Density functional theory and the band gap problem

International Journal of Quantum Chemistry 28, 497-523 DOI: 10.1002/qua.560280846

Citation Report

#	Article	IF	CITATIONS
1	Improvement of the ab initio embedded cluster method for luminescence properties of doped materials by taking into account impurity induced distortions: The example of Y[sub 2]O[sub 3]:Bi[sup 3+]. Journal of Chemical Physics, 2009, 131, 194501.	1.2	20
2	Wave-function-based approach to quasiparticle bands: Insight into the electronic structure ofc-ZnS. Physical Review B, 2011, 83, .	1.1	7
3	Factors in the Metal Doping of BiVO ₄ for Improved Photoelectrocatalytic Activity as Studied by Scanning Electrochemical Microscopy and First-Principles Density-Functional Calculation. Journal of Physical Chemistry C, 2011, 115, 17870-17879.	1.5	409
4	Prediction of the Derivative Discontinuity in Density Functional Theory from an Electrostatic Description of the Exchange and Correlation Potential. Physical Review Letters, 2011, 107, 183002.	2.9	52
5	Advances in electronic structure methods for defects and impurities in solids. Physica Status Solidi (B): Basic Research, 2011, 248, 19-27.	0.7	66
6	Theoretical modeling of growth processes, extended defects, and electronic properties of Illâ€nitride semiconductor nanostructures. Physica Status Solidi (B): Basic Research, 2011, 248, 1837-1852.	0.7	3
7	Band offsets in cubic GaN/AlN superlattices. Physical Review B, 2011, 83, .	1.1	54
9	Modeling the radiation ionization energy and energy resolution of trigonal and amorphous selenium from first principles. Journal of Physics Condensed Matter, 2012, 24, 455502.	0.7	3
10	Performance of the M11-L density functional for bandgaps and lattice constants of unary and binary semiconductors. Journal of Chemical Physics, 2012, 136, 134704.	1.2	64
11	Derivative discontinuity, bandgap and lowest unoccupied molecular orbital in density functional theory. Journal of Chemical Physics, 2012, 136, 204111.	1.2	154
12	Precise response functions in all-electron methods: Application to the optimized-effective-potential approach. Physical Review B, 2012, 85, .	1.1	43
13	mathvariant="italic">AbinitioLSDA and LSDA <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline">< mml:mrow><mml:mspace width="0.16em" /> < mml:mo>+ < mml:mspace width="0.16em" /> < mml:mi mathvariant="italic">U study of pure and Cd-doped cubic</mml:mspace </mml:math 	1.1	31
14	lanthanide sesquioxides. Physical Review B, 2013, 88, . First-principle prediction of single-carrier avalanche multiplication in chalcopyrite semiconductors. Journal of Applied Physics, 2013, 113, .	1.1	2
15	Impact ionization threshold energy of trigonal selenium: An ab initio study. Canadian Journal of Physics, 2013, 91, 483-485.	0.4	7
16	Hybrid functionals for solids with an optimized Hartree–Fock mixing parameter. Journal of Physics Condensed Matter, 2013, 25, 435503.	0.7	74
17	A new crystal: layer-structured rhombohedral In3Se4. CrystEngComm, 2014, 16, 393-398.	1.3	31
18	Cu,Zn-Superoxide Dismutase without Zn Is Folded but Catalytically Inactive. Journal of Molecular Biology, 2014, 426, 4112-4124.	2.0	47
19	Broadband Visible Light Emission From Nominally Undoped and <inline-formula> <tex-math notation="TeX">\$hbox{Cr}^{3+}\$</tex-math </inline-formula> Doped Garnet Nanopowders, IEEE Photonics Journal, 2014, 6, 1-11.	1.0	11

		CITATION RE	EPORT	
#	Article		IF	Citations
20	Non-analytic Spin-Density Functionals. Topics in Current Chemistry, 2014, , 145-174.		4.0	1
21	First-principles calculations for point defects in solids. Reviews of Modern Physics, 2014	4, 86, 253-305.	16.4	1,967
22	Computational modeling of single- versus double-anchoring modes in di-branched orga on TiO ₂ surfaces: structural and electronic properties. Physical Chemistry Physics, 2014, 16, 4709-4719.	nic sensitizers Chemical	1.3	28
23	Benchmarking the DFT+ <i>U</i> Method for Thermochemical Calculations of Uranium Compounds and Solids. Journal of Physical Chemistry A, 2014, 118, 11797-11810.	Molecular	1.1	60
24	Derivative discontinuities in density functional theory. Molecular Physics, 2014, 112, 29	997-3013.	0.8	14
25	Electron correlation effects in diamond: A wave-function quantum-chemistry study of t quasiparticle band structure. Physical Review B, 2014, 89, .	ne	1.1	4
26	Origin of the reverse optical-contrast change of Ga-Sb phase-change materials—An <i>initio</i> molecular-dynamics study. Applied Physics Letters, 2014, 104, 141905.	•ab	1.5	13
27	Adsorption and photocatalytic splitting of water on graphitic carbon nitride: a combine principles and semiempirical study. Physical Chemistry Chemical Physics, 2014, 16, 159	d first 17-15926.	1.3	151
28	Optical and magneto-optical properties of metal phthalocyanine and metal porphyrin t Journal of Physics Condensed Matter, 2014, 26, 104201.	nin films.	0.7	27
29	Analysis of energy gap opening in graphene oxide. Journal of Physics: Conference Series 012003.	s, 2014, 526,	0.3	13
30	Implications of the band gap problem on oxidation and hydration in acceptor-doped ba Physical Review B, 2015, 91, .	rium zirconate.	1.1	36
31	Implementation and benchmark of a long-range corrected functional in the density fun- tight-binding method. Journal of Chemical Physics, 2015, 143, 184107.	ctional based	1.2	64
32	Density matrix embedding in an antisymmetrized geminal power bath. Journal of Chem 143, 024107.	ical Physics, 2015,	1.2	46
33	Orbital relaxation effects on Kohn–Sham frontier orbital energies in density functiona Journal of Chemical Physics, 2015, 142, 154113.	al theory.	1.2	18
34	Current limitations of molecular dynamic simulations as probes of thermo-physical behasilicate melts. American Mineralogist, 2015, 100, 1866-1882.	avior of	0.9	14
35	Diarylethene Molecules on a Ag(111) Surface: Stability and Electron-Induced Switching Physical Chemistry C, 2015, 119, 4874-4883.	. Journal of	1.5	30
36	Molecular magnets and surfaces: A promising marriage. A DFT insight. Coordination Ch Reviews, 2015, 289-290, 357-378.	emistry	9.5	55
37	Semiconductor to metal transition in bilayer phosphorene under normal compressive st Nanotechnology, 2015, 26, 075701.	crain.	1.3	83

#	Article	IF	CITATIONS
38	A Novel and Functional Single-Layer Sheet of ZnSe. ACS Applied Materials & Interfaces, 2015, 7, 1458-1464.	4.0	38
39	Electronic, structural, and hyperfine properties of pure and Cd-doped hexagonal La2O3 semiconductor. Computational Materials Science, 2015, 102, 119-125.	1.4	7
40	A Protocol to Fabricate Nanostructured New Phase: B31-Type MnS Synthesized under High Pressure. Journal of the American Chemical Society, 2015, 137, 10297-10303.	6.6	67
41	Electronic Transport as a Driver for Self-Interaction-Corrected Methods. Advances in Atomic, Molecular and Optical Physics, 2015, 64, 29-86.	2.3	7
42	Quantum Mechanical Modeling of Radiation-Induced Defect Dynamics in Electronic Devices. IEEE Transactions on Nuclear Science, 2015, 62, 2169-2180.	1.2	20
43	How do Water Solvent and Glutathione Ligands Affect the Structure and Electronic Properties of Au ₂₅ (SR) ₁₈ [–] ?. Journal of Physical Chemistry Letters, 2015, 6, 3859-3865.	2.1	23
44	A first-principles study of the electronic and structural properties of Sb and F doped SnO2 nanocrystals. Journal of Chemical Physics, 2015, 142, 044704.	1.2	9
45	Understanding Intrinsic Light Absorption Properties of UiO-66 Frameworks: A Combined Theoretical and Experimental Study. Inorganic Chemistry, 2015, 54, 10701-10710.	1.9	155
46	Scaling correction approaches for reducing delocalization error in density functional approximations. Science China Chemistry, 2015, 58, 1825-1844.	4.2	12
47	Putting DFT to the Test: A First-Principles Study of Electronic, Magnetic, and Optical Properties of Co ₃ O ₄ . Journal of Chemical Theory and Computation, 2015, 11, 64-72.	2.3	93
48	New Lightâ€Harvesting Materials Using Accurate and Efficient Bandgap Calculations. Advanced Energy Materials, 2015, 5, 1400915.	10.2	124
49	Modulating the Electronic and Optical Properties of Tetragonal ZnSe Monolayers by Chalcogen Dopants. ChemPhysChem, 2016, 17, 1993-1998.	1.0	11
50	Self-consistent second-order Green's function perturbation theory for periodic systems. Journal of Chemical Physics, 2016, 144, 054106.	1.2	75
51	Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules. Journal of Chemical Physics, 2016, 144, 164117.	1.2	34
52	Bilayered graphene/h-BN with folded holes as new nanoelectronic materials: modeling of structures and electronic properties. Scientific Reports, 2016, 6, 38029.	1.6	12
53	A polymer dataset for accelerated property prediction and design. Scientific Data, 2016, 3, 160012.	2.4	139
54	Structural and optical properties of the naked and passivated Al5Au5 bimetallic nanoclusters. Journal of Chemical Physics, 2016, 144, 114302.	1.2	6
55	Fundamental absorption edges in heteroepitaxial YBiO3 thin films. Journal of Applied Physics, 2016, 120, 125702.	1.1	1

	CITATION R	EPORT	
#	ARTICLE	IF	Citations
56	Tight binding model of conformational disorder effects on the optical absorption spectrum of polythiophenes. Physical Chemistry Chemical Physics, 2016, 18, 12521-12533.	1.3	27
57	The fragment molecular orbital method combined with density-functional tight-binding and the polarizable continuum model. Physical Chemistry Chemical Physics, 2016, 18, 22047-22061.	1.3	59
58	Advanced polymeric dielectrics for high energy density applications. Progress in Materials Science, 2016, 83, 236-269.	16.0	286
59	On the morphology of BaMoO ₄ crystals: A theoretical and experimental approach. Crystal Research and Technology, 2016, 51, 634-644.	0.6	24
60	Mononuclear, tetranuclear and polymeric cadmium(II) complexes with the 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine ligand: Synthesis, crystal structure, spectroscopic and DFT studies. Polyhedron, 2016, 119, 160-174.	1.0	17
61	Bilayered graphene as a platform of nanostructures with folded edge holes. Physical Chemistry Chemical Physics, 2016, 18, 27432-27441.	1.3	21
62	Inverse Funnel Effect of Excitons in Strained Black Phosphorus. Physical Review X, 2016, 6, .	2.8	34
63	Investigation of the transport, structural and mechanical properties of half-metallic REMnO ₃ (RE = Ce and Pr) ferromagnets. RSC Advances, 2016, 6, 97641-97649.	1.7	80
64	Modeling Off-Stoichiometry Materials with a High-Throughput Ab-Initio Approach. Chemistry of Materials, 2016, 28, 6484-6492.	3.2	78
65	Fundamental Role of Oxygen Stoichiometry in Controlling the Band Gap and Reactivity of Cupric Oxide Nanosheets. Journal of the American Chemical Society, 2016, 138, 10978-10985.	6.6	39
66	High-pressure phases of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Mg</mml:mi><mml first principles. Physical Review B, 2016, 93, .</mml </mml:msub></mml:mrow></mml:math 	:mnt≿ı2 <td>ml:216n></td>	ml :2 16n>
67	Layered structures of organic/inorganic hybrid halide perovskites. Physical Review B, 2016, 93, .	1.1	31
68	Comprehensive structure–function correlation of photoactive ionic π-conjugated supermolecular assemblies: an experimental and computational study. Journal of Materials Chemistry C, 2016, 4, 10223-10239.	2.7	32
69	Multilayer Dye Aggregation at Dye/TiO2 Interface via ï€â€¦ï€ Stacking and Hydrogen Bond and Its Impact on Solar Cell Performance: A DFT Analysis. Scientific Reports, 2016, 6, 35893.	1.6	30
70	Ab initio calculation of halide ligand passivation onÂPbSe quantum dot facets. RSC Advances, 2016, 6, 104699-104707.	1.7	9
71	Rational Coâ€Design of Polymer Dielectrics for Energy Storage. Advanced Materials, 2016, 28, 6277-6291.	11.1	149
72	Empirical correction for PM7 band gaps of transition-metal oxides. Journal of Molecular Modeling, 2016, 22, 24.	0.8	0
73	Experimental and theoretical studies on the linear and nonlinear optical properties of lead phosphate crystals LiPbPO ₄ . Physical Chemistry Chemical Physics, 2016, 18, 19123-19129.	1.3	61

