CITATION REPORT List of articles citing

Surface modification of electrospun polycaprolactone nanofiber meshes by plasma treatment to enhance biological performance

DOI: 10.1002/smll.200801648 Small, 2009, 5, 1195-206.

Source: https://exaly.com/paper-pdf/46290599/citation-report.pdf

Version: 2024-04-28

This report has been generated based on the citations recorded by exaly.com for the above article. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

#	Paper	IF	Citations
210	RGD-functionalisation of PLLA nanofibers by surface coupling using plasma treatment: influence on stem cell differentiation. 2010 , 21, 1363-9		37
209	General functionalization route for cell adhesion on non-wetting surfaces. 2010 , 31, 2535-41		546
208	Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. 2010 , 31, 5875-85		144
207	Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. 2010 , 5, 539-54		64
206	Design, fabrication and characterization of PCL electrospun scaffolds review. 2011 , 21, 9419		424
205	Chemical modification of bioinspired superhydrophobic polystyrene surfaces to control cell attachment/proliferation. 2011 , 7, 8932		88
204	Carbon nanotube monolayer cues for osteogenesis of mesenchymal stem cells. <i>Small</i> , 2011 , 7, 741-5	11	52
203	Optimized electro- and wet-spinning techniques for the production of polymeric fibrous scaffolds loaded with bisphosphonate and hydroxyapatite. 2011 , 5, 253-63		67
202	The influence of patterned nanofiber meshes on human mesenchymal stem cell osteogenesis. 2011 , 11, 978-87		43
201	Direct Writing of Polycaprolactone Polymer for Potential Biomedical Engineering Applications. 2011 , 13, B296-B305		36
200	Dynamic topographical control of mesenchymal stem cells by culture on responsive poly(Haprolactone) surfaces. 2011 , 23, 3278-83		122
199	Fabrication of fibrinogen/P(LLA-CL) hybrid nanofibrous scaffold for potential soft tissue engineering applications. 2011 , 97, 339-47		38
198	Improvement of electrospun polymer fiber meshes pore size by femtosecond laser irradiation. 2011 , 257, 4091-4095		21
197	Enhanced photocatalytic activity of TiO2-incorporated nanofiber membrane by oxygen plasma treatment. 2011 , 519, 6899-6902		8
196	Effect of plasma treatment on surface chemical-bonding states and electrical properties of polyacrylonitrile nanofibers. 2011 , 519, 7090-7094		17
195	Encapsulation and Chemical Resistance of Electrospun Nylon Nanofibers Coated Using Integrated Atomic and Molecular Layer Deposition. 2011 , 158, D549		37
194	Harnessing cellBiomaterial interactions for osteochondral tissue regeneration. 2012 , 126, 67-104		3

193	Multifunctional aliphatic polyester nanofibers for tissue engineering. 2012 , 2, 202-12	32
192	Morphological Characterization of Nanofibers: Methods and Application in Practice. 2012 , 2012, 1-14	70
191	Nonthermal plasma effects on mesenchymal stem cell differentiation. 2012,	
190	Architectural and Surface Modification of Nanofibrous Scaffolds for Tissue Engineering. 2012,	3
189	Plasma surface modification of electrospun fibers for adhesion-based cancer cell sorting. 2012 , 4, 1112-21	14
188	Polyphosphazene functionalized polyester fiber matrices for tendon tissue engineering: in vitro evaluation with human mesenchymal stem cells. 2012 , 7, 045016	46
187	Superhydrophobic behaviour of plasma modified electrospun cellulose nanofiber-coated microfibers. 2012 , 19, 1743-1748	29
186	Fine-tuning of substrate architecture and surface chemistry promotes muscle tissue development. 2012 , 8, 1481-9	77
185	Development of micropatterned surfaces of poly(butylene succinate) by micromolding for guided tissue engineering. 2012 , 8, 1490-7	28
184	The use of hyaluronan to regulate protein adsorption and cell infiltration in nanofibrous scaffolds. 2012 , 33, 3428-45	101
183	Preparation of electrospun polycaprolactone nanofibers with water-soluble eggshell membrane and catechin. 2012 , 124, E83-E90	11
182	Grafting modification of electrospun polystyrene fibrous membranes via an entrapped initiator in an acrylic acid aqueous solution. 2013 , 127, 4102-4109	2
181	Plasma surface chemical treatment of electrospun poly(L-lactide) microfibrous scaffolds for enhanced cell adhesion, growth, and infiltration. 2013 , 19, 1188-98	83
180	Surface modification of electrospun fibre meshes by oxygen plasma for bone regeneration. 2013 , 5, 015006	65
179	Electrodynamic tailoring of self-assembled three-dimensional electrospun constructs. 2013 , 5, 7528-36	16
178	Enhanced adhesion of osteoblastic cells on polystyrene films by independent control of surface topography and wettability. 2013 , 33, 1689-95	24
177	Plasma treatment for improving cell biocompatibility of a biodegradable polymer scaffold for vascular graft applications. 2013 , 85, 78-86	76
176	Bio-inspired Immobilization of Cell-Adhesive Ligands on Electrospun Nanofibrous Patches for Cell	26

