Student interest generated during an inquiry skills less

Journal of Research in Science Teaching 46, 147-165 DOI: 10.1002/tea.20263

Citation Report

#	Article	IF	CITATIONS
1	Eurasia Journal of Mathematics, Science & Technology Education. Eurasia Journal of Mathematics, Science and Technology Education, 2008, 4, .	0.7	53
2	The situational interest of undergraduate students in zoophysiology. American Journal of Physiology - Advances in Physiology Education, 2009, 33, 196-201.	0.8	39
3	The development of dynamic inquiry performances within an open inquiry setting: A comparison to guided inquiry setting. Journal of Research in Science Teaching, 2009, 46, 1137-1160.	2.0	121
4	Improving teacher questioning in science inquiry discussions through professional development. Journal of Research in Science Teaching, 2010, 47, 422-453.	2.0	166
5	Inquiryâ€based science instruction—what is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 2010, 47, 474-496.	2.0	886
6	A framework for teaching scientific inquiry in upper secondary school chemistry. Journal of Research in Science Teaching, 2010, 47, 788-806.	2.0	23
7	Revisiting the Conceptualization, Measurement, and Generation of Interest. Educational Psychologist, 2011, 46, 168-184.	4.7	505
8	The Psychometric Evaluation of a Three-Dimension Elementary Science Attitude Survey. Journal of Science Teacher Education, 2011, 22, 595-612.	1.4	20
9	Situational interest of high school students who visit an aquarium. Science Education, 2011, 95, 337-357.	1.8	72
10	Sources of efficacy information in an inservice program for elementary teachers. Science Education, 2011, 95, 577-600.	1.8	72
11	Effects of an Integrated Science and Societal Implication Intervention on Promoting Adolescents' Positive Thinking and Emotional Perceptions in Learning Science. International Journal of Science Education, 2012, 34, 329-352.	1.0	12
12	GENDER DIFFERENCES IN STUDENT MOTIVATION AND SELF-REGULATION IN SCIENCE LEARNING: A MULTI-GROUP STRUCTURAL EQUATION MODELING ANALYSIS. International Journal of Science and Mathematics Education, 2012, 10, 1347-1368.	1.5	39
13	The interplay of students' motivational orientations, their chemistry achievements and their perception of learning within the hands-on approach to visible spectrometry. Chemistry Education Research and Practice, 2012, 13, 237-247.	1.4	16
14	Interest and Its Development. , 0, , 167-188.		67
15	Interest, Cognition, and the Case of L- and Science. , 0, , 352-382.		6
16	Activity matters: Understanding student interest in school science. Journal of Research in Science Teaching, 2012, 49, 515-537.	2.0	170
17	Predictors and outcomes of situational interest during a science learning task. Instructional Science, 2013, 41, 1047-1064.	1.1	69
18	Exploring the Development of College Students' Situational Interest in Learning Science. International Journal of Science Education, 2013, 35, 2152-2173.	1.0	43

#	Article	IF	CITATIONS
19	A Framework for Designing Scaffolds That Improve Motivation and Cognition. Educational Psychologist, 2013, 48, 243-270.	4.7	176
20	The influence of situational emotions on the intention for sustainable consumer behaviour in a student-centred intervention. Environmental Education Research, 2013, 19, 747-764.	1.6	40
21	Students' and Teachers' Perceptions of Using Video Games to Enhance Science Instruction. Journal of Science Education and Technology, 2013, 22, 667-680.	2.4	41
22	New Curricular Material for Science Classes: How Do Students Evaluate It?. Research in Science Education, 2013, 43, 163-178.	1.4	4
23	Situational Interest in Engineering Design Activities. International Journal of Science Education, 2013, 35, 2057-2078.	1.0	31
24	Transforming a school learning exercise into a public engagement event: †The Good, the Bad and The Algae'. Journal of Biological Education, 2013, 47, 246-252.	0.8	10
25	Relationships among affective factors and preferred engagement in science-related activities. Public Understanding of Science, 2013, 22, 941-954.	1.6	42
26	Antecedents and consequences of situational interest. British Journal of Educational Psychology, 2013, 83, 591-614.	1.6	112
27	Upper Secondary Students' Situational Interest: A case study of the role of a zoo visit in a biology class. International Journal of Science Education, 2013, 35, 2732-2751.	1.0	53
28	Interest and Enjoyment. , 0, , .		6
29	Designing for Learning. , 2014, , 668-685.		54
30	Internal Interest or External Performing? A Qualitative Study on Motivation and Learning of 9th Graders in Thailand Basic Education. Journal of Education and Learning, 2014, 3, .	0.2	13
31	Going Beyond the "Whoa! That's Cool!―of Inquiry: Achieving Science Interest and Learning with the ICAN Intervention. Advances in Motivation and Achievement: A Research Annual, 2014, , 107-138.	0.3	10
32	The Influence of Achievement Goal Orientations and Task Concreteness on Situational Interest. Journal of Experimental Education, 2014, 82, 455-479.	1.6	29
33	lgniting and Sustaining Interest Among Students Who Have Grown Cold Toward Science. Science Education, 2014, 98, 792-814.	1.8	29
34	The Role of Interest in Learning Science through Stories. Interchange, 2014, 45, 133-151.	1.0	14
35	Situational interest and learning: Thirst for knowledge. Learning and Instruction, 2014, 32, 37-50.	1.9	178
36	â€~Because We Weren't Actually Teaching Them, We Thought They Weren't Learning': Primary Teache Perspectives from the MyScience Initiative. Research in Science Education, 2014, 44, 1-25.	er 1.4	18

