Methylâ
€pGâ
€binding protein 2 is phosphorylated by and contributes to apoptosis

EMBO Reports 10, 1327-1333 DOI: 10.1038/embor.2009.217

Citation Report

#	Article	IF	CITATIONS
1	Epigenetic programming of the HPA axis: Early life decides. Stress, 2011, 14, 581-589.	0.8	121
2	Regulation of Intestinal Stem Cell Proliferation by Human Methyl-CpG-binding Protein-2 in Drosophila. Cell Structure and Function, 2011, 36, 197-208.	0.5	4
3	In sickness and in health: the role of methyl-CpG binding protein 2 in the central nervous system. European Journal of Neuroscience, 2011, 33, 1563-1574.	1.2	47
4	HIPK2 phosphorylates ΔNp63α and promotes its degradation in response to DNA damage. Oncogene, 2011, 30, 4802-4813.	2.6	57
5	The Roles of the Methyl-CpG Binding Proteins in Cancer. Genes and Cancer, 2011, 2, 618-630.	0.6	97
6	Complexities of Rett Syndrome and MeCP2: Figure 1 Journal of Neuroscience, 2011, 31, 7951-7959.	1.7	101
7	Phosphorylation of Distinct Sites in MeCP2 Modifies Cofactor Associations and the Dynamics of Transcriptional Regulation. Molecular and Cellular Biology, 2012, 32, 2894-2903.	1.1	87
8	Calcium-Dependent Dephosphorylation of the Histone Chaperone DAXX Regulates H3.3 Loading and Transcription upon Neuronal Activation. Neuron, 2012, 74, 122-135.	3.8	83
9	HIPK2 Controls Cytokinesis and Prevents Tetraploidization by Phosphorylating Histone H2B at the Midbody. Molecular Cell, 2012, 47, 87-98.	4.5	58
10	Modification of Mecp2 dosage alters axonal transport through the Huntingtin/Hap1 pathway. Neurobiology of Disease, 2012, 45, 786-795.	2.1	68
11	HIPK2: A tumour suppressor that controls DNA damageâ€induced cell fate and cytokinesis. BioEssays, 2013, 35, 55-64.	1.2	72
12	The role of promoter hypermethylation in fibroblast activation and fibrogenesis. Journal of Pathology, 2013, 229, 264-273.	2.1	81
13	HIPK2 catalytic activity and subcellular localization are regulated by activation-loop Y354 autophosphorylation. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 1443-1453.	1.9	47
14	HIPK2 kinase activity depends on cis-autophosphorylation of its activation loop. Journal of Molecular Cell Biology, 2013, 5, 27-38.	1.5	59
15	Homeodomain-interacting protein kinase 2-dependent repression of myogenic differentiation is relieved by its caspase-mediated cleavage. Nucleic Acids Research, 2013, 41, 5731-5745.	6.5	26
16	MeCP2 phosphorylation in the brain: from transcription to behavior. Biological Chemistry, 2013, 394, 1595-1605.	1.2	20
17	MeCP2 post-translational modifications: a mechanism to control its involvement in synaptic plasticity and homeostasis?. Frontiers in Cellular Neuroscience, 2014, 8, 236.	1.8	81
18	Chromatin composition alterations and the critical role of MeCP2 for epigenetic silencing of progesterone receptor-B gene in endometrial cancers. Cellular and Molecular Life Sciences, 2014, 71, 3393-3408.	2.4	13

