Risk indicators for the tick <i>Ixodes ricinus</i> and <i>lato in Sweden

Medical and Veterinary Entomology 23, 226-237 DOI: 10.1111/j.1365-2915.2009.00813.x

Citation Report

#	Article	IF	CITATIONS
1	Milder winters in northern Scandinavia may contribute to larger outbreaks of haemorrhagic fever virus. Global Health Action, 2009, 2, 2020.	0.7	26
2	Climate change influences infectious diseases both in the Arctic and the tropics: joining the dots. Global Health Action, 2009, 2, 2106.	0.7	15
3	The range of Ixodes ricinus and the risk of contracting Lyme borreliosis will increase northwards when the vegetation period becomes longer. Ticks and Tick-borne Diseases, 2011, 2, 44-49.	1.1	124
4	Conferencias magistrales. Biomedica, 2011, 31, .	0.3	0
5	Multi-source analysis reveals latitudinal and altitudinal shifts in range of Ixodes ricinus at its northern distribution limit. Parasites and Vectors, 2011, 4, 84.	1.0	147
6	Geographic and Temporal Variations in Population Dynamics of <i>lxodes ricinus </i> and Associated <i>Borrelia </i> Infections in The Netherlands. Vector-Borne and Zoonotic Diseases, 2011, 11, 523-532.	0.6	52
7	Passive Surveillance for I. scapularis Ticks: Enhanced Analysis for Early Detection of Emerging Lyme Disease Risk. Journal of Medical Entomology, 2012, 49, 400-409.	0.9	64
8	Borrelia burgdorferiSerosurvey in Wild Deer in England and Wales. Vector-Borne and Zoonotic Diseases, 2012, 12, 448-455.	0.6	7
9	The effect of deer management on the abundance of <i>Ixodes ricinus</i> in Scotland. Ecological Applications, 2012, 22, 658-667.	1.8	105
10	Beekeepers in central Europe are at high risk for contracting Lyme borreliosis. Journal of Apicultural Research, 2012, 51, 291-297.	0.7	3
11	Local habitat and landscape affect Ixodes ricinus tick abundances in forests on poor, sandy soils. Forest Ecology and Management, 2012, 265, 30-36.	1.4	59
12	Why is tick-borne encephalitis increasing? A review of the key factors causing the increasing incidence of human TBE in Sweden. Parasites and Vectors, 2012, 5, 184.	1.0	178
13	Ecology of <i>Borrelia burgdorferi sensu lato</i> in Europe: transmission dynamics in multi-host systems, influence of molecular processes and effects of climate change. FEMS Microbiology Reviews, 2012, 36, 837-861.	3.9	133
14	Climate change and skin disease: a review of the Englishâ€language literature. International Journal of Dermatology, 2012, 51, 656-661.	0.5	20
15	Changes in the geographical distribution and abundance of the tick Ixodes ricinus during the past 30 years in Sweden. Parasites and Vectors, 2012, 5, 8.	1.0	290
16	Relationship between temporal abundance of ticks and incidence of Lyme borreliosis in Lower Silesia regions of Poland. Journal of Vector Ecology, 2013, 38, 345-352.	0.5	5
17	Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites and Vectors, 2013, 6, 1.	1.0	684
18	Species diversity and abundance of ticks in three habitats in southern Italy. Ticks and Tick-borne Diseases, 2013, 4, 251-255.	1.1	49