#	Article	IF	CITATIONS
37	Inquiry Learning in the Singaporean Context: Factors affecting student interest in school science. International Journal of Science Education, 2014, 36, 2596-2618.	1.0	42
38	Cues of working together fuel intrinsic motivation. Journal of Experimental Social Psychology, 2014, 53, 169-184.	1.3	89
39	Using digital photography and journaling in evaluation of field-based environmental education programs. Studies in Educational Evaluation, 2014, 41, 68-76.	1.2	21
40	Attending to affect. Journal of Research in Science Teaching, 2014, 51, 821-835.	2.0	81
41	The Power of Interest for Motivation and Engagement. , 0, , .		149
42	Learning and Motivation in Thailand: A Comparative Regional Study on Basic Education Ninth Graders. International Education Studies, 2015, 9, 31.	0.3	13
43	Interest, Psychology of. , 2015, , 378-385.		2
44	Science Investigation. Springer Briefs in Education, 2015, , .	0.2	5
45	Investigating Situational Interest in Primary Science Lessons. International Journal of Science Education, 2015, 37, 3015-3037.	1.0	16
46	Situational Interest of Fourth-Grade Children in Music at School. Journal of Research in Music Education, 2015, 63, 180-197.	1.0	7
47	Affective Dimensions in Chemistry Education. , 2015, , .		11
48	Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey. International Journal of Science Education, 2015, 37, 1795-1814.	1.0	27
49	How situational is situational interest? Investigating the longitudinal structure of situational interest. Contemporary Educational Psychology, 2015, 43, 39-50.	1.6	128
50	Science Education in East Asia. , 2015, , .		7
51	Practice and Effect of Lessons on Inquiry Activities in Senior High School Chemistry: Focusing on Students' Attitudes Toward Chemistry. , 2015, , 355-371.		0
52	Exploring the Role of Visitors' Self-Identity in Marine Museum Learning. International Journal of Science Education, Part B: Communication and Public Engagement, 2015, 5, 375-393.	0.9	3
53	Geoscience Education Research Project: Student Benefits and Effective Design of a Course-Based Undergraduate Research Experience. Journal of Geoscience Education, 2016, 64, 24-36.	0.8	31
54	STEM Learning through Engineering Design: Impact on Middle Secondary Students' Interest towards STEM. Eurasia Journal of Mathematics, Science and Technology Education, 2016, 13, .	0.7	67