175 Immobilization of radionuclides on poly(lactide-co-glycolide) nanofibrous membranes. **2013**, 3, 12398

174	Improved osteoblast cell affinity on plasma-modified 3-D extruded PCL scaffolds. 2013 , 9, 5997-6005		133
173	Surface Modification of Poly-Ecaprolactone with an Atmospheric Pressure Plasma Jet. 2013 , 33, 165-17	5	29
172	Plasma and short pulse laser treatment of medical grade PEEK surfaces for controlled wetting. 2013 , 109, 261-264		28
171	Direct adhesion of endothelial cells to bioinspired poly(dopamine) coating through endogenous fibronectin and integrin 5 1 . 2013 , 13, 483-93		52
170	Quantitative characterization of functionally modified micronBubmicron fibers for tissue regeneration: a review. 2013 , 83, 1999-2022		6
169	Plasma treatment of electrospun PCL random nanofiber meshes (NFMs) for biological property improvement. 2013 , 101, 963-72		70
168	Poly (?-caprolactone) Fiber: An Overview. 2014 , 9, 155892501400900		36
167	Biological Effect of Gas Plasma Treatment on CO2Gas Foaming/Salt Leaching Fabricated Porous Polycaprolactone Scaffolds in Bone Tissue Engineering. 2014 , 2014, 1-6		22
166	Electrospun nanofibers as versatile interfaces for efficient gene delivery. 2014 , 8, 30		42
165	Functional brush-decorated poly(globalide) films by ARGET-ATRP for bioconjugation. 2014 , 14, 1600-8		21
164	Biofield-effect protein-sensor: Plasma functionalization of polyaniline, protein immobilization, and sensing mechanism. 2014 , 104, 233701		1
163	Grafting of a model protein on lactide and caprolactone based biodegradable films for biomedical applications. 2014 , 4, e27979		2
162	Size Also Matters in Biodegradable Composite Microfiber Reinforced by Chitosan Nanofibers. 2014 , 1621, 59-69		1
161	Sandwich-type fiber scaffolds with square arrayed microwells and nanostructured cues as microskin grafts for skin regeneration. 2014 , 35, 630-41		41
160	Stem cell responses to plasma surface modified electrospun polyurethane scaffolds. 2014 , 10, 949-58		43
159	Carboxyl Surface Functionalization of Poly(L-lactic acid) Electrospun Nanofibers through Atmospheric Non-Thermal Plasma Affects Fibroblast Morphology. 2014 , 11, 203-213		40
158	Poly(Etaprolactone) nanowebs functionalized with ∃and Etyclodextrins. <i>Biomacromolecules</i> , 2014 , 15, 4122-33	6.9	53

(2015-2014)