#	Article	IF	CITATIONS
19	Environmental determinants of <i>lxodes ricinus</i> ticks and the incidence of <i>Borrelia burgdorferi</i> sensu lato, the agent of Lyme borreliosis, in Scotland. Parasitology, 2013, 140, 237-246.	0.7	73
20	Estimated Incidence of Erythema Migrans in Five Regions of France and Ecological Correlations with Environmental Characteristics. Vector-Borne and Zoonotic Diseases, 2013, 13, 666-673.	0.6	2
21	Research on the ecology of ticks and tick-borne pathogens—methodological principles and caveats. Frontiers in Cellular and Infection Microbiology, 2013, 3, 29.	1.8	154
22	Transport of ixodid ticks and tick-borne pathogens by migratory birds. Frontiers in Cellular and Infection Microbiology, 2013, 3, 48.	1.8	165
23	Free-living ixodid ticks in an urban Atlantic Forest fragment, state of Rio de Janeiro, Brazil. Brazilian Journal of Veterinary Parasitology, 2014, 23, 264-268.	0.2	3
24	Attachment site selection of life stages of Ixodes ricinus ticks on a main large host in Europe, the red deer (Cervus elaphus). Parasites and Vectors, 2014, 7, 510.	1.0	20
25	Ixodes ricinus and Borrelia prevalence at the Arctic Circle in Norway. Ticks and Tick-borne Diseases, 2014, 5, 107-112.	1.1	31
26	Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites and Vectors, 2014, 7, 11.	1.0	107
27	Ticks infesting humans in Italy and associated pathogens. Parasites and Vectors, 2014, 7, 328.	1.0	129
28	Shaping zoonosis risk: landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasites and Vectors, 2014, 7, 370.	1.0	38
29	Habitat and occurrence of ixodid ticks in the Liguria region, northwest Italy. Experimental and Applied Acarology, 2014, 64, 121-135.	0.7	17
30	Coinfection of tick cell lines has variable effects on replication of intracellular bacterial and viral pathogens. Ticks and Tick-borne Diseases, 2014, 5, 415-422.	1.1	13
31	The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Research, 2014, 108, 104-128.	1.9	227
32	Investigating the relationship between environmental factors and tick abundance in a small, highly heterogeneous region. Journal of Vector Ecology, 2015, 40, 107-116.	0.5	16
33	Serological signature of tick-borne pathogens in Scandinavian brown bears over two decades. Parasites and Vectors, 2015, 8, 398.	1.0	8
34	Lyme disease/borreliosis as a systemic disease. Clinics in Dermatology, 2015, 33, 542-550.	0.8	11
35	Assessing the statistical relationships among water-derived climate variables, rainfall, and remotely sensed features of vegetation: implications for evaluating the habitat of ticks. Experimental and Applied Acarology, 2015, 65, 107-124.	0.7	15
36	First evidence of established populations of the taiga tick Ixodes persulcatus (Acari: Ixodidae) in Sweden. Parasites and Vectors, 2016, 9, 377.	1.0	58

