Finding one's way in proteomics: a protein species nom

Chemistry Central Journal 3, 11 DOI: 10.1186/1752-153x-3-11

Citation Report

#	Article	IF	CITATIONS
1	Relative protein quantitation with post translational modifications in mass spectrometry based proteomics. , 2010, , .		0
2	Integrated Multifunctional Microfluidics for Automated Proteome Analyses. Topics in Current Chemistry, 2011, 304, 261-294.	4.0	7
3	Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature, 2011, 480, 254-258.	13.7	587
4	Analysis of Intact Protein Isoforms by Mass Spectrometry. Journal of Biological Chemistry, 2011, 286, 25451-25458.	1.6	88
5	Quantitative proteome analysis of the 20S proteasome of apoptotic Jurkat T cells. Amino Acids, 2011, 41, 351-361.	1.2	16
6	Proteome analysis of microtubule-associated proteins and their interacting partners from mammalian brain. Amino Acids, 2011, 41, 363-385.	1.2	16
7	Adaptation of proteomic techniques for the identification and characterization of protein species from murine heart. Amino Acids, 2011, 41, 401-414.	1.2	12
8	ADP-ribosylation of arginine. Amino Acids, 2011, 41, 257-269.	1.2	110
9	100% protein sequence coverage: a modern form of surrealism in proteomics. Amino Acids, 2011, 41, 291-310.	1.2	88
10	Tools for phospho- and glycoproteomics of plasma membranes. Amino Acids, 2011, 41, 223-233.	1.2	17
11	Towards the analysis of protein species: an overview about strategies and methods. Amino Acids, 2011, 41, 219-222.	1.2	18
12	Lights and shadows of proteomic technologies for the study of protein species including isoforms, splicing variants and protein postâ€translational modifications. Proteomics, 2011, 11, 590-603.	1.3	19
13	Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont <i>Protochlamydia amoebophila</i> . Proteomics, 2011, 11, 1868-1892.	1.3	12
14	Quantitative phosphoproteomics reveals link between <i>Helicobacter pylori</i> infection and RNA splicing modulation in host cells. Proteomics, 2011, 11, 2798-2811.	1.3	35
15	Analysis of Intact Monoclonal Antibody IgG1 by Electron Transfer Dissociation Orbitrap FTMS. Molecular and Cellular Proteomics, 2012, 11, 1758-1767.	2.5	137
16	Robust Analysis of the Yeast Proteome under 50 kDa by Molecular-Mass-Based Fractionation and Top-Down Mass Spectrometry. Analytical Chemistry, 2012, 84, 209-215.	3.2	62
17	Application of Metal-Coded Affinity Tags (MeCAT): Absolute Protein Quantification with Top-Down and Bottom-Up Workflows by Metal-Coded Tagging. Analytical Chemistry, 2012, 84, 5268-5275.	3.2	36
18	Comparison of displacement versus gradient mode for separation of a complex protein mixture by anion-exchange chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2012, 901, 34-40.	1.2	3

