal liver endothelial cells. Blood, 2018, 131, 2223-2234.	0.6	17
478	Regulation of RUNX1 dosage is crucial for efficient blood formation from hemogenic endothelium. Development (Cambridge), 2018, 145, .	1.2	38
479	Arterial smooth muscle dynamics in development and repair. Developmental Biology, 2018, 435, 109-121.	0.9	33
480	Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development. Current Stem Cell Reports, 2018, 4, 22-32.	0.7	7
481	CDK6 inhibits white to beige fat transition by suppressing RUNX1. Nature Communications, 2018, 9, 1023.	5.8	58
482	Transforming growth factor-l²1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis. Leukemia, 2018, 32, 479-491.	3.3	17
483	Pluripotent Stem Cell-Derived Hematopoietic Progenitors Are Unable to Downregulate Key Epithelial-Mesenchymal Transition-Associated miRNAs. Stem Cells, 2018, 36, 55-64.	1.4	3
484	Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction. Circulation, 2018, 137, 57-70.	1.6	65
485	Identification of a new <i>adtrp1â€ŧfpi</i> regulatory axis for the specification of primitive myelopoiesis and definitive hematopoiesis. FASEB Journal, 2018, 32, 183-194.	0.2	13
486	Hematopoietic Stem Cell Biology. , 2018, , 95-110.e13.		0
487	Single Cell Resolution of Human Hematoendothelial Cells Defines Transcriptional Signatures of Hemogenic Endothelium. Stem Cells, 2018, 36, 206-217.	1.4	24
488	Endothelial-specific m6A modulates mouse hematopoietic stem and progenitor cell development via Notch signaling. Cell Research, 2018, 28, 249-252.	5.7	84
489	The multi-faceted role of Gata3 in developmental haematopoiesis. Open Biology, 2018, 8, 180152.	1.5	20
490	RUNX1 and the endothelial origin of blood. Experimental Hematology, 2018, 68, 2-9.	0.2	68
491	Endothelial-specific FoxO1 depletion prevents obesity-related disorders by increasing vascular metabolism and growth. ELife, 2018, 7, .	2.8	39
492	Trisomy silencing by XIST normalizes Down syndrome cell pathogenesis demonstrated for hematopoietic defects in vitro. Nature Communications, 2018, 9, 5180.	5.8	38
493	Endothelial-Specific Cre Mouse Models. Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 2550-2561.	1.1	138
494	Neurofibromin Deficiency Induces Endothelial Cell Proliferation and Retinal Neovascularization. , 2018, 59, 2520.		11

C	n	
		ICDT.
CHAILO		UK I

#	ARTICLE	IF	CITATIONS
495	Analysis of Runx1 Using Induced Gene Ablation Reveals Its Essential Role in Pre-liver HSC Development and Limitations of an InÂVivo Approach. Stem Cell Reports, 2018, 11, 784-794.	2.3	12
496	Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity, 2018, 48, 1160-1171.e5.	6.6	235
497	Targeting skeletal endothelium to ameliorate bone loss. Nature Medicine, 2018, 24, 823-833.	15.2	218
498	Oncostatin M and Kit-Ligand Control Hematopoietic Stem Cell Fate during Zebrafish Embryogenesis. Stem Cell Reports, 2018, 10, 1920-1934.	2.3	26
499	Embryonic Microglia Derive from Primitive Macrophages and Are Replaced by cmyb-Dependent Definitive Microglia in Zebrafish. Cell Reports, 2018, 24, 130-141.	2.9	81
500	Protagonist or antagonist? The complex roles of retinoids in the regulation of hematopoietic stem cells and their specification from pluripotent stem cells. Experimental Hematology, 2018, 65, 1-16.	0.2	7
501	Adult zebrafish Langerhans cells arise from hematopoietic stem/progenitor cells. ELife, 2018, 7, .	2.8	34
502	Single-cell transcriptomics reveal the dynamic of haematopoietic stem cell production in the aorta. Nature Communications, 2018, 9, 2517.	5.8	99
503	Wnt Signalling in Gastrointestinal Epithelial Stem Cells. Genes, 2018, 9, 178.	1.0	64
504	Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. Journal of Biochemistry, 2018, 164, 265-275.	0.9	9
505	The Co-operation of RUNX1 with LDB1, CDK9 and BRD4 Drives Transcription Factor Complex Relocation During Haematopoietic Specification. Scientific Reports, 2018, 8, 10410.	1.6	22
506	The chromatin remodeling subunit Baf200 promotes normal hematopoiesis and inhibits leukemogenesis. Journal of Hematology and Oncology, 2018, 11, 27.	6.9	22
507	The nonreceptor tyrosine kinase c-Abl phosphorylates Runx1 and regulates Runx1-mediated megakaryocyte maturation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 1060-1072.	1.9	4
508	Studying tissue macrophages in vitro: are iPSC-derived cells the answer?. Nature Reviews Immunology, 2018, 18, 716-725.	10.6	92
509	The Role of Interferon-Gamma in Hematopoietic Stem Cell Development, Homeostasis, and Disease. Current Stem Cell Reports, 2018, 4, 264-271.	0.7	72
510	Enhancer function regulated by combinations of transcription factors and cofactors. Genes To Cells, 2018, 23, 808-821.	0.5	15
511	Meticulous optimization of cardiomyocyte yields in a 3-stage continuous integrated agitation bioprocess. Stem Cell Research, 2018, 31, 161-173.	0.3	11
512	Secretome within the bone marrow microenvironment: A basis for mesenchymal stem cell treatment and role in cancer dormancy. Biochimie, 2018, 155, 92-103.	1.3	28