CITATION REPORT

#	Article	IF	Citations
37	Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland. Journal of the Royal Society Interface, 2016, 13, 20160140.	1.5	43
38	13. Greener cities, a wild card for ticks?. Ecology and Control of Vector-Borne Diseases, 2016, , 187-203.	0.3	9
39	Assessing the abundance, seasonal questing activity, and Borrelia and tick-borne encephalitis virus (TBEV) prevalence of Ixodes ricinus ticks in a Lyme borreliosis endemic area in Southwest Finland. Ticks and Tick-borne Diseases, 2016, 7, 208-215.	1.1	39
40	Oak acorn crop and Google search volume predict Lyme disease risk in temperate Europe. Basic and Applied Ecology, 2016, 17, 300-307.	1.2	22
41	Identifying Environmental and Human Factors Associated With Tick Bites using Volunteered Reports and Frequent Pattern Mining. Transactions in GIS, 2017, 21, 277-299.	1.0	13
42	Ticks and Borrelia in urban and peri-urban green space habitats in a city in southern England. Ticks and Tick-borne Diseases, 2017, 8, 353-361.	1.1	77
43	Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philosophical Transactions of the Royal Society B: Biological Sciences, 2017, 372, 20160123.	1.8	32
44	Europe-Wide Meta-Analysis of Borrelia burgdorferi Sensu Lato Prevalence in Questing Ixodes ricinus Ticks. Applied and Environmental Microbiology, 2017, 83, .	1.4	138
45	Acarological Risk of <i>Borrelia burgdorferi</i> Sensu Lato Infections Across Space and Time in The Netherlands. Vector-Borne and Zoonotic Diseases, 2017, 17, 99-107.	0.6	22
46	Ticks and the city - are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes?. Parasites and Vectors, 2017, 10, 573.	1.0	54
47	Modelling and mapping tick dynamics using volunteered observations. International Journal of Health Geographics, 2017, 16, 41.	1.2	19
48	Surveillance of Ixodes ricinus ticks (Acari: Ixodidae) in Iceland. Parasites and Vectors, 2017, 10, 466.	1.0	20
49	Low probability of a dilution effect for Lyme borreliosis in Belgian forests. Ticks and Tick-borne Diseases, 2018, 9, 1143-1152.	1.1	15
50	Year-to-year variation in the density of Ixodes ricinus ticks and the prevalence of the rodent-associated human pathogens Borrelia afzelii and B. miyamotoi in different forest types. Ticks and Tick-borne Diseases, 2018, 9, 141-145.	1.1	14
51	Tick abundance, pathogen prevalence, and disease incidence in two contrasting regions at the northern distribution range of Europe. Parasites and Vectors, 2018, 11, 309.	1.0	20
52	Ecosystem change and zoonoses in the Anthropocene. Zoonoses and Public Health, 2018, 65, 755-765.	0.9	66
53	Lyme borreliosis incidence in Lombardy, Italy (2000–2015): Spatiotemporal analysis and environmental risk factors. Ticks and Tick-borne Diseases, 2019, 10, 101257.	1.1	17
54	Accessibility analysis in evaluating exposure risk to an ecosystem disservice. Applied Geography, 2019, 113, 102098.	1.7	8

CITATION REPORT

	CITATION	N REPORT	
#	Article	IF	CITATIONS
55	Equine Granulocytic Anaplasmosis in Southern Sweden: Associations with coniferous forest, water bodies and landscape heterogeneity. Agriculture, Ecosystems and Environment, 2019, 285, 106626.	2.5	5
56	Can Protected Areas Mitigate Lyme Disease Risk in Fennoscandia?. EcoHealth, 2019, 16, 184-190.	0.9	2
57	Genospecies of Borrelia burgdorferi sensu lato detected in 16 mammal species and questing ticks from northern Europe. Scientific Reports, 2019, 9, 5088.	1.6	27
58	Predicting the spatial abundance of Ixodes ricinus ticks in southern Scandinavia using environmental and climatic data. Scientific Reports, 2019, 9, 18144.	1.6	10
59	Infection prevalence and ecotypes of Anaplasma phagocytophilum in moose Alces alces, red deer Cervus elaphus, roe deer Capreolus capreolus and Ixodes ricinus ticks from Norway. Parasites and Vectors, 2019, 12, 1.	1.0	163
60	Habitat type influences parasite load in Algerian Psammodromus (Psammodromus algirus) lizards. Canadian Journal of Zoology, 2019, 97, 172-180.	0.4	20
61	Seasonality and anatomical location of human tick bites in the United Kingdom. Zoonoses and Public Health, 2020, 67, 112-121.	0.9	23
62	Detection of potentially pathogenic bacteria from Ixodes ricinus carried by pets in Tuscany, Italy. Veterinary Record Open, 2020, 7, e000395.	0.3	5
63	Mapping the Potential Distribution of Major Tick Species in China. International Journal of Environmental Research and Public Health, 2020, 17, 5145.	1.2	11
64	Spatial patterns of pathogen prevalence in questing Ixodes ricinus nymphs in southern Scandinavia, 2016. Scientific Reports, 2020, 10, 19376.	1.6	14
65	Game Animal Density, Climate, and Tick-Borne Encephalitis in Finland, 2007–2017. Emerging Infectious Diseases, 2020, 26, 2899-2906.	2.0	7
66	Enhanced threat of tickâ€borne infections within cities? Assessing public health risks due to ticks in urban green spaces in Helsinki, Finland. Zoonoses and Public Health, 2020, 67, 823-839.	0.9	21
67	Spatial data of Ixodes ricinus instar abundance and nymph pathogen prevalence, Scandinavia, 2016–2017. Scientific Data, 2020, 7, 238.	2.4	4
68	A Mini-Review of Ixodes Ticks Climate Sensitive Infection Dispersion Risk in the Nordic Region. International Journal of Environmental Research and Public Health, 2020, 17, 5387.	1.2	17
69	A Retrospective Assessment of Temperature Trends in Northern Europe Reveals a Deep Impact on the Life Cycle of Ixodes ricinus (Acari: Ixodidae). Pathogens, 2020, 9, 345.	1.2	8
70	The distribution limit of the common tick, Ixodes ricinus, and some associated pathogens in north-western Europe. Ticks and Tick-borne Diseases, 2020, 11, 101388.	1.1	55
71	Validating a common tick survey method: cloth-dragging and line transects. Experimental and Applied Acarology, 2021, 83, 131-146.	0.7	12
72	Screening of Eurasian Tundra Reindeer for Viral Sequences by Next-Generation Sequencing. International Journal of Environmental Research and Public Health, 2021, 18, 6561.	1.2	6