#	Article	IF	CITATIONS
19	Comparative proteome analysis of Aspergillus oryzae 3.042 and A. oryzae 100–8 strains: Towards the production of different soy sauce flavors. Journal of Proteomics, 2012, 75, 3914-3924.	1.2	30
20	Proteomic Profile of Human Aortic Stenosis: Insights into the Degenerative Process. Journal of Proteome Research, 2012, 11, 1537-1550.	1.8	57
21	An online nanoâ€LCâ€ESIâ€FTICRâ€MS method for comprehensive characterization of endogenous fragments from amyloid β and amyloid precursor protein in human and cat cerebrospinal fluid. Journal of Mass Spectrometry, 2012, 47, 591-603.	0.7	78
22	Cation exchange displacement batch chromatography of proteins guided by screening of protein purification parameters. Journal of Separation Science, 2012, 35, 3170-3176.	1.3	5
23	Restoration of fullâ€length <scp>APC</scp> protein in <scp>SW</scp> 480 colon cancer cells induces exosomeâ€mediated secretion of <scp>DKK</scp> â€4. Electrophoresis, 2012, 33, 1873-1880.	1.3	34
24	Amino acids: Chemistry, functionality and selected non-enzymatic post-translational modifications. Journal of Proteomics, 2012, 75, 2275-2296.	1.2	131
25	Existing bioinformatics tools for the quantitation of post-translational modifications. Amino Acids, 2012, 42, 129-138.	1.2	13
26	Aberrant proteins in the saliva of patients with oral squamous cell carcinoma. Electrophoresis, 2013, 34, 2495-2502.	1.3	47
27	Proteomic Analysis of Leaves and Roots of Common Wheat (<i>Triticum aestivum</i> L.) under Copper-Stress Conditions. Journal of Proteome Research, 2013, 12, 4846-4861.	1.8	67
28	Comparative proteomic analysis of the plant–virus interaction in resistant and susceptible ecotypes of maize infected with sugarcane mosaic virus. Journal of Proteomics, 2013, 89, 124-140.	1.2	88
29	2 <scp>D</scp> difference gel electrophoresis reference map of a <i><scp>F</scp>usarium graminearum</i> nivalenol producing strain. Electrophoresis, 2013, 34, 505-509.	1.3	15
30	High Resolution Quantitative Proteomics of HeLa Cells Protein Species Using Stable Isotope Labeling with Amino Acids in Cell Culture(SILAC), Two-Dimensional Gel Electrophoresis(2DE) and Nano-Liquid Chromatograpohy Coupled to an LTQ-OrbitrapMass Spectrometer. Molecular and Cellular Proteomics. 2013. 12. 529-538.	2.5	101
31	Quantitative and qualitative 2D electrophoretic analysis of differentially expressed mitochondrial proteins from five mouse organs. Proteomics, 2013, 13, 179-195.	1.3	7
32	A comparative proteomic analysis provides insights into pigment biosynthesis in brown color fiber. Journal of Proteomics, 2013, 78, 374-388.	1.2	37
33	Proteome Analysis of Hemolymph Changes during the Larval to Pupal Development Stages of Honeybee Workers (<i>Apis mellifera ligustica</i>). Journal of Proteome Research, 2013, 12, 5189-5198.	1.8	26
34	The response of Mucor plumbeus to pentachlorophenol: A toxicoproteomics study. Journal of Proteomics, 2013, 78, 159-171.	1.2	28
35	Characterization of the Edwardsiella tarda proteome in response to different environmental stresses. Journal of Proteomics, 2013, 80, 320-333.	1.2	16
36	Proteomic analysis on the leaves of TaBTF3 gene virus-induced silenced wheat plants may reveal its regulatory mechanism. Journal of Proteomics, 2013, 83, 130-143.	1.2	25

#	Article	IF	Citations
37	Comparative studies focusing on transgenic through cp4EPSPS gene and non-transgenic soybean plants: An analysis of protein species and enzymes. Journal of Proteomics, 2013, 93, 107-116.	1.2	43
38	Proteoform: a single term describing protein complexity. Nature Methods, 2013, 10, 186-187.	9.0	1,180
39	Differential response of root proteome to drought stress in drought sensitive and tolerant sunflower inbred lines. Functional Plant Biology, 2013, 40, 609.	1.1	27
40	Application of twoâ€dimensional gelâ€based mass spectrometry to functionally dissect resistance to targeted cancer therapy. Proteomics - Clinical Applications, 2013, 7, 813-824.	0.8	7
41	Functional and differential proteomic analyses to identify platelet derived factors affecting ex vivo expansion of mesenchymal stromal cells. BMC Cell Biology, 2013, 14, 48.	3.0	46
42	Mass spectrometric analysis of protein species of biologics. Pharmaceutical Bioprocessing, 2013, 1, 381-404.	0.8	5
43	Back to the future-The value of single protein species investigations. Proteomics, 2013, 13, 3103-3105.	1.3	8
44	Proteomic and redoxâ€proteomic study on the role of glutathione reductase in human lung cancer cells. Electrophoresis, 2013, 34, 3305-3314.	1.3	8
45	Altered protein profiles in human umbilical cords with preterm and fullâ€ŧerm delivery. Electrophoresis, 2013, 34, 493-500.	1.3	2
46	Differences in protein changes between stressâ€induced premature senescence and replicative senescence states. Electrophoresis, 2013, 34, 2209-2217.	1.3	25
47	Upregulation of Phosphorylated HSP27, PRDX2, GRP75, GRP78 and GRP94 in Acquired Middle Ear Cholesteatoma Growth. International Journal of Molecular Sciences, 2013, 14, 14439-14459.	1.8	13
48	Deep Imaging: How Much of the Proteome Does Current Top-Down Technology Already Resolve?. PLoS ONE, 2014, 9, e86058.	1.1	31
49	Proteome alterations of reverse photoperiod-sensitive genic male sterile rice (Oryza sativa L.) at fertility transformation stage. Genes and Genomics, 2014, 36, 711-726.	0.5	5
50	Analysis of root proteome unravels differential molecular responses during compatible and incompatible interaction between chickpea (Cicer arietinum L.) and Fusarium oxysporum f. sp. ciceri Race1 (Foc1). BMC Genomics, 2014, 15, 949.	1.2	39
51	Nuclear Proteomics with XRCC3 Knockdown to Reveal the Development of Doxorubicin-Resistant Uterine Cancer. Toxicological Sciences, 2014, 139, 396-406.	1.4	7
52	Biomarker discovery for neuroendocrine cervical cancer. Electrophoresis, 2014, 35, 2039-2045.	1.3	9
53	Alteration of protein profile in rat liver of animals exposed to subacute diazinon: A proteomic approach. Electrophoresis, 2014, 35, 1419-1427.	1.3	14
54	Aberrant proteins featured in the saliva of habitual betel quid chewers: An indication of early oral premalignancy?. Electrophoresis, 2014, 35, 3504-3511.	1.3	4