ITATION REDOD

CITATION REPORT

#	Article	IF	CITATIONS
19	Regulation and function of stimulus-induced phosphorylation of MeCP2. Frontiers in Biology, 2014, 9, 367-375.	0.7	11
20	An increase in MECP2 dosage impairs neural tube formation. Neurobiology of Disease, 2014, 67, 49-56.	2.1	22
21	Stress response factors as hubâ€regulators of microRNA biogenesis: implication to the diseased heart. Cell Biochemistry and Function, 2015, 33, 509-518.	1.4	4
22	Role of Mecp2 in Experience-Dependent Epigenetic Programming. Genes, 2015, 6, 60-86.	1.0	40
23	Methyl-CpG Binding Protein 2 (MeCP2) Localizes at the Centrosome and Is Required for Proper Mitotic Spindle Organization. Journal of Biological Chemistry, 2015, 290, 3223-3237.	1.6	25
24	MicroRNAs in diabetic nephropathy: functions, biomarkers, and therapeutic targets. Annals of the New York Academy of Sciences, 2015, 1353, 72-88.	1.8	137
25	Rett Syndrome. , 2015, , 98-119.		1
26	Homeodomain-Interacting Protein Kinase-2: A Critical Regulator of the DNA Damage Response and the Epigenome. International Journal of Molecular Sciences, 2016, 17, 1638.	1.8	23
27	Proteomic dissection of LPS-inducible, PHF8-dependent secretome reveals novel roles of PHF8 in TLR4-induced acute inflammation and T cell proliferation. Scientific Reports, 2016, 6, 24833.	1.6	21
28	The significance of the increased expression of phosphorylated MeCP2 in the membranes from patients with proliferative diabetic retinopathy. Scientific Reports, 2016, 6, 32850.	1.6	6
29	Inhibition of the processing of miR-25 by HIPK2-Phosphorylated-MeCP2 induces NOX4 in early diabetic nephropathy. Scientific Reports, 2016, 6, 38789.	1.6	40
30	MeCP2 and the enigmatic organization of brain chromatin. Implications for depression and cocaine addiction. Clinical Epigenetics, 2016, 8, 58.	1.8	39
33	Differential Regulation of MeCP2 Phosphorylation by Laminin in Oligodendrocytes. Journal of Molecular Neuroscience, 2017, 62, 309-317.	1.1	6
34	An RNA interference screen identifies druggable regulators of MeCP2 stability. Science Translational Medicine, 2017, 9, .	5.8	25
35	CDKL5 localizes at the centrosome and midbody and is required for faithful cell division. Scientific Reports, 2017, 7, 6228.	1.6	27
36	Trichostatin A decreases the levels of MeCP2 expression and phosphorylation and increases its chromatin binding affinity. Epigenetics, 2017, 12, 934-944.	1.3	10
37	Stress, Trauma and Synaptic Plasticity. , 2018, , .		2
38	Noncoding RNAs as therapeutic targets in early stage diabetic kidney disease. Kidney Research and Clinical Practice, 2018, 37, 197-209.	0.9	47

#	Article	IF	CITATIONS
39	Fibrogenic Activity of MECP2 Is Regulated by Phosphorylation in Hepatic Stellate Cells. Gastroenterology, 2019, 157, 1398-1412.e9.	0.6	27
40	In Silico Study of Rett Syndrome Treatment-Related Genes, MECP2, CDKL5, and FOXG1, by Evolutionary Classification and Disordered Region Assessment. International Journal of Molecular Sciences, 2019, 20, 5593.	1.8	12
41	The Molecular Basis of MeCP2 Function in the Brain. Journal of Molecular Biology, 2020, 432, 1602-1623.	2.0	89
42	Chromatin Targeting of HIPK2 Leads to Acetylation-Dependent Chromatin Decondensation. Frontiers in Cell and Developmental Biology, 2020, 8, 852.	1.8	9
43	MeCP2 and Chromatin Compartmentalization. Cells, 2020, 9, 878.	1.8	22
44	Emerging physiological and pathological roles of MeCP2 in non-neurological systems. Archives of Biochemistry and Biophysics, 2021, 700, 108768.	1.4	10
45	MECP2 and the biology of MECP2 duplication syndrome. Journal of Neurochemistry, 2021, 159, 29-60.	2.1	19
46	Zinc finger protein 483 (ZNF483) regulates neuronal differentiation and methyl-CpG-binding protein 2 (MeCP2) intracellular localization. Biochemical and Biophysical Research Communications, 2021, 568, 68-75.	1.0	1
47	Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations. PLoS ONE, 2016, 11, e0159632.	1.1	4
48	A novel MeCP2 acetylation site regulates interaction with ATRX and HDAC1. Genes and Cancer, 2015, 6, 408-421.	0.6	34
49	MicroRNA-1291 targets the FOXA2-AGR2 pathway to suppress pancreatic cancer cell proliferation and tumorigenesis. Oncotarget, 2016, 7, 45547-45561.	0.8	41
50	Methyl-CpG Binding Protein 2 in Alzheimer Dementia. International Neurourology Journal, 2019, 23, S72-81.	0.5	20
51	HIPK2. , 2012, , 859-865.		0
52	Modulation of the Core Synaptic Network in Extinction: The Role of Brain-Derived Neurotrophic Factor. , 2018, , 183-190.		0
53	HIPK2., 2018,, 2370-2377.		0
54	Is X-linked methyl-CpG binding protein 2 a new target for the treatment of Parkinson's disease. Neural Regeneration Research, 2013, 8, 1948-57.	1.6	3
56	A genome-wide analysis reveals the MeCP2-dependent regulation of genes in BGC-823 cells. International Journal of Clinical and Experimental Pathology, 2020, 13, 1578-1589.	0.5	0
62	The HIPK2/CDC14B-MeCP2 axis enhances the spindle assembly checkpoint block by promoting cyclin B translation. Science Advances, 2023, 9, .	4.7	4

#	Article	IF	CITATIONS
63	HIPK2 in the physiology of nervous system and its implications in neurological disorders. Biochimica Et Biophysica Acta - Molecular Cell Research, 2023, 1870, 119465.	1.9	3