Are sea snakes pertinent bio-indicators for coral reefs? sites

Marine Biology 156, 1985-1992 DOI: 10.1007/s00227-009-1229-7

Citation Report

#	Article	IF	CITATIONS
1	Do researchers impact their study populations? Assessing the effect of field procedures in a long term population monitoring of sea kraits. Amphibia - Reptilia, 2012, 33, 365-372.	0.1	13
2	Long-term Field Study of Sea Kraits in New Caledonia: Fundamental Issues and Conservation. Integrative and Comparative Biology, 2012, 52, 281-295.	0.9	20
3	Introduction to the Symposium "New Frontiers from Marine Snakes to Marine Ecosystems". Integrative and Comparative Biology, 2012, 52, 213-216.	0.9	2
4	Spatial variability of metallic and organic contamination of anguilliform fish in New Caledonia. Environmental Science and Pollution Research, 2014, 21, 4576-4591.	2.7	16
5	Anguilliform fish reveal large scale contamination by mine trace elements in the coral reefs of New Caledonia. Science of the Total Environment, 2014, 470-471, 876-882.	3.9	23
6	Spatial variation in age structure among colonies of a marine snake: the influence of ectothermy. Journal of Animal Ecology, 2015, 84, 925-933.	1.3	7
7	Phenotypic variation contrasts with genetic homogeneity across scattered sea snake colonies. Journal of Biogeography, 2016, 43, 1573-1582.	1.4	8
8	Complex food webs in highly diversified coral reefs: Insights from δ13C and δ15N stable isotopes. Food Webs, 2016, 8, 12-22.	0.5	31
9	Contribution of citizen science to improve knowledge on marine biodiversity in the Gulf Region. Journal of the Association of Arab Universities for Basic and Applied Sciences, 2017, 24, 126-135.	1.0	3
10	Future Directions in the Research and Management of Marine Snakes. Frontiers in Marine Science, 2018, 5, .	1.2	22
11	A lack of spatial genetic structure of Gymnothorax chilospilus (moray eel) suggests peculiar population functioning. Biological Journal of the Linnean Society, 2018, 125, 142-151.	0.7	3
12	Refining model estimates of potential species' distributions to relevant accessible areas. Progress in Physical Geography, 2020, 44, 449-460.	1.4	4
13	Plasticity matches phenotype to local conditions despite genetic homogeneity across 13 snake populations. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20202916.	1.2	7
15	Effect of Furadan on Protein Content, Reduced Glutathione and Lipid Peroxidation Level on the Muscle of Bufo Melanostictus Schneider, 1799. Indian Journal of Applied Research, 2011, 4, 33-34.	0.0	0
16	Distribution and abundance of leptocephali in the western South Pacific region during two large-scale sampling surveys. Progress in Oceanography, 2022, 206, 102853.	1.5	3