#	Article	IF	CITATIONS
55	Artifacts to avoid while taking advantage of topâ€down mass spectrometry based detection of protein Sâ€ŧhiolation. Proteomics, 2014, 14, 1152-1157.	1.3	20
56	Antigen 85 variation across lineages of Mycobacterium tuberculosis—Implications for vaccine and biomarker success. Journal of Proteomics, 2014, 97, 141-150.	1.2	19
57	Analysis of protein species differentiation among mycobacterial low-Mr-secreted proteins by narrow pH range Immobiline gel 2-DE-MALDI-MS. Journal of Proteomics, 2014, 97, 235-244.	1.2	31
58	Topâ€down proteomics: Enhancing 2D gel electrophoresis from tissue processing to highâ€sensitivity protein detection. Proteomics, 2014, 14, 872-889.	1.3	45
59	Growth inhibition and differences in protein profiles in azadirachtinâ€ŧreated <i>Drosophila melanogaster</i> larvae. Electrophoresis, 2014, 35, 1122-1129.	1.3	15
60	5-Methoxytryptophan-dependent protection of cardiomyocytes from heart ischemia reperfusion injury. Archives of Biochemistry and Biophysics, 2014, 543, 15-22.	1.4	16
61	The proteomics quantification dilemma. Journal of Proteomics, 2014, 107, 98-102.	1.2	23
62	Characterization of protein species and weighted protein co-expression network regulation of Escherichia coli in response to serum killing using a 2-DE based proteomics approach. Molecular BioSystems, 2014, 10, 475-484.	2.9	7
63	Disclosure of Selective Advantages in the "modern―Sublineage of the Mycobacterium tuberculosis Beijing Genotype Family by Quantitative Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2632-2645.	2.5	28
64	Differential Responses of Three Grapevine Cultivars to Botryosphaeria Dieback. Phytopathology, 2014, 104, 1021-1035.	1.1	38
65	2DEâ€based approach for estimation of number of protein species in a cell. Electrophoresis, 2014, 35, 895-900.	1.3	19
66	Identification of up- and down-regulated proteins in doxorubicin-resistant uterine cancer cells: Reticulocalbin-1 plays a key role in the development of doxorubicin-associated resistance. Pharmacological Research, 2014, 90, 1-17.	3.1	10
67	Quantitative proteomics in cardiovascular research: Global and targeted strategies. Proteomics - Clinical Applications, 2014, 8, 488-505.	0.8	21
68	Comparative proteomics analysis of host cells infected with <i>Brucella abortus</i> <scp>A</scp> 19. Electrophoresis, 2014, 35, 1130-1143.	1.3	6
69	Stress-related genes distinctly expressed in unfertilized wheat ovaries under both normal and water deficit conditions whereas differed in fertilized ovaries. Journal of Proteomics, 2014, 102, 11-27.	1.2	6
70	Deciphering the mode of action of a mutant Allium sativum Leaf Agglutinin (mASAL), a potent antifungal protein on Rhizoctonia solani. BMC Microbiology, 2015, 15, 237.	1.3	23
71	Tissue proteomics of splenic marginal zone lymphoma. Electrophoresis, 2015, 36, 1612-1621.	1.3	4
72	Distinct serum proteome profiles associated with collagenâ€induced arthritis and complete Freund's adjuvantâ€induced inflammation in <i>CD38^{â^'/ã^'}</i> mice: The discriminative power of protein species or proteoforms. Proteomics, 2015, 15, 3382-3393.	1.3	6