#	Article	IF	CITATIONS
55	Students' Motivation and Learning and Teachers' Motivational Strategies in English Classrooms in Thailand. English Language Teaching, 2016, 9, 64.	0.2	29
56	Fostering Today What is Needed Tomorrow: Investigating Students' Interest in Science. Science Education, 2016, 100, 364-391.	1.8	35
57	Families support their children's success in science learning by influencing interest and selfâ€efficacy. Journal of Research in Science Teaching, 2016, 53, 450-472.	2.0	72
58	Student Interest in Engineering Designâ€Based Science. School Science and Mathematics, 2016, 116, 411-419.	0.5	19
59	The effectiveness of a project day to introduce sixth grade students to science competitions. Research in Science and Technological Education, 2016, 34, 342-358.	1.4	10
60	Teacher self-efficacy, academic self-efficacy, and computer self-efficacy as predictors of attitude toward applying computer-supported education. Computers in Human Behavior, 2016, 64, 591-601.	5.1	68
61	Identifying Underlying Causes of Situational Interest in a Science Course for Preservice Elementary Teachers. Science Education, 2016, 100, 1039-1061.	1.8	37
62	Interest Matters. Policy Insights From the Behavioral and Brain Sciences, 2016, 3, 220-227.	1.4	292
63	A decision-maker or a collaborator? Reflecting teacher's professional development trends in Thailand. Cogent Education, 2016, 3, 1215216.	0.6	1
64	Inquiry-Based Science and Technology Enrichment Program for Middle School-Aged Female Students. Journal of Science Education and Technology, 2016, 25, 174-186.	2.4	24
65	Iterative Design of Teaching-Learning Sequences. , 2016, , .		16
66	Engaging in Science: A Feeling for the Discipline. Journal of the Learning Sciences, 2016, 25, 156-202.	2.0	70
67	A multi-user virtual environment to support students' self-efficacy and interest in science: A latent growth model analysis. Learning and Instruction, 2016, 41, 11-22.	1.9	60
68	Teacher Roles of Questioning in Early Elementary Science Classrooms: A Framework Promoting Student Cognitive Complexities in Argumentation. Research in Science Education, 2017, 47, 373-405.	1.4	54
69	Behaviour-changing ingredients in soft drinks: an experiment developed by school children in partnership with a research scientist. Journal of Biological Education, 2017, 51, 79-96.	0.8	2
70	Integrating Facebook in Upper Secondary Biology Instruction: A Case Study of Students' Situational Interest and Participation in Learning Communication. Research in Science Education, 2017, 47, 1305-1329.	1.4	14
71	Formal Lessons Improve Informal Educational Experiences: The Influence of Prior Knowledge on Student Engagement. Visitor Studies, 2017, 20, 89-104.	0.6	8
72	Emotional and motivational outcomes of lab work in the secondary intermediate track: The contribution of a science center outreach lab. Journal of Research in Science Teaching, 2017, 54, 3-28.	2.0	48

#	Article	IF	CITATIONS
73	An Inquiry-Based Approach to Engaging Undergraduate Students in On-Campus Conservation Research Using Camera Traps. Southeastern Naturalist, 2017, 16, 58-69.	0.2	3
74	The Science of Interest. , 2017, , .		13
75	The Role of Interest in Learning: Knowledge Acquisition at the Intersection of Situational and Individual Interest. , 2017, , 69-93.		19
76	Using psychological constructs from the MUSIC Model of Motivation to predict students' science identification and career goals: results from the U.S. and Iceland. International Journal of Science Education, 2017, 39, 1089-1108.	1.0	8
77	Exploring Emotions, Aesthetics and Wellbeing in Science Education Research. Cultural Studies of Science Education, 2017, , .	0.2	19
78	Conceptual understanding of acids and bases concepts and motivation to learn chemistry. Journal of Educational Research, 2017, 110, 85-97.	0.8	17
79	Developing Student Interest: An Overview of the Research and Implications for Geoscience Education Research and Teaching Practice. Journal of Geoscience Education, 2017, 65, 594-603.	0.8	21
80	Generation of student interest in an inquiry-based mobile learning environment. Frontline Learning Research, 2017, 5, 42-60.	0.4	11
81	Repairing the leaky pipeline: A motivationally supportive intervention to enhance persistence in undergraduate science pathways. Contemporary Educational Psychology, 2018, 53, 181-195.	1.6	37
82	Physical computing with plug-and-play toolkits:Key recommendations for collaborative learning implementations. International Journal of Child-Computer Interaction, 2018, 17, 72-82.	2.5	24
83	An inquiry into the structure of situational interests. Science Education, 2018, 102, 108-127.	1.8	35
84	Evidence that an informal environmental summer camp can contribute to the construction of the conceptual understanding and situational interest of STEM in middle-school youth. International Journal of Science Education, Part B: Communication and Public Engagement, 2018, 8, 227-249.	0.9	17
85	Literacy interest and reader self-concept when formal reading instruction begins. Early Childhood Research Quarterly, 2018, 44, 90-100.	1.6	37
86	Exploring situational interest sources in the French physical education context. European Physical Education Review, 2018, 24, 3-20.	1.2	28
87	Technology valued? Observation and review activities to enhance future teachers' utility value toward technology integration. Computers and Education, 2018, 117, 160-174.	5.1	20
88	The key factors affecting students' individual interest in school science lessons. International Journal of Science Education, 2018, 40, 1-23.	1.0	38
89	The role of relevance in future teachers' utility value and interest toward technology. Educational Technology Research and Development, 2018, 66, 283-311.	2.0	22
90	Influence of science instruction reform on academic performance of eighth grade students in Chinese inner-Mongolia autonomous region. Compare, 2018, 48, 879-895.	1.5	6