CITATION REPORT

#	Article	IF	CITATIONS
73	Tick exposure and risk of tickâ€borne pathogens infection in hunters and hunting dogs: a citizen science approach. Transboundary and Emerging Diseases, 2022, 69, .	1.3	18
74	The Impact of Climate Trends on a Tick Affecting Public Health: A Retrospective Modeling Approach for Hyalomma marginatum (Ixodidae). PLoS ONE, 2015, 10, e0125760.	1.1	44
75	Ticks as vectors: taxonomy, biology and ecology. OIE Revue Scientifique Et Technique, 2015, 34, 53-65.	0.5	80
76	Predicting and mapping human risk of exposure to Ixodes ricinus nymphs using climatic and environmental data, Denmark, Norway and Sweden, 2016. Eurosurveillance, 2019, 24, .	3.9	33
77	24. How an extreme weather spell in winter can influence vector tick abundance and tick-borne disease incidence. Ecology and Control of Vector-Borne Diseases, 2016, , 335-349.	0.3	10
78	25. Grasping risk mapping. Ecology and Control of Vector-Borne Diseases, 2016, , 351-371.	0.3	5
79	<i>Borrelia burgdorferi</i> : Cell Biology and Clinical Manifestations in Latent Chronic Lyme. Open Journal of Medical Microbiology, 2014, 04, 210-223.	0.1	2
80	Attachment site selection of life stages of Ixodes ricinus ticks on a main large host in Europe, the red deer (Cervus elaphus). Parasites and Vectors, 2014, 7, 510.	1.0	1
81	16. How can forest managers help to reduce the risk for Lyme borreliosis?. Ecology and Control of Vector-Borne Diseases, 2016, , 233-241.	0.3	1
83	The relationship between the laboratory diagnosis of Lyme neuroborreliosis and climate factors in Kalmar County Sweden — an overview between 2008 and 2019. European Journal of Clinical Microbiology and Infectious Diseases, 2022, 41, 253-261.	1.3	6
84	The Role of Ticks in the Emergence of Borrelia burgdorferi as a Zoonotic Pathogen and Its Vector Control: A Global Systemic Review. Microorganisms, 2021, 9, 2412.	1.6	15
85	The evolving story of Borrelia burgdorferi sensu lato transmission in Europe. Parasitology Research, 2022, 121, 781-803.	0.6	28
86	The impact of climatic factors on tick-related hospital visits and borreliosis incidence rates in European Russia. PLoS ONE, 2022, 17, e0269846.	1.1	1
87	Presence of Anaplasma spp. and Their Associated Antibodies in the Swedish Goat Population. Animals, 2023, 13, 333.	1.0	1