#	Article	IF	CITATIONS
73	Proteome analysis of testis from infertile protein C inhibitorâ€deficient mice reveals novel changes in serpin processing and prostaglandin metabolism. Electrophoresis, 2015, 36, 2837-2840.	1.3	6
74	Topâ€down mass spectrometry of intact membrane protein complexes reveals oligomeric state and sequence information in a single experiment. Protein Science, 2015, 24, 1292-1300.	3.1	42
75	5â€Methoxytryptophanâ€dependent inhibition of oral squamous cell carcinoma metastasis. Electrophoresis, 2015, 36, 2027-2034.	1.3	4
76	In vitro protein profiles in the early and late stages of Douglasâ€fir xylogenesis. Electrophoresis, 2015, 36, 2035-2045.	1.3	2
77	Physiological, Ultrastructural and Proteomic Responses in the Leaf of Maize Seedlings to Polyethylene Glycol-Stimulated Severe Water Deficiency. International Journal of Molecular Sciences, 2015, 16, 21606-21625.	1.8	28
78	2-DE Mapping of the Blue Mussel Gill Proteome: The Usual Suspects Revisited. Proteomes, 2015, 3, 3-41.	1.7	15
79	Scientific standards and MIAPEs in plant proteomics research and publications. Frontiers in Plant Science, 2015, 6, 473.	1.7	7
80	Proteomic analysis of middle and late stages of bread wheat (Triticum aestivum L.) grain development. Frontiers in Plant Science, 2015, 6, 735.	1.7	26
81	Quantification of biopharmaceuticals and biomarkers in complex biological matrices: a comparison of liquid chromatography coupled to tandem mass spectrometry and ligand binding assays. Expert Review of Proteomics, 2015, 12, 355-374.	1.3	32
82	Comparative proteomic analysis of Populus trichocarpa early stem from primary to secondary growth. Journal of Proteomics, 2015, 126, 94-108.	1.2	22
83	Exoproteome of Aspergillus flavus corneal isolates and saprophytes: Identification of proteoforms of an oversecreted alkaline protease. Journal of Proteomics, 2015, 115, 23-35.	1.2	35
84	Mitochondrial proteomics with si <scp>RNA</scp> knockdown to reveal <scp>ACAT</scp> 1 and <scp>MDH</scp> 2 in the development of doxorubicinâ€resistant uterine cancer. Journal of Cellular and Molecular Medicine, 2015, 19, 744-759.	1.6	36
85	Proteome profiling of keratinocytes transforming to malignancy. Electrophoresis, 2015, 36, 564-576.	1.3	6
86	Succinylome Analysis Reveals the Involvement of Lysine Succinylation in Metabolism in Pathogenic Mycobacterium tuberculosis*. Molecular and Cellular Proteomics, 2015, 14, 796-811.	2.5	117
87	Western blotting revisited: Critical perusal of underappreciated technical issues. Proteomics - Clinical Applications, 2015, 9, 396-405.	0.8	54
88	Retinal proteins associated with redox regulation and protein folding play central roles in response to high glucose conditions. Electrophoresis, 2015, 36, 902-909.	1.3	1
89	Reconsidering Old Data: Non-canonical HspB1 Species and the Enigma of the Cytoskeletal Function of HspB1. Heat Shock Proteins, 2015, , 471-485.	0.2	1
90	Proteome changes during yeast-like and pseudohyphal growth in the biofilm-forming yeast Pichia fermentans. Amino Acids, 2015, 47, 1091-1106.	1.2	12

#	Article	IF	CITATIONS
91	Immunoproteomic technology offers an extraordinary diagnostic approach for Toxoplasma gondii infection. Journal of Microbiological Methods, 2015, 119, 18-30.	0.7	6
92	Transformative Impact of Proteomics on Cardiovascular Health and Disease. Circulation, 2015, 132, 852-872.	1.6	140
93	Fourteen years of plant proteomics reflected in <i>Proteomics</i> : Moving from model species and 2DEâ€based approaches to orphan species and gelâ€free platforms. Proteomics, 2015, 15, 1089-1112.	1.3	91
94	Concentration and pattern changes of porcine serum apolipoprotein Aâ€i in four different infectious diseases. Electrophoresis, 2015, 36, 543-551.	1.3	7
95	p53 Proteoforms and Intrinsic Disorder: An Illustration of the Protein Structure–Function Continuum Concept. International Journal of Molecular Sciences, 2016, 17, 1874.	1.8	131
96	Quantitative interactome reveals that porcine reproductive and respiratory syndrome virus nonstructural protein 2 forms a complex with viral nucleocapsid protein and cellular vimentin. Journal of Proteomics, 2016, 142, 70-81.	1.2	32
97	Identification of Winter-Responsive Proteins in Bread Wheat Using Proteomics Analysis and Virus-Induced Gene Silencing (VIGS). Molecular and Cellular Proteomics, 2016, 15, 2954-2969.	2.5	32
98	The intricacy of biomarker complexity–the identification of a genuine proteomic biomarker is more complicated than believed. Proteomics - Clinical Applications, 2016, 10, 1073-1076.	0.8	6
99	Homogenization of tissues via picosecond-infrared laser (PIRL) ablation: Giving a closer view on the in-vivo composition of protein species as compared to mechanical homogenization. Journal of Proteomics, 2016, 134, 193-202.	1.2	33
100	Proteome analysis of Bemisia tabaci suggests specific targets for RNAi mediated control. Journal of Proteomics, 2016, 132, 93-102.	1.2	13
101	Towards deciphering proteomes via the proteoform, protein speciation, moonlighting and protein code concepts. Journal of Proteomics, 2016, 134, 1-4.	1.2	25
102	Analytical applications of partitioning in aqueous two-phase systems: Exploring protein structural changes and protein–partner interactions in vitro and in vivo by solvent interaction analysis method. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 622-644.	1.1	38
103	Protein species-specific characterization of conformational change induced by multisite phosphorylation. Journal of Proteomics, 2016, 134, 138-143.	1.2	13
104	Protein species as diagnostic markers. Journal of Proteomics, 2016, 134, 5-18.	1.2	24
105	Exoproteome analysis reveals higher abundance of proteins linked to alkaline stress in persistent Listeria monocytogenes strains. International Journal of Food Microbiology, 2016, 218, 17-26.	2.1	30
106	Genomic variability and protein species — Improving sequence coverage for proteogenomics. Journal of Proteomics, 2016, 134, 25-36.	1.2	10
107	Seroprofiling at the Candida albicans protein species level unveils an accurate molecular discriminator for candidemia. Journal of Proteomics, 2016, 134, 144-162.	1.2	33
108	Protein expression parallels thermal tolerance and ecologic changes in the diversification of a diving beetle species complex. Heredity, 2016, 116, 114-123.	1.2	6