#	Article	IF	CITATIONS
513	GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports, 2018, 11, 197-211.	2.3	33
514	The fetal liver lymphoid-primed multipotent progenitor provides the prerequisites for the initiation of t(4;11) <i>MLL-AF4</i> infant leukemia. Haematologica, 2018, 103, e571-e574.	1.7	21
515	lsthmin 1 (ism1) is required for normal hematopoiesis in developing zebrafish. PLoS ONE, 2018, 13, e0196872.	1.1	24
516	Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Molecular and Cellular Biology, 2018, 38, .	1.1	12
517	Caudal dorsal artery generates hematopoietic stem and progenitor cells via the endothelial-to-hematopoietic transition in zebrafish. Journal of Genetics and Genomics, 2018, 45, 315-324.	1.7	12
518	A novel prospective isolation of murine fetal liver progenitors to study in utero hematopoietic defects. PLoS Genetics, 2018, 14, e1007127.	1.5	7
519	Host conditioning with IL-1β improves the antitumor function of adoptively transferred T cells. Journal of Experimental Medicine, 2019, 216, 2619-2634.	4.2	51
520	Identification of a novel long non-coding RNA within RUNX1 intron 5. Human Genomics, 2019, 13, 33.	1.4	1
521	Cutaneous extramedullary haematopoiesis: Implications in human disease and treatment. Experimental Dermatology, 2019, 28, 1201-1209.	1.4	7
522	Fetal liver Mll-AF4+ hematopoietic stem and progenitor cells respond directly to poly(I:C), but not to a single maternal immune activation. Experimental Hematology, 2019, 76, 49-59.	0.2	5
523	Gata2 as a Crucial Regulator of Stem Cells in Adult Hematopoiesis and Acute Myeloid Leukemia. Stem Cell Reports, 2019, 13, 291-306.	2.3	56
524	Transcriptional control of blood cell emergence. FEBS Letters, 2019, 593, 3304-3315.	1.3	16
525	How HSCs Colonize and Expand in the Fetal Niche of the Vertebrate Embryo: An Evolutionary Perspective. Frontiers in Cell and Developmental Biology, 2019, 7, 34.	1.8	26
526	MAPK p38alpha Kinase Influences Haematopoiesis in Embryonic Stem Cells. Stem Cells International, 2019, 2019, 1-16.	1.2	4
527	Transcriptional networks in acute myeloid leukemia. Genes Chromosomes and Cancer, 2019, 58, 859-874.	1.5	20
528	In vivo generation of haematopoietic stem/progenitor cells from bone marrow-derived haemogenic endothelium. Nature Cell Biology, 2019, 21, 1334-1345.	4.6	34
529	Humanâ€induced pluripotent stem cellâ€derived blood products: state of the art and future directions. FEBS Letters, 2019, 593, 3288-3303.	1.3	36
530	Quantification of Mouse Hematopoietic Progenitors' Formation Using Time-lapse Microscopy and Image Analysis. Bio-protocol, 2019, 9, .	0.2	1

#	Article	IF	CITATIONS
531	Tracing the first hematopoietic stem cell generation in human embryo by single-cell RNA sequencing. Cell Research, 2019, 29, 881-894.	5.7	136
532	The mTOR-RUNX1 pathway regulates DC-SIGN expression in renal tubular epithelial cells. Biochemical and Biophysical Research Communications, 2019, 519, 620-625.	1.0	6
533	A novel P300 inhibitor reverses DUX4-mediated global histone H3 hyperacetylation, target gene expression, and cell death. Science Advances, 2019, 5, eaaw7781.	4.7	47
534	Anterior Cleft Palate due to Cbfb deficiency and its rescue by folic acid. DMM Disease Models and Mechanisms, 2019, 12, .	1.2	16
536	Pericytes in Atherosclerosis. Advances in Experimental Medicine and Biology, 2019, 1147, 279-297.	0.8	16
537	Understanding the Journey of Human Hematopoietic Stem Cell Development. Stem Cells International, 2019, 2019, 1-13.	1.2	22
538	Endothelial Sash1 Is Required for Lung Maturation through Nitric Oxide Signaling. Cell Reports, 2019, 27, 1769-1780.e4.	2.9	32
539	Development of Hematopoietic Stem Cells in the Early Mammalian Embryo. Biochemistry (Moscow), 2019, 84, 190-204.	0.7	11
540	Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. Journal of Experimental Medicine, 2019, 216, 1599-1614.	4.2	53
541	The Cdh5-CreERT2 transgene causes conditional Shb gene deletion in hematopoietic cells with consequences for immune cell responses to tumors. Scientific Reports, 2019, 9, 7548.	1.6	10
542	Primary cilia regulate hematopoietic stem and progenitor cell specification through Notch signaling in zebrafish. Nature Communications, 2019, 10, 1839.	5.8	42
543	Rap1b Promotes Notch-Signal-Mediated Hematopoietic Stem Cell Development by Enhancing Integrin-Mediated Cell Adhesion. Developmental Cell, 2019, 49, 681-696.e6.	3.1	34
544	Endothelial-to-haematopoietic transition: an update on the process of making blood. Biochemical Society Transactions, 2019, 47, 591-601.	1.6	62
545	A new member of the runt domain family from Pacific oyster Crassostrea gigas (CgRunx) potentially involved in immune response and larvae hematopoiesis. Fish and Shellfish Immunology, 2019, 89, 228-236.	1.6	14
546	Inositol 1,4,5â€Trisphosphate Receptors in Endothelial Cells Play an Essential Role in Vasodilation and Blood Pressure Regulation. Journal of the American Heart Association, 2019, 8, e011704.	1.6	28
547	The long non-coding RNA Meg3 is dispensable for hematopoietic stem cells. Scientific Reports, 2019, 9, 2110.	1.6	15
548	Chasing Mavericks: The quest for defining developmental waves of hematopoiesis. Current Topics in Developmental Biology, 2019, 132, 1-29.	1.0	15
549	<i>Drosophila</i> as a Genetic Model for Hematopoiesis. Genetics, 2019, 211, 367-417.	1.2	216