ARTICLE IF CITATIONS # Suppression of Jahnâ€"Teller Distortions and Origin of Piezochromism and Thermochromism in Cuâ€"Cl 1.9 24 74 Hybrid Perovskite. Inorganic Chemistry, 2016, 55, 6817-6824. Combining Linear-Scaling DFT with Subsystem DFT in Born–Oppenheimer and Ehrenfest Molecular Dynamics Simulations: From Molecules to a Virus in Solution. Journal of Chemical Theory and 2.3 59 Computation, 2016, 12, 3214-3227. Electronic and optical properties of single crystal SnS₂: an earth-abundant disulfide 76 5.2246 photocatalyst. Journal of Materials Chemistry A, 2016, 4, 1312-1318. First-Principles Study of Antisite Defect Configurations in ZnGa₂O₄:Cr 106 Persistent Phosphors. Inorganic Chemistry, 2016, 55, 2402-2412. First Principles Calculations of Bonding and Charges at the Al₂Interface in a c-Si/SiO₂O₃Interface in a 78 1.6 10 c-Si/SiO₂/am-Al₂O₃Structure Applicable for the Surface Passivation of Silicon-Based Solar Cells. IEEE Transactions on Electron Devices, 2016, 63, 544-550. 79 ZnSb Polymorphs with Improved Thermoelectric Properties. Chemistry of Materials, 2016, 28, 2912-2920. 3.2 80 Novel hetero-bilayered materials for photovoltaics. Applied Materials Today, 2016, 2, 24-31. 2.3 23 Charge injection barriers at metal/polyethylene interfaces. Journal of Materials Science, 2016, 51, 506-512. 1.7 56 Alloy engineering of electronic and optical properties of tetragonal monolayer zinc chalcogenides. Journal of Alloys and Compounds, 2017, 695, 1392-1396. 82 2.8 16 Fineâ€Tuning the Properties of Doped Multifunctional Materials by Controlled Reduction of Dopants. 1.7 Chemistry - Ă European Journal, 2017, 23, 2998-3001. Molecular and Electronic Structures of M₂O₇ (M = Mn, Tc, Re). Inorganic 84 1.9 16 Chemistry, 2017, 56, 2448-2458. Two-Dimensional Excitonic Photoluminescence in Graphene on a Cu Surface. ACS Nano, 2017, 11, 3207-3212. Performance of Bootstrap Embedding for long-range interactions and 2D systems. Molecular Physics, 86 0.8 21 2017, 115, 2242-2253. Relationship between the structure and optical properties of lithium tantalate at the 87 1.1 zero-birefringence point. Journal of Applied Physics, 2017, 121, . The effect of atomic arrangement on photoabsorption of freestanding double-layer honeycomb sheets 88 2.7 8 of zinc selenide. Journal of Materials Chemistry C, 2017, 5, 4505-4510. A hybrid organic-inorganic perovskite dataset. Scientific Data, 2017, 4, 170057. 89 Comparative Analysis of the Electronic Structure and Nonlinear Optical Susceptibility of 90 17 α-TeO₂ and β-TeO₃ Crystals. Journal of Physical Chemistry C, 2017, 121, 12365-12374.^{1.5} Complex magnetic orders in small cobalt–benzene molecules. Physical Chemistry Chemical Physics, 1.3 2017, 19, 14854-14860.

#	Article	IF	CITATIONS
92	Electronic and optical properties of strained graphene and other strained 2D materials: a review. Reports on Progress in Physics, 2017, 80, 096501.	8.1	383
93	A novel borophene featuring heptagonal holes: a common precursor of borospherenes. Physical Chemistry Chemical Physics, 2017, 19, 19890-19895.	1.3	12
94	Enhanced Photocatalytic Water Splitting in a C ₂ N Monolayer by C‧ite Isoelectronic Substitution. ChemPhysChem, 2017, 18, 1526-1532.	1.0	46
95	Structural, electronic and optical properties of monoclinic Na 2 Ti 3 O 7 from density functional theory calculations: A comparison with XRD and optical absorption measurements. Journal of Solid State Chemistry, 2017, 250, 68-74.	1.4	38
96	First-principles study on doping of tetragonal ZnSe monolayers. Materials Today Chemistry, 2017, 4, 40-44.	1.7	13
97	HLE17: An Improved Local Exchange–Correlation Functional for Computing Semiconductor Band Gaps and Molecular Excitation Energies. Journal of Physical Chemistry C, 2017, 121, 7144-7154.	1.5	66
98	HLE16: A Local Kohn–Sham Gradient Approximation with Good Performance for Semiconductor Band Gaps and Molecular Excitation Energies. Journal of Physical Chemistry Letters, 2017, 8, 380-387.	2.1	78
99	Formaldehyde-mediated spectroscopic properties of heavy water from first principles simulation. Computational and Theoretical Chemistry, 2017, 1122, 9-15.	1.1	8
100	Layered tetragonal zinc chalcogenides for energy-related applications: from photocatalysts for water splitting to cathode materials for Li-ion batteries. Nanoscale, 2017, 9, 17303-17311.	2.8	29
101	DFT study of anisotropy effects on the electronic properties of diamond nanowires with nitrogen-vacancy center. Journal of Molecular Modeling, 2017, 23, 292.	0.8	1
102	Many-body expansion of the Fock matrix in the fragment molecular orbital method. Journal of Chemical Physics, 2017, 147, 104106.	1.2	16
103	First-Principles Screening of Lead-Free Methylammonium Metal Iodine Perovskites for Photovoltaic Application. Journal of Physical Chemistry C, 2017, 121, 24359-24364.	1.5	25
104	Time-dependent density functional theory calculations for the excitation spectra of III-V ternary alloys. Physical Review B, 2017, 96, .	1.1	7
105	Tailoring the Electronic Band Gap and Band Edge Positions in the C ₂ N Monolayer by P and As Substitution for Photocatalytic Water Splitting. Journal of Physical Chemistry C, 2017, 121, 22216-22224.	1.5	80
106	BNC nanoshells: a novel structure for atomic storage. Nanotechnology, 2017, 28, 465201.	1.3	3
107	Quantum Many-Body Effects in Defective Transition-Metal-Oxide Superlattices. Journal of Chemical Theory and Computation, 2017, 13, 5604-5609.	2.3	7
108	Two-dimensional metal–organic frameworks with high thermoelectric efficiency through metal ion selection. Physical Chemistry Chemical Physics, 2017, 19, 19461-19467.	1.3	30
109	Effects of Hubbard term correction on the structural parameters and electronic properties of wurtzite ZnO. Computational Materials Science, 2017, 138, 111-116.	1.4	55

#	Article	IF	CITATIONS
110	Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca8In2SiN4and Semiconductor Ca3SiN3H. Inorganic Chemistry, 2017, 56, 9361-9368.	1.9	7
111	Bandgap Engineering in OHâ€Functionalized Silicon Nanocrystals: Interplay between Surface Functionalization and Quantum Confinement. Advanced Functional Materials, 2017, 27, 1701898.	7.8	15
112	Theoretical Insight into the Mechanism of Photoelectrochemical Oxygen Evolution Reaction on BiVO ₄ Anode with Oxygen Vacancy. Journal of Physical Chemistry C, 2017, 121, 18702-18709.	1.5	89
113	SnO as a potential oxide thermoelectric candidate. Journal of Materials Chemistry C, 2017, 5, 8854-8861.	2.7	72
114	A comprehensive study of piezomagnetic response in CrPS ₄ monolayer: mechanical, electronic properties and magnetic ordering under strains. Journal of Physics Condensed Matter, 2017, 29, 405801.	0.7	28
115	Accurate Valence Ionization Energies from Kohn–Sham Eigenvalues with the Help of Potential Adjustors. Journal of Chemical Theory and Computation, 2017, 13, 4726-4740.	2.3	11
116	Computational methods for 2D materials: discovery, property characterization, and application design. Journal of Physics Condensed Matter, 2017, 29, 473001.	0.7	55
118	How Interatomic Steps in the Exact Kohn–Sham Potential Relate to Derivative Discontinuities of the Energy. Journal of Physical Chemistry Letters, 2017, 8, 5974-5980.	2.1	43
119	Decomposition of Ionic Liquids at Lithium Interfaces. 1. <i>Ab Initio</i> Molecular Dynamics Simulations. Journal of Physical Chemistry C, 2017, 121, 28214-28234.	1.5	68
120	STM contrast of a CO dimer on a Cu(1 1 1) surface: a wave-function analysis. Journal of Physics Condensed Matter, 2017, 29, 505301.	0.7	1
121	Unrevealed electronic and optical properties of the layered oxychalcogenides (LaO)CuCh(Ch= S, Se,) Tj ETQq0 0	0 rgBT /Ov	verlgck 10 Tf
122	Si ₂₄ : An Efficient Solar Cell Material. Journal of Physical Chemistry C, 2017, 121, 15574-15579.	1.5	17
123	Exploring the possible existence of oxygen-bridged planarized 4-aminopyridine: promising structure, charge transport and nonlinear optical properties. Journal of Materials Chemistry C, 2017, 5, 7102-7109.	2.7	18
124	Effect of deformation on the electronic structure and topological properties of the AllMg2Bi2 (All =) Tj ETQq1 1 ().784314 i 0.4	rg&T /Overloo
125	Quasiparticle and hybrid density functional methods in defect studies: An application to the nitrogen vacancy in GaN. Physical Review B, 2017, 96, .	1.1	18
126	Thermoelectric Properties of 2D Ni ₃ (hitp) ₂ and 3D Cu ₃ (btc) ₂ MOFs: First-Principles Studies. ECS Journal of Solid State Science and Technology, 2017, 6, N236-N242.	0.9	7
127	Universal fragment descriptors for predicting properties of inorganic crystals. Nature Communications, 2017, 8, 15679.	5.8	435
128	Surface Adsorption. , 2017, , 387-416.		4

#	Article	IF	CITATIONS
129	Consistent Atomic Geometries and Electronic Structure of Five Phases of Potassium Niobate from Density-Functional Theory. Advances in Materials Science and Engineering, 2017, 2017, 1-13.	1.0	19
130	Inverse Band Structure Design via Materials Database Screening: Application to Square Planar Thermoelectrics. Chemistry of Materials, 2018, 30, 1540-1546.	3.2	29
131	Measuring the Electronic Structure of Nanocrystal Thin Films Using Energy-Resolved Electrochemical Impedance Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1384-1392.	2.1	22
132	Synthesis, crystal structure, photophysical properties and theoretical studies of a novel bis(phenylisoxazolyl) benzene derivative. Journal of Molecular Structure, 2018, 1163, 197-204.	1.8	12
133	Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO: Ga thin films. Journal of Applied Physics, 2018, 123, 161401.	1.1	10
134	High Pressure and High Temperature Synthesis of the Iron Pernitride FeN ₂ . Inorganic Chemistry, 2018, 57, 6245-6251.	1.9	46
135	Two-Dimensional AuMX2 (M = Al, Ga, In; X = S, Se) Monolayers Featuring Intracrystalline Aurophilic Interactions with Novel Electronic and Optical Properties. ACS Applied Materials & Interfaces, 2018, 10, 16739-16746.	4.0	11
136	Atomic and electron structure of reconstructed (111) surface in ZnSe and CdSe crystals. Physics of the Solid State, 2018, 60, 191-206.	0.2	2
137	Hybrid functional pseudopotentials. Physical Review B, 2018, 97, .	1.1	32
138	Tuning the optical bandgap in multi-cation compound transparent conducting-oxides: The examples of In2ZnO4 and In4Sn3O12. Journal of Applied Physics, 2018, 123, .	1.1	3
139	First-Principles Investigation of Electronic, Half-Metallic, and Optical Properties of Ti-Doped MgTe Semiconductors with Various Concentrations of Dopant. Journal of Electronic Materials, 2018, 47, 2565-2575.	1.0	10
140	<i>Ab initio</i> calculations of the concentration dependent band gap reduction in dilute nitrides. Physical Review B, 2018, 97, .	1.1	9
141	Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element. Scientific Reports, 2018, 8, 861.	1.6	24
142	Energy Level Alignment at Interfaces Between Au (111) and Thiolated Oligophenylenes of Increasing Chain Size: Theoretical Evidence of Pinning Effects. Advanced Theory and Simulations, 2018, 1, 1700020.	1.3	13
143	On the feasibility of p-type Ga2O3. Applied Physics Letters, 2018, 112, .	1.5	208
144	Franck Condon shift assessment in 2D MoS ₂ . Journal of Physics Condensed Matter, 2018, 30, 095501.	0.7	8
145	Dopant–dopant interactions in beryllium doped indium gallium arsenide: An ab initio study. Journal of Materials Research, 2018, 33, 401-413.	1.2	4
146	Spark Plasma Sintering (SPS)-Assisted Synthesis and Thermoelectric Characterization of Magnéli Phase V ₆ O ₁₁ . Inorganic Chemistry, 2018, 57, 1259-1268.	1.9	11