157	Immobilization of bioactive factor-loaded liposomes on the surface of electrospun nanofibers targeting tissue engineering. 2014 , 2, 1195-1209	46
156	Biofunctional nanofibrous substrate comprising immobilized antibodies and selective binding of autologous growth factors. <i>Biomacromolecules</i> , 2014 , 15, 2196-205	27
155	Nano-Sized Surface Patterns on Electrospun Microfibers Fabricated Using a Modified Plasma Process for Enhancing Initial Cellular Activities. 2014 , 11, 142-148	8
154	Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking. <i>ACS Applied Materials & amp; Interfaces</i> , 2014 , 6, 14087-95	80
153	Surface plasma treatment of poly(caprolactone) micro, nano, and multiscale fibrous scaffolds for enhanced osteoconductivity. 2014 , 20, 1689-702	43
152	Differential regulation of osteogenic differentiation of stem cells on surface roughness gradients. 2014 , 35, 9023-32	194
151	Surface modification of electrospun polycaprolactone fibers and effect on cell proliferation. 2014 , 2, 47-59	7
150	Nanofibers and Nanotubes. 2015 , 415-442	
149	Influence of DBD Inlet Geometry on the Homogeneity of Plasma-Polymerized Acrylic Acid Films: The Use of a Microplasma E lectrode Inlet Configuration. 2015 , 12, 1153-1163	21
148	Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants. 2015 , 6, 254-62	36
147	The Effect of Surface Modification of Aligned Poly-L-Lactic Acid Electrospun Fibers on Fiber Degradation and Neurite Extension. 2015 , 10, e0136780	27
146	A Novel Approach for Facile Synthesis of Biocompatible PVA-Coated PLA Nanofibers as Composite Membrane Scaffolds for Enhanced Osteoblast Proliferation. 2015 , 87-113	3
145	Electrospun aligned poly(propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds. 2015 , 117, 941-949	69
144	Chitosan nanoparticle/PCL nanofiber composite for wound dressing and drug delivery. 2015 , 26, 252-63	44
143	Electrospun cellulose nitrate and polycaprolactone blended nanofibers. 2015 , 2, 035401	4
142	Nanoparticle-based bioactive agent release systems for bone and cartilage tissue engineering. 2015 , 1, 109-118	41
141	Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study. 2015 , 28, 64-75	97
140	From flab to fab: transforming surgical waste into an effective bioactive coating material. 2015 , 4, 613-20	9

139	Electrospun poly(Etaprolactone)-based skin substitutes: In vivo evaluation of wound healing and the mechanism of cell proliferation. 2015 , 103, 1445-54	63
138	Regulation of human mesenchymal stem cell osteogenesis by specific surface density of fibronectin: a gradient study. <i>ACS Applied Materials & amp; Interfaces</i> , 2015 , 7, 2367-75	29
137	Enhancement of osteogenesis on micro/nano-topographical carbon fiber-reinforced polyetheretherketone-nanohydroxyapatite biocomposite. 2015 , 48, 592-8	64
136	Plug and play: combining materials and technologies to improve bone regenerative strategies. 2015 , 9, 745-59	18
135	Rapid Hydrophilization of Model Polyurethane/Urea (PURPEG) Polymer Scaffolds Using Oxygen Plasma Treatment. <i>Polymers</i> , 2016 , 8,	2
134	Nanostructured surface of electrospun PCL/dECM fibres treated with oxygen plasma for tissue engineering. 2016 , 6, 32887-32896	15
133	Fabrication of electrospun polycaprolactone coated withchitosan-silver nanoparticles membranes for wound dressing applications. 2016 , 27, 156	36
132	Surface modification of electrospun polycaprolactone microfibers by air plasma treatment: Effect of plasma power and treatment time. 2016 , 84, 502-513	35
131	Influence of layer-by-layer assembled electrospun poly (l-lactic acid) nanofiber mats on the bioactivity of endothelial cells. 2016 , 390, 838-846	14
130	Biocompatibility of plasma-treated poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanofiber mats modified by silk fibroin for bone tissue regeneration. 2016 , 68, 842-850	31
129	Ultrasensitive Visual Detection of HIV DNA Biomarkers via a Multi-amplification Nanoplatform. 2016 , 6, 23949	28
128	Kaltes AtmosphEendruckplasma im Einsatz in der Chirurgie. 2016 , 91-98	
127	A review of key challenges of electrospun scaffolds for tissue-engineering applications. 2016 , 10, 715-38	310
126	A simple and effective method for making multipotent/multilineage scaffolds with hydrophilic nature without any postmodification/treatment. 2016 , 141, 112-119	12
125	Surface modification of poly-Ecaprolactone electrospun fibrous scaffolds using plasma discharge with sputter deposition of a titanium target. 2016 , 171, 87-90	27
124	Collagen and heparan sulfate coatings differentially alter cell proliferation and attachment and. 2016 , 4, 159-169	
123	Fabrication of functional PLGA-based electrospun scaffolds and their applications in biomedical engineering. 2016 , 59, 1181-1194	127
122	Three-dimensional multilayered fibrous constructs for wound healing applications. 2016 , 4, 319-30	15