#	Article	IF	CITATIONS
550	Defining early hematopoieticâ€fated primitive streak specification of human pluripotent stem cells by the orchestrated balance of Wnt, activin, and BMP signaling. Journal of Cellular Physiology, 2019, 234, 16136-16147.	2.0	7
551	Runx1 promotes the development of glioma cells by regulating JAK-STAT signalling pathway. Archives of Medical Science, 2019, 18, 761-776.	0.4	2
552	A role for macrophages in hematopoiesis in the embryonic head. Blood, 2019, 134, 1929-1940.	0.6	5
553	The efficiency of murine MLL-ENL–driven leukemia initiation changes with age and peaks during neonatal development. Blood Advances, 2019, 3, 2388-2399.	2.5	19
554	RUNX transcription factors: orchestrators of development. Development (Cambridge), 2019, 146, .	1.2	146
555	Toll-like receptor 2 expression on c-kit+ cells tracks the emergence of embryonic definitive hematopoietic progenitors. Nature Communications, 2019, 10, 5176.	5.8	8
556	Interleukin-6 signaling regulates hematopoietic stem cell emergence. Experimental and Molecular Medicine, 2019, 51, 1-12.	3.2	51
557	Hematopoietic stem cells: self-renewal and expansion. Current Opinion in Hematology, 2019, 26, 258-265.	1.2	13
558	Core Binding Factor Leukemia: Chromatin Remodeling Moves Towards Oncogenic Transcription. Cancers, 2019, 11, 1973.	1.7	15
559	The role of TCF3 as potential master regulator in blastemal Wilms tumors. International Journal of Cancer, 2019, 144, 1432-1443.	2.3	4
560	VE-Cadherin and ACE Co-Expression Marks Highly Proliferative Hematopoietic Stem Cells in Human Embryonic Liver. Stem Cells and Development, 2019, 28, 165-185.	1.1	6
561	Combined Single-Cell Profiling of IncRNAs and Functional Screening Reveals that H19 Is Pivotal for Embryonic Hematopoietic Stem Cell Development. Cell Stem Cell, 2019, 24, 285-298.e5.	5.2	96
562	RUNX1â€dependent mechanisms in biological control and dysregulation in cancer. Journal of Cellular Physiology, 2019, 234, 8597-8609.	2.0	48
563	What do the lineage tracing studies tell us? Consideration for hematopoietic stem cell origin, dynamics, and leukemia-initiating cells. International Journal of Hematology, 2019, 109, 35-40.	0.7	9
564	Guiding T lymphopoiesis from pluripotent stem cells by defined transcription factors. Cell Research, 2020, 30, 21-33.	5.7	39
565	Mechanical instabilities of aorta drive blood stem cell production: a live study. Cellular and Molecular Life Sciences, 2020, 77, 3453-3464.	2.4	9
566	Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Annals of the New York Academy of Sciences, 2020, 1466, 59-72.	1.8	9
567	Sox17-mediated expression of adherent molecules is required for the maintenance of undifferentiated hematopoietic cluster formation in midgestation mouse embryos. Differentiation, 2020, 115, 53-61.	1.0	7

ARTICLE IF CITATIONS # Human yolk sac-like haematopoiesis generates <i>RUNX1</i>- and <i>GFI1/1B</i>-dependent blood and 568 1.2 15 <i>SOX17</i>-positive endothelium. Development (Cambridge), 2020, 147, . BMP signaling is required for postnatal murine hematopoietic stem cell self-renewal. Haematologica, 1.7 2021, 106, 2203-2214. Hypoxia as a Driving Force of Pluripotent Stem Cell Reprogramming and Differentiation to Endothelial 570 1.8 28 Cells. Biomolecules, 2020, 10, 1614. Inhibition of EZH2 ameliorates bacteria-induced liver injury by repressing RUNX1 in dendritic cells. 571 Cell Death and Disease, 2020, 11, 1024. RUNX1 regulates TGF-1² induced migration and EMT in colorectal cancer. Pathology Research and 572 1.0 26 Practice, 2020, 216, 153142. Decoding hematopoietic stem cells' birth. Blood, 2020, 136, 775-776. 0.6 CHD7 and Runx1 interaction provides a braking mechanism for hematopoietic differentiation. 574 Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 3.3 18 23626-23635. Multi-layered Spatial Transcriptomics Identify Secretory Factors Promoting Human Hematopoietic 5.2 Stem Céll Development. Cell Stem Cell, 2020, 27, 822-839.e8. Topical delivery of a small molecule RUNX1 transcription factor inhibitor for the treatment of 576 1.6 21 proliferative vitreoretinopathy. Scientific Reports, 2020, 10, 20554. Hematopoietic Stem Cell Transcription Factors in Cardiovascular Pathology. Frontiers in Genetics, 1.1 2020, 11, 588602. MicroRNAs and IncRNAsâ€"A New Layer of Myeloid-Derived Suppressor Cells Regulation. Frontiers in 578 17 2.2 Immunology, 2020, 11, 572323. Iterative Single-Cell Analyses Define the Transcriptome of the First Functional Hematopoietic Stem 579 2.9 49 Cells. Cell Reports, 2020, 31, 107627. The MLL/SET family and haematopoiesis. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 580 0.9 14 2020, 1863, 194579. Acute Myeloid Leukemia iPSCs Reveal a Role for RUNX1 in the Maintenance of Human Leukemia Stem Cells. Cell Reports, 2020, 31, 107688. Transferrin receptor 1-mediated iron uptake plays an essential role in hematopoiesis. Haematologica, 582 1.7 53 2020, 105, 2071-2082. Blood and Cancer: Cancer Stem Cells as Origin of Hematopoietic Cells in Solid Tumor 1.8 Microenvironments. Cells, 2020, 9, 1293. Hematopoietic stem cells acquire survival advantage by loss of RUNX1 methylation identified in 584 0.6 20 familial leukemia. Blood, 2020, 136, 1919-1932. Embryonic endothelial evolution towards first hematopoietic stem cells revealed by single-cell 89 transcriptomic and functional analyses. Cell Research, 2020, 30, 376-392.