#	Article	IF	CITATIONS
147	Empirical optimization of DFT  +  U and HSE for the band structure of ZnO. Journal of Physics C Matter, 2018, 30, 065501.	ondensed	26
148	Work function of bismuth telluride: First-principles approach. Journal of the Korean Physical Society, 2018, 72, 122-128.	0.3	16
149	Improved Photoactivity of Pyroxene Silicates by Cation Substitutions. ChemPhysChem, 2018, 19, 943-953.	1.0	2
150	Thermo-mechanical properties of cubic lanthanide oxides. Thin Solid Films, 2018, 653, 37-48.	0.8	10
151	A linear response approach to determine Hubbard U and its application to evaluate properties of Y2B2O7, B = transition metals 3d, 4d and 5d. Journal of Alloys and Compounds, 2018, 749, 909-925.	2.8	24
152	Tuning the optoelectronic characteristics of ionic organic crystalline assemblies. Journal of Materials Chemistry C, 2018, 6, 4041-4056.	2.7	15
153	A theoretical perspective of the enhanced photocatalytic properties achieved by forming tetragonal ZnS/ZnSe hetero-bilayer. Physical Chemistry Chemical Physics, 2018, 20, 9950-9956.	1.3	14
154	Predicting the Band Gaps of Inorganic Solids by Machine Learning. Journal of Physical Chemistry Letters, 2018, 9, 1668-1673.	2.1	267
155	Synthesis, spectral and luminescence study, crystal structure determination and DFT calculation of binuclear palladium(II) complexes. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 298-311.	2.0	14
156	First-principles study of SnS electronic properties using LDA, PBE and HSE06 functionals. Philosophical Magazine, 2018, 98, 710-726.	0.7	16
157	Ab-initio study on the electronic properties of perovskite structure-based ferroelectrics. Ferroelectrics, 2018, 535, 65-71.	0.3	3
158	Insights into High Conductivity of the Two-Dimensional Iodine-Oxidized sp ² -c-COF. ACS Applied Materials & Interfaces, 2018, 10, 43595-43602.	4.0	37
159	Predicting accurate cathode properties of layered oxide materials using the SCAN meta-GGA density functional. Npj Computational Materials, 2018, 4, .	3.5	99
160	Dominant electron-phonon scattering mechanisms inn-type PbTe from first principles. Physical Review B, 2018, 98, .	1.1	51
161	Adsorption of Molecular Hydrogen on Lithium–Phosphorus Double-Helices. Journal of Physical Chemistry C, 2018, 122, 27941-27946.	1.5	7
162	Polar metals as electrodes to suppress the critical-thickness limit in ferroelectric nanocapacitors. Journal of Applied Physics, 2018, 124, .	1.1	23
163	Theoretical Approaches to Describing the Oxygen Reduction Reaction Activity of Single-Atom Catalysts. Journal of Physical Chemistry C, 2018, 122, 29307-29318.	1.5	68
164	Grain Boundary Facilitates Photocatalytic Reaction in Rutile TiO ₂ Despite Fast Charge Recombination: A Time-Domain <i>ab Initio</i> Analysis. Journal of Physical Chemistry Letters, 2018, 9, 5884-5889.	2.1	27

#	Article	IF	CITATIONS
165	Fermi-Löwdin orbital self-interaction correction to magnetic exchange couplings. Journal of Chemical Physics, 2018, 149, 164101.	1.2	33
166	The influence of irradiation induced vacancies on the mobility of helium in boron carbide. Journal of Nuclear Materials, 2018, 512, 288-296.	1.3	16
167	Computational characterization of a-Si:H/c-Si interfaces. Journal of Computational Electronics, 2018, 17, 1457-1469.	1.3	3
168	Ab initio study on localization and finite size effects in the structural, electronic, and optical properties of hydrogenated amorphous silicon. Computational Materials Science, 2018, 155, 159-168.	1.4	7
169	The effect of vacancies on the optical properties and plasmonic states of zinc oxide: A first-principle study. Materials Research Express, 2018, 5, 066303.	0.8	8
170	Anhydrous proline crystals: Structural optimization, optoelectronic properties, effective masses and Frenkel exciton energy. Journal of Physics and Chemistry of Solids, 2018, 121, 36-48.	1.9	17
171	C-, N-, S-, and F-Doped Anatase TiO ₂ (101) with Oxygen Vacancies: Photocatalysts Active in the Visible Region. International Journal of Photoenergy, 2018, 2018, 1-12.	1.4	18
172	Enhanced Photocatalytic Properties by Forming Tetragonal ZnX/PbO (X = S, Se) Heteroâ€Bilayers: A Computational Prediction. Advanced Theory and Simulations, 2018, 1, 1800046.	1.3	9
173	The Electronic Structures of SnS, SnS2, and Sn2S3 for Use in PV. Springer Theses, 2018, , 175-213.	0.0	1
174	Temperature dependence of radiative lifetimes, optical and electronic properties of silicon nanocrystals capped with various organic ligands. Journal of Chemical Physics, 2018, 149, 054301.	1.2	6
175	Local-symmetry distortion, optical properties, and plasmonic states of monoclinic Hf _{0.5} Zr _{0.5} O ₂ system: a density-functional study. Materials Research Express, 2018, 5, 096303.	0.8	5
176	Tunable photoluminescence in a van der Waals heterojunction built from a MoS ₂ monolayer and a PTCDA organic semiconductor. Nanoscale, 2018, 10, 16107-16115.	2.8	39
177	Acoustic deformation potentials of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>n</mml:mi> -type PbTe from first principles. Physical Review B, 2018, 98, .</mml:math 	1.1	17
178	Machine Learning Directed Search for Ultraincompressible, Superhard Materials. Journal of the American Chemical Society, 2018, 140, 9844-9853.	6.6	215
179	Ab initio calculation of electronic transport properties between PbSe quantum dots facets with halide ligands (Cl, Br, I). Japanese Journal of Applied Physics, 2018, 57, 08RF01.	0.8	2
180	Quantum Monte Carlo calculations of energy gaps from first principles. Physical Review B, 2018, 98, .	1.1	35
181	First-principles study of thermoelectric properties of blue phosphorene. Applied Physics Letters, 2018, 113, 063903.	1.5	12
182	Role of A-site Ca and B-site Zr substitution in BaTiO3 lead-free compounds: Combined experimental and first principles density functional theoretical studies. Journal of Applied Physics, 2018, 123, .	1.1	24

#	ARTICLE Structural, electronic and vibrational properties of LaF ₃ according to density functional	IF	CITATIONS
183	theory and Raman spectroscopy. Journal of Physics Condensed Matter, 2018, 30, 255901. Spin polarized vertical transport in stacked TMDCs hetero-junctions. Semiconductor Science and Technology, 2018, 33, 075018.	1.0	6
185	Controlled-Potential Simulation of Elementary Electrochemical Reactions: Proton Discharge on Metal Surfaces. Journal of Physical Chemistry C, 2018, 122, 12771-12781.	1.5	120
186	Understanding the Effects of Cd and Ag Doping in Cu ₂ ZnSnS ₄ Solar Cells. Chemistry of Materials, 2018, 30, 4543-4555.	3.2	76
187	Electronic Properties of Realistic Anatase TiO ₂ Nanoparticles from <i>G</i> ₀ <i>W</i> ₀ Calculations on a Gaussian and Plane Waves Scheme. Journal of Chemical Theory and Computation, 2019, 15, 5024-5030.	2.3	7
188	Electronic Structure and Phase Stability of Yb-Filled CoSb ₃ Skutterudite Thermoelectrics from First-Principles. Chemistry of Materials, 2019, 31, 6154-6162.	3.2	17
189	Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catalysis, 2019, 9, 8481-8502.	5.5	75
190	A systematic determination of hubbard U using the GBRV ultrasoft pseudopotential set. Computational Materials Science, 2019, 170, 109137.	1.4	30
191	Synthesis and investigation into the structural, electronic and electrical properties of K2Pb(OCN)I3. Dalton Transactions, 2019, 48, 13813-13819.	1.6	1
192	Large-Scale Benchmark of Exchange–Correlation Functionals for the Determination of Electronic Band Gaps of Solids. Journal of Chemical Theory and Computation, 2019, 15, 5069-5079.	2.3	151
193	A computational study of structural, electronic and carrier mobility of boron and phosphorus/nitrogen co-doped graphene. Physica B: Condensed Matter, 2019, 571, 291-295.	1.3	19
194	Variational Excitations in Real Solids: Optical Gaps and Insights into Many-Body Perturbation Theory. Physical Review Letters, 2019, 123, 036402.	2.9	14
195	A <i>p</i> -type thermoelectric material BaCu4S3 with high electronic band degeneracy. Journal of Applied Physics, 2019, 126, .	1.1	7
196	Hybrid-Functional and Quasi-Particle Calculations of Band Structures of Mg2Si, Mg2Ge, and Mg2Sn. Journal of the Korean Physical Society, 2019, 75, 144-152.	0.3	20
197	Defect-enriched tunability of electronic and charge-carrier transport characteristics of 2D borocarbonitride (BCN) monolayers from <i>ab initio</i> calculations. Nanoscale, 2019, 11, 19398-19407.	2.8	18
198	Exploring the Mg–Cr–H System at High Pressure and Temperature via in Situ Synchrotron Diffraction. Inorganic Chemistry, 2019, 58, 11043-11050.	1.9	6
199	Defect Chemistry, Sodium Diffusion and Doping Behaviour in NaFeO2 Polymorphs as Cathode Materials for Na-Ion Batteries: A Computational Study. Materials, 2019, 12, 3243.	1.3	11
200	Density-functional-theory calculations of the optical properties of Al2O3: From solid-state to warm dense matter conditions. High Energy Density Physics, 2019, 33, 100718.	0.4	2

#	Article	IF	CITATIONS
201	Interpretation and Automatic Generation of Fermiâ€Orbital Descriptors. Journal of Computational Chemistry, 2019, 40, 2843-2857.	1.5	21
202	Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics. Journal of Chemical Theory and Computation, 2019, 15, 6895-6906.	2.3	86
203	YHO, an Air-Stable Ionic Hydride. Inorganic Chemistry, 2019, 58, 14635-14641.	1.9	20
204	Assessment of the exact-exchange-only Kohn-Sham method for the calculation of band structures for transition metal oxide and metal halide perovskites. Physical Review B, 2019, 100, .	1.1	5
205	Pressure induced semiconductor–semimetal–superconductor transition of magnesium hexaborides. Dalton Transactions, 2019, 48, 14299-14305.	1.6	6
206	Effect of isotropic pressure on structural and electronic properties of silicon system with Fd-3m space group. Journal of Physics: Conference Series, 2019, 1204, 012117.	0.3	0
207	Phillips-Inspired Machine Learning for Band Gap and Exciton Binding Energy Prediction. Journal of Physical Chemistry Letters, 2019, 10, 5640-5646.	2.1	36
208	First-principles study of bandgap bowing in BGaN alloys. Journal of Applied Physics, 2019, 126, 095706.	1.1	18
209	K ₂ Ge ₃ As ₃ : Fiberlike Crystals of a Narrow-Band-Gap <i>Zintl</i> Phase with a One-Dimensional Substructure _{â^ž} ¹ {(Ge ₃ As ₃) ^{2–} }. Chemistry of Materials, 2019, 31, 8839-8849.	3.2	4
210	SrI3O9H: A new alkaline earth metal iodate with two different anionic units using mild aqua-solution method. Solid State Sciences, 2019, 97, 105982.	1.5	5
211	Optical properties and plasmonic states in two-dimensional alpha lead oxide systems: a density-functional study. Materials Research Express, 2019, 6, 055908.	0.8	7
212	Optical Properties, Electronic Structures, and Photocatalytic Performances of Bandgap-Tailored SrBi2Nb2â [~] xVxO9 Compounds. Catalysts, 2019, 9, 393.	1.6	6
213	Inverse pressure-induced Mott transition in TiPO4. Physical Review B, 2019, 99, .	1.1	2
214	Polymorphism of Palladium(II) Complexes : Crystal Structure Determination, Luminescence Properties, Hirshfeld Surface Analyses and DFT/TDâ€DFT Studies. ChemistrySelect, 2019, 4, 6209-6218.	0.7	6
215	Stable Two-Dimensional Materials for Oxygen Reduction and Oxygen Evolution Reactions. ACS Energy Letters, 2019, 4, 1410-1411.	8.8	59
216	Band Gap Narrowing of Zinc Orthogermanate by Dimensional and Defect Modification. Journal of Physical Chemistry C, 2019, 123, 14573-14581.	1.5	6
217	Recent Progress on 2D Group IIâ€VI Binary Chalcogenides ZnX and CdX (XÂ=ÂS, Se, Te): From a Theoretical Perspective. Advanced Theory and Simulations, 2019, 2, 1900061.	1.3	10
218	Molecular and electronic structure, spectroscopic and electrochemical properties of Copper(II) complexes: Experimental and DFT studies. Journal of Molecular Structure, 2019, 1192, 217-229.	1.8	20