#	Article	IF	CITATIONS
109	Comprehensive glycosylation profiling of IgG and IgG-fusion proteins by top-down MS with multiple fragmentation techniques. Journal of Proteomics, 2016, 134, 93-101.	1.2	36
110	Quantitative proteomics reveals the central changes of wheat in response to powdery mildew. Journal of Proteomics, 2016, 130, 108-119.	1.2	45
111	Protein species and moonlighting proteins: Very small changes in a protein's covalent structure can change its biochemical function. Journal of Proteomics, 2016, 134, 19-24.	1.2	59
112	Proteomic analysis of post translational modifications in cyanobacteria. Journal of Proteomics, 2016, 134, 57-64.	1.2	20
113	Proteolysis of chloroplast proteins is responsible for accumulation of free amino acids in dark-treated tea (Camellia sinensis) leaves. Journal of Proteomics, 2017, 157, 10-17.	1.2	105
114	Exo―and surface proteomes of the probiotic bacterium <i>Lactobacillus acidophilus</i> NCFM. Proteomics, 2017, 17, 1700019.	1.3	12
115	Proteomic analysis of erythropoietin-induced changes in neuron-like SH-SY5Y cells. Turkish Journal of Biochemistry, 2017, 42, 213-221.	0.3	0
116	Comparative proteomic analysis provides insight into 10-hydroxy-2-decenoic acid biosynthesis in honey bee workers. Amino Acids, 2017, 49, 1177-1192.	1.2	7
117	Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches. Journal of Proteome Research, 2017, 16, 2571-2578.	1.8	6
118	Protein-species quantitative venomics: looking through a crystal ball. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2017, 23, 27.	0.8	26
119	Immunoproteomic identification and characterization of Ni2+-regulated proteins implicates Ni2+ in the induction of monocyte cell death. Cell Death and Disease, 2017, 8, e2684-e2684.	2.7	13
120	Comparative proteomics of oxidative stress response of <i>Lactobacillus acidophilus</i> NCFM reveals effects on DNA repair and cysteine <i>de novo</i> synthesis. Proteomics, 2017, 17, 1600178.	1.3	35
121	Proteomic analysis of the compatible interaction of wheat and powdery mildew (Blumeria graminis f.) Tj ETQqO C) 0 rgBT /0 2.8	verlock 10 T
122	The roles of intrinsic disorder-based liquid-liquid phase transitions in the "Dr. Jekyll–Mr. Hyde― behavior of proteins involved in amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Autophagy, 2017, 13, 2115-2162.	4.3	48
123	Large-scale Proteomics Combined with Transgenic Experiments Demonstrates An Important Role of Jasmonic Acid in Potassium Deficiency Response in Wheat and Rice. Molecular and Cellular Proteomics, 2017, 16, 1889-1905.	2.5	62
124	Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Scientific Reports, 2017, 7, 9246.	1.6	18
125	Proteomic analysis of developing wheat grains infected by powdery mildew (Blumeria graminis f.sp.) Tj ETQq0 0	∂ rgBT /Ov £6	erlock 10 Tf

126	Pattern recognition for predictive, preventive, and personalized medicine in cancer. EPMA Journal, 2017, 8, 51-60.	3.3	119
-----	--	-----	-----

