Global population structure of the tope (<i>Galeorhinus mitochondrial control region sequence data

Molecular Ecology 18, 545-552 DOI: 10.1111/j.1365-294x.2008.04047.x

Citation Report

#	Article	IF	CITATIONS
1	Tracking the fin trade: genetic stock identification in western Atlantic scalloped hammerhead sharks Sphyrna lewini. Endangered Species Research, 2009, 9, 221-228.	1.2	67
2	DNA Forensic Applications in Shark Management and Conservation. Marine Biology, 2010, , 593-610.	0.1	6
3	Editorial and retrospective 2010. Molecular Ecology, 2010, 19, 1-22.	2.0	11
4	Global population structure of the spiny dogfish <i>Squalus acanthias</i> , a temperate shark with an antitropical distribution. Molecular Ecology, 2010, 19, 1651-1662.	2.0	71
5	Is multiple mating beneficial or unavoidable? Low multiple paternity and genetic diversity in the shortspine spurdog Squalus mitsukurii. Marine Ecology - Progress Series, 2010, 403, 255-267.	0.9	63
6	Phylogeography of the copper shark (Carcharhinus brachyurus) in the southern hemisphere: implications for the conservation of a coastal apex predator. Marine and Freshwater Research, 2011, 62, 861.	0.7	40
7	Phylogeography and conservation of the bull shark (Carcharhinus leucas) inferred from mitochondrial and microsatellite DNA. Conservation Genetics, 2011, 12, 371-382.	0.8	106
8	Phylogeography and genetic population structure of Caribbean sharpnose shark Rhizoprionodon porosus. Reviews in Fish Biology and Fisheries, 2011, 21, 799-814.	2.4	19
9	A DNA Sequence–Based Approach To the Identification of Shark and Ray Species and Its Implications for Global Elasmobranch Diversity and Parasitology. Bulletin of the American Museum of Natural History, 2012, 367, 1-262.	1.2	352
10	Population Structure and Phylogeography of the Short-Tailed Stingray, Dasyatis brevicaudata (Hutton) Tj ETQq1	1 0.78431 1.0	4 rgBT /Ovei
11	Inclusion of South American samples reveals new population structuring of the blacktip shark (Carcharhinus limbatus) in the western Atlantic. Genetics and Molecular Biology, 2012, 35, 752-760.	0.6	21
12	Molecular markers: progress and prospects for understanding reproductive ecology in elasmobranchs. Journal of Fish Biology, 2012, 80, 1120-1140.	0.7	55
13	Oceanic dispersal in a sedentary reef shark (<i>Triaenodon obesus</i>): genetic evidence for extensive connectivity without a pelagic larval stage. Journal of Biogeography, 2012, 39, 1144-1156.	1.4	50
14	A review of the application of molecular genetics for fisheries management and conservation of sharks and rays. Journal of Fish Biology, 2012, 80, 1789-1843.	0.7	190
15	Retrospective coalescent methods and the reconstruction of metapopulation histories in the sea. Evolutionary Ecology, 2012, 26, 291-315.	0.5	29
16	Effects of species biology on the historical demography of sharks and their implications for likely consequences of contemporary climate change. Conservation Genetics, 2013, 14, 125-144.	0.8	30
17	Multiple substitutions and reduced genetic variability inÂsharks. Biochemical Systematics and Ecology, 2013, 49, 21-29.	0.6	16
18	Historical demography and genetic differentiation inferred from the mitochondrial DNA of the silky shark (Carcharhinus falciformis) in the Pacific Ocean. Fisheries Research, 2013, 147, 36-46.	0.9	24