#	Article	IF	CITATIONS
91	Making Learning Personally Meaningful: A New Framework for Relevance Research. Journal of Experimental Education, 2018, 86, 11-29.	1.6	97
92	School geography: what interests students, what interests teacher?. International Research in Geographical and Environmental Education, 2018, 27, 311-325.	0.8	12
93	Recreational Experiences for Teaching Basic Scientific Concepts in Primary Education: The Case of Density and Pressure. Eurasia Journal of Mathematics, Science and Technology Education, 2018, 14, .	0.7	9
94	Using Motivational Theory to Enrich IBSE Teaching Practices. Contributions From Science Education Research, 2018, , 87-103.	0.4	0
95	Reading socially: Transforming the in-home reading experience with a learning-companion robot. Science Robotics, 2018, 3, .	9.9	43
96	Professional Development for Inquiry-Based Science Teaching and Learning. Contributions From Science Education Research, 2018, , .	0.4	9
97	Consistency, longitudinal stability, and predictions of elementary school students' task interest, success expectancy, and performance in mathematics. Learning and Instruction, 2018, 56, 73-83.	1.9	33
98	Context characteristics and their effects on students' situational interest in chemistry. International Journal of Science Education, 2018, 40, 1154-1175.	1.0	44
99	Contextual Factors Influencing Access to Teaching Computational Thinking. Computers in the Schools, 2018, 35, 69-87.	0.4	14
100	Students' interest towards STEM: a longitudinal study. Research in Science and Technological Education, 2019, 37, 71-89.	1.4	35
101	Seven place-conscious methods to stimulate situational interest in science teaching in urban environments. Education 3-13, 2019, 47, 162-175.	0.6	8
103	Does teaching about artificial reefs trigger students' situational interest in marine biology?. Journal of Biological Education, 2021, 55, 264-275.	0.8	3
105	Immigrant and New Language Learner Boys: Evidence and Practice. , 2019, , 110-139.		0
106	Literacy Engagement and Boys: Evidence and Practice. , 2019, , 140-156.		0
108	Supporting Interest in Science Learning with a Social Robot. , 2019, , .		28
109	Poultry in the classroom: effectiveness of an online poultry-science-based education program for high school STEM instruction. Poultry Science, 2019, 98, 6593-6601.	1.5	4
110	Seductive Details in the Flipped Classroom: The Impact of Interesting but Educationally Irrelevant Information on Student Learning and Motivation. CBE Life Sciences Education, 2019, 18, ar42.	1.1	13
111	Ninthâ€grade students' perceptions of the factors that led them to major in high school science, technology, engineering, and mathematics disciplines. Science Education, 2019, 103, 1176-1205.	1.8	26

		CITATION R	EPORT	
# 112	ARTICLE Exploring the Design of Scaffolding Pedagogical Instruction for Elementary Preservice T Education. Journal of Science Teacher Education, 2019, 30, 483-506.	eacher	IF 1.4	CITATIONS
113	Longitudinal couplings between interest and conceptual understanding in secondary sc chemistry: an activity-based perspective. International Journal of Science Education, 202	hool 19, 41, 607-627.	1.0	16
114	The I files, the truth is out there: science teachers' constructs of inquiry. Internation Science Education, 2019, 41, 533-545.	al Journal of	1.0	4
115	Boys' Reading and Learning: Identifying the Issues. , 2019, , 7-23.			0
116	Boys and Literacy: A Closer Look. , 2019, , 24-44.			0
117	Boys' Masculinities and Identities: Evidence and Practice. , 2019, , 45-88.			0
118	Socioeconomics and Boys: Evidence and Practice. , 2019, , 89-109.			0
119	Boys and New Literacies: Evidence and Practice. , 2019, , 157-178.			0
120	Boys and Writing: Evidence and Practice. , 2019, , 179-206.			0
122	Triggering and maintaining interest in early phases of interest development. Learning, C Social Interaction, 2019, 23, 100260.	ulture and	1.1	36
123	Knowing more about things you care less about: Crossâ€sectional analysis of the oppos interplay between conceptual understanding and interest in secondary school chemistr Research in Science Teaching, 2019, 56, 184-210.		2.0	19
124	The role of motivational factors in predicting STEM career aspirations. International Jour School and Educational Psychology, 2019, 7, 201-214.	nal of	1.0	21
125	Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositi Countries. Research in Science Education, 2019, 49, 1-23.	ons in 54	1.4	106
126	What do students think they should know about vertebrate fish?. Journal of Biological E 2020, 54, 530-539.	ducation,	0.8	3
127	Project-based learning for middle school students monitoring standby power: replicatio on stem knowledge and dispositions. Educational Technology Research and Developme 137-162.		2.0	6
128	Exploring the pedagogical features of integrating essential competencies of scientific ir classroom teaching. Research in Science and Technological Education, 2020, 38, 185-20		1.4	6
129	History-Based Instruction Enriched with Various Sources of Situational Interest on the T Atom: the Effect on Students' Achievement and Interest. Research in Science Educa 1187-1215.		1.4	6
130	Promoting Interest by Supporting Learner Autonomy: the Effects of Teaching Behaviour Lessons. Research in Science Education, 2020, 50, 1763-1788.	in Biology	1.4	13