121	Chondroitin sulfate immobilization at the surface of electrospun nanofiber meshes for cartilage tissue regeneration approaches. 2017 , 403, 112-125	32
120	Effects of different sterilization methods on the physico-chemical and bioresponsive properties of plasma-treated polycaprolactone films. 2017 , 12, 015017	39
119	The study of the pseudo-polyrotaxane architecture as a route for mild surface functionalization by click chemistry of poly(Eaprolactone)-based electrospun fibers. 2017 , 5, 2181-2189	9
118	Nanoscale hybrid systems based on carbon nanotubes for biological sensing and control. 2017 , 37,	7
117	Electrospun polycaprolactone (PCL) scaffolds embedded with europium hydroxide nanorods (EHNs) with enhanced vascularization and cell proliferation for tissue engineering applications. 2017 , 5, 4660-4672	79
116	Alternately plasma-roughened nanosurface of a hybrid scaffold for aligning myoblasts. 2017 , 9, 025035	4
115	The use of magnetron sputtering for the deposition of thin titanium coatings on the surface of bioresorbable electrospun fibrous scaffolds for vascular tissue engineering: A pilot study. 2017 , 398, 63-72	27
114	Bioactive peptide functionalized aligned cyclodextrin nanofibers for neurite outgrowth. 2017 , 5, 517-524	32
113	Plasma treatment as an efficient tool for controlled drug release from polymeric materials: A review. 2017 , 266, 57-74	46
112	Electrospun Nanofibrous Meshes Cultured With Wharton's Jelly Stem Cell: An Alternative for Cartilage Regeneration, Without the Need of Growth Factors. 2017 , 12, 1700073	13
111	Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering. 2017 , 59, 82-93	64
110	A General Strategy for Generating Gradients of Bioactive Proteins on Electrospun Nanofiber Mats by Masking with Bovine Serum Albumin. 2017 , 5, 5580-5587	17
109	Immobilization of Platelet-Rich Plasma onto COOH Plasma-Coated PCL Nanofibers Boost Viability and Proliferation of Human Mesenchymal Stem Cells. <i>Polymers</i> , 2017 , 9,	24
108	Characterization of Nanocellulose. 2017 , 83-90	
107	Dopaminergic enhancement of cellular adhesion in bone marrow derived mesenchymal stem cells (MSCs). 2017 , 7,	6
106	Design of Thermochromic Polynorbornene Bearing Spiropyran Chromophore Moieties: Synthesis, Thermal Behavior and Dielectric Barrier Discharge Plasma Treatment. <i>Polymers</i> , 2017 , 9,	9
105	Electrospinning and surface modification methods for functionalized cell scaffolds. 2017, 201-225	4
104	A collagen based cryogel bioscaffold coated with nanostructured polydopamine as a platform for mesenchymal stem cell therapy. 2018 , 106, 2213-2228	13