#	Article	IF	CITATIONS
127	MALDI mass spectrometry in medical research and diagnostic routine laboratories. International Journal of Mass Spectrometry, 2017, 416, 96-109.	0.7	12
128	Identification and Characterization of Human Proteoforms by Top-Down LC-21 Tesla FT-ICR Mass Spectrometry. Journal of Proteome Research, 2017, 16, 1087-1096.	1.8	81
129	Comparative Proteomic Analysis of Susceptible and Resistant Rice Plants during Early Infestation by Small Brown Planthopper. Frontiers in Plant Science, 2017, 8, 1744.	1.7	41
130	Variety and Dynamics of Proteoforms in the Human Proteome: Aspects of Markers for Hepatocellular Carcinoma. Proteomes, 2017, 5, 33.	1.7	10
131	Analysis of CA125 antigen in normal human seminal plasma highlightsthe molecular heterogeneity of underlying glycosylated species. Turkish Journal of Biology, 2017, 41, 543-551.	2.1	0
132	Looking at the recent advances in understanding $\hat{I}\pm$ -synuclein and its aggregation through the proteoform prism. F1000Research, 2017, 6, 525.	0.8	43
133	A fully validated liquid chromatography-mass spectrometry method for the quantification of the soluble receptor of advanced glycation end-products (sRAGE) in serum using immunopurification in a 96-well plate format. Talanta, 2018, 182, 414-421.	2.9	25
134	A Targeted, Differential Top-Down Proteomic Methodology for Comparison of ApoA-I Proteoforms in Individuals with High and Low HDL Efflux Capacity. Journal of Proteome Research, 2018, 17, 2156-2164.	1.8	30
135	Proteomic analysis of the impacts of powdery mildew on wheat grain. Food Chemistry, 2018, 261, 30-35.	4.2	18
136	Physiological proteomics of heart failure. Current Opinion in Physiology, 2018, 1, 185-197.	0.9	1
137	Sex differences in murine myocardium are not exclusively regulated by gonadal hormones. Journal of Proteomics, 2018, 178, 43-56.	1.2	4
138	A quantitative LC-MS/MS method for insulin-like growth factor 1 in human plasma. Clinical Chemistry and Laboratory Medicine, 2018, 56, 1905-1912.	1.4	17
139	Small heat shock protein speciation: novel non-canonical 44ÂkDa HspB5-related protein species in rat and human tissues. Cell Stress and Chaperones, 2018, 23, 813-826.	1.2	1
140	Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis, 2018, 39, 653-665.	1.3	27
141	How many proteins can be identified in a 2DE gel spot within an analysis of a complex human cancer tissue proteome?. Electrophoresis, 2018, 39, 965-980.	1.3	71
142	Two-Dimensional Gel Electrophoresis as an Information Base for Human Proteome. , 2018, , .		0
143	Functions of short lifetime biological structures at large: the case of intrinsically disordered proteins. Briefings in Functional Genomics, 2020, 19, 60-68.	1.3	14
144	Fast and facile analysis of glycosylation and phosphorylation of fibrinogen from human plasma—correlation with liver cancer and liver cirrhosis. Analytical and Bioanalytical Chemistry, 2018, 410, 7965-7977.	1.9	12

#	Article	IF	CITATIONS
145	Quantification of the soluble Receptor of Advanced Glycation End-Products (sRAGE) by LC-MS after enrichment by strong cation exchange (SCX) solid-phase extraction (SPE) at the protein level. Analytica Chimica Acta, 2018, 1043, 45-51.	2.6	8
146	Proteomics analysis reveals that nitric oxide regulates photosynthesis of maize seedlings under water deficiency. Nitric Oxide - Biology and Chemistry, 2018, 81, 46-56.	1.2	7
147	Application of Proteomics Technologies in Oil Palm Research. Protein Journal, 2018, 37, 473-499.	0.7	7
148	Intrinsically Disordered Proteins: The Dark Horse of the Dark Proteome. Proteomics, 2018, 18, e1800061.	1.3	66
149	Further evidence for sustainable alternatives to replace threatened animal horn based on quantitative proteomic analysis. Electrophoresis, 2018, 39, 3185-3190.	1.3	3
150	Comparative twoâ€dimensional polyacrylamide gel electrophoresis (2Dâ€PAGE) of human milk to identify dysregulated proteins in breast cancer. Electrophoresis, 2018, 39, 1723-1734.	1.3	22
151	Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Frontiers in Genetics, 2018, 9, 158.	1.1	190
152	Proteomics as a Tool to Study Molecular Changes During Plant Morphogenesis In Vitro. Methods in Molecular Biology, 2018, 1815, 339-349.	0.4	1
153	Variability of Some Milk-Associated Genes and Proteins in Several Breeds of Saudi Arabian Camels. Protein Journal, 2018, 37, 333-352.	0.7	4
154	Affimers as an Alternative to Antibodies in an Affinity LC–MS Assay for Quantification of the Soluble Receptor of Advanced Glycation End-Products (sRAGE) in Human Serum. Journal of Proteome Research, 2018, 17, 2892-2899.	1.8	20
155	Inventory of proteoforms as a current challenge of proteomics: Some technical aspects. Journal of Proteomics, 2019, 191, 22-28.	1.2	20
156	Multi-functionality of proteins involved in GPCR and G protein signaling: making sense of structure–function continuum with intrinsic disorder-based proteoforms. Cellular and Molecular Life Sciences, 2019, 76, 4461-4492.	2.4	47
157	Proteomics for cancer drug design. Expert Review of Proteomics, 2019, 16, 647-664.	1.3	9
158	Introduction to intrinsically disordered proteins and regions. , 2019, , 1-34.		17
159	Innovating the Concept and Practice of Two-Dimensional Gel Electrophoresis in the Analysis of Proteomes at the Proteoform Level. Proteomes, 2019, 7, 36.	1.7	53
160	Proteomics combined with BSMV-VIGS methods identified some N deficiency-responsive protein species and ABA role in wheat seedling. Plant and Soil, 2019, 444, 177-191.	1.8	12
161	Intrinsically Disordered Proteins and Their "Mysterious―(Meta)Physics. Frontiers in Physics, 2019, 7, .	1.0	352
162	Understanding anomalous mobility of proteins on SDSâ€PAGE with special reference to the highly acidic extracellular domains of human E―and Nâ€cadherins. Electrophoresis, 2019, 40, 1273-1281.	1.3	28