#	Article	IF	CITATIONS
131	Two Crucial Years of Science and Technology Schooling: A Longitudinal Study of the Major Influences on and Interactions Between Self-Concept, Interest, and the Intention to Pursue S&T. Research in Science Education, 2020, 50, 1739-1761.	1.4	19
132	Compare Inquiry-Based Pedagogical Instruction with Direct Instruction for Pre-service Science Teacher Education. International Journal of Science and Mathematics Education, 2020, 18, 1063-1083.	1.5	15
133	Interest in Dialogic and Non-Dialogic Teacher Talk Situations in Middle School Science Classroom. International Journal of Science and Mathematics Education, 2020, 18, 1531-1546.	1.5	15
134	Students' situational interest in cultivated plants: the importance of contextualisation and topic selection. International Journal of Science Education, 2020, 42, 2765-2799.	1.0	5
135	Development of Interest and Role of Choice During Sequential Knowledge Acquisition. AERA Open, 2020, 6, 233285842092998.	1.3	10
136	Identifying patterns of students' performance on simulated inquiry tasks using <scp>PISA</scp> 2015 logâ€file data. Journal of Research in Science Teaching, 2020, 57, 1400-1429.	2.0	27
137	Eine Mikroanalyse von Chemieunterricht– Einsatz und Perzeption von Triggern für situationales Interesse. Zeitschrift Für Didaktik Der Naturwissenschaften, 2020, , 1.	0.2	5
138	Reciprocal Predictions Between Interest, Self-Efficacy, and Performance During a Task. Frontiers in Education, 2020, 5, .	1.2	27
139	Using augmented reality to experiment with elements in a chemistry course. Computers in Human Behavior, 2020, 111, 106418.	5.1	59
140	Teacher-Directed Versus Inquiry-Based Science Instruction: Investigating Links to Adolescent Students' Science Dispositions Across 66 Countries. Journal of Science Teacher Education, 2020, 31, 675-704.	1.4	26
141	Combining formal education and citizen science: a case study on students' perceptions of learning and interest in an urban rat project. Environmental Education Research, 2020, 26, 324-340.	1.6	19
142	Rasch Model Extensions for Enhanced Formative Assessments in MOOCs. Applied Measurement in Education, 2020, 33, 113-123.	0.5	3
143	Cognitive Learning about Waste Management: How Relevance and Interest Influence Long-Term Knowledge. Education Sciences, 2020, 10, 102.	1.4	11
144	Epistemic Curiosity and Situational Interest: Distant Cousins or Identical Twins?. Educational Psychology Review, 2021, 33, 325-352.	5.1	22
145	Influence of the Interplay of Habitual Affective Attributes and Classroom Learning Environments on Learners' Situational Affective Experiences in Learning Science: The Narratives of Primary Pre-Service Teachers. Research in Science Education, 2021, 51, 399-417.	1.4	0
146	Sometimes hot, sometimes not: the relations between selected situational vocational interests and situation perception. European Journal of Personality, 2021, 35, 212-233.	1.9	7
147	The Effectiveness of Argument-Driven Inquiry in Promoting Students' Argumentation Skills About Colloids. , 0, , .		1
148	How Do Teachers Meet the Academic Needs of High-Ability Students in Science?. Springer International Handbooks of Education, 2021, , 737-760.	0.1	0