103	Encoding materials for programming a temporal sequence of actions. 2018 , 6, 1433-1448	4
102	Effect of patterned electrospun hierarchical structures on alignment and differentiation of mesenchymal stem cells: Biomimicking bone. 2018 , 12, e2073-e2084	18
101	An oxygen plasma treated poly(dimethylsiloxane) bioscaffold coated with polydopamine for stem cell therapy. 2018 , 29, 54	14
100	The Use of Electrospinning Technique on Osteochondral Tissue Engineering. 2018 , 1058, 247-263	10
99	A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip. 2018 , 12, 024117	12
98	Nanopharmaceuticals for wound healing - Lost in translation?. 2018 , 129, 194-218	44
97	A stability study of plasma polymerized acrylic acid films. 2018 , 432, 214-223	22
96	Axon mimicking hydrophilic hollow polycaprolactone microfibres for diffusion magnetic resonance imaging. 2018 , 137, 394-403	9
95	Progress in electrospun polymeric nanofibrous membranes for water treatment: Fabrication, modification and applications. 2018 , 77, 69-94	396
94	Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering. 2018 , 162, 43-51	23
93	Effect of low-temperature plasma treatment of electrospun polycaprolactone fibrous scaffolds on calcium carbonate mineralisation 2018 , 8, 39106-39114	23
92	Effect of argon plasma treatment on hydrophilic stability of nanofiber webs. 2018 , 135, 46751	10
91	Wide-ranging diameter scale of random and highly aligned PCL fibers electrospun using controlled working parameters. 2018 , 157, 19-31	24
90	Various Techniques to Functionalize Nanofibers. 2018 , 1-26	
89	Atmospheric pressure plasma jet: A facile method to modify the intimal surface of polymeric tubular conduits. 2018 , 36, 04F404	10
88	Enhanced biocompatibility and osteogenic potential of mesoporous magnesium silicate/polycaprolactone/wheat protein composite scaffolds. 2018 , 13, 1107-1117	11
87	Effects of RF plasma modification on the thermal and mechanical properties of electrospun chitosan/poly(vinyl alcohol) nanofiber mats. 2018 , 36, 04I101	11
86	Surface Treatment of PEOT/PBT (55/45) with a Dielectric Barrier Discharge in Air, Helium, Argon and Nitrogen at Medium Pressure. 2018 , 11,	25

(2019-2018)

85	Polydopamine-assisted BMP-2 immobilization on titanium surface enhances the osteogenic potential of periodontal ligament stem cells via integrin-mediated cell-matrix adhesion. 2018 , 12, 661-672	18
84	Perspectives in General Surgery. 2018 , 347-354	
83	Effects of a dielectric barrier discharge (DBD) treatment on chitosan/polyethylene oxide nanofibers and their cellular interactions. 2018 , 201, 402-415	19
82	Surface modification to control the water wettability of electrospun mats. 2019 , 64, 249-287	43
81	Development of 1-propanethiol-based thiol-rich plasma polymerized coatings using a medium pressure dielectric barrier discharge. 2019 , 495, 143484	1
80	Functionalized polymers for drug/gene-delivery applications. 2019 , 275-299	3
79	Surface Treatment of Polymers by Plasma. 2019 , 31-65	3
78	Biocompatibility of Cyclopropylamine-Based Plasma Polymers Deposited at Sub-Atmospheric Pressure on Poly (Laprolactone) Nanofiber Meshes. 2019 , 9,	12
77	Low-temperature plasma treatment-assisted layer-by-layer self-assembly for the modification of nanofibrous mats. 2019 , 540, 535-543	15
76	Chondrogenesis-inductive nanofibrous substrate using both biological fluids and mesenchymal stem cells from an autologous source. 2019 , 98, 1169-1178	12
75	Skeletal myotube formation enhanced through fibrillated collagen nanofibers coated on a 3D-printed polycaprolactone surface. 2019 , 181, 408-415	5
74	Enhancing the Stability, Hydrophilicity, Mechanical and Biological Properties of Electrospun Polycaprolactone in Formic Acid/Acetic Acid Solvent System. 2019 , 20, 715-724	9
73	Synergetic effect of electrospun PCL fiber size, orientation and plasma-modified surface chemistry on stem cell behavior. 2019 , 485, 204-221	22
72	Unique animal friendly 3D culturing of human cancer and normal cells. 2019 , 60, 51-60	12
71	Enhancing Biocompatibility without Compromising Material Properties: An Optimised NaOH Treatment for Electrospun Polycaprolactone Fibres. 2019 , 2019, 1-11	24
70	WITHDRAWN: Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. 2019 ,	1
69	Thiolation of polycaprolactone (PCL) nanofibers by inductively coupled plasma (ICP) polymerization: Physical, chemical and biological properties. 2019 , 479, 942-952	19
68	Acrylic acid-grafted pre-plasma nanofibers for efficient removal of oil pollution from aquatic environment. 2019 , 371, 165-174	43