CITATION REPORT

#	Article	IF	CITATIONS
19	Population Expansion and Genetic Structure in Carcharhinus brevipinna in the Southern Indo-Pacific. PLoS ONE, 2013, 8, e75169.	1.1	21
20	Extensive genetic population structure in the Indo–West Pacific spot-tail shark, <i>Carcharhinus sorrah</i> . Bulletin of Marine Science, 2014, 90, 427-454.	0.4	23
21	Frequency of multiple paternity varies between two populations of brown smoothhound shark, Mustelus henlei. Marine Biology, 2014, 161, 797-804.	0.7	20
22	Strong Population Structure and Shallow Mitochondrial Phylogeny in the Banded Guitarfish, Zapteryx exasperata (Jordan y Cilbert, 1880), from the Northern Mexican Pacific. Journal of Heredity, 2014, 105, 91-100.	1.0	25
23	The effect of biogeographic and phylogeographic barriers on gene flow in the brown smoothhound shark, <i>Mustelus henlei</i> , in the northeastern Pacific. Ecology and Evolution, 2015, 5, 1585-1600.	0.8	27
24	Microsatellite loci confirm a lack of population connectivity among globally distributed populations of the tope shark <i>Galeorhinus galeus</i> (Triakidae). Journal of Fish Biology, 2015, 87, 371-385.	0.7	14
25	A Tale of Three Tails: Cryptic Speciation in a Globally Distributed Marine Fish of the Genus <i>Seriola</i> . Copeia, 2015, 103, 357-368.	1.4	55
26	Genetic analysis of stock structure of blue shark (Prionace glauca) in the north Pacific ocean. Fisheries Research, 2015, 172, 181-189.	0.9	22
27	Demographic history and the South Pacific dispersal barrier for school shark (Galeorhinus galeus) inferred by mitochondrial DNA and microsatellite DNA mark. Fisheries Research, 2015, 167, 132-142.	0.9	15
28	Identification and Distribution of Morphologically Conserved Smoothhound Sharks in the Northern Gulf of Mexico. Transactions of the American Fisheries Society, 2015, 144, 1301-1310.	0.6	10
29	Molecular species identification and population genetics of chondrichthyans in South Africa: current challenges, priorities and progress. African Zoology, 2015, 50, 205-217.	0.2	17
30	Phylogeography and population structure of the red stingray, <i>Dasyatis akajei</i> inferred by mitochondrial DNA, 2015, 26, 505-513.	0.6	12
31	Global population genetic dynamics of a highly migratory, apex predator shark. Molecular Ecology, 2016, 25, 5312-5329.	2.0	51
32	Species identification and comparative population genetics of four coastal houndsharks based on novel NGSâ€mined microsatellites. Ecology and Evolution, 2017, 7, 1462-1486.	0.8	24
33	Review of Current Conservation Genetic Analyses of Northeast Pacific Sharks. Advances in Marine Biology, 2017, 77, 79-110.	0.7	12
34	Molecular research on the systematically challenging smoothhound shark genus <i>Mustelus</i> : a synthesis of the past 30 years. African Journal of Marine Science, 2017, 39, 373-387.	0.4	4
35	The importance of considering genetic diversity in shark and ray conservation policies. Conservation Genetics, 2018, 19, 501-525.	0.8	71
36	Strong trans-Pacific break and local conservation units in the Galapagos shark (Carcharhinus) Tj ETQq1 1 0.7843	314_rgBT /	Overlock 10 T

#	Article	IF	CITATIONS
37	Effects of the Pleistocene on the mitochondrial population genetic structure and demographic history of the silky shark (Carcharhinus falciformis) in the western Atlantic Ocean. Reviews in Fish Biology and Fisheries, 2018, 28, 213-227.	2.4	30
38	Genetic diversity and connectivity of the megamouth shark (<i>Megachasma pelagios</i>). PeerJ, 2018, 6, e4432.	0.9	8
39	Population Connectivity of the Highly Migratory Shortfin Mako (Isurus oxyrinchus Rafinesque 1810) and Implications for Management in the Southern Hemisphere. Frontiers in Ecology and Evolution, 2018, 6, .	1.1	31
40	Weak population structure of the Spotâ€ŧail shark <i>Carcharhinus sorrah</i> and the Blacktip shark <i>C.Âlimbatus</i> along the coasts of the Arabian Peninsula, Pakistan, and South Africa. Ecology and Evolution, 2018, 8, 9536-9549.	0.8	7
41	Conservation genetics of elasmobranchs of the Mexican Pacific Coast, trends and perspectives. Advances in Marine Biology, 2019, 83, 115-157.	0.7	5
42	Population structure, connectivity, and demographic history of an apex marine predator, the bull shark <i>Carcharhinus leucas</i> . Ecology and Evolution, 2019, 9, 12980-13000.	0.8	18
43	Study on population genetics ofSillago aeolus(Perciformes: Sillaginidae) in the Coast of China. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2019, 30, 825-834.	0.7	3
44	Strong genetic isolation despite wide distribution in a commercially exploited coastal shark. Hydrobiologia, 2019, 838, 121-137.	1.0	6
45	Genetic population structure and demography of an apex predator, the tiger shark <i>Galeocerdo cuvier</i> . Ecology and Evolution, 2019, 9, 5551-5571.	0.8	22
46	Population genetic divergence as consequence of past range expansion of the smooth hammerhead shark Sphyrna zygaena. Hydrobiologia, 2019, 837, 31-46.	1.0	6
47	Novel multimarker comparisons address the genetic population structure of silvertip sharks (Carcharhinus albimarginatus). Marine and Freshwater Research, 2019, 70, 1007.	0.7	11
48	Phylogeography of eagle rays of the genus Aetobatus: Aetobatus narinari is restricted to the continental western Atlantic Ocean. Hydrobiologia, 2019, 836, 169-183.	1.0	15
49	Genetic stock structure of New Zealand fish and the use of genomics in fisheries management: an overview and outlook. New Zealand Journal of Zoology, 2021, 48, 1-31.	0.6	29
50	SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes. F1000Research, 2014, 3, 191.	0.8	61
51	Population genetics of Southern Hemisphere tope shark (Galeorhinus galeus): Intercontinental divergence and constrained gene flow at different geographical scales. PLoS ONE, 2017, 12, e0184481.	1.1	22
52	Global phylogeography of the dusky shark Carcharhinus obscurus: implications for fisheries management and monitoring the shark fin trade. Endangered Species Research, 2011, 14, 13-22.	1.2	32
53	When two oceans meet: regional population genetics of an exploited coastal shark, Mustelus mustelus. Marine Ecology - Progress Series, 2016, 544, 183-196.	0.9	16
54	Genetics of Sharks, Skates, and Rays. , 2012, , 503-520.		4

ARTICLE

IF CITATIONS