#	Article	IF	CITATIONS
149	Discussion, Conclusion, and Final Thoughts. Springer Briefs in Education, 2021, , 51-60.	0.2	0
150	Vocational high school students' motivation towards learning chemistry. AIP Conference Proceedings, 2021, , .	0.3	0
151	Physics demonstrations: who are the students appreciating them?. International Journal of Science Education, 2021, 43, 529-551.	1.0	7
152	Enhancing students' interest in science and understandings of STEM careers: the role of career-based scenarios. International Journal of Science Education, 0, , 1-20.	1.0	30
153	Developing Geographic Skills through Experiments: Implementing Experiments in Geography Classroom through GeoBoxes. Review of International Geographical Education Online (discontinued), 0, , .	0.1	0
154	The Relationship Between Students' Casual Interest in Science and Their Perceptions of the Undergraduate Laboratory Environment. Research in Science Education, 0, , 1.	1.4	0
155	Communicating Chemistry through Cooking and Personal Health: Everyday Applications Increase Perceived Relevance, Interest, and Self-Efficacy in Chemistry. Journal of Chemical Education, 2021, 98, 1852-1862.	1.1	7
156	The role of reading comprehension in mathematical modelling: improving the construction of a real-world model and interest in Germany and Taiwan. Educational Studies in Mathematics, 2022, 109, 337-359.	1.8	20
157	An Observational Narrative of Student Reaction to Video Hooks. Education Sciences, 2021, 11, 286.	1.4	2
158	Old instruments in the physics and chemistry cabinet at Goya Secondary School. Analysis of their didactic use in teaching physics today (<i>Los antiguos instrumentos del gabinete de fÁsica y quÃmica) Tj ETQq1 2021, 33, 556-572.</i>	1 0,78431 0.2	l4_rgBT /O
159	Moderating effects of teacher feedback on the associations among inquiry-based science practices and students' science-related attitudes and beliefs. International Journal of Science Education, 2021, 43, 2426-2456.	1.0	10
160	The Changes in Lower Secondary School Students' Interest During Collaborative Learning. Scandinavian Journal of Educational Research, 2022, 66, 1127-1140.	1.0	2
161	Primary Students' Experiences of Remote Learning during COVID-19 School Closures: A Case Study of Finland. Education Sciences, 2021, 11, 560.	1.4	10
162	Out-of-school programs and interest: Design considerations based on a meta-analysis. Educational Research Review, 2021, 34, 100406.	4.1	7
163	Trifecta of Student Engagement. , 2021, , 96-118.		0
164	Interest and Emotions in Science Education. Cultural Studies of Science Education, 2017, , 187-202.	0.2	5
165	Interest: Knowns, Unknowns, and Basic Processes. , 2017, , 3-24.		24
166	Situational Interest: A Proposal to Enhance Conceptual Clarity. , 2017, , 109-124.		16

#	Article	IF	Citations
167	Evaluating the Affective Dimension in Chemistry Education. , 2015, , 29-49.		9
168	Interesse und Interessenentwicklung. , 2018, , 245-259.		5
170	Life science students' attitudes, interest, and performance in introductory physics for life sciences: An exploratory study. Physical Review Physics Education Research, 2018, 14, .	1.4	36
171	Engaging young women in physics: An intervention to support young women's physics identity development. Physical Review Physics Education Research, 2018, 14, .	1.4	28
172	Motivational Qualities of Hands-on Science Activities for Turkish Preservice Kindergarten Teachers. Eurasia Journal of Mathematics, Science and Technology Education, 2012, 8, .	0.7	15
174	Hands-On Experiments in the Interactive Physics Laboratory: Students' Intrinsic Motivation and Understanding. Center for Educational Policy Studies Journal, 2018, 8, 55-75.	0.1	13
175	Aptness between Teaching Roles and Teaching Strategies in ICT-Integrated Science Lessons. Interdisciplinary Journal of E-Skills and Lifelong Learning, 0, 7, 305-322.	0.0	3
176	Validating a 3E Rubric Assessing Pre-service Science Teachers' Practical Knowledge of Inquiry Teaching. Eurasia Journal of Mathematics, Science and Technology Education, 2019, 16, .	0.7	3
177	Canalization and Connectedness in the Development of Science Interest. , 2015, , 353-367.		6
178	Inquiry-based Learning in Indonesia: Portraying Supports, Situational Beliefs, and Chemistry Teachers Adoptions. Journal of Turkish Science Education, 2019, 16, 538-553.	0.7	10
179	Attending to Student Motivation through Critical Practice. Advances in Early Childhood and K-12 Education, 2014, , 66-116.	0.2	2
180	Enhancing Students' Motivation towards School Science with an Inquiry-Based Site Visit Teaching Sequence: A Design-Based Research Approach. Nordic Studies in Science Education, 2014, 10, 251.	0.3	6
181	Science Inquiry-Based Activities in Elementary Education: How to Support Teachers" Practices?. International Journal of Information and Education Technology, 2015, 5, 451-455.	0.9	4
184	Interesse – en vigtig forudsætning for biologistuderendes engagement i zoofysiologi. Dansk Universitetspædagogisk Tidsskrift, 2010, 5, 36-41.	0.1	0
185	Challenging Sacred Beliefs. , 2011, , 3-24.		0
186	Exploring Students' Ability of 'Doing' Scientific Inquiry: The Case of Gifted Students in Science. Journal of the Korean Earth Science Society, 2011, 32, 225-238.	0.0	3
187	Gender im naturwissenschaftlichen Unterricht. , 2012, , 213-227.		1
188	Students' Achievement in Learning Chemistry Through the Design and Construction Approach to Laboratory Activity and the Relation with their Prior Achievements and Motivation to Learn. , 2014, , 209-231.		0