67	A comparative study on pre- and post-production plasma treatments of PCL films and nanofibers for improved cell-material interactions. 2019 , 481, 1554-1565	17
66	Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. 2019 , 119, 5298-5415	1463
65	Cold atmospheric plasma as a promising approach for gelatin immobilization on poly(Eaprolactone) electrospun scaffolds. 2019 , 8, 65-75	18
64	Coupling and Regulation of Porous Carriers Using Plasma and Amination to Improve the Catalytic Performance of Glucose Oxidase and Catalase. 2019 , 7, 426	13
63	Highly sensitive metal-enhanced fluorescence biosensor prepared on electrospun fibers decorated with silica-coated silver nanoparticles. 2019 , 284, 140-147	30
62	Combating Microbial Contamination with Robust Polymeric Nanofibers: Elemental Effect on the Mussel-Inspired Cross-Linking of Electrospun Gelatin 2019 , 2, 807-823	8
61	Single-Step Approach to Tailor Surface Chemistry and Potential on Electrospun PCL Fibers for Tissue Engineering Application. 2019 , 6, 1801211	29
60	Synergistic effect of alginate/BMP-2/Umbilical cord serum-coated on 3D-printed PCL biocomposite for mastoid obliteration model. 2019 , 72, 432-441	7
59	Grafting of acrylic acid onto microwave plasma-treated polytetrafluoroethylene (PTFE) substrates. 2019 , 58, SAAC02	6
58	Controlled release of lawsone from polycaprolactone/gelatin electrospun nano fibers for skin tissue regeneration. 2019 , 124, 478-491	78
57	Electrospun nanofiber regulates assembly of keratin and vimentin intermediate filaments of PANC-1 pancreatic carcinoma cells. 2019 , 96, 616-624	9
56	Development of regenerative and flexible fibroin-based wound dressings. 2019 , 107, 7-18	19
55	Polycaprolactone nanofiber mats decorated with photoresponsive nanogels and silver nanoparticles: Slow release for antibacterial control. 2020 , 107, 110334	32
54	Multi-walled carbon nanotube carpets as scaffolds for U87MG glioblastoma multiforme cell growth. 2020 , 108, 110345	7
53	Developed methods for the preparation of electrospun nanofibers containing plant-derived oil or essential oil: a systematic review. 2020 , 77, 6085-6104	17
52	Effect of Intermediate Ion Cleaning of the Titanium Target on the Structure of Bioresorbable PLLA Scaffolds under Coating Deposition by DC Reactive Magnetron Sputtering. 2020 , 11, 646-652	
51	Three dimensional polycaprolactone/cellulose scaffold containing calcium-based particles: a new platform for bone regeneration. 2020 , 250, 116880	23
50	Plasma treatment effects on bulk properties of polycaprolactone nanofibrous mats fabricated by uncommon AC electrospinning: A comparative study. 2020 , 399, 126203	13

(2021-2020)