#	Article	IF	CITATIONS
219	15% Efficiency Ultrathin Silicon Solar Cells with Fluorine-Doped Titanium Oxide and Chemically Tailored Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) as Asymmetric Heterocontact. ACS Nano, 2019, 13, 6356-6362.	7.3	53
220	Thermodynamics, Electronic Structure, and Vibrational Properties of Snn(S1–xSex)m Solid Solutions for Energy Applications. Chemistry of Materials, 2019, 31, 3672-3685.	3.2	11
221	Improvement of Visible-Light Photocatalytic Efficiency in a Novel InSe/Zr ₂ CO ₂ Heterostructure for Overall Water Splitting. Journal of Physical Chemistry C, 2019, 123, 12781-12790.	1.5	80
222	Band Gap Tuning in Bismuth Oxide Carbodiimide Bi ₂ O ₂ NCN. Inorganic Chemistry, 2019, 58, 6467-6473.	1.9	28
223	Ferromagnetic ordering in half metallic Fe doped CdS diluted magnetic semiconductor: A DFT study. Physica B: Condensed Matter, 2019, 565, 25-32.	1.3	19
224	Limitations of the DFT–1/2 method for covalent semiconductors and transition-metal oxides. Physical Review B, 2019, 99, .	1.1	27
225	Computational Screening of Cathode Coatings for Solid-State Batteries. Joule, 2019, 3, 1252-1275.	11.7	276
226	DFT/NEGF study of discrete dopants in Si/Ill–V 3D FET. Journal of Physics Condensed Matter, 2019, 31, 144003.	0.7	2
227	Molybdenum Trioxide (α-MoO ₃) Nanoribbons for Ultrasensitive Ammonia (NH ₃) Gas Detection: Integrated Experimental and Density Functional Theory Simulation Studies. ACS Applied Materials & Interfaces, 2019, 11, 10697-10706.	4.0	174
228	Experimental and computational study of Tm-doped TiO2: The effect of Li+ on Vis-response photocatalysis and luminescence. Applied Catalysis B: Environmental, 2019, 252, 138-151.	10.8	25
229	Feature Engineering for Materials Chemistry—Does Size Matter?. Journal of Chemical Information and Modeling, 2019, 59, 1873-1881.	2.5	7
230	DFT modeling of wurtzite III-nitride ternary alloys. Advances in Imaging and Electron Physics, 2019, , 79-99.	0.1	1
231	Rapid Prediction of Anisotropic Lattice Thermal Conductivity: Application to Layered Materials. Chemistry of Materials, 2019, 31, 2048-2057.	3.2	20
232	The Modifications of Electronic and Optical Properties of Bulk Molybdenum Disulfide by Oxygen Substitution. IOP Conference Series: Materials Science and Engineering, 2019, 599, 012001.	0.3	0
233	Zn: a versatile resonant dopant for SnTe thermoelectrics. Materials Today Physics, 2019, 11, 100158.	2.9	57
234	A Comparative Computational Study of the Adsorption of TCNQ and F4-TCNQ on the Coinage Metal Surfaces. ACS Omega, 2019, 4, 16906-16915.	1.6	9
235	Optimizing the orbital occupation in the multiple minima problem of magnetic materials from the metaheuristic firefly algorithm. Physical Chemistry Chemical Physics, 2019, 21, 21932-21941.	1.3	3
236	Photo-sensitizing thin-film ferroelectric oxides using materials databases and high-throughput calculations. Journal of Materials Chemistry A, 2019, 7, 27323-27333.	5.2	12

		15	2
#	ARTICLE	IF	CITATIONS
237	Theoretical design of a novel 2D tetragonal ZnS/SnO hetero-bilayer as a promising photocatalyst for solar water splitting. International Journal of Hydrogen Energy, 2019, 44, 27816-27824.	3.8	11
238	Substituent effects on the Su-Schrieffer-Heeger electron-phonon coupling in conjugated polyenes. Physical Review B, 2019, 100, .	1.1	1
239	Growth, Crystal Structures, and Characteristics of Li ₅ ASrMB ₁₂ O ₂₄ (A = Zn, Mg; M = Al, Ga) with [MB ₁₂ O ₂₄] Frameworks. Inorganic Chemistry, 2019, 58, 1016-1019.	1.9	10
240	Beyond Koopmans' theorem: electron binding energies in disordered materials. Journal of Physics Condensed Matter, 2019, 31, 043001.	0.7	9
241	Analytic atomic gradients in the fermiâ€ŀöwdin orbital selfâ€interaction correction. Journal of Computational Chemistry, 2019, 40, 820-825.	1.5	16
242	Changes of optical transition models caused by crystal structural changes in CaSe2O5. Journal of Solid State Chemistry, 2019, 271, 115-120.	1.4	0
243	Basics of semiconducting metal oxide–based gas sensors. , 2019, , 61-165.		17
244	High performance tunnel field effect transistors based on in-plane transition metal dichalcogenide heterojunctions. Nanotechnology, 2019, 30, 025201.	1.3	17
245	Two-Level Quantum Systems in Two-Dimensional Materials for Single Photon Emission. Nano Letters, 2019, 19, 408-414.	4.5	59
246	Adsorption properties of the tetragonal P4/nmm WO3 (100) surface toward molecules involved in the hydration of ethylene. Surface Science, 2019, 681, 149-157.	0.8	5
247	Towards visible-light photocatalysis for environmental applications: band-gap engineering versus photons absorption—a review. Environmental Science and Pollution Research, 2019, 26, 4155-4170.	2.7	70
248	Electronic and magnetic properties of new half-metallic ferromagnetic rutile Ti1––V Ni O2 (x = y =) Tj ETQq1	1 0.78431 1.9	.4 ₁ gBT /Ov
249	Two-dimensional g-C ₃ N ₄ /InSe heterostructure as a novel visible-light photocatalyst for overall water splitting: a first-principles study. Journal Physics D: Applied Physics, 2019, 52, 015304.	1.3	25
250	Interlayer Transition in a vdW Heterostructure toward Ultrahigh Detectivity Shortwave Infrared Photodetectors. Advanced Functional Materials, 2020, 30, 1905687.	7.8	52
251	Characterization and DFT calculation of poly(m-anisidine) synthesized with different dopant acids. Journal of Molecular Structure, 2020, 1201, 127182.	1.8	6
252	Ternary sulfides BaLa2S4 and CaLa2S4 as promising photocatalytic water splitting and thermoelectric materials: First-principles DFT calculations. International Journal of Hydrogen Energy, 2020, 45, 22600-22612.	3.8	19
253	Possible bandgap values of graphene-like ZnO in density functional theory corrected by the Hubbard U term and HSE hybrid functional. Materials Today Communications, 2020, 22, 100756.	0.9	16
254	A Shallow Acceptor of Phosphorous Doped in MoSe ₂ Monolayer. Advanced Electronic Materials, 2020, 6, 1900830.	2.6	16

#	Article	IF	CITATIONS
255	Investigation of structural and electronic properties by pnictogen substitution in the layered oxypnictides (LaO)Zn Pn (Pn = P, As, Sb). International Journal of Quantum Chemistry, 2020, 120, e26090.	1.0	6
256	Structure transition and thermoelectric properties related to AZn(1-x)/2CuxSb (AÂ= Ca, Eu, Sr;) Tj ETQq1 1 0.7843	814.rgBT / 2.8	Oyerlock 10
257	The red and blue luminescence in silicon nanocrystals with an oxidized, nitrogen-containing shell. Faraday Discussions, 2020, 222, 240-257.	1.6	8
258	First-Principles Screening of Lead-Free Mixed-Anion Perovskites for Photovoltaics. Journal of Physical Chemistry C, 2020, 124, 1303-1308.	1.5	8
259	Properties of monolayer black phosphorus affected by uniaxial strain. Physica E: Low-Dimensional Systems and Nanostructures, 2020, 117, 113834.	1.3	5
260	Periodic Electronic Structure Calculations with the Density Matrix Embedding Theory. Journal of Chemical Theory and Computation, 2020, 16, 130-140.	2.3	40
261	MoS ₂ and Perylene Derivative Based Typeâ€I Heterostructure: Bandgap Engineering and Giant Photoluminescence Enhancement. Advanced Materials Interfaces, 2020, 7, 1901197.	1.9	26
262	Phase stability and fast ion transport in P2-type layered Na ₂ X ₂ TeO ₆ (X = Mg, Zn) solid electrolytes for sodium batteries. Journal of Materials Chemistry A, 2020, 8, 22816-22827.	5.2	20
263	On-Surface Synthesis of Oligo(indenoindene). Journal of the American Chemical Society, 2020, 142, 12925-12929.	6.6	29
264	Electronic, magnetic and optical properties of transition-metal and hydroxides doped monolayer g-C ₃ N ₄ : a first principles investigation. Journal of Physics Condensed Matter, 2020, 32, 445602.	0.7	8
265	Transforming Photocatalytic g ₃ N ₄ /MoSe ₂ into a Direct Zâ€5cheme System via Boronâ€Doping: A Hybrid DFT Study. ChemSusChem, 2020, 13, 4985-4993.	3.6	33
266	Machine learning substitutional defect formation energies in ABO3 perovskites. Journal of Applied Physics, 2020, 128, .	1.1	21
267	Confirmation of the PPLB Derivative Discontinuity: Exact Chemical Potential at Finite Temperatures of a Model System. Journal of Chemical Theory and Computation, 2020, 16, 7225-7231.	2.3	5
268	Synthesis, structure and photoluminescence properties of three copper(<scp>i</scp>) iodide based inorganic–organic hybrid structures with pyrazine derivatives. New Journal of Chemistry, 2020, 44, 14103-14107.	1.4	7
269	Exchange-correlation functional challenges in modeling quaternary chalcogenides. Physical Review B, 2020, 102, .	1.1	15
270	Tight binding models accurately predict band structures for copolymer semiconductors. Physical Chemistry Chemical Physics, 2020, 22, 19659-19671.	1.3	8
271	<i>Ab initio</i> quantum dynamics of charge carriers in graphitic carbon nitride nanosheets. Journal of Chemical Physics, 2020, 153, 054701.	1.2	27
272	Influence of Ch substitution on structural, electronic, and thermoelectric properties of layered oxychalcogenides (La0.5Bi0.5O)CuCh (Ch = S, Se, Te): a new insight from first principles. RSC Advances, 2020, 10, 27481-27491	1.7	2