#	Article	IF	CITATIONS
586	Evidence for a role of RUNX1 as recombinase cofactor for TCRÎ ² rearrangements and pathological deletions in ETV6-RUNX1 ALL. Scientific Reports, 2020, 10, 10024.	1.6	3
587	YAP Regulates Hematopoietic Stem Cell Formation in Response to the Biomechanical Forces of Blood Flow. Developmental Cell, 2020, 52, 446-460.e5.	3.1	65
588	Runx1 promotes scar deposition and inhibits myocardial proliferation and survival during zebrafish heart regeneration. Development (Cambridge), 2020, 147, .	1.2	45
589	Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biology, 2020, 18, e3000696.	2.6	16
590	Early Fate Defines Microglia and Non-parenchymal Brain Macrophage Development. Cell, 2020, 181, 557-573.e18.	13.5	218
591	RUNX1-205, a novel splice variant of the human RUNX1 gene, has blockage effect on mesoderm–hemogenesis transition and promotion effect during the late stage of hematopoiesis. Journal of Molecular Cell Biology, 2020, 12, 386-396.	1.5	4
592	Transcriptome Dynamics of Hematopoietic Stem Cell Formation Revealed Using a Combinatorial Runx1 and Ly6a Reporter System. Stem Cell Reports, 2020, 14, 956-971.	2.3	8
593	Wip1 regulates hematopoietic stem cell development in the mouse embryo. Haematologica, 2021, 106, 580-584.	1.7	2
594	RUNX1-EVI1 disrupts lineage determination and the cell cycle by interfering with RUNX1 and EVI1 driven gene regulatory networks. Haematologica, 2021, 106, 1569-1580.	1.7	8
595	Distinctive phenotypes in two children with novel germline <i>RUNX1</i> mutations - one with myeloid malignancy and increased fetal hemoglobin. Pediatric Hematology and Oncology, 2021, 38, 65-79.	0.3	9
596	Regulation of Hemogenic Endothelial Cell Development and Function. Annual Review of Physiology, 2021, 83, 17-37.	5.6	33
597	Rapid Way to Generate Mouse Models for <i>In Vivo</i> Studies of the Endothelium. Journal of Lipid and Atherosclerosis, 2021, 10, 24.	1.1	2
598	Remodel your way to fetal hematopoiesis. Blood, 2021, 137, 146-148.	0.6	0
599	Studying leukemia stem cell properties and vulnerabilities with human iPSCs. Stem Cell Research, 2021, 50, 102117.	0.3	3
601	From development to disease. Science, 2021, 371, 358.10-360.	6.0	0
602	The genome-wide impact of trisomy 21 on DNA methylation and its implications for hematopoiesis. Nature Communications, 2021, 12, 821.	5.8	32
603	Generation of reconstituted hemato-lymphoid murine embryos by placental transplantation into embryos lacking HSCs. Scientific Reports, 2021, 11, 4374.	1.6	2
604	Contributions of Embryonic HSC-Independent Hematopoiesis to Organogenesis and the Adult Hematopoietic System. Frontiers in Cell and Developmental Biology, 2021, 9, 631699.	1.8	14

#	Article	IF	CITATIONS
605	Unexpected redundancy of Gpr56 and Gpr97 during hematopoietic cell development and differentiation. Blood Advances, 2021, 5, 829-842.	2.5	13
606	Control of ribosomal protein synthesis by the Microprocessor complex. Science Signaling, 2021, 14, .	1.6	7
607	eHSCPr discriminating the cell identity involved in endothelial to hematopoietic transition. Bioinformatics, 2021, 37, 2157-2164.	1.8	19
608	Hematopoiesis. , 2021, , 10-24.		0
609	Fetal liver hematopoiesis: from development to delivery. Stem Cell Research and Therapy, 2021, 12, 139.	2.4	36
610	Phosphatidylinositol-3 kinase signaling controls survival and stemness of hematopoietic stem and progenitor cells. Oncogene, 2021, 40, 2741-2755.	2.6	3
611	First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis, 2021, 24, 199-211.	3.7	46
613	Endothelium-derived stromal cells contribute to hematopoietic bone marrow niche formation. Cell Stem Cell, 2021, 28, 653-670.e11.	5.2	31
616	Mechanisms and cell lineages in lymphatic vascular development. Angiogenesis, 2021, 24, 271-288.	3.7	29
617	Selective deletion of SHIP-1 in hematopoietic cells in mice leads to severe lung inflammation involving ILC2 cells. Scientific Reports, 2021, 11, 9220.	1.6	1
618	Lithium Directs Embryonic Stem Cell Differentiation Into Hemangioblast‣ike Cells. Advanced Biology, 2021, 5, 2000569.	1.4	1
619	Emerging therapies for inv(16) AML. Blood, 2021, 137, 2579-2584.	0.6	11
620	Targeting microRNA-mediated gene repression limits adipogenic conversion of skeletal muscle mesenchymal stromal cells. Cell Stem Cell, 2021, 28, 1323-1334.e8.	5.2	30
621	miR-130b and miR-128a are essential lineage-specific codrivers of t(4;11) MLL-AF4 acute leukemia. Blood, 2021, 138, 2066-2092.	0.6	19
622	Inflammatory signaling regulates hematopoietic stem and progenitor cell development and homeostasis. Journal of Experimental Medicine, 2021, 218, .	4.2	41
624	Biomechanical cues as master regulators of hematopoietic stem cell fate. Cellular and Molecular Life Sciences, 2021, 78, 5881-5902.	2.4	18
625	Expression of RUNX1-JAK2 in Human Induced Pluripotent Stem Cell-Derived Hematopoietic Cells Activates the JAK-STAT and MYC Pathways. International Journal of Molecular Sciences, 2021, 22, 7576.	1.8	5
627	HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell, 2021, 28, 1275-1290.e9.	5.2	30