49	Fibronectin-Functionalized Fibrous Meshes as a Substrate to Support Cultures of Thymic Epithelial Cells. <i>Biomacromolecules</i> , 2020 , 21, 4771-4780	6.9	3
48	Surface Coating Modified Polyglycolide (PGA) Braided Threads as Potential Thread-embedding Materials. 2020 , 21, 2401-2406		1
47	Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. 2020 , 25,		5
46	Performance Enhancement of Electrospun IGZO-Nanofiber-Based Field-Effect Transistors with High- Gate Dielectrics through Microwave Annealing and Postcalcination Oxygen Plasma Treatment. 2020 , 10,		2
45	Fucoidan Immobilized at the Surface of a Fibrous Mesh Presents Toxic Effects over Melanoma Cells, But Not over Noncancer Skin Cells. <i>Biomacromolecules</i> , 2020 , 21, 2745-2754	6.9	5
44	Functional Micro- and Nanofibers Obtained by Nonwoven Post-Modification. <i>Polymers</i> , 2020 , 12,	4.5	14
43	Surface biofunctionalization to improve the efficacy of biomaterial substrates to be used in regenerative medicine. 2020 , 7, 2258-2275		9
42	Well-Blended PCL/PEO Electrospun Nanofibers with Functional Properties Enhanced by Plasma Processing. <i>Polymers</i> , 2020 , 12,	4.5	15
41	Electrospun colourimetric sensors for detecting volatile amines. 2020 , 322, 128570		10
40	Chondrogenic differentiation of mesenchymal stem/stromal cells on 3D porous poly (Etaprolactone) scaffolds: Effects of material alkaline treatment and chondroitin sulfate supplementation. 2020 , 129, 756-764		12
39	Effect of Low-Temperature Plasma Treatment on Surface Modification of Polycaprolactone Pellets and Thermal Properties of Extruded Filaments. 2020 , 72, 1523-1532		6
38	Fibronectin Bound to a Fibrous Substrate Has Chondrogenic Induction Properties. <i>Biomacromolecules</i> , 2020 , 21, 1368-1378	6.9	8
37	Fabrication and Plasma Modification of Nanofibrous Tissue Engineering Scaffolds. 2020, 10,		39
36	Preparation, in vitro bioactivity and osteoblast cell response of Ca-Ta2O5 nanorods on tantalum. 2020 , 391, 125701		5
35	Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. 2021 , 4, 2000096		8
34	Development of laminated bamboo lumber with high bond strength for structural uses by O2 plasma. 2021 , 269, 121269		O
33	Bio-inspired wettability patterns for biomedical applications. 2021 , 8, 124-144		19
32	Polyether ether ketone surface modification with plasma and gelatin for enhancing cell attachment. 2021 , 109, 622-629		7