#	ARTICLE	IF	CITATIONS
273	xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow><mml:mi mathvariant="normal">k<mml:mo>·</mml:mo><mml:mi mathvariant="normal">p</mml:mi </mml:mi </mml:mrow> Hamiltonians for the electronic structure of semiconductors. Physical Review B, 2020, 102	1.1	7
274	Encapsulation of volatile fission products in a two-dimensional dicalcium nitride electride. Journal of Applied Physics, 2020, 128, 045112.	1.1	3
275	Electrical and thermal transport properties of medium-entropy Si Ge Sn alloys. Acta Materialia, 2020, 199, 443-452.	3.8	13
276	Effective mass path integral simulations of quasiparticles in condensed phases. Journal of Chemical Physics, 2020, 153, 121104.	1.2	8
277	Reorganization energy and polaronic effects of pentacene on NaCl films. Physical Review B, 2020, 102, .	1.1	6
278	Identifying candidate hosts for quantum defects via data mining. Npj Computational Materials, 2020, 6,	3.5	28
279	Color Differences Highlight Concomitant Polymorphism of Chalcones. Crystal Growth and Design, 2020, 20, 6346-6355.	1.4	9
280	Insulator–Metal Transition in the Nd ₂ CoFeO ₆ Disordered Double Perovskite. Journal of Physical Chemistry C, 2020, 124, 22733-22742.	1.5	5
281	Adsorption and Dissociation of Ni(acac) ₂ on Iron by Ab Initio Calculations. Journal of Physical Chemistry A, 2020, 124, 8005-8010.	1.1	7
282	Two-Dimensional CdX/C ₂ N (X = S, Se) Heterostructures as Potential Photocatalysts for Water Splitting: A DFT Study. ACS Omega, 2020, 5, 23762-23768.	1.6	45
283	Unraveling the relationship between exposed surfaces and the photocatalytic activity of Ag ₃ PO ₄ : an in-depth theoretical investigation. RSC Advances, 2020, 10, 30640-30649.	1.7	12
284	Pseudospin-electric coupling for holes beyond the envelope-function approximation. Physical Review B, 2020, 102, .	1.1	12
285	<i>sp</i> ³ -Functionalization of Single-Walled Carbon Nanotubes Creates Localized Spins. ACS Nano, 2020, 14, 17675-17682.	7.3	17
286	π-Orbital Yin–Yang Kagome bands in anilato-based metal–organic frameworks. Physical Chemistry Chemical Physics, 2020, 22, 25827-25832.	1.3	13
287	Leverage electron properties to predict phonon properties via transfer learning for semiconductors. Science Advances, 2020, 6, .	4.7	26
288	Accuracy of Hybrid Functionals with Non-Self-Consistent Kohn–Sham Orbitals for Predicting the Properties of Semiconductors. Journal of Chemical Theory and Computation, 2020, 16, 3543-3557.	2.3	17
289	Electronic Structure Engineering Achieved via Organic Ligands in Silicon Nanocrystals. Chemistry of Materials, 2020, 32, 6326-6337.	3.2	17
290	Emerging investigator series: first-principles and thermodynamics comparison of compositionally-tuned delafossites: cation release from the (001) surface of complex metal oxides. Environmental Science: Nano, 2020, 7, 1642-1651.	2.2	11

#	Article	IF	CITATIONS
291	Strain-engineered p-type to n-type transition in mono-, bi-, and tri-layer black phosphorene. Journal of Applied Physics, 2020, 127, 225703.	1.1	9
292	Structural and electronic properties of defective 2D transition metal dichalcogenide heterostructures. Journal of Computational Chemistry, 2020, 41, 1946-1955.	1.5	8
293	Sputtered Sr <i>_x</i> NbO ₃ as a UV-Transparent Conducting Film. ACS Applied Materials & Interfaces, 2020, 12, 30520-30529.	4.0	18
294	Room-Temperature Ferromagnetism Induced by Zn Vacancy Enhancement Through ZnO Nanostructure Modification. IEEE Magnetics Letters, 2020, 11, 1-4.	0.6	6
295	Energy Gap Closure of Crystalline Molecular Hydrogen with Pressure. Physical Review Letters, 2020, 124, 116401.	2.9	24
296	Plane-wave many-body corrections to the conductance in bulk tunnel junctions. Physical Review B, 2020, 101, .	1.1	1
297	Predicting HSE band gaps from PBE charge densities via neural network functionals. Journal of Physics Condensed Matter, 2020, 32, 155901.	0.7	16
298	High Thermoelectric Performance in Sulfideâ€Type Argyrodites Compound Ag ₈ Sn(S _{1â^} <i>_x</i> Se <i>_x</i>) ₆ Enabled by Ultralow Lattice Thermal Conductivity and Extended Cubic Phase Regime. Advanced Functional Materials. 2020. 30. 2000526.	7.8	38
299	Accurate Ab Initio Calculations on Various PV-Based Materials: Which Functional to Be Used?. Journal of Physical Chemistry C, 2020, 124, 8467-8478.	1.5	15
300	Machine Learning for Predicting the Band Gaps of ABX ₃ Perovskites from Elemental Properties. Journal of Physical Chemistry C, 2020, 124, 8905-8918.	1.5	99
301	Implications of the fractional charge of hydroxide at the electrochemical interface. Physical Chemistry Chemical Physics, 2020, 22, 6964-6969.	1.3	6
302	Influence of Al doping on the crystal structure, optical properties, and photodetecting performance of ZnO film. Progress in Natural Science: Materials International, 2020, 30, 28-34.	1.8	48
303	Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes. Chemical Reviews, 2020, 120, 6878-6933.	23.0	676
304	Predicting Thermal Quenching in Inorganic Phosphors. Chemistry of Materials, 2020, 32, 6256-6265.	3.2	64
305	Pressure Effect on Electronic and Excitonic Properties of Purely J-Aggregated Monolayer Organic Semiconductor. Journal of Physical Chemistry Letters, 2020, 11, 5896-5901.	2.1	1
306	Structural and optical properties of langbeinite-related red-emitting K ₂ Sc ₂ (MoO ₄)(PO ₄) ₂ :Eu phosphors. RSC Advances, 2020, 10, 25763-25772.	1.7	9
307	Local Structure Distortion Induced Broad Band Emission in the All-Inorganic BaScO ₂ F:Eu ²⁺ Perovskite. Chemistry of Materials, 2020, 32, 6640-6649.	3.2	39
308	A computational chemistry approach to modelling conducting polymers in ionic liquids for next generation batteries. Energy Reports, 2020, 6, 198-208.	2.5	13

		CITATION REPORT		
#	ARTICLE	1159	IF	CITATIONS
309	Camer Dynamics in Ultrathin Gold Nanowires: Role of Auger Processes. Plasmonics, 2020, 15, 1151	-1158.	1.8	2
310	Control of Crystal Symmetry Breaking with Halogen-Substituted Benzylammonium in Layered Hybri Metal-Halide Perovskites. Journal of the American Chemical Society, 2020, 142, 5060-5067.	d	6.6	65
311	Electronic band gaps from quantum Monte Carlo methods. Physical Review B, 2020, 101, .		1.1	26
312	Structural, Electronic and Vibrational Properties of YAl3(BO3)4. Materials, 2020, 13, 545.		1.3	17
313	Lead-free hybrid organic-inorganic perovskites for solar cell applications. Journal of Chemical Physics, 2020, 152, 014104.		1.2	6
314	Orbital localization error of density functional theory in shear properties of vanadium and niobium. Journal of Chemical Physics, 2020, 152, 024118.		1.2	8
315	Dimensionality–Band Gap–Third-Harmonic Generation Property Relationship in Novel Main-Gro Metal Iodates. Chemistry of Materials, 2020, 32, 3621-3630.	qı	3.2	25
316	Stressâ€Driven Phase Transitions of Srl ₂ : A Firstâ€Principles Investigation. Physica Stat Solidi (B): Basic Research, 2020, 257, 1900726.	tus	0.7	13
317	Improved description of perovskite oxide crystal structure and electronic properties using self-consistent Hubbard <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi></mml:math> correcti from ACBN0. Physical Review B, 2020, 101, .	ons	1.1	17
318	A first-principles study of the temperature-dependent diffusion coefficients of silver in the thermoelectric compound PbTe. Acta Materialia, 2021, 202, 243-254.		3.8	12
319	Electronic, optical and elastic properties of cubic zirconia (c-ZrO2) under pressure: A DFT study. Physica B: Condensed Matter, 2021, 604, 412462.		1.3	12
320	Experimental and DFT study of BaLaCuS3: Direct band gap semiconductor. Journal of Physics and Chemistry of Solids, 2021, 148, 109670.		1.9	12
321	Hunting the elusive shallow n-type donor – An ab initio study of Li and N co-doped diamond. Carb 2021, 171, 857-868.	on,	5.4	9
322	Novel enantiomorphic Pb-coordination polymers dictated by the corresponding chiral ligands, [Pb((<i>R</i> , <i>R</i>)- <i>TBA</i>)(H ₂ O)]·1.7H ₂ O and [Pb((<i>S</i> , <i>S</i>)- <i>TBA</i>)(H ₂ O)]·1.7H ₂ O [<i>TBA</i>)= 1.3.5-triazin-2(1 <i>H</i>)-one-4.6-bis(alanyl)]. Materials Chemistry Frontiers. 2021. 5. 1330-1340.		3.2	18
323	Modeling Grain Boundaries in Polycrystalline Halide Perovskite Solar Cells. Annual Review of Condensed Matter Physics, 2021, 12, 95-109.		5.2	25
324	Lead-based and lead-free ferroelectric ceramic capacitors for electrical energy storage. , 2021, , 279-356.			9
325	Quantum Information and Algorithms for Correlated Quantum Matter. Chemical Reviews, 2021, 12 3061-3120.	1,	23.0	67
326	Impact of Aliovalent Alkaline-Earth metal solutes on Ceria Grain Boundaries: A density functional theory study. Acta Materialia, 2021, 205, 116481.		3.8	5

	CITATION	TATION REPORT		
#	Article	IF	CITATIONS	
327	Ab initio modeling of excitons: from perfect crystals to biomaterials. Advances in Physics: X, 2021, 6, .	1.5	4	
328	Non-thermal pulsed plasma activated water: environmentally friendly way for efficient surface modification of semiconductor nanoparticles. Green Chemistry, 2021, 23, 898-911.	4.6	13	
329	Computational techniques for characterisation of electrically conductive MOFs: quantum calculations and machine learning approaches. Journal of Materials Chemistry C, 2021, 9, 13584-13599.	2.7	14	
330	Towards novel probes for valence charges <i>via</i> X-ray optical wave mixing. Faraday Discussions, 2021, 228, 451-469.	1.6	5	
331	Effect of doping of molybdenum on the optical properties of glasses of the As—S system. Physics of Complex Systems, 2021, 2, 115-121.	0.2	2	
332	Topological surface states in epitaxial <mml:math< td=""><td></td><td></td></mml:math<>			

#	Article	IF	CITATIONS
345	From Kohn–Sham to Many-Electron Energies via Step Structures in the Exchange-Correlation Potential. Journal of Chemical Theory and Computation, 2021, 17, 1390-1407.	2.3	12
346	Revisiting the Structural, Electronic, and Magnetic Properties of (LaO)MnAs: Effect of Hubbard Correction and Origin of Mott-Insulating Behavior. ACS Omega, 2021, 6, 4440-4447.	1.6	4
347	Structures of bulk hexagonal post transition metal chalcogenides from dispersion-corrected density functional theory. Physical Review B, 2021, 103, .	1.1	6
348	Decisive role of interstitial defects in half-Heusler semiconductors: An <i>ab initio</i> study. Physical Review Materials, 2021, 5, .	0.9	6
349	Resonant tunnelling diodes based on twisted black phosphorus homostructures. Nature Electronics, 2021, 4, 269-276.	13.1	41
350	Physical properties of ultrasonically spray deposited Yttrium-doped SnO2 nanostructured films: supported by DFT study. Applied Physics A: Materials Science and Processing, 2021, 127, 1.	1.1	4
351	Orbital-hybridization-created optical excitations in Li2GeO3. Scientific Reports, 2021, 11, 4939.	1.6	18
352	A Computational and Spectroscopic Study of the Electronic Structure of V2O5-Based Cathode Materials. Journal of Physical Chemistry C, 2021, 125, 5848-5858.	1.5	7
353	Electronic properties and stability of 4–8 B C N monolayers. Solid State Communications, 2021, 326, 114174.	0.9	0
354	Effect of Ni doping on optical, structural, and morphological properties of ZnO thin films synthesized by MSILAR: Experimental and DFT study. Materialia, 2021, 15, 101015.	1.3	9
355	Chlorine passivation of grain boundaries in cadmium telluride solar cells. Physical Review Materials, 2021, 5, .	0.9	7
356	Study of the structural phase transition in diamond (100) & (111) surfaces. Carbon Trends, 2021, 3, 100033.	1.4	7
357	First-Principles Study of Graphene-6H SiC Surface Interactions. Balkan Journal of Electrical and Computer Engineering, 2021, 9, 171-177.	0.4	0
358	Inversion domain boundaries in wurtzite GaN. Physical Review B, 2021, 103, .	1.1	1
359	Cobalt(II) complexes with small variations in the heterocycle ligand, crystal structure and DFT calculations. Journal of Molecular Structure, 2021, 1230, 129911.	1.8	6
360	Vertex function compliant with the Ward identity for quasiparticle self-consistent calculations beyond <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>G</mml:mi> <mml:mi>WPhysical Review B. 2021, 103</mml:mi></mml:mrow></mml:math 	> <td>15 10w> </td>	15 10w>
361	Experimental and Ab Initio Characterization of Mononuclear Molybdenum Dithiocarbamates in Lubricant Mixtures. Langmuir, 2021, 37, 4836-4846.	1.6	7
362	Epitaxial ferroelectric oxides on silicon with perspectives for future device applications. APL Materials, 2021, 9, .	2.2	23