# 629	ARTICLE Spatiotemporal and Functional Heterogeneity of Hematopoietic Stem Cell-Competent Hemogenic	IF 1.8	Citations
630	RNA-Binding Proteins PCBP1 and PCBP2 Are Critical Determinants of Murine Erythropoiesis. Molecular and Cellular Biology, 2021, 41, e0066820.	1.1	8
631	B1 lymphocytes develop independently of Notch signaling during mouse embryonic development. Development (Cambridge), 2021, 148, .	1.2	6
632	The Fetal-to-Adult Hematopoietic Stem Cell Transition and its Role in Childhood Hematopoietic Malignancies. Stem Cell Reviews and Reports, 2021, 17, 2059-2080.	1.7	4
633	Wild-Type p53-Induced Phosphatase 1 Plays a Positive Role in Hematopoiesis in the Mouse Embryonic Head. Frontiers in Cell and Developmental Biology, 2021, 9, 732527.	1.8	0
634	Single-cell transcriptome of early hematopoiesis guides arterial endothelial-enhanced functional T cell generation from human PSCs. Science Advances, 2021, 7, eabi9787.	4.7	13
635	Murine AGM single-cell profiling identifies a continuum of hemogenic endothelium differentiation marked by ACE. Blood, 2022, 139, 343-356.	0.6	29
636	Redundant mechanisms driven independently by RUNX1 and GATA2 for hematopoietic development. Blood Advances, 2021, 5, 4949-4962.	2.5	7
638	<i>Hapln1b</i> , a central organizer of the ECM, modulates kit signaling to control developmental hematopoiesis in zebrafish. Blood Advances, 2021, 5, 4935-4948.	2.5	7
639	Hlf Expression Marks Early Emergence of Hematopoietic Stem Cell Precursors With Adult Repopulating Potential and Fate. Frontiers in Cell and Developmental Biology, 2021, 9, 728057.	1.8	6
640	Glutamine metabolism regulates endothelial to hematopoietic transition and hematopoietic lineage specification. Scientific Reports, 2021, 11, 17589.	1.6	9
641	Pou5f3.3 is involved in establishment and maintenance of hematopoietic cells during Xenopus development. Tissue and Cell, 2021, 72, 101531.	1.0	2
642	Different mutant RUNX1 oncoproteins program alternate haematopoietic differentiation trajectories. Life Science Alliance, 2021, 4, e202000864.	1.3	15
643	Normal Hematopoiesis and Blood Cell Maturation. , 2021, , 1-12.		0
645	To be or not to be: endothelial cell plasticity in development, repair, and disease. Angiogenesis, 2021, 24, 251-269.	3.7	19
646	The Emergence of Blood and Blood Vessels in the Embryo and Its Relevance to Postnatal Biology and Disease. Biological and Medical Physics Series, 2011, , 1-16.	0.3	2
647	Chromatin Mechanisms Regulating Gene Expression in Health and Disease. Advances in Experimental Medicine and Biology, 2011, 711, 12-25.	0.8	20
648	Development of Hematopoietic Stem Cells in Zebrafish. , 2018, , 37-57.		2

#	Article	IF	CITATIONS
649	VE-cadherin endocytosis controls vascular integrity and patterning during development. Journal of Cell Biology, 2020, 219, .	2.3	34
654	Maternal regulation of inflammatory cues is required for induction of preterm birth. JCI Insight, 2020, 5, .	2.3	20
655	Transcription factor mutations as a cause of familial myeloid neoplasms. Journal of Clinical Investigation, 2019, 129, 476-488.	3.9	47
656	Hypoxia-induced microRNA-424 expression in human endothelial cells regulates HIF- $\hat{1}\pm$ isoforms and promotes angiogenesis. Journal of Clinical Investigation, 2010, 120, 4141-4154.	3.9	379
657	Hematopoietic stem cells are acutely sensitive to Acd shelterin gene inactivation. Journal of Clinical Investigation, 2014, 124, 353-366.	3.9	15
658	BRPF1 is essential for development of fetal hematopoietic stem cells. Journal of Clinical Investigation, 2016, 126, 3247-3262.	3.9	32
659	Endothelial jagged-2 sustains hematopoietic stem and progenitor reconstitution after myelosuppression. Journal of Clinical Investigation, 2017, 127, 4242-4256.	3.9	63
660	Blood making: learning what to put into the dish. F1000Research, 2020, 9, 38.	0.8	6
661	Comparative RNA-seq Analysis in the Unsequenced Axolotl: The Oncogene Burst Highlights Early Gene Expression in the Blastema. PLoS Computational Biology, 2013, 9, e1002936.	1.5	125
662	RUNX1B Expression Is Highly Heterogeneous and Distinguishes Megakaryocytic and Erythroid Lineage Fate in Adult Mouse Hematopoiesis. PLoS Genetics, 2016, 12, e1005814.	1.5	28
663	Myeloid Cells Contribute to Tumor Lymphangiogenesis. PLoS ONE, 2009, 4, e7067.	1.1	108
664	Intra-Aortic Clusters Undergo Endothelial to Hematopoietic Phenotypic Transition during Early Embryogenesis. PLoS ONE, 2012, 7, e35763.	1.1	34
665	Human Haemato-Endothelial Precursors: Cord Blood CD34+ Cells Produce Haemogenic Endothelium. PLoS ONE, 2012, 7, e51109.	1.1	23
666	ARAP3 Functions in Hematopoietic Stem Cells. PLoS ONE, 2014, 9, e116107.	1.1	5
667	Lack of Phenotypical and Morphological Evidences of Endothelial to Hematopoietic Transition in the Murine Embryonic Head during Hematopoietic Stem Cell Emergence. PLoS ONE, 2016, 11, e0156427.	1.1	13
668	Notch activation is required for downregulation of HoxA3-dependent endothelial cell phenotype during blood formation. PLoS ONE, 2017, 12, e0186818.	1.1	6
669	Mpl receptor defect leads to earlier appearance of hematopoietic cells/hematopoietic stem cells in the Aorta-Gonad-Mesonephros region, with increased apoptosis. International Journal of Developmental Biology, 2010, 54, 1067-1074.	0.3	9
670	Novel methods for determining hematopoietic stem and progenitor cell emergence in the murine yolk sac. International Journal of Developmental Biology, 2010, 54, 1003-1009.	0.3	7