#	Article	IF	CITATIONS
190	Motivation to Learn Science Investigation. Springer Briefs in Education, 2015, , 25-39.	0.2	0
191	Design and Development of Teaching-Learning Sequence (TLS) Materials Around Us: Description of an Iterative Process. , 2016, , 201-231.		1
192	The Relationship between a Business Simulator, Constructivist Practices, and Motivation toward Developing Business Intelligence Skills. Journal of Information Technology Education:Research, 0, 15, 593-609.	0.0	2
193	Identifying and Analyzing the Relevance of Prospective Science Teachers' Inquiry Abilities and Peers' Concept Understanding in Microteaching Course. , 2017, , .		0
194	Elementary Students' Situational Interest in Lessons of World Music. Bulletin of the Council for Research in Music Education, 2017, , 7.	0.5	1
195	Improving the Eighth Graders' Motivation Toward Science Learning Through Inquiry-Based Teaching. US-China Education Review A, 2017, 7, .	0.1	0
196	Views on Asian ESL learners' oral output and how drama-based cultural adjustment can help. International Journal of Research Studies in Language Learning, 2017, 7, .	0.2	0
197	The Influence of Teachersr Role and Motivation on Basic Accounting Learning Outcomes at Vocational High Schools. , 2018, , .		1
198	How Do Teachers Meet the Academic Needs of High-Ability Students in Science?. Springer International Handbooks of Education, 2019, , 1-24.	0.1	0
200	Reflections on Inquiry. Advances in Educational Technologies and Instructional Design Book Series, 2019, , 197-210.	0.2	0
201	Positive Energy. Advances in Early Childhood and K-12 Education, 2019, , 203-219.	0.2	0
202	Economic Lessons Insert the Islamic Economy : How the Interest Action in Science High School Student Majoring?. International Journal of Educational Research Review, 0, , 133-139.	0.2	0
203	Öğrencilerin Fen Bilimleri Dersi Sınıf Etkinlikleri Algı ve Fen Konularına Yönelik İlgi Düzeylerinin Ba Değişkenler Açısından İncelenmesi. Eğitimde Kuram Ve Uygulama, 0, , 204-219.	zı 0.7	2
204	Trifecta of Student Engagement. Advances in Mobile and Distance Learning Book Series, 2020, , 77-106.	0.4	0
206	Students' Response to the Basic Physics Textbook Integrated with Faith, Piety, and Local Wisdom. Jurnal Ilmiah Pendidikan Fisika, 2020, 4, 23.	0.2	2
208	Upper secondary students' situational interest in physics learning in Finland and Chile. International Journal of Science Education, 2021, 43, 2577-2596.	1.0	7
210	Instructors' conceptualization and implementation of scaffolding in online higher education courses. Journal of Computing in Higher Education, 2022, 34, 242-279.	3.9	4
211	Undergraduates' Interest Towards Learning Genetics Concepts Through Integrated Stemproblem Based Learning Approach. Shanghai Ligong Daxue Xuebao/Journal of University of Shanghai for Science and Technology, 2020, 22, .	0.1	0