ARTICLE IF CITATIONS # Modeling Excited States of Point Defects in Materials from Many-Body Perturbation Theory., 2021, 3, 363 3 862-874. Understanding the Structural and Electronic Properties of Photoactive Tungsten Oxide Nanoparticles from Density Functional Theory and <i>GW</i> Approaches. Journal of Chemical Theory 364 2.3 and Computation, 2021, 17, 3462-3470. Opening band gaps of low-dimensional materials at the meta-GGA level of density functional 365 0.9 18 approximations. Physical Review Materials, 2021, 5, . Requirements for an accurate dispersion-corrected density functional. Journal of Chemical Physics, 366 1.2 39 2021, 154, 230902. One-dimensional yttrium silicide electride (Y5Si3:eâ[^]) for encapsulation of volatile fission products. 367 1.1 2 Journal of Applied Physics, 2021, 129, . Interactions of Ruddlesden-Popper Phases and Migration-Induced Field-Stabilized Polar Phase in Strontium Titanate. Crystals, 2021, 11, 693. 1.0 Water Reactions on Reconstructed Rutile TiO₂: A Density Functional Theory/Density 369 1.5 9 Functional Tight Binding Approach. Journal of Physical Chemistry C, 2021, 125, 13234-13246. Investigation into water-induced surface oxidization of GaN lamella structure. Semiconductor 1.0 Science and Technology, 2021, 36, 085009. Hydrogenâ€Bondâ€Driven Synergistically Enhanced Hyperpolarizability: Chiral Coordination Polymers 371 with Nonpolar Structures Exhibiting Unusually Strong Secondâ€Harmonic Generation. Angewandte 7.2 61 Chemie - International Edition, 2021, 60, 20656-20660. Hydrogenâ€Bondâ€Driven Synergistically Enhanced Hyperpolarizability: Chiral Coordination Polymers with Nonpolar Structures Exhibiting Unusually Strong Secondâ€Harmonic Generation. Angewandte 1.6 Chemie, 2021, 133, 20824-20828. First-principles calculation of the electronic and optical properties of Gd2FeCrO6 double perovskite: 373 2.6 14 Effect of Hubbard U parameter. Journal of Materials Research and Technology, 2021, 13, 2408-2418. Hole- <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mi mathvariant="normal">Cr</mml:mi><mml:mo>+</mml:mo></mml:msup></mml:math> nanomagnet in a semiconductor quantum dot. Physical Review B, 2021, 104, . 374 1.1 375 Ternary ACd4P3 (A = Na, K) Nanostructures via a Hydride Solution-Phase Route. ACS Materials Au, 0, , . 2.6 4 Temperature-Dependent Properties of Molten Li₂BeF₄ Salt Using <i>Ab 1.6 Initio</i> Molecular Dynamics. ACS Omega, 2021, 6, 19822-19835. First-principles study of electron and hole doping effects in perovskite nickelates. Physical Review B, 377 1.1 13 2021, 104, . Understanding carbon dioxide capture on metal–organic frameworks from first-principles theory: 378 1.2 The case of MIL-53(X), with X = Fe3+, Al3+, and Cu2+. Journal of Chemical Physics, 2021, 155, 024701. A first principle investigation of the non-synthesized cubic perovskite LiGeX3 (X=I, Br, and Cl). 379 1.9 18 Materials Science in Semiconductor Processing, 2021, 131, 105858. Machine learning band gaps from the electron density. Physical Review Materials, 2021, 5, .

#	Article	IF	CITATIONS
381	Experimental and Theoretical Study on the Interchange between Zr and Ti within the MILâ€125â€NH 2 Metal Cluster. Chemistry - an Asian Journal, 2021, 16, 2520-2528.	1.7	5
382	First principles study of the stability and thermal conductivity of novel Li-Be hybrid ceramics. Acta Materialia, 2021, 215, 117052.	3.8	7
383	s–p Mixing in Stereochemically Active Lone Pairs Drives the Formation of 1D Chains of Lead Bromide Square Pyramids. Inorganic Chemistry, 2021, 60, 12676-12680.	1.9	3
384	Lattice parameters and electronic bandgap of orthorhombic potassium sodium niobate K\$\$_{0.5}\$\$Na\$\$_{0.5}\$\$NbO\$\$_{3}\$\$ from density-functional theory. European Physical Journal B, 2021, 94, 1.	0.6	1
385	Band gaps of crystalline solids from Wannier-localization–based optimal tuning of a screened range-separated hybrid functional. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	49
386	Role of the rare-earth doping on the multiferroic properties of BaTiO3: First-principles calculation. Physica B: Condensed Matter, 2021, 615, 413107.	1.3	6
387	Passivation mechanism in CdTe solar cells: The hybrid role of Se. Applied Physics Letters, 2021, 119, .	1.5	12
388	Calculations of electron mobility in II-VI semiconductors. Physical Review B, 2021, 104, .	1.1	8
389	xâ^'[Pd(dmit)2]2 as a quasi-one-dimensional scalene Heisenberg model. Physical Review Materials, 2021, 5,	0.9	2
390	Deciphering the dual emission in the photoluminescence of Au14Cd(SR)12: A theoretical study using TDDFT and TDDFT + TB. Journal of Chemical Physics, 2021, 155, 074302.	1.2	10
391	Electron binding energies from static linear response calculations. Theoretical Chemistry Accounts, 2021, 140, 1.	0.5	4
392	Behavior of intrinsic defects in BaF2 under uniaxial compressions: An ab initio investigation. Materials Today Communications, 2021, 28, 102730.	0.9	5
393	Site-specific symmetry sensitivity of angle-resolved photoemission spectroscopy in layered palladium diselenide. 2D Materials, 2021, 8, 045036.	2.0	5
394	Mixedâ€Halide Double Perovskite Cs ₂ AgBiX ₆ (X=Br, I) with Tunable Optical Properties via Anion Exchange. ChemSusChem, 2021, 14, 4507-4515.	3.6	24
395	Bi4AO6Cl2 (A = Ba, Sr, Ca) with Double and Triple Fluorite Layers for Visible-Light Water Splitting. Inorganic Chemistry, 2021, 60, 15667-15674.	1.9	4
396	A combined experimental and theoretical study of 1,4-bis(phenylethynyl)-2,5-bis(ethoxy)benzene adsorption on Au(111). Surface Science, 2021, 712, 121877.	0.8	4
397	Hybrid exchange–correlation energy functionals for accurate prediction of the electronic and optical properties of alkaline-earth metal oxides. Materials Science in Semiconductor Processing, 2021, 135, 106092.	1.9	6
398	Novel noncentrosymmetric polar coordination compounds derived from chiral histidine ligands. Inorganic Chemistry Frontiers, 2021, 8, 4536-4543.	3.0	15

#	Article	IF	CITATIONS
399	Quantum well states and sizable Rashba splitting on Pb induced α-phase Bi/Si(111) surface reconstruction. Nanoscale, 2021, 13, 16622-16628.	2.8	5
400	Conduction Band Control of Oxyhalides with a Triple-Fluorite Layer for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 2491-2499.	6.6	52
401	Optimizing accuracy and efficacy in data-driven materials discovery for the solar production of hydrogen. Energy and Environmental Science, 2021, 14, 2335-2348.	15.6	23
402	Formation of atomic fluorine anions in 12CaO·7Al2O3. AIP Advances, 2021, 11, 015146.	0.6	0
403	Prediction of tunable spin-orbit gapped materials for dark matter detection. Physical Review Research, 2021, 3, .	1.3	12
404	A new metric to control nucleation and grain size distribution in hybrid organic–inorganic perovskites by tuning the dielectric constant of the antisolvent. Journal of Materials Chemistry A, 2021, 9, 3668-3676.	5.2	10
405	Thermal Density Functional Theory in Context. Lecture Notes in Computational Science and Engineering, 2014, , 25-60.	0.1	23
406	Ab Initio Description of Optoelectronic Properties at Defective Interfaces in Solar Cells. Lecture Notes in Computer Science, 2017, , 111-124.	1.0	2
407	Review on Simulation Models for Materials and Biomolecular Study and Design. , 2017, , 373-408.		3
408	Chapter 13. A New Era of Inorganic Materials Discovery Powered by Data Science. RSC Theoretical and Computational Chemistry Series, 2020, , 311-339.	0.7	1
409	Switchable ferroelectric photovoltaic effects in epitaxial <i>h</i> -RFeO ₃ thin films. Nanoscale, 2018, 10, 13261-13269.	2.8	35
410	The Hubbard-U correction and optical properties of d metal oxide photocatalysts. Journal of Chemical Physics, 2020, 153, 224116.	1.2	10
411	DFT calculation of ²²⁹ thorium-doped magnesium fluoride for nuclear laser spectroscopy. Journal of Physics Condensed Matter, 2020, 32, 255503.	0.7	11
412	Robust intrinsic half-metallic ferromagnetism in stable 2D single-layer MnAsS ₄ . Journal of Physics Condensed Matter, 2020, 32, 385803.	0.7	6
413	Importance of van der Waals interactions for ab initio studies of topological insulators. Journal of Physics Condensed Matter, 2021, 33, 035702.	0.7	9
414	Quantitative predictions of photoelectron spectra in amorphous molecular solids from multiscale quasiparticle embedding. Physical Review B, 2020, 101, .	1.1	8
415	Vibrational and dielectric properties of the bulk transition metal dichalcogenides. Physical Review Materials, 2018, 2, .	0.9	25
416	Performance of the strongly constrained and appropriately normed density functional for solid-state materials. Physical Review Materials, 2018, 2, .	0.9	155

#	ARTICLE Enabling visible-light absorption and <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>p</mml:mi> -type doping in</mml:math 	IF	CITATIONS
417	<pre><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow><mml:msub><mml:mi>InO</mml:mi></mml:msub></mml:mrow><mml:mn>3</mml:mn></mml:msub></mml:math> by adding Bit Diversion Device Devic</pre>	nl:mi> <mr< td=""><td>nl:mn>2</td></mr<>	nl:mn>2
418	First-principles study of mechanical and electronic properties of bent monolayer transition metal dichalcogenides. Physical Review Materials, 2019, 3, .	0.9	28
419	Vibrational and dielectric properties of monolayer transition metal dichalcogenides. Physical Review Materials, 2019, 3, .	0.9	10
420	Structural and electronic properties of lithiated Si nanowires: An <i>ab initio</i> study. Physical Review Materials, 2019, 3, .	0.9	3
421	Frustration, ring exchange, and the absence of long-range order in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>EtMe</mml:mi><m From first principles to many-body theory. Physical Review Materials, 2020, 4, .</m </mml:msub></mml:mrow></mml:math 	nl :non9 ∙3<∤	/mm ilo mn>
422	Ab initio piezoelectric properties of wurtzite ZnO-based alloys: Impact of the c/a cell ratio. Physical Review Materials, 2020, 4, .	0.9	4
423	Electronic structure and optical properties of semiconductor nanowires polytypes. European Physical Journal B, 2020, 93, 1.	0.6	10
424	Ab-Initio MD Simulations of the Excited Potential Energy Surface. , 2021, , 179-273.		Ο
425	Prospects for <i>n</i> -type conductivity in cubic boron nitride. Applied Physics Letters, 2021, 119, .	1.5	9
426	First-Principles Methods. Springer Theses, 2015, , 39-61.	0.0	0
427	Symulacje ab-initio warstwy grafenowej wykorzystywanej w detektorze IR. Elektronika, 2016, 1, 33-34.	0.0	0
428	Stair-rod dislocation cores acting as one-dimensional charge channels in GaAs nanowires. Physical Review Materials, 2018, 2, .	0.9	1
429	Rational Design of Polymer Dielectrics: An Application of Density Functional Theory and Machine Learning. , 2018, , 293-319.		1
430	Universal behavior of the band gap as a function of the atomic mean-square displacement in laser-excited silicon. Advanced Optical Technologies, 2020, 9, 145-153.	0.9	3
431	Structural and dynamic properties of short-period GaN/AlN superlattices grown by submonolayer digital epitaxy. Journal of Physics: Conference Series, 2020, 1697, 012155.	0.3	1
432	A Combined Classical Molecular Dynamics Simulations and AB Initio Calculations Approach to Study A-SI:H/C-SI Interfaces. , 2020, , .		1
433	Mechanical and electronic properties of boron nitride nanosheets with graphene domains under strain. RSC Advances, 2021, 11, 35127-35140.	1.7	2
434	What's the gap? A possible strategy for advancing theory, and an appeal for experimental structure data to drive that advance. RSC Advances, 2020, 10, 36887-36896.	1.7	7