31	Regulated Surface Morphology of Polyaniline/Polylactic Acid Composite Nanofibers via Various Inorganic Acids Doping for Enhancing Biocompatibility in Tissue Engineering. 2021 , 16, 4		7
30	A Wearable Optical Microfibrous Biomaterial with Encapsulated Nanosensors Enables Wireless Monitoring of Oxidative Stress. 2021 , 31, 2006254		17
29	Morphological and Mechanical Properties of Electrospun Polycaprolactone Scaffolds: Effect of Applied Voltage. <i>Polymers</i> , 2021 , 13,	4.5	15
28	Bioactive Electrospun Fibers: Fabrication Strategies and a Critical Review of Surface-Sensitive Characterization and Quantification. 2021 , 121, 11194-11237		10
27	Plasma Modification of PLA/PGA Embedding Threads with Different Proportions: A Strategy for Developing Novel ACET Materials. 2021 , 22, 612-620		1
26	Antibacterial Electrospun Polycaprolactone Membranes Coated with Polysaccharides and Silver Nanoparticles for Guided Bone and Tissue Regeneration. <i>ACS Applied Materials & Discrete Section</i> , 13, 17255-17267	9.5	12
25	Osseointegration of Hafnium when Compared to Titanium - A Structured Review. 2021 , 15, 137-144		1
24	Development of plasma functionalized polypropylene wound dressing for betaine hydrochloride controlled drug delivery on diabetic wounds. 2021 , 11, 9641		5
23	Characterizations and Antibacterial Efficacy of Chitosan Oligomers Synthesized by Microwave-Assisted Hydrogen Peroxide Oxidative Depolymerization Method for Infectious Wound Applications. 2021 , 14,		3
22	Structure P roperty Relationships of 3D-Printable Chain-Extended Block Copolymers with Tunable Elasticity and Biodegradability. 2021 , 3, 4708-4716		О
21	Various Techniques to Functionalize Nanofibers. 2019 , 347-372		3
20	The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. 2017 , 13, 015006		30
19	Roles of Nanofiber Scaffold Structure and Chemistry in Directing Human Bone Marrow Stromal Cell Response. 2016 , 1,		4
18	Modified Electrospun Polymeric Nanofibers and Their Nanocomposites as Nanoadsorbents for Toxic Dye Removal from Contaminated Waters: A Review. <i>Polymers</i> , 2020 , 13,	4.5	28
17	A Wearable Optical Microfibrous Biomaterial with Encapsulated Nanosensors Enables Wireless Monitoring of Oxidative Stress.		
16	The Effects of Plasma Treated Electrospun Nanofibrous Poly (Laprolactone) Scaffolds with Different Orientations on Mouse Embryonic Stem Cell Proliferation. 2014 , 16, 245-54		17
15	3D bioprinting of a trachea-mimetic cellular construct of a clinically relevant size. 2021 , 279, 121246		5
14	Role of Fiber Thickness and Surface Treatment of Electrospun Polycaprolactone Matrices on the Growth of Different Breast Cancer-Associated Cells. 2101808		2

CITATION REPORT

13	Biomimetic Mineralization of Electrospun PCL-Based Composite Nanofibrous Scaffold for Hard Tissue Engineering. 2022 , 683-704		0
12	Balance of the antibacterial activity and cell viability of calcium and copper co-doped Ta2O5 on tantalum surface. 2022 , 128, 1		
11	Accelerated Endothelialization of Nanofibrous Scaffolds for Biomimetic Cardiovascular Implants 2022 , 15,		1
10	Enhancement of chemical, physical, and surface properties of electrospun PCL / PLA blends by means of air plasma treatment. <i>Polymer Engineering and Science</i> ,	2.3	О
9	Data_Sheet_1.PDF. 2019 ,		
8	Metronidazole Delivery Nanosystem Able To Reduce the Pathogenicity of Bacteria in Colorectal Infection. <i>Biomacromolecules</i> ,	6.9	
7	Microfluidics-assisted electrospinning of aligned nanofibers for modeling intestine barriers. <i>PeerJ</i> , 10, e13513	3.1	
6	Tuning the Drug Release from Antibacterial Polycaprolactone/Rifampicin-Based CoreBhell Electrospun Membranes: A Proof of Concept. <i>ACS Applied Materials & Description of Concept. ACS Applied Materials & Description of Conc</i>	27612	1
5	Surface modification of PLLA scaffolds via reactive magnetron sputtering in mixtures of nitrogen with noble gases for higher cell adhesion and proliferation. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , 2022 , 649, 129464	5.1	0
4	Functionalization of Electrospun Nanofiber for Bone Tissue Engineering. <i>Polymers</i> , 2022 , 14, 2940	4.5	O
3	Engineering Nanofiber Scaffolds with Biomimetic Cues for Differentiation of Skin-Derived Neural Crest-like Stem Cells to Schwann Cells. 2022 , 23, 10834		1
2	Wetting and aging behaviors for several O 2 and NH 3 plasma treated nanofibrous and flat film polymer materials: A comparison.		O
1	The Influence of Feeder Cell-Derived Extracellular Matrix Density on Thymic Epithelial Cell Culture.		0