#	Article	IF	CITATIONS
671	Hematopoietic stem cell activity in the aorta-gonad-mesonephros region enhances after mid-day 11 of mouse development. International Journal of Developmental Biology, 2010, 54, 1055-1060.	0.3	24
672	RUNX1 Dosage in Development and Cancer. Molecules and Cells, 2020, 43, 126-138.	1.0	16
673	Hematopoietic stem cell enhancer: a powerful tool in stem cell biology. Histology and Histopathology, 2015, 30, 661-72.	0.5	6
674	A splicing factor switch controls hematopoietic lineage specification of pluripotent stem cells. EMBO Reports, 2021, 22, e50535.	2.0	9
675	RUNX1 Mutations in Clonal Myeloid Disorders: From Conventional Cytogenetics to Next Generation Sequencing, A Story 40 Years in the Making. Critical Reviews in Oncogenesis, 2011, 16, 77-91.	0.2	88
676	Targeting binding partners of the CBFβ-SMMHC fusion protein for the treatment of inversion 16 acute myeloid leukemia. Oncotarget, 2016, 7, 66255-66266.	0.8	5
677	RUNX1 promote invasiveness in pancreatic ductal adenocarcinoma through regulating miR-93. Oncotarget, 2017, 8, 99567-99579.	0.8	22
678	Addiction to <i>Runx1</i> is partially attenuated by loss of p53 in the Eμ-Myc lymphoma model. Oncotarget, 2016, 7, 22973-22987.	0.8	9
679	Development of Patient-Specific Hematopoietic Stem and Progenitor Cell Grafts from Pluripotent Stem Cells, In Vitro. Current Molecular Medicine, 2013, 13, 815-820.	0.6	11
680	Epigenetic regulation of hematopoiesis by DNA methylation. ELife, 2016, 5, e11813.	2.8	36
681	Coronary arterial development is regulated by a Dll4-Jag1-EphrinB2 signaling cascade. ELife, 2019, 8, .	2.8	27
682	Islet vascularization is regulated by primary endothelial cilia via VEGF-A-dependent signaling. ELife, 2020, 9, .	2.8	24
683	Defining the fetal origin of MLL-AF4 infant leukemia highlights specific fatty acid requirements. Cell Reports, 2021, 37, 109900.	2.9	10
684	Germline competent mesoderm: the substrate for vertebrate germline and somatic stem cells?. Biology Open, 2021, 10, .	0.6	3
685	Efficient hemogenic endothelial cell specification by RUNX1 is dependent on baseline chromatin accessibility of RUNX1-regulated TGFI ² target genes. Genes and Development, 2021, 35, 1475-1489.	2.7	11
686	Intra-Aortic Hematopoietic Cells. , 2012, , 59-75.		0
687	Engineering the Pluripotent Stem Cell Niche for Directed Mesoderm Differentiation. , 2012, , 1-26.		0
688	Cell Therapy of Cancer. , 2014, , 473-507.		1