#	Article	IF	Citations
163	Intact protein bioanalysis by liquid chromatography – High-resolution mass spectrometry. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2019, 1110-1111, 155-167.	1.2	27
164	Investigation and development of maize fused network analysis with multi-omics. Plant Physiology and Biochemistry, 2019, 141, 380-387.	2.8	14
165	Mass spectrometric characterization of the zein protein composition in maize flour extracts upon protein separation by SDSâ€PAGE and 2D gel electrophoresis. Electrophoresis, 2019, 40, 2747-2758.	1.3	15
166	The Structural and Functional Diversity of Intrinsically Disordered Regions in Transmembrane Proteins. Journal of Membrane Biology, 2019, 252, 273-292.	1.0	14
167	Protein intrinsic disorder and structure-function continuum. Progress in Molecular Biology and Translational Science, 2019, 166, 1-17.	0.9	78
168	Comparative proteomic analysis of plasma of children with congenital heart disease. Electrophoresis, 2019, 40, 1848-1854.	1.3	4
169	Pathways and biomarkers of marbling and carcass fat deposition in bovine revealed by a combination of gel-based and gel-free proteomic analyses. Meat Science, 2019, 156, 146-155.	2.7	24
170	Proteomics Standards Initiative Extended FASTA Format. Journal of Proteome Research, 2019, 18, 2686-2692.	1.8	22
171	Quantification of surfactant protein D (SPD) in human serum by liquid chromatography-mass spectrometry (LC-MS). Talanta, 2019, 202, 507-513.	2.9	12
172	Netrin Family: Role for Protein Isoforms in Cancer. Journal of Nucleic Acids, 2019, 2019, 1-9.	0.8	19
174	Root Proteomics Reveals the Effects of Wood Vinegar on Wheat Growth and Subsequent Tolerance to Drought Stress. International Journal of Molecular Sciences, 2019, 20, 943.	1.8	36
175	Expanding the understanding of the heterogeneous nature of melanoma with bioinformatics and disorder-based proteomics. International Journal of Biological Macromolecules, 2020, 150, 1281-1293.	3.6	4
176	Mapping the Inorganic and Proteomic Differences among Different Types of Human Teeth: A Preliminary Compositional Insight. Biomolecules, 2020, 10, 1540.	1.8	12
177	Proteoforms: General Concepts and Methodological Process for Identification. , 0, , .		1
178	Zooming into the Dark Side of Human Annexin-S100 Complexes: Dynamic Alliance of Flexible Partners. International Journal of Molecular Sciences, 2020, 21, 5879.	1.8	18
179	Introductory Chapter: Proteoforms. , 0, , .		0
180	Reply to Comments on Proteomic Investigations of Two Pakistani Naja Snake Venom Species Unravel the Venom Complexity, Posttranslational Modifications, and Presence of Extracellular Vesicles. Toxins 2020, 12, 669. Toxins, 2020, 12, 781.	1.5	0
181	A database for inventory of proteoform profiles: "2DEâ€pattern― Electrophoresis, 2020, 41, 1118-1124.	1.3	5