#	Article	IF	CITATIONS
212	Innovation, Recreation, Interpretation? A Case Study on the Origins and Implementation of Transversal Core Competencies in Finnish Basic Education Core Curriculum Reform 2016. International Journal of Education and Literacy Studies, 2020, 8, 180.	0.3	1
213	Emociones y percepciones sobre indagación de profesorado en formación inicial InvestigaciÓn En La Escuela, 2020, , 54-70.	0.4	2
214	Students' Motivation in English Language Learning (ELL): An Exploratory Study of Motivation-al Factors for EFL and ESL Adult Learners. International Journal of Applied Linguistics and English Literature, 2020, 9, 15.	0.1	10
215	Plant Blindness begegnen – Pflanzen sichtbar machen. , 2021, , 263-282.		1
216	Implementation of Inquiry-Based Science in the Classroom and Its Repercussion on the Motivation to Learn Chemistry. Journal of Chemical Education, 2022, 99, 578-591.	1.1	7
217	Motivational outcomes of the science outreach lab S'Cool <scp>LAB</scp> at <scp>CERN</scp> : A multilevel analysis. Journal of Research in Science Teaching, 2022, 59, 930-968.	2.0	5
218	Development and Validation of a Questionnaire to Assess Situational Interest in a Science Period: a Study in Three Cultural/Linguistic Contexts. Research in Science Education, 2023, 53, 99-120.	1.4	2
219	What effective design strategies do rural, underserved students in STEM clubs value while learning about climate change?. Environmental Education Research, 2022, 28, 1043-1069.	1.6	6
220	Science utility value intervention for elementary school students: A six-month follow-up study. International Journal of Educational Research, 2022, 113, 101954.	1.2	4
221	Students' Emotions Related to Thermal Camera Activities in Primary Science Lessons. Innovations in Science Education and Technology, 2022, , 79-93.	0.1	0
222	Interest: A unique affective and cognitive motivational variable that develops. Advances in Motivation Science, 2022, , 179-239.	2.2	12
223	Two comparative studies of computer simulations and experiments as learning tools in school and out-of-school education. Instructional Science, 2022, 50, 169-197.	1.1	3
226	Who Am I?. Advances in Higher Education and Professional Development Book Series, 2022, , 58-82.	0.1	0
227	Struggling or Succeeding in Science and Technology Education: Elementary School Students' Individual Differences During Inquiry- and Design-Based Learning. Frontiers in Education, 0, 7, .	1.2	2
228	Game-based learning and students' motivation in project management education. Project Leadership and Society, 2022, 3, 100055.	1.8	19
229	¿El aprendizaje basado en indagación mejora el rendimiento académico del alumnado en ciencias? Análisis basado en PISA 2018. Revista Colombiana De Educacion, 2022, , 53-74.	0.0	0
230	The World through My Eyes: Fostering Students' Understanding of Basic Optics Concepts Related to Vision and Image Formation. Physics, 2022, 4, 1117-1134.	0.5	8
231	Do lectures matter? Exploring students' situational interest in two learning arenas in teacher education. Scandinavian Journal of Educational Research, 2023, 67, 1027-1040.	1.0	0

#	ARTICLE	IF	CITATIONS
232	PENGEMBANGAN MEDIA PEMBELAJARAN FLASHCARD IPA SMP MATERI TATA SURYA. Jurnal Pendidikan Dan Pembelajaran Sains Indonesia, 2021, 4, 69-80.	0.2	1
233	Implementation of ICT literacy in STEAM project learning for measuring student's interest and motivation. AIP Conference Proceedings, 2023, , .	0.3	1
234	Learning outcomes of transforming cutting-edge iPSC research into informal science courses for upper secondary school students. Journal of Biological Education, 0, , 1-15.	0.8	0
235	Interestingness is in the eye of the beholder – the impact of formative assessment on students' situational interest in chemistry classrooms. International Journal of Science Education, 2023, 45, 383-404.	1.0	0
236	Physics curriculum in upper secondary schools: What leading physicists want. Science Education, 2023, 107, 677-712.	1.8	0
237	Development and implementation of innovative concepts for language-sensitive student laboratories. Chemistry Education Research and Practice, 2023, 24, 740-753.	1.4	2
238	"My Unconditional Homework Buddy:―Exploring Children's Preferences for a Homework Companion Robot. , 2023, , .		0
243	The use of drama in science instructionâ \in a review of the literature. SN Social Sciences, 2023, 3, .	0.4	0
248	Discussion of Emerging Themes. Springer Briefs in Education, 2023, , 69-88.	0.2	0
253	Jacks Start Abroad. Advances in Higher Education and Professional Development Book Series, 2024, , 18-31.	0.1	Ο