ARTICLE IF CITATIONS # Epigenetic and Transcriptional Mechanisms Regulating the Development of the Haematopoietic System 689 0.2 0 in Mammals. Epigenetics and Human Health, 2014, , 67-93. Emergence of Endothelial Cells During Vascular Development., 2014, , 3-23. 691 Development and Regeneration of Hematopoietic Stem Cells., 2016, , 1-30. 0 Toll-Like Receptor 2 Expression on c-kit+ Cells Tracks the Emergence of Definitive Hematopoietic Progenitors in a Pre-Circulation Embryo. SSRN Electronic Journal, 0, , . Molecular Signatures of Hematopoietic Stem Cell Niche During Development., 2020, , 21-25. 702 0 Desmoglein 2 regulates cardiogenesis by restricting hematopoiesis in the developing murine heart. 1.6 Scientific Reports, 2021, 11, 21687. The complex landscape of haematopoietic lineage commitments is encoded in the coarse-grained 708 1.1 3 endogenous network. Royal Society Open Science, 2021, 8, 211289. Receptor Signaling Directs Global Recruitment of Pre-existing Transcription Factors to Inducible 0.2 Elements. Yale Journal of Biology and Medicine, 2016, 89, 591-596. Epigenetic and Epitranscriptomic Factors Make a Mark on Hematopoietic Stem Cell Development. 716 0.7 5 Current Stem Cell Reports, 2018, 4, 22-32. Profiling the epigenetic interplay of IncRNA RUNXOR and oncogenic RUNX1 in breast cancer cells by 1.4 gene in situ cis-activation. American Journal of Cancer Research, 2019, 9, 1635-1649. Recent Advances in Developmental Hematopoiesis: Diving Deeper With New Technologies. Frontiers in 720 2.2 11 Immunology, 2021, 12, 790379. Discrete regulatory modules instruct hematopoietic lineage commitment and differentiation. Nature 721 5.8 Communications, 2021, 12, 6790. Lymph node formation and B cell homeostasis require IKK-α in distinct endothelial cell–derived 722 compartments. Proceedings of the National Academy of Sciences of the United States of America, 2021, 3.3 1 118, Loss of Ribosomal Protein Paralog Rpl22-like1 Blocks Lymphoid Development without Affecting 724 Protein Synthesis. Journal of Immunology, 2022, 208, 870-880. 0.4 Deciphering the continuum of hemogenic endothelium differentiation. Blood, 2022, 139, 308-310. 725 2 0.6 Notch Signaling in HSC Emergence: When, Why and How. Cells, 2022, 11, 358. 1.8 Single-cell architecture and functional requirement of alternative splicing during hematopoietic 727 4.7 12 stem cell formation. Science Advances, 2022, 8, eabg5369. Pre-configuring chromatin architecture with histone modifications guides hematopoietic stem cell 5.8 formation in mouse embryos. Nature Communications, 2022, 13, 346.

#	Article	IF	CITATIONS
729	Targeting RUNX1 as a novel treatment modality for pulmonary arterial hypertension. Cardiovascular Research, 2022, 118, 3211-3224.	1.8	16
730	RUNX1 overexpression triggers TGF- \hat{l}^2 signaling to upregulate p15 and thereby blocks early hematopoiesis by inducing cell cycle arrest. Stem Cell Research, 2022, 60, 102694.	0.3	1
731	Development of a 3D atlas of the embryonic pancreas for topological and quantitative analysis of heterologous cell interactions. Development (Cambridge), 2022, 149, .	1.2	11
732	Embryonic and fetal toxic lesions and stem cell therapy. , 2022, , 1071-1090.		0
734	Endothelial Cell Differentiation and Hemogenic Specification. Cold Spring Harbor Perspectives in Medicine, 2022, 12, a041164.	2.9	7
735	Myeloid neoplasms and clonal hematopoiesis from the RUNX1 perspective. Leukemia, 2022, 36, 1203-1214.	3.3	8
736	<i>NPM1</i> ablation induces HSC aging and inflammation to develop myelodysplastic syndrome exacerbated by <i>p53</i> loss. EMBO Reports, 2022, 23, e54262.	2.0	12
737	RUNX1 inhibits the antiviral immune response against influenza A virus through attenuating type I interferon signaling. Virology Journal, 2022, 19, 39.	1.4	14
738	Tet-mediated DNA demethylation regulates specification of hematopoietic stem and progenitor cells during mammalian embryogenesis. Science Advances, 2022, 8, eabm3470.	4.7	13
739	ZNF384 Fusion Oncoproteins Drive Lineage Aberrancy in Acute Leukemia. Blood Cancer Discovery, 2022, 3, 240-263.	2.6	11
740	Pyruvate metabolism guides definitive lineage specification during hematopoietic emergence. EMBO Reports, 2022, 23, e54384.	2.0	9
741	The RUNX1b Isoform Defines Hemogenic Competency in Developing Human Endothelial Cells. Frontiers in Cell and Developmental Biology, 2021, 9, 812639.	1.8	3
744	DNA methylation safeguards the generation of hematopoietic stem and progenitor cells by repression of Notch signaling. Development (Cambridge), 2022, , .	1.2	2
745	A common epigenetic mechanism across different cellular origins underlies systemic immune dysregulation in an idiopathic autism mouse model. Molecular Psychiatry, 2022, 27, 3343-3354.	4.1	4
746	Runx1 and Runx2 inhibit fibrotic conversion of cellular niches for hematopoietic stem cells. Nature Communications, 2022, 13, 2654.	5.8	13
747	Generation and clinical potential of functional T lymphocytes from gene-edited pluripotent stem cells. Experimental Hematology and Oncology, 2022, 11, 27.	2.0	6
748	Intracranial Aneurysms Induced by RUNX1 Through Regulation of NFKB1 in Patients With Hypertension-An Integrated Analysis Based on Multiple Datasets and Algorithms. Frontiers in Neurology, 2022, 13, .	1.1	5
749	Embryonic Origins of the Hematopoietic System: Hierarchies and Heterogeneity. HemaSphere, 2022, 6, e737.	1.2	11