#	Article	IF	CITATIONS
182	Intrinsic disorder in protein senseâ€antisense recognition. Journal of Molecular Recognition, 2020, 33, e2868.	1.1	7
183	Developing a Robust Assay to Monitor and Quantify Key Players of Metabolic Pathways during Adipogenesis by Targeted Proteomics. Proteomics, 2020, 20, 1900141.	1.3	3
184	Proteomic Profiling of Emiliania huxleyi Using a Three-Dimensional Separation Method Combined with Tandem Mass Spectrometry. Molecules, 2020, 25, 3028.	1.7	5
185	Extended Snake Venomics by Top-Down In-Source Decay: Investigating the Newly Discovered Anatolian Meadow Viper Subspecies, <i>Vipera anatolica senliki</i> . Journal of Proteome Research, 2020, 19, 1731-1749.	1.8	15
186	Integrating Top-Down and Bottom-Up Mass Spectrometric Strategies for Proteomic Profiling of Iranian Saw-Scaled Viper, <i>Echis carinatus sochureki</i> , Venom. Journal of Proteome Research, 2021, 20, 895-908.	1.8	17
187	Mass spectrometry-based proteomics analyses of post-translational modifications and proteoforms in human pituitary adenomas. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2021, 1869, 140584.	1.1	13
188	Gelâ€based fluorescent proteomic tools for investigating cell redox signaling. A miniâ€review. Electrophoresis, 2021, 42, 1378-1387.	1.3	2
189	What's in a mass?. Biochemical Society Transactions, 2021, 49, 1027-1037.	1.6	3
190	New Interface for Faster Proteoform Analysis: Immunoprecipitation Coupled with SampleStream-Mass Spectrometry. Journal of the American Society for Mass Spectrometry, 2021, 32, 1659-1670.	1.2	10
191	Complementing the pulp proteome via sampling with a picosecond infrared laser (PIRL). Clinical Oral Investigations, 2021, 25, 6757-6768.	1.4	0
192	Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins. International Journal of Molecular Sciences, 2021, 22, 7903.	1.8	10
193	Proteomes Are of Proteoforms: Embracing the Complexity. Proteomes, 2021, 9, 38.	1.7	46
194	<i>Per aspera ad chaos</i> : a personal journey to the wonderland of intrinsic disorder. Biochemical Journal, 2021, 478, 3015-3024.	1.7	7
195	Diving Deep into the Data: A Review of Deep Learning Approaches and Potential Applications in Foodomics. Foods, 2021, 10, 1803.	1.9	10
197	Comparative proteome analysis of human testis from newborn, young adult, and aged men identified spermatogenesis-associated proteins. Electrophoresis, 2015, , n/a-n/a.	1.3	7
198	Introduction to Proteomics Technologies. Methods in Molecular Biology, 2016, 1362, 3-27.	0.4	11
200	New technologies to analyse protein function: an intrinsic disorder perspective. F1000Research, 2020, 9, 101.	0.8	17
201	Mass spectrometry based approaches and strategies in bioanalysis for qualitative and quantitative ana analysis of pharmaceutically relevant molecules. Drug Discovery Today: Technologies, 2021, 40, 64-68.	4.0	1

#	Article	IF	CITATIONS
205	Gel electrophoresis for phosphorylated proteins: a brief introduction. Journal of Electrophoresis, 2020, 64, 13-17.	0.2	0
206	Adsorptive Microtiter Plates As Solid Supports in Affinity Purification Workflows. Journal of Proteome Research, 2021, 20, 5218-5221.	1.8	3
207	Preparing Proteoforms of Therapeutic Proteins for Top-Down Mass Spectrometry. , 0, , .		0
208	The Challenge of Human Spermatozoa Proteome: A Systematic Review. Journal of Reproduction and Infertility, 2017, 18, 267-279.	1.0	6
209	The comparison between 2DEâ€MS and bottomâ€up LCâ€MS demands highâ€end techniques for both technologies. Electrophoresis, 2022, 43, 1242-1245.	1.3	1
210	Eg95: A Vaccine against Cystic Echinococcosis. , 0, , .		0
211	Wool Keratin Nanoparticle-Based Micropatterns for Cellular Guidance Applications. ACS Applied Nano Materials, 2022, 5, 15272-15287.	2.4	5
212	Structure and disorder: protein functions depend on this new binary transforming lock-and-key into structure-function continuum. , 2023, , 127-148.		1
213	Role of plasticity and disorder in protein moonlighting: blurring of lines between biocatalysts and other biologically active proteins. , 2023, , 279-301.		2
214	Proteoforms expand the world of microproteins and short open reading frame-encoded peptides. IScience, 2023, 26, 106069.	1.9	10
215	A Practical and Analytical Comparative Study of Gel-Based Top-Down and Gel-Free Bottom-Up Proteomics Including Unbiased Proteoform Detection. Cells, 2023, 12, 747.	1.8	8
219	Growth hormone proteoformics atlas created to promote predictive, preventive, and personalized approach in overall management of pituitary neuroendocrine tumors. EPMA Journal, 2023, 14, 443-456.	3.3	1
226	Functional unfoldomics: Roles of intrinsic disorder in protein (multi)functionality. Advances in Protein Chemistry and Structural Biology, 2023, , .	1.0	0