ARTICLE IF CITATIONS # FBMC3D--A Large-Scale 3-D Monte Carlo Simulation Tool for Modern Electronic Devices. IEEE 435 1.6 4 Transactions on Electron Devices, 2020, , 1-9. Ballistic quantum transport study of Al contacting silicane using empirical pseudopotentials., 2021, , . Evaluation of the structural, electronic, optical, elastic, mechanical, and vibrational properties of 437 0.6 5 graphene-like g-GaN using density functional theory. AIP Advances, 2021, 11, . Engineering Domain Wall Electronic States in Strongly Correlated van der Waals Material of 1T-TaS₂. Nano Letters, 2021, 21, 9699-9705. 4.5 Theoretical Aspects of Point Defects inÂSemiconductor Nanowires., 2021, , 349-367. 440 0 Nonadiabatic molecular dynamics analysis of hybrid Dion–Jacobson 2D leads iodide perovskites. 1.5 Applied Physics Letters, 2021, 119, . Growth, Optical, and Spectroscopic Properties of Pure and Nd³⁺-Doped GdSr₃(PO₄)₃ Crystals with Disordered Structure. Inorganic 442 1.9 8 Chemistry, 2022, 61, 170-177. High hydrogen production in the InSe/MoSi₂N₄van der Waals 444 1.3 16 heterostructure for overall water splitting. Physical Chemistry Chemical Physics, 2022, 24, 2110-2117. Redox Defect Thermochemistry of FeAl₂0₄ Hercynite in Water Splitting from 445 3.2 11 First-Principles Methods. Chemistry of Materials, 2022, 34, 519-528. Linear fractional charge behavior in density functional theory through dielectric tuning of 446 1.2 conductor-like polarizable continuum model. Journal of Chemical Physics, 2022, 156, 014106. Surface and dynamical properties of Gel₂. 2D Materials, 2022, 9, 025001. 447 7 2.0 Study of self-interaction-errors in barrier heights using locally scaled and Perdew–Zunger 448 1.2 self-interaction methods. Journal of Chemical Physics, 2022, 156, 014306. Modulating hardness in Sc₂(Ru_{5a^{^*}<i>x</i>}TM_{<i>x</i>})B₄ through empirical 449 2.7 1 considerations and computational analysis. Journal of Materials Chemistry C, 2022, 10, 1488-1497. Electronic and optical properties of hydrogen-terminated biphenylene nanoribbons: a first-principles study. Physical Chemistry Chemical Physics, 2021, 24, 357-365. 1.3 23 Magnetic cations doped into a double perovskite semiconductor. Journal of Materials Chemistry C, 451 2.7 3 2022, 10, 3232-3240. Single-layer honeycomb sheets of zinc selenide and beyond with superior electronic and optical properties. FlatChem, 2022, 32, 100345. Enhanced photocatalytic activity, mechanism and potential application of Idoped-Bi4Ti3O12 453 1.7 28 photocatalysts. Materials Today Chemistry, 2022, 23, 100750. Pd and octahedra do not get along: Square planar [PdS4] units in non-centrosymmetric La6PdSi2S14. 454 2.8 Journal of Alloys and Compounds, 2022, 902, 163756.

#	Article	IF	CITATIONS
455	Effect of impurities from deposition precursors on the electronic properties of Si/SiO2 interfaces. Journal of Applied Physics, 2022, 131, 055306.	1.1	0
456	Survey of Tetragonal Transition Metal Chalcogenide Heteroâ€Bilayers for Promising Photocatalysts. Advanced Materials Interfaces, 2022, 9, .	1.9	4
457	Tunable giant nonlinear optical susceptibility in BaSnO3 quantum wells. Physical Review B, 2021, 104, .	1.1	2
458	Surface Functionalization of Penta-Siligraphene Monolayer for Nanoelectronic, Optoelectronic and Photocatalytic Water-Splitting: A First-Principles Study. SSRN Electronic Journal, 0, , .	0.4	0
459	(<i>R</i>)- and (<i>S</i>)-[C ₈ H ₁₀ NO ₃] ₂ [NbOF ₅]: noncentrosymmetric niobium oxyfluorides with large optical anisotropy. Inorganic Chemistry Frontiers, 2022, 9, 2498-2507.	3.0	2
460	Template-free synthesis of Bi ₂ O ₂ CO ₃ hierarchical nanotubes self-assembled from ordered nanoplates for promising photocatalytic applications. Physical Chemistry Chemical Physics, 2022, 24, 8279-8295.	1.3	100
461	Tuning the dielectric response in a nanocomposite material through nanoparticle morphology. RSC Advances, 2022, 12, 10778-10787.	1.7	3
462	Excited-state band structure mapping. Physical Review B, 2022, 105, .	1.1	8
463	Crystal Structure and Thermoelectric Properties of Novel Quaternary Cu ₂ MHf ₃ S ₈ (M─Mn, Fe, Co, and Ni) Thiospinels with Low Thermal Conductivity. Chemistry of Materials, 2022, 34, 2146-2160.	3.2	8
464	Novel Boron Nitride Polymorphs with Graphite-Diamond Hybrid Structure. Chinese Physics Letters, 2022, 39, 036301.	1.3	5
465	Charge carrier nonadiabatic dynamics in non-metal doped graphitic carbon nitride. Journal of Chemical Physics, 2022, 156, 094702.	1.2	22
466	One-Shot Approach for Enforcing Piecewise Linearity on Hybrid Functionals: Application to Band Gap Predictions. Journal of Physical Chemistry Letters, 2022, 13, 3066-3071.	2.1	10
467	CrysXPP: An explainable property predictor for crystalline materials. Npj Computational Materials, 2022, 8, .	3.5	5
468	First-principles study of resistive random access memory based on AlN. Journal of Physics: Conference Series, 2022, 2230, 012035.	0.3	1
469	Surface functionalization of penta-siligraphene monolayer for nanoelectronic, optoelectronic and photocatalytic water-splitting: A first-principles study. Applied Surface Science, 2022, 590, 152972.	3.1	14
470	Field controllable electronic properties of MnPSe3/WS2 heterojunction for photocatalysis. Journal of Central South University, 2021, 28, 3728-3736.	1.2	11
471	Non-Equilibrium Green Functions Approach to Study Transport Through a-Si:H/c-Si Interfaces. , 2021, , .		0
472	Ab initio study on electronic and optical properties of Cu2NiGeS4 for photovoltaic applications. Solar Energy, 2022, 237, 333-339.	2.9	5

ARTICLE IF CITATIONS # Designing 3d metal oxides: selecting optimal density functionals for strongly correlated materials. 473 1.3 4 Physical Chemistry Chemical Physics, 2022, 24, 14119-14139. Facile Microwave Synthesis of a Narrow-Band Green-Emitting Phosphor 474 Cs₃MnBr₅ and the Effect of Anion Substitution on Its Luminescence 1.9 Properties. Inorganic Chemistry, 2022, 61, 8782-8787. Computational Discovery and Experimental Demonstration of Boron Phosphide Ultraviolet 475 3.6 4 Nanoresonators. Advanced Optical Materials, 2022, 10, . Implementation of self-consistent MGGA functionals in augmented plane wave based methods. Physical 1.1 Review B, 2022, 105, . Allotropes selection apropos of photocatalytic CO2 reduction from first principles studies. 477 2.9 3 Materials Today Physics, 2022, , 100751. Influence of Bi Substitution with Rare-Earth Elements on the Transport Properties of BiCuSeO Oxyselenides. ACS Applied Energy Materials, 2022, 5, 7830-7841. 478 2.5 Piezoelectricity and related properties in orthorhombic cadmium diiodate. Journal of Materials 479 2.7 2 Chemistry C, 2022, 10, 9499-9511. What is the optimal mGGA exchange functional for solids?. Journal of Chemical Physics, 2022, 157, . 480 1.2 The Role of Zr on Monoclinic and Orthorhombic HfxZryO2 Systems: A First-Principles Study. 481 8 1.3 Materials, 2022, 15, 4175. Comparative density functional theory study for predicting oxygen reduction activity of single-atom 0.8 catalyst. Surface Science, 2022, 724, 122144. Electronic Structure of de Novo Peptide ACC-Hex from First Principles. Journal of Physical Chemistry 483 2 1.2 B, 2022, 126, 4289-4298. Physical Properties of Ba2XIO6 (X = Ag, Na) Double Perovskite Oxides for Energy Harvesting Devices. 484 1.7 Arábian Journal for Science and Èngineering, 2023, 48, 779-787. Strain- and electric field-enhanced optical properties of the penta-siligraphene monolayer. New 485 1.4 6 Journal of Chemistry, 2022, 46, 13905-13917. xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>ZrO</mml:mi><mml:mn>2</mml:msub></n : < mml:math 486 xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Ta</mml:mi><mml:mn>^{1,1}/₂</mml:mn></mn mathvariant="normal">O</mml:mi><mml:mn>5</mml:mn></mml:msub></mml:mrow></mml:math> : Delocalization error: The greatest outstanding challenge in densityâ€functional theory. Wiley 487 6.2 43 Interdisciplinary Reviews: Computational Molecular Science, 2023, 13, . Surface and Optoelectronic Properties of Ultrathin Trigonal Selenium: A Density Functional Theory 488 Study with van der Waals Correction. Langmuir, 2022, 38, 8485-8494. Phase Transformation-Induced Quantum Dot States on the Bi/Si(111) Surface. ACS Applied Materials 489 4.0 2 & Interfaces, 2022, 14, 36217-36226. Tuning the Band Gap in the Halide Perovskite CsPbBr₃ through Sr Substitution. ACS Applied Materials & amp; Interfaces, 2022, 14, 34884-34890.

#	Article	IF	CITATIONS
491	Band Gap Calculations for Thoriumâ \in Doped LiCAF. Advanced Theory and Simulations, 2022, 5, .	1.3	3
492	Electronic Properties of Silver–Bismuth Iodide Rudorffite Nanoplatelets. Journal of Physical Chemistry C, 2022, 126, 13739-13747.	1.5	0
493	Shell DFT-1/2 method towards engineering accuracy for semiconductors: GGA versus LDA. Computational Materials Science, 2022, 213, 111669.	1.4	5
494	Theoretical study of Li2Ti6O13, Li2Sn6O13 and Li2Zr6O13 as possible cathode in Li-ion batteries. Materials Science in Semiconductor Processing, 2022, 152, 107074.	1.9	1
495	Spatial microheterogeneity in the valence band of mixed halide hybrid perovskite materials. Chemical Science, 2022, 13, 9285-9294.	3.7	0
496	Development of Highly-Efficient 0d/1d/0d Dual Z-Scheme Cds/Znwo4/Zns Heterojunction Photocatalysts in Pollutant Removal and Involved Mechanism. SSRN Electronic Journal, 0, , .	0.4	0
497	Effective Capture and Immobilization of Hg ⁰ from Flue Gas Using a Novel Selenium-Functionalized SrFeO _{3·l´} /HNTs Half-Metal Composite: Adsorption, Photocatalytic Oxidation, and Mechanism. Energy & Fuels, 2022, 36, 12663-12676.	2.5	2
498	Head-to-Tail and Head-to-Head Molecular Chains of Poly(p-Anisidine): Combined Experimental and Theoretical Evaluation. Molecules, 2022, 27, 6326.	1.7	1
499	Confinement of volatile fission products in the crystalline organic electride Cs+(15C5)2•eâ^'. Journal of Applied Physics, 2022, 132, .	1.1	2
500	Discovery of the kagome superconductor in the Half-Heusler "NbRhSbâ€: European Physical Journal Plus, 2022, 137, .	1.2	0
501	Misfit layered compounds: Unique, tunable heterostructured materials with untapped properties. APL Materials, 2022, 10, .	2.2	5
502	Leveraging Low-Fidelity Data to Improve Machine Learning of Sparse High-Fidelity Thermal Conductivity Data via Transfer Learning. Materials Today Physics, 2022, , 100868.	2.9	2
503	The Microscopic Origin of Second Harmonic Generation Response: The Spatial Structure of Instantaneous Dipole Moments in Electron Excitation. Angewandte Chemie, 2022, 134, .	1.6	0
504	Large bandgap insulating superior clay nanosheets. MRS Bulletin, 2022, 47, 1198-1203.	1.7	4
505	The Microscopic Origin of Second Harmonic Generation Response: The Spatial Structure of Instantaneous Dipole Moments in Electron Excitation. Angewandte Chemie - International Edition, 2022, 61, .	7.2	5
506	Aliovalent anion substitution as a design concept for heteroanionic Ruddlesden–Popper hydrides. Chemical Communications, 2022, 58, 12971-12974.	2.2	1
507	Electronic structure manipulation <i>via</i> composition tuning for the development of highly conductive and acid-stable oxides. Journal of Materials Chemistry A, 2022, 10, 23155-23164.	5.2	1
508	Syntheses, structures, and optical properties of n = 3 layered Dion–Jacobson perovskites, RbEu2-Bi Ti2NbO10 (0 ≤ â‰⊉). Journal of Alloys and Compounds, 2022, , 167602.	2.8	0