#	Article	IF	CITATIONS
750	Intrinsic function of the peptidylarginine deiminase PADI4 is dispensable for normal haematopoiesis. Biology Open, 2022, 11, .	0.6	2
752	Specification of hematopoietic stem cells in mammalian embryos: A rare or frequent event?. Blood, 0, , .	0.6	1
753	Lifelong multilineage contribution by embryonic-born blood progenitors. Nature, 2022, 606, 747-753.	13.7	69
754	Integrative epigenomic and transcriptomic analysis reveals the requirement of JUNB for hematopoietic fate induction. Nature Communications, 2022, 13, .	5.8	5
755	RXRα Regulates the Development of Resident Tissue Macrophages. ImmunoHorizons, 2022, 6, 366-372.	0.8	5
756	Why isÂendothelial resilience key to maintain cardiac health?. Basic Research in Cardiology, 2022, 117, .	2.5	13
757	Characterization of Endothelial Progenitor Cell: Past, Present, and Future. International Journal of Molecular Sciences, 2022, 23, 7697.	1.8	19
759	Single-cell transcriptome analysis of embryonic and adult endothelial cells allows to rank the hemogenic potential of post-natal endothelium. Scientific Reports, 2022, 12, .	1.6	3
760	PDGFRβ+ cells play a dual role as hematopoietic precursors and niche cells during mouse ontogeny. Cell Reports, 2022, 40, 111114.	2.9	5
761	Requirement for TP73 and genetic alterations originating from its intragenic super-enhancer in adult T-cell leukemia. Leukemia, 2022, 36, 2293-2305.	3.3	4
762	Mesoderm-derived PDGFRA+ cells regulate the emergence of hematopoietic stem cells in the dorsal aorta. Nature Cell Biology, 2022, 24, 1211-1225.	4.6	6
763	Protein disulfide isomerase A1 as a novel redox sensor in VEGFR2 signaling and angiogenesis. Angiogenesis, 2023, 26, 77-96.	3.7	5
764	Endothelial-specific Gata3 expression is required for hematopoietic stem cell generation. Stem Cell Reports, 2022, 17, 1788-1798.	2.3	3
766	RNA-Regulatory Exosome Complex Suppresses an Apoptotic Program to Confer Erythroid Progenitor Cell Survival In Vivo. Blood Advances, 0, , .	2.5	0
769	Independent origins of fetal liver haematopoietic stem and progenitor cells. Nature, 2022, 609, 779-784.	13.7	56
770	Lessons from early life: understanding development to expand stem cells and treat cancers. Development (Cambridge), 2022, 149, .	1.2	2
771	Global DNA Methylation Analysis of Cancer-Associated Fibroblasts Reveals Extensive Epigenetic Rewiring Linked with RUNX1 Upregulation in Breast Cancer Stroma. Cancer Research, 2022, 82, 4139-4152.	0.4	13
774	Inside the stemness engine: Mechanistic links between deregulated transcription factors and stemness in cancer Biology, 2022, 87, 48-83.	4.3	10

#	Article	IF	CITATIONS
775	PEAR1 is a potential regulator of early hematopoiesis of human pluripotent stem cells. Journal of Cellular Physiology, 0, , .	2.0	1
776	The (intra-aortic) hematopoietic cluster cocktail: what is in the mix?. Experimental Hematology, 2023, 118, 1-11.	0.2	3
777	The roles of Runx1 in skeletal development and osteoarthritis: A concise review. Heliyon, 2022, 8, e12656.	1.4	4
778	The poly(C)-binding protein Pcbp2 is essential for CD4+ TÂcell activation and proliferation. IScience, 2023, 26, 105860.	1.9	0
779	In vivo clonal tracking reveals evidence of haemangioblast and haematomesoblast contribution to yolk sac haematopoiesis. Nature Communications, 2023, 14, .	5.8	6
780	De Novo Generation of Human Hematopoietic Stem Cells from Pluripotent Stem Cells for Cellular Therapy. Cells, 2023, 12, 321.	1.8	8
781	Dorsal aorta polarization and haematopoietic stem cell emergence. Development (Cambridge), 2023, 150, .	1.2	1
782	The Long Telling Story of "Endothelial Progenitor Cells― Where Are We at Now?. Cells, 2023, 12, 112.	1.8	3
783	Layered origins of lymphoid tissue inducer cells. Immunological Reviews, 0, , .	2.8	2
784	Hematopoietic Cell Autonomous Disruption of Hematopoiesis in a Germline Loss-of-function Mouse Model of RUNX1-FPD. HemaSphere, 2023, 7, e824.	1.2	1
785	Cpeb1b-mediated cytoplasmic polyadenylation of <i>shha</i> mRNA modulates zebrafish definitive hematopoiesis. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120, .	3.3	2
786	Prolonged generation of multi-lineage blood cells in wild-type animals from pluripotent stem cells. Stem Cell Reports, 2023, 18, 720-735.	2.3	0
787	Defining cardiac functional recovery in end-stage heart failure at single-cell resolution. , 0, , .		4
791	Assembling the layers of the hematopoietic system: A window of opportunity for thymopoiesis in the embryo. Immunological Reviews, 2023, 315, 54-70.	2.8	3
792	HSC-independent definitive hematopoiesis persists into adult life. Cell Reports, 2023, 42, 112239.	2.9	8
793	Multiple waves of fetalâ€derived immune cells constitute adult immune system. Immunological Reviews, 2023, 315, 11-30.	2.8	3
798	Fetal liver development and implications for liver disease pathogenesis. Nature Reviews Gastroenterology and Hepatology, 0, , .	8.2	5
805	Physiology and diseases of tissue-resident macrophages. Nature, 2023, 618, 698-707.	13.7	40

#	Article	IF	CITATIONS
811	Mechanisms of Secondary Leukemia Development Caused by Treatment with DNA Topoisomerase Inhibitors. Biochemistry (Moscow), 2023, 88, 892-911.	0.7	0
816	Role of perivascular cells in kidney homeostasis, inflammation, repair and fibrosis. Nature Reviews Nephrology, 2023, 19, 721-732.	4.1	5
831	Role of mechanotransduction in stem cells and cancer progression. , 2024, , 51-76.		0
832	Antiproliferative and immunoregulatory actions of vitamin D derivatives on hematological malignancies. , 2024, , 741-795.		0
841	Hematopoietic Stem Cell Development in Mammalian Embryos. Advances in Experimental Medicine and Biology, 2023, , 1-16.	0.8	0