#	Article	IF	CITATIONS
509	Predicting band gaps and band-edge positions of oxide perovskites using density functional theory and machine learning. Physical Review B, 2022, 106, .	1.1	4
510	Ab Initio Study of Carrier Mobility, Thermodynamic and Thermoelectric Properties of Kesterite Cu2ZnGeS4. International Journal of Molecular Sciences, 2022, 23, 12785.	1.8	7
511	First-principles study of the structural and electronic properties of BN-ring doped graphene. Physical Review Materials, 2022, 6, .	0.9	1
512	Enhancement of tunneling currents by isoelectronic nitrogen-atom doping at semiconductor pn junctions; comparison of indirect and direct band-gap systems. Japanese Journal of Applied Physics, 2022, 61, 124002.	0.8	1
513	Preparation of Confined One-Dimensional Boron Nitride Chains in the 1-D Pores of Siliceous Zeolites under High-Pressure, High-Temperature Conditions. Inorganic Chemistry, 2022, 61, 18059-18066.	1.9	0
514	The Limits of Proxy-Guided Superhard Materials Screening. Chemistry of Materials, 2022, 34, 10003-10010.	3.2	3
515	Synergistic effect of p-type and n-type dopants in semiconductors for efficient electrocatalytic water splitting. Chemical Science, 2022, 13, 13879-13892.	3.7	2
516	Chiral coordination compounds with exceptional enantioselectivity. Journal of Materials Chemistry C, 2022, 10, 17127-17134.	2.7	6
517	Development of highly-efficient 0D/1D/0D dual Z-scheme CdS/ZnWO4/ZnS heterojunction photocatalysts in pollutant removal and involved mechanism. Applied Surface Science, 2023, 611, 155681.	3.1	46
518	Low thermal conductivity in bournonite <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:msub> <mml:mi>PbCuSbS </mml:mi> <mml:mn> 3 : A comprehensive study. Physical Review B, 2022, 106, .</mml:mn></mml:msub></mml:math 		
519	Testing the r ² SCAN Density Functional for the Thermodynamic Stability of Solids with		
	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111.	2.6	8
520	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111. Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. Journal of Physical Chemistry C, 2022, 126, 20143-20154.	2.6 1.5	8
520 521	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111. Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. Journal of Physical Chemistry C, 2022, 126, 20143-20154. aflow++: A C++ framework for autonomous materials design. Computational Materials Science, 2023, 217, 111889.	2.6 1.5 1.4	8 2 14
520 521 522	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111. Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. Journal of Physical Chemistry C, 2022, 126, 20143-20154. aflow++: A C++ framework for autonomous materials design. Computational Materials Science, 2023, 217, 111889. LiRE(SO ₄) ₂ (RE = Y, Cd, Eu): noncentrosymmetric chiral rare-earth sulfates with very large band gaps. Materials Chemistry Frontiers, 2022, 7, 65-71.	2.6 1.5 1.4 3.2	8 2 14 4
520 521 522 523	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111.Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. Journal of Physical Chemistry C, 2022, 126, 20143-20154.aflow++: A C++ framework for autonomous materials design. Computational Materials Science, 2023, 217, 111889.LiRE(SO ₄) ₂ (RE = Y, Gd, Eu): noncentrosymmetric chiral rare-earth sulfates with very large band gaps. Materials Chemistry Frontiers, 2022, 7, 65-71.Design, fabrication, and characterization of high-temperature piezoelectric vibration sensor based on the Ho: CNGS crystal. Journal of Alloys and Compounds, 2023, 937, 168449.	2.6 1.5 1.4 3.2 2.8	8 2 14 4
520 521 522 523 523	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111.Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. Journal of Physical Chemistry C, 2022, 126, 20143-20154.aflow++: A C++ framework for autonomous materials design. Computational Materials Science, 2023, 217, 111889.LiRE(SO ₄) ₂ (RE = Y, Gd, Eu): noncentrosymmetric chiral rare-earth sulfates with very large band gaps. Materials Chemistry Frontiers, 2022, 7, 65-71.Design, fabrication, and characterization of high-temperature piezoelectric vibration sensor based on the Ho: CNGS crystal. Journal of Alloys and Compounds, 2023, 937, 168449.Construction of a Z-scheme Ag ₂ MoO ₄ /BiOBr heterojunction for photocatalytically removing organic pollutants. Dalton Transactions, 2022, 51, 18652-18666.	2.6 1.5 1.4 3.2 2.8 1.6	8 2 14 4 1 31
520 521 522 523 523	and without a van der Waals Correction. ACS Materials Au, 2023, 3, 102-111.Electronic Structure and Chemical Bonding in Methylammonium Lead Triiodide and Its Precursor Methylammonium Iodide. Journal of Physical Chemistry C, 2022, 126, 20143-20154.aflow++: A C++ framework for autonomous materials design. Computational Materials Science, 2023, 217, 111889.LiRE(SO ₄) ₂ (RE = Y, Gd, Eu): noncentrosymmetric chiral rare-earth sulfates with very large band gaps. Materials Chemistry Frontiers, 2022, 7, 65-71.Design, fabrication, and characterization of high-temperature piezoelectric vibration sensor based on the Ho: CNGS crystal. Journal of Alloys and Compounds, 2023, 937, 168449.Construction of a Z-scheme Ag ₂ MoO ₄ /BiOBr heterojunction for photocatalytically removing organic pollutants. Dalton Transactions, 2022, 51, 18652-18666.Unraveling the roles of single transition metal atom anchored on equivalent stoichiometry graphitic carbon nitride (gC ₆ N ₆) for carbon dioxide reduction: a density functional theory study. Journal Physics D: Applied Physics, 2022, 56, 024004.	2.6 1.5 1.4 3.2 2.8 1.6 1.3	8 2 14 4 1 31 0

#	Article	IF	CITATIONS
527	In Quest of Lowâ€Leakage Dynamic Random Access Memory Enabled by Doped TiO ₂ Dielectrics. Advanced Theory and Simulations, 2023, 6, .	1.3	1
528	Utilizing Ultraviolet Photons to Generate Single-Photon Emitters in Semiconductor Monolayers. ACS Nano, 2022, 16, 21240-21247.	7.3	4
529	Faster Exact Exchange for Solids via occ-RI-K: Application to Combinatorially Optimized Range-Separated Hybrid Functionals for Simple Solids with Pseudopotentials Near the Basis Set Limit. Journal of Chemical Theory and Computation, 2022, 18, 7336-7349.	2.3	10
530	The Presence of Charge Transfer Defect Complexes in Intermediate Band CuAl1â^'pFepS2. Crystals, 2022, 12, 1823.	1.0	0
531	On the atomistic origin of the polymorphism and the dielectric physical properties of beryllium oxide. Journal of Computational Chemistry, 0, , .	1.5	2
532	Construction of Z-Scheme Ag ₂ MoO ₄ /ZnWO ₄ Heterojunctions for Photocatalytically Removing Pollutants. Langmuir, 2023, 39, 1159-1172.	1.6	22
533	Density Matrix Implementation of the Fermi–Löwdin Orbital Self-Interaction Correction Method. Journal of Physical Chemistry A, 2023, 127, 527-534.	1.1	2
534	Incorporation of volatile fission products in UN and PuN and comparison to oxides. Journal of Nuclear Materials, 2023, 576, 154267.	1.3	3
535	Titanium Dioxide as the Most Used Photocatalyst for Water Purification: An Overview. Catalysts, 2023, 13, 26.	1.6	33
536	Small Changes, Big Impact: Tungsten Bronzes with Extremely Large Second Harmonic Generation Achieved by the Transition Metal Doping on the Bâ€Site. Advanced Functional Materials, 2023, 33, .	7.8	8
537	Metastability and Photoelectrochemical Properties of Cu ₂ SnO ₃ and Cu _{2–<i>x</i>} Li _{<i>x</i>} TiO ₃ : Two Cu(I)-Based Oxides with Delafossite Structures. Chemistry of Materials, 2023, 35, 1404-1416.	3.2	3
538	Structure and Optical Properties of Polymeric Carbon Nitrides from Atomistic Simulations. Chemistry of Materials, 2023, 35, 1547-1559.	3.2	9
539	Photo-carrier induced composition separation in mixed-halide CsPb(I < sub>x Br < sub>1â^'x) Tj ETQq0 0 0 r 2023, 16, 041002.	gBT /Overl 1.1	ock 10 Tf 50 0
540	Elucidating the structure-nonlinear optical property relationship of Te2O4(OH)2. Materials Today Physics, 2023, 34, 101075.	2.9	5
541	A Fourier-transformed feature engineering design for predicting ternary perovskite properties by coupling a two-dimensional convolutional neural network with a support vector machine (Conv2D-SVM). Materials Research Express, 2023, 10, 026301.	0.8	1
542	Molecular γ-amino butyric acid and its crystals: Structural, electronic and optical properties. Journal of Solid State Chemistry, 2023, 321, 123900.	1.4	0
543	Vibrational and electronic properties of Na ₂ Ti ₆ O ₁₃ . Journal of Raman Spectroscopy, 2023, 54, 551-561.	1.2	1
544	pyGWBSE: a high throughput workflow package for GW-BSE calculations. Npj Computational Materials, 2023, 9, .	3.5	6

#	Article	IF	CITATIONS
545	How Do Self-Interaction Errors Associated with Stretched Bonds Affect Barrier Height Predictions?. Journal of Physical Chemistry A, 2023, 127, 1750-1759.	1.1	3
546	Rhombohedral Boron Monosulfide as a p-Type Semiconductor. Molecules, 2023, 28, 1896.	1.7	5
547	Toward self-organizing low-dimensional organic–inorganic hybrid perovskites: Machine learning-driven co-navigation of chemical and compositional spaces. MRS Bulletin, 2023, 48, 164-172.	1.7	3
548	Amorphous As2S3 Doped with Transition Metals: An Ab Initio Study of Electronic Structure and Magnetic Properties. Nanomaterials, 2023, 13, 896.	1.9	1
549	Evolution of Local Structural Motifs in Colloidal Quantum Dot Semiconductor Nanocrystals Leading to Nanofaceting. Nano Letters, 2023, 23, 2277-2286.	4.5	3
550	Defects in WS ₂ monolayer calculated with a nonlocal functional: any difference from GGA?. Electronic Structure, 2023, 5, 024001.	1.0	2
551	Fundamentals of First-Principles Studies. , 2023, , 379-392.		0
552	DFT+ <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mi>U</mml:mi> -type functional derived to explicitly address the flat plane condition. Physical Review B, 2023, 107, .</mml:math 	1.1	5
553	Recent Advances in Nanocarbon-Based Nonprecious Metal Catalysts for Oxygen/Hydrogen Reduction/Evolution Reactions and Zn-Air Battery. Bulletin of the Chemical Society of Japan, 2023, 96, 429-443.	2.0	3
554	Structural Transformation in LnHS (Ln = La, Nd, Gd, and Er) with Coordination Change between an S-Centered Octahedron and a Trigonal Prism. Inorganic Chemistry, 2023, 62, 6696-6703.	1.9	3
565	Basics of simulations and carrier localization effects in semiconductor materials. , 2024, , 236-250.		0
590	Excitonic Features in the Optical Response of Layered Gallium Sulphide. , 2023, , .		0